WO2014025089A1 - Three-dimensional truss actuator composed of wires - Google Patents

Three-dimensional truss actuator composed of wires Download PDF

Info

Publication number
WO2014025089A1
WO2014025089A1 PCT/KR2012/008166 KR2012008166W WO2014025089A1 WO 2014025089 A1 WO2014025089 A1 WO 2014025089A1 KR 2012008166 W KR2012008166 W KR 2012008166W WO 2014025089 A1 WO2014025089 A1 WO 2014025089A1
Authority
WO
WIPO (PCT)
Prior art keywords
truss
wire
truss structure
group
dimensional
Prior art date
Application number
PCT/KR2012/008166
Other languages
French (fr)
Korean (ko)
Inventor
강기주
이민근
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Publication of WO2014025089A1 publication Critical patent/WO2014025089A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass

Definitions

  • the present invention relates to a driver, and more particularly, to a driver having a three-dimensional truss structure composed of a plurality of wires in three directions or more, and in which the entire structure changes shape due to a change in the surrounding environment.
  • the present invention is derived from a study conducted as part of a mid-sized researcher support project (challenge) supported by the Korea Research Foundation in 2012.
  • Actuator is a device that constitutes a mechanical system, and is an element that causes the system to perform a desired motion by generating displacement by intention, and is classified into linear (or reciprocating) and rotating type according to the type of displacement, and according to the power source. Hydraulic, pneumatic, electric and the like can be classified. The conditions required for such a driver are listed as follows. First, frequent start-stops should be possible. That is, it should be easy to generate repetitive displacement. Second, it should be easy to control according to the command signal, and it should also have good response. Third, the force or torque generated while the inertia of the moving part is small should be large. Fourth, it should be as small and lightweight as possible and easy to repair.
  • Smart material is a material that can react according to external environmental changes.
  • a material that can control displacement according to external environment such as stress, temperature, humidity, acidity (pH), electric field, magnetic field can be used as a driver.
  • Typical examples include piezoelectric materials, magnetostrictive materials, shape memory alloys or polymers, pH-sensitive polymers, thermoelectric materials, electronic rheology Liquid (electrorheological (ER) fluid) and the like (Craig A, Rogers, "Intelligent Materials", Scientific American, Vol. 9, pp. 154-164 (1995)).
  • Drivers using smart materials can be made compact and are advantageous to be intelligent in combination with sensors.
  • the actuator is often used in combination with the truss structure to achieve structural stability and to achieve the desired final motion through kinematic mechanisms.
  • 1 shows an example of a device for generating a rotational movement by combining a linear actuator with a triangular truss.
  • Truss structures have traditionally been widely utilized as lightweight, high-strength structures for civil engineering, construction. In recent years, it has been reported that a structure having a greatly reduced size of the truss so that the length of the truss element is on the order of several micrometers to several millimeters has excellent characteristics as a kind of porous material. That is, although the conventional representative porous material is made of a large number of curved elements of irregular arches or circles, the new porous material having a truss shape has excellent mechanical strength and rigidity relative to weight.
  • the truss structure may be classified according to the shape of the unit cell. FIG.
  • FIG. 2 illustrates a single layer structure of a pyramid (a), an octet (b), and a kagome (c) truss and a kagome truss multi-layer structure (d).
  • the method of manufacturing the material composed of the above truss is summarized in the paper by Wadley, Fleck, Evans (Fabrication and structural performance of periodic cellular metal sandwich structures, Composites Science and Technology Vol. 63, pp.2331-2343 (2003)). .
  • Materials having a single layer truss structure can be produced through sheet metal forming or wire bending, while those having a multi layered truss structure can be produced only by investment casting.
  • a truss structure is made of resin, and a mold is used to cast a metal (S. Chiras, DR Mumm, N. Wicks, AG Evans, JW Hutchinson, K. Dharmasena, HNG Wadley, S. Fichter, 2002, International Journal of Solids and Structures, Vol. 39, pp. 4093-4115).
  • Kang Gi-joo In order to solve the problems of the above-described prior art, two of the inventors, including Kang Gi-joo, have a shape similar to that of an ideal kagome truss or octet truss by intersecting a group of continuous wires in six directions having an azimuth angle of 60 degrees or 120 degrees in space.
  • two of the inventors can more effectively manufacture a three-dimensional porous lightweight structure, which is a three-dimensional woven wire made of spiral wires assembled by first forming a continuous wire spirally and then rotating and inserting it.
  • a porous lightweight structure and a method of manufacturing the same have been proposed, and the details thereof are disclosed in detail in Korean Patent No. 1029183 owned by the present applicant.
  • FIG. 3 is a view illustrating a structure in which a shape similar to the three-dimensional kagome truss of FIG. 2 is assembled with a spiral wire in the Korean Patent No. 1029183.
  • the three-dimensional multilayer truss structure composed of spiral wires having a shape similar to that of the kagome truss shown in FIG. 3 has various advantages over the prior art, such as excellent mechanical properties and mass production by a continuous process.
  • FIGS. 4 to 8 illustrate the structure disclosed in the patent application
  • FIG. 9 illustrates a unit cell of the multilayer truss structure assembled with the spiral wires of FIGS. 3 and 4 to 8.
  • three of the inventors, including Kang Gi-joo have a structure in which only two wires meet at a wire crossing point while being able to assemble a spiral wire, and thus, a new three-dimensional that can be manufactured as a spiral wire having a smaller spiral radius.
  • a grating truss structure and a method of manufacturing the same are proposed in Patent Application No. 10-2010-0059690. 10 shows a representative example thereof.
  • the driver is often used in combination with the truss structure because of the kinematic stability of the truss structure.
  • 11 shows a driver having a kind of two-dimensional truss structure (T. J. Lu, J. W. Hutchinson, A. G. Evans, Optimal design of a flexural actuator, Journal of the Mechanics and Physics of Solids, 49 (2001) 2071-2093).
  • the upper and lower face plates and the core metal plates form a triangular truss structure, and one of the face plates is a shape memory alloy, and the entire structure can be bent upward as the temperature changes. Shows.
  • a driver can be manufactured using a three-dimensional truss.
  • 12 shows an example (S.L. dos Santos e Lucato, J. Wang, P. Maxwell, R.M. McMeeking, A.G. Evans, International Journal of Solids and Structures, vol. 41 (2004) pp.3521-3543).
  • Fig. 12 (a) shows that the upper face is composed of a simple thin plate, a two-dimensional kagome truss on the lower face, and a tetrahedral truss on the middle part
  • Fig. 12 (b) shows a form of operation possible with such a truss driver.
  • FIG. 12 (c) shows a sample of actual truss elements of the lower two-dimensional kagome truss replaced by a linear motor.
  • the upper face member may be changed into various shapes as shown in FIG. 12 (b).
  • This drive system has received attention for its lightweight and rigid truss structure, which can generate complex three-dimensional deformations through the operation of multiple linear motors.
  • the present invention was devised to solve the above-mentioned problems, and has a three-dimensional truss-like structure assembled by intersecting a continuous group of wires in three or more directions having a constant azimuth angle in space, and some wires due to external environmental changes. As the length of the field is changed, the entire structure is changed in shape, so that it is light and generates a large displacement, and is made of material having excellent structural strength and rigidity and low cost, thereby providing an advantageous driver in terms of economy.
  • the present invention is a driver comprising a three-dimensional truss structure formed by intersecting a continuous wire group of three or more directions having a constant azimuth angle in space, the wire group is an external physical Or a first wire group made of a material capable of reacting with a chemical change and a second wire group made of a non-reacting material, to generate a displacement of the first wire group by an external physical or chemical change.
  • a three-dimensional truss driver that causes a shape change of the truss structure.
  • the three-dimensional truss structure provides a three-dimensional truss driver, characterized in that any one selected from the group consisting of a pyramid truss structure, a kagome truss structure, an octet truss structure and a similar kagome truss structure.
  • the first wire group may include piezoelectric materials, magnetostrictive materials, shape memory alloys or polymers, pH-sensitive polymers, and thermoelectric materials.
  • a three-dimensional truss driver comprising one or more materials selected from the group consisting of an electrorheological (ER) fluid.
  • the physical or chemical change provides a three-dimensional truss driver, characterized in that one or more changes selected from the group consisting of stress, temperature, humidity, acidity (pH), electric field, magnetic field and electromagnetic field.
  • the shape change provides a three-dimensional truss driver, characterized in that one or more changes selected from the group consisting of structure height, shear, torsion and bending.
  • the present invention can provide a driver having a very high strength and rigidity relative to weight based on a three-dimensional truss structure having a stable structure.
  • the overall shape change of the structure occurs according to the displacement of the smart material wire penetrating the structure, it is possible to provide a driver capable of large deformation. .
  • the truss structure when statically determinated and kinematically determinated, it is repetitive because only a very small level of deformation and stress occurs in other wires combined together that do not cause displacement. It is possible to provide a driver with excellent durability even for phosphorus driving.
  • various smart materials such as shape memory alloys can be manufactured in the form of wires, and there are various technologies for manufacturing trusses using wires. There is a very beneficial effect.
  • FIG. 1 is a view showing a device for generating a rotational motion by combining a conventional linear actuator with a triangular truss,
  • FIG. 2 is a diagram illustrating a single layer structure of a pyramid, an octet, and a kagome truss and a kagome truss multi-layer structure;
  • FIG. 3 is a view showing a structure in which a spiral wire is assembled in a form similar to the three-dimensional kagome truss of FIG.
  • FIG. 9 is a view illustrating a unit cell of a multi-layered truss structure assembled with the spiral wires of FIGS. 3 and 4 to 8;
  • FIG. 10 is a view showing an example of a three-dimensional grating truss structure having a structure where only two wires meet at a wire intersection point assembled using a spiral wire proposed in Patent Application No. 10-2010-0059690;
  • FIG. 11 illustrates a driver having a two-dimensional truss structure
  • FIG. 13 is a view showing a Kagome truss unit cell
  • FIG. 14 to 16 are views illustrating a structure deformation process of the three-dimensional truss driver according to embodiments 1 to 3 of the present invention.
  • the present inventors have intensively researched to provide a lightweight, weight-high strength and stiffness actuator.
  • the three-dimensional truss using a common wire and a smart material wire in three or more directions is used.
  • the entire truss structure is changed in height, shear, torsion and bending by manufacturing the structure in the form and applying the electric power to the smart material wire or changing the surrounding environment such as magnetic field, electromagnetic field, temperature, humidity, pH, etc.
  • the present invention has been made in light of the fact that a new concept of a driver capable of changing the shape of the back can be manufactured.
  • the present invention is a driver comprising a three-dimensional truss structure assembled by intersecting a continuous group of wires in three or more directions having a constant azimuth angle in space, the wire group can react according to external physical or chemical changes
  • a first wire group made of a material and a second wire group made of a non-reacting material are combined to generate a three-dimensional change of the truss structure by generating displacement of the first wire group by an external physical or chemical change.
  • the three-dimensional truss structure that is assembled by crossing three or more continuous wire groups may be various structures described above, for example, a pyramid truss structure, a kagome truss structure, an octet truss structure, or a structure similar thereto.
  • the present invention is not limited thereto, and any one may be included as long as the wire is woven to form a structure similar to the truss structure.
  • the wire may be first formed in a spiral shape and then rotated and inserted to assemble the structure to more effectively manufacture the porous structure.
  • the wire group is composed of a combination different from the conventional three-dimensional truss structure. That is, some of the wire group is composed of a first wire group, which is a material capable of reacting with external physical or chemical environmental changes in contact with or not contacting the wire, and the other wire group is a general material that does not react with the environmental change. And a second wire group.
  • the wire group means a collection of wires formed in the same direction.
  • the wire material constituting the first wire group is not limited as long as it is made of a so-called smart material having the above-described reaction properties.
  • piezoelectric materials, magnetostrictive materials, shape memory alloys or resins Materials such as shape memory alloys or polymers, pH-sensitive polymers, thermoelectric materials, and electrorheological (ER) fluids can be used.
  • the wire material constituting the second wire group may be a known general material, for example, a material such as metal, ceramic, synthetic resin, fiber reinforced synthetic resin, or the like.
  • Such a three-dimensional truss driver uses a common wire and a smart material wire together to create a three-dimensional kagome truss structure, for example, as specifically disclosed in Korean Patent No. 0708483, among which smart By inducing a displacement by applying electricity to a wire group made of material wires or by changing the surrounding environment, the shape change of the entire structure is induced, but deformation or stress is hardly applied to the ordinary wire group, which is not a smart material wire that causes driving. Does not have the characteristics.
  • the truss structure has light weight, high strength, and high rigidity, and is durable in repetitive operation.
  • the common wire and the smart material wire are preformed in the form of a spiral as disclosed in Patent No.
  • Patent No. 1155267 Patent No. 1155267
  • Patent Publication No. 10-2011-0139543 as disclosed in Patent No. 1155262.
  • a straight line and a spiral form may be mixed, or may be used in a straight line form as disclosed in Korean Patent No. 0566729 or in a flexible state as disclosed in Korean Patent No. 0944326.
  • FIG. 13 shows a Kagome truss unit cell. As shown in FIG. 13, the Kagome unit cell is composed of parallel truss elements in six directions, of which 1, 2, and 3 directions are in-plane directions, and 4, 5, and 6 directions are out of plane. The out-of-plane direction is shown.
  • FIG. 14 (a) shows that the entire truss structure is deformed by uniformly stretching the length by applying electricity or changing the environment when the wire group corresponding to the truss element in the out-of-plane 4, 5, 6 direction is made of smart material.
  • the front and back shapes are shown. That is, it can be seen that the smart wires in three out-of-plane tensile strains are actuated to increase the height of the entire structure.
  • Figure 14 (b) shows a smart wire that must be deformed for driving to increase the height of the structure when the woven spiral wire as a structure similar to the Kagome truss as disclosed in Patent No. 1029183 shows in black have.
  • Figure 15 (a) is a wire group corresponding to the truss element in the 4, 5 direction by applying electricity or changing the environment when the wire group corresponding to the truss element in the out-of-plane 4, 5, 6 direction is made of a smart material.
  • the length of the truss structure is deformed by stretching the length and shrinking the length of the group of wires in the? Direction. That is, it can be seen that the two directions of the smart wires in the out-of-plane three directions are the tensile deformation and the other one is the shrinkage deformation, thereby actuating the entire structure to shear sideways.
  • Figure 15 (b) is a smart wire that must be stretched and contracted for shear driving as shown in Figure 15 (a) when weaving the spiral wire as disclosed in the Patent No. 1029183 to make a structure similar to the Kagome truss It is shown in black and gray.
  • FIG. 16 (a) shows the wire group by applying electricity or changing the environment when the wire group corresponding to the truss element in one of the in-plane 1, 2, 3 directions shown in FIG. 16 (b) is made of smart material.
  • the length of the truss structure is deformed by deforming or compressing the length differently according to the height. Specifically, it can be seen that the entire structure is bent and actuated by tensile strain or shrinkage of the wire in one of the three in-plane directions, depending on the height from the neutral surface of the cross section.
  • a wire is drawn in the horizontal direction (1 direction), which is drawn in a field of view rotated about 30 degrees in plane as compared with FIGS. 13 to 15 so that bending deformation is easily seen.
  • Figure 16 (c) shows a smart wire that must be stretched or shrunk for shear driving of the structure when weaving a spiral wire as disclosed in the Patent No. 1029183 to make a structure similar to the Kagome truss in black .

