WO2013189131A1 - 温度指示方法及温度指示标签及温度指示标签的制造方法 - Google Patents

温度指示方法及温度指示标签及温度指示标签的制造方法 Download PDF

Info

Publication number
WO2013189131A1
WO2013189131A1 PCT/CN2012/081394 CN2012081394W WO2013189131A1 WO 2013189131 A1 WO2013189131 A1 WO 2013189131A1 CN 2012081394 W CN2012081394 W CN 2012081394W WO 2013189131 A1 WO2013189131 A1 WO 2013189131A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature indicating
indicating label
transition
glass transition
Prior art date
Application number
PCT/CN2012/081394
Other languages
English (en)
French (fr)
Inventor
黄为民
吴雪莲
代勇波
Original Assignee
南京天朗制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京天朗制药有限公司 filed Critical 南京天朗制药有限公司
Priority to US14/405,703 priority Critical patent/US9816870B2/en
Publication of WO2013189131A1 publication Critical patent/WO2013189131A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/483Measuring temperature based on the expansion or contraction of a material the material being a solid using materials with a configuration memory, e.g. Ni-Ti alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves

Definitions

  • the invention belongs to the technical field of temperature recording and indication, and relates to a temperature indicating method based on a heat-driven shape memory effect of a polymer to indicate whether a temperature experienced by the polymer exceeds a limit value and how much is exceeded, and a temperature indicating label used by the method And the method of manufacturing such a temperature indicating label.
  • the incomplete cold chain (for example, the vaccine stored in the refrigerator due to short-term power outages exceeds the defined temperature for a certain period of time) is an important cause of deterioration of human vaccines.
  • This vaccine failure due to incomplete cold chain is difficult to distinguish easily. Ineffective vaccines not only have no epidemic effect on users, but sometimes become an injury, even a fatal threat.
  • Real-time monitoring of temperature changes in each vaccine, while meaningful, is economically and technically low.
  • the same problem exists in industries such as frozen foods that require constant temperature or temperature-limited environments. A simple, reliable, and economical method for detecting whether a single product has exceeded a defined maximum temperature and how much is particularly significant.
  • the temperature indicating products currently used and reported are mostly electronic devices (CN101040175, CN180985 CN200941054) and mechanical structural devices (CN2245765), and chemical solutions (CN 102336996 A). These technologies, while feasible, have limited application areas, are complex to manufacture, and are relatively costly, and are difficult to use for temperature indication of individual products.
  • thermo-induced driving is the most common driving method for shape memory polymers.
  • the principle is to use the temperature-sensitive properties of polymers to induce spontaneous shape recovery.
  • Thermotropic shape memory polymers are ideal for mass production of inexpensive temperature indicating products due to their shape memory effect and low cost.
  • thermotropic shape memory polymer has the following characteristics: (1) Pre-deformation: a shape memory polymer to which a shape has been imparted The specification is heated to a certain temperature to change from a glass state to a rubber state or from a solid state to a molten state, and an external force is applied to deform it, to maintain cooling under deformation, and the polymer is changed from a rubber state to a glass state or from a molten state. Change back to the solid state and retain the deformed shape in whole or in part. (2) Spontaneous shape recovery: When the deformed polymer is heated to not lower than the onset temperature of the glass transition or the onset temperature of the melt transition, the material is restored to the original shape state in whole or in part.
  • a technical problem to be solved by the present invention is to provide a temperature indicating method capable of indicating the temperature level experienced by the object to be tested and the environment in which it is subjected, and which is simple and easy to implement and low in cost, and which utilizes the heat-induced shape memory property of the polymer;
  • Another technical problem to be solved by the present invention is to provide a temperature indicating label capable of indicating the temperature level of the object to be measured and the environment in which it is subjected, and having a simple structure, a small volume, and a low cost, and a manufacturing method of the temperature indicating label.
  • the method for indicating the temperature of the heat-induced shape memory polymer of the present invention is:
  • the residual shape variable of the thermally induced shape memory polymer material after pre-deformation treatment is higher than 5%, and the shape recovery rate after recovery from the spontaneous shape is higher than 20%.
  • the thermotropic shape memory polymer material may be one of a neat polymer or a polymer foam or a polymer matrix composite.
  • a plurality of pre-deformations are formed on different portions of the temperature indicating label, and the plurality of pre-deformations are respectively formed at a series of temperatures not lower than the starting temperature of the glass transition or the melting transition. .
  • the substrate of the temperature indicating label of the present invention is a thermally induced shape memory polymer material having a glass transition on the substrate Describe the pre-deformation formed by the starting temperature of the book change or melt transition to the end temperature range.
  • the shape of the temperature indicating label may be one or a combination of a cylindrical shape, a spherical shape, a flat plate, a film, a wire shape, and a strip shape.
  • the pre-deformation may be one or more combinations of stretching, bending, twisting, compressing, embossing, embossing, flattening deformation of the temperature indicating label.
  • the different portions of the temperature indicating label have a plurality of pre-deformations formed at a series of temperatures not lower than the onset temperature of the glass transition or the melt transition.
  • the plurality of pre-deformations may be a series of indentations arranged on the substrate, each indentation having indicia (e.g., numerical indicia, etc.) corresponding to the target temperature indicated therein.
  • indicia e.g., numerical indicia, etc.
