WO2011052173A1 - Polishing pad and chemical mechanical polishing method - Google Patents

Polishing pad and chemical mechanical polishing method Download PDF

Info

Publication number
WO2011052173A1
WO2011052173A1 PCT/JP2010/006269 JP2010006269W WO2011052173A1 WO 2011052173 A1 WO2011052173 A1 WO 2011052173A1 JP 2010006269 W JP2010006269 W JP 2010006269W WO 2011052173 A1 WO2011052173 A1 WO 2011052173A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing pad
polishing
elastic body
fiber
nonwoven fabric
Prior art date
Application number
PCT/JP2010/006269
Other languages
French (fr)
Japanese (ja)
Inventor
高岡 信夫
加藤 充
知大 岡本
中山 公男
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2011538239A priority Critical patent/JP5629266B2/en
Publication of WO2011052173A1 publication Critical patent/WO2011052173A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/10Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with styrene-butadiene copolymerisation products or other synthetic rubbers or elastomers except polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses

Definitions

  • the present invention relates to a polishing pad used for flattening or mirroring a substrate to be polished, and a chemical mechanical polishing method using the same. More specifically, for example, the present invention relates to a nonwoven fabric type polishing pad that is preferably used for surface polishing of the surface of a semiconductor wafer, polishing of a wiring board, and the like.
  • CMP chemical mechanical polishing
  • polishing pad used for CMP a polishing pad made of a polymer foamed molding having a closed cell structure as disclosed in Patent Documents 1 to 4 below, and disclosed in Patent Documents 5 to 18 below.
  • a non-woven fabric type polishing pad is known.
  • a polishing pad made of a foam-molded product is produced, for example, by casting and molding a two-component curable polyurethane.
  • Such a polishing pad has higher rigidity than a nonwoven fabric type polishing pad. Therefore, a load is easily applied selectively to the convex portions of the substrate to be polished during polishing, and the polishing rate (polishing rate) is relatively high.
  • a polishing pad made of a foamed molded product has the following drawbacks. When the agglomerated abrasive grains are present on the polished surface, a load is selectively applied to the agglomerated abrasive grains, so that the polished surface is easily scratched.
  • Non-Patent Document 1 scratches and interfacial delamination are particularly noticeable when polishing a substrate having a copper wiring that is easily scratched or a low dielectric constant material having low interface adhesion. There was a drawback that it was likely to occur. Further, in cast foam molding, since it is difficult to obtain a foamed product that is uniformly foamed, there has been a drawback in that polishing non-uniformity within the polished surface tends to be high.
  • the nonwoven fabric type polishing pad includes, for example, a nonwoven fabric and a polymer elastic body such as polyurethane resin applied to the inside of the nonwoven fabric.
  • a non-woven fabric type polishing pad is more flexible than a polishing pad made of a foamed molded product. Therefore, even when agglomerated abrasive grains are present on the polished surface, it is difficult for a load to be selectively applied to the agglomerated abrasive grains and scratches are less likely to be scratched on the polished surface.
  • the nonwoven fabric type polishing pad has a problem that a sufficiently high leveling performance cannot be obtained.
  • the non-woven type polishing pad is flexible, so that during polishing, it deforms following the surface shape of the substrate to be polished, the polishing characteristics change over time, or the part where fibers are present is localized. It seems that this is because of stress concentration. Further, the nonwoven fabric type polishing pad has a problem that the polishing rate is low.
  • Patent Documents 15 to 18 disclose a non-woven type polishing pad using a non-woven fabric formed from a bundle of ultrafine fibers for the purpose of realizing a polishing process with higher accuracy than before.
  • Patent Document 15 mainly includes a nonwoven fabric in which fiber bundles of polyester microfibers having an average fineness of 0.0001 to 0.01 dtex are entangled and polyurethane existing in the interior space of the nonwoven fabric.
  • a polishing pad comprising a sheet-like material composed of a polymer elastic body as a component.
  • JP 2000-178374 A Japanese Patent Laid-Open No. 2000-248034 JP 2001-89548 A Japanese Patent Laid-Open No. 11-322878 JP 2002-9026 A Japanese Patent Laid-Open No. 11-99479 Japanese Patent Laid-Open No. 2005-212055 JP-A-3-234475 JP-A-10-128674 JP 2004-311731 A JP-A-10-225864 JP 2005-518286 JP 2003-201676 A JP 2005-334997 A JP 2007-54910 A JP 2003-170347 A JP 2004-130395 A JP 2002-172555 A
  • CMP using a polishing pad made of a foam-molded article has an excellent polishing rate, but has a problem that scratching tends to occur and polishing non-uniformity within the polishing surface tends to increase. Further, CMP using a non-woven type polishing pad is difficult to scratch, but has a problem that the polishing rate is low and the life is short due to low wear resistance.
  • the present invention is a non-woven fabric type with excellent abrasion resistance that can achieve CMP with high polishing rate, low polishing non-uniformity in the polishing surface, and scratch-resistant CMP. An object is to provide a polishing pad.
  • One aspect of the present invention is a polishing pad comprising a nonwoven fabric formed from a fiber bundle of ultrafine fibers having an average cross-sectional area of 0.1 to 30 ⁇ m 2 , and a polymer elastic body provided inside the nonwoven fabric,
  • the average number density D 1 of the cross section of the fiber bundle in the thickness region within 20% from the first surface in the thickness direction is 1000 to 5000 / mm 2
  • D 1 The ratio (D 1 / D 2 ) to the average number density D 2 of the cross section of the fiber bundle in a thickness region within 20% in the thickness direction from the second surface facing the first surface is 1.3 to 5 is a polishing pad.
  • Another aspect of the present invention is a method for chemical mechanical polishing of a substrate, wherein the first surface of the polishing pad is brought into contact with the surface of the substrate while dripping the polishing slurry onto the surface of the substrate.
  • This is a chemical mechanical polishing method for polishing.
  • polishing the substrate surface using the polishing pad of the present invention it is possible to realize high-precision polishing at a high polishing rate. Further, scratches hardly remain on the surface of the polished substrate. Furthermore, the abrasion resistance of the polishing surface of the polishing pad is high.
  • 1 is a schematic longitudinal sectional view of a polishing pad 10 of the present embodiment. 1 is a partially enlarged schematic view of a polishing pad 10 of the present embodiment. It is the schematic of the CMC apparatus 20 used for the chemical mechanical polishing of this embodiment.
  • FIG. 1 is a schematic longitudinal sectional view of a polishing pad 10 of the present embodiment.
  • 1 is a nonwoven fabric formed from a fiber bundle 1b of ultrafine fibers 1a having an average cross-sectional area of 0.1 to 30 ⁇ m 2
  • 2 is a polymer elastic body provided inside the nonwoven fabric 1
  • 3 is a polishing pad 10.
  • the first surface of the polishing surface 4 is a fixed surface which is the second surface of the polishing pad 10.
  • R 1 is a thickness region within 20% in the thickness direction from the surface of the polishing surface 3
  • R 2 is a thickness region within 20% in the thickness direction from the surface of the fixed surface 4 facing the polishing surface 3.
  • R 3 is a thickness region of 40 to 60% in the thickness direction from the surface of the polishing surface 3.
  • the polishing surface 3 is a surface that contacts the substrate to be polished at the time of polishing
  • the fixing surface 4 is a surface that is fixed to the rotating surface plate of the CMP apparatus using a double-sided adhesive tape or the like.
  • the polishing pad 10 is a composite sheet including a nonwoven fabric 1 formed from a fiber bundle 1 b of ultrafine fibers 1 a and a polymer elastic body 2 provided inside the nonwoven fabric 1.
  • the thickness of the polishing pad is appropriately selected according to the application, but is preferably about 0.5 to 3 mm, more preferably about 0.7 to 2 mm.
  • the average number density D 1 of the cross section of the fiber bundle in the thickness region within 20% from the surface of the polishing surface 3 in the thickness direction is 1000 to 5000 / mm. 2 .
  • the density of the fiber bundle 1b existing near the surface of the polishing surface 3 of the polishing pad 10 is higher than the density of the fiber bundle 1b existing near the surface of the fixed surface 4.
  • polishing surface 3 becomes high, the pressure for pushing an abrasive grain with respect to the surface of a to-be-polished base material becomes high, a polishing rate becomes high, and abrasion resistance also improves.
  • the density of the fiber bundles 1b existing in the vicinity of the surface of the fixed surface 4 the followability and the fit to the surface of the substrate to be polished are appropriately maintained, so that scratches are generated on the surface. It becomes difficult to do.
  • the average number density D 1 in longitudinal section in the thickness direction of the polishing pad 10 is calculated as follows.
  • the polishing pad 10 is cut parallel to the thickness direction using a cutter blade, and the cut surface is observed with a scanning electron microscope (SEM) at a magnification of 100 to 1000 times and photographed.
  • the cut surface may be dyed with a dye such as osmium oxide.
  • an average cross section is selected as the vertical cross section.
  • the number density (pieces / mm 2 ), which is the number of cross sections of the bundle 1b, is calculated.
  • the number density is calculated in a thickness region within 20% in the thickness direction from the root of the napped ultrafine fiber or fiber bundle.
  • the number density is calculated at a portion where the grooves and holes are not formed. Several places such number density (e.g., 5 points) evenly calculated, the number average of the obtained number density and the average number density D 1.
  • the average number density D 2 counts the number of the cross section of the fiber bundle per predetermined area observed in the fixed plane thickness regions R 2 of 20% or less in the thickness direction from the surface of the 4, per unit area
  • the number density (pieces / mm 2 ) which is the number of cross sections, is calculated.
  • Several places such number density e.g., 5 points) evenly calculated, the number average of the obtained number density and the average number density D 2.
  • the average number density D 1 of the polishing pad 10 is 1000 to 5000 pieces / mm 2 , preferably 1000 to 4500 pieces / mm 2 , more preferably 1100 to 4000 pieces / mm 2 , and particularly preferably 1200 to 3000 pieces / mm 2 . It is in the range of mm 2.
  • D 1 is less than 1000 / mm 2 , the rigidity in the vicinity of the surface of the polishing surface 3 becomes low, and the polishing rate is lowered due to the abrasive grains being hard to be pushed into the substrate to be polished. The wear resistance may be reduced.
  • D 1 is more than 5000 / mm 2
  • by the rigidity of the vicinity of the surface of the polishing surface 3 is too high, is easily scratched.
  • the average number density D 2 of the polishing pad 10 is preferably in the range of 200 to 3500 pieces / mm 2 , more preferably 300 to 3000 pieces / mm 2 , particularly 500 to 2500 pieces / mm 2 . If D 2 is too low, by the rigidity of the whole thing, and the polishing pad trackability and fit against the polished substrate is too high is lowered, it tends to flatten performance is reduced.
  • the planarization performance means the ability to form a polished surface having high flatness on the substrate to be polished.
  • the average number density D 2 is too high, by lower trackability and fit against the polished substrate, it tends to polishing non-uniformity is high in the polishing plane. Further, since the retention of the polishing slurry inside the polishing pad is lowered, the polishing rate tends to be lowered.
  • the polishing pad 10 has a ratio (D 1 / D 2 ) between its average number density D 1 and its average number density D 2 of 1.3 to 5, preferably 1.4 to 3.7, more preferably The range is from 1.5 to 2.6.
  • D 1 / D 2 is less than 1.3, the polishing rate is improved by increasing the rigidity, but the non-uniformity of polishing is increased because the followability to the substrate to be polished becomes too low. At the same time, the wear resistance decreases.
  • D 1 / D 2 exceeds 5, the following rate with respect to the substrate to be polished becomes too high, the polishing rate is lowered, and the polishing surface 3 side and the fixed surface 4 side of the polishing pad are reduced. Since the difference in density is too large and the followability between the polished surface 3 side and the fixed surface 4 side is different, the planarization performance is lowered.
  • the polishing pad 10, and the average number density D 1, and the average number density D 2, the mean number density D of the cross section of the fiber bundle in the region R 3 40 ⁇ 60% in the thickness direction from the surface of the polishing surface 3 3 is preferably in a relationship of D 1 > D 3 > D 2 .
  • D 1 > D 3 > D 2 since the retention of the polishing slurry inside the polishing pad 1 is excellent, a higher polishing rate is realized. Further, the balance between the rigidity of the polishing pad and the followability to the substrate to be polished is excellent. As a result, the planarization performance and polishing rate are higher, and the wear resistance tends to be higher.
  • D 1 / D 3 is in the range of 1 to 1.4, the rigidity balance inside the nonwoven fabric becomes more appropriate, the indentation hardness of the abrasive grains against the substrate to be polished increases, and the high polishing rate Tends to be obtained. Further, when D 3 / D 2 is in the range of 1.4 to 3, it is preferable from the viewpoint that followability to the substrate to be polished is more appropriate.
  • the average cross-sectional area of the ultrafine fibers forming the fiber bundle is 0.1 to 30 ⁇ m 2 , and preferably 10 to 15 ⁇ m 2 .
  • a fiber bundle composed of ultrafine fibers having an average cross-sectional area of less than 0.1 ⁇ m 2 the fibers are broken and dropped during polishing, and the abrasive grains are aggregated on the dropped fibers, and scratches are easily generated.
  • the surface area of the ultrafine fibers is increased, and it is difficult to sufficiently increase the density of the fiber bundles in the vicinity of the polished surface.
  • the average cross-sectional area of the fiber bundle is preferably 40 to 400 ⁇ m 2 , more preferably 40 to 350 ⁇ m 2 .
  • the average cross-sectional area of the fiber bundle is 40 ⁇ m 2 or more, the strength and abrasion resistance of the polishing pad are improved, and fiber breakage due to needle punching during the production of the nonwoven fabric is less likely to occur.
  • the average cross-sectional area of the fiber bundle is 400 ⁇ m 2 or less, the density of the fiber bundle in the vicinity of the polishing surface can be sufficiently increased, so that the polishing rate can be further improved.
  • the number of ultrafine fibers forming one fiber bundle is preferably 5 to 4000, and more preferably 5 to 30.
  • the polymer that forms the ultrafine fiber is not particularly limited. Specific examples include, for example, polyethylene terephthalate (PET), isophthalic acid-modified PET, sulfoisophthalic acid-modified PET, polybutylene terephthalate, polyhexamethylene terephthalate and other aromatic polyesters and copolymers thereof; polylactic acid, polyethylene succinate Aliphatic polyesters such as polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalylate copolymer and copolymers thereof; nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, Polyamides such as nylon 6-12 and copolymers thereof; Polyolefins such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorinated polyolefin; and copolymers thereof; Modified polyvinyl alcohol containing down units 25 to 70 mol%; and polyurethane, nylon type, include elastomers such as polyester. These
  • the polymer forming the ultrafine fiber has a glass transition temperature (Tg) of 50 to 300 ° C., more preferably 60 to 150 ° C., and a water absorption rate of 0.2 to 2 when saturated water absorption is performed at 50 ° C.
  • Tg glass transition temperature
  • a mass% polymer is particularly preferred.
  • the glass transition temperature is within the above range, higher rigidity can be maintained, so that the planarization performance of the polishing pad is further enhanced, and the rigidity is less likely to decrease over time during polishing.
  • the polishing pad absorbs the polishing slurry in an appropriate range, so that the polishing rate and the polishing uniformity are further improved.
  • the polishing slurry is not absorbed too much, a decrease in the rigidity of the polishing pad with time and a change in the flattening performance with time are suppressed.
  • Such a polymer include, for example, PET (Tg 77 ° C, water absorption 1% by mass), isophthalic acid modified PET (Tg ⁇ 67-77 ° C, water absorption 1% by mass), sulfoisophthalic acid modified PET (Tg 67-77 ° C., water absorption 1-3% by mass), polybutylene naphthalate (Tg 85 ° C., water absorption 1% by mass), polyethylene naphthalate (Tg 124 ° C., water absorption 1% by mass), etc.
  • PET Tg 77 ° C, water absorption 1% by mass
  • isophthalic acid modified PET Tg ⁇ 67-77 ° C, water absorption 1% by mass
  • sulfoisophthalic acid modified PET Tg 67-77 ° C., water absorption 1-3% by mass
  • polybutylene naphthalate Tg 85 ° C., water absorption 1% by mass
  • polyethylene naphthalate
  • semi-aromatic polyamide fibers formed from terephthalic acid, nonanediol, and methyloctanediol copolymer polyamide (Tg 125 to 140 ° C., water absorption 1 to 3 mass%).
  • semi-aromatic polyester polymers such as PET and modified PET containing an aromatic component as one component of a monomer unit are particularly preferable.
  • a semi-aromatic polyester polymer it is particularly preferable from the viewpoint that it is easy to increase the rigidity of the polishing sheet, hardly changes with time due to moisture during polishing, and easily forms a dense and high-density nonwoven fabric. .
  • the nonwoven fabric in the present embodiment is formed from a fiber bundle of ultrafine fibers derived from a long fiber web composed of long fibers of so-called ultrafine fiber generation fibers (so-called filaments). It is preferable from the viewpoint that it is excellent, and further, the fiber omission is reduced.
  • a non-woven fabric is produced, for example, by producing a long fiber web made of ultrafine fiber-generating fibers such as sea-island type composite fibers by a so-called spunbond method directly connected to melt spinning, and entanglement treatment of the long fiber web. It is manufactured by converting the ultrafine fiber generation type fiber into ultrafine fibers after forming the combined web.
  • the filament is a fiber having a long fiber length that is not a staple intentionally cut like a short fiber having a fiber length of about 10 to 50 mm.
  • the fiber length of the ultrafine fiber generating fiber is preferably 100 mm or more, and can be manufactured in a technical manner, and the fiber length is several m, several hundreds m, or several km unless physically cut. It may be.
  • the nonwoven fabric in the present embodiment may be an entangled nonwoven fabric in which a knitted fabric is entangled and integrated for the purpose of improving shape stability.
  • the average number density of a fiber bundle is calculated on the basis of the thickness of only the nonwoven fabric except a knitted fabric.
  • the polishing pad 10 has a composite structure in which a polymer elastic body 2 is applied to the inside of a nonwoven fabric 1 formed from a fiber bundle 1b of ultrafine fibers 1a.
  • the content ratio of the nonwoven fabric 1 and the polymer elastic body 2 is 55/45 to 95/5, more preferably 60/40 to 90/10, particularly 70/30 to The range is preferably 90/10. In such a range, a polishing pad with moderate rigidity can be obtained. When the content ratio of the polymer elastic body is too small, the rigidity of the polishing pad tends to be low. Further, when the content ratio of the polymer elastic body is too high, the rigidity of the polishing pad tends to be too high.
  • the ultrafine fibers 1a forming the fiber bundle 1b are bound by the polymer elastic body 2 and converged.
  • the ultrafine fibers 1a are converged to mean that most of the ultrafine fibers 1a existing in the fiber bundle 1b are bound and restrained by the polymer elastic body 2 that has entered the fiber bundle 1b. Means the state.
  • the rigidity of the polishing pad 10 is increased and the removal of the ultrafine fibers 1a is suppressed.
  • the polishing pads tend to be flexible because the ultrafine fibers move.
  • the plurality of fiber bundles 1b are bound together by a polymer elastic body 2 existing outside the fiber bundle 1b and exist in a lump (bulk) shape.
  • the fiber bundles are bound to each other, so that the shape stability of the polishing pad is improved and the polishing stability is improved.
  • the converging state of the ultrafine fibers and the binding state of the fiber bundles can be confirmed by an electron micrograph of a cross section of the polishing pad.
  • the polymer elastic body that has penetrated into the inside of the ultrafine fibers and the polymer elastic body that binds the ultrafine fiber bundles are non-porous.
  • the non-porous state means a state substantially free of many closed cells as possessed by a porous or sponge-like (hereinafter also simply referred to as porous) polymer elastic body. means. Specifically, it means that it is not a polymer elastic body having a large number of fine closed cells, such as obtained by coagulating solvent-based polyurethane.
  • the polishing stability becomes high, and the slurry waste and pad waste during polishing are less likely to accumulate in the voids.
  • the D hardness on the polishing surface 3 of the polishing pad 10 is preferably 25 to 50, more preferably 30 to 49, and particularly preferably 31 to 47.
  • the D hardness is in such a range, it is possible to obtain a polishing pad that is hardly affected by the surface shape of the substrate to be polished and has optimum rigidity in terms of planarization performance.
  • the polymer elastic body provided inside the nonwoven fabric There is no particular limitation on the type of the polymer elastic body applied to the inside of the nonwoven fabric.
  • Specific examples of the polymer elastic body include, for example, polyurethane resins, polyamide resins, (meth) acrylic ester resins, (meth) acrylic ester-styrene resins, (meth) acrylic ester-acrylonitrile resins.
  • the polymer elastic bodies may be used alone or in combination of two or more.
  • hydrogen-bonded polymer elastic bodies such as polyurethane resins, polyamide resins, polyvinyl alcohol resins and the like are particularly preferable.
  • the hydrogen-bonding polymer elastic body is a polymer elastic body that is crystallized or aggregated by hydrogen bonding, and has high converging properties for ultrafine fibers and constrained binding properties for ultrafine fiber bundles.
  • the polyurethane resin is particularly excellent in adhesiveness for bundling ultrafine fibers and binding fiber bundles. Also, it increases the hardness of the polishing pad and improves the stability over time in polishing. It is particularly preferable because of its superiority.
  • the glass transition temperature of the polymer elastic body is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 15 ° C. or lower. If the glass transition temperature is too high, the polymer elastic body is fragile and may fall off during polishing.
  • the glass transition temperature is calculated from the peak temperature of the loss elastic modulus in the tensile mode in the dynamic viscoelasticity measurement.
  • the glass transition temperature depends on the ⁇ dispersion peak temperature of the polymer elastic body. For example, in the case of a polyurethane-based resin, the glass transition temperature can be reduced to ⁇ 10 ° C. or lower by adjusting the composition of the polyol serving as the soft component and the ratio between the hard component and the soft component.
  • the polymer elastic body preferably has the following elasticity.
  • the storage elastic modulus (G ′) of the polymer elastic body at 23 ° C. and 50 ° C. is preferably 90 to 900 MPa, and more preferably 200 to 800 MPa because the rigidity of the polishing pad is increased and the elasticity is excellent.
  • the storage elastic modulus at 23 °C (G 23 ') the ratio of the storage modulus at 50 °C (G 50') ( G 23 '/ G 50') is 4 or less, further, not more than 3, 1 / It is preferable that it is 3 or more from the point which is excellent in polishing stability.
  • the polymer elastic body has a water absorption rate of 0.2 to 5% by mass, more preferably 0.5 to 3% by mass when saturated water absorption is performed at 50 ° C. It is preferable from the viewpoint of excellent polishing stability.
  • polyurethane resin will be described in detail as a representative example of the polymer elastic body.
  • the polyurethane resin include various polyurethane resins obtained by reacting a polymer polyol, an organic polyisocyanate, a chain extender and the like at a predetermined molar ratio.
  • polymer polyol examples include, for example, polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol) and copolymers thereof; polybutylene adipate diol, polybutylene sebacate Diol, polyhexamethylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, poly (3-methyl-1,5-pentylene sebacate) diol, isophthalic acid copolymer polyol, terephthalic acid copolymer Polyester polyols such as polymerized polyol, cyclohexanol copolymer polyol, polycaprolactone diol, and copolymers thereof; polyhexamethylene carbonate diol, poly (3-methyl-1,5 Pentylene carbonate) diol, polypentamethylene carbonate diol, polytetramethylene carbonate
  • trifunctional alcohols such as trimethylolpropane and polyfunctional alcohols such as tetrafunctional alcohols such as pentaerythritol, or ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol.
  • tetrafunctional alcohols such as pentaerythritol, or ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol.
  • You may use together short chain alcohols, such as.
  • a polyol component having a hydrophilic group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, or a polyalkylene glycol group having 5 or less carbon atoms, particularly 3 or less carbon atoms, as a resin constituent unit.
  • polyol component having a carboxyl group examples include carboxyls such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid and 2,2-bis (hydroxymethyl) valeric acid. And group-containing diols.
  • polyol component having a polyalkylene glycol group having 5 or less carbon atoms include polyethylene glycol, polypropylene glycol and copolymers thereof.
  • a polycarbonate polyol having a glass transition temperature of ⁇ 10 ° C. or lower, further ⁇ 20 ° C. or lower is used as the polyol component.
  • the glass transition temperature of the polyurethane resin is ⁇ 10 ° C. or lower, and the elastic modulus It is particularly preferable because Examples of such a polyol component include polycarbonate polyols such as alicyclic polycarbonate polyols and linear polycarbonate polyols. Among them, amorphous polycarbonate polyols having a melting point of 0 ° C. or less are particularly preferred. It is preferable to contain ⁇ 100% by mass.
  • a polyurethane-based resin using such a polycarbonate-based polyol as a raw material is preferable since it has high wear resistance and moderate water absorption and storage elastic modulus.
  • amorphous polycarbonate polyol having a melting point of 0 ° C. or less include, for example, poly (3-methyl-1,5-pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol.
  • Branched polycarbonate polyols such as poly (3-methyl-1,5-pentylene carbonate) diol and poly (methyl-1,8-octamethylene carbonate) diol; polyhexamethylene carbonate diol, polypentamethylene carbonate diol
  • polycarbonate-based polyols such as polytetramethylene carbonate diol, polynonane methylene carbonate diol, and polycyclohexane carbonate.
  • the polyol component may be used alone or in combination of two or more.
  • the content of the structural unit derived from the polyol component in the polyurethane-based resin is 30 to 65% by mass, more preferably 40 to 60% by mass, and particularly 45 to 55% by mass. It is preferable from the point that generation
  • the polyurethane-type resin containing the structural unit derived from the polyol component which has a hydrophilic group improves the wettability with respect to polishing slurry, there exists a tendency for a water absorption rate to become high too much.
  • the copolymerization ratio of the polyol component having a hydrophilic group is 0.1 to 5%.
  • the content is preferably 10% by mass, more preferably 0.5 to 5% by mass.
  • polyol component having a hydrophilic group By containing a polyol component having a hydrophilic group in such a content ratio as a structural unit, water absorption and wettability can be improved while minimizing swelling and softening due to water absorption. Moreover, in order to suppress that a water absorption rate becomes high too much, it is preferable to use in combination with a polyol component with low water absorption.
  • polyols include, for example, polybutylene sebacate diol, poly (3-methyl-1,5-pentylene adipate) diol, and poly (3-methyl-1,5-pentylene sebacate) diol.
  • Polyester-based polyols and copolymers thereof poly (3-methyl-1,5-pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol, poly (3-methyl-1,5 -Pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol, polyhexamethylene carbonate diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol, polynonamethylene carbonate diol, polycyclohexane carbo Polycarbonate polyols, and the like to copolymerize the polycarbonate-based polyol, such as chromatography and.
  • organic polyisocyanates include, for example, non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate; 2,4-tri Examples thereof include aromatic diisocyanates such as range isocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate polyurethane.
  • non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate
  • 2,4-tri Examples thereof include aromatic diisocyanates such
  • polyfunctional isocyanates such as trifunctional isocyanate and tetrafunctional isocyanate, as needed. These may be used alone or in combination of two or more.
  • cycloaliphatic diisocyanates such as 4,4′-dicyclohexylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate or aromatics Diisocyanate is preferable because it has high adhesion to ultrafine fibers, improves the focusing force of the ultrafine fibers, and provides a polishing pad with high hardness.
  • chain extender examples include, for example, diamines such as hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, adipic acid dihydrazide, and isophthalic acid dihydrazide; Triamines such as diethylenetriamine; tetramines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 1,4 -Diols such as cyclohexanediol; Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, Aminopropyl alcohol It includes amino alcohols such as and the like
  • hydrazine, piperazine, hexamethylene diamine, isophorone diamine and derivatives thereof, and a combination of two or more of triamines such as ethylene triamine have high adhesion to fibers and moderate hardness. This is preferable because a polishing pad can be obtained.
  • monoamines such as ethylamine, propylamine and butylamine
  • monoamine compounds containing carboxyl groups such as 4-aminobutanoic acid and 6-aminohexanoic acid
  • monools such as methanol, ethanol, propanol and butanol May be.
  • Polyurethane containing a carboxyl group-containing diol such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (hydroxymethyl) valeric acid, etc.
  • a carboxyl group-containing diol such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (hydroxymethyl) valeric acid, etc.
  • the polyurethane resin is a cross-linking agent containing two or more functional groups capable of reacting with the functional group of the monomer unit forming the polyurethane, or a polyisocyanate compound. It is also preferable to form a crosslinked structure by adding a self-crosslinking compound such as a polyfunctional blocked isocyanate compound.
  • the combination of the functional group of the monomer unit and the functional group of the crosslinking agent includes carboxyl group and oxazoline group, carboxyl group and carbodiimide group, carboxyl group and epoxy group, carboxyl group and cyclocarbonate group, carboxyl group and aziridine group, carbonyl group Groups and hydrazine derivatives or hydrazide derivatives.
  • a combination of a monomer unit having a group and a hydrazine derivative or a hydrazide derivative is particularly preferred because crosslinking formation is easy and the resulting polishing pad has excellent rigidity and wear resistance.
  • crosslinking agent having a carbodiimide group examples include water-dispersed carbodiimide compounds such as “Carbodilite E-01”, “Carbodilite E-02”, and “Carbodilite V-02” manufactured by Nisshinbo Industries, Ltd.
  • examples of the crosslinking agent having an oxazoline group include water-dispersed oxazoline compounds such as “Epocross K-2010E”, “Epocross K-2020E”, and “Epocross WS-500” manufactured by Nippon Shokubai Co., Ltd.
  • the blending amount of the crosslinking agent is preferably 1 to 20% by mass and more preferably 1.5 to 10% by mass of the active ingredient of the crosslinking agent with respect to the polyurethane resin.
  • the polyurethane-based resin is within the range that does not impair the effects of the present invention, and the penetrant, antifoaming agent, lubricant, water repellent, oil repellent, thickener, extender, curing accelerator, antioxidant, ultraviolet absorber Further, it may further contain an antifungal agent, a foaming agent, a water-soluble polymer compound such as polyvinyl alcohol and carboxymethyl cellulose, a dye, a pigment, inorganic fine particles and the like.
  • sea-island type composite fibers obtained by melt spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin is produced.
  • the sea-island type composite fiber is used as the composite fiber for forming the ultra-fine fiber.
  • conventionally known ultra-fine fiber generation such as a multilayer laminated cross-sectional fiber is generated. Mold fibers may be used.
  • the sea-island type composite fiber is obtained by melt-spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin having low compatibility with the water-soluble thermoplastic resin, and then combining them. Then, the ultrafine fiber is formed by dissolving or removing the water-soluble thermoplastic resin from the sea-island type composite fiber.
  • the thickness of the sea-island type composite fiber is preferably 0.5 to 3 dtex, more preferably 0.8 to 2.5 dtex, from the viewpoint of industrial properties.
  • the water-soluble thermoplastic resin is a polymer that is dissolved or removed by heating or pressure under an aqueous solution such as water or an aqueous alkali solution or an acid aqueous solution.
  • aqueous solution such as water or an aqueous alkali solution or an acid aqueous solution.
  • the water-soluble thermoplastic resin include, for example, modified polyester obtained by copolymerizing a compound containing polyvinyl alcohol (PVA), a PVA copolymer, polyethylene oxide polyethylene glycol and / or an alkali metal sulfonate, and the like. Is mentioned. In these, PVA and a PVA-type copolymer are preferable from the point which is excellent in the solubility with respect to water.
  • the water-insoluble thermoplastic resin various polymers for forming the above-described ultrafine fibers can be used without any particular limitation.
  • the water-insoluble thermoplastic resin may contain various additives. Specific examples of the additive include, for example, a catalyst, an anti-coloring agent, a heat-resistant agent, a flame retardant, a lubricant, an antifouling agent, a fluorescent brightening agent, a matting agent, a coloring agent, a gloss improving agent, an antistatic agent, and an antibacterial agent. , Anti-mite agents, inorganic fine particles and the like.
  • a method for forming a long fiber web by the spunbond method after compounding by melt spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin will be described in detail below.
  • a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin are melt-kneaded with separate extruders, and molten resin strands are simultaneously discharged from different spinnerets. Then, after the discharged strands are combined with the composite nozzle, the sea-island type composite fibers are formed by discharging from the nozzle holes of the spinning head.
  • the number of islands in the sea-island type composite fiber is preferably 5 to 4000 islands / fiber, more preferably 10 to 1000 islands / fiber, from the viewpoint of easily reducing the cross-sectional area of the single fiber and obtaining a fiber bundle having a high fiber density. .
  • the sea-island type composite fiber After the sea-island type composite fiber is cooled by a cooling device, it is drawn by a high-speed air flow at a speed corresponding to a take-up speed of 1000 to 6000 m / min so as to obtain a desired fineness using a suction device such as an air jet nozzle. . Thereafter, the stretched composite fibers are deposited on a movable collection surface to form a long fiber web. At this time, the long fiber web deposited may be partially crimped as necessary.
  • the basis weight of the long fiber web is preferably in the range of 20 to 500 g / m 2 from the viewpoint of industrial properties.
  • silicone oil or mineral oil such as needle breakage prevention oil, antistatic oil, and entanglement oil is applied to the long fiber web.
  • two or more fiber webs may be overlapped with a cross wrapper and an oil agent may be applied.
  • the entanglement process which entangles a fiber three-dimensionally with a needle punch is performed.
  • the needle punching an entangled web having a high fiber density and hardly causing the fibers to come off can be obtained.
  • the density of fiber bundles on the front side and the back side can be made different by changing the needle punch conditions on the front side and the back side.
  • Needle conditions such as the type and amount of the oil agent, needle shape, needle depth, and number of punches in the needle punch are determined by the density of the fiber bundle on the front surface that becomes the polishing surface and the density of the fiber bundle on the back surface that becomes the fixed surface. Are appropriately selected so as to obtain an appropriate density difference.
  • the number of barbs on the needle is selected from, for example, 1 to 9 barbs, and is preferably as large as possible without causing needle breakage. Moreover, it is preferable to set the piercing depth of the needle within a range where the pattern after needle punching is not strong on the web surface. Specifically, for example, a punching process is initially performed with a 6 to 9 barb needle at a depth of 5 to 25 mm, and a depth of 0.1 to 15 mm with a 3 to 6 barb needle in the latter half. The condition which entangles the fiber of intensively is mentioned.
  • the number of needle punches is appropriately selected depending on the shape of the needle, the type and amount of oil used, and specifically, about 500 to 5000 punches / cm 2 is preferable, and the number of punches from the back side is preferred.
  • the number of punches from the surface side is preferably 1.5 to 2 times or more.
  • the entanglement web after the needle punch is entangled with a high fiber density so that the basis weight of the long fiber web before the needle punch is 1.2 times or more, and more preferably 1.5 times or more. This is preferable because a web is obtained.
  • the basis weight of the entangled web is appropriately selected according to the thickness of the target polishing pad, but is preferably in the range of 100 to 1500 g / m 2 from the viewpoint of excellent handleability.
  • the delamination force of the entangled web is 2 kg / 2.5 cm or more, and more preferably 4 kg / 2.5 cm or more. This is preferable because a high entangled web can be obtained.
  • the delamination force is a measure of the degree of three-dimensional entanglement. When the delamination force is too small, the fiber density of the fiber entangled body is not sufficiently high.
  • the upper limit of the delamination force of an entangled nonwoven fabric is not specifically limited, It is preferable that it is about 30 kg / 2.5 cm or less from the point of an entanglement process efficiency.
  • the fiber density and the degree of entanglement of the entangled web are increased by shrinking the entangled web with heat and moisture.
  • the entangled web containing the long fibers can be subjected to wet heat shrinkage, so that the entangled web can be greatly shrunk compared to the case where the entangled web containing the short fibers is subjected to wet heat shrinkage, Therefore, the fiber density of the ultrafine fibers becomes dense.
  • the wet heat shrinkage treatment is preferably performed by steam heating.
  • the steam heating conditions it is preferable to perform heat treatment for 60 to 600 seconds at an ambient temperature of 60 to 130 ° C. and a relative humidity of 75% or more, and further a relative humidity of 80% or more.
  • Such heating conditions are preferable because the entangled web can be shrunk at a high shrinkage rate.
  • relative humidity is too low, there exists a tendency for shrinkage
  • the wet heat shrinkage treatment is preferably performed so that the area shrinkage rate of the entangled web is 35% or more, and further 40% or more. By shrinking at such a high shrinkage rate, the fiber density becomes dense.
  • the upper limit of the area shrinkage rate is not particularly limited, but is preferably about 80% from the viewpoint of shrinkage limit and processing efficiency.
  • the area shrinkage rate (%) is expressed by the following formula (1): (area of the sheet surface before the shrinking process ⁇ area of the sheet surface after the shrinking process) / area of the sheet surface before the shrinking process ⁇ 100. 1), Is calculated by
  • the entangled web subjected to the wet heat shrinkage treatment in this way may be further increased in fiber density by being heated or pressed at a temperature equal to or higher than the heat deformation temperature of the sea-island composite fiber.
  • the density gradient of the fiber bundle can also be formed by heating and pressing the front side and the back side under different conditions. Examples of pressing conditions with a heated roll include conditions of a roll temperature of 110 to 150 ° C. and a roll pressure of 0.05 to 0.4 Mpa.
  • the basis weight of the entangled web after the shrinkage treatment relative to the basis weight of the entangled web before the shrinkage treatment is preferably 1.2 to 4 times, and more preferably 1.5 to 4 times.
  • the sea-island type composite fiber Prior to performing the ultrafine fiber treatment of the sea-island type composite fiber of the entangled web subjected to the shrinkage treatment, the sea-island type composite fiber may be bound by applying a polymer elastic body to the inside of the entangled web. In this way, by applying a polymer elastic body to the entangled web before performing the ultrafine fiber treatment, the shape stability of the entangled web is enhanced, and the density gradient of the fiber bundle of the resulting polishing pad is adjusted. be able to.
  • the entangled web subjected to the shrinkage treatment is impregnated with the aqueous liquid of the polymer elastic body, and then the polymer elastic body is solidified to impregnate the polymer web with the polymer elastic body.
  • the aqueous liquid of the polymer elastic body is an aqueous dispersion in which the component forming the polymer elastic body is dispersed in the aqueous medium, or the aqueous solution in which the component forming the polymer elastic body is dissolved in the aqueous medium.
  • the solid content concentration of the aqueous liquid of the polymer elastic body is preferably 10% by mass or more, and more preferably 15% by mass or more.
  • an aqueous dispersion of a polymer elastic body has a low viscosity even at a high concentration and is excellent in impregnation permeability, it can be easily filled into an entangled web and has excellent adhesion to fibers. Therefore, the polymer elastic body impregnated by this step can strongly restrain the sea-island type composite fiber and can easily increase the apparent density of the polishing pad.
  • a polymer elastic body obtained by coagulating an aqueous dispersion of a polymer elastic body has high wettability to water, a polishing pad capable of holding a large amount of abrasive grains is obtained.
  • Aqueous dispersions include suspensions and emulsions.
  • the average particle diameter of the elastic polymer dispersed in the aqueous dispersion is preferably about 0.01 to 0.2 ⁇ m.
  • the method for preparing the aqueous dispersion is not particularly limited.
  • a monomer unit having a hydrophilic group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, a polyalkylene glycol group having 5 or less carbon atoms, particularly 3 or less carbon atoms is contained as a resin constituent unit. Dispersibility in an aqueous medium can be imparted.
  • the copolymerization ratio of the monomer unit having such a hydrophilic group is 0.1 to 10% by mass, and further 0.5 to 5% by mass while minimizing swelling and softening due to water absorption. From the point that water absorption and wettability can be improved.
  • the polyurethane resin particles can be emulsified or suspended in an aqueous medium.
  • the surfactant used for emulsification or suspension include, for example, sodium lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene tridecyl ether acetate, sodium dodecylbenzene sulfonate, sodium alkyldiphenyl ether disulfonate, dioctyl sulfosuccinic acid
  • Anionic surfactants such as sodium; nonionic properties such as polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene-polyoxypropylene block copolymer Surfactant etc. are mentioned. Moreover, you may use what is called reactive surfactant which has reactivity. Moreover, heat-sensitive gelation property
  • Examples of the method for impregnating the entangled web with the aqueous liquid of the polymer elastic body include a method using a knife coater, a bar coater, or a roll coater, or a dipping method.
  • the polymer elastic body can be solidified by drying the entangled web impregnated with the aqueous liquid of the polymer elastic body.
  • Examples of the drying method include a method of heat treatment in a drying apparatus at 50 to 200 ° C. and a method of heat treatment in a dryer after infrared heating.
  • the entangled web When the entangled web is impregnated with an aqueous liquid of a polymer elastic body and then dried, the aqueous liquid migrates to the surface layer due to evaporation of moisture from the surface layer of the entangled web. It is preferable that the polymer elastic body is unevenly distributed on the surface layer to form a density gradient of the fiber bundle by drying under conditions that promote this migration.
  • the heat treatment temperature of the hot air dryer for example, 130 to 170 ° C., more preferably 140 to 170 ° C. is preferable.
  • Ultrafine fiber formation process The process of forming ultrafine fiber by removing the water-soluble thermoplastic resin in the sea-island type composite fiber will be described in detail.
  • the water-soluble thermoplastic resin in the sea-island composite fiber is dissolved or removed by using water, an alkaline aqueous solution, an acidic aqueous solution, or the like.
  • the entangled web or the entangled web provided with the polymer elastic body is immersed in hot water such as water, an alkaline aqueous solution, an acidic aqueous solution, etc., and subjected to hot water treatment.
  • hot water such as water, an alkaline aqueous solution, an acidic aqueous solution, etc.
  • the shrinkage treatment of the entangled web and the ultra-fine fiber of the sea-island type composite fiber may be simultaneously performed in this step.
  • an entangled web is immersed in hot water at 65 to 90 ° C. for 5 to 300 seconds as a first step, and further, As the second stage, conditions for treatment in hot water at 85 to 100 ° C. for 100 to 600 seconds can be mentioned.
  • the ultrafine fiber forming step (5) the sea-island type composite fiber is subjected to ultrafine fiber treatment, whereby the water-soluble thermoplastic resin is removed and voids are formed inside the ultrafine fiber bundle.
  • the ultrafine fibers are focused by applying a polymer elastic body to such voids.
  • the ultrafine fiber bundles are further restrained by the polymer elastic body.
  • the aqueous liquid of the polymer elastic body used in this step may be the same as the aqueous liquid described in the polymer elastic body filling step I.
  • the method for filling and coagulating the polymer elastic body may be the same as the method described in the polymer elastic body filling step I. In this way, a polishing pad precursor is formed.
  • the polishing pad of this embodiment is obtained by performing a planarization process on the obtained polishing pad precursor.
  • the polishing pad precursor is hot press-molded to a predetermined thickness, or the surface is polished with sandpaper, needle cloth, diamond, etc., so that the surface is finished smoothly and the thickness is adjusted.
  • the thickness of the polishing pad thus finished is preferably about 0.5 to 3 mm.
  • the surface of the polishing pad may be brushed.
  • the contact area between the polishing surface of the polishing pad and the substrate to be polished is increased, and wettability with the polishing slurry is improved.
  • a method of buffing the surface of the polishing pad with sandpaper is used.
  • the sandpaper for example, it is preferable to use one having an abrasive grain number of # 40 to # 80.
  • Specific examples of the raising process include, for example, a continuous raising process using a contact type buffing machine, an emery type buffing process, a buffing process combining a contact type and an emery type, and the like.
  • the raised surface of the polishing pad may be pressed.
  • polishing slurry can be spread more uniformly on the polishing surface.
  • FIG. 3 is a side view showing a state of the chemical mechanical polishing method using the polishing pad 10 of the present embodiment.
  • a circular rotary surface plate 11, a slurry supply nozzle 12, a carrier 13, and a pad conditioner 14 as shown in FIG.
  • a CMP apparatus 20 is used.
  • a polishing pad 10 is adhered to the surface of the rotating surface plate 11 with a fixed surface 4 by a double-sided tape.
  • the carrier 13 supports the substrate 15 to be polished.
  • the rotating surface plate 11 is rotated in a direction indicated by an arrow by a motor (not shown).
  • the carrier 13 is rotated in the direction indicated by an arrow by a motor (not shown) in a planetary gear shape within the surface of the rotating surface plate 11.
  • the pad conditioner 14 is also rotated in a planetary gear shape in the plane of the rotating surface plate 11 by a motor (not shown), for example, in the direction indicated by the arrow.
  • the surface of the polishing pad 10 is conditioned by pressing the rotating pad conditioner 14 against the surface of the polishing pad 10 while flowing distilled water on the surface of the polishing pad 10 that is fixed to the rotating platen 11 and rotating.
  • a polishing slurry 16 containing various chemical components and hard fine abrasive grains is supplied from the slurry supply nozzle 12 to the surface of the rotating polishing pad 10.
  • the substrate 15 to be polished which is fixed to the carrier 13 and rotates, is pressed against the polishing pad 10 in which the polishing slurry 16 has spread evenly.
  • the polishing process is continued until a predetermined flatness is obtained.
  • the quality of the finished product is affected by adjusting the pressing force applied during polishing and the speed of the relative movement between the rotating surface plate 11 and the carrier 13.
  • the polishing pad 10 is fixed to the surface of the rotating surface plate 11 with the fixed surface 4.
  • the polishing surface 3 having a high number density and high rigidity of the fiber bundle becomes the outer surface, so that the polishing rate and the wear resistance are increased. Polishing non-uniformity is reduced.
  • the surface layer on the fixed surface 4 side fixed to the rotating surface plate 11 has a low number density of fiber bundles and a low rigidity, it is possible to maintain appropriate followability and fit to the surface of the substrate 15 to be polished.
  • the components of the polishing slurry 16 are appropriately selected depending on the type of the substrate 15 to be polished.
  • Specific examples of the abrasive grains include SiO 2 , Al 2 O 3 , CeO 2 , Mn 2 O 3 , diamond particles having a particle diameter of several tens to several hundreds of nanometers.
  • Specific examples of the chemical component include components that modify the surface to be polished, such as acid and alkali, and surfactants.
  • Such a chemical mechanical polishing method of this embodiment can be used for polishing various substrates.
  • the base material include, for example, insulating materials such as silicon, silicon oxide, silicon oxyfluoride, and organic polymers; conductive materials such as copper, aluminum, and tungsten; barrier materials such as tantalum, titanium, tantalum nitride, and titanium nitride. , Etc.
  • Specific examples of the application include, for example, a silicon wafer, a compound semiconductor wafer, a semiconductor wafer, a semiconductor device, a liquid crystal member, an optical element, a crystal, an optical substrate, an electronic circuit substrate, an electronic circuit mask substrate, a multilayer wiring substrate, and a hard disk. And polishing of MEMS (micro-electro-mechanical systems) base materials.
  • the polishing may be any of primary polishing, secondary polishing (adjustment polishing), finish polishing, mirror polishing, and the like.
  • the cross-sectional area of 100 ultrafine fibers forming the ultrafine fiber bundle was obtained, and the average value was defined as the average cross-sectional area of single ultrafine fibers.
  • five regions of 0.1 mm square were selected evenly in the thickness region within 20% in the thickness direction from the surface of the polishing pad, and the number of ultrafine fiber bundles at each location was counted. From the result, the number of ultrafine fiber bundles present per 1 mm 2 was calculated. The average of five points was D 1. Further, from the obtained image, five regions of 0.1 mm square were selected evenly in the thickness region within 20% from the back surface of the polishing pad in the thickness direction, and the number of ultrafine fiber bundles at each location was counted.
  • the number of ultrafine fiber bundles present per 1 mm 2 was calculated.
  • the average of five points was D 2. Further, from the obtained image, five uniform 0.1 mm square regions were selected in the vicinity of 50% in the thickness direction from the surface of the polishing pad, and the number of ultrafine fiber bundles at each location was counted. From the result, the number of ultrafine fiber bundles present per 1 mm 2 was calculated. The average of five points was D 3.
  • the Taber abrasion of the polishing surface of the polishing pad cut into a circle having a diameter of 13 cm was measured by a method according to JIS K5600-5-9. The measurement was performed under the conditions of a wear wheel: H-22, a load: 500 g, and a rotation speed: 1000 times.
  • the weight loss (mg) which is the difference between the pre-measurement weight and the post-measurement weight, was determined.
  • T g Glass Transition Temperature (T g ) of Polymer Elastic Body
  • a film having a length of 4 cm, a width of 0.5 cm, and a thickness of 400 ⁇ m ⁇ 100 ⁇ m made of a polymer elastic body constituting a polishing pad was prepared. Then, after measuring the thickness of the film with a micrometer, using a dynamic viscoelasticity measuring device (DVE Rheospectr, manufactured by Rheology Co., Ltd.) under the conditions of a frequency of 11 Hz and a heating rate of 3 ° C./min. The dynamic viscoelasticity was measured, and the main dispersion peak temperature of the loss elastic modulus was defined as the glass transition temperature.
  • DVE Rheospectr dynamic viscoelasticity measuring device
  • Polishing performance of polishing pad A double-sided adhesive tape was affixed to the fixed surface of the polishing pad and fixed to a rotating surface plate of a CMP polishing apparatus ("PP0-60S" manufactured by Nomura Corporation). Then, using a diamond dresser with count # 200 (MEC200L manufactured by Mitsubishi Materials Corporation), polishing for 18 minutes while flowing distilled water at a rate of 120 mL / min under conditions of a pressure of 177 kPa and a dresser rotation speed of 110 rpm. Conditioning (seasoning) was performed by grinding the pad surface. Next, the polishing slurry was supplied to the surface of the polishing pad fixed to the rotating surface plate.
  • polishing slurry a slurry obtained by diluting Cabot abrasive slurry SS25 twice with distilled water was used.
  • the supply amount of the polishing slurry was 120 ml / min.
  • an 8 inch diameter silicon wafer having an oxide film surface was polished for 100 seconds under the conditions of a platen rotation speed of 50 rotations / minute, a head rotation speed of 49 rotations / minute, and a polishing pressure of 35 kPa.
  • non-uniformity (%) ( ⁇ / R) ⁇ 100 (1). It shows that it is grind
  • Example 1 PVA resin was used as the island component, and isophthalic acid-modified PET having a modification degree of 6 mol% was used as the sea component.
  • the isophthalic acid-modified PET had a water absorption of 1% by mass when saturated with water at 50 ° C., and its glass transition temperature was 77 ° C.
  • a strand of sea-island type composite fibers was formed by discharging PVA resin and isophthalic acid-modified PET at a ratio of 25:75 (mass ratio) from a 25 island / fiber melt compound spinning die (die temperature 260 ° C.). .
  • the strand discharged from the die was cooled while being stretched and thinned by an air jet suction device installed immediately below the die, thereby spinning a sea-island composite filament having an average fineness of 2.0 dtex.
  • the suction force of the air jet suction device was adjusted so that the spinning speed obtained indirectly from the ratio of the discharge amount per unit time and the fineness of the obtained long fibers was 4000 m / min.
  • mold composite filament was continuously collected on the mobile net installed directly under the air jet suction apparatus, and the spunbond sheet (long fiber web) with a weight of 40 g / m ⁇ 2 > was obtained.
  • the obtained entangled web was immersed in hot water at 70 ° C. for 90 seconds to relieve the stress of the island component, thereby shrinking the area by 43%, and further immersed in hot water at 95 ° C. for 10 minutes.
  • the PVA resin was dissolved and removed.
  • the area shrinkage rate of the entangled web by the hot water treatment was 45% in the dry state.
  • a nonwoven fabric composed of fiber bundles of ultrafine fibers was obtained by the hot water treatment.
  • the nonwoven fabric had a basis weight of 780 g / m 2 and an apparent density of 0.55 g / cm 3 .
  • the obtained nonwoven fabric was impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass.
  • the average particle size of the polyurethane elastic body A in the aqueous emulsion was 0.05 ⁇ m.
  • the polyurethane elastic body A is a polymer as follows.
  • the polyurethane elastic body A contains 1.5% by mass of 4,4′-dicyclohexylmethane diisocyanate, short-chain amine, short-chain diol, and 2,2-bis (hydroxymethyl) propionic acid with respect to 50% by mass of the polymer diol.
  • This is a crosslinked polyurethane resin obtained by crosslinking 100 parts by mass of a polycarbonate-based non-yellowing polyurethane resin obtained by reacting 50% by mass of a copolymerized with 5 parts by mass of a carbodiimide-based crosslinking agent.
  • the polymer diol comprises 99.9: 0.1 (molar ratio) of a copolymer polyol of hexamethylene carbonate and pentamethylene carbonate, which is an amorphous polycarbonate polyol, and a polyalkylene glycol having 2 to 3 carbon atoms. ).
  • the polyurethane elastic body A had a water absorption rate of 2% by mass, a storage elastic modulus at 23 ° C. of 450 MPa, a storage elastic modulus at 50 ° C. of 300 MPa, and a glass transition temperature of ⁇ 25 ° C. Further, the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the mass of the nonwoven fabric in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric impregnated with the aqueous emulsion is coagulated at 90 ° C. in a 50% RH atmosphere, further dried at 150 ° C., and further hot-pressed at 150 ° C. to obtain the polishing pad precursor A0. Obtained.
  • the polishing pad precursor A0 had a basis weight of 910 g / m 2 , an apparent density of 0.62 g / cm 3 , and a thickness of 1.45 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
  • polishing pad A1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor A0.
  • a cross section of the polishing pad A1 was observed by an electron microscope, the average the density D 1 is about 2500 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 1200 / mm 2 D 1 / D 2 was about 2.1.
  • an average microfine fiber bundles of the cross-sectional area of about 320 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed.
  • the ultrafine fibers are focused by a polyurethane elastic body that has entered the inside of the ultrafine fiber bundle, and the ultrafine fiber bundles are also bound by the polyurethane elastic body.
  • the polishing pad A1 had a basis weight of 750 g / m 2 , an apparent density of 0.61 g / cm 3 , a thickness of 1.23 mm, and a D hardness of 37.
  • the obtained polishing pad A1 was cut into a circular shape having a diameter of 51 cm, and was further processed to form a grid-like groove having a width of 2.0 mm, a depth of 1.0 mm, and an interval of 15.0 mm on the main surface. .
  • the polishing performance of the polishing pad A1 was evaluated by the evaluation method described above. The results are shown in Table 1.
  • Example 2 The entangled web obtained in Example 1 was subjected to steam heating under the conditions of an atmospheric temperature of 60 ° C., a relative humidity of 80%, and 500 seconds. And only the surface was press-processed with the 120 degreeC hot roll with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 40% in the dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C.
  • a composite of the entangled web and the polyurethane elastic body A Entangled web composite
  • the aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A.
  • the resulting entangled web composite is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the PVA resin, and further dried to form a nonwoven fabric comprising a fiber bundle of ultrafine fibers and a polyurethane elastic body A.
  • a composite nonwoven fabric composite
  • the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass.
  • the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A.
  • the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. B0 was obtained.
  • the polishing pad precursor B0 had a basis weight of 730 g / m 2 , an apparent density of 0.58 g / cm 3 , and a thickness of 1.26 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
  • polishing pad B1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor B0.
  • a cross section of the polishing pad B1 was observed with an electron microscope, the average the density D 1 of about 2450 pieces / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 1260 / mm 2 D 1 / D 2 was about 1.9.
  • an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 12 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad B1 had a basis weight of 614 g / m 2 , an apparent density of 0.58 g / cm 3 , a thickness of 1.06 mm, and a D hardness of 36. Then, the obtained polishing pad B1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The entangled web obtained in Example 1 was subjected to steam heating under the conditions of an atmospheric temperature of 80 ° C., a relative humidity of 80%, and 500 seconds. And only the surface was press-processed with the 120 degreeC hot roll with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 50% in the dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C.
  • a complex was formed.
  • the aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A.
  • the PVA resin is dissolved and removed by immersing the entangled web composite in 95 ° C. hot water for 10 minutes, and further, the nonwoven fabric made of a fiber bundle of ultrafine fibers and the polyurethane elastic body A by drying.
  • a complex was formed.
  • the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass.
  • the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A.
  • the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. C0 was obtained.
  • the polishing pad precursor C0 had a basis weight of 790 g / m 2 , an apparent density of 0.63 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
  • the polishing pad precursor C0 was buffed and ground to obtain a flattened polishing pad C1.
  • the average the density D 1 of the microfine fiber bundle is about 2840 pieces / mm 2
  • the average the density D 2 of the microfine fiber bundles from about 1890 cells / mm 2 D 1 / D 2 was about 1.5.
  • an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 13 .mu.m 2 was observed.
  • the ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad C1 had a basis weight of 650 g / m 2 , an apparent density of 0.63 g / cm 3 , a thickness of 1.03 mm, and a D hardness of 37.
  • the resulting polishing pad C1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle
  • the obtained entangled web was subjected to steam heating under conditions of an atmospheric temperature of 60 ° C., a relative humidity of 70%, and 500 seconds. And only the surface was press-processed with the hot roll of 110 degreeC with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 35% in a dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C.
  • a complex was formed.
  • the aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A.
  • the resulting entangled web composite is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the PVA resin, and then dried to form a nonwoven fabric made of a fiber bundle of ultrafine fibers and the polyurethane elastic body A.
  • a nonwoven composite was formed.
  • the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass.
  • the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A.
  • the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. E0 was obtained.
  • the polishing pad precursor E0 had a basis weight of 665 g / m 2 , an apparent density of 0.53 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
  • the polishing pad precursor E0 was buffed and ground to obtain a flattened polishing pad E1.
  • a cross section of the polishing pad E1 was observed by an electron microscope, the average the density D 1 of about 2,300 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 540 / mm 2 , D 1 / D 2 was about 4.3.
  • an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad E1 had a basis weight of 559 g / m 2 , an apparent density of 0.53 g / cm 3 , a thickness of 1.05 mm, and a D hardness of 34.
  • the obtained polishing pad E1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 A web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle
  • an entangled web having a basis weight of 600 g / m 2 and a delamination strength of 11.0 kg / 2.5 cm was obtained.
  • the following is the same conditions as in Example 1, and the entangled web is hydrothermally treated to dissolve and remove the PVA resin, impregnated with polyurethane elastic body A, and further hot pressed at 150 ° C.
  • a polishing pad precursor F0 was obtained.
  • the polishing pad precursor F0 had a basis weight of 740 g / m 2 , an apparent density of 0.63 g / cm 3 , and a thickness of 1.17 mm.
  • the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
  • polishing pad F1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor F0.
  • a cross section of the polishing pad F1 was observed by an electron microscope, the average the density D 1 of the microfine fiber bundle of approximately 2550 cells are / mm 2, is the mean the density D 2 of microfine fiber bundles of about 2340 pieces / mm 2 , D 1 / D 2 was about 1.1.
  • an ultrafine fiber bundle having an average cross section of about 350 ⁇ m 2 made of ultrafine fibers having an average cross section of about 14 ⁇ m 2 was observed.
  • the ultrafine fibers are focused by a polyurethane elastic body that has entered the inside of the ultrafine fiber bundle, and the ultrafine fiber bundles are also bound by the polyurethane elastic body.
  • the polishing pad F1 had a basis weight of 613 g / m 2 , an apparent density of 0.63 g / cm 3 , a thickness of 0.98 mm, and a D hardness of 38. Then, the obtained polishing pad F1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle
  • the web laminate is formed by using a needle number 42, a needle needle having one barb, and a needle number 42, a needle needle having six barbs in this order from the first surface side to a needle depth of 5 to Needle punch processing is performed at a depth of 25 mm and a punch number of 1200 punch / cm 2 , and needle punch processing is performed at a needle depth of 0 to 5 mm from the second surface side and a punch number of 300 punch / cm 2. It was done.
  • the area shrinkage ratio of the web laminate by needle punching was 20%. By such a needle punching process, an entangled web having a basis weight of 560 g / m 2 and a delamination strength of 9.4 kg / 2.5 cm was obtained.
  • the obtained entangled web was subjected to steam heating under conditions of an atmospheric temperature of 60 ° C., a relative humidity of 70%, and 500 seconds. And only the surface was press-processed with the hot roll of 110 degreeC with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 35% in a dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C.
  • the aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A. Then, the PVA resin is dissolved and removed by immersing the entangled web composite in 95 ° C. hot water for 10 minutes, and dried to form a nonwoven fabric composite of a nonwoven fabric composed of fiber bundles of ultrafine fibers and a polyurethane elastic body A. Formed.
  • the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass.
  • the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A.
  • the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. G0 was obtained.
  • the polishing pad precursor G0 had a basis weight of 665 g / m 2 , an apparent density of 0.53 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
  • the polishing pad precursor G0 was buffed and ground to obtain a flattened polishing pad G1.
  • the average the density D 1 is about 2400 / mm 2 of the microfine fiber bundles
  • D 1 / D 2 was about 6.0.
  • an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed.
  • the ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad G1 had a basis weight of 559 g / m 2 , an apparent density of 0.53 g / cm 3 , a thickness of 1.05 mm, and a D hardness of 34.
  • the obtained polishing pad G1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the same manner as in Example 1, a strand of sea-island type composite fiber discharged from the die was wound up at 3000 m / min to obtain a filament. Then, the obtained filament was crimped and cut to obtain a staple having a cut length of 30 mm. The obtained staple was needle punched under the same conditions as in Example 1. By such a needle punching process, a short fiber entangled nonwoven fabric having a basis weight of 600 g / m 2 and a delamination strength of 7.5 kg / 2.5 cm was obtained. The area shrinkage rate of the sheet made of staples by needle punching was 25%.
  • the short fiber entangled nonwoven fabric was subjected to hot water treatment under the same conditions as in Example 1 to dissolve and remove the PVA resin, and the apparent density 0.
  • a nonwoven fabric of 35 g / cm 3 was obtained.
  • the polishing pad precursor H0 was obtained by impregnating the polyurethane elastic body A to the obtained nonwoven fabric, and also heat-pressing at 150 degreeC.
  • the polishing pad precursor H0 had a basis weight of 480 g / m 2 , an apparent density of 0.43 g / cm 3 , and a thickness of 1.15 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
  • the polishing pad precursor H0 was buffed and ground to obtain a flattened polishing pad H1.
  • the average the density D 1 of about 350 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 350 / mm 2 , D 1 / D 2 was about 1.0.
  • an average microfine fiber bundles of the cross-sectional area of about 350 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 16 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad H1 had a basis weight of 397 g / m 2 , an apparent density of 0.42 g / cm 3 , a thickness of 0.95 mm, and a D hardness of 27.
  • the obtained polishing pad H1 was processed in the same manner as in Example 1. Note that the evaluation of the polishing was omitted because the ultra-fine fibers were frequently loosened due to the large elongation of the short fiber entangled nonwoven fabric.
  • Example 4 In the same manner as in Example 1, a strand of sea-island type composite fiber discharged from the die was wound up at 3000 m / min to obtain a filament. Then, the obtained filament was crimped and cut to obtain a staple having a cut length of 30 mm. The obtained staple was needle punched under the same conditions as in Example 1. By such a needle punching process, a short fiber entangled nonwoven fabric having a basis weight of 600 g / m 2 and a delamination strength of 7 kg / 2.5 cm was obtained. The area shrinkage ratio of the layer made of staples by needle punching was 25%.
  • the obtained short fiber entangled nonwoven fabric was subjected to steam heat treatment and press treatment under the same conditions as in Example 2. Then, under the same conditions as in Example 2, impregnating and imparting polyurethane elastic body A to the short fiber entangled nonwoven fabric after the treatment, dissolving and removing PVA resin, impregnating and imparting polyurethane elastic body A, drying and By performing hot pressing at 150 ° C., a polishing pad precursor I0 was obtained.
  • the polishing pad precursor I0 had a basis weight of 730 g / m 2 , an apparent density of 0.58 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
  • polishing pad I1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor I0.
  • a cross section of the polishing pad I1 was observed by an electron microscope, the average the density D 1 of about 1010 pieces / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 930 cells / mm 2 , D 1 / D 2 was about 1.1.
  • an average microfine fiber bundles of the cross-sectional area of about 350 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 16 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle.
  • the polishing pad I1 had a basis weight of 613 g / m 2 , an apparent density of 0.58 g / cm 3 , a thickness of 1.06 mm, and a D hardness of 35. Then, the obtained polishing pad I1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Isophthalic acid-modified PET strands were formed by discharging isophthalic acid-modified PET from a melt compound spinning die (die temperature 260 ° C.). Then, the strand discharged from the die was cooled while being stretched and thinned by an air jet suction device installed immediately below the die, thereby spinning an isophthalic acid-modified PET filament having an average fineness of 0.2 dtex. Then, the PET filament was continuously collected on a mobile net installed immediately below the air jet suction device to obtain a PET spunbond sheet (long fiber web) having a basis weight of 30 g / m 2 .
  • the total basis weight was produced web laminate of 360 g / m 2.
  • the nonwoven fabric was obtained by carrying out the needle punch process of the obtained web laminated body like Example 1.
  • FIG. the obtained nonwoven fabric was immersed in hot water at 70 ° C. for 90 seconds to relieve stress, thereby shrinking the area by 7%.
  • the apparent density of such a hydrothermally treated nonwoven fabric was 0.25 g / cm 3 .
  • the elastic pad precursor J0 was obtained by impregnating and giving the polyurethane elastic body A to the nonwoven fabric treated with hot water under the same conditions as in Example 1, and further hot pressing at 150 ° C.
  • the polishing pad precursor J0 had a basis weight of 390 g / m 2 , an apparent density of 0.25 g / cm 3 , and a thickness of 1.55 mm.
  • the mass ratio of a nonwoven fabric and the polyurethane elastic body A was 88/12.
  • the polishing pad precursor J0 was buffed and ground to obtain a flattened polishing pad J1.
  • the average existence density D 1 of the cross section of the ultrafine fibers is about 300 / mm 2
  • the average the density D 2 of the cross section of the ultrafine fibers is about 300 / mm 2
  • the D 1 / D 2 About 1.0.
  • the polishing pad J1 had a basis weight of 315 g / m 2 , an apparent density of 0.25 g / cm 3 , a thickness of 1.25 mm, and a D hardness of 28.
  • the resulting polishing pad J1 was processed in the same manner as in Example 1.
  • polishing evaluation was abbreviate
  • the polishing pad according to the present invention includes various devices such as various devices and various substrates that are flattened or mirrored, such as semiconductor substrates, semiconductor devices, compound semiconductor devices, compound semiconductor substrates, compound semiconductor products, LED substrates, and LEDs. It can be used as a polishing pad for polishing products, silicon wafers, hard disk substrates, glass substrates, glass products, metal substrates, metal products, plastic substrates, plastic products, ceramic substrates, ceramic products and the like.