Abstract

Disclosed is an actuator having a three-dimensional truss structure assembled by intersecting continuous wire groups in three or more directions, the wire groups each having spatially predetermined azimuth. The present invention provides an actuator having a three-dimensional truss structure assembled by intersecting continuous wire groups in three or more directions, the wire groups having spatially predetermined azimuth. The wire groups include a first wire group made of a material capable of reacting to an external physical or chemical change, and a second wire group made of a material that does not react. The three-dimensional truss actuator causes a change in the shape of the truss structure by the displacement of the first wire group resulting from the external physical or chemical change.

Description

와이어로 구성된 3차원 트러스 구동기3-D Truss Driver Made of Wire
본 발명은 구동기에 관한 것으로, 보다 상세하게는 3 방향 이상의 복수의 와이어들로 구성되어 3차원 트러스 구조체를 가지며, 주변 환경변화에 의하여 전체 구조체가 형태 변화를 하는 구동기에 관한 것이다.The present invention relates to a driver, and more particularly, to a driver having a three-dimensional truss structure composed of a plurality of wires in three directions or more, and in which the entire structure changes shape due to a change in the surrounding environment.
본 발명은 2012년 한국연구재단에서 지원하는 중견연구자 지원사업(도전)의 일환으로 수행된 연구로부터 도출된 것이다.The present invention is derived from a study conducted as part of a mid-sized researcher support project (challenge) supported by the Korea Research Foundation in 2012.
[과제관리번호: 2012R1A2A1A01003405, 과제명: 멀티스케일 초경량 금속의 제조법][Task control number: 2012R1A2A1A01003405, Assignment name: Manufacturing method of multi-scale ultra light metal]
구동기(actuator)는 기계시스템을 구성하는 일부 장치로서 의도에 의하여 변위를 발생시킴으로써 시스템이 원하는 동작을 하도록 하는 요소로서, 변위 형태에 따라 선형(또는 왕복형)과 회전형으로 분류되며, 동력원에 따라 유압식, 공압식, 전기식 등으로 분류될 수 있다. 이러한 구동기에 필요한 조건을 나열하면 다음과 같다. 첫째, 빈번한 기동-정지를 할 수 있어야 한다. 즉, 반복적인 변위 발생이 용이해야 한다. 둘째, 지령 신호에 따라 쉽게 제어할 수 있고, 응답성도 좋아야 한다. 셋째, 운동 부분의 관성이 작으면서 발생하는 힘이나 토크가 커야 한다. 넷째, 가능한 한 소형, 경량이며 보수 작업이 용이해야 한다.Actuator is a device that constitutes a mechanical system, and is an element that causes the system to perform a desired motion by generating displacement by intention, and is classified into linear (or reciprocating) and rotating type according to the type of displacement, and according to the power source. Hydraulic, pneumatic, electric and the like can be classified. The conditions required for such a driver are listed as follows. First, frequent start-stops should be possible. That is, it should be easy to generate repetitive displacement. Second, it should be easy to control according to the command signal, and it should also have good response. Third, the force or torque generated while the inertia of the moving part is small should be large. Fourth, it should be as small and lightweight as possible and easy to repair.
최근 전통적인 유압, 공압, 전기모터 대신에 스마트 재료를 사용한 구동기가 각광을 받고 있다. 스마트 재료란 외부 환경변화에 따라 반응할 수 있는 재료를 말하는데, 구체적으로 응력, 온도, 습도, 산도(pH), 전기장, 자기장 등의 외부 환경에 따라 제어가능한 변위가 발생하는 재료가 구동기로 사용될 수 있다. 대표적인 예로, 압전 재료(piezoelectric materials), 자왜 재료(magnetostrictive materials), 형상기억 합금 또는 수지(shape memory alloy or polymer), 산도민감 수지(pH-sensitive polymers), 열전 재료(thermoelectric materials), 전자레올로지 액체(electrorheological(ER) fluid) 등이 있다(Craig A, Rogers, "Intelligent Materials", Scientific American, Vol.9, pp.154-164 (1995)). 스마트 재료를 사용한 구동기는 초소형으로 제조될 수 있고, 센서와 결합하여 지능화하기에 유리하다.Recently, actuators using smart materials instead of traditional hydraulic, pneumatic and electric motors have been in the spotlight. Smart material is a material that can react according to external environmental changes. Specifically, a material that can control displacement according to external environment such as stress, temperature, humidity, acidity (pH), electric field, magnetic field can be used as a driver. have. Typical examples include piezoelectric materials, magnetostrictive materials, shape memory alloys or polymers, pH-sensitive polymers, thermoelectric materials, electronic rheology Liquid (electrorheological (ER) fluid) and the like (Craig A, Rogers, "Intelligent Materials", Scientific American, Vol. 9, pp. 154-164 (1995)). Drivers using smart materials can be made compact and are advantageous to be intelligent in combination with sensors.
구동기는 구조적인 안정성을 도모하고 기구학적인 메카니즘을 통하여 원하는 최종동작의 구현을 위하여 트러스 구조와 결합하여 사용되는 경우가 많다. 도 1은 그 한 예로서 선형 구동기를 삼각형 트러스와 결합하여 회전운동을 발생시키는 장치를 나타내고 있다.The actuator is often used in combination with the truss structure to achieve structural stability and to achieve the desired final motion through kinematic mechanisms. 1 shows an example of a device for generating a rotational movement by combining a linear actuator with a triangular truss.
트러스 구조는 전통적으로 토목, 건축용 경량, 고강도 구조로서 널리 활용되어 왔다. 최근 트러스의 크기를 대폭 축소하여 트러스 요소의 길이가 수 마이크로미터 내지 수 밀리미터 수준이 되도록 한 구조체가 일종의 다공질 재료로서 우수한 특성을 갖는다고 보고되었다. 즉, 기존의 대표적인 다공질 재료인 발포 재료(porous material)가 불규칙한 아치 또는 원형의 다수의 휘어진 요소로 구성되지만, 트러스 형태를 갖는 새로운 다공질 재료는 무게 대비 기계적 강도와 강성이 월등히 우수하다. 트러스 구조체는 그 단위셀의 형태에 따라 분류될 수 있다. 도 2는 대표적인 트러스 구조인 피라미드(a), 옥테트(b), 카고메(c) 트러스의 단층(single layer) 구조와 카고메 트러스 다층(multi-layer) 구조(d)를 나타낸 것이다. 이상의 트러스로 구성된 재료를 제조하는 방법은 Wadley, Fleck, Evans의 논문(Fabrication and structural performance of periodic cellular metal sandwich structures, Composites Science and Technology Vol.63, pp.2331-2343 (2003))에 정리되어 있다. 단층의 트러스 구조를 갖는 재료는 박판 성형이나 와이어 절곡을 통하여 제조될 수 있으나, 다층의 트러스 구조를 갖는 것은 인베트스먼트 주조로만 제조될 수 있다. 즉, 수지로 트러스 구조를 만들고, 이것을 주형으로 하여 금속을 주조하여 제조하는 방법이다(S. Chiras, D.R. Mumm, N. Wicks, A.G. Evans, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter, 2002, International Journal of Solids and Structures, Vol.39, pp.4093~4115).Truss structures have traditionally been widely utilized as lightweight, high-strength structures for civil engineering, construction. In recent years, it has been reported that a structure having a greatly reduced size of the truss so that the length of the truss element is on the order of several micrometers to several millimeters has excellent characteristics as a kind of porous material. That is, although the conventional representative porous material is made of a large number of curved elements of irregular arches or circles, the new porous material having a truss shape has excellent mechanical strength and rigidity relative to weight. The truss structure may be classified according to the shape of the unit cell. FIG. 2 illustrates a single layer structure of a pyramid (a), an octet (b), and a kagome (c) truss and a kagome truss multi-layer structure (d). The method of manufacturing the material composed of the above truss is summarized in the paper by Wadley, Fleck, Evans (Fabrication and structural performance of periodic cellular metal sandwich structures, Composites Science and Technology Vol. 63, pp.2331-2343 (2003)). . Materials having a single layer truss structure can be produced through sheet metal forming or wire bending, while those having a multi layered truss structure can be produced only by investment casting. In other words, a truss structure is made of resin, and a mold is used to cast a metal (S. Chiras, DR Mumm, N. Wicks, AG Evans, JW Hutchinson, K. Dharmasena, HNG Wadley, S. Fichter, 2002, International Journal of Solids and Structures, Vol. 39, pp. 4093-4115).