  • the invention has the following advantages:
  • the temperature indicating method provided by the invention is realized by temperature-sensitive property based on the thermal shape memory effect of the polymer material, without complicated circuit or mechanical structure device, and is easy to realize, so that the material itself can indicate the temperature. , the price is low.
  • the temperature indicating method provided by the present invention can be realized by selecting different polymers and making labels of different shapes and sizes as needed.
  • the polymer temperature indicating label provided by the invention can not only indicate the large ambient temperature where the batch product is located, but also realize ultra-miniaturization in volume, and directly or indirectly attach the polymer temperature indicating label to indicate a single product.
  • the heat-induced shape memory polymer used in the present invention can be selected from existing polymers without the need to develop new special materials, and the cost is low.
  • FIG. 1 is a schematic view showing a form of a temperature indicating label according to Embodiment 3 of the present invention.
  • FIG. 2 is a schematic view showing another form of a temperature indicating label according to Embodiment 3 of the present invention
  • 3 is a schematic diagram of a temperature indicating label according to a fourth embodiment of the present invention.
  • Embodiment 1 A temperature indicating method using a thermally induced shape memory effect of a polymer has a function of indicating whether the maximum temperature of the environment has exceeded a limit value and exceeded a limit value.
  • the thermally induced shape memory effect of the thermally induced shape memory polymer is significant: the residual shape of the polymer after thermodynamic processing is higher than 5%; the shape recovery rate is higher than 20%.
  • the polymer referred to may also be a polymeric foam or a polymer matrix composite of the corresponding matrix.
  • the polymer foam referred to may be either open-celled or closed-celled; the filler of the polymer referred to may be either a powder or a fiber.
  • thermotropic shape memory polymer is formed into a temperature indicating label which is pre-deformed at a temperature not lower than the initial temperature of the glass transition or the melt transition, and then placed in the working environment. When the maximum temperature exceeds the set limit, the temperature label will undergo a thermal spontaneous shape recovery. Through the final topography, the function of displaying whether the highest temperature experienced has exceeded the limit value and exceeded the limit value is achieved.
  • the shape of the temperature indicating label may be one of a cylindrical shape, a spherical shape, a flat plate, a film, a wire shape, a strip shape, or a combination thereof. Key dimensions can range from a few microns to a few decimeters, depending on the conditions of use.
  • the pre-deformation treatment may be stretching, bending, twisting, compression, embossing, pressing, and pressing.
  • the pre-deformation can be visible to the naked eye or invisible to the naked eye.
  • the fields to which this method is applicable are: drugs or foods that define storage temperatures, water baths or oil baths that limit the temperature of use, hatching/breeding of aquatic products that limit ambient temperature, or seed cultivation of crops, etc., and those not mentioned above, but Relevant, similar, can be applied to the field of application based on the same principle.
  • Example 2 A long polymer temperature indicating label having a size of 20 mm X 2 mm X 1 mm was produced, and the material selected was a styrene polymer having a shape memory effect, which had a glass transition temperature higher than -10 °C. The polymer sample of this size is heated to a glass transition temperature of 20 ° C or higher and subjected to pre-deformation treatment in a curved manner (folding it into a U-shape). Maintain external force and cool it to -15 V.
  • the label spontaneously maintains a U shape and is placed in a refrigerated environment with a temperature requirement of -20 to - 10 °C.
  • the storage ambient temperature rises to -10 °C and above, the material recovers spontaneously and appears as an initial strip.
  • the polymer temperature can be used to indicate whether the refrigerated environment exceeds the defined maximum temperature.
  • Example 3 A polymer temperature indicating label of 75 mm X 20 mm X 5 mm was produced.
  • the material used was a polyurethane polymer having a shape memory effect with a glass transition temperature higher than 10 °C.
  • the polymer sample of this size is heated to a temperature above 10 ⁇ , and slowly cooled down, at 24 ° C, 22 ° C, 20 ° C, Instruction manual
  • a series of indentations are produced on the surface using an indenter.
  • the indentation can be a number as shown in Figure 1.
  • the area is approximately 5 mm X 5 mm); it can also be a scale line (length 10 mm) as shown in Figure 2, with the indentations linearly aligned.
  • the indentation spacing is 5 mm and the indentation depth is 2 mm.
  • the final morphology of the different polymer indentations corresponds to the different maximum heating temperatures. Before using the product, the highest temperature experienced during product storage can be read based on the final shape of each indentation.
  • Example 4 A polymer temperature indicating label having a size of 10 mm X 10 mm 0.5 mm was produced, and the material used was an epoxy polymer having a shape memory effect with a glass transition temperature higher than 20 °C. After heating the polymer sample of this size to 10 °C above its glass transition temperature, the temperature is slowly lowered, at 30 °C, 28 °C, 26 °C, 24 °C, 22 V, 20 °C. A series of linear indentations are produced on the surface of the sample using a nanoindenter (as shown in Figure 3). Each indentation line has a depth of 20 ⁇ m (required by a magnifying glass) and a length of 30 ⁇ m : pressure at different temperatures.
  • the traces are connected end to end and are generally in the shape of a cross. After cooling and setting, the indentation is marked and sealed in the package of the refrigerated product.
  • the final morphology of the different polymer indentations corresponds to different maximum heating temperatures. Before using the product, the highest temperature experienced during product storage can be read based on the final shape of the cross on the temperature indicator label.

