WO2013091050A1 - Method for producing polymer biomaterials using an infra-red laser - Google Patents

Method for producing polymer biomaterials using an infra-red laser Download PDF

Info

Publication number
WO2013091050A1
WO2013091050A1 PCT/BR2012/000502 BR2012000502W WO2013091050A1 WO 2013091050 A1 WO2013091050 A1 WO 2013091050A1 BR 2012000502 W BR2012000502 W BR 2012000502W WO 2013091050 A1 WO2013091050 A1 WO 2013091050A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
hydrogel
polymeric
hydrogels
biomaterials
Prior art date
Application number
PCT/BR2012/000502
Other languages
French (fr)
Portuguese (pt)
Inventor
Rubens MACIEL FILHO
Marcele Fonseca PASSOS
André Luiz Jardin MUNHOZ
Vanessa Petrilli BAVARESCO
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48667546&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013091050(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2013091050A1 publication Critical patent/WO2013091050A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0077Special surfaces of prostheses, e.g. for improving ingrowth
    • A61F2002/0086Special surfaces of prostheses, e.g. for improving ingrowth for preferentially controlling or promoting the growth of specific types of cells or tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30749Fixation appliances for connecting prostheses to the body
    • A61F2002/30751Fixation appliances for connecting prostheses to the body for attaching cartilage scaffolds to underlying bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/24Materials or treatment for tissue regeneration for joint reconstruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes

Definitions

  • the present invention relates to a process for obtaining polymeric biomaterials. More specifically, the present invention deals with a process of obtaining biomaterials by the adhesion of two polymers employing infrared laser.
  • the biomaterials obtained by the present invention may be used for cell support and growth, scaffolds, polymeric coatings for use in artificial joint prostheses.
  • Synovial or diatrodial joints constitute the majority of the joints of the human body, making it possible to move around and perform daily activities and, therefore, when damaged, their restoration is of great importance.
  • arthroplasty which may be total or partial, is performed.
  • Prosthesis arthroplasty is indicated for patients who fail to treat degenerative diseases, such as osteonecrosis or osteoarthritis, or where they have progressed after joint preservation surgeries. Osteonecrosis presents a progressive clinical condition, evolving with limitation and functional incapacity due to pain, decreased range of motion, stiffness, and consequently muscle weakness.
  • biomaterials In the field of materials, a growing field is development, formation and testing in vivo and in vitro with biomaterials for medical applications. Defined as any substance, natural or artificial, that can be used in the human body to replace diseased or damaged parts, biomaterials should be tissue compatible and not produce toxic substances. In addition, they must be biofunctional, that is, they must have the proper characteristics to fulfill the desired function for the desired time; be sterilizable and also biotolerant. In selecting the material to be used, consideration should be given to its physical, chemical and mechanical properties, especially wear and fatigue resistance, modulus of elasticity, surface roughness, permeation rate, biostability, water absorption and bioactivity (Ferreira, 2007).
  • Biomaterials can be ceramic, metallic and polymeric, or a combination thereof, and can be applied as devices for controlled drug delivery systems; cement; dental implants; orthopedic fixation; scaffoids; sutures; eye, knee, hip and tendon prostheses; heart valves; catheter as drain; hernia correction mesh; cell encapsulation, joint cartilage substituents, among others.
  • polymer hydrogels are the front line of recent research.
  • the great interest of researchers for these biomaterials lies in their characteristics and similarities with the body's soft tissues. These materials have a soft and elastic consistency; good mechanical strength; biocompatibility in contact with blood and body fluids and allow for cell nutrition.
  • pHEMA hydrogels have good physical-mechanical properties when subjected to tribological tests of friction and wear on the physiological conditions of a natural joint, stating their potentiality for use in repairing small joint surface defects, where Tissue behavior around and within the graft was evaluated for long post-implantation periods (Bavaresco et al., 2008 (a); Bavaresco eti a /., 2008 (b); Bavaresco et al, 2004 (a) ; Batista et al., 2008; Garrido, 2007; Malmonge, 2002; Malmonge and Belangero, 2002).
  • Hydrogels may be obtained in different forms depending on the desired application. Can present themselves as movies optically transparent; spongy, non-spongy gels, among others (Lannuzzi et al., 2010; Eljarrat-Binstock et al., 2007). Moreover, they are easily synthesized by different techniques, such as: (i) copolymerization: normally, one monomer is hydrophobic and the other hydrophilic. In this case, dissolution of the network is prevented due to the presence of ionic bonds or hydrophobic interactions (Song et al., 201 1; Wang et al., 2010; Gholap et al., 2004; Barcellos et al., 2000).
  • copolymerization usually includes the use of toxic solvents and / or monomers, which may interfere with the biocompatibility of the final products obtained; (ii) heat treatment (freeze-thaw): Intermolecular interactions probably lead to the formation of hydrogen bonds, forming entanglements between the chains and, consequently, the formation of three-dimensional lattice via formation of crystallites, which act as cross-links (Hu e ⁇ al. , 2010; Gupta et al., 2010; Ru-Yin and Dang-Sheng, 2008). This technique may hinder adhesion between the surfaces of polymeric materials. During coating of the hydrogel under the substrate, thermal expansion may occur on the most mechanically resistant material given freeze-thaw cycles.
  • (iii) radiation allows obtaining hydrogels in a single step, with simultaneous cross-linking and sterilization (Singh and Pai, 201 1; Sahiner et al., 2006; Ulanski et al., 2002; Lugao and Malmonge, 2001; Martens and Anseth, 2000), thus being a tool used in the present invention, by coupling the infrared laser in the biofabrication system.
  • Bose and Lau, 201 1 used the vapor deposition technique to obtain poly 2-hydroxy ethyl methacrylate hydrogels using a solvent free polymerization procedure. But in this article, there is no description of obtaining hydrogels in specific or three-dimensional geometries. Moreover, it does not take into account the adhesion of two polymeric materials and mechanical properties of the obtained products.
  • Kubinová et al, 2009 describe a new technique for obtaining poly 2-hydroxy ethyl methacrylate cholesterol scaffolds for tissue engineering application, demonstrating that the product obtained showed improvements in bioactivity, proliferation and cell adhesion properties. But it does not mention the possibility of obtaining devices with specific geometries.
  • Wolf et al, 2009 describe an orthogonal copolymerization strategy for the preparation of amphiphilic copolymers using a bifunctional primer.
  • this article there are no reports of obtaining 3D structures.
  • the use of chemical initiators can generate toxic residues in the final product, which feature is minimized with the present invention which uses infrared laser for process control, simultaneous sterilization and polymerization.
  • Bártolo et al, 2004 propose a new bioprototyping process for the production of three-dimensional alginate scaffolds and cell encapsulation.
  • adhesion between two materials unlike the present invention, there are no reports of adhesion between two materials.
  • 3D printers One of the most common technologies for obtaining polymeric biomaterials is 3D printers. As described by Lipson and Kurman (Lipson and Kurman, 2010) this type of technology uses additive methods, depositing the raw material layer by layer to obtain the final product systematically.
  • the material metal, ceramic or polymer
  • 3D technology is capable of combining various materials and textures, which normally cannot be combined on conventional machines.
  • traditional production machines must work with the materials in separate processes and then assemble them.
  • 3D printers have a clean manufacturing process, do not involve cutting, burning or scraping the material, producing little manufacturing waste.
  • this technology has been gaining importance in several industrial segments: prototyping, virtual modeling and even the medical field, aiming at obtaining devices to improve people's quality of life, by replacing diseased or diseased organs. damaged. It is a process of "co-fabrication,” not unlike biological growth, where hard and soft tissues are "co-fabricated” and interconnected into living beings of infinite complexities.
  • 3D technology creates a physical object from a digital file. Initially the object is copied (scanned) to obtain the three-dimensional surface of the structure via tomography, resonance or scanning. With the 3D surface obtained, there is the generation of a virtual model, which is sent to the 3D printer for physical reproduction. 3D data also makes it possible to build models that will guide the development of products that are suitable for the human body. Thus, it becomes a scientific advance, directed to bioprinting or biofabrication technologies, considering the use of biomaterials.
  • the present invention aims to synthesize polymeric hydrogels with physicochemical characteristics similar to articular cartilage, in specific geometries, to cover substrates to improve mechanical adhesion of the system.
  • WO201 1038373 of 31/03/201 1 (Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering cross-reference to related application, Gatenholm Paul, Backdahl Henrik, Tzavaras Theodore Jon, Davalos Rafael, Sano Michael ) describes a system and method for the production of three-dimensional biomaterials employing natural polymers and fermentation techniques.
  • BC biosynthetic cellulose
  • WO2007124481 of 01/01/2007 (Bioprinting three-dimensional structures onto microscale tissue analogues for pharmacokinetic study and other uses, Sun Wei, Chang Robert, Starly Binil, Nam Jae) describes a microfluidic system for monitoring and detecting changes in an input parameter of a substance, which includes a microfluidic device having a tissue chamber and a substitute tissue in that same chamber. Specifically, the invention relates to an in vitro model for studying pharmacokinetics and pharmaceutical applications, among other uses. This invention is subjected to a microfluidic device to mimic fluid conditions of a mammalian body, including the use of cells, which differs from the present invention.
  • WO201 1 107599 of 09/03/201 1 (Bioprinting station, assembly including such bioprinting station and bioprinting method, Guillemot Fabien, Catros Sylvain, Keriquel Virginie, Fricain Jean-Christophe) reports on a Bioprinting adapted to deposit standard biological materials, including cells, biomaterials, nanoparticles, drugs and more.
  • the laser is coupled to transfer the biological material to a determined area under the substrate.
  • the present invention utilizes infrared laser as an energy source for polymerization and curing between two polymeric materials.
  • the great advantage of the present invention is that it is capable of depositing polymeric hydrogels layer by layer, having the infrared laser as the heat source, which is responsible for initiating the polymerization and crosslinking reactions.
  • This technology also allows the coating to be carried out under geometries which may be obtained via computed tomography (CT), scanning or resonance (MTI).
  • CT computed tomography
  • MTI scanning or resonance
  • STL file physical model that approximates the surface of the solid in triangular format
  • infrared laser or better, the coupling of a laser fiber in the mechanical XYZ axis scanning system has the advantages of being flexible and allowing the control of the temperature and location of the radiation, allowing a better incidence of the beam over the sample. This condition enables the energy deposited in the hydrogel to have the function of crosslinking and reaching the substrate in order to improve adhesion between surfaces.
  • the present invention has advantages in several respects. Firstly, it proposes a new process for obtaining polymeric biomaterials employing an infrared laser that ensures fast, restricted and localized cure. In addition, this process allows the deposition of layer-by-layer hydrogels and, once the energy flow deposited in the sample is controlled, the polymeric curing occurs in a defined volume, allowing the obtaining of specific geometries. Another crucial point for the process is the use of infrared leisure in the XYZ axis mechanical scanning system which is flexible, allowing fine temperature control, avoiding heat dissipation in undesired regions and consequently cross-linking in the adjacent regions. This enables you to control the thickness of the overlay and reduce process costs by minimizing system losses.
  • the laser system to thermally cure other types of polymers, since infrared laser irradiation generates heat which is the driving force for initiating and propagating thermal curing.
  • the laser enables healing localized once the laser energy is confined to the diameter of the laser beam.
  • the system also allows the design of the substrate in any geometry or anatomy of the human body, ie, from digital medical data provided by tomography or magnetic resonance, a software performs the treatment of medical images and generates a file of the structure in 3D. allowing the construction of the body part exactly in the dimensions of the desired human part.
  • Such polymeric biomaterials have a good adhesion between the polymeric hydrogel interfaces and the substrate, mimic the behavior of a natural joint, reducing the friction and, consequently, the wear and improvement of the physicochemical properties. chemical materials.
  • the product obtained can have free geometry and can be constructed with desired geometry even with internal cavities and controlled porosity, a fact that is impossible to obtain in conventional machining and material forming processes.
  • biomaterials present, one of them is the use in the manufacture of biological substitutes and medical devices.
  • they may be employed as polymeric hydrogels for cell support and growth, scaffolds and polymeric coatings for use in artificial joint prostheses.
  • the present invention relates to a process of obtaining polymeric biomaterials by the adhesion of two polymers employing infrared laser.
  • the invention describes a process comprising the steps of medical data acquisition, fabrication of the physical model in 3D geometry, substrate preparation using machining, followed by a coating step comprising the addition of reagents, deposition of the polymeric hydrogel layer by layer and finally the polymerization steps and crosslinking simultaneously. Furthermore, the present invention relates to the use of said biomaterials.
  • FIG. 1 shows the machining of the substrate, where (a) is the sketch, (b) the PEUAPM substrate in flat geometry and (c) is the PEUAPM substrate in cylindrical geometry obtained after machining.
  • FIG. 2 shows the PEEMAM substrates covered with pHEMA hydrogels, where (a) is the blistered surface and (b) the nonuniform thickness.
  • FIG. 3 shows the flat geometry PEUPAM substrates covered with pHEMA hydrogels at different concentrations of the HEMA monomer, where (a) solution X, (b) solution Y, (c) solution Z
  • FIG. 4 shows the flat geometry PEUAPM substrates coated with pHEMA hydrogels at different concentrations of the crosslinking agent, diethylene glycol dimethacrylate (DEGDMA), where (a) solution A, (b) solution B and (c) solution C .
  • DEGDMA diethylene glycol dimethacrylate
  • FIG. 5 shows the cylindrical geometry PEUAPM substrates covered with pHEMA hydrogels (solution A).
  • FIG. 6 shows a flat geometry polyurethane substrate covered with pHEMA hydrogel (solution Z).
  • FIG. 7 shows the micrographs of the PEUAPM coating with pHEMA hydrogel overlay at different concentrations of HEMA, with 500x magnification, where (a) is solution X and (b) is solution Z.
  • FIG. 8 shows the micrographs of the interface of PEUAPM coating with pHEMA hydrogel at different concentrations of cross-linking agent, DEGDMA, with 500x magnification, where (a) is solution A, (b) is solution B and ( c) is solution C.
  • the present invention describes a process of obtaining polymeric biomaterials by coating a substrate by a polymeric hydrogel employing infrared laser.
  • Biomaterials obtained by the process described in this invention comprise layer by layer deposition of polymeric hydrogel under a substrate.
  • An object of the present invention is a process for obtaining the products described above comprising the following steps:
  • the first step (a) of medical data acquisition is done using technological equipment in the medical field, such as X-rays, computed tomography (CT) and magnetic resonance imaging (MRI), which allow to obtain internal images of the human body. These tools are commonly used to visualize bone, organ, and tissue configurations and provide additional information on medical imaging in electronic format (DICOM).
  • DICOM electronic format
  • the second step (b) of the process is performed. Physical models of the structure of the human body are obtained via rapid prototyping technique. The data is digitized and converted, sliced, to standard STL file (physical model that approximates the surface of the solid in triangular format). Then the model is evaluated and validated.
  • the substrate preparation is performed using the machining (d) in specific geometry to be covered.
  • Ultra High Molecular Weight Polyethylene (PEUAPM) with molecular weight of 2.5 million g / mol and density of 0.6 g / cm 3 and Polyurethane with different degrees of polydispersity, from different chemical routes.
  • the substrate is machined (d) in flat plates 36 x 32 x 3 mm, containing two holes with a diameter of 1 to 8 mm, preferably 5 mm, at a distance of 10 to 30 mm, preferably 22 mm. or in cylindrical geometry 4 mm in diameter as shown in Figure 1.
  • the chemical reagents for polymerization and cross-linking of the hydrogel under the substrate are added to a syringe with pump-adjustable rate and deposition volume for formation of the polymer hydrogel.
  • the hydrogel is prepared by the addition of the following reagents (d1): a monomer or polymer, belonging to the group of lactones, alcohol or methacrylates, preferably 2-hydroxy ethyl methacrylate (HEMA), in a range of 20 to 100% w / w preferably 80% w / w; a crosslinking agent selected from diethylene glycol dimethacrylate (DEGDMA), trimethylolpropane trimethacrylate (TMPTMMA), ⁇ , methylene bis bis bis acrylamide, ethylene glycol dimethacrylate (EGDMA), triethylene glycol dimethacrylate (TEGDMA), and other cross-linking agents di, tri and tetra functional, preferably diethylene glycol dimethacrylate
  • the hydrogel obtained in step (d1) is deposited (d2) layer by layer under the substrate, in specific geometry delimited by 3D CAD model, employing a prototyping equipment coupled to it an infrared fiber optic laser.
  • the laser acts as a heat source and is responsible for initiating the hydrogel polymerization and cross-linking reactions under the substrate, allowing for coating and adhesion between two polymeric surfaces. That is, the laser performs the function of ensuring polymerization and crosslinking, in addition to mechanical embracing in the anterior layer.
  • From 1 to 10 layers of polymeric hydrogel, preferably 3, are applied between 10 and 60 minutes, preferably 35 minutes, with solution flow rate between 10 and 120 mL / hr, preferably 110 mL / hr.
  • the laser scanning speed ranges from 50 to 100 m / s, preferably 100 m / s and the power ranges from 10 to 40 W, preferably 30 W.
  • the polymeric hydrogel in desired three-dimensional geometry, undergoes radical polymerization (d3) followed by crosslinking (d4) in a single step. Initially, linear molecules of the polymer are formed. With increased monomer conversion and the presence of the crosslinking agent, free radicals react with double bonds producing chemical crosslinks between unconnected polymer chains, leading to hydrogel formation in specific geometry. Therefore, hydrogel synthesis under the substrate is obtained in a localized manner, with control of the laser intensity, power, scanning speed, volume and deposition height of the solution. Porous hydrogels are obtained with reaction time ranging from 1 to 3 minutes, preferably 3 minutes and dense hydrogels within a range of 1 to 3 minutes, preferably 2 minutes.
  • the wavelength of the infrared laser source ranges from 1000 to 2000 nm, preferably 1070 nm and the diameter ranges from 0.5 to 1.0 cm, preferably 0.8 cm.
  • the laser power under the solution is kept constant between 29.5 and 30.5 W, preferably 30 W and the distance from the laser focus to the center point of the solution is estimated between 4.5 and 10.0 cm, preferably 9 W. .5 cm tall.
  • the polymeric biomaterials obtained at the end of the process described in this invention have biomedical potential and different physicochemical properties and can be applied as biological devices, support for cell growth in tissue engineering, due to biocompatibility and non-toxicity of biomaterials, respectively, and as covering of rigid substrates, mimicking the characteristics of the natural articular cartilage.
  • HEMA solution flow rates between 10 and 100 ml / h provided discontinuous flows.
  • the deposition of the material by the syringe did not continually follow the path taken by the laser. Surface points were heated without the presence of the solution. This led to spot fusion of PEUAPM substrate. Under this condition, the substrate temperature was randomly measured by another infrared laser source. Results demonstrated point temperatures of 165 ° C, above the melting temperature of PEUAPM.
  • PHEMA hydrogels under PEUAPM were then obtained via 3-step system scan.
  • Steps 1 and 3 involved the deposition of the material (HEMA solution) and heating via infrared laser source continuously.
  • Step 2 consisted only of passing the laser over the substrate without the addition of HEMA solution.
  • the laser had the function of ensuring polymerization and crosslinking, as well as mechanical embracing in the anterior layer. Total process time was 35 minutes.
  • Figures 3 to 6 show pHEMA hydrogel coated PEUAPM substrates using the process described in the present invention.
  • pHEMA hydrogel was found inside the PEUAPM pores. That is, hydrogel formation not only on the surface but also internally on the substrate, although hydrogels with 1% w / w DEGDMA (solution A) showed better adhesion.
  • Figures 7 and 8 show the hydrogel-PEUAPM interface, after coating for all studied concentrations, at 500x magnification.
  • GHOLAP SG, JOG, JP, BADIGER, MV Synthesis and characterization of hydrophobically modified poly (vinyl alcohol) hydrogel membrane.
  • Polymer v.45, p. 5863-5873, 2004.
  • GUPTA S., Sinha, S., Sinha, A. Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids and Surfaces B: Biointerfaces, v. 78, p. 1 15-1 19, 2010.
  • HILL HILL, D.J.T., WHITTAKE, R.A.K., ZAINUDDIN. Water diffusion into radiation crosslinked PVA-PVP network hydrogels. Radiation Physics and Chemistry, v.80, p. 213-218, 201 1.
  • Part 2 Simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate.
  • WANG L, LIU, M., GAO, C, MA, L, CUI, D. pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. Reactive and Functional Polymers, v.70, p. 159-167, 2010.
  • WITCHERLE O. Hydrophilic gels for biological uses. Nature, v.185, p.1 17-118, 1971.
  • WOLF, F.F., FRIEDEMANN, N., FREY, H. Poly (lactide) -block-Poly (HEMA) Block Copolymers An Orthogonal One-Pot Combination of ROP and ATRP, using a Bifunctional Initiator. Macromolecules, 42, 5622-5628, 2009.

