WO2010095699A1 - Flame-retardant resin composition and molded article thereof - Google Patents

Flame-retardant resin composition and molded article thereof Download PDF

Info

Publication number
WO2010095699A1
WO2010095699A1 PCT/JP2010/052484 JP2010052484W WO2010095699A1 WO 2010095699 A1 WO2010095699 A1 WO 2010095699A1 JP 2010052484 W JP2010052484 W JP 2010052484W WO 2010095699 A1 WO2010095699 A1 WO 2010095699A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
resin composition
different
flame retardant
Prior art date
Application number
PCT/JP2010/052484
Other languages
French (fr)
Japanese (ja)
Inventor
山中 克浩
史崇 近藤
Original Assignee
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人化成株式会社 filed Critical 帝人化成株式会社
Priority to US13/201,929 priority Critical patent/US8859655B2/en
Priority to EP10743825.1A priority patent/EP2399959A4/en
Priority to CN2010800033823A priority patent/CN102227472A/en
Priority to JP2011500652A priority patent/JP5622717B2/en
Publication of WO2010095699A1 publication Critical patent/WO2010095699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657181Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and, at least, one ring oxygen atom being part of a (thio)phosphonic acid derivative
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5357Esters of phosphonic acids cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a flame-retardant resin composition using a plant-derived raw material having high flame retardancy, good heat resistance and physical properties, and a molded product therefrom. More particularly, the present invention relates to a flame retardant resin composition containing a specific organophosphorus compound and substantially halogen-free, and a molded article therefrom.
  • polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyamide (PA6, PA66), polyester (PET, PBT), polycarbonate (PC), etc. are used as raw materials for obtaining resin molded products. Is used. These resins are manufactured using raw materials obtained from petroleum resources. In recent years, there are concerns about problems such as exhaustion of petroleum resources and the global environment, and there is a demand for the production of resins using raw materials obtained from biogenic substances such as plants. Considering the problem of the global environment in particular, the resin that uses plant-derived materials is considered to be carbon neutral because it is neutral as a carbon balance, considering the amount of carbon dioxide absorbed during plant growth even if incinerated after use.
  • the first object of the present invention is to provide a flame retardant resin composition using a plant-derived raw material having high flame retardancy, good heat resistance and physical properties, and a molded product therefrom.
  • a second object of the present invention is to provide a flame retardant resin composition containing a specific organophosphorus compound and substantially halogen-free, and a molded article therefrom.
  • the present inventor obtained a resin composition excellent in flame retardancy and heat resistance when a specific organic phosphorus compound is contained in a resin component such as polylactic acid obtained from a biogenic material and a styrene resin obtained from petroleum resources. I found out that That is, according to the present invention, 1.
  • a flammable resin composition (In formula, X ⁇ 1 >, X ⁇ 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)
  • AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent.
  • R 1 , R 3 , R 4 , R 6 are Substituents that may be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, an optionally substituted phenyl group, naphthyl group, or anthryl group .)
  • Ar ⁇ 1 > and Ar ⁇ 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring.
  • R ⁇ 11 >, R ⁇ 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring.
  • AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms
  • Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring
  • p and q each represent an integer of 0 to 3
  • Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.
  • the flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is represented by the following formula (5): (Wherein R 21 and R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group, and the aromatic ring may have a substituent.) 4).
  • the flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-a): 5).
  • R 31 and R 34 may be the same or different, and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • R 33 and R 36 may be the same or different.
  • an aliphatic hydrocarbon group having 1 to 4 carbon atoms, R 32 and R 35 may be the same or different and each is a phenyl group, a naphthyl group or an anthryl group, and has a substituent in the aromatic ring. May be.) 6).
  • R ⁇ 11 >, R ⁇ 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring.
  • AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms
  • Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring
  • p and q each represent an integer of 0 to 3
  • Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.
  • R 41 and R 44 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and substituted on the aromatic ring thereof.
  • R 42 , R 43 , R 45 and R 46 may be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and have a substituent on the aromatic ring. May be.