Abstract

One aspect of the present disclosures is a polishing pad that contains a non-woven fabric formed from a fiber bundle of microfibers having an average cross-sectional area of 0.1-30 μm2, and an elastomer applied within the non-woven fabric. In a vertical section in the direction of thickness, the average number density (D1­­) of fiber bundle cross-sections in the region within a thickness of 20% in the direction of thickness from a first surface is 1000-5000/mm2, and the ratio (D1/D2) between D1 and the average number density (D2) of fiber bundle cross sections in the region within a thickness of 20% in the direction of thickness from a second surface which is on the reverse of the first surface is 1.3-5.

Description

研磨パッド及びケミカルメカニカル研磨方法Polishing pad and chemical mechanical polishing method
 本発明は、被研磨基材の平坦化や鏡面化に用いられる研磨パッド、及び、それを用いたケミカルメカニカル研磨方法に関する。詳しくは、例えば、半導体ウエハの表面の表面研磨や、配線基板の研磨等に好ましく用いられる、不織布タイプの研磨パッドに関する。 The present invention relates to a polishing pad used for flattening or mirroring a substrate to be polished, and a chemical mechanical polishing method using the same. More specifically, for example, the present invention relates to a nonwoven fabric type polishing pad that is preferably used for surface polishing of the surface of a semiconductor wafer, polishing of a wiring board, and the like.
 近年、集積回路の高集積化及び多層配線化に伴い、集積回路が形成される半導体ウエハには高い平坦度が求められている。 In recent years, along with the high integration and multilayer wiring of integrated circuits, high flatness is required for semiconductor wafers on which integrated circuits are formed.
 半導体ウエハを研磨するための研磨法としては、ケミカルメカニカル研磨(CMP)が広く用いられている。CMPは、回転する被研磨基材の表面に研磨スラリーを滴下しながら、遊星歯車状に回転する研磨パッドを接触させることにより研磨する方法である。 As a polishing method for polishing a semiconductor wafer, chemical mechanical polishing (CMP) is widely used. CMP is a method of polishing by contacting a polishing pad rotating in a planetary gear shape while dripping polishing slurry onto the surface of a rotating substrate to be polished.
 CMPに用いられる研磨パッドとしては、下記特許文献1~4に開示されているような独立気泡構造を有する高分子の発泡成形体からなる研磨パッドや、下記特許文献5~18に開示されているような不織布タイプの研磨パッドが知られている。 As a polishing pad used for CMP, a polishing pad made of a polymer foamed molding having a closed cell structure as disclosed in Patent Documents 1 to 4 below, and disclosed in Patent Documents 5 to 18 below. Such a non-woven fabric type polishing pad is known.
 発泡成形体からなる研磨パッドは、例えば、2液硬化型ポリウレタンを注型発泡成形することによって製造される。このような研磨パッドは不織布タイプの研磨パッドよりも高い剛性を有する。そのために、研磨時に被研磨基材の凸部に対して選択的に荷重が掛かりやすくなるために、研磨レート(研磨速度)が比較的高い。しかしながら発泡成形体からなる研磨パッドは、次のような欠点を有する。凝集した砥粒が研磨面に存在する場合には、凝集した砥粒に対しても荷重が選択的に掛かるために、研磨面にスクラッチが付きやすくなる。従って、非特許文献1にも記載されているように、スクラッチが付き易い銅配線を有する基材や、界面の接着性が弱い低誘電率材料を研磨する場合には、傷や界面剥離が特に発生しやすくなるという欠点があった。また、注型発泡成形においては、均質に発泡された発泡成形体を得ることが難しいために、研磨面内における研磨不均一性が高くなりやすいという欠点があった。 A polishing pad made of a foam-molded product is produced, for example, by casting and molding a two-component curable polyurethane. Such a polishing pad has higher rigidity than a nonwoven fabric type polishing pad. Therefore, a load is easily applied selectively to the convex portions of the substrate to be polished during polishing, and the polishing rate (polishing rate) is relatively high. However, a polishing pad made of a foamed molded product has the following drawbacks. When the agglomerated abrasive grains are present on the polished surface, a load is selectively applied to the agglomerated abrasive grains, so that the polished surface is easily scratched. Therefore, as described in Non-Patent Document 1, scratches and interfacial delamination are particularly noticeable when polishing a substrate having a copper wiring that is easily scratched or a low dielectric constant material having low interface adhesion. There was a drawback that it was likely to occur. Further, in cast foam molding, since it is difficult to obtain a foamed product that is uniformly foamed, there has been a drawback in that polishing non-uniformity within the polished surface tends to be high.
 一方、不織布タイプの研磨パッドは、例えば、不織布と、不織布の内部に付与されたポリウレタン樹脂等の高分子弾性体とを含む。このような不織布タイプの研磨パッドは、発泡成形体からなる研磨パッドよりも柔軟性に優れている。そのために凝集した砥粒が研磨面に存在する場合でも、凝集した砥粒に荷重が選択的に掛かりにくく、研磨面にスクラッチが付きにくい。しかしながら、不織布タイプの研磨パッドは、充分に高い平坦化性能が得られないという問題があった。これは、不織布タイプの研磨パッドは柔軟であるために、研磨時に、被研磨基材の表面形状に追従して変形したり、研磨特性が経時的に変化したり、繊維が存在する部分に局部的に応力が集中したりすることが原因であると思われる。また、不織布タイプの研磨パッドは、研磨レートが低いという問題もあった。 On the other hand, the nonwoven fabric type polishing pad includes, for example, a nonwoven fabric and a polymer elastic body such as polyurethane resin applied to the inside of the nonwoven fabric. Such a non-woven fabric type polishing pad is more flexible than a polishing pad made of a foamed molded product. Therefore, even when agglomerated abrasive grains are present on the polished surface, it is difficult for a load to be selectively applied to the agglomerated abrasive grains and scratches are less likely to be scratched on the polished surface. However, the nonwoven fabric type polishing pad has a problem that a sufficiently high leveling performance cannot be obtained. This is because the non-woven type polishing pad is flexible, so that during polishing, it deforms following the surface shape of the substrate to be polished, the polishing characteristics change over time, or the part where fibers are present is localized. It seems that this is because of stress concentration. Further, the nonwoven fabric type polishing pad has a problem that the polishing rate is low.
 また、下記特許文献15~18は、従来よりも高精度な研磨加工を実現することを目的とした、極細繊維の繊維束から形成された不織布を用いた不織布タイプの研磨パッドを開示する。具体的には、例えば、特許文献15は、平均繊度が0.0001~0.01デシテックスのポリエステル極細繊維の繊維束が絡合してなる不織布と、その不織布の内部空間に存在するポリウレタンを主成分とした高分子弾性体とから構成されるシート状物からなる研磨パッドを開示する。 The following Patent Documents 15 to 18 disclose a non-woven type polishing pad using a non-woven fabric formed from a bundle of ultrafine fibers for the purpose of realizing a polishing process with higher accuracy than before. Specifically, for example, Patent Document 15 mainly includes a nonwoven fabric in which fiber bundles of polyester microfibers having an average fineness of 0.0001 to 0.01 dtex are entangled and polyurethane existing in the interior space of the nonwoven fabric. Disclosed is a polishing pad comprising a sheet-like material composed of a polymer elastic body as a component.
特開2000-178374号公報JP 2000-178374 A 特開2000-248034号公報Japanese Patent Laid-Open No. 2000-248034 特開2001-89548号公報JP 2001-89548 A 特開平11-322878号公報Japanese Patent Laid-Open No. 11-322878 特開2002-9026号公報JP 2002-9026 A 特開平11-99479号公報Japanese Patent Laid-Open No. 11-99479 特開2005-212055号公報Japanese Patent Laid-Open No. 2005-212055 特開平3-234475号公報JP-A-3-234475 特開平10-128674号公報JP-A-10-128674 特開2004-311731号公報JP 2004-311731 A 特開平10-225864号公報JP-A-10-225864 特表2005-518286号公報JP 2005-518286 特開2003-201676号公報JP 2003-201676 A 特開2005-334997号公報JP 2005-334997 A 特開2007-54910号公報JP 2007-54910 A 特開2003-170347号公報JP 2003-170347 A 特開2004-130395号公報JP 2004-130395 A 特開2002-172555号公報JP 2002-172555 A
 上述したように、発泡成形体からなる研磨パッドを用いたCMPは、研磨レートに優れているが、スクラッチがつきやすく、研磨面内における研磨不均一性が高くなりやすいという問題があった。また、不織布タイプの研磨パッドを用いたCMPは、スクラッチはつきにくいが、研磨レートが低く、また、耐磨耗性が低いために寿命が短いという問題があった。
 本発明はこのような問題を解決すべく、高い研磨レートが得られ、研磨面内における研磨不均一性が低く、また、スクラッチがつきにくいCMPを実現できる、耐摩耗性に優れた不織布タイプの研磨パッドを提供することを目的とする。
As described above, CMP using a polishing pad made of a foam-molded article has an excellent polishing rate, but has a problem that scratching tends to occur and polishing non-uniformity within the polishing surface tends to increase. Further, CMP using a non-woven type polishing pad is difficult to scratch, but has a problem that the polishing rate is low and the life is short due to low wear resistance.
In order to solve such problems, the present invention is a non-woven fabric type with excellent abrasion resistance that can achieve CMP with high polishing rate, low polishing non-uniformity in the polishing surface, and scratch-resistant CMP. An object is to provide a polishing pad.
 本発明の一局面は、平均横断面積0.1~30μmである極細繊維の繊維束から形成された不織布と、不織布の内部に付与された高分子弾性体とを含む研磨パッドであって、厚さ方向の縦断面において、第一の表面から厚さ方向に20%以内の厚み領域における、繊維束の横断面の平均数密度Dが1000~5000個/mmであり、Dと、第一の表面に対向する第二の表面から厚さ方向に20%以内の厚み領域における繊維束の横断面の平均数密度Dとの比(D/D)が1.3~5である、研磨パッドである。
 また、本発明の他の一局面は、基材のケミカルメカニカル研磨方法であって、基材の表面に研磨スラリーを滴下しながら、上記研磨パッドの第一の表面を基材の表面に接触させて研磨するケミカルメカニカル研磨方法である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明及び添付する図面により、より明白となる。
One aspect of the present invention is a polishing pad comprising a nonwoven fabric formed from a fiber bundle of ultrafine fibers having an average cross-sectional area of 0.1 to 30 μm 2 , and a polymer elastic body provided inside the nonwoven fabric, In the longitudinal section in the thickness direction, the average number density D 1 of the cross section of the fiber bundle in the thickness region within 20% from the first surface in the thickness direction is 1000 to 5000 / mm 2 , and D 1 The ratio (D 1 / D 2 ) to the average number density D 2 of the cross section of the fiber bundle in a thickness region within 20% in the thickness direction from the second surface facing the first surface is 1.3 to 5 is a polishing pad.
Another aspect of the present invention is a method for chemical mechanical polishing of a substrate, wherein the first surface of the polishing pad is brought into contact with the surface of the substrate while dripping the polishing slurry onto the surface of the substrate. This is a chemical mechanical polishing method for polishing.
The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
 本発明の研磨パッドを用いて基材表面を研磨することにより、高い研磨レートで高精度な研磨加工を実現することができる。また、研磨された基材の表面には、スクラッチが残りにくい。さらに、研磨パッドの研磨面の耐磨耗性が高い。 By polishing the substrate surface using the polishing pad of the present invention, it is possible to realize high-precision polishing at a high polishing rate. Further, scratches hardly remain on the surface of the polished substrate. Furthermore, the abrasion resistance of the polishing surface of the polishing pad is high.
本実施形態の研磨パッド10の模式縦断面図である。1 is a schematic longitudinal sectional view of a polishing pad 10 of the present embodiment. 本実施形態の研磨パッド10の部分拡大摸式図である。1 is a partially enlarged schematic view of a polishing pad 10 of the present embodiment. 本実施形態のケミカルメカニカル研磨に用いたCMC装置20の概略図である。It is the schematic of the CMC apparatus 20 used for the chemical mechanical polishing of this embodiment.
 本発明に係る研磨パッドの一実施形態について、図面を参照しながら、詳しく説明する。図1は、本実施形態の研磨パッド10の模式縦断面図である。図1中、1は平均横断面積0.1~30μmである極細繊維1aの繊維束1bから形成された不織布、2は不織布1の内部に付与された高分子弾性体、3は研磨パッド10の第一の表面である研磨面、4は研磨パッド10の第二の表面である固定面である。また、Rは研磨面3の表面から厚さ方向に20%以内の厚み領域であり、Rは研磨面3に対向する固定面4の表面から厚さ方向に20%以内の厚み領域である。また、Rは研磨面3の表面から厚さ方向に40~60%の厚み領域である。なお、研磨面3は、研磨時において被研磨基材に接触する面であり、固定面4は、CMP装置の回転定盤に両面粘着テープ等を用いて固定される面である。 An embodiment of a polishing pad according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a polishing pad 10 of the present embodiment. In FIG. 1, 1 is a nonwoven fabric formed from a fiber bundle 1b of ultrafine fibers 1a having an average cross-sectional area of 0.1 to 30 μm 2 , 2 is a polymer elastic body provided inside the nonwoven fabric 1, and 3 is a polishing pad 10. The first surface of the polishing surface 4 is a fixed surface which is the second surface of the polishing pad 10. R 1 is a thickness region within 20% in the thickness direction from the surface of the polishing surface 3, and R 2 is a thickness region within 20% in the thickness direction from the surface of the fixed surface 4 facing the polishing surface 3. is there. R 3 is a thickness region of 40 to 60% in the thickness direction from the surface of the polishing surface 3. The polishing surface 3 is a surface that contacts the substrate to be polished at the time of polishing, and the fixing surface 4 is a surface that is fixed to the rotating surface plate of the CMP apparatus using a double-sided adhesive tape or the like.
 研磨パッド10は、図1に示すように、極細繊維1aの繊維束1bから形成された不織布1と、不織布1の内部に付与された高分子弾性体2とを含む複合シートである。研磨パッドの厚みは、用途に応じて適宜選択されるが、例えば、0.5~3mm、さらには0.7~2mm程度であることが好ましい。そして、研磨パッド10の厚さ方向の縦断面において、研磨面3の表面から厚さ方向に20%以内の厚み領域における、繊維束の横断面の平均数密度Dが1000~5000個/mmである。また、平均数密度 Dと、研磨面3に対向する固定面4の表面から厚さ方向に20%以内の厚み領域における繊維束の横断面の平均数密度Dと、の比(D/D)が1.3~5である。このように、研磨パッド10の研磨面3の表面近傍に存在する繊維束1bの密度は固定面4の表面近傍に存在する繊維束1bの密度よりも高い。研磨面3の表面近傍に存在する繊維束1bの密度を高密度にすることにより、研磨面3の側の剛性及び硬度を固定面4の側に比べて高くすることができる。そして、研磨面3の側の剛性が高くなることにより、被研磨基材の表面に対して砥粒を押し込むための圧力が高くなって研磨レートが高くなり、また、耐摩耗性も向上する。また、固定面4の表面近傍に存在する繊維束1bの密度を低密度にすることにより、被研磨基材の表面に対する追従性やフィット性が適度に維持されるために、表面にスクラッチが発生しにくくなる。 As shown in FIG. 1, the polishing pad 10 is a composite sheet including a nonwoven fabric 1 formed from a fiber bundle 1 b of ultrafine fibers 1 a and a polymer elastic body 2 provided inside the nonwoven fabric 1. The thickness of the polishing pad is appropriately selected according to the application, but is preferably about 0.5 to 3 mm, more preferably about 0.7 to 2 mm. Then, in the longitudinal section in the thickness direction of the polishing pad 10, the average number density D 1 of the cross section of the fiber bundle in the thickness region within 20% from the surface of the polishing surface 3 in the thickness direction is 1000 to 5000 / mm. 2 . Moreover, the average number density D 1, and the average number density D 2 of the cross section of the fiber bundle in the thickness region of 20% or less in the thickness direction from the surface of the fixing surface 4 facing the polishing surface 3, the ratio of (D 1 / D 2 ) is 1.3-5. Thus, the density of the fiber bundle 1b existing near the surface of the polishing surface 3 of the polishing pad 10 is higher than the density of the fiber bundle 1b existing near the surface of the fixed surface 4. By increasing the density of the fiber bundle 1b existing near the surface of the polishing surface 3, the rigidity and hardness on the polishing surface 3 side can be made higher than that on the fixed surface 4 side. And the rigidity by the side of the grinding | polishing surface 3 becomes high, the pressure for pushing an abrasive grain with respect to the surface of a to-be-polished base material becomes high, a polishing rate becomes high, and abrasion resistance also improves. In addition, by reducing the density of the fiber bundles 1b existing in the vicinity of the surface of the fixed surface 4, the followability and the fit to the surface of the substrate to be polished are appropriately maintained, so that scratches are generated on the surface. It becomes difficult to do.
 研磨パッド10の厚さ方向の縦断面における平均数密度 Dは、次のようにして算出される。研磨パッド10をカッター刃を用いて厚さ方向に平行に切断し、その切断面を走査型電子顕微鏡(SEM)で100~1000倍で観察し、撮影する。なお、この際、切断面を酸化オスミウム等の染料で染色してもよい。また、縦断面は、平均的な断面が選択される。そして、撮影された画像から、研磨面3の表面から厚さ方向に20%以内の厚み領域Rに観察される所定面積あたりの繊維束1bの横断面の個数を数え、単位面積あたりの繊維束1bの横断面の個数である数密度(個/mm)を算出する。なお、研磨面が立毛処理されている場合には、立毛されている極細繊維または繊維束の根元から厚さ方向に20%以内の厚み領域で数密度を算出する。また、研磨パッドの表面に溝や穴が形成されている場合には、溝や穴が形成されていない部分で数密度を算出する。このような数密度を数箇所(例えば、5箇所)で満遍なく算出し、得られた数密度の数平均を平均数密度Dとする。同様に、平均数密度 Dは、固定面4の表面から厚さ方向に20%以内の厚み領域Rに観察される所定面積あたりの繊維束の横断面の数を数え、単位面積あたりの横断面の個数である数密度(個/mm)を算出する。このような数密度を数箇所(例えば、5箇所)で満遍なく算出し、得られた数密度の数平均を平均数密度Dとする。 The average number density D 1 in longitudinal section in the thickness direction of the polishing pad 10 is calculated as follows. The polishing pad 10 is cut parallel to the thickness direction using a cutter blade, and the cut surface is observed with a scanning electron microscope (SEM) at a magnification of 100 to 1000 times and photographed. At this time, the cut surface may be dyed with a dye such as osmium oxide. Moreover, an average cross section is selected as the vertical cross section. Then, from the photographed image, it counted the number of the cross section of the fiber bundle 1b per predetermined area observed on the polished surface thickness regions R 1 of 20% or less in the thickness direction from the surface of 3, per unit area fibers The number density (pieces / mm 2 ), which is the number of cross sections of the bundle 1b, is calculated. When the polished surface is napped, the number density is calculated in a thickness region within 20% in the thickness direction from the root of the napped ultrafine fiber or fiber bundle. Further, when grooves or holes are formed on the surface of the polishing pad, the number density is calculated at a portion where the grooves and holes are not formed. Several places such number density (e.g., 5 points) evenly calculated, the number average of the obtained number density and the average number density D 1. Similarly, the average number density D 2 counts the number of the cross section of the fiber bundle per predetermined area observed in the fixed plane thickness regions R 2 of 20% or less in the thickness direction from the surface of the 4, per unit area The number density (pieces / mm 2 ), which is the number of cross sections, is calculated. Several places such number density (e.g., 5 points) evenly calculated, the number average of the obtained number density and the average number density D 2.
 研磨パッド10の平均数密度 Dは1000~5000個/mmであり、好ましくは1000~4500個/mm、さらに好ましくは、1100~4000個/mm、特に好ましくは1200~3000個/mmの範囲である。Dが1000個/mm未満の場合には、研磨面3の表面近傍の剛性が低くなることにより、被研磨基材に対して砥粒が押し込まれにくくなることにより研磨レートが低下したり、耐摩耗性が低下したりする。また、Dが5000個/mmを超える場合は、研磨面3の表面近傍の剛性が高くなりすぎることにより、スクラッチが発生しやすくなる。 The average number density D 1 of the polishing pad 10 is 1000 to 5000 pieces / mm 2 , preferably 1000 to 4500 pieces / mm 2 , more preferably 1100 to 4000 pieces / mm 2 , and particularly preferably 1200 to 3000 pieces / mm 2 . it is in the range of mm 2. When D 1 is less than 1000 / mm 2 , the rigidity in the vicinity of the surface of the polishing surface 3 becomes low, and the polishing rate is lowered due to the abrasive grains being hard to be pushed into the substrate to be polished. The wear resistance may be reduced. Also, if D 1 is more than 5000 / mm 2, by the rigidity of the vicinity of the surface of the polishing surface 3 is too high, is easily scratched.
 また、研磨パッド10の平均数密度 Dは、200~3500個/mm、さらには300~3000個/mm、とくには、500~2500個/mmの範囲であることが好ましい。Dが低すぎる場合には、被研磨基材に対する追従性やフィット性が高くなりすぎること及び研磨パッドの全体としての剛性が低下することにより、平坦化性能が低下する傾向がある。ここで、平坦化性能とは、被研磨基材に高い平坦度を有する研磨面を形成する能力を意味する。平均数密度Dが高すぎる場合には、被研磨基材に対する追従性やフィット性が低くなることにより、研磨面内における研磨不均一性が高くなる傾向がある。また、研磨パッドの内部の研磨スラリーの保持性が低下するために研磨レートが低下する傾向がある。 The average number density D 2 of the polishing pad 10 is preferably in the range of 200 to 3500 pieces / mm 2 , more preferably 300 to 3000 pieces / mm 2 , particularly 500 to 2500 pieces / mm 2 . If D 2 is too low, by the rigidity of the whole thing, and the polishing pad trackability and fit against the polished substrate is too high is lowered, it tends to flatten performance is reduced. Here, the planarization performance means the ability to form a polished surface having high flatness on the substrate to be polished. When the average number density D 2 is too high, by lower trackability and fit against the polished substrate, it tends to polishing non-uniformity is high in the polishing plane. Further, since the retention of the polishing slurry inside the polishing pad is lowered, the polishing rate tends to be lowered.
 研磨パッド10は、その平均数密度 Dとその平均数密度 Dとの比(D/D)が1.3~5であり、好ましくは1.4~3.7、さらに好ましくは1.5~2.6の範囲である。D/Dが1.3未満の場合には、剛性を高くすることで、研磨レートは向上するが、被研磨基材に対する追従性が低くなりすぎることにより、研磨不均一性が高くなるとともに耐磨耗性が低下する。一方、D/Dが5を超える場合には、被研磨基材に対する追従性が高くなりすぎることにより研磨レートが低下し、また、研磨パッドの研磨面3側と固定面4側との密度差が大きすぎて研磨面3側と固定面4側の追従性に差が生じることにより、平坦化性能が低下する。 The polishing pad 10 has a ratio (D 1 / D 2 ) between its average number density D 1 and its average number density D 2 of 1.3 to 5, preferably 1.4 to 3.7, more preferably The range is from 1.5 to 2.6. When D 1 / D 2 is less than 1.3, the polishing rate is improved by increasing the rigidity, but the non-uniformity of polishing is increased because the followability to the substrate to be polished becomes too low. At the same time, the wear resistance decreases. On the other hand, when D 1 / D 2 exceeds 5, the following rate with respect to the substrate to be polished becomes too high, the polishing rate is lowered, and the polishing surface 3 side and the fixed surface 4 side of the polishing pad are reduced. Since the difference in density is too large and the followability between the polished surface 3 side and the fixed surface 4 side is different, the planarization performance is lowered.
 また、研磨パッド10は、平均数密度 Dと、平均数密度 Dと、研磨面3の表面から厚さ方向に40~60%の領域Rにおける繊維束の横断面の平均数密度Dとが、D>D>Dの関係にあることが好ましい。このような関係にある場合には、研磨パッド1の内部の研磨スラリーの保持性に優れるために、より高い研磨レートが実現される。また、研磨パッドの剛性と被研磨基材に対する追従性とのバランスにも優れる。その結果、平坦化性能や研磨レートがより高くなるとともに、耐摩耗性も高くなる傾向がある。 Further, the polishing pad 10, and the average number density D 1, and the average number density D 2, the mean number density D of the cross section of the fiber bundle in the region R 3 40 ~ 60% in the thickness direction from the surface of the polishing surface 3 3 is preferably in a relationship of D 1 > D 3 > D 2 . In such a relationship, since the retention of the polishing slurry inside the polishing pad 1 is excellent, a higher polishing rate is realized. Further, the balance between the rigidity of the polishing pad and the followability to the substrate to be polished is excellent. As a result, the planarization performance and polishing rate are higher, and the wear resistance tends to be higher.
 また、D/Dが1~1.4の範囲である場合には、不織布内部の剛性バランスがより適切になり、砥粒の被研磨基材に対する押し込み硬さが高くなり、高い研磨レートが得られる傾向がある。また、D/Dが1.4~3の範囲である場合には被研磨基材への追従性がより適度である点から好ましい。 When D 1 / D 3 is in the range of 1 to 1.4, the rigidity balance inside the nonwoven fabric becomes more appropriate, the indentation hardness of the abrasive grains against the substrate to be polished increases, and the high polishing rate Tends to be obtained. Further, when D 3 / D 2 is in the range of 1.4 to 3, it is preferable from the viewpoint that followability to the substrate to be polished is more appropriate.
 繊維束を形成する極細繊維の平均横断面積は0.1~30μmであり、10~15μmであることが好ましい。平均横断面積0.1μm未満の極細繊維からなる繊維束の場合には、研磨の際に繊維が切れて脱落し、脱落した繊維に砥粒が凝集してスクラッチを発生させやすくなる。また、平均横断面積30μmを超える極細繊維からなる繊維束の場合には、極細繊維の表面積が大きくなり、研磨面近傍の繊維束の密度を充分に高めることが困難になる。 The average cross-sectional area of the ultrafine fibers forming the fiber bundle is 0.1 to 30 μm 2 , and preferably 10 to 15 μm 2 . In the case of a fiber bundle composed of ultrafine fibers having an average cross-sectional area of less than 0.1 μm 2 , the fibers are broken and dropped during polishing, and the abrasive grains are aggregated on the dropped fibers, and scratches are easily generated. Further, in the case of a fiber bundle composed of ultrafine fibers exceeding an average cross-sectional area of 30 μm 2 , the surface area of the ultrafine fibers is increased, and it is difficult to sufficiently increase the density of the fiber bundles in the vicinity of the polished surface.
 また、繊維束の平均横断面積は40~400μm、さらには、40~350μmであることが好ましい。繊維束の平均横断面積が40μm以上の場合には、研磨パッドの強度や耐磨耗性が向上し、また、不織布の製造時のニードルパンチ処理による繊維切れも起こりにくくなる。また、繊維束の平均横断面積が400μm以下の場合には、研磨面近傍の繊維束の密度を充分に高めることができるために、研磨レートをさらに向上させることができる。なお、一つの繊維束を形成する極細繊維の本数は5~4000本、さらには、5~30本であることが好ましい。 The average cross-sectional area of the fiber bundle is preferably 40 to 400 μm 2 , more preferably 40 to 350 μm 2 . When the average cross-sectional area of the fiber bundle is 40 μm 2 or more, the strength and abrasion resistance of the polishing pad are improved, and fiber breakage due to needle punching during the production of the nonwoven fabric is less likely to occur. Further, when the average cross-sectional area of the fiber bundle is 400 μm 2 or less, the density of the fiber bundle in the vicinity of the polishing surface can be sufficiently increased, so that the polishing rate can be further improved. The number of ultrafine fibers forming one fiber bundle is preferably 5 to 4000, and more preferably 5 to 30.
 極細繊維を形成するポリマーは特に限定されない。具体例としては、例えば、ポリエチレンテレフタレート(PET)、イソフタル酸変性PET、スルホイソフタル酸変性PET、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル類およびその共重合体;ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体等の脂肪族ポリエステルおよびその共重合体;ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン6-12などのポリアミド類およびその共重合体;ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン、塩素系ポリオレフィン等のポリオレフィン類およびその共重合体;エチレン単位を25~70モル%含有する変性ポリビニルアルコール;およびポリウレタン系、ナイロン系、ポリエステル系などのエラストマーが挙げられる。これらは単独で、または、二種以上を組み合わせて用いることができる。 The polymer that forms the ultrafine fiber is not particularly limited. Specific examples include, for example, polyethylene terephthalate (PET), isophthalic acid-modified PET, sulfoisophthalic acid-modified PET, polybutylene terephthalate, polyhexamethylene terephthalate and other aromatic polyesters and copolymers thereof; polylactic acid, polyethylene succinate Aliphatic polyesters such as polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalylate copolymer and copolymers thereof; nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, Polyamides such as nylon 6-12 and copolymers thereof; Polyolefins such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorinated polyolefin; and copolymers thereof; Modified polyvinyl alcohol containing down units 25 to 70 mol%; and polyurethane, nylon type, include elastomers such as polyester. These may be used alone or in combination of two or more.
 なお、極細繊維を形成するポリマーとしては、ガラス転移温度(Tg)が50~300℃、さらには60~150℃であって、50℃で飽和吸水させたときの吸水率が0.2~2質量%のポリマーがとくに好ましい。 The polymer forming the ultrafine fiber has a glass transition temperature (Tg) of 50 to 300 ° C., more preferably 60 to 150 ° C., and a water absorption rate of 0.2 to 2 when saturated water absorption is performed at 50 ° C. A mass% polymer is particularly preferred.
 ガラス転移温度が上記範囲である場合には、より高い剛性を維持することができるために研磨パッドの平坦化性能がさらに高くなり、また、研磨の際に剛性が経時的に低下しにくくなる。また、50℃で飽和吸水させたときの吸水率が上記範囲である場合には、研磨パッドが研磨スラリーを適度な範囲で吸収するために、研磨レートや研磨均一性がさらに良好になる。また、研磨スラリーを吸収し過ぎないために、研磨パッドの剛性の経時的な低下が及び平坦化性能の経時的な変動が抑制される。 When the glass transition temperature is within the above range, higher rigidity can be maintained, so that the planarization performance of the polishing pad is further enhanced, and the rigidity is less likely to decrease over time during polishing. Further, when the water absorption rate when saturated water absorption is performed at 50 ° C. is in the above range, the polishing pad absorbs the polishing slurry in an appropriate range, so that the polishing rate and the polishing uniformity are further improved. In addition, since the polishing slurry is not absorbed too much, a decrease in the rigidity of the polishing pad with time and a change in the flattening performance with time are suppressed.
 このようなポリマーの具体例としては、例えば、PET(Tg 77℃、吸水率 1質量%)、イソフタル酸変性PET(Tg 67~77℃、吸水率 1質量%)、スルホイソフタル酸変性PET(Tg 67~77℃、吸水率1~3質量%)、ポリブチレンナフタレート(Tg 85℃、吸水率1質量%)、ポリエチレンナフタレート(Tg 124℃、吸水率 1質量%)等から形成される芳香族ポリエステル系繊維;テレフタル酸とノナンジオールとメチルオクタンジオール共重合ポリアミド(Tg125~140℃、吸水率 1~3質量%)等から形成される半芳香族ポリアミド系繊維等が挙げられる。特に、芳香族成分をモノマー単位の1成分として含むPET等や変性PET等の半芳香族ポリエステル系ポリマーが特に好ましい。半芳香族ポリエステル系ポリマーを用いた場合には、研磨シートの剛性を高めやすく、研磨の際に水分による経時変化も発生しにくく、また、緻密で高密度の不織布を形成しやすい点から特に好ましい。 Specific examples of such a polymer include, for example, PET (Tg 77 ° C, water absorption 1% by mass), isophthalic acid modified PET (Tg ~ 67-77 ° C, water absorption 1% by mass), sulfoisophthalic acid modified PET (Tg 67-77 ° C., water absorption 1-3% by mass), polybutylene naphthalate (Tg 85 ° C., water absorption 1% by mass), polyethylene naphthalate (Tg 124 ° C., water absorption 1% by mass), etc. Group polyester fibers; semi-aromatic polyamide fibers formed from terephthalic acid, nonanediol, and methyloctanediol copolymer polyamide (Tg 125 to 140 ° C., water absorption 1 to 3 mass%). In particular, semi-aromatic polyester polymers such as PET and modified PET containing an aromatic component as one component of a monomer unit are particularly preferable. When a semi-aromatic polyester polymer is used, it is particularly preferable from the viewpoint that it is easy to increase the rigidity of the polishing sheet, hardly changes with time due to moisture during polishing, and easily forms a dense and high-density nonwoven fabric. .