상술한 선행기술들의 문제점을 해결하고자 본 발명자 중 강기주를 포함한 2인은 공간상에서 서로 60도 또는 120도의 방위각을 갖는 6 방향의 연속된 와이어 군을 서로 교차시킴으로써 이상적인 카고메 트러스 또는 옥테트 트러스와 유사한 형태의 3차원 다공질 경량 구조체와 그 제조방법을 개발하였고, 이에 관한 내용은 본 출원인이 보유하고 있는 등록특허 제0708483호에 구체적으로 개시되어 있다.In order to solve the problems of the above-described prior art, two of the inventors, including Kang Gi-joo, have a shape similar to that of an ideal kagome truss or octet truss by intersecting a group of continuous wires in six directions having an azimuth angle of 60 degrees or 120 degrees in space. Has developed a three-dimensional porous lightweight structure and its manufacturing method, the details of which are specifically disclosed in Patent No. 0708483 owned by the applicant.
또한, 본 발명자 중 강기주를 포함한 2인은 3차원 다공질 경량 구조체를 더욱 효과적으로 제조할 수 있는 방법으로서, 연속된 와이어를 먼저 나선형으로 성형한 후 이를 회전하여 삽입함으로써 조립하는 나선형 와이어로 직조된 3차원 다공질 경량 구조체와 그 제조방법을 제안하였고, 이에 관한 내용은 본 출원인이 보유하고 있는 등록특허 제1029183호에 구체적으로 개시되어 있다.In addition, two of the inventors, including Kang Gi-ju, can more effectively manufacture a three-dimensional porous lightweight structure, which is a three-dimensional woven wire made of spiral wires assembled by first forming a continuous wire spirally and then rotating and inserting it. A porous lightweight structure and a method of manufacturing the same have been proposed, and the details thereof are disclosed in detail in Korean Patent No. 1029183 owned by the present applicant.
도 3은 등록특허 제1029183호에서 도 2의 3차원 카고메 트러스와 유사한 형태를 나선형 와이어로 조립한 구조체를 도시한 도면이다. 도 3에 도시된 카고메 트러스와 유사한 형태를 가지면서 나선형 와이어로 구성된 3차원 다층 트러스 구조체는 기계적 물성이 우수하고, 연속 공정에 의해 대량 생산할 수 있는 등 종래에 비해 여러 가지 이점을 가지고 있다.FIG. 3 is a view illustrating a structure in which a shape similar to the three-dimensional kagome truss of FIG. 2 is assembled with a spiral wire in the Korean Patent No. 1029183. The three-dimensional multilayer truss structure composed of spiral wires having a shape similar to that of the kagome truss shown in FIG. 3 has various advantages over the prior art, such as excellent mechanical properties and mass production by a continuous process.
그러나, 상술한 3차원 다층 트러스 구조체를 통상적으로 널리 사용되는 직육면체 형태로 제작하게 되면 가장자리에 존재하는 단위셀의 모양이 온전하지 못하여 미관상 좋지 않고, 기계적 강도 면에서도 불리한 점이 있으며, 뿐만 아니라 와이어 사이의 간섭으로 인해 와이어의 배치 밀도를 높이는 데 한계가 있다.However, when the above-described three-dimensional multilayer truss structure is manufactured in the form of a generally used rectangular parallelepiped, the shape of the unit cell existing at the edge is not intact, which is not good in appearance and disadvantages in terms of mechanical strength. Interference has limitations in increasing the placement density of the wires.
이에, 본 발명자 중 강기주를 포함한 3인은 나선형 와이어로 제작이 가능하면서도 카고메 트러스와 다른 형태를 갖는 새로운 3차원 다공질 경량 구조체의 제조방법을 특허출원 제10-2009-0080085호에서 제안하였다. 참고적으로, 도 4 내지 도 8에 상기 특허출원에서 개시된 구조체를 도시하였으며, 도 9에 도3, 도 4 내지 도 8의 나선형 와이어로 조립된 다층 트러스 구조체의 단위셀을 도시하였다. 이와 별도로, 본 발명자 중 강기주를 포함한 3인은 나선형 와이어를 조립하여 구성할 수 있으면서도 와이어 교차점에서 단 2개만의 와이어가 만나는 구조를 가짐으로써 보다 작은 나선 반경을 갖는 나선형 와이어로 제작할 수 있는 새로운 3차원 격자 트러스 구조체와 그 제조방법을 특허출원 제10-2010-0059690호에서 제안하였다. 도 10은 그 대표적인 예를 나타내고 있다.Thus, three of the inventors, including Kang Gi-joo, proposed a method for manufacturing a new three-dimensional porous lightweight structure having a different shape from the kagome truss while being manufactured with a spiral wire in the patent application No. 10-2009-0080085. For reference, FIGS. 4 to 8 illustrate the structure disclosed in the patent application, and FIG. 9 illustrates a unit cell of the multilayer truss structure assembled with the spiral wires of FIGS. 3 and 4 to 8. Separately, three of the inventors, including Kang Gi-joo, have a structure in which only two wires meet at a wire crossing point while being able to assemble a spiral wire, and thus, a new three-dimensional that can be manufactured as a spiral wire having a smaller spiral radius. A grating truss structure and a method of manufacturing the same are proposed in Patent Application No. 10-2010-0059690. 10 shows a representative example thereof.
도 1에서 설명한 바와 같이 구동기는 트러스 구조와 결합하여 사용하는 경우도 많은 이유는 트러스 구조의 기구학적인 안정성 때문이다. 도 11은 일종의 2차원 트러스 구조를 갖는 구동기를 나타내고 있다(T.J. Lu, J.W. Hutchinson, A.G. Evans, Optimal design of a flexural actuator, Journal of the Mechanics and Physics of Solids, 49 (2001) 2071-2093). 도 11을 참조하면, 상하부의 면재(face)와 중간 부분(core)의 금속판이 3각 트러스 구조를 이루며 면재 중 하나가 형상기억 합금으로 온도 변화에 따라 전체 구조체가 위로 굽힙변형을 할 수 있음을 보여준다. 여기서 중요한 점은 면재에서 변위가 발생하더라도 중간 부나 다른 한 쪽 면재에 매우 작은 응력이 걸린다는 점이다. 이로써 반복적인 작동을 하더라도 구동기는 구조적으로 안정할 뿐 아니라 강도 측면에서도 문제가 없게 된다. 이와 같은 현상은 Maxwell 법칙에 따라 이 구조가 기구학적으로 결정(kinematically determinated)되고 정역학적으로도 결정(statically determinated)되기 때문이다(Maxwell, J.C., 1864. On the calculation of the equilibrium and stiffness of frames. Philos. Mag. 27, pp.294-299).As described in FIG. 1, the driver is often used in combination with the truss structure because of the kinematic stability of the truss structure. 11 shows a driver having a kind of two-dimensional truss structure (T. J. Lu, J. W. Hutchinson, A. G. Evans, Optimal design of a flexural actuator, Journal of the Mechanics and Physics of Solids, 49 (2001) 2071-2093). Referring to FIG. 11, the upper and lower face plates and the core metal plates form a triangular truss structure, and one of the face plates is a shape memory alloy, and the entire structure can be bent upward as the temperature changes. Shows. The important point here is that even if the displacement occurs in the face, very little stress is applied to the middle or the other face. This ensures that the actuator is not only structurally stable, but also in terms of strength, even with repeated operation. This is because the structure is kinematically determinated and statically determinated according to Maxwell's law (Maxwell, JC, 1864. On the calculation of the equilibrium and stiffness of frames. Philos.Mag. 27, pp. 294-299).
