WO2016010196A1 - Stent - Google Patents

Stent Download PDF

Info

Publication number
WO2016010196A1
WO2016010196A1 PCT/KR2014/009962 KR2014009962W WO2016010196A1 WO 2016010196 A1 WO2016010196 A1 WO 2016010196A1 KR 2014009962 W KR2014009962 W KR 2014009962W WO 2016010196 A1 WO2016010196 A1 WO 2016010196A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
coating film
silver particles
stent body
polymer solution
Prior art date
Application number
PCT/KR2014/009962
Other languages
French (fr)
Korean (ko)
Inventor
박도현
한종현
김은진
박헌국
장봉석
윤호
김선종
Original Assignee
주식회사 엠아이텍
박도현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠아이텍, 박도현 filed Critical 주식회사 엠아이텍
Publication of WO2016010196A1 publication Critical patent/WO2016010196A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances

Definitions

  • the present invention relates to stents.
  • blood circulation disorders and muscle pain may be caused, and in severe cases, the site may need to be cut, and in the case of biliary tract, fever and jaundice may be reduced due to tumor narrowing or obstruction. Symptoms such as itching and sepsis may occur.
  • balloon dilatation is performed to expand the inner walls of narrowed blood vessels and biliary tract by inserting a balloon catheter or the like into blood vessels and biliary tract.
  • balloon dilatation has a problem that stenosis may occur after the procedure is narrowed or blocked again due to chronic contraction of neovascularized biliary tract and endothelium proliferation.
  • Korean Laid-Open Patent Publication No. 2012-0138974 (announced: 2012.12.27, hereinafter referred to as the prior art) after the angioplasty, by inserting the inside of the blood vessels by supporting the inner wall of the vessel, A stent is proposed to prevent stenosis of blood vessels caused by chronic contraction.
  • the stent supporting the blood vessel is composed of only metal wires, bacteria, such as blood, bile, and protein debris, may pass through the lesion, and bacteria may grow on the lesion, and the substance may pass through the stent.
  • bacteria such as blood, bile, and protein debris
  • the neo-intima can proliferate into the gap of the wire, the restenosis may occur.
  • the present invention is to solve the above-described problems, to prevent bacterial growth of the lesion site, to adhere to the blood vessels and biliary tract to protect the lesion site from the substance, preventing the restenosis of blood vessels and biliary tract due to the proliferation of neointimal
  • the purpose is to provide a stent.
  • the stent of the present invention includes a plurality of metal wires having a plurality of bends connected to each other, and a tube-shaped stent body having a hollow therein; And a coating film formed to surround the surface of the stent body, wherein the coating film may be added with silver particles for inhibiting bacterial growth of the lesion site.
  • the coating film may be formed of a polymer solution in which silver (Ag) particles are added to at least one of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester, or fluorocarbon resin.
  • the stent manufacturing method of the present invention a) preparing a stent body so that the coating film is formed evenly; b) loading the polymer solution containing silver particles into the electrospinning apparatus; And c) spraying a polymer solution to which the silver particles are added to the stent body to form a coating film.
  • the step a) washing and drying the stent body to remove the foreign matter; And inserting and fixing the stent body to a roller-shaped collector provided in the electrospinning apparatus.
  • step b the step of adding and stirring the silver particles in the polymer solution; And loading the polymer solution in which the silver particles are added to the electrospinning apparatus.
  • step c) the step of spraying a polymer solution containing the silver particles loaded in the electrospinning device to the stent body; And putting the stent body coated with the polymer solution to which the silver particles were added, into a drying oven, firstly dried at 35 ° C. for 30 minutes, and secondly drying at 180 ° C. for 3 hours to form a coating film. can do.
  • the present invention has the following effects.
  • the coating layer formed on the stent can prevent the substance passing through the lesion area of the biliary tract and blood vessels to contact the lesion site through the stent.
  • FIG. 1 is a perspective view showing a cross section of the stent and the stent according to an embodiment of the present invention.
  • Figure 2 is the antimicrobial test results of E. coli (Escherichia coli ATCC 8739) of the coating film and the general coating film containing the silver particles of the present invention.
  • Figure 3 is the antimicrobial test results for pneumococcal (Klebsiella pneumoniae ATCC 4352) of the coating film and the general coating film containing the silver particles of the present invention.
  • Figure 4 shows the results of ion detection of the coating film containing silver particles by FE-SEM and EDX scanning electron microscope.
  • Figure 5 is a flow chart showing a method of manufacturing a stent according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a cross section of the stent and the stent according to an embodiment of the present invention.
  • the stent 100 may include a coating layer 120 formed of the polymer 122 containing the stent body 110 and the silver particles 124.
  • the stent body 110 has a plurality of metal wires 112 having a wavy shape along the longitudinal direction are connected in various forms such as lattice, mesh, etc., and may be provided in a cylindrical shape having a hollow in the longitudinal direction.
  • the laser cutting method may be provided by cutting the metal in the form of a tube.
  • the stent body 110 may be formed of a shape memory alloy material such as nickel-titanium alloy, and thus, the stent body 110 may be expanded or contracted in a circumferential direction at a specific temperature.
  • the stent body 110 inserted into the biliary tract and the lesion of the blood vessel may be expanded in the direction of the biliary tract and the inner wall of the blood vessel to support the inner wall.
  • the coating film 120 is formed surrounding the stent body 110 to prevent the substance passing through the biliary tract and the blood vessel lesion from directly contacting the lesion, and the stent body 110 expands in the direction of the biliary tract and the blood vessel inner wall.
  • the area in contact with the inner wall is enlarged so that the inner wall is in close contact with the lesion.
  • the polymer furnace 122 for forming the coating film 120 may be used at least one polymer 122 of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester and fluororesin solution, but It is not limited.
  • the bile and protein residues passing through the lesion can be a bacterial growth on the lesion, by adding the silver particles 124 to the polymer 122 can prevent the growth of bacteria through antibacterial.
  • the size of the silver particles 124 is not limited, but the silver particles 124 according to an embodiment of the present invention is preferably provided with a size of 100nm ⁇ 300nm.
  • Figure 2 is the antimicrobial test results of the E. coli (Escherichia coli ATCC 8739) of the coating film and the general coating film containing silver particles of the present invention
  • Figure 3 is a pneumococcal (Klebsiella) of the coating film and the general coating film containing silver particles of the present invention pneumoniae ATCC 4352).
  • the antimicrobial test on the coating film containing silver particles was performed by Bioteca Co., Ltd., and the comparative experiments of the coating film containing silver particles and the general coating film containing no silver particles were performed.
  • a silicone solution was used as a polymer for forming a coating film containing silver particles and a general coating film.
  • the coating film containing silver particles was prepared by adding silver particles to a silicon solution at a concentration of 1000 ppm or less.
  • strains for antimicrobial experiments are capable of breeding in the biliary tract and blood vessels, and Escherichia coli (Escherichia coli ATCC 8739) and pneumococcus (Klebsiella Pneumoniae ATCC 4352) capable of producing toxins were used.
  • Accelerated aging tests are designed to increase the rate of chemical or physical deterioration of medical devices under harsh temperature conditions, in order to test them for a short period of time, corresponding to the actual shelf life of the product, based on the stability test criteria of the medical device. testing).
  • the accelerated aging test was performed for 97 days on the basis of three years, which is the warranty period of the stent 100 family, and the accelerated aging time (AAT), which is the basis of 97 days, was obtained through Equation 1 below.
  • the ambient temperature is 25 ° C
  • the accelerated aging temperature 60 ° C and the aging coefficient 2 is obtained to obtain an accelerated aging coefficient (AAF) of about 11.3137, and 3 years (1095 days) of the shelf life of the stent-related products. ) was divided by the accelerated aging coefficient (AAF) to obtain an accelerated aging time of about 96.7853 days.
  • AAF accelerated aging coefficient
  • the E. coli (Escherichia coli ATCC 8739) microbial solution was inoculated into a planet containing a general coating film, a coating film containing 150 nm silver particles and a coating film containing 250 nm silver particles, and then ⁇ 35 ° C.
  • the experiment was carried out by measuring the number of bacteria after stationary culture for 24 hours at a temperature of 1 ° C. and a relative humidity of 90 ⁇ 5% to obtain the results shown in Table 1.
  • E. coli Esscherichia coli ATCC 8739
  • inoculum was inoculated into a separate coating film and a coating film containing 250 nm silver particles, and cultured for 97 days at a temperature of 60 ° C. to carry out an accelerated aging test.
  • the result shown in Table 2 was obtained.
  • the bacterial solution of Klebsiella Pneumoniae ATCC 4352 was inoculated into a planet containing a general coating film, a coating film containing 150 nm silver particles and a coating film containing 250 nm silver particles, and then inoculated at 35 ° C.
  • the experiment was carried out by measuring the number of bacteria after stationary culture for 24 hours at a temperature of ⁇ 1 °C and a relative humidity of 90 ⁇ 5% to obtain the results shown in Table 3.
  • JIS Japanese Industrial Standard
  • Japanese Industrial Standard stipulates that the cell growth rate on the surface of the antimicrobial processed product is less than 100% (antimicrobial activity value 2 or more) compared to the surface of the non-microbial processed product.
  • the accelerated aging test of the general coating film containing no silver particles recorded a value of 0.2 or less, but the antimicrobial activity of the coating film containing the silver particles was found to be 6.0 or higher. It can be confirmed that the antimicrobial activity against E. coli and pneumococcal bacteria of the coating film containing the particles has been proved.
  • ions of Si, Ni, O, C, and CO were detected in the coating film containing silver particles, respectively, and Ag ions were not detected at this time.
  • the silver particles were not directly exposed to the outside by the polymer forming the coating film, so only ions constituting the polymer were detected, and the antimicrobial activity was confirmed even when the silver particles and the strain were not directly contacted.
  • Figure 5 is a flow chart showing a method of manufacturing a stent according to an embodiment of the present invention.
  • the step of preparing the stent body 110 is preceded (S100).
  • the step S100 may include the step of removing the foreign matter by washing and drying the stent main body 110 so that the coating film is formed evenly, and inserting and fixing the stent main body 110 to the roller-type collector provided in the electrospinning apparatus. have.
  • a step of preparing a polymer 122 solution for forming a coating film is made by spraying the stent body 100 prepared in step S100.
  • adding and stirring the silver particles 124 to the polymer 122 solution may include loading the polymer solution to which the silver particles 124 are added to the electrospinning apparatus.
  • the polymer furnace 122 for forming the coating film 120 may be used at least one polymer 122 of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester and fluororesin solution, but It is not limited.
  • the step of forming a coating film 120 by spraying a polymer solution containing the silver particles 124 to the stent body 110 (S300).
  • the stent on which the coating film 120 containing the silver particles 124 is formed can be manufactured.
  • the antimicrobial action of the silver particles to prevent the growth of bacteria in the lesion due to bile and protein residues is installed on the lesion to protect the lesion from contact of the material passing through the stent,
  • the coating film adheres closely to the inner wall of the lesion site, thereby providing a stent that prevents the neointima of the lesion site from being generated into the stent.