 また、本実施形態における不織布は、極細繊維発生型繊維の長繊維(所謂、フィラメントと称する。)からなる長繊維ウェブに由来する極細繊維の繊維束から形成されていることが、形態安定性に優れ、さらに、繊維の素抜けが少なくなる点から好ましい。このような不織布は、例えば、溶融紡糸と直結したいわゆるスパンボンド法によって海島型複合繊維のような極細繊維発生型繊維からなる長繊維ウェブを製造し、この長繊維ウェブを絡合処理して絡合ウェブにした後、極細繊維発生型繊維を極細繊維に変換することにより製造される。なお、フィラメントとは、繊維長が10~50mm程度の短繊維のように意図的に切断されたステープルではない、長い繊維長を有する繊維である。具体的には、例えば、極細繊維発生型繊維の繊維長は100mm以上が好ましく、技術的に製造可能であり、かつ、物理的に切れない限り、数m、数百m、数kmの繊維長であってもよい。 In addition, the nonwoven fabric in the present embodiment is formed from a fiber bundle of ultrafine fibers derived from a long fiber web composed of long fibers of so-called ultrafine fiber generation fibers (so-called filaments). It is preferable from the viewpoint that it is excellent, and further, the fiber omission is reduced. Such a non-woven fabric is produced, for example, by producing a long fiber web made of ultrafine fiber-generating fibers such as sea-island type composite fibers by a so-called spunbond method directly connected to melt spinning, and entanglement treatment of the long fiber web. It is manufactured by converting the ultrafine fiber generation type fiber into ultrafine fibers after forming the combined web. The filament is a fiber having a long fiber length that is not a staple intentionally cut like a short fiber having a fiber length of about 10 to 50 mm. Specifically, for example, the fiber length of the ultrafine fiber generating fiber is preferably 100 mm or more, and can be manufactured in a technical manner, and the fiber length is several m, several hundreds m, or several km unless physically cut. It may be.
 また、本実施形態における不織布は、形態安定性を向上させる目的で編織物を絡合一体化した絡合不織布であってもよい。なお、絡合不織布を用いる場合、繊維束の平均数密度は編織物を除外した不織布のみの厚さを基準として算出される。 Further, the nonwoven fabric in the present embodiment may be an entangled nonwoven fabric in which a knitted fabric is entangled and integrated for the purpose of improving shape stability. In addition, when using an entangled nonwoven fabric, the average number density of a fiber bundle is calculated on the basis of the thickness of only the nonwoven fabric except a knitted fabric.
 研磨パッド10は、極細繊維1aの繊維束1bから形成された不織布1の内部に高分子弾性体2が付与されて複合化された構造を有する。 The polishing pad 10 has a composite structure in which a polymer elastic body 2 is applied to the inside of a nonwoven fabric 1 formed from a fiber bundle 1b of ultrafine fibers 1a.
 不織布1と高分子弾性体2との含有比率(不織布/高分子弾性体;質量比)は55/45~95/5、さらには、60/40~90/10、とくには、70/30~90/10の範囲であることが好ましい。このような範囲の場合には、剛性が適度である研磨パッドが得られる。高分子弾性体の含有比率が少なすぎる場合には、研磨パッドの剛性が低くなる傾向がある。また、高分子弾性体の含有比率が高すぎる場合には、研磨パッドの剛性が高くなりすぎる傾向がある。 The content ratio of the nonwoven fabric 1 and the polymer elastic body 2 (nonwoven fabric / polymer elastic body; mass ratio) is 55/45 to 95/5, more preferably 60/40 to 90/10, particularly 70/30 to The range is preferably 90/10. In such a range, a polishing pad with moderate rigidity can be obtained. When the content ratio of the polymer elastic body is too small, the rigidity of the polishing pad tends to be low. Further, when the content ratio of the polymer elastic body is too high, the rigidity of the polishing pad tends to be too high.
 また、図2に示すように、研磨パッド10においては、繊維束1bを形成する極細繊維1aは高分子弾性体2で結着されて集束されていることが好ましい。ここで、極細繊維1aが集束されているとは、繊維束1b内部に存在する極細繊維1aの大部分が、繊維束1bの内部に侵入した高分子弾性体2により結着されて拘束されている状態を意味する。このように、極細繊維1aが集束されることにより、研磨パッド10の剛性が高くなるとともに、極細繊維1aの抜けを抑制する。極細繊維1aが集束されていない場合には、極細繊維が動くために、研磨パッドが柔軟になる傾向がある。 Further, as shown in FIG. 2, in the polishing pad 10, it is preferable that the ultrafine fibers 1a forming the fiber bundle 1b are bound by the polymer elastic body 2 and converged. Here, the ultrafine fibers 1a are converged to mean that most of the ultrafine fibers 1a existing in the fiber bundle 1b are bound and restrained by the polymer elastic body 2 that has entered the fiber bundle 1b. Means the state. Thus, by focusing the ultrafine fibers 1a, the rigidity of the polishing pad 10 is increased and the removal of the ultrafine fibers 1a is suppressed. When the ultrafine fibers 1a are not converged, the polishing pads tend to be flexible because the ultrafine fibers move.
 また、図2に示すように、複数の繊維束1b同士は、繊維束1bの外側に存在する高分子弾性体2により結着されて、塊(バルク)状に存在していることが好ましい。このように、繊維束同士が結着されていることにより研磨パッドの形態安定性が向上して、研磨安定性が向上する。なお、極細繊維の集束状態及び繊維束同士の結着状態は研磨パッドの断面の電子顕微鏡写真により確認することができる。 Further, as shown in FIG. 2, it is preferable that the plurality of fiber bundles 1b are bound together by a polymer elastic body 2 existing outside the fiber bundle 1b and exist in a lump (bulk) shape. Thus, the fiber bundles are bound to each other, so that the shape stability of the polishing pad is improved and the polishing stability is improved. In addition, the converging state of the ultrafine fibers and the binding state of the fiber bundles can be confirmed by an electron micrograph of a cross section of the polishing pad.
 極細繊維の内部に侵入した高分子弾性体および極細繊維束同士を結着している高分子弾性体は非多孔質状であることが好ましい。なお、非多孔質状とは、多孔質状、または、スポンジ状(以下、単に、多孔質状とも言う)の高分子弾性体が有するような多数の独立気泡を実質的に有さない状態を意味する。具体的には、例えば、溶剤系ポリウレタンを凝固させて得られるような、微細な独立気泡を多数有する高分子弾性体ではないことを意味する。集束または結着している高分子弾性体が非多孔質状である場合には、研磨安定性が高くなり、また、研磨時のスラリー屑やパッド屑が空隙に堆積しにくくなるために、摩耗しにくく、高い研磨レートを長時間維持することができる。更に、極細繊維に対する接着強度が高くなるために、繊維の抜けに起因するスクラッチの発生をより抑制することができる。さらに、より高い剛性が得られるために、平坦化性能により優れた研磨パッドが得られる。 It is preferable that the polymer elastic body that has penetrated into the inside of the ultrafine fibers and the polymer elastic body that binds the ultrafine fiber bundles are non-porous. In addition, the non-porous state means a state substantially free of many closed cells as possessed by a porous or sponge-like (hereinafter also simply referred to as porous) polymer elastic body. means. Specifically, it means that it is not a polymer elastic body having a large number of fine closed cells, such as obtained by coagulating solvent-based polyurethane. When the polymer elastic body that is focused or bound is non-porous, the polishing stability becomes high, and the slurry waste and pad waste during polishing are less likely to accumulate in the voids. And a high polishing rate can be maintained for a long time. Furthermore, since the adhesive strength with respect to the ultrafine fibers is increased, it is possible to further suppress the occurrence of scratches due to the fiber coming off. Furthermore, since higher rigidity is obtained, a polishing pad that is superior in planarization performance can be obtained.
 研磨パッド10の研磨面3におけるD硬度は25~50、さらには30~49、とくには31~47であることが好ましい。D硬度がこのような範囲である場合には、被研磨基材の表面形状の影響を受け難い、平坦化性能の点から最適な剛性を有する研磨パッドが得られる。 The D hardness on the polishing surface 3 of the polishing pad 10 is preferably 25 to 50, more preferably 30 to 49, and particularly preferably 31 to 47. When the D hardness is in such a range, it is possible to obtain a polishing pad that is hardly affected by the surface shape of the substrate to be polished and has optimum rigidity in terms of planarization performance.
 次に、不織布の内部に付与される高分子弾性体について詳しく説明する。
 不織布の内部に付与される高分子弾性体の種類は特に限定されない。高分子弾性体の具体例としては、例えば、ポリウレタン系樹脂、ポリアミド系樹脂、(メタ)アクリル酸エステル系樹脂、(メタ)アクリル酸エステル-スチレン系樹脂、(メタ)アクリル酸エステル-アクリロニトリル系樹脂、(メタ)アクリル酸エステル-オレフィン系樹脂、(メタ)アクリル酸系エステル-(水添)イソプレン系樹脂、(メタ)アクリル酸エステル-ブタジエン系樹脂、スチレン-ブタジエン系樹脂、スチレン-水添イソプレン系樹脂、アクリロニトリル-ブタジエン系樹脂、アクリロニトリル-ブタジエン-スチレン系樹脂、酢酸ビニル系樹脂、(メタ)アクリル酸エステル-酢酸ビニル系樹脂、エチレン-酢酸ビニル系樹脂、エチレン-オレフィン系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリエステル系樹脂からなる弾性体が挙げられる。高分子弾性体は、それぞれ単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、ポリウレタン系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂等のような水素結合性高分子弾性体が特に好ましい。なお、水素結合性高分子弾性体は、水素結合により結晶化あるいは凝集する高分子弾性体であり、極細繊維に対する集束性及び極細繊維束に対する拘束結着性が高い。また、ポリウレタン系樹脂が、極細繊維を集束したり、繊維束同士を結着したりするための接着性にとくに優れており、また、研磨パッドの硬度を高め、研磨での経時的安定性に優れている点からとくに好ましい。
Next, the polymer elastic body provided inside the nonwoven fabric will be described in detail.
There is no particular limitation on the type of the polymer elastic body applied to the inside of the nonwoven fabric. Specific examples of the polymer elastic body include, for example, polyurethane resins, polyamide resins, (meth) acrylic ester resins, (meth) acrylic ester-styrene resins, (meth) acrylic ester-acrylonitrile resins. , (Meth) acrylic ester-olefin resin, (meth) acrylic ester- (hydrogenated) isoprene resin, (meth) acrylic ester-butadiene resin, styrene-butadiene resin, styrene-hydrogenated isoprene Resin, acrylonitrile-butadiene resin, acrylonitrile-butadiene-styrene resin, vinyl acetate resin, (meth) acrylic ester-vinyl acetate resin, ethylene-vinyl acetate resin, ethylene-olefin resin, silicone resin , Fluorine resin, polyester resin Ranaru elastic body, and the like. The polymer elastic bodies may be used alone or in combination of two or more. Among these, hydrogen-bonded polymer elastic bodies such as polyurethane resins, polyamide resins, polyvinyl alcohol resins and the like are particularly preferable. The hydrogen-bonding polymer elastic body is a polymer elastic body that is crystallized or aggregated by hydrogen bonding, and has high converging properties for ultrafine fibers and constrained binding properties for ultrafine fiber bundles. In addition, the polyurethane resin is particularly excellent in adhesiveness for bundling ultrafine fibers and binding fiber bundles. Also, it increases the hardness of the polishing pad and improves the stability over time in polishing. It is particularly preferable because of its superiority.
 高分子弾性体のガラス転移温度は、-10℃以下、さらには-15℃以下であることが好ましい。ガラス転移温度が高すぎる場合には、高分子弾性体が脆いために研磨中に脱落するおそれがある。ガラス転移温度は、動的粘弾性測定における引張モードでの損失弾性率のピーク温度から算出される。ガラス転移温度は、高分子弾性体のα分散のピーク温度に依存する。例えば、ポリウレタン系樹脂の場合、軟質成分となるポリオールの組成や硬質成分と軟質成分の比率を調整することにより、ガラス転移温度を-10℃以下にすることができる。 The glass transition temperature of the polymer elastic body is preferably −10 ° C. or lower, more preferably −15 ° C. or lower. If the glass transition temperature is too high, the polymer elastic body is fragile and may fall off during polishing. The glass transition temperature is calculated from the peak temperature of the loss elastic modulus in the tensile mode in the dynamic viscoelasticity measurement. The glass transition temperature depends on the α dispersion peak temperature of the polymer elastic body. For example, in the case of a polyurethane-based resin, the glass transition temperature can be reduced to −10 ° C. or lower by adjusting the composition of the polyol serving as the soft component and the ratio between the hard component and the soft component.
 また、高分子弾性体は、次のような弾性を有することが好ましい。高分子弾性体の23℃および50℃における貯蔵弾性率(G´)が90~900MPa、さらには、200~800MPaであることが研磨パッドの剛性が高くなり、また、弾性にも優れる点から好ましい。また、23℃における貯蔵弾性率(G23´)と50℃における貯蔵弾性率(G50´)の比(G23´/G50´)が4以下、さらには、3以下であり、1/3以上であることが研磨安定性に優れる点から好ましい。 The polymer elastic body preferably has the following elasticity. The storage elastic modulus (G ′) of the polymer elastic body at 23 ° C. and 50 ° C. is preferably 90 to 900 MPa, and more preferably 200 to 800 MPa because the rigidity of the polishing pad is increased and the elasticity is excellent. . Further, the storage elastic modulus at 23 ℃ (G 23 ') the ratio of the storage modulus at 50 ℃ (G 50') ( G 23 '/ G 50') is 4 or less, further, not more than 3, 1 / It is preferable that it is 3 or more from the point which is excellent in polishing stability.
 また、高分子弾性体は、50℃で飽和吸水させたときの吸水率が0.2~5質量%、さらには、0.5~3質量%であることが、研磨スラリーの保液性及び研磨安定性に優れる点から好ましい。 Further, the polymer elastic body has a water absorption rate of 0.2 to 5% by mass, more preferably 0.5 to 3% by mass when saturated water absorption is performed at 50 ° C. It is preferable from the viewpoint of excellent polishing stability.
 ここで、高分子弾性体の代表例としてポリウレタン系樹脂について詳しく説明する。ポリウレタン系樹脂は、高分子ポリオールと、有機ポリイソシアネ-トと、鎖伸長剤等とを、所定のモル比で反応させることにより得られる各種のポリウレタン系樹脂が挙げられる。 Here, a polyurethane resin will be described in detail as a representative example of the polymer elastic body. Examples of the polyurethane resin include various polyurethane resins obtained by reacting a polymer polyol, an organic polyisocyanate, a chain extender and the like at a predetermined molar ratio.
 高分子ポリオールの具体例としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などのポリエーテル系ポリオールおよびその共重合体;ポリブチレンアジペートジオール、ポリブチレンセバケートジオール、ポリヘキサメチレンアジペートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリ(3-メチル-1,5-ペンチレンセバケート)ジオール、イソフタル酸共重合ポリオール、テレフタル酸共重合ポリオール、シクロヘキサノール共重合ポリオール、ポリカプロラクトンジオールなどのポリエステル系ポリオールおよびその共重合体;ポリヘキサメチレンカーボネートジオール、ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール、ポリ(メチル-1,8-オクタメチレンカーボネート)ジオール、ポリノナンメチレンカーボネートジオール、ポリシクロヘキサンカーボネートなどのポリカーボネート系ポリオールおよびその共重合体;ポリエステルカーボネートポリオール等が挙げられる。また、必要に応じて、トリメチロールプロパン等の3官能アルコールやペンタエリスリトール等の4官能アルコールなどの多官能アルコール、又は、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の短鎖アルコールを併用してもよい。 Specific examples of the polymer polyol include, for example, polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol) and copolymers thereof; polybutylene adipate diol, polybutylene sebacate Diol, polyhexamethylene adipate diol, poly (3-methyl-1,5-pentylene adipate) diol, poly (3-methyl-1,5-pentylene sebacate) diol, isophthalic acid copolymer polyol, terephthalic acid copolymer Polyester polyols such as polymerized polyol, cyclohexanol copolymer polyol, polycaprolactone diol, and copolymers thereof; polyhexamethylene carbonate diol, poly (3-methyl-1,5 Pentylene carbonate) diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol, poly (methyl-1,8-octamethylene carbonate) diol, polynonanemethylene carbonate diol, polycyclohexane carbonate, and other polycarbonate polyols and their co-polymers Polyester carbonate polyol etc. are mentioned. If necessary, trifunctional alcohols such as trimethylolpropane and polyfunctional alcohols such as tetrafunctional alcohols such as pentaerythritol, or ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol. Etc. You may use together short chain alcohols, such as.
 また、カルボキシル基、スルホン酸基、水酸基、炭素数5以下特には炭素数3以下のポリアルキレングリコール基などの親水性基を有するポリオール成分を樹脂構成単位として含有させることにより水性媒体に対する分散性や、研磨スラリーに対する濡れ性を向上させることができる。 Further, by incorporating a polyol component having a hydrophilic group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, or a polyalkylene glycol group having 5 or less carbon atoms, particularly 3 or less carbon atoms, as a resin constituent unit, The wettability with respect to the polishing slurry can be improved.
 カルボキシル基を有するポリオール成分の具体例としては、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(ヒドロキシメチル)吉草酸などのカルボキシル基含有ジオールが挙げられる。また、炭素数5以下のポリアルキレングリコール基を有するポリオール成分の具体例としては、ポリエチレングリコール、ポリプロピレングリコールおよびその共重合体が例示できる。 Specific examples of the polyol component having a carboxyl group include carboxyls such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid and 2,2-bis (hydroxymethyl) valeric acid. And group-containing diols. Specific examples of the polyol component having a polyalkylene glycol group having 5 or less carbon atoms include polyethylene glycol, polypropylene glycol and copolymers thereof.
 なお、ポリオール成分としては、-10℃以下、さらには-20℃以下のガラス転移温度を有するポリカーボネート系ポリオールを用いることが、ポリウレタン系樹脂のガラス転移温度を-10℃以下とし、また、弾性率を高めやすいことからとくに好ましい。このようなポリオール成分としては、脂環式ポリカーボネート系ポリオール、直鎖状ポリカーボネート系ポリオール等のポリカーボネート系ポリオール、その中でも特に、融点が0℃以下である非晶性ポリカーボネート系ポリオールをポリオール成分全量の60~100質量%を含有することが好ましい。このようなポリカーボネート系ポリオールを原料とするポリウレタン系樹脂は、耐摩耗性が高く、吸水性や貯蔵弾性率も適度である点から好ましい。 As the polyol component, a polycarbonate polyol having a glass transition temperature of −10 ° C. or lower, further −20 ° C. or lower is used. The glass transition temperature of the polyurethane resin is −10 ° C. or lower, and the elastic modulus It is particularly preferable because Examples of such a polyol component include polycarbonate polyols such as alicyclic polycarbonate polyols and linear polycarbonate polyols. Among them, amorphous polycarbonate polyols having a melting point of 0 ° C. or less are particularly preferred. It is preferable to contain ˜100% by mass. A polyurethane-based resin using such a polycarbonate-based polyol as a raw material is preferable since it has high wear resistance and moderate water absorption and storage elastic modulus.
 融点が0℃以下である非晶性ポリカーボネート系ポリオールの具体例としては、例えば、ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリ(メチル-1,8-オクタメチレンカーボネート)ジオール、ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリ(メチル-1,8-オクタメチレンカーボネート)ジオール等の、分岐を有するポリカーボネートポリオール;ポリヘキサメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール、ポリノナンメチレンカーボネートジオール、ポリシクロヘキサンカーボネート等のポリカーボネート系ポリオールが挙げられる。 Specific examples of the amorphous polycarbonate polyol having a melting point of 0 ° C. or less include, for example, poly (3-methyl-1,5-pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol. Branched polycarbonate polyols such as poly (3-methyl-1,5-pentylene carbonate) diol and poly (methyl-1,8-octamethylene carbonate) diol; polyhexamethylene carbonate diol, polypentamethylene carbonate diol And polycarbonate-based polyols such as polytetramethylene carbonate diol, polynonane methylene carbonate diol, and polycyclohexane carbonate.
 ポリオール成分は単独で用いても、2種以上を組み合わせて用いてもよい。 The polyol component may be used alone or in combination of two or more.
 ポリウレタン系樹脂中のポリオール成分に由来する構成単位の含有割合としては、30~65質量%、さらには40~60質量%、とくには45~55質量%であることが、適度な弾性を付与することによりスクラッチの発生を抑制することができる点から好ましい。 The content of the structural unit derived from the polyol component in the polyurethane-based resin is 30 to 65% by mass, more preferably 40 to 60% by mass, and particularly 45 to 55% by mass. It is preferable from the point that generation | occurrence | production of a scratch can be suppressed by this.
 なお、親水性基を有するポリオール成分に由来する構成単位を含有するポリウレタン系樹脂は、研磨スラリーに対する濡れ性が向上するが、吸水率が高くなりすぎる傾向がある。上述した50℃で飽和吸水させたときの吸水率が0.2~5質量%になるようなポリウレタン系樹脂を得るためには、親水性基を有するポリオール成分の共重合割合を0.1~10質量%、更には、0.5~5質量%にすることが好ましい。このような含有割合で親水性基を有するポリオール成分を構成単位として含有させることにより、吸水による膨潤軟化を最小限に抑えつつ、吸水率や濡れ性を高めることができる。また、吸水率が高くなりすぎることを抑制するためには、吸水性の低いポリオール成分と組み合わせて用いることが好ましい。このようなポリオールの具体例としては、例えば、ポリブチレンセバケートジオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ジオール、ポリ(3-メチル-1,5-ペンチレンセバケート)ジオールなどのポリエステル系ポリオールおよびその共重合体;ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリ(メチル-1,8-オクタメチレンカーボネート)ジオール、ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、ポリ(メチル-1,8-オクタメチレンカーボネート)ジオール、ポリヘキサメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール、ポリノナンメチレンカーボネートジオール、ポリシクロヘキサンカーボネートなどのポリカーボネート系ポリオールを共重合するポリカーボネートポリオール等が挙げられる。 In addition, although the polyurethane-type resin containing the structural unit derived from the polyol component which has a hydrophilic group improves the wettability with respect to polishing slurry, there exists a tendency for a water absorption rate to become high too much. In order to obtain a polyurethane resin having a water absorption rate of 0.2 to 5% by mass when saturated water absorption is performed at 50 ° C., the copolymerization ratio of the polyol component having a hydrophilic group is 0.1 to 5%. The content is preferably 10% by mass, more preferably 0.5 to 5% by mass. By containing a polyol component having a hydrophilic group in such a content ratio as a structural unit, water absorption and wettability can be improved while minimizing swelling and softening due to water absorption. Moreover, in order to suppress that a water absorption rate becomes high too much, it is preferable to use in combination with a polyol component with low water absorption. Specific examples of such polyols include, for example, polybutylene sebacate diol, poly (3-methyl-1,5-pentylene adipate) diol, and poly (3-methyl-1,5-pentylene sebacate) diol. Polyester-based polyols and copolymers thereof; poly (3-methyl-1,5-pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol, poly (3-methyl-1,5 -Pentylene carbonate) diol, poly (methyl-1,8-octamethylene carbonate) diol, polyhexamethylene carbonate diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol, polynonamethylene carbonate diol, polycyclohexane carbo Polycarbonate polyols, and the like to copolymerize the polycarbonate-based polyol, such as chromatography and.
 有機ポリイソシアネートの具体例としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート等の脂肪族あるいは脂環族ジイソシアネート等の無黄変型ジイソシアネート;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートポリウレタン等の芳香族ジイソシアネート、等が挙げられる。また、必要に応じて、3官能イソシアネートや4官能イソシアネートなどの多官能イソシアネートを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の脂環式ジイソシアネートまたは芳香族ジイソシアネートが、極細繊維に対する接着性が高く、極細繊維の集束力が向上すること、また、硬度が高い研磨パッドが得られる点から好ましい。 Specific examples of the organic polyisocyanates include, for example, non-yellowing diisocyanates such as aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and 4,4′-dicyclohexylmethane diisocyanate; 2,4-tri Examples thereof include aromatic diisocyanates such as range isocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, and xylylene diisocyanate polyurethane. Moreover, you may use together polyfunctional isocyanates, such as trifunctional isocyanate and tetrafunctional isocyanate, as needed. These may be used alone or in combination of two or more. Among these, cycloaliphatic diisocyanates such as 4,4′-dicyclohexylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate or aromatics Diisocyanate is preferable because it has high adhesion to ultrafine fibers, improves the focusing force of the ultrafine fibers, and provides a polishing pad with high hardness.
 鎖伸長剤の具体例としては、例えば、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンおよびその誘導体、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジドなどのジアミン類;ジエチレントリアミンなどのトリアミン類;トリエチレンテトラミンなどのテトラミン類;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-シクロヘキサンジオールなどのジオール類;トリメチロールプロパンなどのトリオール類;ペンタエリスリトールなどのペンタオール類;アミノエチルアルコール、アミノプロピルアルコールなどのアミノアルコール類等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、ヒドラジン、ピペラジン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、エチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、繊維への接着性が高く、また、硬度が適度な研磨パッドが得られる点から好ましい。また、鎖伸長剤とともに、エチルアミン、プロピルアミン、ブチルアミンなどのモノアミン類;4-アミノブタン酸、6-アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール、ブタノールなどのモノオール類を併用してもよい。そして、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(ヒドロキシメチル)吉草酸などのカルボキシル基含有ジオール等を併用して、ポリウレタン系弾性体の骨格にカルボキシル基などのイオン性基を導入することにより、水に対する濡れ性をさらに向上させることが出来る。 Specific examples of the chain extender include, for example, diamines such as hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, nonamethylenediamine, xylylenediamine, isophoronediamine, piperazine and derivatives thereof, adipic acid dihydrazide, and isophthalic acid dihydrazide; Triamines such as diethylenetriamine; tetramines such as triethylenetetramine; ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4 -Diols such as cyclohexanediol; Triols such as trimethylolpropane; Pentaols such as pentaerythritol; Aminoethyl alcohol, Aminopropyl alcohol It includes amino alcohols such as and the like. These may be used alone or in combination of two or more. Among these, hydrazine, piperazine, hexamethylene diamine, isophorone diamine and derivatives thereof, and a combination of two or more of triamines such as ethylene triamine have high adhesion to fibers and moderate hardness. This is preferable because a polishing pad can be obtained. Combined with chain extenders, monoamines such as ethylamine, propylamine and butylamine; monoamine compounds containing carboxyl groups such as 4-aminobutanoic acid and 6-aminohexanoic acid; monools such as methanol, ethanol, propanol and butanol May be. Polyurethane containing a carboxyl group-containing diol such as 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid, 2,2-bis (hydroxymethyl) valeric acid, etc. By introducing an ionic group such as a carboxyl group into the skeleton of the elastic body, the wettability with respect to water can be further improved.
 ポリウレタン系樹脂は、吸水率や貯蔵弾性率を制御するために、ポリウレタンを形成するモノマー単位が有する官能基と反応し得る官能基を分子内に2個以上含有する架橋剤や、ポリイソシアネート系化合物、多官能ブロックイソシアネート系化合物等の自己架橋性の化合物を添加することにより架橋構造を形成することも好ましい。モノマー単位が有する官能基と架橋剤の官能基との組み合せとしては、カルボキシル基とオキサゾリン基、カルボキシル基とカルボジイミド基、カルボキシル基とエポキシ基、カルボキシル基とシクロカーボネート基、カルボキシル基とアジリジン基、カルボニル基とヒドラジン誘導体又はヒドラジド誘導体などが挙げられる。これらの中では、カルボキシル基を有するモノマー単位とオキサゾリン基、カルボジイミド基またはエポキシ基を有する架橋剤との組み合せ、水酸基またはアミノ基を有するモノマー単位とブロックイソシアネート基を有する架橋剤との組み合せ、およびカルボニル基を有するモノマー単位とヒドラジン誘導体またはヒドラジド誘導体との組み合せが、架橋形成が容易であり、得られる研磨パッドの剛性や耐磨耗性が優れる点から、特に好ましい。カルボジイミド基を有する架橋剤としては、例えば日清紡績株式会社製「カルボジライトE-01」、「カルボジライトE-02」、「カルボジライトV-02」などの水分散カルボジイミド系化合物を挙げることができる。また、オキサゾリン基を有する架橋剤としては、例えば日本触媒株式会社製「エポクロスK-2010E」、「エポクロスK-2020E」、「エポクロスWS-500」などの水分散オキサゾリン系化合物を挙げることができる。架橋剤の配合量としては、ポリウレタン系樹脂に対して、架橋剤の有効成分が1~20質量%であることが好ましく、1.5~10質量%であることがより好ましい。 In order to control the water absorption and storage elastic modulus, the polyurethane resin is a cross-linking agent containing two or more functional groups capable of reacting with the functional group of the monomer unit forming the polyurethane, or a polyisocyanate compound. It is also preferable to form a crosslinked structure by adding a self-crosslinking compound such as a polyfunctional blocked isocyanate compound. The combination of the functional group of the monomer unit and the functional group of the crosslinking agent includes carboxyl group and oxazoline group, carboxyl group and carbodiimide group, carboxyl group and epoxy group, carboxyl group and cyclocarbonate group, carboxyl group and aziridine group, carbonyl group Groups and hydrazine derivatives or hydrazide derivatives. Among these, a combination of a monomer unit having a carboxyl group and a crosslinking agent having an oxazoline group, a carbodiimide group or an epoxy group, a combination of a monomer unit having a hydroxyl group or an amino group and a crosslinking agent having a blocked isocyanate group, and carbonyl A combination of a monomer unit having a group and a hydrazine derivative or a hydrazide derivative is particularly preferred because crosslinking formation is easy and the resulting polishing pad has excellent rigidity and wear resistance. Examples of the crosslinking agent having a carbodiimide group include water-dispersed carbodiimide compounds such as “Carbodilite E-01”, “Carbodilite E-02”, and “Carbodilite V-02” manufactured by Nisshinbo Industries, Ltd. Examples of the crosslinking agent having an oxazoline group include water-dispersed oxazoline compounds such as “Epocross K-2010E”, “Epocross K-2020E”, and “Epocross WS-500” manufactured by Nippon Shokubai Co., Ltd. The blending amount of the crosslinking agent is preferably 1 to 20% by mass and more preferably 1.5 to 10% by mass of the active ingredient of the crosslinking agent with respect to the polyurethane resin.
 ポリウレタン系樹脂は、本発明の効果を損なわない範囲内で、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、酸化防止剤、紫外線吸収剤、防黴剤、発泡剤、ポリビニルアルコール、カルボキシメチルセルロースなどの水溶性高分子化合物、染料、顔料、無機微粒子などをさらに含有してもよい。 The polyurethane-based resin is within the range that does not impair the effects of the present invention, and the penetrant, antifoaming agent, lubricant, water repellent, oil repellent, thickener, extender, curing accelerator, antioxidant, ultraviolet absorber Further, it may further contain an antifungal agent, a foaming agent, a water-soluble polymer compound such as polyvinyl alcohol and carboxymethyl cellulose, a dye, a pigment, inorganic fine particles and the like.
 次に、本実施形態の研磨パッドの製造方法の一例について詳しく説明する。 Next, an example of the manufacturing method of the polishing pad of this embodiment will be described in detail.
 (1)ウェブ製造工程
 本製造方法においては、はじめに、水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂とを溶融紡糸して得られる海島型複合繊維からなる長繊維ウェブを製造する。なお、本実施形態においては、極細繊維を形成するための複合繊維として海島型複合繊維を用いたが、海島型複合繊維の代わりに、多層積層型断面繊維等の従来から知られた極細繊維発生型繊維を用いてもよい。
(1) Web production process In this production method, first, a long fiber web made of sea-island type composite fibers obtained by melt spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin is produced. In this embodiment, the sea-island type composite fiber is used as the composite fiber for forming the ultra-fine fiber. However, instead of the sea-island type composite fiber, conventionally known ultra-fine fiber generation such as a multilayer laminated cross-sectional fiber is generated. Mold fibers may be used.