보다 최근에는 3차원 트러스를 이용하여 구동기를 제작할 수 있음이 알려졌다. 도 12는 그 예를 나타낸 것이다(S.L. dos Santos e Lucato, J. Wang, P. Maxwell, R.M. McMeeking, A.G. Evans, International Journal of Solids and Structures, vol. 41 (2004) pp.3521-3543). 도 12(a)는 상부 면재는 단순박판, 하부 면에는 2차원 카고메 트러스, 중간부는 정사면체 트러스로 구성되어 있음을 나타내고 있고, 도 12(b)는 이러한 트러스 구동기로 가능한 동작의 형태를, 도 12(c)는 실제 제작한 샘플사진으로 하부의 2차원 카고메 트러스를 이루는 트러스 요소 중 수 군데를 선형 모터로 대체한 것을 나타내고 있다. 선형 모터들의 변위를 조절함에 따라 상부 면재가 도 12(b)와 같은 여러 가지 형상으로 변화할 수 있다. 이 구동 시스템은 가벼우며 강성이 높은 트러스 구조체를 복수의 선형 모터의 작동을 통하여 복잡한 3차원적 변형을 발생시킬 수 있다는 점에서 주목을 받았다.More recently, it has been known that a driver can be manufactured using a three-dimensional truss. 12 shows an example (S.L. dos Santos e Lucato, J. Wang, P. Maxwell, R.M. McMeeking, A.G. Evans, International Journal of Solids and Structures, vol. 41 (2004) pp.3521-3543). Fig. 12 (a) shows that the upper face is composed of a simple thin plate, a two-dimensional kagome truss on the lower face, and a tetrahedral truss on the middle part, and Fig. 12 (b) shows a form of operation possible with such a truss driver. (c) shows a sample of actual truss elements of the lower two-dimensional kagome truss replaced by a linear motor. By adjusting the displacement of the linear motors, the upper face member may be changed into various shapes as shown in FIG. 12 (b). This drive system has received attention for its lightweight and rigid truss structure, which can generate complex three-dimensional deformations through the operation of multiple linear motors.
그러나, 일부 트러스 요소만을 선형 모터로 대체하는 것은 트러스 셀을 작게 만드는 데 제약을 주고 제조과정이 복잡하며 비용도 많이 든다. 트러스 구조가 아닌 유압, 공압, 전기 모터 등 재래의 구동기는 무거운 단점이 있으며 기존의 스마트 재료 구동기는 구조적 강도가 낮거나 변위가 작은 문제점이 있다. 최근의 에너지 위기와 첨단과학의 발전에 따라 가벼우며 큰 변위를 발생하면서 구조적 강도와 강성이 높고 저렴한 구동기가 요구되고 있다.However, replacing only some truss elements with a linear motor constrains the truss cell to be small, complicated to manufacture, and expensive. Conventional actuators such as hydraulic, pneumatic, and electric motors, which are not trusses, have heavy disadvantages, and conventional smart material drivers have problems of low structural strength or small displacement. With the recent energy crisis and the development of advanced science, light and large displacements are required, and high-strength structural strength, rigidity and low-cost actuators are required.
본 발명은 전술한 문제점을 해결하기 위해 창안된 것으로, 공간상에서 서로 일정한 방위각을 갖는 3 방향 이상의 연속된 와이어 군을 교차하여 조립된 3차원 트러스 형태의 구조를 가지면서, 외부 환경변화에 의해 일부 와이어들의 길이가 변화함에 따라 전체 구조체가 형태 변화를 하도록 하여, 가벼우며 큰 변위를 발생시키면서도 구조적 강도와 강성이 우수하고 저가의 재료로 제작되어 경제적 측면에서도 유리한 구동기를 제공하고자 한다.The present invention was devised to solve the above-mentioned problems, and has a three-dimensional truss-like structure assembled by intersecting a continuous group of wires in three or more directions having a constant azimuth angle in space, and some wires due to external environmental changes. As the length of the field is changed, the entire structure is changed in shape, so that it is light and generates a large displacement, and is made of material having excellent structural strength and rigidity and low cost, thereby providing an advantageous driver in terms of economy.
전술한 기술적 과제를 해결하기 위한 수단으로서 본 발명은, 공간상에서 서로 일정한 방위각을 갖는 3 방향 이상의 연속된 와이어 군을 교차하여 조립 형성된 3차원 트러스 구조체를 포함하는 구동기로서, 상기 와이어 군은 외부의 물리적 또는 화학적 변화에 따라 반응할 수 있는 재료로 이루어진 제1와이어 군 및 반응하지 않는 재료로 이루어진 제2와이어 군이 조합되어, 외부의 물리적 또는 화학적 변화에 의하여 상기 제1와이어 군의 변위를 발생시켜 상기 트러스 구조체의 형태 변화를 일으키는 3차원 트러스 구동기를 제공한다.As a means for solving the above technical problem, the present invention is a driver comprising a three-dimensional truss structure formed by intersecting a continuous wire group of three or more directions having a constant azimuth angle in space, the wire group is an external physical Or a first wire group made of a material capable of reacting with a chemical change and a second wire group made of a non-reacting material, to generate a displacement of the first wire group by an external physical or chemical change. Provided is a three-dimensional truss driver that causes a shape change of the truss structure.
또한, 상기 3차원 트러스 구조체는 피라미드 트러스 구조체, 카고메 트러스 구조체, 옥테트 트러스 구조체 및 유사 카고메 트러스 구조체로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 3차원 트러스 구동기를 제공한다.In addition, the three-dimensional truss structure provides a three-dimensional truss driver, characterized in that any one selected from the group consisting of a pyramid truss structure, a kagome truss structure, an octet truss structure and a similar kagome truss structure.
또한, 상기 제1와이어 군은 압전 재료(piezoelectric materials), 자왜 재료(magnetostrictive materials), 형상기억 합금 또는 수지(shape memory alloy or polymer), 산도민감 수지(pH-sensitive polymers), 열전 재료(thermoelectric materials) 및 전자레올로지 액체(electrorheological(ER) fluid)로 이루어진 군에서 선택된 1종 이상의 재료로 이루어진 것을 특징으로 하는 3차원 트러스 구동기를 제공한다.In addition, the first wire group may include piezoelectric materials, magnetostrictive materials, shape memory alloys or polymers, pH-sensitive polymers, and thermoelectric materials. And a three-dimensional truss driver comprising one or more materials selected from the group consisting of an electrorheological (ER) fluid.
또한, 상기 물리적 또는 화학적 변화는 응력, 온도, 습도, 산도(pH), 전기장, 자기장 및 전자기장으로 이루어진 군에서 선택되는 1종 이상의 변화인 것을 특징으로 하는 3차원 트러스 구동기를 제공한다.In addition, the physical or chemical change provides a three-dimensional truss driver, characterized in that one or more changes selected from the group consisting of stress, temperature, humidity, acidity (pH), electric field, magnetic field and electromagnetic field.
또한, 상기 형태 변화는 구조체 높이, 전단, 비틀림 및 굽힘으로 이루어진 군에서 선택된 1종 이상의 변화인 것을 특징으로 하는 3차원 트러스 구동기를 제공한다.In addition, the shape change provides a three-dimensional truss driver, characterized in that one or more changes selected from the group consisting of structure height, shear, torsion and bending.
본 발명은 안정적인 구조를 갖는 3차원 트러스 구조체를 기반으로 하여 무게 대비 강도와 강성이 매우 높은 구동기를 제공할 수 있다.The present invention can provide a driver having a very high strength and rigidity relative to weight based on a three-dimensional truss structure having a stable structure.
또한, 3차원 트러스 구조체를 구성하는 와이어 군의 일부가 스마트 재료로 구성되어 구조체 내를 관통하는 스마트 재료 와이어의 변위에 따라 구조체의 전반적인 형태 변화가 발생하기 때문에 대 변형이 가능한 구동기를 제공할 수 있다.In addition, since a part of the wire group constituting the three-dimensional truss structure is made of a smart material, the overall shape change of the structure occurs according to the displacement of the smart material wire penetrating the structure, it is possible to provide a driver capable of large deformation. .
또한, 트러스 구조가 정역학적으로 결정(statically determinated)되며 기구학적으로 결정(kinematically determinated)되는 경우에는 특히 변위가 발생하지 않는 함께 조합된 다른 와이어에는 아주 작은 수준의 변형과 응력밖에 발생하지 않기 때문에 반복적인 구동에도 내구성이 우수한 구동기를 제공할 수 있다.In addition, when the truss structure is statically determinated and kinematically determinated, it is repetitive because only a very small level of deformation and stress occurs in other wires combined together that do not cause displacement. It is possible to provide a driver with excellent durability even for phosphorus driving.
또한, 형상기억 합금 등 다양한 스마트 재료가 와이어 형태로 제작될 수 있으며 와이어를 이용하여 트러스를 제조할 수 있는 다양한 기술이 존재하므로, 이를 기반으로 제조되는 3차원 트러스형 구동기는 비용과 대량생산성 측면에서 매우 유리한 효과가 있다.In addition, various smart materials such as shape memory alloys can be manufactured in the form of wires, and there are various technologies for manufacturing trusses using wires. There is a very beneficial effect.
도 1은 종래 선형 구동기를 삼각형 트러스와 결합하여 회전운동을 발생시키는 장치를 나타낸 도면,1 is a view showing a device for generating a rotational motion by combining a conventional linear actuator with a triangular truss,