Abstract

The present invention relates to a stent comprising: a hollow tube-shaped stent body in which multiple metal wires having a plurality of curves are cross-linked to each other; and a coating film formed so as to cover the surface of the stent body, wherein silver (Ag) particles for inhibiting bacterial growth in a lesion region may be added in the coating film. According to the present invention, the silver particles contained in the coating film have an anti-bacterial effect which prevents the growth of bacteria in a lesion region, the coating film of the stent prevents a direct contact between a lesion region in the biliary tract and a blood vessel and substances passing through the stent, and the contact surface of the coating film formed on the stent supports the inner wall of the biliary tract and the blood vessel, thereby preventing in-stent restenosis of the biliary tract and the blood vessel, which is caused by neointima penetrating into the stent.

Description

스텐트Stent
본 발명은 스텐트에 관한 것이다.The present invention relates to stents.
혈관, 담도 등 혈액이나 체액의 흐름이 악성 혹은 양성질환의 발생으로 순조롭지 못할 때, 각종 질환이 발생할 수 있다. When the flow of blood or body fluids, such as blood vessels and biliary tracts, is not smooth due to the occurrence of malignant or benign diseases, various diseases may occur.
혈관의 경우, 혈액순환 장애 및 근육통증이 유발되기도 하며, 증상이 심할 경우에는 해당 부위를 절단해야할 수도 있으며, 담도의 경우, 종양에 의해 좁아지거나 폐쇄되어 담즙의 배설이 원활치 못할 경우에 발열, 황달, 가려움증, 패혈증 등의 증상이 발생될 수 있다.In the case of blood vessels, blood circulation disorders and muscle pain may be caused, and in severe cases, the site may need to be cut, and in the case of biliary tract, fever and jaundice may be reduced due to tumor narrowing or obstruction. Symptoms such as itching and sepsis may occur.
이러한 질환을 치료하기 위해 풍선카데터 등의 기구를 혈관 및 담도에 삽입하여 좁아져 있는 혈관 및 담도의 내벽을 확장시키는 풍선 확장술이 시행되고 있다.In order to treat such a disease, balloon dilatation is performed to expand the inner walls of narrowed blood vessels and biliary tract by inserting a balloon catheter or the like into blood vessels and biliary tract.
하지만, 이러한 풍선 확장술은 확장된 혈관 및 담도의 만성수축 및 신생내막 증식으로 인해 시술 이후 혈관 및 담도가 다시 좁아지거나 막히는 재협착이 발생할 수 있는 문제점이 있다.However, such balloon dilatation has a problem that stenosis may occur after the procedure is narrowed or blocked again due to chronic contraction of neovascularized biliary tract and endothelium proliferation.
이러한 문제점을 해결하기 위해, 대한민국 공개특허공보 공개번호 제2012-0138974호 (공고일 : 2012.12.27, 이하, 종래기술이라 칭함)에서는 혈관성형술 이후, 혈관 내부에 삽입 설치하여 혈관 내벽을 지지함으로써, 혈관의 만성수축으로 인해 발생되는 혈관의 재협착을 방지하는 스텐트를 제시하였다.In order to solve this problem, Korean Laid-Open Patent Publication No. 2012-0138974 (announced: 2012.12.27, hereinafter referred to as the prior art) after the angioplasty, by inserting the inside of the blood vessels by supporting the inner wall of the vessel, A stent is proposed to prevent stenosis of blood vessels caused by chronic contraction.
하지만, 종래기술은 혈관을 지지하는 스텐트가 금속 와이어로만 구성되어 있어, 병변부위를 통과하는 혈액, 담즙 및 단백질 지꺼기 등의 물질로 인해 병변부위에 세균이 증식할 수 있고, 스텐트를 통과하는 물질이 병변부위에 접촉되는 것을 방지할 수 없으며, 와이어의 틈으로 신생내막이 증식할 수 있어, 재협착이 발생될 수 있는 문제점이 있었다.However, in the prior art, since the stent supporting the blood vessel is composed of only metal wires, bacteria, such as blood, bile, and protein debris, may pass through the lesion, and bacteria may grow on the lesion, and the substance may pass through the stent. There is a problem that can not prevent contact with the lesion site, the neo-intima can proliferate into the gap of the wire, the restenosis may occur.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 병변부위의 세균 증식을 방지하며, 혈관 및 담도에 밀착되어 물질로부터 병변부위를 보호하며, 신생내막의 증식으로 인한 혈관 및 담도의 재협착을 방지하는 스텐트를 제공하는데 그 목적이 있다.The present invention is to solve the above-described problems, to prevent bacterial growth of the lesion site, to adhere to the blood vessels and biliary tract to protect the lesion site from the substance, preventing the restenosis of blood vessels and biliary tract due to the proliferation of neointimal The purpose is to provide a stent.
이러한 목적을 달성하기 위하여 본 발명의 스텐트는 다수의 굴곡을 가지는 복수개의 금속 와이어가 상호 교차 연결되며, 내부에 중공을 가지는 튜브 형상의 스텐트 본체; 및 상기 스텐트 본체의 표면을 감싸며 형성되는 코팅막;을 포함하며, 상기 코팅막은 병변부위의 세균 증식을 억제하기 위한 은 입자가 첨가될 수 있다.In order to achieve the above object, the stent of the present invention includes a plurality of metal wires having a plurality of bends connected to each other, and a tube-shaped stent body having a hollow therein; And a coating film formed to surround the surface of the stent body, wherein the coating film may be added with silver particles for inhibiting bacterial growth of the lesion site.
그리고, 상기 코팅막은 의료용 폴리우레탄, 실리콘우레탄공중합체, 실리콘, 폴리아미드, 폴리에스터 또는 불소수지 중 적어도 어느 하나에 은(Ag) 입자를 첨가한 고분자 용액으로 형성될 수 있다.The coating film may be formed of a polymer solution in which silver (Ag) particles are added to at least one of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester, or fluorocarbon resin.
한편, 본 발명의 스텐트 제조방법으로는, a) 코팅막이 고르게 형성될 수 있도록, 스텐트 본체를 준비하는 단계; b) 전기 방사장치에 은 입자를 첨가한 고분자 용액을 장전하는 단계; 및 c) 상기 스텐트 본체에 상기 은 입자를 첨가한 고분자 용액을 분사하여 코팅막을 형성하는 단계;를 포함할 수 있다.On the other hand, the stent manufacturing method of the present invention, a) preparing a stent body so that the coating film is formed evenly; b) loading the polymer solution containing silver particles into the electrospinning apparatus; And c) spraying a polymer solution to which the silver particles are added to the stent body to form a coating film.
여기서, 상기 a) 단계는, 상기 스텐트 본체를 세척하고 건조하여 이물질을 제거하는 단계; 및 상기 전기 방사장치에 마련된 롤러 형태의 콜렉터에 상기 스텐트 본체를 삽입 고정하는 단계;를 포함할 수 있다.Here, the step a), washing and drying the stent body to remove the foreign matter; And inserting and fixing the stent body to a roller-shaped collector provided in the electrospinning apparatus.