  • the flame-retardant resin composition using the plant-derived raw material which achieves high flame retardance without impairing the original characteristic of resin is obtained.
  • polylactic acid and / or lactic acid copolymer component A
  • L-lactide which is a cyclic dimer of L-lactic acid, or D- which is a cyclic dimer of D-lactic acid.
  • examples thereof include polymers using lactide, meso-lactide which is a cyclic dimer from L-lactic acid and D-lactic acid, or a mixture thereof.
  • the method for producing polylactic acid is not particularly limited, but is generally produced by using a known melt polymerization method or a solid phase polymerization method in combination.
  • the lactic acid copolymer is a copolymer containing lactic acid as a main raw material, for example, a lactic acid-hydroxycarboxylic acid copolymer or a lactic acid-aliphatic polyhydric alcohol-aliphatic polybasic acid copolymer.
  • a lactic acid-hydroxycarboxylic acid copolymer or a lactic acid-aliphatic polyhydric alcohol-aliphatic polybasic acid copolymer examples include coalescence.
  • Specific examples of the hydroxycarboxylic acid used in the lactic acid copolymer used in the present invention include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 4-hydroxy Examples include valeric acid and 6-hydroxycaproic acid, which can be used alone or as a mixture of two or more.
  • a cyclic ester intermediate of hydroxycarboxylic acid for example, glycolide which is a dimer of glycolic acid or ⁇ -caprolactone which is a cyclic ester of 6-hydroxycaproic acid
  • the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1
  • Aliphatic diols such as 5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, decamethylene glycol, 1,4-cyclohexanedimethanol, etc.
  • aliphatic polybasic acid examples include aliphatic dibasic acids such as succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid.
  • a basic acid is mentioned, It can use individually or in mixture of 2 or more types.
  • a copolymer of lactic acid and hydroxycarboxylic acid is usually synthesized from a cyclic ester intermediate of lactide and hydroxycarboxylic acid by ring-opening polymerization, and the production method thereof is described in US Pat. No. 3,635,956, US Pat. 797,499.
  • US Pat. No. 5,310,865 discloses a method in which dehydration polycondensation is directly performed using a mixture of lactic acid and hydroxycarboxylic acid as a raw material.
  • 4,057,537 discloses a ring-opening polymerization method in which a cyclic dimer of lactic acid and an aliphatic hydroxycarboxylic acid, for example, lactide or glycolide and ⁇ -caprolactone is melt-polymerized in the presence of a catalyst. It is disclosed.
  • a cyclic dimer of lactic acid and an aliphatic hydroxycarboxylic acid for example, lactide or glycolide and ⁇ -caprolactone is melt-polymerized in the presence of a catalyst. It is disclosed.
  • lactic acid and other hydroxycarboxylic acid as necessary are preferably copolymerized in the presence of an organic solvent, particularly a phenyl ether solvent.
  • Lactic acid co-condensation with a polymerization degree suitable for the present invention is carried out by polymerizing by a method in which water is removed from the solvent distilled off by azeotropic distillation and water is removed from the solvent, and the solvent is brought into a substantially anhydrous state. A polymer is obtained.
  • US Pat. No. 5,428,126 discloses a method for directly dehydrating and condensing a mixture of lactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid.
  • European Patent Publication No. 071880A2 discloses a method of condensing a polymer of polylactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid in the presence of an organic solvent.
  • polylactic acid which is a polymer containing only lactic acids
  • poly L-lactic acid resin containing L-lactic acid as a main raw material is particularly preferable.
  • L-lactic acid usually contains D-lactic acid which is an optical isomer, and its content is preferably 15% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less.
  • polystyrene resin As B component styrene resin, homopolymers or copolymers of aromatic vinyl monomers such as styrene, ⁇ -methylstyrene or vinyltoluene, vinyl monomers such as these monomers and acrylonitrile, methyl methacrylate, etc. And / or copolymers with conjugated diene monomers such as 1,3-butadiene, isoprene, 1,3-pentadiene and 1,3-hexadiene.