 海島型複合繊維は、水溶性熱可塑性樹脂と、水溶性熱可塑性樹脂と相溶性が低い非水溶性熱可塑性樹脂とをそれぞれ溶融紡糸した後、複合化させることにより得られる。そして、このような海島型複合繊維から水溶性熱可塑性樹脂を溶解除去または分解除去することにより、極細繊維が形成される。海島型複合繊維の太さは、工業性の観点から、0.5~3デシテックス、さらには0.8~2.5デシテックスであることが好ましい。 The sea-island type composite fiber is obtained by melt-spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin having low compatibility with the water-soluble thermoplastic resin, and then combining them. Then, the ultrafine fiber is formed by dissolving or removing the water-soluble thermoplastic resin from the sea-island type composite fiber. The thickness of the sea-island type composite fiber is preferably 0.5 to 3 dtex, more preferably 0.8 to 2.5 dtex, from the viewpoint of industrial properties.
 水溶性熱可塑性樹脂は、水またはアルカリ水溶液、酸水溶液などの水溶液により、加熱条件下や加圧条件下で、溶解除去または分解除去されるポリマーである。水溶性熱可塑性樹脂の具体例としては、例えば、ポリビニルアルコール(PVA)、PVA系共重合体、ポリエチレンオキシドポリエチレングリコールおよび/またはスルホン酸アルカリ金属塩を含有する化合物などを共重合した変性ポリエステル、などが挙げられる。これらの中では、PVAやPVA系共重合体が水に対する溶解性に優れている点から好ましい。 The water-soluble thermoplastic resin is a polymer that is dissolved or removed by heating or pressure under an aqueous solution such as water or an aqueous alkali solution or an acid aqueous solution. Specific examples of the water-soluble thermoplastic resin include, for example, modified polyester obtained by copolymerizing a compound containing polyvinyl alcohol (PVA), a PVA copolymer, polyethylene oxide polyethylene glycol and / or an alkali metal sulfonate, and the like. Is mentioned. In these, PVA and a PVA-type copolymer are preferable from the point which is excellent in the solubility with respect to water.
 また、非水溶性熱可塑性樹脂としては、上述した極細繊維を形成するための各種ポリマーが特に限定なく用いられうる。なお、非水溶性熱可塑性樹脂は各種添加剤を含有してもよい。添加材の具体例としては、例えば、触媒、着色防止剤、耐熱剤、難燃剤、滑剤、防汚剤、蛍光増白剤、艶消剤、着色剤、光沢改良剤、制電剤、抗菌剤、防ダニ剤、無機微粒子等が挙げられる。 Further, as the water-insoluble thermoplastic resin, various polymers for forming the above-described ultrafine fibers can be used without any particular limitation. The water-insoluble thermoplastic resin may contain various additives. Specific examples of the additive include, for example, a catalyst, an anti-coloring agent, a heat-resistant agent, a flame retardant, a lubricant, an antifouling agent, a fluorescent brightening agent, a matting agent, a coloring agent, a gloss improving agent, an antistatic agent, and an antibacterial agent. , Anti-mite agents, inorganic fine particles and the like.
 水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂とを溶融紡糸することにより複合化した後、スパンボンド法により、長繊維ウェブを形成する方法について、以下に詳しく説明する。 A method for forming a long fiber web by the spunbond method after compounding by melt spinning a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin will be described in detail below.
 はじめに、水溶性熱可塑性樹脂及び非水溶性熱可塑性樹脂をそれぞれ別々の押出機により溶融混練し、それぞれ異なる紡糸口金から溶融樹脂のストランドを同時に吐出させる。そして、吐出されたストランドを複合ノズルで複合させた後、紡糸ヘッドのノズル孔から吐出させることにより海島型複合繊維を形成する。海島型複合繊維における島数は5~4000島/繊維、さらには10~1000島/繊維にすることが、単繊維の断面積を小さくし易く、繊維密度の高い繊維束が得られる点から好ましい。 First, a water-soluble thermoplastic resin and a water-insoluble thermoplastic resin are melt-kneaded with separate extruders, and molten resin strands are simultaneously discharged from different spinnerets. Then, after the discharged strands are combined with the composite nozzle, the sea-island type composite fibers are formed by discharging from the nozzle holes of the spinning head. The number of islands in the sea-island type composite fiber is preferably 5 to 4000 islands / fiber, more preferably 10 to 1000 islands / fiber, from the viewpoint of easily reducing the cross-sectional area of the single fiber and obtaining a fiber bundle having a high fiber density. .
 海島型複合繊維は冷却装置で冷却された後、エアジェット・ノズルなどの吸引装置を用いて目的の繊度になるように1000~6000m/分の引き取り速度に相当する速度の高速気流により延伸される。その後、延伸された複合繊維を移動式の捕集面の上に堆積することにより長繊維ウェブが形成される。なお、このとき、必要に応じて堆積された長繊維ウェブを、部分的に圧着してもよい。長繊維ウェブの目付量は、20~500g/mの範囲であることが工業性の点から好ましい。 After the sea-island type composite fiber is cooled by a cooling device, it is drawn by a high-speed air flow at a speed corresponding to a take-up speed of 1000 to 6000 m / min so as to obtain a desired fineness using a suction device such as an air jet nozzle. . Thereafter, the stretched composite fibers are deposited on a movable collection surface to form a long fiber web. At this time, the long fiber web deposited may be partially crimped as necessary. The basis weight of the long fiber web is preferably in the range of 20 to 500 g / m 2 from the viewpoint of industrial properties.
 (2)ウェブ絡合工程
 次に、得られた長繊維ウェブを複数枚重ねて絡合させることにより絡合ウェブを形成するウェブ絡合工程について説明する。絡合ウェブは、ニードルパンチや高圧水流処理等の公知の不織布製造方法により長繊維ウェブに絡合処理することにより得られる。
(2) Web entanglement process Next, the web entanglement process which forms an entanglement web by overlapping and intertwining the obtained many long fiber webs is demonstrated. The entangled web is obtained by entanglement treatment with the long fiber web by a known nonwoven fabric manufacturing method such as needle punching or high-pressure water flow treatment.
 はじめに、長繊維ウェブに針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤を付与する。なお、目付ムラを低減させるために、2枚以上の繊維ウェブを、クロスラッパーにより重ね合わせ、油剤を付与してもよい。その後、ニードルパンチにより三次元的に繊維を絡合させる絡合処理を行う。ニードルパンチを行うことにより、繊維密度が高く、繊維の抜けを起こしにくい絡合ウェブが得られる。ニードルパンチにおいては、表面側と裏面側とのニードルパンチ条件を変えることにより、表面側と裏面側との繊維束の密度に差をつけることができる。 First, silicone oil or mineral oil such as needle breakage prevention oil, antistatic oil, and entanglement oil is applied to the long fiber web. In order to reduce unevenness in weight per unit area, two or more fiber webs may be overlapped with a cross wrapper and an oil agent may be applied. Then, the entanglement process which entangles a fiber three-dimensionally with a needle punch is performed. By performing the needle punching, an entangled web having a high fiber density and hardly causing the fibers to come off can be obtained. In the needle punch, the density of fiber bundles on the front side and the back side can be made different by changing the needle punch conditions on the front side and the back side.
 ニードルパンチにおける、油剤の種類や量、ニードル形状、ニードル深度、パンチ数などのニードル条件は、研磨面になる表面側の繊維束の密度と、固定面になる裏面側の繊維束の密度とが、適切な密度差になるように適宜選択される。 Needle conditions such as the type and amount of the oil agent, needle shape, needle depth, and number of punches in the needle punch are determined by the density of the fiber bundle on the front surface that becomes the polishing surface and the density of the fiber bundle on the back surface that becomes the fixed surface. Are appropriately selected so as to obtain an appropriate density difference.
 ニードルのバーブ数は、例えば、1~9バーブの中から選ばれ、針折れが生じない範囲で多い方が好ましい。また、ニードルの突き刺し深度は、ウェブ表面にニードルパンチ後の模様が強くでない範囲で設定することが好ましい。具体的には、例えば、初期には6~9バーブのニードルで深度を5~25mmの深さでパンチング処理し、後半は3~6バーブのニードルで深度を0.1~15mmにして表面側の繊維を集中的に絡合するような条件が挙げられる。また、ニードルパンチ数は、ニードル形状、油剤の種類及び使用量等により適宜選択されるが、具体的には、500~5000パンチ/cm程度が好ましく、また、裏面側からのパンチング数に対して、表面側からのパンチング数を1.5~2倍以上で処理することが好ましい。また、表面側は裏面側よりも、ニードルのバーブ数の多いニードルが用いられることが好ましく、ニードルの突き刺し深度は浅い方が好ましい。また、パンチ数を高くして、表面側の繊維をニードルのバーブにより選択的に絡合させることが好ましい。 The number of barbs on the needle is selected from, for example, 1 to 9 barbs, and is preferably as large as possible without causing needle breakage. Moreover, it is preferable to set the piercing depth of the needle within a range where the pattern after needle punching is not strong on the web surface. Specifically, for example, a punching process is initially performed with a 6 to 9 barb needle at a depth of 5 to 25 mm, and a depth of 0.1 to 15 mm with a 3 to 6 barb needle in the latter half. The condition which entangles the fiber of intensively is mentioned. The number of needle punches is appropriately selected depending on the shape of the needle, the type and amount of oil used, and specifically, about 500 to 5000 punches / cm 2 is preferable, and the number of punches from the back side is preferred. Thus, the number of punches from the surface side is preferably 1.5 to 2 times or more. Moreover, it is preferable to use a needle having a larger number of barbs on the front surface side than on the back surface side, and it is preferable that the needle piercing depth is shallower. Moreover, it is preferable to increase the number of punches and selectively entangle the fibers on the surface side with a barb of the needle.
 また、ニードルパンチ後の絡合ウェブの目付が、ニードルパンチ前の長繊維ウェブの目付の1.2倍以上、さらには、1.5倍以上となるようにすることが繊維密度が高い絡合ウェブが得られる点から好ましい。絡合ウェブの目付は、目的とする研磨パッドの厚さ等に応じて適宜選択されるが、100~1500g/mの範囲であることが取扱い性に優れる点から好ましい。 In addition, the entanglement web after the needle punch is entangled with a high fiber density so that the basis weight of the long fiber web before the needle punch is 1.2 times or more, and more preferably 1.5 times or more. This is preferable because a web is obtained. The basis weight of the entangled web is appropriately selected according to the thickness of the target polishing pad, but is preferably in the range of 100 to 1500 g / m 2 from the viewpoint of excellent handleability.
 また、絡合ウェブの層間剥離力は、2kg/2.5cm以上、さらには、4kg/2.5cm以上であることが、形態保持性が良好で、且つ、繊維の抜けが少なく、繊維密度が高い絡合ウェブが得られる点から好ましい。なお、層間剥離力は、三次元絡合の度合いの目安になる。層間剥離力が小さすぎる場合には、繊維絡合体の繊維密度が充分に高くない。また、絡合不織布の層間剥離力の上限は特に限定されないが、絡合処理効率の点から30kg/2.5cm以下程度であることが好ましい。 In addition, the delamination force of the entangled web is 2 kg / 2.5 cm or more, and more preferably 4 kg / 2.5 cm or more. This is preferable because a high entangled web can be obtained. Note that the delamination force is a measure of the degree of three-dimensional entanglement. When the delamination force is too small, the fiber density of the fiber entangled body is not sufficiently high. Moreover, although the upper limit of the delamination force of an entangled nonwoven fabric is not specifically limited, It is preferable that it is about 30 kg / 2.5 cm or less from the point of an entanglement process efficiency.
 (3)湿熱収縮処理工程
 次に、絡合ウェブを湿熱収縮させることにより、絡合ウェブの繊維密度及び絡合度合いを高める。なお、本工程においては、長繊維を含有する絡合ウェブを湿熱収縮させることにより、短繊維を含有する絡合ウェブを湿熱収縮させる場合に比べて、絡合ウェブを大きく収縮させることができ、そのために、極細繊維の繊維密度が緻密になる。湿熱収縮処理は、スチーム加熱により行うことが好ましい。
(3) Wet heat shrinkage treatment process Next, the fiber density and the degree of entanglement of the entangled web are increased by shrinking the entangled web with heat and moisture. In this step, the entangled web containing the long fibers can be subjected to wet heat shrinkage, so that the entangled web can be greatly shrunk compared to the case where the entangled web containing the short fibers is subjected to wet heat shrinkage, Therefore, the fiber density of the ultrafine fibers becomes dense. The wet heat shrinkage treatment is preferably performed by steam heating.
 スチーム加熱条件としては、雰囲気温度が60~130℃の範囲で、相対湿度75%以上、さらには相対湿度80%以上で、60~600秒間加熱処理することが好ましい。このような加熱条件の場合には、絡合ウェブを高収縮率で収縮させることができる点から好ましい。なお、相対湿度が低すぎる場合には、繊維に接触した水分が速やかに乾燥することにより、収縮が不充分になる傾向がある。 As the steam heating conditions, it is preferable to perform heat treatment for 60 to 600 seconds at an ambient temperature of 60 to 130 ° C. and a relative humidity of 75% or more, and further a relative humidity of 80% or more. Such heating conditions are preferable because the entangled web can be shrunk at a high shrinkage rate. In addition, when relative humidity is too low, there exists a tendency for shrinkage | contraction to become inadequate because the water | moisture content which contacted the fiber dries rapidly.
 湿熱収縮処理は、絡合ウェブの面積収縮率が35%以上、さらには、40%以上になるように収縮させることが好ましい。このように高い収縮率で収縮させることにより、繊維密度が緻密になる。面積収縮率の上限は特に限定されないが、収縮の限度や処理効率の点から80%程度であることが好ましい。なお、面積収縮率(%)は、下記式(1):(収縮処理前のシート面の面積-収縮処理後のシート面の面積)/収縮処理前のシート面の面積×100・・・(1)、
により計算される。
The wet heat shrinkage treatment is preferably performed so that the area shrinkage rate of the entangled web is 35% or more, and further 40% or more. By shrinking at such a high shrinkage rate, the fiber density becomes dense. The upper limit of the area shrinkage rate is not particularly limited, but is preferably about 80% from the viewpoint of shrinkage limit and processing efficiency. The area shrinkage rate (%) is expressed by the following formula (1): (area of the sheet surface before the shrinking process−area of the sheet surface after the shrinking process) / area of the sheet surface before the shrinking process × 100. 1),
Is calculated by
 このように湿熱収縮処理された絡合ウェブは、海島型複合繊維の熱変形温度以上の温度で加熱ロールや加熱プレスされることにより、さらに、繊維密度が高められてもよい。このとき、表面側と裏面側とに異なる条件で加熱プレスすることにより、繊維束の密度勾配を形成させることもできる。加熱ロールによるプレス条件としては、例えば、ロール温度110~150℃、ロール圧力0.05~0.4Mpaの条件が挙げられる。収縮処理前の絡合ウェブの目付に対する収縮処理後の絡合ウェブの目付は、1.2~4倍、さらには、1.5~4倍であることが好ましい。 The entangled web subjected to the wet heat shrinkage treatment in this way may be further increased in fiber density by being heated or pressed at a temperature equal to or higher than the heat deformation temperature of the sea-island composite fiber. At this time, the density gradient of the fiber bundle can also be formed by heating and pressing the front side and the back side under different conditions. Examples of pressing conditions with a heated roll include conditions of a roll temperature of 110 to 150 ° C. and a roll pressure of 0.05 to 0.4 Mpa. The basis weight of the entangled web after the shrinkage treatment relative to the basis weight of the entangled web before the shrinkage treatment is preferably 1.2 to 4 times, and more preferably 1.5 to 4 times.
 (4)高分子弾性体充填工程 I
 収縮処理された絡合ウェブの海島型複合繊維の極細繊維化処理を行う前に、絡合ウェブの内部に高分子弾性体を付与することにより海島型複合繊維を結着させてもよい。このように極細繊維化処理を行う前に絡合ウェブに高分子弾性体を付与することにより、絡合ウェブの形態安定性を高め、また、得られる研磨パッドの繊維束の密度勾配を調整することができる。
(4) Polymer elastic body filling process I
Prior to performing the ultrafine fiber treatment of the sea-island type composite fiber of the entangled web subjected to the shrinkage treatment, the sea-island type composite fiber may be bound by applying a polymer elastic body to the inside of the entangled web. In this way, by applying a polymer elastic body to the entangled web before performing the ultrafine fiber treatment, the shape stability of the entangled web is enhanced, and the density gradient of the fiber bundle of the resulting polishing pad is adjusted. be able to.
 本工程は、収縮処理された絡合ウェブに高分子弾性体の水性液を含浸させた後、高分子弾性体を凝固させることにより、絡合ウェブの内部に高分子弾性体を含浸付与する。 In this step, the entangled web subjected to the shrinkage treatment is impregnated with the aqueous liquid of the polymer elastic body, and then the polymer elastic body is solidified to impregnate the polymer web with the polymer elastic body.
 高分子弾性体の水性液とは、高分子弾性体を形成する成分を水系媒体に分散させた水性分散液、または、高分子弾性体を形成する成分を水系媒体に溶解させた水性溶液である。高分子弾性体の水性液の固形分濃度としては、10質量%以上、さらには、15質量%以上であることが好ましい。 The aqueous liquid of the polymer elastic body is an aqueous dispersion in which the component forming the polymer elastic body is dispersed in the aqueous medium, or the aqueous solution in which the component forming the polymer elastic body is dissolved in the aqueous medium. . The solid content concentration of the aqueous liquid of the polymer elastic body is preferably 10% by mass or more, and more preferably 15% by mass or more.
 高分子弾性体の水性分散液は、高濃度でも粘度が低く、含浸浸透性にも優れているために、絡合ウェブに高充填しやすく、繊維に対する接着性も優れている。従って、本工程により含浸付与された高分子弾性体は海島型複合繊維を強く拘束することができ、また、研磨パッドの見掛け密度を高めやすい。また、高分子弾性体の水性分散液を凝固して得られる高分子弾性体は水に対する濡れ性が高いために、砥粒を均一且つ多量に保持することができる研磨パッドが得られる。 Since an aqueous dispersion of a polymer elastic body has a low viscosity even at a high concentration and is excellent in impregnation permeability, it can be easily filled into an entangled web and has excellent adhesion to fibers. Therefore, the polymer elastic body impregnated by this step can strongly restrain the sea-island type composite fiber and can easily increase the apparent density of the polishing pad. In addition, since a polymer elastic body obtained by coagulating an aqueous dispersion of a polymer elastic body has high wettability to water, a polishing pad capable of holding a large amount of abrasive grains is obtained.
 水性分散液には、サスペンジョン及びエマルジョンが含まれる。水性分散液に分散した高分子弾性体の平均粒子径は、0.01~0.2μm程度であることが好ましい。 Aqueous dispersions include suspensions and emulsions. The average particle diameter of the elastic polymer dispersed in the aqueous dispersion is preferably about 0.01 to 0.2 μm.
 水性分散液を調製する方法は、特に限定されない。例えば、ポリウレタン系樹脂の場合、カルボキシル基、スルホン酸基、水酸基、炭素数5以下特には炭素数3以下のポリアルキレングリコール基などの親水性基を有するモノマー単位を樹脂構成単位として含有させることにより水性媒体に対する分散性を付与することができる。このような親水性基を有するモノマー単位の共重合割合としては、0.1~10質量%、更には、0.5~5質量%であることが、吸水による膨潤軟化を最小限に抑えつつ、吸水率や濡れ性を高めることができる点から好ましい。 The method for preparing the aqueous dispersion is not particularly limited. For example, in the case of a polyurethane-based resin, a monomer unit having a hydrophilic group such as a carboxyl group, a sulfonic acid group, a hydroxyl group, a polyalkylene glycol group having 5 or less carbon atoms, particularly 3 or less carbon atoms is contained as a resin constituent unit. Dispersibility in an aqueous medium can be imparted. The copolymerization ratio of the monomer unit having such a hydrophilic group is 0.1 to 10% by mass, and further 0.5 to 5% by mass while minimizing swelling and softening due to water absorption. From the point that water absorption and wettability can be improved.
 また、界面活性剤を用いることにより、ポリウレタン系樹脂の粒子を水系媒体に乳化又は懸濁させることもできる。乳化又は懸濁に用いられる界面活性剤の具体例としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル酢酸ナトリウム、ドデシルベンゼンスルフォン酸ナトリウム、アルキルジフェニルエーテルジスルフォン酸ナトリウム、ジオクチルスルホコハク酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体などのノニオン性界面活性剤などが挙げられる。また、反応性を有する、いわゆる反応性界面活性剤を用いてもよい。また、界面活性剤の曇点を適宜選ぶことにより、ポリウレタン樹脂に感熱ゲル化性を付与することもできる。 Also, by using a surfactant, the polyurethane resin particles can be emulsified or suspended in an aqueous medium. Specific examples of the surfactant used for emulsification or suspension include, for example, sodium lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene tridecyl ether acetate, sodium dodecylbenzene sulfonate, sodium alkyldiphenyl ether disulfonate, dioctyl sulfosuccinic acid Anionic surfactants such as sodium; nonionic properties such as polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene-polyoxypropylene block copolymer Surfactant etc. are mentioned. Moreover, you may use what is called reactive surfactant which has reactivity. Moreover, heat-sensitive gelation property can also be provided to a polyurethane resin by selecting the cloud point of surfactant suitably.
 絡合ウェブに高分子弾性体の水性液を含浸させる方法としては、例えば、ナイフコーター、バーコーター、又はロールコーターを用いる方法、または、ディッピングする方法等が挙げられる。そして、高分子弾性体の水性液が含浸された絡合ウェブを乾燥することにより、高分子弾性体を凝固させることができる。乾燥方法としては、50~200℃の乾燥装置中で熱処理する方法や、赤外線加熱の後に乾燥機中で熱処理する方法等が挙げられる。なお、絡合ウェブに高分子弾性体の水性液を含浸させた後乾燥する場合、絡合ウェブの表層から水分が蒸発することにより水性液が表層にマイグレーションする。このマイグレーションを促進する条件で乾燥させることにより、高分子弾性体を表層に偏在させて繊維束の密度勾配を形成させることが好ましい。熱風乾燥機の熱処理温度の具体例としては、例えば、130~170℃、さらには140~170℃が好ましい。このような方法を用いて、研磨面側の密度を、繊維束の密度差だけではなく、高分子弾性体による密度差により高くすることにより、研磨面側がさらに緻密になることにより、耐磨耗性がさらに高い研磨パッドが得られる。 Examples of the method for impregnating the entangled web with the aqueous liquid of the polymer elastic body include a method using a knife coater, a bar coater, or a roll coater, or a dipping method. The polymer elastic body can be solidified by drying the entangled web impregnated with the aqueous liquid of the polymer elastic body. Examples of the drying method include a method of heat treatment in a drying apparatus at 50 to 200 ° C. and a method of heat treatment in a dryer after infrared heating. When the entangled web is impregnated with an aqueous liquid of a polymer elastic body and then dried, the aqueous liquid migrates to the surface layer due to evaporation of moisture from the surface layer of the entangled web. It is preferable that the polymer elastic body is unevenly distributed on the surface layer to form a density gradient of the fiber bundle by drying under conditions that promote this migration. As specific examples of the heat treatment temperature of the hot air dryer, for example, 130 to 170 ° C., more preferably 140 to 170 ° C. is preferable. Using such a method, by increasing the density on the polished surface side not only due to the difference in density of fiber bundles but also due to the difference in density due to the polymer elastic body, the polished surface side becomes more dense and wear resistant. A polishing pad with higher properties can be obtained.
 (5)極細繊維形成工程
 海島型複合繊維中の水溶性熱可塑性樹脂を除去することにより極細繊維を形成する工程について、詳しく説明する。
 海島型複合繊維中の水溶性熱可塑性樹脂は、水、アルカリ性水溶液、酸性水溶液等を用いて溶解除去または分解除去される。
(5) Ultrafine fiber formation process The process of forming ultrafine fiber by removing the water-soluble thermoplastic resin in the sea-island type composite fiber will be described in detail.
The water-soluble thermoplastic resin in the sea-island composite fiber is dissolved or removed by using water, an alkaline aqueous solution, an acidic aqueous solution, or the like.
 本工程においては、はじめに、絡合ウェブまたは、高分子弾性体を付与された絡合ウェブは、水、アルカリ性水溶液、酸性水溶液等の熱水中に浸漬されて熱水処理される。また、溶解効率を高めるために、必要に応じて、ロールでのニップ処理、高圧水流処理、超音波処理、シャワー処理、攪拌処理、揉み処理等を行ってもよい。なお、固定面の繊維束を低密度にするために、高速水流や機械により揉み処理を行うことにより調整してもよい。 In this step, first, the entangled web or the entangled web provided with the polymer elastic body is immersed in hot water such as water, an alkaline aqueous solution, an acidic aqueous solution, etc., and subjected to hot water treatment. Moreover, in order to improve dissolution efficiency, you may perform the nip process by a roll, a high pressure water flow process, an ultrasonic process, a shower process, a stirring process, a stagnation process, etc. as needed. In addition, in order to make the fiber bundle of a fixed surface low density, you may adjust by performing a stagnation process with a high-speed water stream or a machine.
 なお、湿熱収縮処理工程(3)を行わずに、本工程において絡合ウェブの収縮処理と、海島型複合繊維の極細繊維化を同時に行ってもよい。このような、収縮処理と極細繊維化とを同時に行う方法の具体例としては、例えば、絡合ウェブを、第1段階として65~90℃の熱水中に5~300秒間浸漬した後、さらに、第2段階として、85~100℃の熱水中で100~600秒間処理する条件が挙げられる。 In addition, without performing the wet heat shrinkage treatment step (3), the shrinkage treatment of the entangled web and the ultra-fine fiber of the sea-island type composite fiber may be simultaneously performed in this step. As a specific example of the method for simultaneously performing the shrinkage treatment and the ultrafine fiber formation, for example, an entangled web is immersed in hot water at 65 to 90 ° C. for 5 to 300 seconds as a first step, and further, As the second stage, conditions for treatment in hot water at 85 to 100 ° C. for 100 to 600 seconds can be mentioned.
 (6)高分子弾性体充填工程 II
 次に、極細繊維を集束し、また、極細繊維束同士をさらに拘束するために、高分子弾性体を付与する工程について説明する。極細繊維形成工程(5)において、海島型複合繊維に極細繊維化処理を施すことにより、水溶性熱可塑性樹脂が除去されて極細繊維束の内部に空隙が形成される。本工程においては、このような空隙に高分子弾性体を付与することにより、極細繊維を集束する。また、同時に、極細繊維束同士もさらに高分子弾性体により拘束される。なお、極細繊維が繊維束を形成している場合には、毛細管現象により繊維束の内部に高分子弾性体の水性液が容易に吸収される。なお、本工程に用いられる、高分子弾性体の水性液は、高分子弾性体充填工程Iで説明した水性液と同様のものが用いられうる。また、高分子弾性体を充填及び凝固させる方法も、高分子弾性体充填工程 Iで説明した方法と同様の方法が用いられうる。このようにして、研磨パッド前駆体が形成される。
(6) Polymer elastic body filling step II
Next, a process of applying a polymer elastic body in order to bundle the ultrafine fibers and further restrain the ultrafine fiber bundles will be described. In the ultrafine fiber forming step (5), the sea-island type composite fiber is subjected to ultrafine fiber treatment, whereby the water-soluble thermoplastic resin is removed and voids are formed inside the ultrafine fiber bundle. In this step, the ultrafine fibers are focused by applying a polymer elastic body to such voids. At the same time, the ultrafine fiber bundles are further restrained by the polymer elastic body. When the ultrafine fibers form a fiber bundle, the aqueous liquid of the polymer elastic body is easily absorbed into the fiber bundle by capillary action. The aqueous liquid of the polymer elastic body used in this step may be the same as the aqueous liquid described in the polymer elastic body filling step I. Also, the method for filling and coagulating the polymer elastic body may be the same as the method described in the polymer elastic body filling step I. In this way, a polishing pad precursor is formed.
 (7)仕上げ工程
 得られた研磨パッド前駆体に平坦化処理を施すことにより、本実施形態の研磨パッドが得られる。平坦化処理は、例えば、研磨パッド前駆体を所定の厚さに熱プレス成形したり、サンドペーパー、針布、ダイヤモンド等により表面を研磨することにより、表面を平滑に仕上げるとともに、厚みを調整するための処理である。このようにして、仕上げられた研磨パッドの厚さとしては、0.5~3mm程度であることが好ましい。
(7) Finishing process The polishing pad of this embodiment is obtained by performing a planarization process on the obtained polishing pad precursor. In the flattening treatment, for example, the polishing pad precursor is hot press-molded to a predetermined thickness, or the surface is polished with sandpaper, needle cloth, diamond, etc., so that the surface is finished smoothly and the thickness is adjusted. Process. The thickness of the polishing pad thus finished is preferably about 0.5 to 3 mm.
 また、研磨パッドの表面は起毛処理されてもよい。起毛処理することにより、研磨パッドの研磨面と被研磨基材との接触面積が大きくなり、また、研磨スラリーとの濡れ性が向上する。起毛処理は、研磨パッドの表面をサンドペーパーでバフィング処理する方法が用いられる。サンドペーパーは、例えば、砥粒番手が#40番~#80番のものを用いることが好ましい。起毛処理の具体例としては、例えば、コンタクトタイプのバフィング機による連続起毛処理や、エメリータイプのバフィング処理や、コンタクトタイプとエメリータイプとを組み合わせたバフィング処理等が挙げられる。また、均一な起毛状態にするために、研磨パッドの起毛処理された表面をプレスしてもよい。 Also, the surface of the polishing pad may be brushed. By raising the surface, the contact area between the polishing surface of the polishing pad and the substrate to be polished is increased, and wettability with the polishing slurry is improved. For the raising treatment, a method of buffing the surface of the polishing pad with sandpaper is used. As the sandpaper, for example, it is preferable to use one having an abrasive grain number of # 40 to # 80. Specific examples of the raising process include, for example, a continuous raising process using a contact type buffing machine, an emery type buffing process, a buffing process combining a contact type and an emery type, and the like. In addition, in order to obtain a uniform raised state, the raised surface of the polishing pad may be pressed.
 また、より平坦化性能を向上させるために、研磨パッドの表面に同心円状、らせん状、格子状等の溝や穴を形成するための表面加工を施してもよい。このような表面加工を施すことにより、研磨スラリーを研磨面により均一に行き渡らせることができる。 Further, in order to further improve the planarization performance, surface processing for forming concentric, spiral, and lattice grooves or holes on the surface of the polishing pad may be performed. By performing such surface processing, the polishing slurry can be spread more uniformly on the polishing surface.
 次に、本実施形態の研磨パッドを用いたケミカルメカニカル研磨方法について図3を参照しながら詳しく説明する。図3は本実施形態の研磨パッド10を用いたケミカルメカニカル研磨方法の実施の様子を示す側面図である。
 本実施形態の研磨パッド10を用いたケミカルメカニカル研磨方法においては、例えば、図3に示すような円形の回転定盤11と、スラリー供給ノズル12と、キャリア13と、パッドコンディショナー14とを備えたCMP装置20が用いられる。回転定盤11の表面に、研磨パッド10が両面テープによりその固定面4で貼付けられている。また、キャリア13は被研磨基材15を支持している。
 CMP装置20においては、回転定盤11は図略のモータにより矢印に示す方向に回転する。また、キャリア13は、回転定盤11の面内において遊星歯車状に、図略のモータにより例えば矢印に示す方向に回転する。パッドコンディショナー14も回転定盤11の面内において遊星歯車状に、図略のモータにより例えば矢印に示す方向に回転する。
Next, a chemical mechanical polishing method using the polishing pad of this embodiment will be described in detail with reference to FIG. FIG. 3 is a side view showing a state of the chemical mechanical polishing method using the polishing pad 10 of the present embodiment.
In the chemical mechanical polishing method using the polishing pad 10 of the present embodiment, for example, a circular rotary surface plate 11, a slurry supply nozzle 12, a carrier 13, and a pad conditioner 14 as shown in FIG. A CMP apparatus 20 is used. A polishing pad 10 is adhered to the surface of the rotating surface plate 11 with a fixed surface 4 by a double-sided tape. The carrier 13 supports the substrate 15 to be polished.
In the CMP apparatus 20, the rotating surface plate 11 is rotated in a direction indicated by an arrow by a motor (not shown). Further, the carrier 13 is rotated in the direction indicated by an arrow by a motor (not shown) in a planetary gear shape within the surface of the rotating surface plate 11. The pad conditioner 14 is also rotated in a planetary gear shape in the plane of the rotating surface plate 11 by a motor (not shown), for example, in the direction indicated by the arrow.