그리고, 상기 b) 단계는, 상기 고분자 용액에 상기 은 입자를 첨가하여 교반하는 단계; 및 상기 전기 방사장치에 상기 은 입자를 첨가한 고분자 용액을 장전하는 단계;를 포함할 수 있다.And, step b), the step of adding and stirring the silver particles in the polymer solution; And loading the polymer solution in which the silver particles are added to the electrospinning apparatus.
아울러, 상기 c) 단계는, 상기 전자 방사장치에 장전된 상기 은 입자를 첨가한 고분자 용액을 상기 스텐트 본체에 분사하는 단계; 및 상기 은 입자를 첨가한 고분자 용액이 도포된 스텐트 본체를 건조오븐에 넣고 35°C로 30분간 1차 건조하고, 180°C 온도로 3시간동안 2차 건조하여 코팅막을 형성하는 단계;를 포함할 수 있다.In addition, the step c), the step of spraying a polymer solution containing the silver particles loaded in the electrospinning device to the stent body; And putting the stent body coated with the polymer solution to which the silver particles were added, into a drying oven, firstly dried at 35 ° C. for 30 minutes, and secondly drying at 180 ° C. for 3 hours to form a coating film. can do.
이상에서 설명한 바와 같이 본 발명에 의하면, 다음과 같은 효과가 있다.As described above, the present invention has the following effects.
첫째, 은 입자의 항균작용을 통해, 병변부위의 세균 증식을 방지할 수 있다.First, through the antimicrobial action of silver particles, it is possible to prevent bacterial growth in the lesion area.
둘째, 스텐트에 형성된 코팅층이 담도 및 혈관의 병변부위를 통과하는 물질이 스텐트 내부를 통해 병변부위에 접촉하는 것을 방지할 수 있다.Second, the coating layer formed on the stent can prevent the substance passing through the lesion area of the biliary tract and blood vessels to contact the lesion site through the stent.
셋째, 스텐트에 형성된 코팅층의 접촉면이 담도 및 혈관 내벽을 지지함으로써, 신생내막이 스텐트 내부로 침투하여 발생되는 담도 및 혈관의 재협착을 방지할 수 있다.Third, by the contact surface of the coating layer formed on the stent to support the biliary tract and the blood vessel inner wall, it is possible to prevent the restenosis of the biliary duct and blood vessels generated by the neointima penetrating into the stent.
도1은 본 발명의 일실시예에 따른 스텐트와 스텐트의 단면을 나타낸 사시도이다.1 is a perspective view showing a cross section of the stent and the stent according to an embodiment of the present invention.
도2는 본 발명의 은 입자가 함유된 코팅막과 일반 코팅막의 대장균(Escherichia coli ATCC 8739)에 대한 항균실험 결과이다.Figure 2 is the antimicrobial test results of E. coli (Escherichia coli ATCC 8739) of the coating film and the general coating film containing the silver particles of the present invention.
도3은 본 발명의 은 입자가 함유된 코팅막과 일반 코팅막의 폐렴쌍구균(Klebsiella pneumoniae ATCC 4352)에 대한 항균실험 결과이다.Figure 3 is the antimicrobial test results for pneumococcal (Klebsiella pneumoniae ATCC 4352) of the coating film and the general coating film containing the silver particles of the present invention.
도4는 FE-SEM과 EDX 주사전자 현미경을 통해 은 입자가 함유된 코팅막의 이온 검출을 실시한 결과이다.Figure 4 shows the results of ion detection of the coating film containing silver particles by FE-SEM and EDX scanning electron microscope.
도5는 본 발명의 일실시예에 따른 스텐트의 제조방법을 나타낸 순서도이다.Figure 5 is a flow chart showing a method of manufacturing a stent according to an embodiment of the present invention.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings, and the well-known technical parts will be omitted or compressed for brevity of description.
<< 스텐트의 구성Composition of the stent >>
도1은 본 발명의 일실시예에 따른 스텐트와 스텐트의 단면을 나타낸 사시도이다.1 is a perspective view showing a cross section of the stent and the stent according to an embodiment of the present invention.
본 발명의 일실시예에 따른 스텐트(100)는 스텐트 본체(110) 및 은 입자(124)가 함유된 고분자(122)로 형성되는 코팅층(120)을 포함할 수 있다.The stent 100 according to an embodiment of the present invention may include a coating layer 120 formed of the polymer 122 containing the stent body 110 and the silver particles 124.
스텐트 본체(110)는 길이 방향을 따라 물결모양을 가지는 복수개의 금속 와이어(112)가 격자형, 메쉬형 등의 다양한 형태로 연결되며, 길이 방향으로 중공을 가지는 원통 형상으로 마련될 수 있다.The stent body 110 has a plurality of metal wires 112 having a wavy shape along the longitudinal direction are connected in various forms such as lattice, mesh, etc., and may be provided in a cylindrical shape having a hollow in the longitudinal direction.
또한, 레이저커팅 방식을 통해 튜브형태의 금속을 절단 가공하여 마련될 수 있다.In addition, the laser cutting method may be provided by cutting the metal in the form of a tube.
그리고, 스텐트 본체(110)는 니켈-티타늄 함금과 같은 형상기억합금 소재가 사용될 수 있어, 특정 온도에서 스텐트 본체(110)는 둘레 방향으로 팽창 또는 수축될 수 있다.The stent body 110 may be formed of a shape memory alloy material such as nickel-titanium alloy, and thus, the stent body 110 may be expanded or contracted in a circumferential direction at a specific temperature.
또한, 담도 및 혈관의 병변부위에 삽입 설치되는 스텐트 본체(110)는 담도 및 혈관의 내벽 방향으로 팽창되어 내벽을 지지할 수 있다.In addition, the stent body 110 inserted into the biliary tract and the lesion of the blood vessel may be expanded in the direction of the biliary tract and the inner wall of the blood vessel to support the inner wall.
코팅막(120)은 스텐트 본체(110)를 감싸며 형성되어, 담도 및 혈관의 병변부위를 통과하는 물질이 병변부위에 직접적으로 접촉하는 것을 방지하며, 스텐트 본체(110)가 담도 및 혈관 내벽 방향으로 팽창되어 내벽을 지지할 때, 내벽과 접촉하는 면적이 넓어짐으로써 병변부위에 밀착될 수 있게 된다.The coating film 120 is formed surrounding the stent body 110 to prevent the substance passing through the biliary tract and the blood vessel lesion from directly contacting the lesion, and the stent body 110 expands in the direction of the biliary tract and the blood vessel inner wall. When the inner wall is supported, the area in contact with the inner wall is enlarged so that the inner wall is in close contact with the lesion.
여기서, 코팅막(120)을 조성하는 고분자로(122)는 의료용 폴리우레탄, 실리콘 우레탄 공중합체, 실리콘, 폴리아미드, 폴리에스터 및 불소수지 용액 중 적어도 어느 하나의 고분자(122)가 사용될 수 있으나, 이에 국한되지 않는다.Here, the polymer furnace 122 for forming the coating film 120 may be used at least one polymer 122 of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester and fluororesin solution, but It is not limited.