  • aromatic vinyl monomers such as styrene, ⁇ -methylstyrene or vinyltoluene
  • vinyl monomers such as these monomers and acrylonitrile, methyl methacrylate, etc.
  • conjugated diene monomers such as 1,3-butadiene, isoprene, 1,3-pentadiene and 1,3-hexadiene.
  • styrene and / or a styrene derivative, or styrene and / or a styrene derivative and another vinyl monomer may be graft polymerized on a diene rubber such as polybutadiene, ethylene / propylene rubber, or acrylic rubber.
  • a diene rubber such as polybutadiene, ethylene / propylene rubber, or acrylic rubber.
  • the styrenic resin include polystyrene, high impact polystyrene (HIPS), acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), methyl methacrylate / butadiene / styrene.
  • MVS resin Methyl methacrylate / Acrylonitrile / Butadiene / Styrene copolymer (MABS resin), Acrylonitrile / Acrylic rubber / Styrene copolymer (AAS resin), Acrylonitrile / Ethylene propylene rubber / Styrene copolymer (ABS resin) AES resin) or a mixture thereof.
  • MABS resin Methyl methacrylate / Acrylonitrile / Butadiene / Styrene copolymer
  • AS resin Acrylonitrile / Acrylic rubber / Styrene copolymer
  • ABS resin Acrylonitrile / Ethylene propylene rubber / Styrene copolymer
  • ABS resin Acrylonitrile / Ethylene propylene rubber / Styrene copolymer
  • AES resin Acrylonitrile / Ethylene propylene rubber / Styrene copolymer
  • the hydrogenated styrene terpolymer is a terpolymer obtained by hydrogenating a polymer containing a conjugated diene as a repeating unit.
  • the polymer containing a conjugated diene preferably used in the present invention in the repeating unit include a styrene-butadiene copolymer, a styrene-isoprene copolymer, and a styrene-isopentadiene copolymer.
  • the hydrogenation method is not particularly limited, and as a specific example, the hydrogenation method can be carried out based on the prior art as disclosed in Japanese Patent Application Laid-Open No. 2007-301449.
  • hydrogenated styrene terpolymers include styrene-ethylene-butylene-styrene terpolymers (SEBS) obtained by hydrogenating styrene-butadiene copolymers and hydrogenated styrene-isoprene copolymers.
  • SEBS styrene-ethylene-propylene-styrene terpolymer
  • SEEPS styrene-ethylene-propylene-styrene terpolymer
  • SEEPS styrene-ethylene-propylene-styrene terpolymer
  • the polymerization method of the styrene resin is not particularly limited, and anionic polymerization method, cationic polymerization method, free radical polymerization method, coordination polymerization method, solution polymerization method, emulsion polymerization method, bulk polymerization method, suspension polymerization method. What was manufactured using conventional techniques, such as these, can be used.
  • rubber-modified styrene resin impact polystyrene obtained by graft polymerizing a polymer of an aromatic vinyl monomer or a copolymer of an aromatic vinyl monomer and a vinyl monomer to a rubbery polymer is Refers to a polymer in which a rubber-like polymer is dispersed in the form of particles in a matrix.
  • the mixture can be obtained by known bulk polymerization, bulk suspension polymerization, solution polymerization or emulsion polymerization.
  • the rubber-like polymer include diene rubbers such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), saturated rubber obtained by hydrogenation of the diene rubber, isoprene rubber, chloroprene rubber, polybutyl acrylate.
  • examples thereof include acrylic rubbers such as ethylene-propylene-diene terpolymer (EPDM), and diene rubbers are particularly preferable.
  • the aromatic vinyl monomer as the essential component in the graft copolymerizable monomer mixture to be polymerized in the presence of the rubbery polymer is, for example, styrene, ⁇ -methylstyrene, paramethylstyrene, and the like. Styrene is most preferred. Examples of vinyl monomers that can be added as needed include acrylonitrile and methyl methacrylate.
  • the rubber-like polymer in the rubber-modified styrene resin is 1 to 80% by weight, preferably 2 to 70% by weight.