도 2는 피라미드, 옥테트, 카고메 트러스의 단층(single layer) 구조와 카고메 트러스 다층(multi-layer) 구조를 나타낸 도면,FIG. 2 is a diagram illustrating a single layer structure of a pyramid, an octet, and a kagome truss and a kagome truss multi-layer structure;
도 3은 등록특허 제1029183호에서 도 2의 3차원 카고메 트러스와 유사한 형태를 나선형 와이어로 조립한 구조체를 도시한 도면,3 is a view showing a structure in which a spiral wire is assembled in a form similar to the three-dimensional kagome truss of FIG.
도 4 내지 도 8은 특허출원 제10-2009-0080085호에서 개시된 구조체를 도시한 도면,4 to 8 show the structure disclosed in Patent Application No. 10-2009-0080085,
도 9는 도3, 도 4 내지 도 8의 나선형 와이어로 조립된 다층 트러스 구조체의 단위셀을 도시한 도면,9 is a view illustrating a unit cell of a multi-layered truss structure assembled with the spiral wires of FIGS. 3 and 4 to 8;
도 10은 특허출원 제10-2010-0059690호에서 제안한 나선형 와이어를 이용하여 조립되는 와이어 교차점에서 단 2개만의 와이어가 만나는 구조를 갖는 3차원 격자 트러스 구조체의 예를 도시한 도면,10 is a view showing an example of a three-dimensional grating truss structure having a structure where only two wires meet at a wire intersection point assembled using a spiral wire proposed in Patent Application No. 10-2010-0059690;
도 11은 2차원 트러스 구조를 갖는 구동기를 예시한 도면,11 illustrates a driver having a two-dimensional truss structure;
도 12는 3차원 트러스를 이용하여 제작된 구동기를 예시한 도면,12 illustrates a driver fabricated using a three-dimensional truss;
도 13은 카고메 트러스 단위셀을 나타낸 도면,13 is a view showing a Kagome truss unit cell,
도 14 내지 도 16은 는 본 발명의 실시예 1 내지 3에 따른 3차원 트러스 구동기의 구조체 변형 과정을 설명하는 도면.14 to 16 are views illustrating a structure deformation process of the three-dimensional truss driver according to embodiments 1 to 3 of the present invention.
이하에서는 본 발명의 바람직한 실시예를 첨부한 도면을 참고하여 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, not to exclude other components, unless otherwise stated.
본 발명자들은 3차원 트러스 구조체를 기반으로 하여 경량이면서도 무게 대비 강도와 강성이 매우 높은 구동기를 제공하고자 예의 연구를 거듭한 결과, 3 방향 이상으로 보통의 와이어와 스마트 재료 와이어를 함께 사용하여 3차원 트러스 형태의 구조체를 제조하고, 그 중 스마트 재료 와이어에 전기를 가하거나 자기장, 전자기장, 온도, 습도, pH 등의 주변 환경변화를 주어 변위가 발생하게 함으로써 전체 트러스 구조체가 높이 변화, 전단, 비틀림, 굽힘 등의 형태 변화를 하도록 하는 새로운 개념의 구동기를 제작할 수 있음에 착안하여 본 발명에 이르게 되었다.Based on the three-dimensional truss structure, the present inventors have intensively researched to provide a lightweight, weight-high strength and stiffness actuator. As a result, the three-dimensional truss using a common wire and a smart material wire in three or more directions is used. The entire truss structure is changed in height, shear, torsion and bending by manufacturing the structure in the form and applying the electric power to the smart material wire or changing the surrounding environment such as magnetic field, electromagnetic field, temperature, humidity, pH, etc. The present invention has been made in light of the fact that a new concept of a driver capable of changing the shape of the back can be manufactured.
따라서, 본 발명은 공간상에서 서로 일정한 방위각을 갖는 3 방향 이상의 연속된 와이어 군을 교차하여 조립 형성된 3차원 트러스 구조체를 포함하는 구동기로서, 상기 와이어 군은 외부의 물리적 또는 화학적 변화에 따라 반응할 수 있는 재료로 이루어진 제1와이어 군 및 반응하지 않는 재료로 이루어진 제2와이어 군이 조합되어, 외부의 물리적 또는 화학적 변화에 의하여 상기 제1와이어 군의 변위를 발생시켜 상기 트러스 구조체의 형태 변화를 일으키는 3차원 트러스 구동기를 개시한다.Accordingly, the present invention is a driver comprising a three-dimensional truss structure assembled by intersecting a continuous group of wires in three or more directions having a constant azimuth angle in space, the wire group can react according to external physical or chemical changes A first wire group made of a material and a second wire group made of a non-reacting material are combined to generate a three-dimensional change of the truss structure by generating displacement of the first wire group by an external physical or chemical change. Start the truss driver.
본 발명에서 3 방향 이상의 연속된 와이어 군을 교차하여 조립 형성되는 3차원 트러스 구조체는 전술한 다양한 구조, 예를 들어 피라미드 트러스 구조체, 카고메 트러스 구조체, 옥테트 트러스 구조체 또는 이들과 유사한 구조체일 수 있으나, 이에 한정되는 것은 아니고, 와이어로 직조되어 트러스 구조체와 유사한 구조체를 형성하는 것이라면 모두 포함될 수 있다. 이때, 와이어를 먼저 나선형으로 성형한 후 이를 회전하여 삽입시킴으로써 구조체를 조립하여 다공질 구조체를 더욱 효과적으로 제조할 수도 있다.In the present invention, the three-dimensional truss structure that is assembled by crossing three or more continuous wire groups may be various structures described above, for example, a pyramid truss structure, a kagome truss structure, an octet truss structure, or a structure similar thereto. The present invention is not limited thereto, and any one may be included as long as the wire is woven to form a structure similar to the truss structure. In this case, the wire may be first formed in a spiral shape and then rotated and inserted to assemble the structure to more effectively manufacture the porous structure.
본 발명에서 상기 와이어 군은 종래 3차원 트러스 구조체와 다른 조합으로 구성된다. 즉, 와이어 군 중 일부는 와이어와 접촉 또는 비접촉되는 외부의 물리적 또는 화학적 환경변화에 따라 반응할 수 있는 재료인 제1와이어 군으로 구성되며, 나머지 와이어 군은 그 환경변화에 따라 반응하지 않는 일반적인 재료인 제2와이어 군으로 구성된다. 여기서, 와이어 군이라 함은 동일한 방향으로 형성되어 있는 와이어들의 집합을 의미한다.In the present invention, the wire group is composed of a combination different from the conventional three-dimensional truss structure. That is, some of the wire group is composed of a first wire group, which is a material capable of reacting with external physical or chemical environmental changes in contact with or not contacting the wire, and the other wire group is a general material that does not react with the environmental change. And a second wire group. Here, the wire group means a collection of wires formed in the same direction.
상기 제1와이어 군을 이루는 와이어 재료는 전술한 반응 성질을 갖는 이른바 스마트 재료로 이루어진 것이라면 한정되지 않으며, 예를 들어, 압전 재료(piezoelectric materials), 자왜 재료(magnetostrictive materials), 형상기억 합금 또는 수지(shape memory alloy or polymer), 산도민감 수지(pH-sensitive polymers), 열전 재료(thermoelectric materials), 전자레올로지 액체(electrorheological(ER) fluid) 등의 재료가 사용될 수 있다. 또한, 상기 제2와이어 군을 이루는 와이어 재료는 공지의 일반적인 재료, 예를 들어, 금속, 세라믹, 합성수지, 섬유강화합성수지 등의 재료가 사용될 수 있다.The wire material constituting the first wire group is not limited as long as it is made of a so-called smart material having the above-described reaction properties. For example, piezoelectric materials, magnetostrictive materials, shape memory alloys or resins ( Materials such as shape memory alloys or polymers, pH-sensitive polymers, thermoelectric materials, and electrorheological (ER) fluids can be used. Further, the wire material constituting the second wire group may be a known general material, for example, a material such as metal, ceramic, synthetic resin, fiber reinforced synthetic resin, or the like.