또한, 병변부위를 통과하는 담즙 및 단백질 찌꺼기로 인해 병변부위에 세균이 증식될 수 있어, 고분자(122)에 은 입자(124)를 첨가함으로써 항균을 통한 세균의 증식을 방지할 수 있다.In addition, the bile and protein residues passing through the lesion can be a bacterial growth on the lesion, by adding the silver particles 124 to the polymer 122 can prevent the growth of bacteria through antibacterial.
이때, 은 입자(124)의 크기는 한정되지 않으나, 본 발명의 일실시예에 따른 은 입자(124)는 100nm ~ 300nm의 크기로 마련되는 것이 바람직하다.At this time, the size of the silver particles 124 is not limited, but the silver particles 124 according to an embodiment of the present invention is preferably provided with a size of 100nm ~ 300nm.
이하에서는, 실험 및 실험에 따른 결과를 통해, 은 입자(124)를 포함한 코팅막(120)의 항균력을 확인해보도록 한다.Hereinafter, through the results of experiments and experiments, to determine the antimicrobial power of the coating film 120 including the silver particles (124).
<< 은 입자가 함유된 고분자를 이용한 항균 실험Antimicrobial Experiments Using Polymers Containing Silver Particles >>
도2는 본 발명의 은 입자가 함유된 코팅막과 일반 코팅막의 대장균(Escherichia coli ATCC 8739)에 대한 항균실험 결과이며, 도3은 본 발명의 은 입자가 함유된 코팅막과 일반 코팅막의 폐렴쌍구균(Klebsiella pneumoniae ATCC 4352)에 대한 항균실험 결과이다.Figure 2 is the antimicrobial test results of the E. coli (Escherichia coli ATCC 8739) of the coating film and the general coating film containing silver particles of the present invention, Figure 3 is a pneumococcal (Klebsiella) of the coating film and the general coating film containing silver particles of the present invention pneumoniae ATCC 4352).
은 입자가 함유된 코팅막에 대한 항균실험은 ㈜ 바이오테카에 의뢰하여 실시되었으며, 은 입자가 함유된 코팅막과 은 입자가 함유되지 않은 일반 코팅막의 비교실험이 수행되었다.The antimicrobial test on the coating film containing silver particles was performed by Bioteca Co., Ltd., and the comparative experiments of the coating film containing silver particles and the general coating film containing no silver particles were performed.
여기서, 은 입자가 함유된 코팅막과 일반 코팅막을 형성하는 고분자로는 실리콘 용액이 사용되었다.Here, a silicone solution was used as a polymer for forming a coating film containing silver particles and a general coating film.
그리고, 은 입자가 함유된 코팅막은 실리콘 용액에 은 입자를 1000ppm 이하의 농도로 첨가하여 마련되었다. The coating film containing silver particles was prepared by adding silver particles to a silicon solution at a concentration of 1000 ppm or less.
또한, 항균실험을 위한 균주로는 담도 및 혈관에 번식이 가능하며, 독소를 생성할 수 있는 대장균(Escherichia coli ATCC 8739), 폐렴쌍구균(Klebsiella Pneumoniae ATCC 4352)이 사용되었다.In addition, strains for antimicrobial experiments are capable of breeding in the biliary tract and blood vessels, and Escherichia coli (Escherichia coli ATCC 8739) and pneumococcus (Klebsiella Pneumoniae ATCC 4352) capable of producing toxins were used.
그리고, 의료기기의 안정성시험 기준에 의거하여, 제품의 실제 보존기간과 상응되도록 짧은 기간 동안 시험하기 위해, 가혹한 온도조건 등에서 의료기기의 화학적 또는 물리적 퇴보속도를 높이도록 계획한 가속노화시험(Accelerated aging testing)을 수행하였다.Accelerated aging tests are designed to increase the rate of chemical or physical deterioration of medical devices under harsh temperature conditions, in order to test them for a short period of time, corresponding to the actual shelf life of the product, based on the stability test criteria of the medical device. testing).
이때, 스텐트(100) 제품군의 보증기간인 3년을 기준으로 97일간의 가속노화시험을 진행하였으며, 97일의 근거가 되는 가속노화시간(AAT)은 하기의 식1을 통해 얻어낼 수 있었다.At this time, the accelerated aging test was performed for 97 days on the basis of three years, which is the warranty period of the stent 100 family, and the accelerated aging time (AAT), which is the basis of 97 days, was obtained through Equation 1 below.
[규칙 제91조에 의한 정정 13.03.2015] 
Figure WO-DOC-1
[Correction under Rule 91 13.03.2015]
Figure WO-DOC-1
여기서, 식1에 주변온도는 상온인 25℃, 가속노화온도 60℃ 및 노화계수 2 를 대입하여, 가속노화계수(AAF) 약 11.3137를 얻었으며, 스텐트 관련 제품의 유효기간인 3년(1095일)을 가속노화계수(AAF)로 나누어 약 96.7853일의 가속노화시간을 얻어낼 수 있었다.In this equation, the ambient temperature is 25 ° C, the accelerated aging temperature 60 ° C, and the aging coefficient 2 is obtained to obtain an accelerated aging coefficient (AAF) of about 11.3137, and 3 years (1095 days) of the shelf life of the stent-related products. ) Was divided by the accelerated aging coefficient (AAF) to obtain an accelerated aging time of about 96.7853 days.
즉, 은 입자(124)가 함유된 코팅막(120)의 검증을 위해, 균주가 함유된 60℃의 온도에서 97일간의 가속노화시험을 통해, 25℃상온에서 3년간 균주에 노출된 환경과 동일한 데이터를 얻을 수 있었다.That is, for the verification of the coating film 120 containing the silver particles 124, through an accelerated aging test for 97 days at a temperature of 60 ℃ containing the strain, the same as the environment exposed to the strain for 3 years at 25 ℃ room temperature I was able to get the data.
[실험예1]Experimental Example 1
JIS Z 2801에 준용하여, 대장균(Escherichia coli ATCC 8739) 균액을 각각 일반 코팅막, 150nm 크기의 은 입자가 함유된 코팅막 및 250nm 크기의 은 입자가 함유된 코팅막을 담은 샬레에 접종한 후, 35℃ ± 1℃의 온도와 상대습도 90 ± 5%의 조건에서 24시간 정치배양 후 균수를 측정하는 방법으로 실험을 실시하여 표1과 같은 결과를 얻었다.In accordance with JIS Z 2801, the E. coli (Escherichia coli ATCC 8739) microbial solution was inoculated into a chalet containing a general coating film, a coating film containing 150 nm silver particles and a coating film containing 250 nm silver particles, and then ± 35 ° C. The experiment was carried out by measuring the number of bacteria after stationary culture for 24 hours at a temperature of 1 ° C. and a relative humidity of 90 ± 5% to obtain the results shown in Table 1.
[규칙 제91조에 의한 정정 19.03.2015] 
Figure WO-DOC-64
[Revisions under Rule 91 19.03.2015]
Figure WO-DOC-64
또한, 별도의 일반 코팅막과 250nm 크기의 은 입자가 함유된 코팅막에 대장균(Escherichia coli ATCC 8739) 균액을 접종하고, 60℃의 온도에서 97일간 배양하여 균수를 측정하는 방법으로 가속노화시험을 실시하여 표2와 같은 결과를 얻었다.In addition, E. coli (Escherichia coli ATCC 8739) inoculum was inoculated into a separate coating film and a coating film containing 250 nm silver particles, and cultured for 97 days at a temperature of 60 ° C. to carry out an accelerated aging test. The result shown in Table 2 was obtained.
[규칙 제91조에 의한 정정 19.03.2015] 
Figure WO-DOC-68