Abstract

The present invention describes a method for producing biomaterials by using an infra-red laser to cause two polymer materials to adhere to each other. These biomaterials have numerous uses, in particular as polymer supports, scaffolds and coatings for artificial joint prostheses. The method improves the mechanical properties of the polymers, achieving satisfactory adhesion between the hydrogel and the substrate, minimising the wear of the components that form orthopedic devices, for example, which is one of the main causes of failure of such devices.

Description

PROCESSO DE OBTENÇÃO DE BIOMATERIAIS POLIMERICOS VIA LASER INFRAVERMELHO  PROCEDURE FOR OBTAINING VIA LASER POLYMERIC BIOMATERIALS
Campo da invenção Field of the invention
A presente invenção se refere a um processo de obtenção de biomateriais poliméricos. Mais especificamente, a presente invenção trata de um processo de obtenção de biomateriais pela adesão de dois polímeros empregando laser infravermelho.  The present invention relates to a process for obtaining polymeric biomaterials. More specifically, the present invention deals with a process of obtaining biomaterials by the adhesion of two polymers employing infrared laser.
Os biomateriais obtidos pela presente invenção podem ser utilizados para suporte e crescimento de células, scaffolds, recobrimentos poliméricos para uso em próteses articulares artificiais.  The biomaterials obtained by the present invention may be used for cell support and growth, scaffolds, polymeric coatings for use in artificial joint prostheses.
Fundamentos da invenção Fundamentals of the invention
As articulações sinoviais ou diatrodiais constituem a maioria das articulações do corpo humano, tornando possível a locomoção e as atividades diárias e, por isso, quando danificadas, sua restauração é de grande importância. Dependendo do nível de comprometimento da articulação, a sua substituição por componentes artificiais torna-se indispensável e, neste caso, é realizada uma artroplastia, que pode ser total ou parcial. As artroplastias com próteses são indicadas para os pacientes com falhas no tratamento de doenças degenerativas, como osteonecrose ou osteoartrose, ou onde houve a progressão das mesmas, após cirurgias de preservação da articulação. A osteonecrose apresenta uma condição clínica progressiva, evoluindo com limitação e incapacidade funcional devido à dor, diminuição da amplitude do movimento, rigidez, e consequentemente, fraqueza muscular.  Synovial or diatrodial joints constitute the majority of the joints of the human body, making it possible to move around and perform daily activities and, therefore, when damaged, their restoration is of great importance. Depending on the level of joint involvement, its replacement by artificial components becomes indispensable and, in this case, arthroplasty, which may be total or partial, is performed. Prosthesis arthroplasty is indicated for patients who fail to treat degenerative diseases, such as osteonecrosis or osteoarthritis, or where they have progressed after joint preservation surgeries. Osteonecrosis presents a progressive clinical condition, evolving with limitation and functional incapacity due to pain, decreased range of motion, stiffness, and consequently muscle weakness.
A durabilidade destas próteses, porém, não ultrapassa, em média, The durability of these prostheses, however, does not exceed on average
15 anos. Isto porque a vida útil de seus componentes depende de inúmeros fatores, tendo como consequência principal, a reabsorção óssea. A presença de partículas de desgaste da superfície, presentes no meio, geradas pela falta de lubrificação entre as novas superfícies articulares, ocasiona uma resposta do organismo a este processo, com consequente colapso entre a interface osso-implante. Estudos mostram que, devido ao processo de desgaste superficial, a porcentagem de falência das próteses cresce proporcionalmente com o aumento do tempo de uso dos implantes (Bavaresco, 2000). Diante disso, a biofabricação associada a presente invenção busca novas tecnologias e o desenvolvimento de biomateriais que diminuam a probabilidade de soltura e reduzam o desgaste das próteses. 15 years. This is because the useful life of its components depends on a number of factors, resulting in bone resorption. The presence of surface wear particles, present in the middle, generated by the lack of lubrication between the new articular surfaces, causes a response of the organism to this process, with consequent collapse between the bone-implant interface. Studies show that due to the wear process superficial, the percentage of prosthesis failure increases proportionally with the increased time of implant use (Bavaresco, 2000). In view of this, the biofabrication associated with the present invention seeks new technologies and the development of biomaterials that decrease the probability of loosening and reduce the wear of the prostheses.
Considerando uma superfície articular lesada, a restauração funcional da articulação pode ser facilitada se, na confecção de superfícies articulares de próteses ou no enxerto de pequenos defeitos, forem empregados biomateriais que apresentem comportamento tribológico semelhante ao das articulações naturais. Uma classe de materiais que apresentam características interessantes para mimetizar tal comportamento são os hidrogéis poliméricos, visto que apresentam similaridades físicas com a cartilagem articular natural, principalmente, quanto à capacidade de deformarem-se quando comprimido, exsudando fluido contido em seu interior. Acrescenta-se ainda que, o estudo da lubrificação, atrito e desgaste das articulações naturais e artificiais tem permitido aumentar o conhecimento de como as articulações naturais funcionam e porque falham. As articulações substituídas são submetidas a cargas mecânicas cíclicas durante o movimento, sendo estas transferidas pelos tecidos, o que leva a um desgaste, ocasionando dificuldades quanto a prever a estabilidade interfacial entre tecidos e implantes.  Considering an injured joint surface, functional restoration of the joint can be facilitated if biomaterials that exhibit tribological behavior similar to those of natural joints are used when making prosthetic joint surfaces or grafting small defects. A class of materials that have interesting characteristics to mimic such behavior are polymer hydrogels, since they have physical similarities with the natural articular cartilage, mainly in their ability to deform when compressed, exuding fluid contained within. In addition, studying the lubrication, friction and wear of natural and artificial joints has allowed us to increase our understanding of how natural joints work and why they fail. The replaced joints are subjected to cyclic mechanical loads during movement, which are transferred by the tissues, which leads to wear, causing difficulties in predicting the interfacial stability between tissues and implants.
Na área dos materiais um campo em crescente expansão é o de desenvolvimento, formação e ensaios, in vivo e in vitro, com biomateriais para aplicações médicas. Definidos como qualquer substância, natural ou artificial, que possa ser utilizada no corpo humano para substituir partes doentes ou danificada, os biomateriais devem ser compatíveis com os tecidos e não produzir substâncias tóxicas. Além disso, devem ser biofuncionais, ou seja, devem ter as características adequadas para cumprir a função desejada, pelo tempo desejado; ser esterilizável e, ainda, biotolerante. Na seleção do material a ser utilizado, deve-se levar em consideração as suas propriedades físicas, químicas e mecânicas, principalmente resistência ao desgaste e à fadiga, módulo de elasticidade, rugosidade superficial, taxa de permeação, bioestabilidade, absorção de água e bioatividade (Ferreira, 2007). In the field of materials, a growing field is development, formation and testing in vivo and in vitro with biomaterials for medical applications. Defined as any substance, natural or artificial, that can be used in the human body to replace diseased or damaged parts, biomaterials should be tissue compatible and not produce toxic substances. In addition, they must be biofunctional, that is, they must have the proper characteristics to fulfill the desired function for the desired time; be sterilizable and also biotolerant. In selecting the material to be used, consideration should be given to its physical, chemical and mechanical properties, especially wear and fatigue resistance, modulus of elasticity, surface roughness, permeation rate, biostability, water absorption and bioactivity (Ferreira, 2007).
Os biomateriais podem ser cerâmicos, metálicos e poliméricos ou, ainda, a combinação destes, podendo ser aplicados como dispositivos para sistemas de liberação controlada de drogas; cimento; implantes dentários; fixação ortopédica; scaffoids; suturas; próteses oculares, de joelho, de quadril e de tendões; válvulas cardíacas; cateter como dreno; malha para correção de hérnia; encapsulamento de células, substituintes da cartilagem articular, entre outros.  Biomaterials can be ceramic, metallic and polymeric, or a combination thereof, and can be applied as devices for controlled drug delivery systems; cement; dental implants; orthopedic fixation; scaffoids; sutures; eye, knee, hip and tendon prostheses; heart valves; catheter as drain; hernia correction mesh; cell encapsulation, joint cartilage substituents, among others.
A aplicação dos polímeros na área biomédica iniciou-se com o uso do celulóide para implante cirúrgico, no reparo de defeitos do crânio, seguido da aplicação da baquelite, em artroplastias de quadril (Rosiak e Ulanski, 1999). Porém, o desenvolvimento destes biomateriais não levou em consideração a pureza e a bioestabilidade dos mesmos, o que ocasionou reações adversas no organismo. Hoje, estas características são imprescindíveis para aplicação do material no corpo humano e inúmeros polímeros como poli metil metacrilato (PMMA), poli vinil álcool (PVAI), poli 2- hidróxi etil metacrilato (pHEMA), poli vinil pirrolidona (PVP) etc, vêm ganhando destaque na área biomédica, devido a superação destas limitações. Além do mais, o polietileno de ultra alto peso molecular (PEUAP ) e o poliuretano (PU) podem ser estudados para aplicações em ortopedia, devido às suas propriedades mecânicas como alta resistência ao desgaste por abrasão e baixo coeficiente de atrito.  The application of polymers in the biomedical area began with the use of celluloid for surgical implantation in the repair of skull defects, followed by the application of bakelitis in hip arthroplasty (Rosiak and Ulanski, 1999). However, the development of these biomaterials did not take into consideration their purity and biostability, which caused adverse reactions in the organism. Today, these characteristics are essential for application of the material to the human body and numerous polymers such as polymethyl methacrylate (PMMA), polyvinyl alcohol (PVAI), poly 2-hydroxyethyl methacrylate (pHEMA), polyvinyl pyrrolidone (PVP) etc, come gaining prominence in the biomedical area, due to the overcoming of these limitations. In addition, ultra high molecular weight polyethylene (PEUAP) and polyurethane (PU) can be studied for orthopedics applications due to their mechanical properties such as high abrasion resistance and low coefficient of friction.
Na área biomédica, os hidrogéis poliméricos são a linha de frente das recentes pesquisas. O grande interesse dos pesquisadores por estes biomateriais reside nas suas características e semelhanças com os tecidos moles do organismo. São materiais que apresentam consistência macia e elástica; boa resistência mecânica; biocompatibilidade em contato com o sangue e fluidos corpóreos e permitem a nutrição das células. Definidos como polímeros tridimensionais, de cadeia reticulada, que possuem a capacidade de inchar sem se dissolver, normalmente, são utilizados como substituintes da cartilagem articular, através da melhora de suas propriedades mecânicas e como suporte para crescimento de células, em engenharia tecidual. Mas também podem ser estudados para serem utilizados como curativos; lentes de contato; enxertos vasculares; membranas de hemodiálise, entre outros. In the biomedical field, polymer hydrogels are the front line of recent research. The great interest of researchers for these biomaterials lies in their characteristics and similarities with the body's soft tissues. These materials have a soft and elastic consistency; good mechanical strength; biocompatibility in contact with blood and body fluids and allow for cell nutrition. Defined as three-dimensional, cross-linked chain polymers that have the ability to swell without dissolving, they are commonly used as substituents of the articular cartilage, by improving its mechanical properties and as a support for cell growth in tissue engineering. But they can also be studied for use as bandages; contact lenses; vascular grafts; hemodialysis membranes, among others.
O princípio de obtenção dos hidrogéis poliméricos não é recente, desde 1960 o potencial biomédico destes materiais vem sendo considerado. Witcherle (1971 ) estudou o poli (2-hidróxi etil metacrilato) - pHEMA para uso em oftalmologia, no desenvolvimento de lentes de contato. A partir daí, inúmeros trabalhos, em diferentes áreas e com diferentes contribuições passaram a ser estudados, tendo estes polímeros como alvos em potencial.  The principle of obtaining polymeric hydrogels is not recent, since 1960 the biomedical potential of these materials has been considered. Witcherle (1971) studied poly (2-hydroxy ethyl methacrylate) - pHEMA for use in ophthalmology, in the development of contact lenses. From then on, numerous studies in different areas and with different contributions began to be studied, with these polymers as potential targets.
Um das conclusões mais importante relativas a trabalhos anteriores foi a observação de que o desempenho mecânico ideal dos hidrogéis de poli 2- hidróxi etil metacrilato (pHEMA), para aplicação como cartilagem articular, está diretamente relacionada com a resistência mecânica do substrato ao qual, este, está sendo suportado. Quando o hidrogel é implantado recobrindo substratos mecanicamente resistentes, como o Polietileno de Ultra Alto Peso Molecular (PEUPAM), seu comportamento mecânico se torna ideal para a aplicação desejada, que é suportar e distribuir a carga aplicada durante o movimento, favorecendo a formação de um regime de lubrificação entre as superfícies (Bavaresco et al., 2008 (a); Garrido, 2007).  One of the most important conclusions from previous work was the observation that the optimal mechanical performance of poly 2-hydroxy ethyl methacrylate (pHEMA) hydrogels for application as articular cartilage is directly related to the mechanical resistance of the substrate to which , is being supported. When the hydrogel is implanted by covering mechanically resistant substrates, such as Ultra High Molecular Weight Polyethylene (PEUPAM), its mechanical behavior becomes ideal for the desired application, which is to support and distribute the applied load during the movement, favoring the formation of a hydrogel. lubrication regime between surfaces (Bavaresco et al., 2008 (a); Garrido, 2007).