Abstract

一种温度指示方法,包括:a.确定目标温度,采用热致形状记忆聚合物材料制作温度指示标签;b.加热温度指示标签使其达到或超过玻璃化转变或熔融转变的起始温度,并低于玻璃化转变或熔融转变的终止温度,然后完成预变形处理;c.将预变形后的温度指示标签安置在需要进行温度指示的环境中一段时间后,观察其是否发生自发形状恢复,并判断出所在环境温度是否曾经到达或超过目标温度及超出的范围。还提供了该温度指示方法所使用的温度指示标签以及温度指示标签的制造方法。该温度指示方法简便易行、实现成本低;该温度指示标签结构简单、体积小、成本低。

Description

说 明 书 温度指示方法及温度指示标签及温度指示标签的制造方法 技术领域
本发明属于温度记录和指示技术领域,涉及一种基于聚合物的热驱动形状记忆效应 来指示其所经历的温度是否超过限定值及超过多少的温度指示方法, 以及该方法所使用 的温度指示标签, 以及这种温度指示标签的制造方法。
背景技术
在许多生产、加工、运输和储存过程中,对温度, 特别是最高温度,有严格的限制。 例如,在生物医学领域中,很多药品的储存和运输、食品行业中冷冻食品的储存和运输、 以及化工领域中恒温水浴、 恒温油浴及化工原料的储存环境等都对温度有上限要求。 就 目前来讲, 对每件 /个产品的温度实时监测, 经济上不可行, 实用上也不是完全必要。例 如, 人体疫苗是特殊医药产品, 在运输、 存储方面有严格的"冷链"要求, 即每支疫苗在 生产、存储和发放的每一个环节都必须始终处于所限定的低温环境下,从而确保其品质。 目前, 冷链不完整(例如由于短时间停电而导致储存于冰箱中的疫苗在一定时间内超出 所限定的温度)是人体疫苗变质的一个重要原因。 这种由于冷链不完整而导致的疫苗失 效很难轻易辨别。 失效疫苗不但对使用者没有防疫的作用, 有时反而成为一种伤害, 甚 至有致命威胁。 实时监測每支疫苗的温度变化, 虽然有意义, 但从经济和技术的角度来 看, 可行性很低。 同样的问题也存在于冷冻食品等其它需要恒温或限温环境的行业。 一 种简单、 可靠、 经济实用的方法, 用于检测单件产品是否曾超出限定的最高温度及具体 超出多少具有极重大的实用价值。
目前所使用和报道的温度指示产品,大多是电子装置(CN101040175、 CN180985 CN200941054) 和机械结构装置 (CN2245765 ), 以及化学溶液 (CN 102336996 A)。 这 些技术虽然可行, 但应用领域有限、 制作过程较为复杂且成本相对较高, 并且很难用于 单件产品的温度指示。
很多聚合物材料具有显著的形状记忆效应,能够感知环境的变化,并以形貌变化 (恢 复初始状态) 的方式做出响应。 目前, 热致驱动是形状记忆聚合物最为普遍的一种驱动 方式, 其原理是利用聚合物对于温度的敏感特性来诱发自发形状恢复。 热致形状记忆聚 合物因其形状记忆效应和低成本特点成为大量制造廉价温度指示产品的较为理想的选 择。
热致形状记忆聚合物具有如下特性: (1) 预变形: 将已赋予形状的形状记忆聚合物 说 明 书 加热到一定的温度使其由玻璃态转变到橡胶态或者由固态转变至熔融状态,并施加外力 使其变形, 维持变形状态下冷却, 聚合物又从橡胶态转变到玻璃态或从熔融态变回固态 并全部或部分保持变形后的形状。 (2) 自发形状恢复: 当已变形的聚合物被加热到不低 于玻璃化转变的起始温度或者熔融转变的起始温度时, 材料全部或部分恢复到原来的形 状状态。
发明内容
本发明所要解决的一个技术问题是,提供一种能够指示被测对象及所在环境所经历 的温度水平, 并且简便易行、 实现成本低的利用聚合物的热致形状记忆特性的温度指示 方法;
本发明所要解决的另一个技术问题是,提供一种能够指示被测对象及所在环境所经 历的温度水平, 并且结构简单、 体积小、 成本低的温度指示标签及该温度指示标签的制 造方法。