Figure WO-DOC-68-1
[Revisions under Rule 91 19.03.2015]
Figure WO-DOC-68

Figure WO-DOC-68-1
표1의 내용으로 은 입자의 크기에 따른 입자의 표면적과 항균력과의 연관성을 확인하기 어려웠으나, 150nm 보다 입자의 크기가 큰 250nm의 은 입자를 함유한 코팅막을 통해 항균력을 확인할 수 있었다.As shown in Table 1, it was difficult to confirm the correlation between the surface area of the silver particles and the antimicrobial activity according to the size of the silver particles, but the antimicrobial activity was confirmed through the coating film containing the 250 nm silver particles having a larger particle size than 150 nm.
[실험예2]Experimental Example 2
JIS Z 2801에 준용하여, 폐렴쌍구균(Klebsiella Pneumoniae ATCC 4352) 균액을 각각 일반 코팅막, 150nm 크기의 은 입자가 함유된 코팅막 및 250nm 크기의 은 입자가 함유된 코팅막을 담은 샬레에 접종한 후, 35℃ ± 1℃의 온도와 상대습도 90 ± 5%의 조건에서 24시간 정치배양 후 균수를 측정하는 방법으로 실험을 실시하여 표3과 같은 결과를 얻었다.In accordance with JIS Z 2801, the bacterial solution of Klebsiella Pneumoniae ATCC 4352 was inoculated into a chalet containing a general coating film, a coating film containing 150 nm silver particles and a coating film containing 250 nm silver particles, and then inoculated at 35 ° C. The experiment was carried out by measuring the number of bacteria after stationary culture for 24 hours at a temperature of ± 1 ℃ and a relative humidity of 90 ± 5% to obtain the results shown in Table 3.
[규칙 제91조에 의한 정정 19.03.2015] 
Figure WO-DOC-75
[Revisions under Rule 91 19.03.2015]
Figure WO-DOC-75
또한, 별도의 일반 코팅막과 250nm 크기의 은 입자가 함유된 코팅막에 폐렴쌍구균(Klebsiella Pneumoniae ATCC 4352) 균액을 접종하여, 60℃의 온도에서 97일간 방치하여 균수를 측정하는 방법으로 가속노화시험을 실시하여 표4와 같은 결과를 얻었다.In addition, inoculated with a separate common coating film and a coating film containing silver particles of 250nm size inoculated pneumococcal bacteria (Klebsiella Pneumoniae ATCC 4352), and the accelerated aging test by measuring the number of bacteria by standing at a temperature of 60 ℃ for 97 days. The result was obtained as in Table 4.
[규칙 제91조에 의한 정정 19.03.2015] 
Figure WO-DOC-79