 はじめに、回転定盤11に固定されて回転する研磨パッド10の表面に蒸留水を流しながら研磨パッド10の表面に回転するパッドコンディショナー14を押し当てて、研磨パッド10の表面のコンディショニングを行う。次に、回転する研磨パッド10の表面にスラリー供給ノズル12から各種化学成分および硬質の微細な砥粒を含む研磨スラリー16が供給される。そして、研磨スラリー16が満遍なく行き渡った研磨パッド10に、キャリア13に固定されて回転する被研磨基材15を押し当てる。そして、所定の平坦度が得られるまで、研磨処理が続けられる。研磨時に作用させる押し付け力や回転定盤11とキャリア13との相対運動の速度を調整することにより、仕上がり品質が影響を受ける。 First, the surface of the polishing pad 10 is conditioned by pressing the rotating pad conditioner 14 against the surface of the polishing pad 10 while flowing distilled water on the surface of the polishing pad 10 that is fixed to the rotating platen 11 and rotating. Next, a polishing slurry 16 containing various chemical components and hard fine abrasive grains is supplied from the slurry supply nozzle 12 to the surface of the rotating polishing pad 10. Then, the substrate 15 to be polished, which is fixed to the carrier 13 and rotates, is pressed against the polishing pad 10 in which the polishing slurry 16 has spread evenly. Then, the polishing process is continued until a predetermined flatness is obtained. The quality of the finished product is affected by adjusting the pressing force applied during polishing and the speed of the relative movement between the rotating surface plate 11 and the carrier 13.
 本実施形態のケミカルメカニカル研磨方法においては、研磨パッド10は、回転定盤11の表面に固定面4で固定されている。固定面4で研磨パッド10を固定することにより、繊維束の数密度が高く剛性が高い研磨面3が外表面になるために、研磨レート及び耐磨耗性が高くなり、また、研磨面内における研磨不均一性が低くなる。また、回転定盤11に固定されている固定面4側の表層は繊維束の数密度が低く剛性が低いために、被研磨基材15の表面に対する適度な追従性やフィット性を維持できる。 In the chemical mechanical polishing method of this embodiment, the polishing pad 10 is fixed to the surface of the rotating surface plate 11 with the fixed surface 4. By fixing the polishing pad 10 with the fixed surface 4, the polishing surface 3 having a high number density and high rigidity of the fiber bundle becomes the outer surface, so that the polishing rate and the wear resistance are increased. Polishing non-uniformity is reduced. Further, since the surface layer on the fixed surface 4 side fixed to the rotating surface plate 11 has a low number density of fiber bundles and a low rigidity, it is possible to maintain appropriate followability and fit to the surface of the substrate 15 to be polished.
 研磨スラリー16の成分は、被研磨基材15の種類によって適宜選択される。砥粒の具体例としては、例えば、数十nm~数百nmの粒子径を有するSiO2,Al2O3,CeO2,Mn2O3,ダイヤモンド粒子等が挙げられる。また化学成分の具体例としては、例えば、酸・アルカリなど被研磨面を改質する成分や界面活性剤等が挙げられる。 The components of the polishing slurry 16 are appropriately selected depending on the type of the substrate 15 to be polished. Specific examples of the abrasive grains include SiO 2 , Al 2 O 3 , CeO 2 , Mn 2 O 3 , diamond particles having a particle diameter of several tens to several hundreds of nanometers. Specific examples of the chemical component include components that modify the surface to be polished, such as acid and alkali, and surfactants.
 このような本実施形態のケミカルメカニカル研磨方法は、各種基材の研磨に用いられうる。基材の具体例としては、例えば、シリコン、酸化シリコン、酸化フッ化シリコン、有機ポリマーなどの絶縁材料;銅、アルミニウム、タングステンなどの導電材料;タンタル、チタン、窒化タンタル、窒化チタンなどのバリア材料、等が挙げられる。また、その用途の具体例としては、例えば、シリコンウエハ、化合物半導体ウエハ、半導体ウエハ、半導体デバイス、液晶部材、光学素子、水晶、光学基板、電子回路基板、電子回路マスク基板、多層配線基板、ハードディスク、MEMS(マイクロ-エレクトロ-メカニカルシステムズ)基材等の研磨が挙げられる。なお、研磨は、一次研磨、二次研磨(調整研磨)、仕上げ研磨、鏡面研磨等何れであってもよい。 Such a chemical mechanical polishing method of this embodiment can be used for polishing various substrates. Specific examples of the base material include, for example, insulating materials such as silicon, silicon oxide, silicon oxyfluoride, and organic polymers; conductive materials such as copper, aluminum, and tungsten; barrier materials such as tantalum, titanium, tantalum nitride, and titanium nitride. , Etc. Specific examples of the application include, for example, a silicon wafer, a compound semiconductor wafer, a semiconductor wafer, a semiconductor device, a liquid crystal member, an optical element, a crystal, an optical substrate, an electronic circuit substrate, an electronic circuit mask substrate, a multilayer wiring substrate, and a hard disk. And polishing of MEMS (micro-electro-mechanical systems) base materials. The polishing may be any of primary polishing, secondary polishing (adjustment polishing), finish polishing, mirror polishing, and the like.
 以下、本発明を実施例により具体的に説明する。なお、本発明の範囲は実施例の記載により何ら限定されるものではない。
 はじめに、本実施例で用いた評価方法をまとめて説明する。
Hereinafter, the present invention will be specifically described by way of examples. The scope of the present invention is not limited by the description of the examples.
First, the evaluation methods used in this example will be described together.
[評価方法]
(1)極細繊維束の平均数密度(D、D、D)、単繊維の平均断面積、及び、繊維束の平均断面積の測定
 研磨パッドをカッター刃を用いて厚さ方向に平行に切断することにより、厚さ方向の切断面を形成した。そして、得られた切断面を酸化オスミウムで染色した。そして、切断面を走査型電子顕微鏡(SEM)で100~1000倍で観察し、その画像を撮影した。そして、得られた画像からランダムに選択した100個の極細繊維束の断面積を求め、その平均値を極細繊維束の平均断面積とした。また、極細繊維束を形成する100本の極細繊維の断面積を求め、その平均値を極細繊維の単繊維の平均断面積とした。
 また、得られた画像から、研磨パッドの表面から厚さ方向に20%以内の厚み領域において満遍なく0.1mm四方の領域を5箇所選択し、各箇所における極細繊維束の個数を数えた。その結果から1mm当たりに存在する極細繊維束の個数を算出した。5箇所の平均をDとした。
 また、得られた画像から、研磨パッドの裏面から厚さ方向に20%以内の厚み領域において満遍なく0.1mm四方の領域を5箇所選択し、各箇所における極細繊維束の個数を数えた。その結果から1mm当たりに存在する極細繊維束の個数を算出した。5箇所の平均をDとした。
 また、得られた画像から、研磨パッドの表面から厚さ方向に50%付近の部分において、満遍0.1mm四方の領域を5箇所選択し、各箇所における極細繊維束の個数を数えた。その結果から1mm当たりに存在する極細繊維束の個数を算出した。5箇所の平均をDとした。
[Evaluation methods]
(1) Measurement of the average number density (D 1 , D 2 , D 3 ) of the ultrafine fiber bundle, the average cross-sectional area of the single fiber, and the average cross-sectional area of the fiber bundle In the thickness direction, the polishing pad is used with a cutter blade A cut surface in the thickness direction was formed by cutting in parallel. The obtained cut surface was stained with osmium oxide. The cut surface was observed with a scanning electron microscope (SEM) at a magnification of 100 to 1000 times, and the image was taken. And the cross-sectional area of 100 ultra-fine fiber bundles selected at random from the obtained image was calculated | required, and the average value was made into the average cross-sectional area of an ultra-fine fiber bundle. In addition, the cross-sectional area of 100 ultrafine fibers forming the ultrafine fiber bundle was obtained, and the average value was defined as the average cross-sectional area of single ultrafine fibers.
Further, from the obtained image, five regions of 0.1 mm square were selected evenly in the thickness region within 20% in the thickness direction from the surface of the polishing pad, and the number of ultrafine fiber bundles at each location was counted. From the result, the number of ultrafine fiber bundles present per 1 mm 2 was calculated. The average of five points was D 1.
Further, from the obtained image, five regions of 0.1 mm square were selected evenly in the thickness region within 20% from the back surface of the polishing pad in the thickness direction, and the number of ultrafine fiber bundles at each location was counted. From the result, the number of ultrafine fiber bundles present per 1 mm 2 was calculated. The average of five points was D 2.
Further, from the obtained image, five uniform 0.1 mm square regions were selected in the vicinity of 50% in the thickness direction from the surface of the polishing pad, and the number of ultrafine fiber bundles at each location was counted. From the result, the number of ultrafine fiber bundles present per 1 mm 2 was calculated. The average of five points was D 3.
(2)絡合ウェブの層間剥離強力
 得られた絡合ウェブから、縦23cm、巾2.5cmの長方形上の試験片を作製した。そして、試験片の一端で、厚み方向のほぼ中央にカミソリ刃で切れ目を入れた。そして、端から約10cmを手で引っ張って剥離した。そして、剥離された両片の端をそれぞれ引張試験機のチャックに固定した。そして、引張試験機で引張り、応力-ひずみ曲線(SS曲線)を得、その平坦部分の応力から剥離強力を求めた。なお、引張速度は100mm/分で行った。なお、得られた結果は、3個の試験片の平均値である。
(2) Delamination strength of entangled web From the obtained entangled web, a test piece on a rectangle having a length of 23 cm and a width of 2.5 cm was prepared. Then, at one end of the test piece, a cut was made with a razor blade at substantially the center in the thickness direction. And about 10 cm from the end was pulled by hand and peeled off. Then, the ends of both peeled pieces were each fixed to a chuck of a tensile tester. Then, it was pulled with a tensile tester to obtain a stress-strain curve (SS curve), and the peel strength was obtained from the stress of the flat portion. The tensile speed was 100 mm / min. In addition, the obtained result is an average value of three test pieces.
(3)研磨パッドのD硬度の測定方法
 研磨パッドの研磨面のD硬度を硬度計D型(高分子計器株式会社製)を用いて、JIS K 6253に準拠して測定した。なお、荷重は5kgに設定した。
(3) Measuring method of D hardness of polishing pad D hardness of the polishing surface of the polishing pad was measured according to JIS K 6253 using a hardness meter D type (manufactured by Kobunshi Keiki Co., Ltd.). The load was set to 5 kg.
(4)磨耗減量
 直径13cmの円形に切断した研磨パッドの研磨面のテーバー磨耗を、JIS K5600-5-9に準拠した方法により測定した。なお、磨耗輪:H-22、荷重:500g、回転数:1000回の条件で測定した。測定前重量と測定後重量との差である減量(mg)を求めた。
(4) Abrasion loss The Taber abrasion of the polishing surface of the polishing pad cut into a circle having a diameter of 13 cm was measured by a method according to JIS K5600-5-9. The measurement was performed under the conditions of a wear wheel: H-22, a load: 500 g, and a rotation speed: 1000 times. The weight loss (mg), which is the difference between the pre-measurement weight and the post-measurement weight, was determined.
(5)高分子弾性体のガラス転移温度(Tg)の測定
 研磨パッドを構成する高分子弾性体からなる縦4cm×横0.5cm×厚さ400μm±100μmのフィルムを作成した。そして、フィルムの厚さをマイクロメーターで測定後、動的粘弾性測定装置(DVEレオスペクトラー、(株)レオロジー社製)を用いて、周波数11Hz、昇温速度3℃/分での条件で動的粘弾性の測定を行い、損失弾性率の主分散ピーク温度をガラス転移温度とした。
(5) Measurement of Glass Transition Temperature (T g ) of Polymer Elastic Body A film having a length of 4 cm, a width of 0.5 cm, and a thickness of 400 μm ± 100 μm made of a polymer elastic body constituting a polishing pad was prepared. Then, after measuring the thickness of the film with a micrometer, using a dynamic viscoelasticity measuring device (DVE Rheospectr, manufactured by Rheology Co., Ltd.) under the conditions of a frequency of 11 Hz and a heating rate of 3 ° C./min. The dynamic viscoelasticity was measured, and the main dispersion peak temperature of the loss elastic modulus was defined as the glass transition temperature.
(6)高分子弾性体の23℃および50℃における貯蔵弾性率測定方法
 研磨パッドを構成する高分子弾性体を縦4cm×横0.5cm×厚さ400μm±100μmのフィルムを作成した。そして、フィルムの厚さをマイクロメーターで測定後、動的粘弾性測定装置(DVEレオスペクトラー、(株)レオロジー社製)を用いて、周波数11Hz、昇温速度3℃/分での条件で23℃および50℃における動的粘弾性率を測定し、貯蔵弾性率を算出した。
(6) Method for Measuring Storage Elastic Modulus of Polymer Elastic Body at 23 ° C. and 50 ° C. A film having a length of 4 cm, a width of 0.5 cm, and a thickness of 400 μm ± 100 μm was prepared from the polymer elastic body constituting the polishing pad. Then, after measuring the thickness of the film with a micrometer, using a dynamic viscoelasticity measuring device (DVE Rheospectr, manufactured by Rheology Co., Ltd.) under the conditions of a frequency of 11 Hz and a heating rate of 3 ° C./min. The dynamic viscoelastic modulus at 23 ° C. and 50 ° C. was measured, and the storage elastic modulus was calculated.
(7)高分子弾性体の飽和吸水率測定方法
 研磨パッドを構成する高分子弾性体を50℃で乾燥して得られた厚さ200μmのフィルムを、130℃で30分間熱処理した。そして、20℃、65%RHの条件下に3日間放置した。そして、このときの乾燥時の質量を測定した。そして、50℃の水に、乾燥させたフィルムを2日間浸漬した。そして50℃の水から取り出した直後、フィルムの最表面の余分な水滴等を拭き取り、吸水後の質量を測定した。そして次の式により、飽和吸水率を算出した。
 飽和吸水率(%)=[(吸水後の質量-乾燥時の質量)/乾燥時の質量]×100
(7) Method for Measuring Saturated Water Absorption Rate of Polymer Elastic Body A 200 μm-thick film obtained by drying the polymer elastic body constituting the polishing pad at 50 ° C. was heat-treated at 130 ° C. for 30 minutes. And it was left to stand on the conditions of 20 degreeC and 65% RH for 3 days. And the mass at the time of drying at this time was measured. Then, the dried film was immersed in 50 ° C. water for 2 days. And immediately after taking out from 50 degreeC water, the excess water drop etc. of the outermost surface of a film were wiped off, and the mass after water absorption was measured. And the saturated water absorption was computed by the following formula.
Saturated water absorption (%) = [(mass after water absorption−mass at drying) / mass at drying] × 100
(8)研磨パッドの研磨性能
 研磨パッドの固定面に両面粘着テープを貼り付けて、CMP研磨装置(株式会社野村製作所製「PP0-60S」)の回転定盤に固定した。そして、番手#200のダイヤモンドドレッサー(三菱マテリアル(株)製のMEC200L)を用いて、圧力177kPa、ドレッサー回転数110回転/分の条件で、蒸留水を120mL/分の速度で流しながら18分間研磨パッド表面を研削することによりコンディショニング(シーズニング)を行った。
 次に、回転定盤に固定した研磨パッドの表面に研磨スラリーを供給した。研磨スラリーとしては、キャボット社製砥粒スラリーSS25を蒸留水で2倍に希釈したものを用いた。また、研磨スラリーの供給量は120ml/分とした。そして、プラテン回転数50回転/分、ヘッド回転数49回転/分、研磨圧力35kPaの条件で、酸化膜表面を有する直径8インチのシリコンウエハを100秒間研磨した。
(8) Polishing performance of polishing pad A double-sided adhesive tape was affixed to the fixed surface of the polishing pad and fixed to a rotating surface plate of a CMP polishing apparatus ("PP0-60S" manufactured by Nomura Corporation). Then, using a diamond dresser with count # 200 (MEC200L manufactured by Mitsubishi Materials Corporation), polishing for 18 minutes while flowing distilled water at a rate of 120 mL / min under conditions of a pressure of 177 kPa and a dresser rotation speed of 110 rpm. Conditioning (seasoning) was performed by grinding the pad surface.
Next, the polishing slurry was supplied to the surface of the polishing pad fixed to the rotating surface plate. As the polishing slurry, a slurry obtained by diluting Cabot abrasive slurry SS25 twice with distilled water was used. The supply amount of the polishing slurry was 120 ml / min. Then, an 8 inch diameter silicon wafer having an oxide film surface was polished for 100 seconds under the conditions of a platen rotation speed of 50 rotations / minute, a head rotation speed of 49 rotations / minute, and a polishing pressure of 35 kPa.
 そして、研磨前および研磨後の酸化膜の膜厚をシリコンウエハ面内で49点測定し、各点における研磨された厚さを研磨時間で除することにより、研磨レート(nm/分)を求めた。また、49点の研磨レートの平均値を平均研磨レート(R)とし、さらに、研磨レートの標準偏差(σ)を求めた。そして、
式(1):不均一性(%)=(σ/R)×100  ・・・(1)、により、不均一性を算出した。不均一性の値が小さいほど、研磨面内で均一に研磨されていることを示す。そして、高精度な研磨加工を実現することができる。
Then, the thickness of the oxide film before and after polishing was measured at 49 points within the silicon wafer surface, and the polished thickness at each point was divided by the polishing time to obtain the polishing rate (nm / min). It was. Further, the average value of the 49 polishing rates was defined as the average polishing rate (R), and the standard deviation (σ) of the polishing rate was determined. And
The non-uniformity was calculated by the formula (1): non-uniformity (%) = (σ / R) × 100 (1). It shows that it is grind | polished uniformly within a grinding | polishing surface, so that the value of nonuniformity is small. And a highly accurate grinding | polishing process is realizable.
 また、式(2):研磨レート安定性(%)=(研磨レート最大値-研磨レート最小値)/研磨レート平均値×100  ・・・(2)により、研磨レート安定性を算出した。
 さらに、研磨後の酸化膜を有するシリコンウエハの表面に存在する0.16μm以上の大きさの傷の数をウエハ表面検査装置Surfscan SP1(KLA-Tencor社製)を用いて、測定することによりスクラッチ性を評価した。
Further, the polishing rate stability was calculated by the formula (2): polishing rate stability (%) = (polishing rate maximum value−polishing rate minimum value) / polishing rate average value × 100 (2).
Further, the number of scratches having a size of 0.16 μm or more present on the surface of the silicon wafer having the polished oxide film is measured by using a wafer surface inspection device Surfscan SP1 (manufactured by KLA-Tencor) to scratch. Sex was evaluated.
[実施例1]
 島成分としてPVA樹脂、海成分として変性度6モル%のイソフタル酸変性PETを用いた。なお、イソフタル酸変性PETは、50℃で飽和吸水させたときの吸水率が1質量%であり、そのガラス転移温度は77℃であった。PVA樹脂とイソフタル酸変性PETとを25:75(質量比)の割合で25島/繊維の溶融複合紡糸用口金(口金温度 260℃)から吐出させることにより、海島型複合繊維のストランドを形成した。そして、口金から吐出されたストランドを、口金直下に設置したエアジェット吸引装置により延伸して細化しながら冷却することにより平均繊度2.0dtexの海島型複合フィラメントを紡糸した。なおエアジェット吸引装置の吸引力は、単位時間辺りの吐出量と、得られる長繊維の繊度の比率から間接的に求められる紡糸速度が4000m/minとなるように調整された。そして、海島型複合フィラメントをエアジェット吸引装置の直下に設置した移動式ネット上に連続的に捕集することにより、目付量40g/mのスパンボンドシート(長繊維ウェブ)を得た。
[Example 1]
PVA resin was used as the island component, and isophthalic acid-modified PET having a modification degree of 6 mol% was used as the sea component. The isophthalic acid-modified PET had a water absorption of 1% by mass when saturated with water at 50 ° C., and its glass transition temperature was 77 ° C. A strand of sea-island type composite fibers was formed by discharging PVA resin and isophthalic acid-modified PET at a ratio of 25:75 (mass ratio) from a 25 island / fiber melt compound spinning die (die temperature 260 ° C.). . Then, the strand discharged from the die was cooled while being stretched and thinned by an air jet suction device installed immediately below the die, thereby spinning a sea-island composite filament having an average fineness of 2.0 dtex. The suction force of the air jet suction device was adjusted so that the spinning speed obtained indirectly from the ratio of the discharge amount per unit time and the fineness of the obtained long fibers was 4000 m / min. And the sea-island type | mold composite filament was continuously collected on the mobile net installed directly under the air jet suction apparatus, and the spunbond sheet (long fiber web) with a weight of 40 g / m < 2 > was obtained.
 次に、得られたスパンボンドシートをクロスラッピングにより12枚重ねることにより、総目付が480g/mのウェブ積層体を作製した。そして、得られたウェブ積層体に、針折れ防止油剤がスプレーされた。次に、ウェブ積層体は、ニードル番手42番,バーブ数3個のニードル針、及びニードル番手42番,バーブ数6個のニードル針を順に用いて、その第一の表面側から針深度5~25mmの深さでパンチ数1500パンチ/cmの条件でニードルパンチ処理され、さらに、第二の表面側から針深度0~15mmの深さでパンチ数500パンチ/cmの条件でニードルパンチ処理された。ニードルパンチによるウェブ積層体の面積収縮率は30%であった。このようなニードルパンチ処理により、目付600g/m、層間剥離強力11.0kg/2.5cmの絡合ウェブが得られた。 Next, 12 spunbond sheets obtained were overlapped by cross-wrapping to produce a web laminate having a total basis weight of 480 g / m 2 . And the needle | hook breaking prevention oil agent was sprayed to the obtained web laminated body. Next, the web laminated body was used from the first surface side with a needle depth of 5 to 4, using a needle count of 42, a needle needle with 3 barbs, and a needle needle with a needle count of 42 and 6 barbs. Needle punch processing is performed at a depth of 25 mm and a punch number of 1500 punch / cm 2 , and further, needle punch processing is performed at a needle depth of 0 to 15 mm from the second surface side and a punch number of 500 punch / cm 2. It was done. The area shrinkage rate of the web laminate by needle punching was 30%. By such a needle punching process, an entangled web having a basis weight of 600 g / m 2 and a delamination strength of 11.0 kg / 2.5 cm was obtained.
 次に、得られた絡合ウェブを70℃の熱水中に90秒間浸漬して島成分を応力緩和させることにより面積を43%収縮させ、さらに95℃の熱水中に10分間浸漬してPVA樹脂を溶解除去させた。なお、熱水処理による絡合ウェブの面積収縮率は、乾燥状態において、45%であった。熱水処理により、極細繊維の繊維束からなる不織布が得られた。不織布の目付は780g/mであり、見掛け密度は0.55g/cmであった。 Next, the obtained entangled web was immersed in hot water at 70 ° C. for 90 seconds to relieve the stress of the island component, thereby shrinking the area by 43%, and further immersed in hot water at 95 ° C. for 10 minutes. The PVA resin was dissolved and removed. In addition, the area shrinkage rate of the entangled web by the hot water treatment was 45% in the dry state. A nonwoven fabric composed of fiber bundles of ultrafine fibers was obtained by the hot water treatment. The nonwoven fabric had a basis weight of 780 g / m 2 and an apparent density of 0.55 g / cm 3 .
 そして、得られた不織布に、固形分濃度25質量%に調整されたポリウレタン弾性体Aの水性エマルジョンを含浸させた。なお、水性エマルジョン中のポリウレタン弾性体Aの平均粒径は0.05μmであった。 Then, the obtained nonwoven fabric was impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass. The average particle size of the polyurethane elastic body A in the aqueous emulsion was 0.05 μm.
 なお、ポリウレタン弾性体Aは次のような高分子である。ポリウレタン弾性体Aは、高分子ジオール50質量%に対して、4,4’-ジシクロヘキシルメタンジイソシアネートと短鎖アミンと短鎖ジオールと2,2-ビス(ヒドロキシメチル)プロピオン酸を1.5質量%を共重合した合計量50質量%を反応させたポリカーボネート系無黄変型ポリウレタン樹脂100質量部を、カルボジイミド系架橋剤5質量部で架橋させた架橋ポリウレタン樹脂である。なお、高分子ジオールは、非晶性ポリカーボネート系ポリオールであるヘキサメチレンカーボネートとペンタメチレンカーボネートとの共重合ポリオールと、炭素数2~3のポリアルキレングリコールとを99.9:0.1(モル比)で混合した混合物である。 The polyurethane elastic body A is a polymer as follows. The polyurethane elastic body A contains 1.5% by mass of 4,4′-dicyclohexylmethane diisocyanate, short-chain amine, short-chain diol, and 2,2-bis (hydroxymethyl) propionic acid with respect to 50% by mass of the polymer diol. This is a crosslinked polyurethane resin obtained by crosslinking 100 parts by mass of a polycarbonate-based non-yellowing polyurethane resin obtained by reacting 50% by mass of a copolymerized with 5 parts by mass of a carbodiimide-based crosslinking agent. The polymer diol comprises 99.9: 0.1 (molar ratio) of a copolymer polyol of hexamethylene carbonate and pentamethylene carbonate, which is an amorphous polycarbonate polyol, and a polyalkylene glycol having 2 to 3 carbon atoms. ).
 ポリウレタン弾性体Aは、吸水率 2質量%、23℃における貯蔵弾性率 450MPa、50℃における貯蔵弾性率 300MPa、及び、ガラス転移温度 -25℃であった。また、水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、不織布の質量に対して15質量%含浸された。次に、水性エマルジョンが含浸された不織布を90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体A0が得られた。研磨パッド前駆体A0は、目付量910g/m、見掛け密度0.62g/cm、厚さ1.45mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は87/13であった。 The polyurethane elastic body A had a water absorption rate of 2% by mass, a storage elastic modulus at 23 ° C. of 450 MPa, a storage elastic modulus at 50 ° C. of 300 MPa, and a glass transition temperature of −25 ° C. Further, the aqueous emulsion was impregnated in an amount of 15% by mass with respect to the mass of the nonwoven fabric in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric impregnated with the aqueous emulsion is coagulated at 90 ° C. in a 50% RH atmosphere, further dried at 150 ° C., and further hot-pressed at 150 ° C. to obtain the polishing pad precursor A0. Obtained. The polishing pad precursor A0 had a basis weight of 910 g / m 2 , an apparent density of 0.62 g / cm 3 , and a thickness of 1.45 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
 そして、研磨パッド前駆体A0をバフィング研削加工することにより、平坦化された研磨パッドA1が得られた。研磨パッドA1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2500個/mmであり、極細繊維束の平均存在密度Dが約1200個/mmであり、D/Dが約2.1であった。また、その断面において、平均断面積が約11μmの極細繊維からなる平均断面積が約320μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されており、また、極細繊維束同士もポリウレタン弾性体により結着されていた。研磨パッドA1は、目付量 750g/m、見掛け密度 0.61g/cm、厚さ 1.23mm、D硬度 37であった。 And polishing pad A1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor A0. Was a cross section of the polishing pad A1 was observed by an electron microscope, the average the density D 1 is about 2500 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 1200 / mm 2 D 1 / D 2 was about 2.1. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 320 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed. The ultrafine fibers are focused by a polyurethane elastic body that has entered the inside of the ultrafine fiber bundle, and the ultrafine fiber bundles are also bound by the polyurethane elastic body. The polishing pad A1 had a basis weight of 750 g / m 2 , an apparent density of 0.61 g / cm 3 , a thickness of 1.23 mm, and a D hardness of 37.
 得られた研磨パッドA1は、直径51cmの円形状に切断され、さらに、主面に幅2.0mm、深さ1.0mm、間隔15.0mmの格子状の溝を形成する加工が施された。このような研磨パッドA1の研磨性能を上述した評価方法により評価した。結果を表1に示す。 The obtained polishing pad A1 was cut into a circular shape having a diameter of 51 cm, and was further processed to form a grid-like groove having a width of 2.0 mm, a depth of 1.0 mm, and an interval of 15.0 mm on the main surface. . The polishing performance of the polishing pad A1 was evaluated by the evaluation method described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例2]
 実施例1で得られた絡合ウェブを、雰囲気温度60℃、相対湿度80%、500秒間の条件でスチーム加熱を行った。そして、スチーム加熱処理された絡合ウェブに対して、120℃の熱ロールでその表面のみをプレス処理した。このスチーム加熱処理及びプレス処理による、絡合ウェブの面積収縮率は、乾燥状態において、40%であった。そして、上記処理後の絡合ウェブに固形分濃度15質量%のポリウレタン弾性体Aの水性エマルジョンを含浸させた。次に、水性エマルジョンが含浸された絡合ウェブを90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理することにより、絡合ウェブとポリウレタン弾性体Aとの複合体(絡合ウェブ複合体)を形成した。なお、水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、絡合ウェブ複合体の全質量に対して7質量%含浸された。そして、得られた絡合ウェブ複合体を95℃の熱水中に10分間浸漬することによりPVA樹脂を溶解除去させ、さらに、乾燥することにより極細繊維の繊維束からなる不織布とポリウレタン弾性体Aとの複合体(不織布複合体)が形成された。
[Example 2]
The entangled web obtained in Example 1 was subjected to steam heating under the conditions of an atmospheric temperature of 60 ° C., a relative humidity of 80%, and 500 seconds. And only the surface was press-processed with the 120 degreeC hot roll with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 40% in the dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C., whereby a composite of the entangled web and the polyurethane elastic body A ( Entangled web composite). The aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A. Then, the resulting entangled web composite is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the PVA resin, and further dried to form a nonwoven fabric comprising a fiber bundle of ultrafine fibers and a polyurethane elastic body A. A composite (nonwoven fabric composite) was formed.
 そして、不織布複合体に、固形分濃度25質量%に調整されたポリウレタン弾性体Aの水性エマルジョンをさらに含浸させた。水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、不織布複合体の全質量に対して15質量%含浸された。次に、水性エマルジョンが含浸された不織布複合体を90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体B0が得られた。研磨パッド前駆体B0は、目付量730g/m、見掛け密度0.58g/cm、厚さ1.26mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は80/20であった。 And the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass. The aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. B0 was obtained. The polishing pad precursor B0 had a basis weight of 730 g / m 2 , an apparent density of 0.58 g / cm 3 , and a thickness of 1.26 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
 そして、研磨パッド前駆体B0をバフィング研削加工することにより、平坦化された研磨パッドB1が得られた。研磨パッドB1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2450個/mmであり、極細繊維束の平均存在密度Dが約1260個/mmであり、D/Dが約1.9であった。また、その断面において、平均断面積が約12μmの極細繊維からなる平均断面積が約325μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドB1は、目付量 614g/m、見掛け密度 0.58g/cm、厚さ 1.06mm、D硬度 36であった。そして、得られた研磨パッドB1は、実施例1と同様に加工され、評価された。結果を表1に示す。 And polishing pad B1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor B0. Was a cross section of the polishing pad B1 was observed with an electron microscope, the average the density D 1 of about 2450 pieces / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 1260 / mm 2 D 1 / D 2 was about 1.9. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 12 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad B1 had a basis weight of 614 g / m 2 , an apparent density of 0.58 g / cm 3 , a thickness of 1.06 mm, and a D hardness of 36. Then, the obtained polishing pad B1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [実施例3]
 実施例1で得られた絡合ウェブを、雰囲気温度80℃、相対湿度80%、500秒間の条件でスチーム加熱を行った。そして、スチーム加熱処理された絡合ウェブに対して、120℃の熱ロールでその表面のみをプレス処理した。このスチーム加熱処理及びプレス処理による、絡合ウェブの面積収縮率は、乾燥状態において、50%であった。そして、上記処理後の絡合ウェブに固形分濃度15質量%のポリウレタン弾性体Aの水性エマルジョンを含浸させた。次に、水性エマルジョンが含浸された絡合ウェブを90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理することにより、絡合ウェブとポリウレタン弾性体Aとの絡合ウェブ複合体を形成した。なお、水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、絡合ウェブ複合体の全質量に対して7質量%含浸された。そして、絡合ウェブ複合体を95℃の熱水中に10分間浸漬することによりPVA樹脂を溶解除去させ、さらに、乾燥することにより極細繊維の繊維束からなる不織布とポリウレタン弾性体Aとの不織布複合体が形成された。
[Example 3]
The entangled web obtained in Example 1 was subjected to steam heating under the conditions of an atmospheric temperature of 80 ° C., a relative humidity of 80%, and 500 seconds. And only the surface was press-processed with the 120 degreeC hot roll with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 50% in the dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C. to thereby entangle the entangled web and the polyurethane elastic body A. A complex was formed. The aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A. Then, the PVA resin is dissolved and removed by immersing the entangled web composite in 95 ° C. hot water for 10 minutes, and further, the nonwoven fabric made of a fiber bundle of ultrafine fibers and the polyurethane elastic body A by drying. A complex was formed.