本发明采用热致形状记忆聚合物的温度指示方法是:
a.确定需要进行指示的目标温度, 采用热致形状记忆聚合物材料制作温度指示标 签,所述的目标温度值不低于所采用的热致形状记忆聚合物材料的玻璃化转变或熔融转 变的起始温度;
b.加热温度指示标签使其达到或超过玻璃化转变或熔融转变的起始温度, 并低于玻 璃化转变或熔融转变的终止温度, 然后对温度指示标签施加外力引起变形, 并在保持变 形状态下冷至玻璃化转变或熔融转变的起始温度以下, 完成预变形处理;
c.将预变形后的温度指示标签安置在需要进行温度指示的环境一段时间后, 观察其 是否发生自发形状恢复, 如发生自发形状恢复, 则可判断出所在环境温度曾经到达或超 过目标温度。
所述热致形状记忆聚合物材料经预变形处理后的残余形变量高于 5%, 经自发形状 恢复后的形状恢复率高于 20%。
所述热致形状记忆聚合物材料可以是纯聚合物或聚合物泡沫或者聚合物基复合材 料之一。 所指的聚合物泡沫可以是开孔的也可以是闭孔的; 所指的聚合物基复合材料的 填充物可以是粉体也可以是纤维。
所述步骤 b中,在温度指示标签上的不同局部形成多个预变形,所述的多个预变形 是在不低于玻璃化转变或熔融转变的起始温度的一系列温度下分别形成的。
本发明的温度指示标签的基体为热致形状记忆聚合物材料,基体上具有在玻璃化转 说 明 书 变或熔融转变的起始温度至终止温度范围内形成的预变形。
所述温度指示标签的形状可以是圆柱形、球形、 平板、 薄膜、 线状、 条状中的一种 或多种组合。
所述预变形可以是对温度指示标签的拉伸、 弯曲、 扭曲、 压缩、 压凹痕、 压凸痕、 压平变形中的一种或多种组合。
所述温度指示标签上的不同局部具有多个预变形,所述的多个预变形是在不低于玻 璃化转变或熔融转变的起始温度的一系列温度下形成的。
所述的多个预变形可以是排列在所述基体上的一系列压痕,每个压痕具有与之所指 示的目标温度相对应的标记 (例如数值标记等)。
本发明的一种温度指示标签的制造方法是:
根据目标温度选择热致形状记忆聚合物材料制作温度指示标签的基体,将基体加热 至玻璃化转变或熔融转变的起始温度至终止温度范围内的某一温度, 然后降温, 在降温 至玻璃化转变或熔融转变的起始温度以下的过程中,在一系列不同的温度点通过外力在 基体的不同局部产生变形并保持变形直至温度降至玻璃化转变或熔融转变的起始温度 之下, 材料重新硬化, 形成具有多个预变形的温度指示标签, 每个预变形具有各自对应 的自发形状恢复温度。
本发明与现有技术相比, 具有如下优点效果:
1、 本发明所提供的温度指示方法, 通过基于聚合物材料的热致形状记忆效应对温 度的敏感特性来实现, 无需复杂的电路或者机械结构装置, 易于实现, 做到材料本身就 可以指示温度, 价格低廉。
2、 本发明所提供的温度指示方法, 可根据需要, 通过选择不同的聚合物, 制成不 同形状和大小的标签来实现。
3、 本发明所提供的聚合物温度指示标签, 不仅可以指示批量产品所在的大环境温 度, 更可以实现体积上的超小型化, 通过直接或间接贴附聚合物温度指示标签, 来指示 单个产品所在的小环境的温度。
4、 本发明所使用的热致形状记忆聚合物可从现有的聚合物中选择, 无需开发新型 专用材料, 成本低。
附图说明
图 1是本发明实施例三的温度指示标签一种形式的示意图;
图 2是本发明实施例三的温度指示标签另一种形式的示意图; 说 明 书 图 3是本发明实施例四的温度指示标签示意图。
具体实施方式
实施例一: 一种采用聚合物的热致形状记忆效应的温度指示方法,具有显示环境最 高温度是否曾经超过限定值及超过限定值多少的功能。
