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ENERGY RENORMALISATION AND DAMPING OF SURFACE SPIN WAVES IN
HEISENBERG FERROMAGNETS

D.E. Kontos and M.G. Cottam

Depariment of Physics, University of Essex, Colchester C04 35q, U.K.

Résumé - En utilisant la th&orie de fonctions de Green, nous &tudions
1'effet d'une surface sur les interactions magnon-magnon dans un corps
ferromagn€tique de Heisenberg. On en déduit 1'énergie renormalisée et

l'amortissement d'ondes de spin de surface.

Abstract - A Green function theory is employed to study the effect of a
surface on magnon-maghon interactions in a Heisenberg ferromagnet. Results
are deduced for the renormalised enexrgy and damping of the surface spin
waves.

It is well known that under certain conditions localised surface spin waves are
predicted to exist in Heisenberg ferromagnets. The properties of these modes, and
their influence on thermodynamic behaviour, spin wave resonance, light scattering,
etc., have been summarised in various review articles, e.g. /1-3/. Since gpin
waves are not exact eigenstates of the Heisenberg Hamiltonian, interaction effects
will occur resulting in an energy renormalisation and damping of the modes. 1In
infinite ferromagnets the treatment of interactions between bulk spin waves has been
put on a rigorous basis by Dyson /4/. However, the presence of a surface will give
rise to much richer and more complicated schemes of spin wave interactions, since
scattering processes may take place involving surface spin waves as well as bulk
spin waves (which in any case have modified properties close to the surface).

In this paper we employ a Green function formalism to study spin wave interactions
in semi-infinite Heisenberg ferromagnets at low temperatures T << T . Specifically
we deduce expressions for the energy renormalisation and damping of surface spin
waves due to their interactions either with bulk spin waves or with surface spin
waves. Previous related work has, for example, included a calculation of the
surface spin wave damping in a simple cubic Heisenberg ferromagnet with a (0Ol)
surface for the special case of nearest-neighbour exchange and zero surface
anisotropy /5/. In the present analysis we consider the energy renormalisation as
well as the damping, and we examine effects of next-nearest-neighbour exchange,
modified exchange near the surface, surface anisotropy and applied magnetic field.
Only a brief outline is given here; details will be published elsewhere.

We consider a semi-infinite ferromagnet occupying the half-space z € O and described
by the Hamiltonian
1 N R z
H=- 3 iZjJ(l,j)gi.gj - guBg[Hi-D(l)JSi (1)
L4

where §; is a spin operator, J(i,j) is an exchange interaction, and the summations
are over all magnetic sites. The quantities H and D(i) denote respectively an
applied magnetic field and a surface anisotropy field perpendicular to the surface;
we assume D(i) to be zero except in the surface layer (z = 0) where it has the value
D. We consider here a simple cubic lattice with (0O0Ol) crystallographic orientation
of the surface; more generally we have also derived results for b.c.c. and f.c.c.
ferromagnets and for (0l1l) surfaces. For the exchange terms we restrict attention
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to two simple models:

Model 1: Exchange J{(i,]j) couples nearest neighbours only, having the value JS if
both spins are in the surface layer and the bulk value Jy otherwise.

Model 2: All exchange interactions are the same as in the bulk specimen, with
J(i,j) equal to Jl between nearest neighbours, J2 between next-nearest neighbours
and zero otherwise.

Uging the Holstein-Primakoff representation the Hamiltonian (1) may be transformed
to boson operators, keeping terms up to fourth order. As is well known this type
of approach can lead to inconsistencies for small values of the spin S, but these
difficulties are avoided if 1/8 is formally treated as a small parameter and
calculations are carried out consistently to each power in 1/S (see /6/)}. The
linear spin wave part of the Hamiltonian can then be diagonalised by a further
transformation to normal mode operators, and H takes the form

+
= qz E(gwa (qualgw +¥ . (2)
dru

Here g = (Qg ¢4 ) is a wavevector parallel to the surface, and y labels the normal
modes of the semi-infinite system which consist of a quasi-continuum of bulk spin
waves with wavevectors Q = (g,qz) and a discrete surface spin wave branch charactexr-
ised by wavevector g. As expected, the eigenvalues E(qu) have the usual form

(e.g. see /1/) for the energies EB(Q) and Es(q) of bulk and surface spin waves
respectively in a linear approximation. The surface mode dispersion relation is

Eg (D) = gugH+s [ucoy-uig) J+2sv o) +sviw [a@ +A_l(g)] (3)
with
ulg) = 4le(g) vig) = Iy (Model 1)
B (4)
u(g) = 4le(g)+4J2cos(qxa)cos(qya) vig) = Jl+4J2Y(EQ (Model 2)
a- [l+4(l—JS/Jl) (1-y(an) {Model 1)
Ag) = (5)
(d—l)(Jl+4J2)/(Jl+4J2y(g)) (Model 2)
where yv(g) = [cos(q a)+cos (g a)]/2, d = guBD/SV(O), and a is the lattice constant.