이와 같은 본 발명에 따른 3차원 트러스 구동기는 보통의 와이어와 스마트 재료 와이어를 함께 사용하여 예를 들어, 등록특허 제0708483호에 구체적으로 개시되어 있는 것과 같은 3차원 카고메 트러스 구조체를 만들고, 그 중 스마트 재료 와이어로 이루어진 와이어 군에 전기를 가하거나 주변 환경변화를 주어 변위를 발생시킴으로써 전체 구조체의 형태 변화를 유도하면서도, 구동을 유발하는 스마트 재료 와이어가 아닌 보통의 와이어 군에는 변형이나 응력이 거의 작용하지 않는 특징을 갖게 된다. 따라서, 트러스 구조의 경량, 고강도 및 고강성을 가지면서 반복적인 작동에도 내구성을 갖게 된다. 여기서, 보통의 와이어와 스마트 재료 와이어는 등록특허 제1028183호, 등록특허 제1155267호, 공개특허 제10-2011-0139543호 등에 개시된 바와 같이 나선 형태로 미리 성형되거나, 등록특허 제1155262호에 개시된 바와 같이 방향에 따라 직선과 나선 형태가 혼용되거나, 등록특허 제0566729호에 개시된 바와 같이 직선 형태만으로 또는 등록특허 제0944326호에 개시된 바와 같이 유연한 상태로 사용될 수 있다.Such a three-dimensional truss driver according to the present invention uses a common wire and a smart material wire together to create a three-dimensional kagome truss structure, for example, as specifically disclosed in Korean Patent No. 0708483, among which smart By inducing a displacement by applying electricity to a wire group made of material wires or by changing the surrounding environment, the shape change of the entire structure is induced, but deformation or stress is hardly applied to the ordinary wire group, which is not a smart material wire that causes driving. Does not have the characteristics. Thus, the truss structure has light weight, high strength, and high rigidity, and is durable in repetitive operation. Here, the common wire and the smart material wire are preformed in the form of a spiral as disclosed in Patent No. 1028183, Patent No. 1155267, and Patent Publication No. 10-2011-0139543, or as disclosed in Patent No. 1155262. As described above, a straight line and a spiral form may be mixed, or may be used in a straight line form as disclosed in Korean Patent No. 0566729 or in a flexible state as disclosed in Korean Patent No. 0944326.
이하, 구체적인 실시예를 들어 본 발명을 보다 상세하게 설명한다. 이하의 실시예에서는 편의상 3차원 카고메 트러스에 관하여 설명하나, 동일한 원리를 와이어로 구성된 유사한 트러스나 다른 형태의 트러스 구조체에도 적용할 수 있음은 물론이다. 도 13은 카고메 트러스 단위셀을 나타낸 것이다. 도 13에 나타낸 바와 같이, 카고메 단위셀은 총 6개 방향의 평행한 트러스 요소로 구성되어 있으며, 이 중 ①, ②, ③ 방향은 면내(in-plane) 방향, ④, ⑤, ⑥ 방향은 면외(out-of-plane) 방향을 나타내고 있다.Hereinafter, the present invention will be described in more detail with reference to specific examples. In the following embodiments, a three-dimensional kagome truss will be described for convenience, but the same principle can be applied to similar trusses made of wire or other types of truss structures. 13 shows a Kagome truss unit cell. As shown in FIG. 13, the Kagome unit cell is composed of parallel truss elements in six directions, of which ①, ②, and ③ directions are in-plane directions, and ④, ⑤, and ⑥ directions are out of plane. The out-of-plane direction is shown.
실시예 1Example 1
도 14(a)는 면외 ④, ⑤, ⑥ 방향의 트러스 요소에 해당하는 와이어 군이 스마트 재료로 이루어져 있을 때 전기를 가하거나 환경을 변화시키는 방법으로 균일하게 길이를 인장시킴으로써 전체 트러스 구조체가 변형하는 전/후 형상을 나타내고 있다. 즉, 면외 3 방향의 스마트 와이어가 인장변형을 함으로써 전체 구조체의 높이가 증가(elevation)하는 구동(actuation)이 되었음을 알 수 있다. 한편, 도 14(b)는 등록특허 제1029183호에 개시된 대로 나선 와이어를 직조하여 카고메 트러스와 유사한 구조체를 만들었을 때 상기의 구조체 높이를 증가시키는 구동을 위해서 인장 변형해야하는 스마트 와이어를 검은색으로 나타내고 있다.FIG. 14 (a) shows that the entire truss structure is deformed by uniformly stretching the length by applying electricity or changing the environment when the wire group corresponding to the truss element in the out-of- plane ④, ⑤, ⑥ direction is made of smart material. The front and back shapes are shown. That is, it can be seen that the smart wires in three out-of-plane tensile strains are actuated to increase the height of the entire structure. On the other hand, Figure 14 (b) shows a smart wire that must be deformed for driving to increase the height of the structure when the woven spiral wire as a structure similar to the Kagome truss as disclosed in Patent No. 1029183 shows in black have.
실시예 2Example 2
도 15(a)는 면외 ④, ⑤, ⑥ 방향의 트러스 요소에 해당하는 와이어 군이 스마트 재료로 이루어져 있을 때 전기를 가하거나 환경을 변화시키는 방법으로 ④, ⑤ 방향의 트러스 요소에 해당하는 와이어 군 길이를 인장시키고, ⑥ 방향의 와이어 군의 길이를 수축시킴으로써 전체 트러스 구조체가 변형하는 전/후 형상을 나타내고 있다. 즉, 면외 3 방향의 스마트 와이어 중 2 방향은 인장변형, 나머지 한 방향은 수축변형 함으로써 전체 구조체가 옆으로 전단(shear)하는 구동(actuation)이 되었음을 알 수 있다. 한편, 도 15(b)는 등록특허 제1029183호에 개시된 대로 나선 와이어를 직조하여 카고메 트러스와 유사한 구조체를 만들었을 때 도 15(a)와 같은 전단 구동을 위해서 인장과 수축해야 하는 스마트 와이어를 각각 검은색과 회색으로 나타내고 있다.Figure 15 (a) is a wire group corresponding to the truss element in the ④, ⑤ direction by applying electricity or changing the environment when the wire group corresponding to the truss element in the out-of- plane ④, ⑤, ⑥ direction is made of a smart material. The length of the truss structure is deformed by stretching the length and shrinking the length of the group of wires in the? Direction. That is, it can be seen that the two directions of the smart wires in the out-of-plane three directions are the tensile deformation and the other one is the shrinkage deformation, thereby actuating the entire structure to shear sideways. On the other hand, Figure 15 (b) is a smart wire that must be stretched and contracted for shear driving as shown in Figure 15 (a) when weaving the spiral wire as disclosed in the Patent No. 1029183 to make a structure similar to the Kagome truss It is shown in black and gray.
실시예 3Example 3
도 16(a)는 도 16(b)에 표시된 면내 ①, ②, ③ 방향 중 한 방향의 트러스 요소에 해당하는 와이어 군이 스마트 재료로 이루어져 있을 때 전기를 가하거나 환경을 변화시키는 방법으로 와이어 군 길이를 높이에 따라 다르게 인장 또는 압축시킴으로써 전체 트러스 구조체가 변형하는 전/후 형상을 나타내고 있다. 구체적으로, 단면의 중립면(neutral surface)으로부터의 높이에 비레하게 면내 3 방향 중 한 방향의 와이어를 인장변형 또는 수축변형시킴으로써 전체 구조체가 굽어지는(bending) 구동(actuation)이 되었음을 알 수 있다. 도 16에서는 굽힘 변형이 잘 보이도록 도 13 내지 도 15와 비교할 때 면내에서 약 30도 회전된 시야에서 작도되어 변형이 일어나는 와이어가 수평방향(① 방향)으로 보인다. 한편, 도 16(c)는 등록특허 제1029183호에 개시된 대로 나선 와이어를 직조하여 카고메 트러스와 유사한 구조체를 만들었을 때 상기 구조체의 전단 구동을 위해서 인장 또는 수축해야 하는 스마트 와이어를 검은색으로 나타내고 있다.FIG. 16 (a) shows the wire group by applying electricity or changing the environment when the wire group corresponding to the truss element in one of the in- plane ①, ②, ③ directions shown in FIG. 16 (b) is made of smart material. The length of the truss structure is deformed by deforming or compressing the length differently according to the height. Specifically, it can be seen that the entire structure is bent and actuated by tensile strain or shrinkage of the wire in one of the three in-plane directions, depending on the height from the neutral surface of the cross section. In FIG. 16, a wire is drawn in the horizontal direction (① direction), which is drawn in a field of view rotated about 30 degrees in plane as compared with FIGS. 13 to 15 so that bending deformation is easily seen. On the other hand, Figure 16 (c) shows a smart wire that must be stretched or shrunk for shear driving of the structure when weaving a spiral wire as disclosed in the Patent No. 1029183 to make a structure similar to the Kagome truss in black .
이상으로 본 발명의 바람직한 실시예를 도면을 참고하여 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.Preferred embodiments of the present invention have been described in detail above with reference to the drawings. The description of the present invention is for illustrative purposes, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the scope of the present invention is shown by the claims below rather than the detailed description, and all changes or modifications derived from the meaning, scope, and equivalent concepts of the claims are included in the scope of the present invention. Should be interpreted.