Além do mais, estas pesquisas demonstraram que hidrogéis de pHEMA apresentam boas propriedades físico-mecânicas quando submetidos a ensaios tribológicos de atrito e desgaste nas condições fisiológicas de uma articulação natural, afirmando sua potencialidade para o uso no reparo de pequenos defeitos de superfícies articulares, onde foi avaliado o comportamento dos tecidos ao redor e no interior do enxerto, para longos períodos pós-implante (Bavaresco et aí., 2008 (a); Bavaresco eí a/., 2008 (b); Bavaresco et ai, 2004 (a); Batista et al., 2008; Garrido, 2007; Malmonge, 2002; Malmonge e Belangero, 2002).  Moreover, this research has shown that pHEMA hydrogels have good physical-mechanical properties when subjected to tribological tests of friction and wear on the physiological conditions of a natural joint, stating their potentiality for use in repairing small joint surface defects, where Tissue behavior around and within the graft was evaluated for long post-implantation periods (Bavaresco et al., 2008 (a); Bavaresco eti a /., 2008 (b); Bavaresco et al, 2004 (a) ; Batista et al., 2008; Garrido, 2007; Malmonge, 2002; Malmonge and Belangero, 2002).
Os hidrogéis podem ser obtidos em diferentes formas, conforme a aplicação desejada. Podem se apresentar como filmes opticamente transparentes; géis esponjosos, não-esponjosos, entre outros (lannuzzi et al., 2010; Eljarrat-Binstock et al., 2007). Além do mais, possuem facilidade em ser sintetizado por diferentes técnicas, como: (i) copolimerização: normalmente, um monômero tem caráter hidrofóbico e outro hidrofílico. Neste caso, a dissolução da rede é impedida devido a presença de ligações iónicas ou interações hidrofóbicas (Song eí al., 201 1 ; Wang et al., 2010; Gholap et al., 2004; Barcellos et al., 2000). Mas o uso da copolimerização, normalmente inclui a utilização de solventes e/ou monômeros tóxicos, que podem interferir na biocompatibilidade dos produtos finais obtidos; (ii) tratamento térmico (congelamento- descongelamento): as interações intermoleculares provavelmente levam à formação de ligações de hidrogénio, formando entrelaçamentos entre as cadeias e, consequente, formação da rede tridimensional via formação de cristalitos, que atuam como reticulações (Hu eí al., 2010; Gupta eí al., 2010; Ru-Yin e Dang-Sheng, 2008). Esta técnica pode dificultar a adesão entre as superfícies dos materiais poliméricos. Durante o recobrimento do hidrogel sob o substrato, pode haver dilatação térmica no material mais resistente mecanicamente vista os ciclos de congelamento- decongelamento. (iii) radiação: permite a obtenção de hidrogéis em uma única etapa, com reticulação e esterilização simultâneas (Singh e Pai, 201 1 ; Sahiner eí al., 2006; Ulanski eí al., 2002; Lugao e Malmonge, 2001 ; Martens e Anseth, 2000), sendo portanto, uma ferramenta utilizada no presente invento, através do acoplamento do laser infravermelho no sistema de biofabricação. Hydrogels may be obtained in different forms depending on the desired application. Can present themselves as movies optically transparent; spongy, non-spongy gels, among others (Lannuzzi et al., 2010; Eljarrat-Binstock et al., 2007). Moreover, they are easily synthesized by different techniques, such as: (i) copolymerization: normally, one monomer is hydrophobic and the other hydrophilic. In this case, dissolution of the network is prevented due to the presence of ionic bonds or hydrophobic interactions (Song et al., 201 1; Wang et al., 2010; Gholap et al., 2004; Barcellos et al., 2000). But the use of copolymerization usually includes the use of toxic solvents and / or monomers, which may interfere with the biocompatibility of the final products obtained; (ii) heat treatment (freeze-thaw): Intermolecular interactions probably lead to the formation of hydrogen bonds, forming entanglements between the chains and, consequently, the formation of three-dimensional lattice via formation of crystallites, which act as cross-links (Hu eí al. , 2010; Gupta et al., 2010; Ru-Yin and Dang-Sheng, 2008). This technique may hinder adhesion between the surfaces of polymeric materials. During coating of the hydrogel under the substrate, thermal expansion may occur on the most mechanically resistant material given freeze-thaw cycles. (iii) radiation: allows obtaining hydrogels in a single step, with simultaneous cross-linking and sterilization (Singh and Pai, 201 1; Sahiner et al., 2006; Ulanski et al., 2002; Lugao and Malmonge, 2001; Martens and Anseth, 2000), thus being a tool used in the present invention, by coupling the infrared laser in the biofabrication system.
O uso da técnica de radiação para a síntese de hidrogéis poliméricos foi inicialmente desenvolvida por Charlesby (1960) e Chapiro (1962), e seu uso para aplicações biomédicas vem sendo bastante estudada (Hill et al., 201 1 ; Zainuddin et al., 201 1 ; Wang ei a/., 201 1 ; Tómic et al., 2010; Zhao et al., 2010; El-Din e El-Naggar, 2005; Sahiner et al., 2006; Zhain et al., 2002; Bhattacharya, 2000). Considerando que um dos requisitos básicos para que os hidrogéis possam estar em contato com fluidos corpóreos seja a ausência de toxicidade, então, a técnica da radiação torna-se uma alternativa vantajosa. Além disso, é uma eficiente ferramenta de esterilização, permitindo que o processo de obtenção do hidrogel seja realizado em uma única etapa, com formação e esterilização ao mesmo tempo. Isto permite a simplificação da tecnologia e redução dos custos de produção. Além disso, o uso da radiação envolve outras vantagens, como: The use of radiation technique for the synthesis of polymer hydrogels was initially developed by Charlesby (1960) and Chapiro (1962), and its use for biomedical applications has been extensively studied (Hill et al., 201 1; Zainuddin et al., 2011; Wang et al., 2011; Tomic et al., 2010; Zhao et al., 2010; El-Din and El-Naggar, 2005; Sahiner et al., 2006; Zhain et al., 2002; Bhattacharya, 2000). Considering that one of the basic requirements for hydrogels to be in contact with body fluids is the absence of toxicity, then the radiation technique becomes an advantageous alternative. In addition, it is an efficient sterilization tool, allowing that the process of obtaining the hydrogel is carried out in one step, with formation and sterilization at the same time. This allows for simplification of technology and reduction of production costs. In addition, the use of radiation involves other advantages, such as:
· Ausência de agentes químicos, permitindo obter materiais com elevado grau de pureza, sem contaminação por resíduos de agente de reticulação ou de iniciadores químicos, eliminando uma possível citotoxicidade;  · Absence of chemical agents, allowing to obtain materials of high purity, without contamination by residues of crosslinking agent or chemical initiators, eliminating possible cytotoxicity;
• Controle do processo. Os processos de iniciação e terminação da reticulação ocorrem simplesmente pela introdução e remoção do material da fonte de radiação;  • Process control. The processes of initiation and termination of crosslinking occur simply by introducing and removing material from the radiation source;
• Facilidade em modificar as propriedades físicas e químicas dos hidrogéis. Ou seja, as propriedades mecânicas dos hidrogéis podem ser alteradas pela simples modificação do tipo de radiação, pelo ajuste da intensidade e/ou do tempo de exposição do material (dose de radiação).  • Easy to modify physical and chemical properties of hydrogels. That is, the mechanical properties of hydrogels can be altered by simply modifying the type of radiation, by adjusting the intensity and / or exposure time of the material (radiation dose).
A adesão entre dois polímeros, para aplicação em próteses articulares, apresenta-se como o fator limitante ao desenvolvimento de próteses soft-layered. Tais próteses são dispositivos médicos que possuem dois materiais poliméricos juntamente aderidos. Um deles possui alta resistência mecânica e, o outro, é complacente e macio, com propriedades similares a da cartilagem articular natural. O objetivo da adesão entre estes materiais é possibilitar um regime de lubrificação entre as superfícies em contato, sem arrancamento de uma superfície sob a outra. Isto pode ser possível graças ao polímero complacente (hidrogel), o qual, quando submetido a uma carga, libera fluidos contidos em seu interior, permitindo a redução do atrito e desgaste entre as superfícies articulares, via formação de um filme de ação elastrohidrodinâmica similar ao fluido sinovial das articulações naturais.  The adhesion between two polymers, for application in joint prostheses, is presented as the limiting factor to the development of soft-layered prostheses. Such prostheses are medical devices that have two polymeric materials attached together. One has high mechanical strength and the other is compliant and soft, with properties similar to natural articular cartilage. The purpose of adhesion between these materials is to enable a lubrication regime between the surfaces in contact, without tearing from one surface to another. This may be possible thanks to the compliant polymer (hydrogel), which, when subjected to a charge, releases fluid contained within, allowing for reduction of friction and wear between the joint surfaces via the formation of an elastrohydrodynamic action film similar to synovial fluid from natural joints.
Sem a presença deste filme, há um processo de desgaste nestes dispositivos, durante os ciclos de movimento, gerando deterioração da interface osso-implante, consequente falência das próteses e aumento do índice de cirurgias de revisão nos pacientes. Normalmente, os recobrimentos poliméricos ou hidrogel se retraem quando secos, devido às mudanças químicas e físicas, enquanto que o substrato (polímero de alta resistência ao desgaste) tende a ser rígido, a fim de que sua área superficial não sofra modificações quando na presença de fluidos corpóreos. Isto faz com que o processo adesivo e coesivo do sistema seja prejudicado, podendo ocorrer fratura entre as superfícies. Para garantir recobrimentos mais eficientes é necessário que as superfícies estejam aderidas quimicamente. Without the presence of this film, there is a wear process in these devices, during the movement cycles, causing deterioration of the bone-implant interface, consequent failure of the prostheses and increase in the rate of revision surgeries in the patients. Usually, polymeric coatings or hydrogel shrink when dry due to chemical and physical changes, while the substrate (high wear-resistant polymer) tends to be rigid so that its surface area does not change when in the presence of body fluids. This causes the adhesive and cohesive process of the system to be impaired and fracture may occur between the surfaces. To ensure more efficient coatings, the surfaces must be chemically bonded.
Novos conceitos de engenharia, que possibilitem o recobrimento de superfícies com geometria desejada e materiais alternativos, que apresentem características mecânicas e físicas semelhantes a da região que estará sendo substituída ou reparada, estão sendo pesquisados continuamente.  New engineering concepts that enable the coating of surfaces with desired geometry and alternative materials that have mechanical and physical characteristics similar to the region being replaced or repaired are being continually researched.
Bose e Lau, 201 1 utilizaram a técnica de deposição de vapor para obtenção de hidrogéis de poli 2-hidróxi etil metacrilato, usando um procedimento de polimerização livre de solventes. Mas, neste artigo, não há descrição sobre a obtenção de hidrogéis em geometrias específicas ou tridimensionais. Além disso, não leva em consideração a adesão de dois materiais poliméricos e propriedades mecânicas dos produtos obtidos.  Bose and Lau, 201 1 used the vapor deposition technique to obtain poly 2-hydroxy ethyl methacrylate hydrogels using a solvent free polymerization procedure. But in this article, there is no description of obtaining hydrogels in specific or three-dimensional geometries. Moreover, it does not take into account the adhesion of two polymeric materials and mechanical properties of the obtained products.
Kubinová et al, 2009 descrevem uma nova técnica de obtenção de scaffolds de poli 2- hidróxi etil metacrilato com colesterol para aplicação em engenharia tecidual, demonstrando que o produto obtido apresentou melhoras nas propriedades de bioatividade, proliferação e adesão celular. Mas não menciona a possibilidade de obtenção de dispositivos com geometrias específicas.  Kubinová et al, 2009 describe a new technique for obtaining poly 2-hydroxy ethyl methacrylate cholesterol scaffolds for tissue engineering application, demonstrating that the product obtained showed improvements in bioactivity, proliferation and cell adhesion properties. But it does not mention the possibility of obtaining devices with specific geometries.
Wolf et al, 2009 descrevem uma estratégia de copolimerização ortogonal para a preparação de copolímeros anfifílicos, utilizando um iniciador bifuncional. Porém, neste artigo, não há relatos da obtenção de estruturas 3D. Além disso, a utilização de iniciadores químicos pode gerar resíduos tóxicos no produto final, característica esta, minimizada com o presente invento, o qual utiliza o laser infravermelho para o controle do processo, esterilização e polimerização simultâneas. Bártolo et al, 2004 propõem um novo processo de bioprototipagem para produção de scaffolds de alginatos tridimensionais e encapsulamento de células. Porém, diferentemente do presente invento, não há relatos de adesão entre dois materiais. Wolf et al, 2009 describe an orthogonal copolymerization strategy for the preparation of amphiphilic copolymers using a bifunctional primer. However, in this article, there are no reports of obtaining 3D structures. In addition, the use of chemical initiators can generate toxic residues in the final product, which feature is minimized with the present invention which uses infrared laser for process control, simultaneous sterilization and polymerization. Bártolo et al, 2004 propose a new bioprototyping process for the production of three-dimensional alginate scaffolds and cell encapsulation. However, unlike the present invention, there are no reports of adhesion between two materials.
Uma das mais comuns tecnologias de obtenção de biomateriais poliméricos são as impressoras 3D. Como descrito por Lipson e Kurman (Lipson e Kurman, 2010) este tipo de tecnologia utiliza métodos aditivos, depositando a matéria-prima camada a camada para obtenção do produto final, de forma sistemática. O material (metal, cerâmica ou polímero) pode ser extrudado através de uma seringa ou sinterizado a laser.  One of the most common technologies for obtaining polymeric biomaterials is 3D printers. As described by Lipson and Kurman (Lipson and Kurman, 2010) this type of technology uses additive methods, depositing the raw material layer by layer to obtain the final product systematically. The material (metal, ceramic or polymer) can be extruded through a syringe or laser sintered.
Devido a deposição do material camada a camada, a tecnologia 3D é capaz de associar materiais e texturas variadas, os quais, normalmente, não podem ser combinados em máquinas convencionais. Ao trabalhar com matérias-primas que são quimicamente incompatíveis ou que requerem condições de fabricação diferentes, as máquinas de produção tradicionais devem trabalhar com os materiais em processos separados e depois montá- los.  Due to layer-by-layer material deposition, 3D technology is capable of combining various materials and textures, which normally cannot be combined on conventional machines. When working with raw materials that are chemically incompatible or require different manufacturing conditions, traditional production machines must work with the materials in separate processes and then assemble them.