所指的热致形状记忆聚合物的热致形状记忆效应是显著的:聚合物经热力学加工后 的残余形变量高于 5%; 形状回复率高于 20%。 所指的聚合物也可以是相应基体的聚合 物泡沫或者聚合物基复合材料。所指的聚合物泡沫可以是开孔的也可以是闭孔的; 所指 的聚合物其复合材料的填充物可以是粉体也可以是纤维。
将热致形状记忆聚合物制作成温度指示标签,在不低于玻璃化转变或熔融转变的起 始温度的条件下先进行预变形处理, 再置入工作环境中。 当其最高温度超过所设定的限 值后, 温度标签将发生热致自发形状恢复。 通过最终形貌, 实现显示所经历的最高温度 是否曾经超过限定值及超过限定值多少的功能。
温度指示标签的形状可以是圆柱形、球形、 平板、 薄膜、 线状、 条状中的一种或其 组合。 根据使用条件要求, 其关键尺寸变动范围可以从几微米到几分米。
预变形处理可以是拉伸、 弯曲、 扭曲、 压缩、 压凹痕、 压凸痕、 压平等。 预变形可 以是肉眼可见的, 也可以是肉眼不可见的。
此方法所适用的领域为:限定储藏温度的药品或食品、限定使用温度的水浴或油浴、 限定环境温度的水产品的孵化 /养殖或农作物的种子培育等,以及以上未提到的,但相关, 相似, 可以基于相同原理推广应用的领域。
此方法所指示的最髙温度与实际最高温度之差最高为 ±3.0 V, 最低为 ±0.5 V。 实施例二: 制作尺寸为 20 mm X 2 mm X 1 mm的长条形聚合物温度指示标签, 选 用材料为具有形状记忆效应的苯乙烯聚合物, 其玻璃化转变温度高于 -10 °C。 将该尺寸 的聚合物样品加热至其玻璃化转变温度 20 °C以上, 进行预变形处理, 变形方式为弯曲 (将其对折成 U型)。 维持外力, 将其冷却至 -15 V , 此时标签自发保持 U形, 并将其 置入温度要求为 -20〜- 10 °C冷藏环境内。 当储存环境温度升高至 -10 °C及以上时, 材料 发生自发形状恢复, 呈现为初始的长条状。 由此, 可用此聚合物温度指示该冷藏环境是 否超出所限定的最高温度。
实施例三: 制作尺寸为 75 mm X 20 mm X 5 mm的聚合物温度指示标签, 所用材料 为具有形状记忆效应的聚氨酯聚合物, 其玻璃化转变温度高于 10 °C。 将该尺寸的聚合 物样品加热至其玻璃化转变温度 10 Ό以上,缓慢降温过程中,分别在 24 °C、22 °C、20 °C、 说 明 书
18 °C、 16 °C、 14 °C、 12 °C、 10 °C条件下使用压痕仪在其表面产生一系列的压痕, 压痕 可以是如图 1所示的数字 (每个数字所占面积约为 5 mm X 5 mm); 也可以是如图 2所示 的刻度线 (长度为 10 mm), 压痕呈线性排列。 压痕间距为 5 mm, 压痕深度为 2 mm。 冷却定型后, 对压痕进行标记后封入冷藏产品包装内。 不同聚合物压痕的最终形态对应 于不同的最高受热温度。使用产品前, 根据各个压痕的最终形态可以读出产品储藏过程 中所经历的最高温度。
实施例四: 制作尺寸为 10 mm X 10 mm 0.5 mm的聚合物温度指示标签, 所用材 料为具有形状记忆效应的环氧聚合物, 其玻璃化转变温度高于 20 °C。 将该尺寸的聚合 物样品加热到其玻璃化转变温度以上 10 °C后, 缓慢降温过程中, 分别在 30 °C、 28 °C、 26 °C、 24 °C、 22 V , 20 °C条件下使用纳米压痕仪在样品表面上产生一系列的线形压痕 (如图 3所示), 每一压痕线深度均为 20μηι (需用放大镜观察), 长度为 30μηι: 不同温 度下的压痕线首尾相连, 整体呈十字架形状。 冷却定型后, 对压痕进行标记后封入冷藏 产品包装内。 不同聚合物压痕的最终形态对应于不同的最高受热温度。 使用产品前, 根 据温度指示标签上十字架的最终形态可以读出产品储藏过程中所经历的最高温度。