Figure WO-DOC-79-1
[Revisions under Rule 91 19.03.2015]
Figure WO-DOC-79

Figure WO-DOC-79-1
JIS (일본공업규격)에서는, 항균가공 처리가 되지 않은 제품의 표면과 비교하여 항균가공 된 제품의 표면에 세포번식비율이 100분의 1이하(항균활성치2 이상)이면 항균효과가 있다고 규정하고 있으며, 실험예1과 실험예2의 결과에서 은 입자가 함유되지 않은 일반 코팅막의 가속노화시험에서는 0.2 이하의 수치를 기록하였으나, 은 입자가 함유된 코팅막의 항균활성치가 6.0이상으로 확인된 바, 은 입자가 함유된 코팅막의 대장균 및 폐렴쌍구균에 대한 항균력이 입증되었음을 확인할 수 있다.JIS (Japanese Industrial Standard) stipulates that the cell growth rate on the surface of the antimicrobial processed product is less than 100% (antimicrobial activity value 2 or more) compared to the surface of the non-microbial processed product. In the results of Experimental Example 1 and Experimental Example 2, the accelerated aging test of the general coating film containing no silver particles recorded a value of 0.2 or less, but the antimicrobial activity of the coating film containing the silver particles was found to be 6.0 or higher. It can be confirmed that the antimicrobial activity against E. coli and pneumococcal bacteria of the coating film containing the particles has been proved.
또한, KTL(한국산업기술시험원)에 의뢰하여, FE-SEM과 EDX 주사전자현미경을 이용한 은 입자가 함유된 코팅막의 이온 검출을 실시하였으며, 도4를 참조하여 설명하도록 한다.In addition, by requesting KTL (Korea Institute of Industrial Technology), the ion detection of the coating film containing the silver particles using the FE-SEM and EDX scanning electron microscope was performed, will be described with reference to FIG.
도4와 같이, 은 입자가 함유된 코팅막에서 각각 Si, Ni, O, C, CO의 이온이 검출되었으며, 이때 Ag 이온이 검출되지 않은 것을 확인할 수 있다.As shown in FIG. 4, ions of Si, Ni, O, C, and CO were detected in the coating film containing silver particles, respectively, and Ag ions were not detected at this time.
여기서, 코팅막을 형성하는 고분자에 의해 은 입자가 외부에 직접 노출되지 않아 고분자를 구성하는 이온만이 검출되었으며, 은 입자와 균주가 직접적으로 접촉되지 않아도 항균작용이 이루어지는 것을 확인할 수 있었다.Here, the silver particles were not directly exposed to the outside by the polymer forming the coating film, so only ions constituting the polymer were detected, and the antimicrobial activity was confirmed even when the silver particles and the strain were not directly contacted.
<< 스텐트의 제조 방법How to Make a Stent >>
도5는 본 발명의 일실시예에 따른 스텐트의 제조방법을 나타낸 순서도이다.Figure 5 is a flow chart showing a method of manufacturing a stent according to an embodiment of the present invention.
우선, 스텐트 본체(110)를 준비하는 단계가 선행되어진다.(S100)First, the step of preparing the stent body 110 is preceded (S100).
여기서, S100단계에는 코팅막이 고르게 형성될 수 있도록, 스텐트 본체(110)를 세척 건조하여 이물질을 제거하고, 전기 방사장치에 마련된 롤러 형태의 콜렉터에 스텐트 본체(110)를 삽입 고정하는 단계가 포함될 수 있다.Here, the step S100 may include the step of removing the foreign matter by washing and drying the stent main body 110 so that the coating film is formed evenly, and inserting and fixing the stent main body 110 to the roller-type collector provided in the electrospinning apparatus. have.
다음으로, S100단계에서 준비된 스텐트 본체(100)에 분사하여 코팅막을 형성하기 위한 고분자(122) 용액을 준비하는 단계가 이루어진다.(S200)Next, a step of preparing a polymer 122 solution for forming a coating film is made by spraying the stent body 100 prepared in step S100.
이때, 고분자(122) 용액에 은 입자(124)를 첨가 교반하여 전기 방사장치에 은 입자(124)를 첨가한 고분자 용액을 장전하는 단계가 포함될 수 있다.In this case, adding and stirring the silver particles 124 to the polymer 122 solution may include loading the polymer solution to which the silver particles 124 are added to the electrospinning apparatus.
여기서, 코팅막(120)을 조성하는 고분자로(122)는 의료용 폴리우레탄, 실리콘 우레탄 공중합체, 실리콘, 폴리아미드, 폴리에스터 및 불소수지 용액 중 적어도 어느 하나의 고분자(122)가 사용될 수 있으나, 이에 국한되지 않는다.Here, the polymer furnace 122 for forming the coating film 120 may be used at least one polymer 122 of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester and fluororesin solution, but It is not limited.
마지막으로, 스텐트 본체(110)에 은 입자(124)를 첨가한 고분자 용액을 분사하여 코팅막(120)을 형성하는 단계가 이루어진다.(S300)Finally, the step of forming a coating film 120 by spraying a polymer solution containing the silver particles 124 to the stent body 110 (S300).
여기서, 전자 방사장치에 장전된 은 입자(124)를 첨가한 고분자 용액을 콜렉터에 고정된 스텐트 본체(110)에 분사한 후, 건조오븐에 넣고 35°C로 30분간 1차 건조하고, 180°C 온도로 3시간동안 2차 건조함으로써, 은 입자(124)를 함유하는 코팅막(120)이 형성된 스텐트가 제조될 수 있다.Here, after spraying the polymer solution to which the silver particles 124 loaded in the electrospinning apparatus is added to the stent body 110 fixed to the collector, put in a drying oven and dried first at 35 ° C. for 30 minutes, 180 ° By secondary drying at a C temperature for 3 hours, the stent on which the coating film 120 containing the silver particles 124 is formed can be manufactured.