 そして、不織布複合体に、固形分濃度25質量%に調整されたポリウレタン弾性体Aの水性エマルジョンをさらに含浸させた。水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、不織布複合体の全質量に対して15質量%含浸された。次に、水性エマルジョンが含浸された不織布複合体を90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体C0が得られた。研磨パッド前駆体C0は、目付量790g/m、見掛け密度0.63g/cm、厚さ1.25mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は80/20であった。 And the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass. The aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. C0 was obtained. The polishing pad precursor C0 had a basis weight of 790 g / m 2 , an apparent density of 0.63 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
 そして、研磨パッド前駆体C0をバフィング研削加工することにより、平坦化された研磨パッドC1が得られた。研磨パッドC1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2840個/mmであり、極細繊維束の平均存在密度Dが約1890個/mmであり、D/Dが約1.5であった。また、その断面において、平均断面積が約13μmの極細繊維からなる平均断面積が約325μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドC1は、目付量 650g/m、見掛け密度 0.63g/cm、厚さ 1.03mm、D硬度 37であった。そして、得られた研磨パッドC1は、実施例1と同様に加工され、評価された。結果を表1に示す。 Then, the polishing pad precursor C0 was buffed and ground to obtain a flattened polishing pad C1. Was a cross section of the polishing pad C1 was observed with an electron microscope, the average the density D 1 of the microfine fiber bundle is about 2840 pieces / mm 2, the average the density D 2 of the microfine fiber bundles from about 1890 cells / mm 2 D 1 / D 2 was about 1.5. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 13 .mu.m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad C1 had a basis weight of 650 g / m 2 , an apparent density of 0.63 g / cm 3 , a thickness of 1.03 mm, and a D hardness of 37. The resulting polishing pad C1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [実施例4]
 実施例1で得られたのと同様のスパンボンドシートをクロスラッピングにより12枚重ねることにより、総目付が480g/mのウェブ積層体を作製した。そして、得られたウェブ積層体に、針折れ防止油剤がスプレーされた。次に、ウェブ積層体は、ニードル番手42番,バーブ数1個のニードル針、及びニードル番手42番,バーブ数6個のニードル針を順に用いて、その第一の表面側から針深度5~25mmの深さでパンチ数1200パンチ/cmの条件でニードルパンチ処理され、さらに、第二の表面側から針深度0~10mmの深さでパンチ数300パンチ/cmの条件でニードルパンチ処理された。ニードルパンチによるウェブ積層体の面積収縮率は20%であった。このようなニードルパンチ処理により、目付560g/m、層間剥離強力9.0kg/2.5cmの絡合ウェブが得られた。
[Example 4]
A web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle | hook breaking prevention oil agent was sprayed to the obtained web laminated body. Next, the web laminate is formed by using a needle number 42, a needle needle having one barb, and a needle number 42, a needle needle having six barbs in this order from the first surface side to a needle depth of 5 to Needle punch processing at a depth of 25 mm and a punch number of 1200 punch / cm 2 , and needle punch processing at a needle depth of 0 to 10 mm from the second surface side and a punch number of 300 punch / cm 2 It was done. The area shrinkage ratio of the web laminate by needle punching was 20%. By such a needle punching process, an entangled web having a basis weight of 560 g / m 2 and a delamination strength of 9.0 kg / 2.5 cm was obtained.
 得られた絡合ウェブを、雰囲気温度60℃、相対湿度70%、500秒間の条件でスチーム加熱を行った。そして、スチーム加熱処理された絡合ウェブに対して、110℃の熱ロールでその表面のみをプレス処理した。このスチーム加熱処理及びプレス処理による、絡合ウェブの面積収縮率は、乾燥状態において、35%であった。そして、上記処理後の絡合ウェブに固形分濃度15質量%のポリウレタン弾性体Aの水性エマルジョンを含浸させた。次に、水性エマルジョンが含浸された絡合ウェブを90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理することにより、絡合ウェブとポリウレタン弾性体Aとの絡合ウェブ複合体を形成した。なお、水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、絡合ウェブ複合体の全質量に対して7質量%含浸された。そして、得られた絡合ウェブ複合体を95℃の熱水中に10分間浸漬することによりPVA樹脂を溶解除去させ、乾燥することにより極細繊維の繊維束からなる不織布とポリウレタン弾性体Aとの不織布複合体が形成された。 The obtained entangled web was subjected to steam heating under conditions of an atmospheric temperature of 60 ° C., a relative humidity of 70%, and 500 seconds. And only the surface was press-processed with the hot roll of 110 degreeC with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 35% in a dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C. to thereby entangle the entangled web and the polyurethane elastic body A. A complex was formed. The aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A. The resulting entangled web composite is immersed in hot water at 95 ° C. for 10 minutes to dissolve and remove the PVA resin, and then dried to form a nonwoven fabric made of a fiber bundle of ultrafine fibers and the polyurethane elastic body A. A nonwoven composite was formed.
 そして、不織布複合体に、固形分濃度25質量%に調整されたポリウレタン弾性体Aの水性エマルジョンをさらに含浸させた。水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、不織布複合体の全質量に対して15質量%含浸された。次に、水性エマルジョンが含浸された不織布複合体を90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体E0が得られた。研磨パッド前駆体E0は、目付量 665g/m、見掛け密度 0.53g/cm、厚さ 1.25mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は80/20であった。 And the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass. The aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. E0 was obtained. The polishing pad precursor E0 had a basis weight of 665 g / m 2 , an apparent density of 0.53 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
 そして、研磨パッド前駆体E0をバフィング研削加工することにより、平坦化された研磨パッドE1が得られた。研磨パッドE1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2300個/mmであり、極細繊維束の平均存在密度Dが約540個/mmであり、D/Dが約4.3であった。また、その断面において、平均断面積が約11μmの極細繊維からなる平均断面積が約325μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドE1は、目付量 559g/m、見掛け密度 0.53g/cm、厚さ 1.05mm、D硬度 34であった。そして、得られた研磨パッドE1は、実施例1と同様に加工され、評価された。結果を表1に示す。 Then, the polishing pad precursor E0 was buffed and ground to obtain a flattened polishing pad E1. Was a cross section of the polishing pad E1 was observed by an electron microscope, the average the density D 1 of about 2,300 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 540 / mm 2 , D 1 / D 2 was about 4.3. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad E1 had a basis weight of 559 g / m 2 , an apparent density of 0.53 g / cm 3 , a thickness of 1.05 mm, and a D hardness of 34. The obtained polishing pad E1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [比較例1]
 実施例1で得られたのと同様のスパンボンドシートをクロスラッピングにより12枚重ねることにより、総目付が480g/mのウェブ積層体を作製した。そして、得られたウェブ積層体に、針折れ防止油剤がスプレーされた。次に、ウェブ積層体は、ニードル番手42番,バーブ数6個のニードル針を用いて、その第一の表面側及びその第二の表面側からそれぞれ、針深度10~15mmの深さでパンチ数900パンチ/cmの条件で合計1800パンチ/cmのニードルパンチ処理が行われた。ニードルパンチによるウェブ積層体の面積収縮率は30%であった。このようなニードルパンチ処理により、目付600g/m、層間剥離強力11.0kg/2.5cmの絡合ウェブが得られた。以下は実施例1と同様の条件で、絡合ウェブを熱水処理することによりPVA樹脂を溶解除去させ、さらに、ポリウレタン弾性体Aを含浸付与し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体F0が得られた。研磨パッド前駆体F0は、目付量740g/m、見掛け密度0.63g/cm、厚さ1.17mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は87/13であった。
[Comparative Example 1]
A web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle | hook breaking prevention oil agent was sprayed to the obtained web laminated body. Next, the web laminate is punched at a needle depth of 10 to 15 mm from the first surface side and the second surface side using needle needles having a needle count of 42 and six barbs. A total of 1800 punches / cm 2 of needle punching was performed under the condition of several 900 punches / cm 2 . The area shrinkage rate of the web laminate by needle punching was 30%. By such a needle punching process, an entangled web having a basis weight of 600 g / m 2 and a delamination strength of 11.0 kg / 2.5 cm was obtained. The following is the same conditions as in Example 1, and the entangled web is hydrothermally treated to dissolve and remove the PVA resin, impregnated with polyurethane elastic body A, and further hot pressed at 150 ° C. A polishing pad precursor F0 was obtained. The polishing pad precursor F0 had a basis weight of 740 g / m 2 , an apparent density of 0.63 g / cm 3 , and a thickness of 1.17 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
 そして、研磨パッド前駆体F0をバフィング研削加工することにより、平坦化された研磨パッドF1が得られた。研磨パッドF1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2550個/mmであり、極細繊維束の平均存在密度Dが約2340個/mmであり、D/Dが約1.1であった。また、その断面において、平均断面積が約14μmの極細繊維からなる平均断面積が約350μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されており、また、極細繊維束同士もポリウレタン弾性体により結着されていた。研磨パッドF1は、目付量 613g/m、見掛け密度 0.63g/cm、厚さ 0.98mm、D硬度 38であった。そして、得られた研磨パッドF1は、実施例1と同様に加工され、評価された。結果を表1に示す。 And polishing pad F1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor F0. Was a cross section of the polishing pad F1 was observed by an electron microscope, the average the density D 1 of the microfine fiber bundle of approximately 2550 cells are / mm 2, is the mean the density D 2 of microfine fiber bundles of about 2340 pieces / mm 2 , D 1 / D 2 was about 1.1. In addition, in the cross section, an ultrafine fiber bundle having an average cross section of about 350 μm 2 made of ultrafine fibers having an average cross section of about 14 μm 2 was observed. The ultrafine fibers are focused by a polyurethane elastic body that has entered the inside of the ultrafine fiber bundle, and the ultrafine fiber bundles are also bound by the polyurethane elastic body. The polishing pad F1 had a basis weight of 613 g / m 2 , an apparent density of 0.63 g / cm 3 , a thickness of 0.98 mm, and a D hardness of 38. Then, the obtained polishing pad F1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [比較例2]
 実施例1で得られたのと同様のスパンボンドシートをクロスラッピングにより12枚重ねることにより、総目付が480g/mのウェブ積層体を作製した。そして、得られたウェブ積層体に、針折れ防止油剤がスプレーされた。次に、ウェブ積層体は、ニードル番手42番,バーブ数1個のニードル針、及びニードル番手42番,バーブ数6個のニードル針を順に用いて、その第一の表面側から針深度5~25mmの深さでパンチ数1200パンチ/cmの条件でニードルパンチ処理され、さらに、第二の表面側から針深度0~5mmの深さでパンチ数300パンチ/cmの条件でニードルパンチ処理された。ニードルパンチによるウェブ積層体の面積収縮率は20%であった。このようなニードルパンチ処理により、目付560g/m、層間剥離強力9.4kg/2.5cmの絡合ウェブが得られた。
[Comparative Example 2]
A web laminate having a total basis weight of 480 g / m 2 was produced by stacking 12 spunbond sheets similar to those obtained in Example 1 by cross-wrapping. And the needle | hook breaking prevention oil agent was sprayed to the obtained web laminated body. Next, the web laminate is formed by using a needle number 42, a needle needle having one barb, and a needle number 42, a needle needle having six barbs in this order from the first surface side to a needle depth of 5 to Needle punch processing is performed at a depth of 25 mm and a punch number of 1200 punch / cm 2 , and needle punch processing is performed at a needle depth of 0 to 5 mm from the second surface side and a punch number of 300 punch / cm 2. It was done. The area shrinkage ratio of the web laminate by needle punching was 20%. By such a needle punching process, an entangled web having a basis weight of 560 g / m 2 and a delamination strength of 9.4 kg / 2.5 cm was obtained.
 得られた絡合ウェブを、雰囲気温度60℃、相対湿度70%、500秒間の条件でスチーム加熱を行った。そして、スチーム加熱処理された絡合ウェブに対して、110℃の熱ロールでその表面のみをプレス処理した。このスチーム加熱処理及びプレス処理による、絡合ウェブの面積収縮率は、乾燥状態において、35%であった。そして、上記処理後の絡合ウェブに固形分濃度15質量%のポリウレタン弾性体Aの水性エマルジョンを含浸させた。次に、水性エマルジョンが含浸された絡合ウェブを90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理することにより、絡合ウェブとポリウレタン弾性体Aとの絡合ウェブ複合体を形成した。なお、水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、絡合ウェブ複合体の全質量に対して7質量%含浸された。そして、絡合ウェブ複合体を95℃の熱水中に10分間浸漬することによりPVA樹脂を溶解除去させ、乾燥することにより極細繊維の繊維束からなる不織布とポリウレタン弾性体Aとの不織布複合体が形成された。 The obtained entangled web was subjected to steam heating under conditions of an atmospheric temperature of 60 ° C., a relative humidity of 70%, and 500 seconds. And only the surface was press-processed with the hot roll of 110 degreeC with respect to the entangled web by which the steam heat processing was carried out. The area shrinkage ratio of the entangled web by the steam heat treatment and the press treatment was 35% in a dry state. Then, the treated entangled web was impregnated with an aqueous emulsion of polyurethane elastic body A having a solid concentration of 15% by mass. Next, the entangled web impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, and further dried at 150 ° C. to thereby entangle the entangled web and the polyurethane elastic body A. A complex was formed. The aqueous emulsion was impregnated in an amount of 7% by mass with respect to the total mass of the entangled web composite in terms of solid content of the polyurethane elastic body A. Then, the PVA resin is dissolved and removed by immersing the entangled web composite in 95 ° C. hot water for 10 minutes, and dried to form a nonwoven fabric composite of a nonwoven fabric composed of fiber bundles of ultrafine fibers and a polyurethane elastic body A. Formed.
 そして、不織布複合体に、固形分濃度25質量%に調整されたポリウレタン弾性体Aの水性エマルジョンをさらに含浸させた。水性エマルジョンは、ポリウレタン弾性体Aの固形分換算で、不織布複合体の全質量に対して15質量%含浸された。次に、水性エマルジョンが含浸された不織布複合体を90℃、50%RH雰囲気下で凝固処理し、さらに、150℃で乾燥処理し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体G0が得られた。研磨パッド前駆体G0は、目付量665g/m、見掛け密度0.53g/cm、厚さ1.25mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は80/20であった。 And the nonwoven fabric composite was further impregnated with an aqueous emulsion of polyurethane elastic body A adjusted to a solid content concentration of 25% by mass. The aqueous emulsion was impregnated in an amount of 15% by mass with respect to the total mass of the nonwoven fabric composite in terms of solid content of the polyurethane elastic body A. Next, the nonwoven fabric composite impregnated with the aqueous emulsion is coagulated in an atmosphere of 90 ° C. and 50% RH, further dried at 150 ° C., and further hot-pressed at 150 ° C., whereby a polishing pad precursor is obtained. G0 was obtained. The polishing pad precursor G0 had a basis weight of 665 g / m 2 , an apparent density of 0.53 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
 そして、研磨パッド前駆体G0をバフィング研削加工することにより、平坦化された研磨パッドG1が得られた。研磨パッドG1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約2400個/mmであり、極細繊維束の平均存在密度Dが約400個/mmであり、D/Dが約6.0であった。また、その断面において、平均断面積が約11μmの極細繊維からなる平均断面積が約325μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドG1は、目付量559g/m、見掛け密度 0.53g/cm、厚さ1.05mm、D硬度 34であった。そして、得られた研磨パッドG1は、実施例1と同様に加工が施され、評価された。結果を表1に示す。 Then, the polishing pad precursor G0 was buffed and ground to obtain a flattened polishing pad G1. Was a cross section of the polishing pad G1 was observed by an electron microscope, the average the density D 1 is about 2400 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 400 / mm 2 , D 1 / D 2 was about 6.0. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 325Myuemu 2 of the average cross-sectional area consists of ultrafine fibers of about 11 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad G1 had a basis weight of 559 g / m 2 , an apparent density of 0.53 g / cm 3 , a thickness of 1.05 mm, and a D hardness of 34. The obtained polishing pad G1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [比較例3]
 実施例1と同様にして口金から吐出された海島型複合繊維のストランドを3000m/minで巻き取ることにより、フィラメントを得た。そして、得られたフィラメントをクリンプ及びカットすることにより、カット長さ30mmのステープルを得た。そして、得られたステープルを実施例1と同等の条件でニードルパンチした。このようなニードルパンチ処理により、目付600g/m、層間剥離強力7.5kg/2.5cmの短繊維絡合不織布が得られた。なお、ニードルパンチによるステープルからなるシートの面積収縮率は25%であった。絡合ウェブの代わりに、得られた短繊維絡合不織布を用い、実施例1と同様の条件で、短繊維絡合不織布を熱水処理することによりPVA樹脂を溶解除去させ、見掛け密度 0.35g/cmの不織布を得た。なお、PVA樹脂を溶解除去する際に、短繊維絡合不織布が大きく伸びることにより、極細繊維の素抜けが頻繁に起こった。そして、得られた不織布に、ポリウレタン弾性体Aを含浸付与し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体H0が得られた。研磨パッド前駆体H0は、目付量 480g/m、見掛け密度 0.43g/cm、厚さ 1.15mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は87/13であった。
[Comparative Example 3]
In the same manner as in Example 1, a strand of sea-island type composite fiber discharged from the die was wound up at 3000 m / min to obtain a filament. Then, the obtained filament was crimped and cut to obtain a staple having a cut length of 30 mm. The obtained staple was needle punched under the same conditions as in Example 1. By such a needle punching process, a short fiber entangled nonwoven fabric having a basis weight of 600 g / m 2 and a delamination strength of 7.5 kg / 2.5 cm was obtained. The area shrinkage rate of the sheet made of staples by needle punching was 25%. Using the obtained short fiber entangled nonwoven fabric instead of the entangled web, the short fiber entangled nonwoven fabric was subjected to hot water treatment under the same conditions as in Example 1 to dissolve and remove the PVA resin, and the apparent density 0. A nonwoven fabric of 35 g / cm 3 was obtained. When the PVA resin was dissolved and removed, the short fiber entangled non-woven fabric was greatly extended, so that the ultrafine fibers were frequently removed. And the polishing pad precursor H0 was obtained by impregnating the polyurethane elastic body A to the obtained nonwoven fabric, and also heat-pressing at 150 degreeC. The polishing pad precursor H0 had a basis weight of 480 g / m 2 , an apparent density of 0.43 g / cm 3 , and a thickness of 1.15 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 87/13.
 そして、研磨パッド前駆体H0をバフィング研削加工することにより、平坦化された研磨パッドH1が得られた。研磨パッドH1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約350個/mmであり、極細繊維束の平均存在密度Dが約350個/mmであり、D/Dが約1.0であった。また、その断面において、平均断面積が約16μmの極細繊維からなる平均断面積が約350μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドH1は、目付量 397g/m、見掛け密度 0.42g/cm、厚さ 0.95mm、D硬度 27であった。そして、得られた研磨パッドH1は、実施例1と同様に加工された。なお、短繊維絡合不織布が大きく伸びることにより、極細繊維の素抜けが頻繁に起こった状態のため、研磨評価は省略した。 Then, the polishing pad precursor H0 was buffed and ground to obtain a flattened polishing pad H1. Was a cross section of the polishing pad H1 observed with an electron microscope, the average the density D 1 of about 350 / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 350 / mm 2 , D 1 / D 2 was about 1.0. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 350 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 16 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad H1 had a basis weight of 397 g / m 2 , an apparent density of 0.42 g / cm 3 , a thickness of 0.95 mm, and a D hardness of 27. The obtained polishing pad H1 was processed in the same manner as in Example 1. Note that the evaluation of the polishing was omitted because the ultra-fine fibers were frequently loosened due to the large elongation of the short fiber entangled nonwoven fabric.
 [比較例4]
 実施例1と同様にして口金から吐出された海島型複合繊維のストランドを3000m/minで巻き取ることにより、フィラメントを得た。そして、得られたフィラメントをクリンプ及びカットすることにより、カット長さ30mmのステープルを得た。そして、得られたステープルを実施例1と同等の条件でニードルパンチした。このようなニードルパンチ処理により、目付600g/m、層間剥離強力7kg/2.5cmの短繊維絡合不織布が得られた。なお、ニードルパンチによるステープルからなる層の面積収縮率は25%であった。
[Comparative Example 4]
In the same manner as in Example 1, a strand of sea-island type composite fiber discharged from the die was wound up at 3000 m / min to obtain a filament. Then, the obtained filament was crimped and cut to obtain a staple having a cut length of 30 mm. The obtained staple was needle punched under the same conditions as in Example 1. By such a needle punching process, a short fiber entangled nonwoven fabric having a basis weight of 600 g / m 2 and a delamination strength of 7 kg / 2.5 cm was obtained. The area shrinkage ratio of the layer made of staples by needle punching was 25%.
 得られた短繊維絡合不織布を、実施例2と同様の条件で、スチーム加熱処理及びプレス処理を行った。そして、実施例2と同様の条件で、上記処理後の短繊維絡合不織布にポリウレタン弾性体Aを含浸付与し、PVA樹脂を溶解除去させ、さらに、ポリウレタン弾性体Aを含浸付与し、乾燥及び150℃で熱プレスすることにより、研磨パッド前駆体I0が得られた。研磨パッド前駆体I0は、目付量 730g/m、見掛け密度 0.58g/cm、厚さ 1.25mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は80/20であった。 The obtained short fiber entangled nonwoven fabric was subjected to steam heat treatment and press treatment under the same conditions as in Example 2. Then, under the same conditions as in Example 2, impregnating and imparting polyurethane elastic body A to the short fiber entangled nonwoven fabric after the treatment, dissolving and removing PVA resin, impregnating and imparting polyurethane elastic body A, drying and By performing hot pressing at 150 ° C., a polishing pad precursor I0 was obtained. The polishing pad precursor I0 had a basis weight of 730 g / m 2 , an apparent density of 0.58 g / cm 3 , and a thickness of 1.25 mm. Moreover, the mass ratio of the nonwoven fabric and the polyurethane elastic body A was 80/20.
 そして、研磨パッド前駆体I0をバフィング研削加工することにより、平坦化された研磨パッドI1が得られた。研磨パッドI1の断面を電子顕微鏡で観察したところ、極細繊維束の平均存在密度Dが約1010個/mmであり、極細繊維束の平均存在密度Dが約930個/mmであり、D/Dが約1.1であった。また、その断面において、平均断面積が約16μmの極細繊維からなる平均断面積が約350μmの極細繊維束が観察された。そして、極細繊維は極細繊維束の内部に侵入したポリウレタン弾性体により集束されていた。また、研磨パッドI1は、目付量 613g/m、見掛け密度 0.58g/cm、厚さ 1.06mm、D硬度 35であった。そして、得られた研磨パッドI1は、実施例1と同様に加工が施され、評価された。結果を表1に示す。 And polishing pad I1 planarized was obtained by carrying out the buffing grinding process of polishing pad precursor I0. Was a cross section of the polishing pad I1 was observed by an electron microscope, the average the density D 1 of about 1010 pieces / mm 2 of the microfine fiber bundles, average the density D 2 of the microfine fiber bundles from about 930 cells / mm 2 , D 1 / D 2 was about 1.1. Further, in its cross-section, an average microfine fiber bundles of the cross-sectional area of about 350 .mu.m 2 to average cross-sectional area consists of ultrafine fibers of about 16 [mu] m 2 was observed. The ultrafine fibers were converged by the polyurethane elastic body that entered the ultrafine fiber bundle. The polishing pad I1 had a basis weight of 613 g / m 2 , an apparent density of 0.58 g / cm 3 , a thickness of 1.06 mm, and a D hardness of 35. Then, the obtained polishing pad I1 was processed and evaluated in the same manner as in Example 1. The results are shown in Table 1.
 [比較例5]
 溶融複合紡糸用口金(口金温度 260℃)からイソフタル酸変性PETを吐出させることにより、イソフタル酸変性PETのストランドを形成した。そして、口金から吐出されたストランドを、口金直下に設置したエアジェット吸引装置により延伸して細化しながら冷却することにより平均繊度0.2dtexのイソフタル酸変性PETフィラメントを紡糸した。そして、PETフィラメントをエアジェット吸引装置の直下に設置した移動式ネット上に連続的に捕集することにより、目付30g/mのPETのスパンボンドシート(長繊維ウェブ)を得た。
[Comparative Example 5]
Isophthalic acid-modified PET strands were formed by discharging isophthalic acid-modified PET from a melt compound spinning die (die temperature 260 ° C.). Then, the strand discharged from the die was cooled while being stretched and thinned by an air jet suction device installed immediately below the die, thereby spinning an isophthalic acid-modified PET filament having an average fineness of 0.2 dtex. Then, the PET filament was continuously collected on a mobile net installed immediately below the air jet suction device to obtain a PET spunbond sheet (long fiber web) having a basis weight of 30 g / m 2 .
 次に、得られたスパンボンドシートをクロスラッピングにより12枚重ねることにより、総目付が 360g/mのウェブ積層体を作製した。そして、実施例1と同様にして、得られたウェブ積層体をニードルパンチ処理することにより、不織布を得た。そして、得られた不織布を70℃の熱水中に90秒間浸漬して応力緩和させることにより面積を7%収縮させた。このような熱水処理された不織布の見掛け密度は0.25g/cmであった。 Then, by stacking 12 sheets by cross lapping a spunbonded sheet obtained, the total basis weight was produced web laminate of 360 g / m 2. And the nonwoven fabric was obtained by carrying out the needle punch process of the obtained web laminated body like Example 1. FIG. Then, the obtained nonwoven fabric was immersed in hot water at 70 ° C. for 90 seconds to relieve stress, thereby shrinking the area by 7%. The apparent density of such a hydrothermally treated nonwoven fabric was 0.25 g / cm 3 .
 そして、熱水処理された不織布に、実施例1と同様の条件で、ポリウレタン弾性体Aを含浸付与し、さらに、150℃で熱プレスすることにより、研磨パッド前駆体J0が得られた。研磨パッド前駆体J0は、目付量 390g/m、見掛け密度 0.25g/cm、厚さ1.55mmであった。また、不織布とポリウレタン弾性体Aとの質量比率は88/12であった。 And the elastic pad precursor J0 was obtained by impregnating and giving the polyurethane elastic body A to the nonwoven fabric treated with hot water under the same conditions as in Example 1, and further hot pressing at 150 ° C. The polishing pad precursor J0 had a basis weight of 390 g / m 2 , an apparent density of 0.25 g / cm 3 , and a thickness of 1.55 mm. Moreover, the mass ratio of a nonwoven fabric and the polyurethane elastic body A was 88/12.
 そして、研磨パッド前駆体J0をバフィング研削加工することにより、平坦化された研磨パッドJ1が得られた。研磨パッドJ1の断面を電子顕微鏡で観察したところ、繊維束を形成していない平均断面積が約20μmの極細繊維が観察された。また、極細繊維の横断面の平均存在密度Dが約300個/mmであり、極細繊維の横断面の平均存在密度Dが約300個/mmであり、D/Dが約1.0であった。また、研磨パッドJ1は、目付量 315g/m、見掛け密度 0.25g/cm、厚さ 1.25mm、D硬度 28であった。そして、得られた研磨パッドJ1は、実施例1と同様に加工された。なお、磨耗減量測定の結果、減量が大きいことから研磨評価は省略した。 Then, the polishing pad precursor J0 was buffed and ground to obtain a flattened polishing pad J1. When the cross section of the polishing pad J1 was observed with an electron microscope, ultrafine fibers having an average cross-sectional area of about 20 μm 2 that did not form a fiber bundle were observed. The average existence density D 1 of the cross section of the ultrafine fibers is about 300 / mm 2, the average the density D 2 of the cross section of the ultrafine fibers is about 300 / mm 2, the D 1 / D 2 About 1.0. The polishing pad J1 had a basis weight of 315 g / m 2 , an apparent density of 0.25 g / cm 3 , a thickness of 1.25 mm, and a D hardness of 28. The resulting polishing pad J1 was processed in the same manner as in Example 1. In addition, polishing evaluation was abbreviate | omitted because the weight loss was large as a result of the weight loss measurement.
 表1の結果から、本発明に係る実施例1~4の研磨パッドは、いずれも、研磨レート、研磨均一性、耐摩耗性、平坦化性能、耐スクラッチ性に優れていた。一方、D/Dが1.1である比較例1の研磨パッドの場合、剛性が高いために研磨レートは優れているが、追従性が低いために研磨均一性が劣り、また、耐摩耗性も低かった。一方、D/Dが6である比較例2の研磨パッドの場合、剛性が低いために研磨レートが低く、また、追従性が高すぎて平坦化性能に劣っていた。また、海島型複合繊維のステープルを用いて得られた比較例3及び比較例4の研磨パッドの場合、繊維の高密度化ができなかった。そのため剛性の低い研磨パッドしか得られず、耐摩耗性が低かった。また、スパンボンド法により直接形成された極細繊維の不織布を用いて得られた比較例5の研磨パッドの場合も、繊維の高密度化ができなかった。そのため剛性の低い研磨パッドしか得られず、耐摩耗性が低かった。 From the results in Table 1, all of the polishing pads of Examples 1 to 4 according to the present invention were excellent in polishing rate, polishing uniformity, wear resistance, planarization performance, and scratch resistance. On the other hand, in the case of the polishing pad of Comparative Example 1 in which D 1 / D 2 is 1.1, the polishing rate is excellent because of high rigidity, but the polishing uniformity is inferior because the followability is low, and Abrasion was also low. On the other hand, in the case of the polishing pad of Comparative Example 2 in which D 1 / D 2 was 6, the polishing rate was low because of low rigidity, and the followability was too high, resulting in poor planarization performance. Further, in the case of the polishing pads of Comparative Example 3 and Comparative Example 4 obtained using the sea-island type composite fiber staples, the fiber density could not be increased. Therefore, only a polishing pad with low rigidity was obtained, and the wear resistance was low. Further, in the case of the polishing pad of Comparative Example 5 obtained by using a non-woven fabric of ultrafine fibers directly formed by the spunbond method, it was not possible to increase the density of the fibers. Therefore, only a polishing pad with low rigidity was obtained, and the wear resistance was low.
 本発明に係る研磨パッドは、平坦化や鏡面化が行われる各種デバイス、各種基板等の各種製品、例えば、半導体基板、半導体デバイス、化合物半導体デバイス、化合物半導体基板、化合物半導体製品、LED基板、LED製品、シリコンウエハ、ハードディスク基板、ガラス基板、ガラス製品、金属基板、金属製品、プラスチック基板、プラスチック製品、セラミック基板、セラミック製品等を研磨するための研磨パッドとして用いることができる。 The polishing pad according to the present invention includes various devices such as various devices and various substrates that are flattened or mirrored, such as semiconductor substrates, semiconductor devices, compound semiconductor devices, compound semiconductor substrates, compound semiconductor products, LED substrates, and LEDs. It can be used as a polishing pad for polishing products, silicon wafers, hard disk substrates, glass substrates, glass products, metal substrates, metal products, plastic substrates, plastic products, ceramic substrates, ceramic products and the like.
 1 不織布
 1a 極細繊維
 1b 極細繊維の繊維束
 2 高分子弾性体
 3 研磨面(第一の表面)
 4 固定面(第二の表面)
 10 研磨パッド
 R 研磨面3の表面から厚さ方向に20%以内の厚み領域
 R 固定面4の表面から厚さ方向に20%以内の厚み領域
 R 研磨面3の表面から厚さ方向に40~60%の厚み領域
 11 回転定盤
 12 スラリー供給ノズル
 13 キャリア
 14 パッドコンディショナー
 15 被研磨基材
 16 研磨スラリー
 20 CMP装置
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric 1a Extra fine fiber 1b Extra fine fiber bundle 2 Polymer elastic body 3 Polishing surface (first surface)
4 Fixed surface (second surface)
10 thickness direction from the surface of the polishing pad R 1 thickness region within 20% in the thickness direction from the thickness direction of 20% within the thickness region R 2 surface of the fixing surface 4 from the surface of the polishing surface 3 R 3 polished surface 3 40 to 60% thick region 11 Rotating surface plate 12 Slurry supply nozzle 13 Carrier 14 Pad conditioner 15 Substrate to be polished 16 Polishing slurry 20 CMP apparatus