Claims

权 利 要 求 书
1. 一种温度指示方法, 其特征是:
a.确定需要进行指示的目标温度, 采用热致形状记忆聚合物材料制作温度指示标 签, 所述的目标温度值不低于所采用的聚合物材料的玻璃化转变或熔融转变的起始温 度- b.加热温度指示标签使其达到或超过玻璃化转变或熔融转变的起始温度, 并低于玻 璃化转变或熔融转变的终止温度, 然后对温度指示标签施加外力引起变形, 在保持形变 的状态下冷却至玻璃化转变或熔融转变的起始温度以下, 完成预变形处理;
c.将预变形处理后的温度指示标签安置在需要进行温度指示的环境内一段时间后, 观察其是否发生自发形状恢复, 如发生自发形状恢复, 则可判断出所在环境温度曾经到 达或超过目标温度。
2. 根据权利要求 1所述的温度指示方法, 其特征是: 所述热致形状记忆聚合物材 料经预变形处理后的残余形变量高于 5%, 经自发形状恢复后的形状恢复率高于 20%。
3. 根据权利要求 1所述的温度指示方法, 其特征是: 所述热致形状记忆聚合物材 料为纯聚合物、 聚合物泡沫或者聚合物基复合材料之一。
4. 根据权利要求 1所述的温度指示方法, 其特征是: 所述步骤 b中, 在温度指示 标签上的不同局部形成多个预变形,所述的多个预变形是在不低于玻璃化转变或熔融转 变的起始温度的一系列温度下分别形成的。
5. —种温度指示标签, 其特征是: 其基体为热致形状记忆聚合物材料, 基体上具 有在玻璃化转变或熔融转变的起始温度至终止温度范围内形成的预变形。
6. 根据权利要求 5所述的温度指示标签, 其特征是: 温度指示标签的形状为圆柱 形、 球形、 平板、 薄膜、 线状、 条状中的一种或多种组合。
7. 根据权利要求 5所述的温度指示标签, 其特征是: 所述预变形是对温度指示标 签的拉伸、 弯曲、 扭曲、 压缩、 压凹痕、 压凸痕、 压平变形中的一种或多种组合。
8. 根据权利要求 5所述的温度指示标签, 其特征是: 所述温度指示标签上的不同 局部具有多个预变形,所述的多个预变形是在不低于玻璃化转变或熔融转变的起始温度 的一系列温度下形成的。
9. 根据权利要求 8所述的温度指示标签, 其特征是: 所述的多个预变形是排列在 所述基体上的一系列压痕, 每个压痕具有与之所指示的目标温度相对应的标记。
10. 一种温度指示标签的制造方法, 其特征是: 根据目标温度选择热致形状记忆聚 合物材料制作温度指示标签的基体,将基体加热至玻璃化转变或熔融转变的起始温度至 权 利 要 求 书 终止温度范围内的某一温度, 然后降温; 在降温至玻璃化转变或熔融转变的起始温度以 下的过程中, 在一系列不同的温度点通过外力在基体的不同局部产生变形, 并保持外力 直至温度降至玻璃化转变或熔融转变的起始温度之下, 材料重新硬化, 形成具有多个预 变形的温度指示标签, 每个预变形具有各自对应的自发形状恢复温度。
PCT/CN2012/081394 2012-06-21 2012-09-14 温度指示方法及温度指示标签及温度指示标签的制造方法 WO2013189131A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/405,703 US9816870B2 (en) 2012-06-21 2012-09-14 Temperature indicating method, temperature indicating label and method for manufacturing the label

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210206952.XA CN102706469B (zh) 2012-06-21 2012-06-21 温度指示方法及温度指示标签及温度指示标签的制造方法
CN201210206952.X 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013189131A1 true WO2013189131A1 (zh) 2013-12-27

Family

ID=46899418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081394 WO2013189131A1 (zh) 2012-06-21 2012-09-14 温度指示方法及温度指示标签及温度指示标签的制造方法

Country Status (3)