  • the monomer mixture capable of graft polymerization is 99 to 20% by weight, preferably 98 to 30% by weight.
  • the styrene resin used as the component B of the present invention has an MVR value of 1 to 100 cm measured at 200 ° C. under a load of 5 kg according to JIS-K-7210-1999. 3 / 10 min is preferable, 2 to 80 cm 3 / 10 min is more preferable, 3 to 60 cm 3 / 10 min is more preferable, and 5 to 50 cm 3 A range of / 10 min is particularly preferred.
  • Styrenic resins (component B), particularly AS resins and ABS resins have an MVR value of 1 to 100 cm measured at 220 ° C. under a load of 10 kg in accordance with JIS-K-7210-1999.
  • MVR value of styrene resin (component B) is 1cm 3 If it is less than / 10 min, the processability at the time of extrusion or molding of the resin composition will be lowered, and 100 cm 3 If it exceeds / 10 min, the heat resistance and mechanical properties of the resin composition will decrease.
  • Styrenic resin (component B) has a reduced viscosity ⁇ which is a measure of its molecular weight.
  • sp / C is preferably 0.2 to 1.5 dl / g, more preferably 0.3 to 1.4 dl / g.
  • reduced viscosity ⁇ sp / C is a value obtained by measuring a toluene solution having a solution concentration of 0.5 g / 100 ml at 30 ° C.
  • Reduced viscosity ⁇ of styrene resin sp When / C is lower than 0.2 dl / g, the heat resistance and mechanical properties of the resulting resin composition are lowered. Moreover, when higher than 1.5 dl / g, the workability at the time of extrusion of a resin composition, a shaping
  • the content of the styrenic resin (component B) is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 8 to 70 parts by weight with respect to 100 parts by weight of the component A. More preferably, it is 10 to 50 parts by weight, and particularly preferably 15 to 30 parts by weight.
  • polycarbonate resin B component
  • polycarbonate resin (component B) examples are those obtained by interfacial polymerization reaction of various dihydroxyaryl compounds and phosgene using a solvent such as methylene chloride, or obtained by transesterification of dihydroxyaryl compounds and diphenyl carbonate. Can be mentioned.
  • a typical example is a polycarbonate resin obtained by the reaction of 2,2′-bis (4-hydroxyphenyl) propane and phosgene.
  • dihydroxyaryl compound used as a raw material for the polycarbonate resin (component B) include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, and 2,2′-bis (4-hydroxyphenyl).
  • dihydroxyaryl compounds can be used alone or in combination of two or more.
  • Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonate resins, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl).
  • Bis (hydroxyphenyl) cycloalkane such as cyclohexane, dihydroxydiphenyl sulfide, dihydroxydiphenyl sulfone, dihydroxydiphenyl ketone and the like.
  • a particularly preferred dihydroxyaryl compound is 2,2′-bis (4-hydroxyphenyl) propane which forms a bisphenol A type aromatic polycarbonate.
  • the said polycarbonate resin may copolymerize an aliphatic diol compound as a copolymerization component.
  • the aliphatic diol compound include 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,5-hexanediol, and 1,6-hexanediol.
  • 2,2-dimethylpropane-1,3-diol ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, octaethylene glycol, dipropylene glycol, cyclobutanediol, cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, 2 , 2-bis (4-hydroxycyclohexyl) propane, bicyclohexyl-4,4-diol, tricyclo [5.2.1.0.
  • the organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can be used for promoting the reaction, and a terminal terminator such as an alkyl-substituted phenol such as phenol or p-tert-butylphenol is used as a molecular weight regulator. It is desirable to use it.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is several minutes to 5 hours
  • the pH during the reaction is preferably maintained at 10 or more. It should be noted that not all of the resulting molecular chain ends need to have a structure derived from a terminal terminator.
  • a transesterification reaction (melt polymerization method) using a carbonic acid diester as a carbonate precursor
  • a predetermined proportion of dihydric phenol is stirred with the carbonic acid diester in the presence of an inert gas, and the resulting alcohol or phenol is distilled. It is done by the method.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C.