Claims (5)

  1. 공간상에서 서로 일정한 방위각을 갖는 3 방향 이상의 연속된 와이어 군을 교차하여 조립 형성된 3차원 트러스 구조체를 포함하는 구동기로서, 상기 와이어 군은 외부의 물리적 또는 화학적 변화에 따라 반응할 수 있는 재료로 이루어진 제1와이어 군 및 반응하지 않는 재료로 이루어진 제2와이어 군이 조합되어, 외부의 물리적 또는 화학적 변화에 의하여 상기 제1와이어 군의 변위를 발생시켜 상기 트러스 구조체의 형태 변화를 일으키는 3차원 트러스 구동기.An actuator comprising a three-dimensional truss structure assembled by intersecting a group of three or more continuous wires each having a constant azimuth angle in space, wherein the wire group is formed of a material capable of reacting according to external physical or chemical changes. And a second wire group composed of a wire group and a non-reacting material to generate a displacement of the first wire group by an external physical or chemical change, thereby causing a shape change of the truss structure.
  2. 제1항에 있어서,The method of claim 1,
    상기 3차원 트러스 구조체는 피라미드 트러스 구조체, 카고메 트러스 구조체, 옥테트 트러스 구조체 및 유사 카고메 트러스 구조체로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 3차원 트러스 구동기.The three-dimensional truss structure is any one selected from the group consisting of a pyramid truss structure, a kagome truss structure, an octet truss structure and a similar kagome truss structure.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1와이어 군은 압전 재료(piezoelectric materials), 자왜 재료(magnetostrictive materials), 형상기억 합금 또는 수지(shape memory alloy or polymer), 산도민감 수지(pH-sensitive polymers), 열전 재료(thermoelectric materials) 및 전자레올로지 액체(electrorheological(ER) fluid)로 이루어진 군에서 선택된 1종 이상의 재료로 이루어진 것을 특징으로 하는 3차원 트러스 구동기.The first wire group includes piezoelectric materials, magnetostrictive materials, shape memory alloys or polymers, pH-sensitive polymers, thermoelectric materials and A three-dimensional truss driver comprising at least one material selected from the group consisting of an electrorheological (ER) fluid.
  4. 제1항에 있어서,The method of claim 1,
    상기 물리적 또는 화학적 변화는 응력, 온도, 습도, 산도(pH), 전기장, 자기장 및 전자기장으로 이루어진 군에서 선택되는 1종 이상의 변화인 것을 특징으로 하는 3차원 트러스 구동기.Wherein said physical or chemical change is one or more changes selected from the group consisting of stress, temperature, humidity, acidity (pH), electric field, magnetic field and electromagnetic field.
  5. 제1항에 있어서,The method of claim 1,
    상기 형태 변화는 구조체 높이, 전단, 비틀림 및 굽힘으로 이루어진 군에서 선택된 1종 이상의 변화인 것을 특징으로 하는 3차원 트러스 구동기.The shape change is a three-dimensional truss driver, characterized in that at least one change selected from the group consisting of structure height, shear, torsion and bending.
PCT/KR2012/008166 2012-08-06 2012-10-09 Three-dimensional truss actuator composed of wires WO2014025089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0085537 2012-08-06
KR1020120085537A KR101325460B1 (en) 2012-08-06 2012-08-06 Three dimensional truss actuator composed of wires