Country Link
US (1) US9816870B2 (zh)
CN (1) CN102706469B (zh)
WO (1) WO2013189131A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944326B (zh) * 2012-11-01 2015-01-21 沈阳建筑大学 一种基于形状记忆合金监控温度的方法
CN102968928B (zh) * 2012-11-23 2016-06-08 黄为民 多层次防伪标签及其制造方法及多层次防伪指示方法
CN103093690B (zh) * 2012-12-04 2015-03-18 黄为民 具有形状记忆防伪部件的物品及物品的防伪方法
CN103093693A (zh) * 2013-02-05 2013-05-08 南京天朗制药有限公司 变色防伪或温度指示标签及变色防伪或温度指示方法
CN103137013B (zh) * 2013-02-05 2015-03-18 南京天朗制药有限公司 基于形状记忆聚合物的温度指示或多层次防伪指示标签及其温度指示或多层次防伪指示方法
CN103137014B (zh) * 2013-02-28 2015-07-15 孙丽 用于防伪指示和温度指示的弹性标签及其制备方法和应用
CN103544880A (zh) * 2013-10-22 2014-01-29 同济大学 一种冷链物流食品运输或储存温度监控标识的制备方法
CN104776927B (zh) * 2015-03-05 2017-10-10 国网山东寿光市供电公司 电力设备线夹过温警示装置
CN104930302B (zh) * 2015-05-14 2017-08-04 江苏大学 隔热防护膜及其应用
CN105277286B (zh) * 2015-11-19 2018-01-09 沈阳建筑大学 一种基于聚合物的温度记忆效应的温度检测方法
CN106782040B (zh) * 2016-12-28 2019-11-26 四川师范大学 一种防伪贴纸及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144515A (en) * 1979-04-28 1980-11-11 Osaka Gas Co Ltd Temperature detector
JPH03183920A (ja) * 1989-12-13 1991-08-09 Mitsubishi Heavy Ind Ltd 食品等の冷凍保存検知センサー
JPH04238232A (ja) * 1991-01-22 1992-08-26 Toppan Printing Co Ltd 温度表示材及び温度表示方法並びに温度履歴判定方法
CN1392522A (zh) * 2001-06-19 2003-01-22 邢亮宇 低温保存食品内置温敏标志
US7628116B2 (en) * 2004-03-12 2009-12-08 Gm Global Technology Operations, Inc. Shape memory polymer temperature sensing devices and methods of use
US20100218716A1 (en) * 2005-06-21 2010-09-02 David Ernest Havens Environmental condition cumulative tracking integration sensor using shape memory polymer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712201A1 (de) * 1987-02-13 1988-09-01 Provera Gmbh Vorrichtung zur temperaturueberwachung von gekuehlten oder tiefgekuehlten erzeugnissen
US5735607A (en) * 1995-12-05 1998-04-07 Sandia Corporation Shape memory alloy thaw sensors
CN2245765Y (zh) 1996-04-02 1997-01-22 苏新页 淋浴温度指示器
JP3732404B2 (ja) * 1998-02-23 2006-01-05 ニーモサイエンス ゲーエムベーハー 形状記憶ポリマー組成物、形状記憶製品を形成する方法、および形状を記憶する組成物を形成する方法
US20010042501A1 (en) * 2000-05-17 2001-11-22 Park Ji-Hoon Temperature sensor using shape memory alloy and manufacturing method thereof
KR20030006152A (ko) * 2001-07-11 2003-01-23 지엠피바이오(주) 형상기억합금을 이용한 온도센서
US7220051B2 (en) * 2001-12-05 2007-05-22 Mohsen Shahinpoor Shape memory alloy temperature sensor and switch
US7476224B2 (en) * 2003-03-17 2009-01-13 Petrakis Dennis N Temperature responsive systems
US6950028B2 (en) 2003-04-25 2005-09-27 Stephen Eliot Zweig Electronic time-temperature indicator
CN1291895C (zh) * 2004-09-08 2006-12-27 章一叶 一种产品包装的防伪方法
KR20070068361A (ko) 2004-10-15 2007-06-29 코닌클리케 필립스 일렉트로닉스 엔.브이. 온도 표시기
CN101137512A (zh) * 2005-03-17 2008-03-05 株式会社理光 新的酚类化合物、可逆热敏记录介质、可逆热敏记录标签、可逆热敏记录元件、图像处理装置和图像处理方法
SE528869C2 (sv) * 2005-07-08 2007-03-06 Tempix Ab Etikett, samt metod och anordning för att i en varuförpackning tillhandahålla en temperaturövervakande funktion
CN200941054Y (zh) 2005-12-14 2007-08-29 陈苏红 汽车空调温度指示器
GR20090100383A (el) * 2009-07-07 2010-02-24 ΜΠΡΕΧΑΣ (κατά ποσοστό 33,333%) ΛΟΥΚΑΣ ΝΑΠΟΛΕΩΝ Μεθοδο ανιχνευσης επιβλαβων μεταβολων της θερμοκρασιας συντηρησης και καταψυξης προϊοντων οπως π.χ. των τροφιμων με εξαρτηματα που ενσωματωνονται στην συσκευασια τους ή στο σωμα τους
CN102336996B (zh) 2010-06-22 2013-04-03 四川大学 一种时间-温度变色指示器及其应用和使用方法
CN102024379B (zh) * 2010-09-30 2013-01-02 广州市曼博瑞材料科技有限公司 一种形状记忆防伪标识的制作方法
US9097594B2 (en) * 2012-11-11 2015-08-04 Omnitek Partners Llc Method and apparatus for confirming whether a frozen food has been defrosted
CN103137013B (zh) * 2013-02-05 2015-03-18 南京天朗制药有限公司 基于形状记忆聚合物的温度指示或多层次防伪指示标签及其温度指示或多层次防伪指示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144515A (en) * 1979-04-28 1980-11-11 Osaka Gas Co Ltd Temperature detector
JPH03183920A (ja) * 1989-12-13 1991-08-09 Mitsubishi Heavy Ind Ltd 食品等の冷凍保存検知センサー
JPH04238232A (ja) * 1991-01-22 1992-08-26 Toppan Printing Co Ltd 温度表示材及び温度表示方法並びに温度履歴判定方法
CN1392522A (zh) * 2001-06-19 2003-01-22 邢亮宇 低温保存食品内置温敏标志
US7628116B2 (en) * 2004-03-12 2009-12-08 Gm Global Technology Operations, Inc. Shape memory polymer temperature sensing devices and methods of use
US20100218716A1 (en) * 2005-06-21 2010-09-02 David Ernest Havens Environmental condition cumulative tracking integration sensor using shape memory polymer