결국, 본 발명은, 은 입자의 항균작용을 통해 담즙 및 단백질 찌꺼기로 인해 병변부위의 세균의 증식을 방지하고, 병변부위에 설치되어 스텐트의 내부를 통과하는 물질의 접촉으로부터 병변부위를 보호하고, 코팅막이 병변부위의 내벽에 밀착되어 지지함으로써, 병변부위의 신생내막이 스텐트 내부로 생성되는 것을 방지하는 스텐트를 제공한다.After all, the present invention, the antimicrobial action of the silver particles to prevent the growth of bacteria in the lesion due to bile and protein residues, is installed on the lesion to protect the lesion from contact of the material passing through the stent, The coating film adheres closely to the inner wall of the lesion site, thereby providing a stent that prevents the neointima of the lesion site from being generated into the stent.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings. However, since the above-described embodiments have only been described with reference to preferred examples of the present invention, the present invention is limited to the above embodiments. It should not be understood that the scope of the present invention is to be understood by the claims and equivalent concepts described below.
(부호의 설명)(Explanation of the sign)
100 : 스텐트100: stent
110 : 스텐트 본체110: stent body
120 : 코팅막120: coating film
122 : 고분자122: polymer
124 : 은 입자124 silver particles

Claims (6)

  1. 다수의 굴곡을 가지는 복수개의 금속 와이어가 상호 교차 연결되며, 내부에 중공을 가지는 튜브 형상의 스텐트 본체; 및A plurality of metal wires having a plurality of bends cross-connected to each other and having a hollow tube-like stent body; And
    상기 스텐트 본체의 표면을 감싸며 형성되는 코팅막;을 포함하며,It includes; coating film formed to surround the surface of the stent body,
    상기 코팅막은 병변부위의 세균 증식을 억제하기 위한 은(Ag) 입자가 첨가되는 것을 특징으로 하는The coating film is characterized in that the silver (Ag) particles for inhibiting the growth of bacteria in the lesion area is added
    스텐트.Stent.
  2. 제1항에 있어서,The method of claim 1,
    상기 코팅막은 의료용 폴리우레탄, 실리콘우레탄공중합체, 실리콘, 폴리아미드, 폴리에스터 또는 불소수지 중 적어도 어느 하나에 은 입자를 첨가한 고분자 용액으로 형성되는 것을 특징으로 하는The coating film is formed of a polymer solution in which silver particles are added to at least one of medical polyurethane, silicone urethane copolymer, silicone, polyamide, polyester, or fluororesin.
    스텐트.Stent.
  3. a) 코팅막이 고르게 형성될 수 있도록, 스텐트 본체를 준비하는 단계;a) preparing a stent body so that the coating film can be formed evenly;
    b) 전기 방사장치에 은 입자를 첨가한 고분자 용액을 장전하는 단계; 및b) loading the polymer solution containing silver particles into the electrospinning apparatus; And
    c) 상기 스텐트 본체에 상기 은 입자를 첨가한 고분자 용액을 분사하여 코팅막을 형성하는 단계;를 포함하는 것을 특징으로 하는c) spraying a polymer solution to which the silver particles are added to the stent body to form a coating film.
    스텐트 제조방법.Stent manufacturing method.
  4. 제3항에 있어서,The method of claim 3,
    상기 a) 단계는, Step a) is
    상기 스텐트 본체를 세척하고 건조하여 이물질을 제거하는 단계; 및Washing and drying the stent body to remove foreign substances; And
    상기 전기 방사장치에 마련된 롤러 형태의 콜렉터에 상기 스텐트 본체를 삽입 고정하는 단계;를 포함하는 것을 특징으로 하는And inserting and fixing the stent body to a roller-shaped collector provided in the electrospinning apparatus.
    스텐트 제조방법.Stent manufacturing method.
  5. 제3항에 있어서,The method of claim 3,
    상기 b) 단계는,B),
    상기 고분자 용액에 상기 은 입자를 첨가하여 교반하는 단계; 및Adding the silver particles to the polymer solution and stirring the solution; And
    상기 전기 방사장치에 상기 은 입자를 첨가한 고분자 용액을 장전하는 단계;를 포함하는 것을 특징으로 하는And loading the polymer solution to which the silver particles have been added to the electrospinning apparatus.
    스텐트 제조방법.Stent manufacturing method.
  6. 제3항에 있어서,The method of claim 3,
    상기 c) 단계는,C),
    상기 전자 방사장치에 장전된 상기 은 입자를 첨가한 고분자 용액을 상기 스텐트 본체에 분사하는 단계; 및Spraying a polymer solution containing the silver particles loaded in the electrospinning device onto the stent body; And
    상기 은 입자를 첨가한 고분자 용액이 도포된 스텐트 본체를 건조오븐에 넣고 35°C로 30분간 1차 건조하고, 180°C 온도로 3시간동안 2차 건조하여 코팅막을 형성하는 단계;를 포함하는 것을 특징으로 하는Putting the stent body coated with the polymer solution to which the silver particles are added in a drying oven first dried at 35 ° C. for 30 minutes, and second drying at 180 ° C for 3 hours to form a coating film; Characterized by
    스텐트 제조방법.Stent manufacturing method.
PCT/KR2014/009962 2014-07-15 2014-10-22 Stent WO2016010196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088861A KR101696809B1 (en) 2014-07-15 2014-07-15 Stent
KR10-2014-0088861 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016010196A1 true WO2016010196A1 (en) 2016-01-21