  • the reaction is completed while distilling off the alcohol or phenol produced under reduced pressure from the beginning.
  • An end terminator is added simultaneously with the dihydric phenol or the like in the initial stage of the reaction or in the middle of the reaction.
  • the catalyst used for the transesterification reaction now well-known can be used.
  • the carbonic acid diester used in the transesterification include diphenyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is particularly preferred.
  • the content of OH groups present at the ends is preferably 100 eq / ton or less, more preferably in the range of 0.5 to 70 eq / ton, and still more preferably in the range of 1 to 50 eq / ton, The range of 1 to 30 eq / ton is particularly preferable, and the range of 1 to 20 eq / ton is most preferable. When the OH group content is in this range, the thermal stability is excellent.
  • the polycarbonate resin (component B) has an MVR value of 0.1 to 80 cm measured under conditions of 300 ° C. and 1.2 kg load according to JIS-K-7210-1999.
  • the MVR value of polycarbonate resin is 0.1cm 3 If it is less than / 10 min, the moldability of the resin composition is extremely deteriorated, and the MVR value is 80 cm. 3 If it exceeds / 10 min, the mechanical properties of the resin composition deteriorate. Examples of means for satisfying the above conditions for the MVR value and terminal OH group content of the polycarbonate resin include adjustment of polymerization temperature, polymerization time, and amount of terminal terminator used.
  • the content of the polycarbonate resin (component B) is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 8 to 70 parts by weight, based on 100 parts by weight of the component A.
  • the amount is preferably 10 to 50 parts by weight, particularly preferably 15 to 30 parts by weight.
  • organophosphorus compound used as the component C is represented by the following formula (1).
  • X 1 , X 2 Are the same or different and are aromatic-substituted alkyl groups represented by the following formula (2).
  • AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Examples of AL include an alkanediyl group having 1 to 5 carbon atoms, an alkanetriyl group having 1 to 5 carbon atoms, and an alkanetriyl group having 1 to 5 carbon atoms.
  • Examples include a tetrayl group, a butanetetrayl group, and a pentanetetrayl group.
  • Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent.
  • substituent include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
  • n represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.
  • the organophosphorus compound is preferably at least one compound selected from the group consisting of organophosphorus compounds represented by the following formula (3) and the following formula (4).
  • R 2 , R 5 May be the same or different and may be a phenyl group, a naphthyl group, or an anthryl group which may have a substituent.
  • substituents include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
  • R 1 , R 3 , R 4 , R 6 May be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group, naphthyl group or anthryl group It is a group.
  • the branched or straight chain alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Examples of the substituent of the phenyl group, naphthyl group or anthryl group include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom. .
  • Ar 1 And Ar 2 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring.
  • substituents examples include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
  • R 11 , R 12 , R 13 And R 14 May be the same or different, and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. .
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms include alkyl groups such as a methyl group, an ethyl group, and a propyl group.
  • Examples of the aromatic ring substituent include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
  • AL 1 And AL 2 These may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms.
  • Examples of the aliphatic hydrocarbon group include an alkanediyl group having 1 to 4 carbon atoms, an alkanetriyl group having 1 to 4 carbon atoms, and an alkanetetrayl group having 1 to 4 carbon atoms.
  • Ar 3 And Ar 4 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring.
  • the aromatic ring substituent include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
  • p and q represent an integer of 0 to 3
  • Ar 3 And Ar 4 Each is AL 1 And AL 2 To any carbon atom.
  • the organophosphorus compound is more preferably an organophosphorus compound represented by the following formula (5), (6), (7) or (8).
  • R 21 , R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group which may have a substituent on the aromatic ring, and among them, a phenyl group is preferred.
  • R 21 And R 22 In the phenyl group, a hydrogen atom of the aromatic ring may be substituted, and as a substituent, methyl, ethyl, propyl, butyl or a bonding group of the aromatic ring is an oxygen atom, a sulfur atom or a carbon number of 1 to 4 And an aryl group having 6 to 14 carbon atoms via the aliphatic hydrocarbon group.