Also Published As

Publication number Publication date
US9816870B2 (en) 2017-11-14
US20150292953A1 (en) 2015-10-15
CN102706469B (zh) 2016-08-03
CN102706469A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2013189131A1 (zh) 温度指示方法及温度指示标签及温度指示标签的制造方法
Ur Rehman et al. Self‐healing shape memory PUPCL copolymer with high cycle life
Ossmer et al. Evolution of temperature profiles in TiNi films for elastocaloric cooling
Carvalho et al. Giant room-temperature barocaloric effects in PDMS rubber at low pressures
Janeschitz-Kriegl et al. Flow as an effective promotor of nucleation in polymer melts: A quantitative evaluation
Li et al. Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: testing and constitutive modeling
Kemmish et al. The effect of physical ageing on the properties of amorphous PEEK
Bianchi et al. Shape memory behaviour in auxetic foams: Mechanical properties
Pieczyska et al. Thermomechanical properties of polyurethane shape memory polymer–experiment and modelling
US20100218716A1 (en) Environmental condition cumulative tracking integration sensor using shape memory polymer
Sun et al. Recent advances in spatiotemporal evolution of thermomechanical fields during the solid–solid phase transition
Pretsch et al. Shape memory poly (ester urethane) with improved hydrolytic stability
Pretsch Durability of a polymer with triple-shape properties
Sun et al. Flow-induced elastic anisotropy of metallic glasses
US10059140B2 (en) Temperature indication or multilevel anti-counterfeit indication label based on shape memory polymer and temperature indication or multilevel anti-counterfeit indication method thereof
Müller et al. Hydrolytic aging of crystallizable shape memory poly (ester urethane): Effects on the thermo-mechanical properties and visco-elastic modeling
Schmidt et al. Studies on the cycling, processing and programming of an industrially applicable shape memory polymer Tecoflex®(or TFX EG 72D)
Churchill et al. Tips and tricks for characterizing shape memory alloy wire: Part 4–thermo-mechanical coupling
Guo et al. On phase transition velocities of NiTi shape memory alloys
Phillips et al. Mechanical properties of polymer films used in in-mould decoration
Liu Mechanical stabilisation of martensite due to cold deformation
Pieczyska et al. Thermomechanical properties of shape memory polymer subjected to tension in various conditions
Dong et al. Constitutive model for shape memory polyurethane based on phase transition and one-dimensional non-linear viscoelastic
Jin et al. Shear stress induced reduction of glass transition temperature in a bulk metallic glass
Triana et al. Dependence of some mechanical properties of elastic bands on the length and load time

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14405703

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12879344

Country of ref document: EP

Kind code of ref document: A1