Claims (12)

  1.  平均横断面積0.1~30μmである極細繊維の繊維束から形成された不織布と、前記不織布の内部に付与された高分子弾性体とを含み、
     厚さ方向の縦断面において、第一の表面から厚さ方向に20%以内の厚み領域における、前記繊維束の横断面の平均数密度Dが1000~5000個/mmであり、
     Dと前記第一の表面に対向する第二の表面から厚さ方向に20%以内の厚み領域における、前記繊維束の横断面の平均数密度Dとの比(D/D)が1.3~5である、研磨パッド。
    A nonwoven fabric formed from a bundle of ultrafine fibers having an average cross-sectional area of 0.1 to 30 μm 2 , and a polymer elastic body provided inside the nonwoven fabric,
    In longitudinal section in the thickness direction, in the thickness region within 20% in the thickness direction from the first surface, the average number density D 1 of the cross-section of said fiber bundle is 1000 to 5000 / mm 2,
    D 1 and in the second thickness region within 20% from the surface in the thickness direction of the opposed to the first surface, the ratio between the average number density D 2 of the cross section of the fiber bundle (D 1 / D 2) A polishing pad having a thickness of 1.3 to 5.
  2.  前記Dと、前記Dと、前記第一の表面から厚さ方向に40~60%の厚み領域における前記繊維束の横断面の平均数密度Dとが、D>D>Dの関係である請求項1に記載の研磨パッド。 The D 1 , the D 2, and the average number density D 3 of the cross section of the fiber bundle in a thickness region of 40 to 60% in the thickness direction from the first surface are D 1 > D 3 > D The polishing pad according to claim 1, wherein the relationship is two .
  3.  前記Dと前記Dとの比(D/D)が1~1.4である請求項2に記載の研磨パッド。 The polishing pad of claim 2 ratio of the D 1 and the D 3 (D 1 / D 3 ) is 1 to 1.4.
  4.  前記Dと前記Dとの比(D/D)が1.4~3である請求項2または3に記載の研磨パッド。 The polishing pad according to claim 2 or 3, wherein a ratio (D 3 / D 2 ) between the D 2 and the D 3 is 1.4 to 3.
  5.  前記Dが200~3500個/mmである請求項1~4のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 4, wherein the D 2 is 200 to 3500 pieces / mm 2 .
  6.  前記繊維束の平均横断面積が40~400μmである請求項1~5のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 5, wherein an average cross-sectional area of the fiber bundle is 40 to 400 µm 2 .
  7.  前記極細繊維がフィラメントである請求項1~6のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 6, wherein the ultrafine fiber is a filament.
  8.  前記高分子弾性体が、-10℃以下のガラス転移温度を有し、23℃および50℃における貯蔵弾性率が90~900MPaであり、50℃で飽和吸水させたときの吸水率が0.2~5質量%である請求項1~7のいずれか1項に記載の研磨パッド。 The polymer elastic body has a glass transition temperature of −10 ° C. or lower, storage elastic modulus at 23 ° C. and 50 ° C. is 90 to 900 MPa, and water absorption when saturated water absorption at 50 ° C. is 0.2. The polishing pad according to any one of claims 1 to 7, wherein the polishing pad is -5% by mass.
  9.  前記不織布と前記高分子弾性体との質量比率(不織布/高分子弾性体)が、95/5~55/45である請求項1~8のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 8, wherein a mass ratio (nonwoven fabric / polymer elastic body) between the nonwoven fabric and the polymer elastic body is 95/5 to 55/45.
  10.  前記第一の表面のD硬度が25~50である請求項1~9のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 9, wherein the D hardness of the first surface is 25 to 50.
  11.  前記第二の表面に研磨定盤に貼り合わせるための粘着テープが被着されている請求項1~10のいずれか1項に記載の研磨パッド。 The polishing pad according to any one of claims 1 to 10, wherein an adhesive tape for adhering to the polishing surface plate is attached to the second surface.
  12.  基材のケミカルメカニカル研磨方法であって、
     基材の表面に研磨スラリーを滴下しながら、請求項1~11のいずれか1項に記載の研磨パッドの前記第一の表面を前記基材の表面に接触させて研磨する、ケミカルメカニカル研磨方法。
    A chemical mechanical polishing method for a substrate,
    A chemical mechanical polishing method in which polishing is performed by bringing the first surface of the polishing pad according to any one of claims 1 to 11 into contact with the surface of the substrate while dripping the polishing slurry onto the surface of the substrate. .
PCT/JP2010/006269 2009-10-30 2010-10-22 Polishing pad and chemical mechanical polishing method WO2011052173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538239A JP5629266B2 (en) 2009-10-30 2010-10-22 Polishing pad and chemical mechanical polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249974 2009-10-30
JP2009-249974 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052173A1 true WO2011052173A1 (en) 2011-05-05