Impressoras 3D têm o processo de fabricação limpo, não envolve cortes, queima ou raspagem do material, produzindo poucos resíduos de fabricação. Assim, devido a sua precisão e versatilidade, esta tecnologia vem ganhando importância em diversos segmentos industriais: prototipagem, modelagem virtual e até mesmo, área médica, visando a obtenção de dispositivos para melhorar a qualidade de vida das pessoas, por substituição de órgãos doentes ou danificados. É um processo de "co-fabricação", não muito diferente do crescimento biológico, onde tecidos duros e moles são "co- fabricados" e interligados em seres vivos de complexidades infinitas.  3D printers have a clean manufacturing process, do not involve cutting, burning or scraping the material, producing little manufacturing waste. Thus, due to its precision and versatility, this technology has been gaining importance in several industrial segments: prototyping, virtual modeling and even the medical field, aiming at obtaining devices to improve people's quality of life, by replacing diseased or diseased organs. damaged. It is a process of "co-fabrication," not unlike biological growth, where hard and soft tissues are "co-fabricated" and interconnected into living beings of infinite complexities.
Diante da grande versatilidade das impressoras 3D, estudos vêm focando sua possível aplicação na área médica, visando alcançar a complexidade das formas geométricas de órgãos e tecidos. Os biomateriais devem ser capazes de mimetizar estruturas vivas, tanto em função quanto em forma, sendo possível, então, substituir tecidos danificados (Jardini et al., 2010). Given the great versatility of 3D printers, studies have focused on their possible application in the medical field, aiming to achieve the complexity of geometric shapes of organs and tissues. Biomaterials should be able to mimic living structures both in function and in thus, it is possible to replace damaged tissues (Jardini et al., 2010).
A tecnologia 3 D cria um objeto físico a partir de um arquivo digital. Inicialmente o objeto é copiado (scanneado) para obter a superfície tridimensional da estrutura, via tomografia, ressonância ou digitalização. Com a superfície 3D obtida, há a geração de um modelo virtual, o qual é enviado à impressora 3D para reprodução física. Os dados 3D possibilitam também a construção de modelos que sirvam de orientação para o desenvolvimento de produtos que sejam adequados ao corpo humano. Torna-se assim, um avanço científico, direcionado a bioimpressoras (bioprinting) ou tecnologias de biofabricação, vista a utilização de biomateriais.  3D technology creates a physical object from a digital file. Initially the object is copied (scanned) to obtain the three-dimensional surface of the structure via tomography, resonance or scanning. With the 3D surface obtained, there is the generation of a virtual model, which is sent to the 3D printer for physical reproduction. 3D data also makes it possible to build models that will guide the development of products that are suitable for the human body. Thus, it becomes a scientific advance, directed to bioprinting or biofabrication technologies, considering the use of biomaterials.
Baseado nos princípios físicos similares ao da impressora 3D, o presente invento visa sintetizar hidrogéis poliméricos com características físico- químicas semelhantes ao da cartilagem articular, em geometrias específicas, para recobrir substratos visando melhorar a adesão do sistema por embricamento mecânico.  Based on similar physical principles as the 3D printer, the present invention aims to synthesize polymeric hydrogels with physicochemical characteristics similar to articular cartilage, in specific geometries, to cover substrates to improve mechanical adhesion of the system.
No estado da técnica, a possibilidade da utilização de hidrogéis poliméricos como superfície complacente (cartilagem) em articulações artificiais, apresenta como fator limitante a adesão adequada entre a interface da camada elastomérica (hidrogel) e a interface do suporte (substrato) (Burgess et al., 2008). Normalmente, os recobrimentos poliméricos se retraem quando secos, devido às mudanças químicas e físicas, enquanto que o substrato tende a ser rígido, a fim de que sua área superficial não sofra modificações quando inchada. Isto faz com que o processo adesivo e coesivo do sistema seja prejudicado, podendo ocorrer fratura entre as superfícies. Para garantir recobrimentos mais eficientes é necessário que as superfícies estejam aderidas quimicamente, embora o desgaste interfacial entre o recobrimento e o substrato seja relativamente alto para materiais incompressíveis (Matthewson, 1982). Contudo, modificações adequadas no material, considerações de projeto e técnicas de manufatura efetivas, como proposto na presente invenção, melhoraram a adesão entre o substrato e a camada elastomérica, encorajando o uso clínico destas próteses (Jones et ai., 2009). In the prior art, the possibility of using polymeric hydrogels as a compliant surface (cartilage) in artificial joints presents as limiting factor the adequate adhesion between the interface of the elastomeric layer (hydrogel) and the support interface (substrate) (Burgess et al ., 2008). Normally, polymeric coatings shrink when dry due to chemical and physical changes, while the substrate tends to be rigid so that its surface area does not change when swollen. This causes the adhesive and cohesive process of the system to be impaired and fracture may occur between the surfaces. To ensure more efficient coatings, surfaces must be chemically adhered, although the interfacial wear between the coating and the substrate is relatively high for incompressible materials (Matthewson, 1982). However, appropriate material modifications, design considerations and effective manufacturing techniques as proposed in this invention, improved adhesion between the substrate and the elastomeric layer, encouraging the clinical use of these prostheses (Jones et al., 2009).
O documento WO201 1038373 de 31/03/201 1 (Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering cross-reference to related application, Gatenholm Paul, Backdahl Henrik, Tzavaras Theodore Jon, Davalos Rafael, Sano Michael) descreve um sistema e um método para a produção de biomateriais tridimensionais, empregando polímeros naturais e técnicas de fermentação. Porém, não existe referência a adesão entre dois materiais poliméricos, assim como, desvantajosamente, não utiliza dados de imagiologia médica e prototipagem rápida para o controle da espessura do material. Já a presente invenção permite obter estruturas tridimensionais a partir de dados de imagiologia médica, obtendo controle de espessura e volume do material depositado. Além disso, permite obter a polimerização e reticulação de polímeros através da utilização do laser infravermelho, com geometrias definidas.  WO201 1038373 of 31/03/201 1 (Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering cross-reference to related application, Gatenholm Paul, Backdahl Henrik, Tzavaras Theodore Jon, Davalos Rafael, Sano Michael ) describes a system and method for the production of three-dimensional biomaterials employing natural polymers and fermentation techniques. However, there is no reference to adhesion between two polymeric materials, and, disadvantageously, does not use medical imaging and rapid prototyping data to control the thickness of the material. Already the present invention allows to obtain three-dimensional structures from medical imaging data, obtaining control of thickness and volume of the deposited material. It also enables polymerization and crosslinking of polymers to be achieved through the use of infrared laser with defined geometries.
Outro pedido de patente que também descreve um sistema de impressão tridimensional de estruturas é o US2010278952 de 04/1 1/2010 (Dimensional printer system effecting simultaneous printing of multiple layers, Silverbrook Kia). Este tipo de técnica não leva em consideração materiais como géis ou soluções. A viscosidade alta do material para a obtenção do objeto, em torno de 10 cP é um principais problemas encontrados, ou seja, para a impressão do objeto é necessário que o material esteja, no mínimo, pré- polimerizado. A presente invenção difere do pedido de patente americano, pois utiliza soluções com viscosidades baixas (1 ,07g /cm3), como soluções de 2- hidróxi etil metacrilato (HEMA), permitindo a polimerização antes da cura do material. O material é depositado em volume definido por uma seringa de deposição e a reação ocorre com a utilização do laser infravermelho, atuando como fonte de calor. Assim, dois polímeros são aderidos sem necessariamente ambos estarem pré-polimerizados. Another patent application which also describes a three-dimensional structure printing system is US2010278952 of 4/01/2010 (Silverbrook Kia). This type of technique does not consider materials such as gels or solutions. The high viscosity of the material to obtain the object, around 10 cP is a major problem encountered, ie, for object printing it is necessary that the material is at least prepolymerized. The present invention differs from the US patent application in that it uses low viscosity solutions (1.07g / cm 3 ) such as 2-hydroxyethyl methacrylate (HEMA) solutions, allowing polymerization prior to curing of the material. The material is deposited in a volume defined by a deposition syringe and the reaction occurs with the use of infrared laser, acting as a heat source. Thus, two polymers are adhered without necessarily both being prepolymerized.
No documento americano US201 10177590 de 21/07/201 1 In US201 10177590 of July 21, 2001 1
(Bioprinted Nanoparticles and Methods of Use, Clyne Alisa Morss, Buyukhatipoglu Kivilcim, Chang Robert, Sun Wei) um complexo tridimensional de células é biofabricado por deposição. Não há relatos da adesão entre dois materiais poliméricos e utilização de laser infravermelho como fonte de calor. Aplicação do laser infravermelho na polimerização e cura restrita de materiais poliméricos e adesão interfacial entre os mesmos é o diferencial do presente invento. (Bioprinted Nanoparticles and Methods of Use, Clyne Alisa Morss, Buyukhatipoglu Kivilcim, Chang Robert, Sun Wei) a three-dimensional cell complex is biofabricated by deposition. There are no reports of adhesion between two polymeric materials and use of infrared laser as a heat source. Application of infrared laser in the polymerization and restricted curing of polymeric materials and interfacial adhesion between them is the differential of the present invention.
O documento WO2007124481 de 01/1 1/2007 (Bioprinting three- dimensional structures onto microscale tissue analog devices for pharmacokinetic study and other uses, Sun Wei, Chang Robert, Starly Binil, Nam Jae) descreve um sistema microfluidico para monitorar e detectar mudanças em um parâmetro de entrada de uma substância, que inclui um dispositivo microfluidico tendo uma câmara tecidual e um tecido substituto nesta mesma câmara. Especificamente, a invenção refere-se a um modelo in vitro para estudo de farmacocinética e de aplicações farmacêuticas, entre outros usos. Esta invenção, sujeita-se a um dispositivo microfluidico para imitar as condições de fluido do corpo de uma mamífero, incluindo a utilização de células, o que difere da presente invenção.  WO2007124481 of 01/01/2007 (Bioprinting three-dimensional structures onto microscale tissue analogues for pharmacokinetic study and other uses, Sun Wei, Chang Robert, Starly Binil, Nam Jae) describes a microfluidic system for monitoring and detecting changes in an input parameter of a substance, which includes a microfluidic device having a tissue chamber and a substitute tissue in that same chamber. Specifically, the invention relates to an in vitro model for studying pharmacokinetics and pharmaceutical applications, among other uses. This invention is subjected to a microfluidic device to mimic fluid conditions of a mammalian body, including the use of cells, which differs from the present invention.
O documento WO201 1 107599 de 09/09/201 1 (Bioprinting station, assembly comprising such bioprinting station and bioprinting method, Guillemot Fabien, Catros Sylvain, Keriquel Virginie, Fricain Jean-Christophe) relata sobre uma impressora biológica (Bioprinting) adaptada para depositar materiais biológicos padrão, incluindo células, biomateriais, nanopartículas, drogas entre outros. Neste caso, o laser é acoplado para transferir o material biológico a uma área determinada sob o substrato. A presente invenção utiliza o laser infravermelho como fonte de energia para polimerização e cura entre dois materiais poliméricos.  WO201 1 107599 of 09/09/201 1 (Bioprinting station, assembly including such bioprinting station and bioprinting method, Guillemot Fabien, Catros Sylvain, Keriquel Virginie, Fricain Jean-Christophe) reports on a Bioprinting adapted to deposit standard biological materials, including cells, biomaterials, nanoparticles, drugs and more. In this case, the laser is coupled to transfer the biological material to a determined area under the substrate. The present invention utilizes infrared laser as an energy source for polymerization and curing between two polymeric materials.
Portanto, diante das tecnologias descritas o grande diferencial da presente invenção consiste em ser capaz de depositar hidrogéis poliméricos camada por camada, tendo o laser infravermelho como fonte de calor, o qual é responsável em iniciar as reações de polimerização e reticulação. Esta tecnologia permite ainda, que o recobrimento seja realizado sob geometrias específicas, as quais poderão ser obtidas via tomografia computadorizada (CT), digitalização ou ressonância (MTI). Os dados são transformados em arquivo padrão STL (modelo físico que aproxima a superfície do sólido em formato triangularizado), sendo possível controlar o sistema na geometria desejada. Therefore, in view of the described technologies, the great advantage of the present invention is that it is capable of depositing polymeric hydrogels layer by layer, having the infrared laser as the heat source, which is responsible for initiating the polymerization and crosslinking reactions. This technology also allows the coating to be carried out under geometries which may be obtained via computed tomography (CT), scanning or resonance (MTI). The data is transformed into a standard STL file (physical model that approximates the surface of the solid in triangular format), allowing the system to be controlled in the desired geometry.
A utilização do laser infravermelho, ou melhor, do acoplamento de uma fibra laser no sistema mecânico de varredura dos eixos XYZ tem as vantagens de ser flexível e possibilitar o controle da temperatura e localização da irradiação, permitindo melhor incidência do feixe sobre a amostra. Esta condição possibilita que a energia depositada no hidrogel tenha a função de reticular e atingir o substrato no sentido de melhorar a adesão entre as superfícies.  The use of infrared laser, or better, the coupling of a laser fiber in the mechanical XYZ axis scanning system has the advantages of being flexible and allowing the control of the temperature and location of the radiation, allowing a better incidence of the beam over the sample. This condition enables the energy deposited in the hydrogel to have the function of crosslinking and reaching the substrate in order to improve adhesion between surfaces.