  • R 31 And R 34 May be the same or different and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. Preferred are a hydrogen atom, a methyl group, and an ethyl group, and particularly preferred is a hydrogen atom.
  • R 33 And R 36 May be the same or different and are an aliphatic hydrocarbon group having 1 to 4 carbon atoms, preferably a methyl group or an ethyl group.
  • R 32 And R 35 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. It preferably represents a phenyl group, and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring.
  • methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. And an aryl group having 6 to 14 carbon atoms.
  • R 32 And R 35 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
  • Ar 1 And Ar 2 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring.
  • Ar 1 And Ar 2 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
  • R 11 , R 12 , R 13 And R 14 May be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring.
  • the aliphatic hydrocarbon group having 1 to 3 carbon atoms include alkyl groups having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group.
  • R 11 , R 12 , R 13 And R 14 Is preferably a phenyl group having 6 to 14 carbon atoms.
  • the phenyl group may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring.
  • methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • An aryl group having 6 to 14 carbon atoms is preferable.
  • AL 1 And AL 2 These may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms.
  • a branched or straight chain aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferred, and a branched or straight chain aliphatic hydrocarbon group having 1 to 2 carbon atoms is particularly preferred.
  • Examples of the aliphatic hydrocarbon group include an alkanediyl group having 1 to 4 carbon atoms, an alkanetriyl group having 1 to 4 carbon atoms, and an alkanetriyl group having 1 to 4 carbon atoms.
  • AL 1 And AL 2 Preferable specific examples include methylene group, ethylene group, ethylidene group, trimethylene group, propylidene group, isopropylidene group and the like, and methylene group, ethylene group and ethylidene group are particularly preferable.
  • Ar 3 And Ar 4 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring.
  • a phenyl group is preferred.
  • the phenyl group may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring.
  • methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • An aryl group having 6 to 14 carbon atoms is preferable.
  • R 41 And R 44 May be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring.
  • Preferred are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or a phenyl group which may have a substituent.
  • R 41 And R 44 When is a phenyl group, it may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring.
  • methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • An aryl group having 6 to 14 carbon atoms is preferable.
  • R 41 And R 44 Preferred examples of the hydrogen atom, methyl group, ethyl group, propyl group (including isomers), phenyl group, cresyl group, xylyl group, trimethylphenyl group, 4-phenoxyphenyl group, cumyl group, naphthyl group, 4-benzylphenyl group etc. are mentioned, Especially a hydrogen atom, a methyl group, or a phenyl group is preferable.
  • R 42 , R 43 , R 45 And R 46 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring.
  • it represents a phenyl group, and may have a substituent at any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring.
  • a substituent methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • R 42 , R 43 , R 45 And R 46 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
  • the organophosphorus compound (C component) represented by the formula (1) exhibits a very excellent flame retardant effect on the resin.
  • the organophosphorus compound (component C) surprisingly can be easily made flame-retardant by itself by using a small amount of itself, and the inherent properties of the resin, particularly heat resistance, are impaired. There is no.
  • a fluorine-containing resin or other additive is added to reduce the use ratio of the C component, improve the flame retardancy of the molded product, Naturally, it can be added for the purpose of improving the properties, improving the chemical properties of the molded article or other purposes.
  • the organophosphorus compound (C component) as a flame retardant in the flame retardant resin composition of the present invention is represented by the above formula (1), and the most preferred representative compounds are the following formulas (1-a), (1 -B), an organophosphorus compound represented by (1-c) or (1-d).
  • the component C may be produced by a method other than the method described below.
  • the component C is obtained, for example, by reacting pentaerythritol with phosphorus trichloride, subsequently treating the oxidized reaction product with an alkali metal compound such as sodium methoxide, and then reacting with aralkyl halide. It can also be obtained by reacting pentaerythritol with aralkyl phosphonic acid dichloride, or reacting pentaerythritol with phosphorus trichloride and reacting aralkyl alcohol with a compound obtained by reacting pentaerythritol with phosphorus trichloride, followed by Arbuzov transition at high temperature. .