Family

ID=55078673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009962 WO2016010196A1 (en) 2014-07-15 2014-10-22 Stent

Country Status (2)

Country Link
KR (1) KR101696809B1 (en)
WO (1) WO2016010196A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237810A1 (en) * 2004-08-30 2007-10-11 Southwest Research Institute Biocidal fibrous and film materials comprising silver and chlorite ions
KR20100021108A (en) * 2008-08-14 2010-02-24 주식회사 아모메디 Antibacterial wound dressing laminate and method of preparing the same
US8267992B2 (en) * 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
WO2013015495A1 (en) * 2011-07-27 2013-01-31 재단법인 유타 인하 디디에스 및 신의료기술개발 공동연구 Non-vascular drug-eluting stent membrane using electrospinning, and method for manufacturing same
JP2013509250A (en) * 2009-10-30 2013-03-14 エシコン・インコーポレイテッド Absorbable polyethylene diglycolate copolymers that reduce microbial adherence to medical devices and implants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101140002B1 (en) * 2010-02-11 2012-05-02 이화여자대학교 산학협력단 A manufacturing method of drug coated stent and a stent manufactured by the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237810A1 (en) * 2004-08-30 2007-10-11 Southwest Research Institute Biocidal fibrous and film materials comprising silver and chlorite ions
KR20100021108A (en) * 2008-08-14 2010-02-24 주식회사 아모메디 Antibacterial wound dressing laminate and method of preparing the same
US8267992B2 (en) * 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
JP2013509250A (en) * 2009-10-30 2013-03-14 エシコン・インコーポレイテッド Absorbable polyethylene diglycolate copolymers that reduce microbial adherence to medical devices and implants
WO2013015495A1 (en) * 2011-07-27 2013-01-31 재단법인 유타 인하 디디에스 및 신의료기술개발 공동연구 Non-vascular drug-eluting stent membrane using electrospinning, and method for manufacturing same

Also Published As

Publication number Publication date
KR20160008758A (en) 2016-01-25
KR101696809B1 (en) 2017-01-16

Similar Documents

Publication Publication Date Title
TIESZER et al. Conditioning film deposition on ureteral stents after implantation
Forauer et al. Histologic changes in the human vein wall adjacent to indwelling central venous catheters
Francolini et al. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces
Ozgur et al. Bacterial colonization of double J stents and bacteriuria frequency
Goossens et al. Is" Campylobacter upsaliensis" an unrecognised cause of human diarrhoea?
Xu et al. Antimicrobial effect of gallium nitrate against bacteria encountered in burn wound infections
US20070184277A1 (en) Device based on nitinol , a process for its production, and its use
Arellano‐Orden et al. Stent‐induced tracheal stenosis can be predicted by IL‐8 expression in rabbits
Mencacci et al. Aeromonas veronii biovar veronii septicaemia and acute suppurative cholangitis in a patient with hepatitis B
WO2016010196A1 (en) Stent
Silverblatt et al. Preventing the spread of vancomycin‐resistant enterococci in a long‐term care facility
Sabbuba et al. Genotyping demonstrates that the strains of Proteus mirabilis from bladder stones and catheter encrustations of patients undergoing long-term bladder catheterization are identical
Shoaei et al. Clostridium difficile infection in cancer patients with hospital acquired diarrhea at the teaching hospitals in Iran: Multilocus sequence typing analysis (MLST) and Antimicrobial resistance pattern.
WO2015174590A1 (en) Stent
McLaughlin et al. Advances on the use of carbon based materials at the biological and surface interface for applications in medical implants
Hailemariam et al. Bacterial load and antibiotic susceptibility pattern of isolates in operating rooms at Hawassa University Referral Hospital, southern Ethiopia
Li et al. Smart Lubricant Coating with Urease‐Responsive Antibacterial Functions for Ureteral Stents to Inhibit Infectious Encrustation
Karunanayake et al. Use of silicon nanoparticle surface coating in infection control: Experience in a tropical healthcare setting
Reid et al. Drug resistance amongst uropathogens isolated from women in a suburban population: laboratory findings over 7 years.
WO2015174711A1 (en) Stent for blood vessels, having drug-impregnated biodegradable coating film
Maalej et al. Antimicrobial susceptibility and molecular epidemiology of methicillin-resistant Staphylococcus aureus in Tunisia: Results of a multicenter study
Allen et al. Dichotomous metabolism of Enterococcus faecalis induced by haematin starvation modulates colonic gene expression
WO2015167090A1 (en) Stent
Jovanović et al. Presence of the esp gene in Enterococcus faecium derived from oropharyngeal microbiota of haematology patients
JP6159644B2 (en) Coating method for medical resin molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897811

Country of ref document: EP

Kind code of ref document: A1