Diante do exposto, a presente invenção apresenta vantagens sob vários aspectos. Primeiro porque propõe um novo processo para obtenção de biomateriais poliméricos empregando um laser infravermelho, que garante a obtenção de uma cura rápida, restrita e localizada. Além disso, tal processo possibilita a deposição de hidrogéis camada a camada e, uma vez controlado o fluxo de energia depositado na amostra, há a cura polimérica em um volume definido, possibilitando a obtenção de geometrias específicas. Outro ponto crucial para o processo é a utilização do lazer infravermelho no sistema mecânico de varredura dos eixos XYZ que apresenta-se de uma forma flexível, possibilitando o controle fino da temperatura, evitando dissipação de calor em regiões indesejadas e consequentemente formação de ligações cruzadas nas regiões adjacentes. Com isso, é possível controlar a espessura da camada sobreposta e reduzir os custos do processo via minimização das perdas do sistema.  In view of the foregoing, the present invention has advantages in several respects. Firstly, it proposes a new process for obtaining polymeric biomaterials employing an infrared laser that ensures fast, restricted and localized cure. In addition, this process allows the deposition of layer-by-layer hydrogels and, once the energy flow deposited in the sample is controlled, the polymeric curing occurs in a defined volume, allowing the obtaining of specific geometries. Another crucial point for the process is the use of infrared leisure in the XYZ axis mechanical scanning system which is flexible, allowing fine temperature control, avoiding heat dissipation in undesired regions and consequently cross-linking in the adjacent regions. This enables you to control the thickness of the overlay and reduce process costs by minimizing system losses.
Desse modo, com o processo aqui descrito é possível utilizar o sistema a laser para curar termicamente outros tipos de polímeros, uma vez que a irradiação do laser infravermelho gera calor que é a força motriz para iniciar e propagar a cura térmica. Além disto, o laser possibilita a cura localizada uma vez que a energia do laser está confinada no diâmetro do feixe laser. Thus, with the process described herein it is possible to use the laser system to thermally cure other types of polymers, since infrared laser irradiation generates heat which is the driving force for initiating and propagating thermal curing. In addition, the laser enables healing localized once the laser energy is confined to the diameter of the laser beam.
O sistema permite ainda, o desenho do substrato em qualquer geometria ou anatomia do corpo humano, ou seja, a partir de dados médicos digitais fornecidos por tomografia ou ressonância magnética, um software realiza o tratamento das imagens médicas e gera um arquivo da estrutura em 3D que possibilitando a construção da parte do corpo exatamente nas dimensões da parte humana desejada.  The system also allows the design of the substrate in any geometry or anatomy of the human body, ie, from digital medical data provided by tomography or magnetic resonance, a software performs the treatment of medical images and generates a file of the structure in 3D. allowing the construction of the body part exactly in the dimensions of the desired human part.
Com destaque para os produtos obtidos na presente invenção, tais biomateriais poliméricos apresentam uma boa adesão entre as interfaces do hidrogel polimérico e o substrato, mimetizam o comportamento de uma articulação natural, diminuindo o atrito e, consequentemente, o desgaste e aperfeiçoamento das propriedades físico-químicas do material. O produto obtido pode ter geometria livre, podendo ser construído com geometria desejada mesmo com cavidades internas e porosidade controlada, fato este impossível de ser obtido em processos convencionais de usinagem e conformação de materiais.  Highlighting the products obtained in the present invention, such polymeric biomaterials have a good adhesion between the polymeric hydrogel interfaces and the substrate, mimic the behavior of a natural joint, reducing the friction and, consequently, the wear and improvement of the physicochemical properties. chemical materials. The product obtained can have free geometry and can be constructed with desired geometry even with internal cavities and controlled porosity, a fact that is impossible to obtain in conventional machining and material forming processes.
Dentre as diversas aplicações que esses biomateriais apresentam, uma delas é o emprego em confecções de substitutos biológicos e dispositivos médicos. Além disso, podem ser empregados como hidrogéis poliméricos para suporte e crescimento de células, scaffolds e recobrimentos poliméricos para uso em próteses articulares artificiais.  Among the various applications that these biomaterials present, one of them is the use in the manufacture of biological substitutes and medical devices. In addition, they may be employed as polymeric hydrogels for cell support and growth, scaffolds and polymeric coatings for use in artificial joint prostheses.
Breve descrição da invenção Brief Description of the Invention
A presente invenção refere-se a um processo de obtenção de biomateriais poliméricos pela adesão de dois polímeros empregando laser infravermelho.  The present invention relates to a process of obtaining polymeric biomaterials by the adhesion of two polymers employing infrared laser.
A invenção descreve um processo compreendendo as etapas de aquisição de dados médicos, fabricação do modelo físico em geometria 3D, preparo do substrato empregando usinagem, seguida de uma etapa de recobrimento, que compreende a adição dos reagentes, deposição do hidrogel polimérico camada a camada e finalmente as etapas de polimerização e reticulação, simultaneamente. Além disso, a presente invenção refere-se ao uso dos referidos biomateriais. The invention describes a process comprising the steps of medical data acquisition, fabrication of the physical model in 3D geometry, substrate preparation using machining, followed by a coating step comprising the addition of reagents, deposition of the polymeric hydrogel layer by layer and finally the polymerization steps and crosslinking simultaneously. Furthermore, the present invention relates to the use of said biomaterials.
Breve descrição das Figuras Brief Description of the Figures
A estrutura e operação da presente invenção, juntamente com vantagens adicionais da mesma podem ser mais bem entendidas mediante referência aos anexos e à seguinte descrição:  The structure and operation of the present invention, together with further advantages thereof may be better understood by reference to the appendices and the following description:
- A Figura 1 apresenta a usinagem do substrato, onde (a) é o esboço, (b) o substrato de PEUAPM, em geometria plana e (c) é o substrato de PEUAPM em geometria cilíndrica, obtidos após usinagem.  - Figure 1 shows the machining of the substrate, where (a) is the sketch, (b) the PEUAPM substrate in flat geometry and (c) is the PEUAPM substrate in cylindrical geometry obtained after machining.
- A Figura 2 apresenta os substratos de PEUPAM recobertos com hidrogéis de pHEMA, onde (a) é a superfície com bolhas e (b) a espessura não-uniforme.  - Figure 2 shows the PEEMAM substrates covered with pHEMA hydrogels, where (a) is the blistered surface and (b) the nonuniform thickness.
- A Figura 3 apresenta os substratos de PEUPAM em geometria plana recobertos com hidrogéis de pHEMA a diferentes concentrações do monômero HEMA, onde (a) solução X, (b) solução Y, (c) solução Z  - Figure 3 shows the flat geometry PEUPAM substrates covered with pHEMA hydrogels at different concentrations of the HEMA monomer, where (a) solution X, (b) solution Y, (c) solution Z
- A Figura 4 apresenta os substratos de PEUAPM em geometria plana recobertos com hidrogéis de pHEMA a diferentes concentrações do agente de reticulação, dietileno glicol dimetacrilato (DEGDMA), onde (a) solução A, (b) solução B e (c) solução C.  - Figure 4 shows the flat geometry PEUAPM substrates coated with pHEMA hydrogels at different concentrations of the crosslinking agent, diethylene glycol dimethacrylate (DEGDMA), where (a) solution A, (b) solution B and (c) solution C .
- A Figura 5 apresenta os substratos de PEUAPM em geometria cilíndrica recobertos com hidrogéis de pHEMA (solução A).  - Figure 5 shows the cylindrical geometry PEUAPM substrates covered with pHEMA hydrogels (solution A).
- A Figura 6 apresenta substrato de Poliuretano em geometria plana recoberto com hidrogel de pHEMA (solução Z).  - Figure 6 shows a flat geometry polyurethane substrate covered with pHEMA hydrogel (solution Z).
- A Figura 7 apresenta as micrografias da interface do recobrimento do PEUAPM com hidrogel de pHEMA a diferentes concentrações de HEMA, com aumento de 500x, onde (a) é a solução X e (b) é a solução Z.  - Figure 7 shows the micrographs of the PEUAPM coating with pHEMA hydrogel overlay at different concentrations of HEMA, with 500x magnification, where (a) is solution X and (b) is solution Z.
- A Figura 8 apresenta as micrografias da interface do recobrimento do PEUAPM com hidrogel de pHEMA a diferentes concentrações do agente de reticulação, DEGDMA, com aumento de 500x, onde (a) é a solução A, (b) é a solução B e (c) é a solução C. Descrição detalhada da invenção - Figure 8 shows the micrographs of the interface of PEUAPM coating with pHEMA hydrogel at different concentrations of cross-linking agent, DEGDMA, with 500x magnification, where (a) is solution A, (b) is solution B and ( c) is solution C. Detailed Description of the Invention
A presente invenção descreve um processo de obtenção de biomateriais poliméricos pelo recobrimento de um substrato por um hidrogel polimérico empregando laser infravermelho.  The present invention describes a process of obtaining polymeric biomaterials by coating a substrate by a polymeric hydrogel employing infrared laser.
Os biomateriais obtidos pelo processo descrito neste invento compreendem a deposição camada a camada de hidrogel polimérico sob um substrato.  Biomaterials obtained by the process described in this invention comprise layer by layer deposition of polymeric hydrogel under a substrate.
É objeto da presente invenção um processo para obtenção dos produtos descritos acima que compreende as seguintes etapas:  An object of the present invention is a process for obtaining the products described above comprising the following steps:
a) Aquisição de dados médicos  a) Acquisition of medical data
b) Fabricação do modelo físico em geometria 3D c) Preparo do substrato  b) Fabrication of the physical model in 3D geometry c) Substrate preparation
d ) Usinagem  d) Machining
d) Recobrimento  d) Coating
d1 ) Adição dos reagentes  d1) Addition of reagents
d2) Deposição  d2) Deposition
d3) Polimerização  d3) Polymerization
d4) Reticulação  d4) Crosslinking
A primeira etapa (a) de aquisição de dados médicos é feita utilizando equipamentos tecnológicos na área médica, como raios-X, tomografia computadorizada (CT) e ressonância magnética (MRI), que permitem obter imagens internas do corpo humano. Estas ferramentas são geralmente usadas para visualizar as configurações dos ossos, órgãos e tecidos, além de possibilitar informações adicionais de imagens médicas em formato eletrônico (DICOM - Digital Imaging and Communications in Medicine). Através desses arquivos eletrônicos (DICOM), é realizada a segunda etapa (b) do processo. São obtidos modelos físicos da estrutura do corpo humano, via técnica de prototipagem rápida. Os dados são digitalizados e convertidos, fatiados, em arquivo padrão STL (modelo físico que aproxima a superfície do sólido em formato triangularizado). Em seguida, o modelo é avaliado e validado. Na terceira etapa (c), é realizado o preparo do substrato empregando a usinagem (d ) em geometria específica a ser recoberta. Para o preparo do substrato na etapa (c) pode ser empregado Polietileno de Ultra Alto Peso Molecular (PEUAPM), com massa molecular de 2,5 milhões g/mol e densidade de 0,6 g/cm3 e Poliuretano com diferentes graus de polidispersidade, a partir de diferentes rotas químicas. O substrato sofre usinagem (d ) em placas planas com dimensões de 36 x 32 x 3 mm, contendo dois furos com diâmetro de 1 a 8 mm, preferencialmente 5 mm, à uma distância entre eles de 10 a 30 mm, preferencialmente de 22 mm ou em geometria cilíndrica com 4 mm de diâmetro conforme Figura 1. The first step (a) of medical data acquisition is done using technological equipment in the medical field, such as X-rays, computed tomography (CT) and magnetic resonance imaging (MRI), which allow to obtain internal images of the human body. These tools are commonly used to visualize bone, organ, and tissue configurations and provide additional information on medical imaging in electronic format (DICOM). Through these electronic files (DICOM), the second step (b) of the process is performed. Physical models of the structure of the human body are obtained via rapid prototyping technique. The data is digitized and converted, sliced, to standard STL file (physical model that approximates the surface of the solid in triangular format). Then the model is evaluated and validated. In the third step (c), the substrate preparation is performed using the machining (d) in specific geometry to be covered. For the preparation of the substrate in step (c), Ultra High Molecular Weight Polyethylene (PEUAPM) with molecular weight of 2.5 million g / mol and density of 0.6 g / cm 3 and Polyurethane with different degrees of polydispersity, from different chemical routes. The substrate is machined (d) in flat plates 36 x 32 x 3 mm, containing two holes with a diameter of 1 to 8 mm, preferably 5 mm, at a distance of 10 to 30 mm, preferably 22 mm. or in cylindrical geometry 4 mm in diameter as shown in Figure 1.
Em seguida, na quarta etapa (d), os reagentes químicos para permitir a polimerização e reticulação do hidrogel, sob o substrato, são acrescentados a uma seringa com velocidade e volume de deposição ajustáveis por uma bomba, para a formação do hidrogel polimérico. O hidrogel é preparado pela adição dos seguintes reagentes (d1 ): um monômero ou polímero, pertencente ao grupo das lactonas, álcool ou metacrilatos, preferencialmente o 2-hidróxi etil metacrilato (HEMA), em uma faixa de 20 a 100% m/m, preferencialmente 80% m/m; um agente de reticulação, selecionado dentre dietileno glicol dimetacrilato (DEGDMA), trimetilolpropano trimetacrilato (TMPTMMA), Ν,Ν' metileno - bis - acrilamida, etileno glicol dimetacrilato (EGDMA), tri-etileno glicol dimetacrilato (TEGDMA) , entre outros agentes reticulantes di, tri e tetra funcionais, preferencialmente dietileno glicol dimetacrilato (DEGDMA), entre 1 e 3% m/m em relação ao teor do monômero HEMA, preferencialmente 1 % m/m; termoiniciadores, selecionados dentre 2,2'- Azobis (2-metilpropionitrila) (AIBN), peróxido de dibenzoíla e persulfato de potássio, preferencialmente persulfato de potássio (PKS) e peróxido de dibenzoíla, entre 1 e 3% m/m, preferencialmente a 1 % m/m. Todos os reagentes são misturados fisicamente e mantidos sob agitação para completa homogeneização.  Then, in the fourth step (d), the chemical reagents for polymerization and cross-linking of the hydrogel under the substrate are added to a syringe with pump-adjustable rate and deposition volume for formation of the polymer hydrogel. The hydrogel is prepared by the addition of the following reagents (d1): a monomer or polymer, belonging to the group of lactones, alcohol or methacrylates, preferably 2-hydroxy ethyl methacrylate (HEMA), in a range of 20 to 100% w / w preferably 80% w / w; a crosslinking agent selected from diethylene glycol dimethacrylate (DEGDMA), trimethylolpropane trimethacrylate (TMPTMMA), Ν, methylene bis bis acrylamide, ethylene glycol dimethacrylate (EGDMA), triethylene glycol dimethacrylate (TEGDMA), and other cross-linking agents di, tri and tetra functional, preferably diethylene glycol dimethacrylate (DEGDMA), between 1 and 3% w / w with respect to the HEMA monomer content, preferably 1% w / w; thermoinitiators, selected from 2,2'-Azobis (2-methylpropionitrile) (AIBN), dibenzoyl peroxide and potassium persulphate, preferably potassium persulphate (PKS) and dibenzoyl peroxide, preferably a 1% w / w. All reagents are physically mixed and kept under agitation for complete homogenization.