The existence conditions for”surface spin waves are A(g) < -1 for an acoustic mode
and A(g) > 1 for an optic mode respectively, and these restrict the values of the
parameters.

The term X, int in (2), which describes the leading effect of magnon—magnon inter-
actions in the semi-infinite ferromagnet, is quartic in the operators at (gu) and
a(qu) Here we discuss the resulting energy renormalisation and damping of the
surface spin waves. The calculatlons can be conveniently performed by evaluating
Green functions al(qu); at (g'w")D within a diagrammatic perturbation expansion
bn){int, and then analy51ng the complex energy poles of these Green functions.

I - ENERGY RENORMALISATION

To first order of perturbation there is a shift AE in the spin wave energies. For

the surface modes we write AES = AESS+AESB, where AESS and AESB are the contribu-

tions due to interactions with surface modes and bulk modes respectively. We find
1

AE__ () = W g W (@ nfE 0]

(6)

B>

=

)
|

1
s 2 T NN, L g @ ®nlE @]
K
where k is a two-dimensional wavevector parallel to the surface, K = (k,k ) is a

three-dimensional wavevector, and n(E) = l/[exp(E/k T) l] N, and N, denote
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respectively the number of atomic layers parallel to the surface and the number of
magnetic sites in each layer (both numbers macroscopically large). The interaction
vertices WSS and W in the case of Model 1 are

SB
w (@w = - 3 (@] w-1/b@s® w1
x lotgi [1o1-a 2 @a 2 ]+ @]t wl @« e 7

WSB(EJEQ = —Jl{ a(g,g)[1-20(l—A_z(g))sin2(9/2)]

+ o[t @] 0 /2 + [ (1072 @1/ [1-287% (@) cos (2 )+ @1]
(8)

x [lo@wa @ an @b @ cos (6-2k ) ~cose]
+ it @] ?feos 84k ) -2 (@) cos 8-k )] +[148™ (@] [67 (@) coso-cos (8421 )1 ]

where g = (l—Js/Jl) and a(g,k) = 4[l+y(§75)~y(g)—y(5)]. The phase angle 0 depends
on the reflection properties at the surface of a bulk spin wave with wavevector X
and is defined by

exp(18) = [A (k) +exp(ik_a)]/[a () +exp (-ik_a)] (9

The quantities W and W,, play an analogous role to the Dyson interaction vertex
/4/ in the renormalisation of bulk spin waves in an infinite ferromagnet. However,
they are very much more complicated due to the lowering of symmetry produced by the
surface; they incorporate the statistical weighting of the various modes near the
surface.

Because of the Bose factors the summations in (6) are dominated by the behaviour
at small k and K, where W and W simplify. If the wavevector summations are
replaced by integrals, they can be evaluated analytically in various limiting cases.
The replacement is straightforward for the components of k since there is trans-
lational invariance parallel to the surface, whilst the correct procedure for
replacing the summation over k, by an integration has beeg given by Mills /7/. As
an example we discuss some results for long wavelenths (a®g” << 1) and for zero
surface anisotropy (@ = 0). If O < 0 <1 there is a surface branch in the unrenor-
malised spin wave spectrum occurring just below the continuum of bulk modes. The
lowexr edge of the continuum has energy Eg{(q,0) % guBH+SV(O)a2q2+O(q4) and the
surface mode with energy Es(g) is split off below this by an amount ¥ c“a“q®. 1In
general this close proximity can produce asubtle interplay between effects due to
the surface modes and those due to surface perturbation of the bulk modes, e.g. as
found in calculations of surface thermodynamic properties /7,8/. ©On defining

T = kBT/SV(O) and h = ngH/Sv(O), we obtain the following leading order contribu-
tions, assuming a?g2 << T << 1:

AESS(g) i —(Jl/Bn)(1—802)0a4q412F(2,h/T) (10)

4 3/2

/2)42 2T5/2F(5/2,h/r)+0(02q T

3/2
ME (@ N -3 /3217 D aq ) (11)

Here F(n,h/1) is the Bose~Einstein integral function (e.g. see /6/), which simpli-
fies to the Riemann zeta function z(n) if h = 0. The dominant contribution to AE
in this case is provided by the first term in (11) and comes from interactions with
bulk spin waves. It is interesting to note that this leading order contribution to
AES has the same form as the energy correction for a bulk spin wave with small
wavevector (g,0) in an infinite ferromagnet /4,6/. This result seems reasonable in
view of the earlier comments concerning the proximity of the surface branch to the
lower edge of the bulk continuum. Moreover the condition azq << 1 assumed in
deriving (10) and (11) implies that the penetration depth (v l/anz) of the surface
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mode is relatively large, e.g. it is larger than the thickness (~ a/Ts) over which
the magnetisation is appreciably perturbed by the surface /8/. The results for
larger g will be discussed elsewhere.