Publications (1)

Publication Number Publication Date
WO2014025089A1 true WO2014025089A1 (en) 2014-02-13

Family

ID=49856761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008166 WO2014025089A1 (en) 2012-08-06 2012-10-09 Three-dimensional truss actuator composed of wires

Country Status (2)

Country Link
KR (1) KR101325460B1 (en)
WO (1) WO2014025089A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10549505B2 (en) * 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
CN111350937A (en) * 2018-12-21 2020-06-30 上海交通大学 Pneumatic adjustable triangular plane porous structure
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US11155025B2 (en) 2013-12-05 2021-10-26 Massachusetts Institute Of Technology Methods for additive manufacturing of an object
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230056612A (en) 2021-10-20 2023-04-27 (주)진영코리아 Seismic performance improvement structure for concrete anchor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290400A (en) * 1990-11-27 1994-03-01 Mcnc Fabrication method for microelectromechanical transducer
US6646364B1 (en) * 2000-07-11 2003-11-11 Honeywell International Inc. MEMS actuator with lower power consumption and lower cost simplified fabrication
KR100717896B1 (en) * 2005-11-29 2007-05-14 재단법인 포항산업과학연구원 Power generation system of brace frame using piezoelectric element
WO2009048676A1 (en) * 2007-08-16 2009-04-16 University Of Virginia Patent Foundation Hybrid periodic cellular material structures, systems, and methods for blast and ballistic protection
US7598652B2 (en) * 2004-03-12 2009-10-06 Sri International Mechanical meta-materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290400A (en) * 1990-11-27 1994-03-01 Mcnc Fabrication method for microelectromechanical transducer
US6646364B1 (en) * 2000-07-11 2003-11-11 Honeywell International Inc. MEMS actuator with lower power consumption and lower cost simplified fabrication
US7598652B2 (en) * 2004-03-12 2009-10-06 Sri International Mechanical meta-materials
KR100717896B1 (en) * 2005-11-29 2007-05-14 재단법인 포항산업과학연구원 Power generation system of brace frame using piezoelectric element
WO2009048676A1 (en) * 2007-08-16 2009-04-16 University Of Virginia Patent Foundation Hybrid periodic cellular material structures, systems, and methods for blast and ballistic protection

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11155025B2 (en) 2013-12-05 2021-10-26 Massachusetts Institute Of Technology Methods for additive manufacturing of an object
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US10549505B2 (en) * 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US11390025B2 (en) 2018-11-12 2022-07-19 Ossur Iceland Ehf Medical device including a structure based on filaments
CN111350937A (en) * 2018-12-21 2020-06-30 上海交通大学 Pneumatic adjustable triangular plane porous structure
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner

Also Published As

Publication number Publication date
KR101325460B1 (en) 2013-11-04

Similar Documents

Publication Publication Date Title
WO2014025089A1 (en) Three-dimensional truss actuator composed of wires
CN2716377Y (en) Shape memory alloy and rubber composite support with horizontal polydirectional vibration-proof and vertical drawing-prevention function
US9168989B2 (en) Underwater robot based on flapping
CN107276451B (en) Indent hexagon negative poisson's ratio structure based on dielectric type electroactive polymer
CN111379679B (en) Three-dimensional multi-cell material with local heat-torsion coupling effect
CN107924989A (en) Actuator device based on electroactive polymer or optical active polymer
CN109551755A (en) One kind having isotropic three-dimensional auxetic structure
He et al. Intrinsically anisotropic dielectric elastomer fiber actuators
Liu et al. Biomimetic self-deformation of polymer interpenetrating network with stretch-induced anisotropicity
Sheng et al. High-performance fasciated yarn artificial muscles prepared by hierarchical structuring and sheath–core coupling for versatile textile actuators
Wang et al. Smart phone robot made of smart soft composite (SSC)
Samatham et al. Active polymers: an overview
Bai et al. Three-dimensional ori-kirigami metamaterials with multistability
Zhang et al. A snake-inspired swallowing robot based on Hoberman’s linkages
Tuyboyov et al. Multi-mode soft composite bending actuators based on glass fiber textiles interwoven with shape memory alloy wires: Development and use in the preparation of soft grippers
WO1996036462A1 (en) Deformable structural arrangement
Chen et al. Progressive collapse performance of shear strengthened RC frames by nano CFRP
Muhammad Razif et al. Non-linear finite element analysis of biologically inspired robotic fin actuated by soft actuators
CN108494286A (en) Using the twist mode precision piezoelectric actuator and preparation method thereof of shearing work pattern
Kim et al. Study of flapping actuator modules using IPMC
Shao et al. Evolution from Telescoping to Bending: An Origami-Inspired Flexible Bending Actuator
Zhou et al. Pulling actuation enabled by harnessing the torsional instability of hyperelastic soft rods
WO2011025263A2 (en) Truss type periodic cellular materials comprising woven wires and straight wires, and preparation method thereof
Yao et al. Unexpected bending behavior of 2D lattice materials
CN116409453A (en) Bionic flexible fin strip based on tensile integral structure and design method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882721

Country of ref document: EP

Kind code of ref document: A1