Em seguida, o hidrogel obtido na etapa (d1 ) é depositado (d2) camada a camada sob o substrato, em geometria específica delimitada pelo modelo CAD 3D, empregando um equipamento de prototipagem acoplado a ele um laser infravermelho de fibra óptica. O laser atua como fonte de calor e é responsável em iniciar as reações de polimerização e reticulação do hidrogel sob o substrato, permitindo o recobrimento e adesão entre duas superfícies poliméricas. Ou seja, o laser desempenha a função de garantir a polimerização e reticulação, além do embricamento mecânico na camada anterior. São aplicadas de 1 a 10 camadas de hidrogel polimérico, preferencialmente 3, entre 10 e 60 minutos, preferencialmente 35 minutos, com fluxo de vazão de solução entre 10 e 120 mL/h, preferencialmente 1 10 mL/h. A velocidade de varredura do laser varia entre 50 e 100 m/s preferencialmente 100 m/s e a potência varia entre 10 e 40W, preferencialmente 30W. Then the hydrogel obtained in step (d1) is deposited (d2) layer by layer under the substrate, in specific geometry delimited by 3D CAD model, employing a prototyping equipment coupled to it an infrared fiber optic laser. The laser acts as a heat source and is responsible for initiating the hydrogel polymerization and cross-linking reactions under the substrate, allowing for coating and adhesion between two polymeric surfaces. That is, the laser performs the function of ensuring polymerization and crosslinking, in addition to mechanical embracing in the anterior layer. From 1 to 10 layers of polymeric hydrogel, preferably 3, are applied between 10 and 60 minutes, preferably 35 minutes, with solution flow rate between 10 and 120 mL / hr, preferably 110 mL / hr. The laser scanning speed ranges from 50 to 100 m / s, preferably 100 m / s and the power ranges from 10 to 40 W, preferably 30 W.
O hidrogel polimérico, em geometria tridimensional desejada, sofre a polimerização radicalar (d3), seguida de reticulação (d4), em uma única etapa. Inicialmente, são formadas moléculas lineares do polímero. Com aumento da conversão do monômero e, presença do agente de reticulação, os radicais livres passam a reagir com as duplas ligações produzindo reticulações químicas entre as cadeias poliméricas não conectadas, levando a formação do hidrogel em geometria específica. Portanto, a síntese do hidrogel sob o substrato é obtida de forma localizada, com controle da intensidade do laser, potência, velocidade de varredura, volume e altura de deposição da solução. Hidrogéis porosos são obtidos com tempo final das reações variando de 1 a 3 minutos, preferencialmente 3 minutos e hidrogéis densos a uma faixa de 1 a 3 minutos, preferencialmente 2 minutos. O comprimento de onda da fonte laser infravermelha varia de 1000 a 2000 nm, preferencialmente 1070 nm e o diâmetro varia de 0,5 a 1 ,0 cm, preferencialmente 0,8 cm. A potência do laser sob a solução é mantida constante entre 29,5 e 30,5 W, preferencialmente 30 W e a distância do foco do laser até o ponto central da solução é estimada entre 4,5 e 10,0 cm, preferencialmente 9,5 cm de altura.  The polymeric hydrogel, in desired three-dimensional geometry, undergoes radical polymerization (d3) followed by crosslinking (d4) in a single step. Initially, linear molecules of the polymer are formed. With increased monomer conversion and the presence of the crosslinking agent, free radicals react with double bonds producing chemical crosslinks between unconnected polymer chains, leading to hydrogel formation in specific geometry. Therefore, hydrogel synthesis under the substrate is obtained in a localized manner, with control of the laser intensity, power, scanning speed, volume and deposition height of the solution. Porous hydrogels are obtained with reaction time ranging from 1 to 3 minutes, preferably 3 minutes and dense hydrogels within a range of 1 to 3 minutes, preferably 2 minutes. The wavelength of the infrared laser source ranges from 1000 to 2000 nm, preferably 1070 nm and the diameter ranges from 0.5 to 1.0 cm, preferably 0.8 cm. The laser power under the solution is kept constant between 29.5 and 30.5 W, preferably 30 W and the distance from the laser focus to the center point of the solution is estimated between 4.5 and 10.0 cm, preferably 9 W. .5 cm tall.
Os biomateriais poliméricos obtidos no final do processo descrito neste invento apresentam potencial biomédico e diferentes propriedades físico- químicas, podendo ser aplicados como dispositivos biológicos, suporte para crescimento de células em engenharia tecidual, devido a biocompatibilidade e não-toxicidade dos biomateriais, respectivamente, e como recobrimento de substratos rígidos, mimetizando as características da cartilagem articular natural. The polymeric biomaterials obtained at the end of the process described in this invention have biomedical potential and different physicochemical properties and can be applied as biological devices, support for cell growth in tissue engineering, due to biocompatibility and non-toxicity of biomaterials, respectively, and as covering of rigid substrates, mimicking the characteristics of the natural articular cartilage.
Exemplo 1 : Recobrimento do substrato de PEUAPM com hidrogel de pHEMA  Example 1: Coating PEUAPM Substrate with pHEMA Hydrogel
Utilizando o processo descrito na presente invenção, placas porosas de PEUAPM comercial foram recobertas com hidrogéis de pHEMA obtidos a partir das concentrações descritas abaixo:  Using the process described in the present invention, commercial PEUAPM porous plates were coated with pHEMA hydrogels obtained from the concentrations described below:
• 40, 60 e 80% m/m de monômero (2-hidróxi etil metacrilato); 1 % m/m de persulfato de potássio (termoiniciador) e 2% m/m de dietileno glicol dimetacrilato (agente de reticulação) - Solução X, Y e Z.  • 40, 60 and 80% w / w monomer (2-hydroxy ethyl methacrylate); 1% w / w potassium persulfate (thermoinitiator) and 2% w / w diethylene glycol dimethacrylate (crosslinking agent) - Solution X, Y and Z.
• 100% de monômero; 1 % m/m de peróxido de dibenzoíla (termoiniciador); 1 , 2 e 3% m/m de dietileno glicol dimetacrilato (DEGDMA, agente de reticulação) - Solução A, B e C.  • 100% monomer; 1% w / w dibenzoyl peroxide (thermoinitiator); 1, 2 and 3% w / w diethylene glycol dimethacrylate (DEGDMA, cross-linking agent) - Solution A, B and C.
Foram analisadas variáveis de processo como fluxo volumétrico da solução de HEMA (vazão) e velocidade de varredura. A altura da seringa em relação ao substrato e do laser infravermelho ao substrato foi mantida constante em 4,5 cm e 9,5 cm, respectivamente. A Tabela 1 mostra as condições operacionais avaliadas.  Process variables such as volumetric flow of HEMA solution (flow) and sweep speed were analyzed. The height of the syringe relative to the substrate and the infrared laser to the substrate were kept constant at 4.5 cm and 9.5 cm, respectively. Table 1 shows the evaluated operating conditions.
Tabela 1 . Condições operacionais avaliadas na etapa de recobrimento  Table 1 Operating conditions assessed at the overlay stage
Variáveis Valor (s)  Variables Value (s)
Volume total da seringa 60 ml  Total volume of syringe 60 ml
Diâmetro da seringa 29,45mm  Syringe Diameter 29.45mm
Taxa 10 a 120 ml/h  Rate 10 to 120 ml / h
Velocidade de varredura 50 e 100 m/s Sweep Speed 50 and 100 m / s
Outro aspecto importante analisado, para as duas concentrações citadas, diz respeito à velocidade de varredura e vazão do hidrogel. Velocidades de varredura mais baixas, 50 m/s, a fluxos entre 10 e 50 mL/h, aumentou o tempo de permanência do laser sob o substrato, levando a evaporação da solução e, conseqiiente, fusão do PEUAPM. Com vazões acima de 50 mL/h o efeito de evaporação do solvente foi contornado. Porém, houve uma maior quantidade de solução sendo depositada em um mesmo tempo de incidência do laser (varredura). Isto provocou super-aquecimentos pontuais na solução, levando à formação de bolhas, obtendo recobrimentos com superfícies irregulares e espessuras não uniformes. Além disso, foi verificada que para baixas velocidades de varredura, a polimerização e reticulação do pHEMA, no bico da seringa, era um efeito mais pronunciado, levando ao entupimento do sistema. Another important aspect analyzed, for the two concentrations mentioned, concerns the sweep rate and flow rate of the hydrogel. Lower scanning speeds, 50 m / s, at flows between 10 and 50 mL / h, increased laser residence time under the substrate, leading to solution evaporation and, consequently, PEUAPM fusion. At flow rates above 50 mL / h the evaporating effect of the solvent was bypassed. However, there was a larger amount of solution being deposited at the same time of laser incidence (scan). This caused occasional overheating of the solution, leading to blistering, uneven surface coatings and uneven thicknesses. In addition, it was found that at low sweep speeds, pHEMA polymerization and crosslinking at the syringe nozzle was a more pronounced effect, leading to clogging of the system.
Para velocidades de varredura de 100 m/s, vazões da solução de HEMA entre 10 e 100 ml_/h, forneceram fluxos descontínuos. A deposição do material pela seringa não acompanhava continuamente o caminho percorrido pelo laser. Pontos da superfície foram aquecidos sem a presença da solução. Isto levou à fusão pontual do substrato de PEUAPM. Nesta condição, a temperatura do substrato foi medida aleatoriamente por outra fonte laser infravermelha. Resultados demonstraram temperaturas pontuais de 165°C, acima da temperatura de fusão do PEUAPM.  For sweep speeds of 100 m / s, HEMA solution flow rates between 10 and 100 ml / h provided discontinuous flows. The deposition of the material by the syringe did not continually follow the path taken by the laser. Surface points were heated without the presence of the solution. This led to spot fusion of PEUAPM substrate. Under this condition, the substrate temperature was randomly measured by another infrared laser source. Results demonstrated point temperatures of 165 ° C, above the melting temperature of PEUAPM.
Fluxos contínuos, contudo, foram observados a vazões de 1 10 e Continuous flows, however, were observed at flows of 1 10 and
120 mL/h para esta mesma velocidade de varredura. Mas, a altas vazões (120 mL/h), houve um excesso de solução sob o substrato, com perda significante de material e maior energia requerida para obtenção do hidrogel. 120 mL / h for this same sweep rate. But at high flow rates (120 mL / h), there was an excess of solution under the substrate, with significant material loss and higher energy required to obtain the hydrogel.
O volume total de solução dentro da seringa também demonstrou efeito considerável. Com altas velocidades de varredura, havia escassez da solução antes do término da camada depositada. A falta de solução levava a formação de ar na seringa e, consequente, fluxos descontínuos. Para minimizar tais efeitos, foram selecionadas vazão de 1 10 mL/h e velocidade de varredura de 100m/s, com intervalos de deposição da solução. Ainda assim, a espessura da camada reticulada (hidrogel) e a presença de bolhas não foram parâmetros controlados, conforme visualizado na Figura 2.  The total volume of solution inside the syringe also showed considerable effect. At high sweep speeds, there was a shortage of solution before the deposited layer was finished. The lack of solution led to air formation in the syringe and consequent discontinuous flows. To minimize such effects, a flow rate of 10 mL / h and a sweep speed of 100m / s were selected, with solution deposition intervals. Still, the thickness of the crosslinked layer (hydrogel) and the presence of bubbles were not controlled parameters, as shown in Figure 2.
Hidrogéis de pHEMA sob o PEUAPM foram, então, obtidos via varredura do sistema em 3 etapas. As etapas 1 e 3 envolveram a deposição do material (solução de HEMA) e aquecimento via fonte laser infravermelha, continuamente. A etapa 2 consistiu apenas na passagem do laser sobre o substrato, sem adição da solução de HEMA. O laser tinha a função de garantir a polimerização e reticulação, além do embricamento mecânico na camada anterior. O tempo total de processo foi de 35 minutos. As Figuras de 3 a 6 mostram substratos de PEUAPM recobertos com hidrogéis de pHEMA utilizando o processo descrito no presente invento. PHEMA hydrogels under PEUAPM were then obtained via 3-step system scan. Steps 1 and 3 involved the deposition of the material (HEMA solution) and heating via infrared laser source continuously. Step 2 consisted only of passing the laser over the substrate without the addition of HEMA solution. The laser had the function of ensuring polymerization and crosslinking, as well as mechanical embracing in the anterior layer. Total process time was 35 minutes. Figures 3 to 6 show pHEMA hydrogel coated PEUAPM substrates using the process described in the present invention.
Para as duas concentrações avaliadas, verificou-se presença de hidrogel de pHEMA no interior dos poros do PEUAPM. Ou seja, houve formação do hidrogel não somente na superfície, mas também internamente no substrato, embora hidrogéis com 1 % m/m DEGDMA (solução A) tenham apresentado melhor adesão. As Figuras 7 e 8 mostram a interface hidrogel- PEUAPM, após recobrimento para todas as concentrações estudadas, a aumento de 500x.  For both concentrations evaluated, pHEMA hydrogel was found inside the PEUAPM pores. That is, hydrogel formation not only on the surface but also internally on the substrate, although hydrogels with 1% w / w DEGDMA (solution A) showed better adhesion. Figures 7 and 8 show the hydrogel-PEUAPM interface, after coating for all studied concentrations, at 500x magnification.
Referências bibliográficas references
BARCELLOS, I.O., KATIME, LA, SOLDI, V., PIRES, A.T.N. Influência do Comonômero e do método de polimerização na cinética de liberação de fenobarbitona a partir de hidrogéis. Polímeros: Ciência e Tecnologia, v.10, n.2, p.1 10-1 15, 2000.  BARCELLOS, I.O., KATIME, LA, SOLDI, V., PIRES, A.T.N. Influence of Comonomer and polymerization method on the kinetics of phenobarbitone release from hydrogels. Polymers: Science and Technology, v.10, n.2, p.1 10-1 15, 2000.
BARTOLO, P., MENDES A., JARDINI A.L. Bio-prototyping. Design & Nature II, M.W. Collins & CA. Brebbia (Editors) WIT Press, 2004.  BARTOLO, P., MENDES A., JARDINI A.L. Bio-prototyping. Design & Nature II, M.W. Collins & CA. Brebbia (Editors) WIT Press, 2004.