Family

ID=43921608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006269 WO2011052173A1 (en) 2009-10-30 2010-10-22 Polishing pad and chemical mechanical polishing method

Country Status (3)

Country Link
JP (1) JP5629266B2 (en)
TW (1) TWI513871B (en)
WO (1) WO2011052173A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148278B2 (en) 2003-06-19 2012-04-03 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8216953B2 (en) 2003-06-19 2012-07-10 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
JP2015063782A (en) * 2013-08-30 2015-04-09 株式会社クラレ Fiber composite sheet, abrasive pad and manufacturing method thereof
JP2015221462A (en) * 2014-05-22 2015-12-10 株式会社ディスコ Polishing pad and method for manufacturing polishing pad
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI610389B (en) * 2016-09-05 2018-01-01 詠巨科技有限公司 Polishing pad conditioning method, polishing pad conditioning device and chemical mechanical planarization system
KR101848165B1 (en) * 2016-10-28 2018-04-11 현대제철 주식회사 Analyzing method for carbon fiber tow of carbon fiber reinforced plastics
JP7224128B2 (en) * 2018-08-09 2023-02-17 株式会社荏原製作所 Substrate cleaning tool, substrate cleaning apparatus, substrate processing apparatus, substrate processing method, and substrate cleaning tool manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224945A (en) * 2001-01-31 2002-08-13 Toray Ind Inc Abrasive cloth
JP2008207325A (en) * 2007-02-01 2008-09-11 Kuraray Co Ltd Polishing pad and manufacturing method for the polishing pad
JP2009083093A (en) * 2007-09-13 2009-04-23 Toray Ind Inc Polishing cloth
JP2009214275A (en) * 2008-03-12 2009-09-24 Toyo Tire & Rubber Co Ltd Polishing pad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3901939B2 (en) * 2000-12-05 2007-04-04 帝人コードレ株式会社 Polishing base fabric and polishing method
WO2008093850A1 (en) * 2007-02-01 2008-08-07 Kuraray Co., Ltd. Polishing pad and process for production of polishing pad
WO2008111442A1 (en) * 2007-03-07 2008-09-18 Toray Industries, Inc. Fiber structure and method for production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224945A (en) * 2001-01-31 2002-08-13 Toray Ind Inc Abrasive cloth
JP2008207325A (en) * 2007-02-01 2008-09-11 Kuraray Co Ltd Polishing pad and manufacturing method for the polishing pad
JP2009083093A (en) * 2007-09-13 2009-04-23 Toray Ind Inc Polishing cloth
JP2009214275A (en) * 2008-03-12 2009-09-24 Toyo Tire & Rubber Co Ltd Polishing pad

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444896B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8178199B2 (en) 2003-06-19 2012-05-15 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8163385B2 (en) 2003-06-19 2012-04-24 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8444895B2 (en) 2003-06-19 2013-05-21 Eastman Chemical Company Processes for making water-dispersible and multicomponent fibers from sulfopolyesters
US8216953B2 (en) 2003-06-19 2012-07-10 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8148278B2 (en) 2003-06-19 2012-04-03 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8236713B2 (en) 2003-06-19 2012-08-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8247335B2 (en) 2003-06-19 2012-08-21 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8257628B2 (en) 2003-06-19 2012-09-04 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8262958B2 (en) 2003-06-19 2012-09-11 Eastman Chemical Company Process of making woven articles comprising water-dispersible multicomponent fibers
US8273451B2 (en) 2003-06-19 2012-09-25 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8277706B2 (en) 2003-06-19 2012-10-02 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8314041B2 (en) 2003-06-19 2012-11-20 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8388877B2 (en) 2003-06-19 2013-03-05 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8398907B2 (en) 2003-06-19 2013-03-19 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8435908B2 (en) 2003-06-19 2013-05-07 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8623247B2 (en) 2003-06-19 2014-01-07 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US8158244B2 (en) 2003-06-19 2012-04-17 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8227362B2 (en) 2003-06-19 2012-07-24 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8557374B2 (en) 2003-06-19 2013-10-15 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US9175440B2 (en) 2012-01-31 2015-11-03 Eastman Chemical Company Processes to produce short-cut microfibers
US8906200B2 (en) 2012-01-31 2014-12-09 Eastman Chemical Company Processes to produce short cut microfibers
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US8840758B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
JP2015063782A (en) * 2013-08-30 2015-04-09 株式会社クラレ Fiber composite sheet, abrasive pad and manufacturing method thereof
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
JP2015221462A (en) * 2014-05-22 2015-12-10 株式会社ディスコ Polishing pad and method for manufacturing polishing pad

Also Published As

Publication number Publication date
JP5629266B2 (en) 2014-11-19
TW201120269A (en) 2011-06-16
JPWO2011052173A1 (en) 2013-03-14
TWI513871B (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5629266B2 (en) Polishing pad and chemical mechanical polishing method
JP5411862B2 (en) Polishing pad and polishing pad manufacturing method
KR101146966B1 (en) Polishing pad and process for production of polishing pad
JP5204502B2 (en) Polishing pad and polishing pad manufacturing method
JP5289787B2 (en) Polishing pad and polishing pad manufacturing method
JP5143518B2 (en) Fiber composite polishing pad
JP6220378B2 (en) Hard sheet and method for manufacturing hard sheet
JP2010064153A (en) Polishing pad
JP7111609B2 (en) Fiber composite polishing pad and method for polishing glass-based substrate using the same
JP2015063782A (en) Fiber composite sheet, abrasive pad and manufacturing method thereof
JP5356149B2 (en) Polishing pad surface processing method and polishing pad obtained thereby
JP5522929B2 (en) Polishing pad and polishing method
JP5551022B2 (en) Wrapping method of workpiece
JP5809429B2 (en) Polishing pad
JP5789557B2 (en) Method for polishing glass-based substrate
JP5729720B2 (en) Polishing cloth and polishing method using the polishing cloth
JP2010058170A (en) Polishing pad
JP5502661B2 (en) Compound semiconductor wafer polishing method
JP5415700B2 (en) Polishing pad and polishing pad manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538239

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826309

Country of ref document: EP

Kind code of ref document: A1