A different behaviour for AEg is predicted if there is a surface anisotropy field
(d # 0). We take the case of d < O and O < g < 1, which ensures the existence of
an acoustic surface spin wave (provided the applied field is not too small). For
anisotropy fields satisfying 1t << d¢ << 1 and a2q2 << d2 we find that the dominant
contribution to AES(g) is approximately proportional to d3rF(l,ES(O)/kBT). It
comes mainly from interactions with surface spin waves (i.e. from AESS), unlike the
previous example with @ = O. This difference can be understood as arising partly
due to an approximate node in the bulk spin wave amplitudes at the surface in the
present case, and partly due to a relative enhancement in the number of thermally
excited surface spin waves (since EB(O)—ES(O) X d2Sv(O} for a2 << 1.

We have also carried out calculations to include the effect of next-nearest-
neighbour exchange interactions according to Model 2. When d = O we find that many
of the results can be expressed in the same form as for Model 1 but with redefined
coefficients. For example, if a“g® << 1 << 1 with Jl > 0 and Jy > 0 the same g and
1 dependences are predicted as in (10) and (1ll) but the overall coefficients
involve J, as well as J;. The differences between the two models are more signifi-
cant for 4 # O.

II - DAMPING

Contributions to the damping are obtained on renormalising the spin waves to second
order of perturbation. The mechanism is the usual low-temperature scattering
process involving four spin waves, except that these may now be bulk modes or
surface modes. Hence the damping Ig(g) of a surface spin wave will be the sum of
four contributions denoted by Ts(g;4sf, rg{g;3s8,1B), Tg(q:2s,2B) and I'g{g:1s,3B),
according to how many surface (S) and bulk (B) modes are involved. We have obtained
expressions for all four terms, but for simplicity we discuss here just the
contribution rs(g;4s) which is given by

rglgids) = 8"—2 7 ®4s(g,§_,g)6[ES(g)+ES(E)—Es(g)-Es(ng—g)]
N, k/p
x (n[e 0] e (@) J4n[Eg (@k-p) ] -n[E, (@) In[Eg (ari-p) ]} (12)

where in the case of model 1 we have
5 [1—A"2 @][1-0"2 @ [1-0"2 (qrx-p N1 2 (00 )
1

¢, .(a,k,p) = J = - - - 2
4s [1-a l((_;)A l(g)A l(q_+§-g)t\ l(&)l

_ - -1 -
x (af1-0 (1-a" @ a Tt () a7 tark-p)E F 0] [2y (pg) +2y (k-p) =y (@) -¥ () -y ()
-y (g+k-p)] + [ ra@a o] s +207 Y (grk-p) +5”F (p) A_l(g_ﬂi—g)]

+ [ +A'1(g+5—g)][1+A'l(g) A_l(E)] y2 (13

The sunmations are dominated by the behaviour at small wavevectors, and they may be
performed analytically for certain cases. For example, in the absence of surface
anisotropy (d = 0) and for T << a2q << 1 we eventually obtain

ro(@ies) X [veor/32ns]a’a’q r3,n/0 (14)

This agrees with the result obtained previously by Tarasenko and Kharitonov /5/ in
the limits of h << 1 and h >> 1 . We f£ind the sane formal expression holds for
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Model 2 provided ¢ is redefined as J,/(J. +4J,}, (0 < ¢ < 1), Our theorg §lso 2
applies when d # O. For example, if d < 0O slich that T << a2 << 1 and a"g << d
we estimate that T (g;4S) is proportional to d6TF(l,ES(O)/kBT) for Models 1 and 2
provided kBT << ES%Q.

The other contributions T (gi3s,1B), Ts(g;2s,2B) and T (g;lS,3m to the surface

spin wave damping are givén by much more complicated eXpressions than (12) and (13),
and in general they require numerica% evaluation2 HOWEVSI, if the surface aniso-
tropy field is sufficiently large (d~ >> T and 4~ >> a“q”) it may be shown that

T (g;3s,lB) and T_{q;1S,3B) are negligibly small. This is essentially because in
tﬁese processes egeféy can be conserved only at large wavevectors, and the
combination of Bose factors in the summand is then very small.
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