BATISTA, N.A., BAVARESCO, V.P., BELANGERO, W.D. Avaliação Preliminar do Desempenho de Membranas de Hidrogel de Poli-Álcool Vinílico (PVAI) Irradiadas para Substituição de Cartilagem Articular: Estudo In Vivo. V Congresso Latino Americano de Órgãos Artificiais e Biomateriais, Ouro Preto - MG, 2008.  BATISTA, N.A., BAVARESCO, V.P., BELANGERO, W.D. Preliminary Evaluation of the Performance of Irradiated Articular Cartilage Replacement Irradiated (PVAI) Membranes: In Vivo Study. V Latin American Congress of Artificial and Biomaterial Organs, Ouro Preto - MG, 2008.
BAVARESCO, V. P., GARRIDO, L., BATISTA, N. A., MALMONGE, S. M., BELANGERO, W. D. Mechanical and Morphological Evaluation of BAVARESCO, V. P., GARRIDO, L., BATISTA, N. A., MALMONGE, S. M., BELANGERO, W. D. Mechanical and Morphological Evaluation of
Osteochondral Implants in Dogs. Artificial Organs, v. 32, p. 310-316, 2008 (b).Osteochondral Implants in Dogs. Artificial Organs, v. 32, p. 310-316, 2008 (b).
BAVARESCO, V. P., ZAVAGLIA, C. A. C, REIS, M. C, GOMES, J. R. Swelling and tribological properties of poly (HEMA) hydrogels. Materials Science Fórum, v.455-456, p. 433-436, 2004 (a). BAVARESCO, V. P., ZAVAGLIA, C. A. C, KINGS, M. C, GOMES, J. R. Swelling and tribological properties of poly (HEMA) hydrogels. Materials Science Forum, v.455-456, p. 433-436, 2004 (a).
BAVARESCO, V.P. Recobrimento de substratos rígidos com hidrogel para utilização como superfície articular. Campinas: Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas. Dissertação (Mestrado), 1 13 p., 2000. BAVARESCO, VP Coating of rigid substrates with hydrogel for use as a joint surface. Campinas: Faculty of Engineering Mechanics, State University of Campinas. Dissertation (Masters), 1 13 p., 2000.
BHATTACHARYA, A. Radiation and industrial polymers. Progress in Polymer Science, v. 25, p. 371 - 401 , 2000.  BHATTACHARYA, A. Radiation and industrial polymers. Progress in Polymer Science, v. 25, p. 371-401, 2000.
BOSE, R.K e LAU, K.K.S. Initiated chemical vapor deposition of poly (2- hydroxyethyl methacrylate) hydrogels. Thin Solid Films, 201 1 (In Press). BOSE, R.K and LAU, K.K.S. Initiated chemical vapor deposition of poly (2-hydroxyethyl methacrylate) hydrogels. Thin Solid Films, 2011 (In Press).
CHAPIRO, A. Radiation chemistry of polymeric systems. New York: Interscience Publishers, 1962. CHAPIRO, A. Radiation chemistry of polymeric systems. New York: Interscience Publishers, 1962.
BURGESS, I.C., JONES, E., SCHOLES.S.C., UNSWORTH, A. Compliant layer bearings in artificial joints. Part 1 : the effects of different manufacturing techniques on the interface strength between an elastomeric layer and a rigid substrate. Journal Engineering in Medicine, v.222, p. 853- 864, 2008.  BURGESS, I.C., JONES, E., SCHOLES.S.C., UNSWORTH, A. Compliant layer bearings in artificial joints. Part 1: The effects of different manufacturing techniques on the interface strength between an elastomeric layer and a rigid substrate. Journal Engineering in Medicine, v.222, p. 853-864, 2008.
CHARLESBY, A. Atomic radiation and polymers. New York:Pergamon Press. CHARLESBY, A. Atomic radiation and polymers. New York: Pergamon Press.
Journal of Polymer Science, v.45, p. 553, 1960. Journal of Polymer Science, v.45, p. 553, 1960.
EL-DIN, H.M.N e EL-NAGGAR, A.W.M. Synthesis and Characterization of hydroxyehtyl metacrilate / acrylamide responsive hydrogels. Journal of AppliedEL-DIN, H.M.N and EL-NAGGAR, A.W.M. Synthesis and Characterization of hydroxyehtyl methacrylate / acrylamide responsive hydrogels. Journal of Applied
Polymer Science, v.95, p.1 105-1 1 15, 2005. Polymer Science, v.95, p.1 105-115, 2005.
ELJARRAT-BINSTOCK, E., BENTOLILA, A., KUMAR, N., HAREL, H., DOMB, A.J. Preparation, characterization, and sterilization of hydrogel sponges for iontophoretic drug-delivery use. Polymers for advanced technologies, v.18, p.720-730, 2007.  ELJARRAT-BINSTOCK, E., BENTOLILA, A., KUMAR, N., HAREL, H., DOMB, A.J. Preparation, characterization, and sterilization of hydrogel sponges for iontophoretic drug-delivery use. Polymers for advanced technologies, v.18, p.720-730, 2007.
FERREIRA, F.C.M. Comportamento sob abrasão em polietileno de ultra-alto peso molecular (UHMWPE) irradiado. Rio de Janeiro: Instituto Militar de Engenharia. Dissertação (Mestrado), 131 p., 2007.  FERREIRA, F.C.M. Abrasion behavior on irradiated ultra-high molecular weight polyethylene (UHMWPE). Rio de Janeiro: Military Institute of Engineering. Dissertation (Master), 131 p., 2007.
GARRIDO, L. F. Avaliação do desempenho de implantes de polietileno e de fosfato tricalcico, recobertos por hidrogel, em defeitos osteocondrais no joelho de cães. Campinas: Faculdade de Ciências Médicas, Universidade Estadual de Campinas. Dissertação (Mestrado), 88p., 2007. GARRIDO, L. F. Performance evaluation of hydrogel-coated polyethylene and tricalcium phosphate implants in osteochondral knee defects in dogs. Campinas: Faculty of Medical Sciences, State University of Campinas. Dissertation (Master), 88p., 2007.
GHOLAP, S.G., JOG, J.P., BADIGER, M.V. Synthesis and characterization of hydrophobically modified poly (vinyl alcohol) hydrogel membrane. Polymer, v.45, p. 5863-5873, 2004. GUPTA, S., SINHA, S., SINHA, A. Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids and Surfaces B: Biointerfaces, v. 78, p. 1 15-1 19, 2010. GHOLAP, SG, JOG, JP, BADIGER, MV Synthesis and characterization of hydrophobically modified poly (vinyl alcohol) hydrogel membrane. Polymer, v.45, p. 5863-5873, 2004. GUPTA, S., Sinha, S., Sinha, A. Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels. Colloids and Surfaces B: Biointerfaces, v. 78, p. 1 15-1 19, 2010.
HILL, D.J.T., WHITTAKE, R, A. K., ZAINUDDIN. Water diffusion into radiation crosslinked PVA-PVP network hydrogels. Radiation Physics and Chemistry, v.80, p. 213-218, 201 1.  HILL, D.J.T., WHITTAKE, R.A.K., ZAINUDDIN. Water diffusion into radiation crosslinked PVA-PVP network hydrogels. Radiation Physics and Chemistry, v.80, p. 213-218, 201 1.
HU, X., HU, K., ZENG, L, ZHAO, M., HUANG, H. Hydrogels prepared from pineapple peei cellulose using ionic liquid and their characterization and primary sodium salicylate release study .Carbohydrate Polymers, v. 82, p. 62-68, 2010. IANNUZZI, M.A., REBER III, R., LENTZ, D.M., ZHAO, J., MA, L, HEDDEN, R.C. Study of porosity and water content in sponge-like hydrogels. Polymer, v. 51 , p. 2049-2056, 2010.  HU, X., HU, K., ZENG, L, ZHAO, M., HUANG, H. Hydrogels prepared from pineapple peei cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydrate Polymers, v. 82, p. 62-68, 2010. IANNUZZI, M.A., REBER III, R., LENTZ, D.M., ZHAO, J., MA, L, HEDDEN, R.C. Study of porosity and water content in sponge-like hydrogels. Polymer, v. 51, p. 2049-2056, 2010.
JARDIM, A.L., LUNELLI, B.H., MARTINEZ, G. A. R., LASPRILLA, A. J. R., PASSOS, M.F., MACIEL, A. A. W., SILVA, J. V., MACIEL, R. Computer-Aided Tools For Modeling And Simulation In The Biomaterials Productíon. The 6th Latin American Congress of Artificil Organs and Biomaterials, Gramado, Rio Grande do Sul, 2010.  GARDEN, A.L., LUNELLI, B.H., MARTINEZ, G.A.R., LASPRILLA, A.J. R., STEPS, M.F., MACIEL, A.A., SILVA, J.V., MACIEL, R. Computer-Aided Tools For Modeling And Product Simulation. The 6th Latin American Congress of Artificial Organs and Biomaterials, Gramado, Rio Grande do Sul, 2010.
JONES, E., SCHOLES, S.C., BURGESS, I.C., ASH, H.E. Compliant layer bearings in artificial joints. Part 2: Simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate. JONES, E., SCHOLES, S.C., BURGESS, I.C., ASH, H.E. Compliant layer bearings in artificial joints. Part 2: Simulator and fatigue testing to assess the durability of the interface between an elastomeric layer and a rigid substrate.
Proc. Inst. Mech. Eng. H, Abstract, v. 223, p. 1 -12, 2009. Proc. Inst. Mech Eng. H, Abstract, v. 223, p. 1-12, 2009.
KUBINOVÁ, S., HORAK, D., SYKOVA, E. Cholesterol-modified superporous poly (2-hydroxyethyl methacrylate) scaffolds for tissue engineering. KUBINOVÁ, S., HORAK, D., SYKOVA, E. Cholesterol-modified superporous poly (2-hydroxyethyl methacrylate) scaffolds for tissue engineering.
Biomaterials, v. 30, p. 4601-4609, 2009. Biomaterials, v. 30, p. 4601-4609, 2009.
LIPSON, HOD e KURMAN, M. Factory @ Home: The Emerging Economy ofLIPSON, HOD and KURMAN, M. Factory @ Home: The Emerging Economy of
Personal Fabrication. One of a Series of Occasional Papers in Science andPersonal fabrication. One of a Series of Occasional Papers in Science and
Technology Policy. December, 2010. Technology Policy. December, 2010.
LUGAO, A.B. e MALMONGE, S.M. Use of radiation in the production of hydrogels. Nuclear Instruments and Methods in Physics Research B, v. 185, p. 37-42, 2001. MALMONGE, S.M. Articular Cartilage Repair: Biological performance of Hydrogels, publicado no livro de resumos do I SBPMat, julho de 2002. LUGAO, AB and MALMONGE, SM Use of radiation in the production of hydrogels. Nuclear Instruments and Methods in Physics Research B, v. 185, p. 37-42, 2001. MALMONGE, SM Articular Cartilage Repair: Biological performance of Hydrogels, published in the I SBPMat briefing book, July 2002.
MALMONGE, S.M e BELANGERO, W.D. Cartilagem Articular Artificial, Congresso Brasileiro de Pesquisa Básica em Ortopedia e Traumatologia, São Paulo, novembro de 2002. MALMONGE, S.M and BELANGERO, W.D. Artificial Articular Cartilage, Brazilian Congress of Basic Research in Orthopedics and Traumatology, São Paulo, November 2002.
MARTENS, P e ANSETH, K.S. Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers. Polymer, v, 40, p. 7715-7722, 2000.  MARTENS, P and ANSETH, K.S. Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers. Polymer, v. 40, p. 7715-7722, 2000.
MATTHEWSON, M. J. The effect of a thin compliant protective coating on Hertzian contact stresses. J. Phys. D: Appl. Phys, v.15, p. 237-249, 1982.  MATTHEWSON, M. J. The effect of a thin protective coating on Hertzian contact stresses. J. Phys. D: Appl. Phys, v.15, p. 237-249, 1982.
ROSIAK, J.M., ULANSKI, P. Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry, v. 55, p.139-151 , 1999. RU-YIN, M. e DANG-SHENG, X. Synthesis and properties of physically crosslinked poly (vinyl alcohol) hydrogels. Journal of China University of Mining & Technology, v.18, p. 0271 - 0274, 2008.  ROSIAK, J.M., ULANSKI, P. Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry, v. 55, p.139-151, 1999. RU-YIN, M. and DANG-SHENG, X. Synthesis and properties of physically crosslinked poly (vinyl alcohol) hydrogels. Journal of China University of Mining & Technology, v.18, p. 0271-0274, 2008.
SAHINER, N., CELIKBIÇAK, O., MALCI, S., KANTOGLU, O., SALIH, B. Characterization of poly (N- hydroxymethyl) methacrilamide -ATU) hydrogels synthesized by γ radiation. Journal of Applied Polymer Science, v.99, p. 1657- 1664, 2006.  SAHINER, N., CELIKBIÇAK, O., MALCI, S., KANTOGLU, O., SALIH, B. Characterization of poly (N-hydroxymethyl) methacrilamide -ATU) hydrogels synthesized by γ radiation. Journal of Applied Polymer Science, v.99, p. 1657-1664, 2006.
SINGH, B. e PAL, L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. International Journal of Biological Macromolecules, v. 48, p. 501 -510, 201 1 SINGH, B. and PAL, L. Radiation crosslinking polymerization of polysaccharide-PVA-PVP for making hydrogel wound dressings. International Journal of Biological Macromolecules, v. 48, p. 501-510,201 1
SONG, J., YU, R., WANG, L, ZHENG, S., LI, X. Poly(N-vinylpyrrolidone)- grafted poly(N-isopropylacrylamide) copolymers: Synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer, v. 52, p. 2340-2350, 201 1 . SONG, J., YU, R., WANG, L, ZHENG, S., LI, X. Poly (N-vinylpyrrolidone) - grafted poly (N-isopropylacrylamide) copolymers: Synthesis, characterization, and rapid behavior of hydrogels . Polymer, v. 52, p. 2340-2350,201.
TÓMIC, S. L, MICIC, M. M., DOBIC, S. N., FILIPOVIC, J. M., SULJOVRUJIC, E. H. Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiation Physics and Chemistry, v. 79, p. 643-649, 2010. ULANSKI, P., JANIK, I., KADLUBOWSKI, S., KOZICKI, M., KUJAWA, P., PIETRZAK, M..STASICA, P., ROSIAK, J.M. Polymeric Biomaterials synthesized by radiation techniques - current studies at IARC, Poland. Polymers for advanced technologies, v.13, p. 951 -959, 2002. TOMIC, S. L, MICIC, MM, DOBIC, SN, FILIPOVIC, JM, SULJOVRUJIC, EH Smart poly (2-hydroxyethyl methacrylate / itaconic acid) hydrogels for biomedical application. Radiation Physics and Chemistry, v. 79, p. 643-649, 2010. ULANSKI, P., JANIK, I., KADLUBOWSKI, S., KOZICKI, M., KUJAWA, P., PIETRZAK, M..STASICA, P., ROSIAK, JM Polymeric Biomaterials synthesized by radiation techniques - current studies at IARC, Poland. Polymers for advanced technologies, v.13, p. 951-959, 2002.
WANG, D., HILL, D.J.T., RASOUL, F., WHITTAKER A. K. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels. Radiation Physics and Chemistry, v. 80, p. 207-212, 201 1 . WANG, D., HILL, D.J.T., RASOUL, F., WHITTAKER A.K. A study of the swelling and model release proteins of radiation-formed poly (N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels. Radiation Physics and Chemistry, v. 80, p. 207-212, 2011.
WANG, L, LIU, M., GAO, C, MA, L, CUI, D. A pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. Reactive and Functional Polymers, v.70, p. 159-167, 2010.  WANG, L, LIU, M., GAO, C, MA, L, CUI, D. pH-, thermo-, and glucose-, triple-responsive hydrogels: Synthesis and controlled drug delivery. Reactive and Functional Polymers, v.70, p. 159-167, 2010.
WITCHERLE, O. Hydrophilic gels for biological uses. Nature, v.185, p.1 17-1 18, 1971 .  WITCHERLE, O. Hydrophilic gels for biological uses. Nature, v.185, p.1 17-118, 1971.
WOLF, F.F., FRIEDEMANN, N., FREY, H. Poly (lactide)-block-Poly(HEMA) Block Copolymers: An Orthogonal One-Pot Combination of ROP and ATRP, using a Bifunctional Initiator. Macromolecules, 42, 5622-5628, 2009.  WOLF, F.F., FRIEDEMANN, N., FREY, H. Poly (lactide) -block-Poly (HEMA) Block Copolymers: An Orthogonal One-Pot Combination of ROP and ATRP, using a Bifunctional Initiator. Macromolecules, 42, 5622-5628, 2009.
ZAINUDDIN., CHIRILA, T.V., BARNARD. Z., WATSON, G. S., TOH, C, BLAKEY, I., WHITTAKER, A. K., HILL D. J.T. F2 excimer laser (157 nm) radiation modification and surface ablation of PH EMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells. Radiation Physics and Chemistry, v. 80, p. 219-229, 201 1. ZAINUDDIN., CHIRILA, T.V., BARNARD. Z., WATSON, GS, TOH, C, BLAKEY, I., WHITTAKER, AK, HILL DJT F2 excimer laser (157 nm) radiation modification and surface ablation of PH EMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells. Radiation Physics and Chemistry, v. 80, p. 219-229, 2011.
ZHAIN, M., YOSHII, F., KUME, T., HASHIM, K. Syntheses of PVA/ starch grafted hydrogels by irradiation. Carbohydrate Polymers, v.50, p. 295-303, 2002. ZHAIN, M., YOSHII, F., KUME, T., HASHIM, K. Syntheses of PVA / starch grafted hydrogels by irradiation. Carbohydrate Polymers, v.50, p. 295-303, 2002.
ZHAO, S. P., CAO, M. J., LI, L. Y., XU, W. L. Synthesis and properties of biodegradable thermo- and pH-sensitive poly[(N-isopropylacrylamide)-co- (methacrylic acid)] hydrogels. Polymer Degradation and Stability, v.95, p. 719- 724, 2010. ZHAO, S.P., CAO, M.J., LI, L.Y., XU, W.L. Synthesis and properties of biodegradable thermo- and pH-sensitive poly [(N-isopropylacrylamide) -co- (methacrylic acid)] hydrogels. Polymer Degradation and Stability, v.95, p. 719-724, 2010.

Claims

REIVINDICAÇÕES
1 . Processo para a obtenção de biomateriais poliméricos caracterizado por compreender as seguintes etapas: 1 . Process for obtaining polymeric biomaterials comprising the following steps:
a) Aquisição de dados médicos  a) Acquisition of medical data
b) Fabricação do modelo físico em geometria 3D c) Preparo do substrato  b) Fabrication of the physical model in 3D geometry c) Substrate preparation
d ) Usinagem  d) Machining
d) Recobrimento  d) Coating
d1 ) Adição dos reagentes  d1) Addition of reagents
d2) Deposição  d2) Deposition
d3) Polimerização  d3) Polymerization
d4) Reticulação  d4) Crosslinking
2. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (a) compreender a aquisição de dados médicos por raios-X, tomografia computadorizada ou ressonância magnética.  Method according to claim 1, characterized in that step (a) comprises the acquisition of medical data by X-ray, computed tomography or magnetic resonance.
3. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (b) ser realizada preferencialmente via técnica de prototipagem rápida.  Process according to Claim 1, characterized in that step (b) is preferably carried out via the rapid prototyping technique.
4. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (c) compreender um substrato selecionado dentre um polietileno de ultra alto peso molecular ou um poliuretano com diferentes graus de polidispersidade.  Process according to Claim 1, characterized in that step (c) comprises a substrate selected from an ultra high molecular weight polyethylene or a polyurethane with different degrees of polydispersity.
5. Processo, de acordo com a reivindicação 4, caracterizado pelo fato do polietileno de ultra alto peso molecular ter preferencialmente massa molecular de 2,5 milhões g/mol e densidade de 0,6 g/cm3. Process according to Claim 4, characterized in that the ultra high molecular weight polyethylene preferably has a molecular mass of 2.5 million g / mol and a density of 0.6 g / cm 3 .
6. Processo, de acordo com a reivindicação 1 , caracterizado pela etapa (d ) compreender a usinagem em placas planas de substrato com dimensões de 36 x 32 x 3 mm, contendo dois furos com diâmetro de 1 a 8 mm, preferencialmente 5 mm, à uma distância entre eles de 10 a 30 mm, preferencialmente de 22 mm ou usinagem de substratos com geometrias cilíndricas com 4 mm de diâmetro. Process according to claim 1, characterized in that step (d) comprises machining flat substrate plates of dimensions 36 x 32 x 3 mm, containing two holes with a diameter of 1 to 8 mm, preferably 5 mm, at a distance between them from 10 to 30 mm, preferably 22 mm or machining substrates with 4 mm diameter cylindrical geometries.
7. Processo, de acordo com a reivindicação 1 , caracterizado pelo fato da etapa (d1 ) compreender a adição de um monômero ou polímero, um agente de reticulação e um termoiniciador.  Process according to Claim 1, characterized in that step (d1) comprises the addition of a monomer or polymer, a cross-linking agent and a thermo-initiator.
8. Processo, de acordo com a reivindicação 7, caracterizado pelo fato do monômero ou polímero ser selecionado dentre o grupo das lactonas, álcool ou metacrilatos, preferencialmente o 2-hidróxi etil metacrilato.  Process according to Claim 7, characterized in that the monomer or polymer is selected from the group of lactones, alcohol or methacrylates, preferably 2-hydroxyethyl methacrylate.
9. Processo, de acordo com a reivindicação 8, caracterizado pelo fato do 2-hidróxi etil metacrilato ser adicionado em uma faixa de 20 a 100% m/m, preferencialmente 80% m/m.  Process according to Claim 8, characterized in that the 2-hydroxy ethyl methacrylate is added in a range of from 20 to 100% w / w, preferably 80% w / w.
10. Processo, de acordo com a reivindicação 7, caracterizado pelo fato do agente de reticulação ser selecionado dentre dietileno glicol dimetacrilato, trimetilolpropano trimetacrilato, Ν,Ν' metileno - bis - acrilamida, etileno glicol dimetacrilato, tri-etileno glicol dimetacrilato, entre outros agentes químicos di, tri e tetra funcionais, preferencialmente dietileno glicol dimetacrilato.  Process according to Claim 7, characterized in that the cross-linking agent is selected from diethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, Ν, ileno 'methylene bis bis acrylamide, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, among others. di, tri and tetra functional chemical agents, preferably diethylene glycol dimethacrylate.
11. Processo, de acordo com a reivindicação 10, caracterizado pelo fato do dietileno glicol dimetacrilato ser adicionado entre 1 e 3% m/m em relação ao teor do monômero ou polímero, preferencialmente 1 % m/m.  Process according to Claim 10, characterized in that the diethylene glycol dimethacrylate is added between 1 and 3% w / w in relation to the monomer or polymer content, preferably 1% w / w.
12. Processo, de acordo com a reivindicação 7, caracterizado pelo fato do termoiniciador selecionados dentre 2,2'-Azobis(2- metilpropionitrila), peróxido de dibenzoíla e persulfato de potássio, preferencialmente persulfato de potássio e peróxido de dibenzoíla,  Process according to Claim 7, characterized in that the thermoinitiator is selected from 2,2'-Azobis (2-methylpropionitrile), dibenzoyl peroxide and potassium persulphate, preferably potassium persulphate and dibenzoyl peroxide.
13. Processo, de acordo com a reivindicação 12, caracterizado pelo fato do termoiniciador ser adicionado entre 1 e 3% m/m, preferencialmente a 1% m/m. Process according to Claim 12, characterized in that the thermoinitiator is added between 1 and 3% w / w, preferably at 1% w / w.
14. Processo, de acordo com a reivindicação 7, caracterizado pelo fato dos referidos reagentes serem misturados fisicamente e mantidos sob agitação para completa homogeneização. Process according to Claim 7, characterized in that said reagents are physically mixed and kept under agitation for complete homogenization.
15. Processo, de acordo com a reivindicação 1 , caracterizado pelo fato da etapa (d2) compreender a deposição de 1 a 10 camadas de hidrogel polimérico obtido na etapa (d1 ), preferencialmente 3, entre 10 e 60 minutos, preferencialmente 35 minutos, com fluxo de vazão de solução entre 10 e 120 mL/h, preferencialmente 1 10 mL/h, com velocidade de varredura do laser variando entre 50 e 100 m/s preferencialmente 100 m/s e a potência variando entre 10 e 40W, preferencialmente 30W.  Process according to claim 1, characterized in that step (d2) comprises depositing 1 to 10 layers of polymeric hydrogel obtained in step (d1), preferably 3, between 10 and 60 minutes, preferably 35 minutes, with solution flow rate between 10 and 120 mL / hr, preferably 110 mL / hr, with laser scanning speed ranging from 50 to 100 m / s, preferably 100 m / s and power ranging from 10 to 40 W, preferably 30 W.
16. Processo, de acordo com a reivindicação 1 , caracterizado pelo fato das etapa (d3) e (d4) ocorrerem simultaneamente.  Process according to claim 1, characterized in that steps (d3) and (d4) occur simultaneously.
17. Processo, de acordo com a reivindicação 16, caracterizado pelo fato do tempo final das reações de hidrogéis porosos variar de 1 a 3 minutos, preferencialmente 3 minutos.  Process according to Claim 16, characterized in that the final time of the porous hydrogel reactions ranges from 1 to 3 minutes, preferably 3 minutes.
18. Processo, de acordo com a reivindicação 16, caracterizado pelo fato do tempo final das reações de hidrogéis densos variar de 1 a 3 minutos, preferencialmente 2 minutos.  Process according to Claim 16, characterized in that the final time of dense hydrogel reactions ranges from 1 to 3 minutes, preferably 2 minutes.
19. Processo, de acordo com a reivindicação 16, caracterizado pelo fato do comprimento de onda da fonte laser infravermelha variar de 1000 a 2000 nm, preferencialmente 1070 nm, o diâmetro variar de 0,5 a 1 ,0 cm, preferencialmente 0,8 cm, a potência do laser ser mantida constante entre 29,5 e 30,5 W, preferencialmente 30 W e a distância do foco do laser até o ponto central da solução variar entre 4,5 e 10,0 cm, preferencialmente 9,5 cm de altura.  Process according to Claim 16, characterized in that the wavelength of the infrared laser source ranges from 1000 to 2000 nm, preferably 1070 nm, the diameter ranges from 0.5 to 1.0 cm, preferably 0.8 cm. cm the laser power is kept constant between 29.5 and 30.5 W, preferably 30 W and the distance from the laser focus to the center point of the solution is between 4.5 and 10.0 cm, preferably 9.5 cm high.
20. Biomateriais poliméricos caracterizado por ser obtido de acordo com as etapas descritas nas reivindicações de 1 a 19.  Polymeric biomaterials characterized in that it is obtained according to the steps described in claims 1 to 19.
21 . Uso dos biomateriais poliméricos descrito na reivindicação 20 caracterizado por ser empregado como suporte e crescimento de células, scaffolds e recobrimentos poliméricos para uso em próteses articulares artificiais.  21 Use of the polymeric biomaterials described in claim 20 characterized in that they are employed as support and growth of polymeric cells, scaffolds and coatings for use in artificial joint prostheses.
PCT/BR2012/000502 2011-12-22 2012-12-06 Method for producing polymer biomaterials using an infra-red laser WO2013091050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1105297-0A BRPI1105297B1 (en) 2011-12-22 2011-12-22 process of obtaining polymeric biomaterials via infrared laser
BRPL1105297-0 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013091050A1 true WO2013091050A1 (en) 2013-06-27

Family

ID=48667546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000502 WO2013091050A1 (en) 2011-12-22 2012-12-06 Method for producing polymer biomaterials using an infra-red laser

Country Status (2)

Country Link
BR (1) BRPI1105297B1 (en)
WO (1) WO2013091050A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003588A1 (en) * 2004-12-06 2007-01-04 Chinn Joseph A Multifunctional medical articles
US20070041952A1 (en) * 2005-04-18 2007-02-22 Duke University Three-dimensional fiber scaffolds for tissue engineering
US20070207186A1 (en) * 2006-03-04 2007-09-06 Scanlon John J Tear and abrasion resistant expanded material and reinforcement
US20070224238A1 (en) * 2006-03-23 2007-09-27 Mansmann Kevin A Implants for replacing hyaline cartilage, with hydrogel reinforced by three-dimensional fiber arrays
US20070225823A1 (en) * 2006-03-24 2007-09-27 Zimmer, Inc. Methods of preparing hydrogel coatings
WO2011146296A2 (en) * 2010-05-19 2011-11-24 Drexel University A fiber-hydrogel composite for tissue replacement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003588A1 (en) * 2004-12-06 2007-01-04 Chinn Joseph A Multifunctional medical articles
US20070041952A1 (en) * 2005-04-18 2007-02-22 Duke University Three-dimensional fiber scaffolds for tissue engineering
US20070207186A1 (en) * 2006-03-04 2007-09-06 Scanlon John J Tear and abrasion resistant expanded material and reinforcement
US20070224238A1 (en) * 2006-03-23 2007-09-27 Mansmann Kevin A Implants for replacing hyaline cartilage, with hydrogel reinforced by three-dimensional fiber arrays
US20070225823A1 (en) * 2006-03-24 2007-09-27 Zimmer, Inc. Methods of preparing hydrogel coatings
WO2011146296A2 (en) * 2010-05-19 2011-11-24 Drexel University A fiber-hydrogel composite for tissue replacement

Also Published As

Publication number Publication date
BRPI1105297A2 (en) 2015-11-24
BRPI1105297B1 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
Yang et al. 3D printing of a double network hydrogel with a compression strength and elastic modulus greater than those of cartilage
Luo et al. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration
JP5237544B2 (en) Mineralized hydrogels and methods of making and using mineralized hydrogels
Dai et al. Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration
JP2009518135A (en) Method of binding or modifying hydrogels using irradiation
Liang et al. Lithography-based 3D bioprinting and bioinks for bone repair and regeneration
JP2016195828A (en) Orthopedic implants having gradient polymer alloys
Maksoud et al. Porous biomaterials for tissue engineering: a review
Miramini et al. The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing
Leng et al. Material-based therapy for bone nonunion
Shirvan et al. Structural polymer biomaterials
Jančář et al. Mechanical response of porous scaffolds for cartilage engineering
Ravoor et al. Comprehensive review on design and manufacturing of bio-scaffolds for bone reconstruction
Gu et al. Preparation of a photocured biocompatible hydrogel for urethral tissue engineering
Bhat et al. Biomaterials in regenerative medicine
He et al. 3D-printing biodegradable PU/PAAM/Gel hydrogel scaffold with high flexibility and self-adaptibility to irregular defects for nonload-bearing bone regeneration
Owji et al. Synthesis, characterization, and 3D printing of an isosorbide-based, light-curable, degradable polymer for potential application in maxillofacial reconstruction
Ali et al. Classifications, surface characterization and standardization of nanobiomaterials
Aufa et al. Emerging trends in 4d printing of hydrogels in the biomedical field: A review
Liu et al. Therapeutic application of hydrogels for bone-related diseases
US20150335790A1 (en) Compositions and methods for templating three-dimensional mineralization
WO2013091050A1 (en) Method for producing polymer biomaterials using an infra-red laser
Woo et al. Biomaterials: Historical overview and current directions
Bansal et al. Applications of some biopolymeric materials as medical implants: An overview
Gayathry et al. Biomaterials for medical products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858739

Country of ref document: EP

Kind code of ref document: A1