  • a reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with 2-phenylethyl bromide.
  • the component C described above those having an acid value of 0.7 mgKOH / g or less, preferably 0.5 mgKOH / g or less are used.
  • a component C having an acid value in this range a molded product excellent in flame retardancy and hue can be obtained, and a molded product excellent in thermal stability can be obtained.
  • the component B most preferably has an acid value of 0.4 mgKOH / g or less.
  • the acid value means the amount (mg) of KOH necessary to neutralize the acid component in 1 g of the sample (C component).
  • the component C one whose HPLC purity is preferably at least 90%, more preferably at least 95% is used.
  • the HPLC purity of the B component can be measured effectively by using the following method.
  • As the column Develosil ODS-7 300 mm ⁇ 4 mm ⁇ manufactured by Nomura Chemical Co., Ltd. was used, and the column temperature was 40 ° C.
  • As a solvent a mixed solution of acetonitrile and water 6: 4 (volume ratio) was used, and 5 ⁇ l was injected.
  • the detector used was UV-260 nm.
  • the method for removing impurities in component B is not particularly limited, but a method of performing repulp washing with a solvent such as water or methanol (washing with a solvent, repeating filtration several times) is the most effective. It is also advantageous in terms of cost.
  • the component C is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, particularly preferably 100 parts by weight of polylactic acid and / or lactic acid copolymer component (component A). Is blended in the range of 15 to 50 parts by weight.
  • the suitable range of the mixing ratio of the C component is determined by the desired flame retardancy level, the type of the resin component (A component and B component), and the like.
  • the flame-retardant resin composition of the present invention is prepared by using a resin component (component A and component B), an organic phosphorus compound (component C), and other components as necessary, a V-type blender, a super mixer, a super floater, and Henschel.
  • a method of premixing using a mixer such as a mixer, supplying the premixture to a kneader, and melt mixing is preferably employed.
  • a mixer such as a mixer
  • various melt mixers such as a kneader, a single screw or a twin screw extruder can be used, and among them, the resin composition is 150 to 300 ° C., preferably 170 to 280 ° C. using the twin screw extruder.
  • a method in which a liquid component is injected by a side feeder, extruded by a side feeder, extruded, and pelletized by a pelletizer is preferably used.
  • the flame retardant resin composition of the present invention is substantially free of halogen and has very high flame retardant performance, such as home appliance parts, electrical / electronic parts, automobile parts, mechanical / mechanical parts, cosmetic containers, etc. It is useful as a material for molding various molded articles. Specifically, breaker parts, switch parts, motor parts, ignition coil cases, power plugs, power outlets, coil bobbins, connectors, relay cases, fuse cases, flyback transformer parts, focus block parts, distributor caps, harness connectors, etc. Can be suitably used.
  • thinning housings, casings or chassis such as electronic and electrical products (such as telephones, personal computers, printers, fax machines, photocopiers, televisions, VCRs, audio equipment and other home appliances / OA equipment or parts thereof)
  • electronic and electrical products such as telephones, personal computers, printers, fax machines, photocopiers, televisions, VCRs, audio equipment and other home appliances / OA equipment or parts thereof
  • printer casing fixing unit parts, machine / mechanical parts of home appliances and OA products such as fax machines that require particularly excellent heat resistance and flame retardancy.
  • OA products such as fax machines that require particularly excellent heat resistance and flame retardancy.
  • a molding method such as injection molding, blow molding, press molding, etc.
  • the burning time after removing the flame is measured.
  • a total of 10 burning times can be measured, all burning times are extinguished within 10 seconds, the total of 10 burning times is within 50 seconds, and the dripping material is cotton.
  • V-0 is the one that does not ignite, extinguishes within 30 seconds of any combustion time, the sum of the 10 combustion times is within 250 seconds, and the drop does not cause cotton ignition. 1. All the combustion times are extinguished within 30 seconds, the total of the 10 combustion times is within 250 seconds, and the dripping material causes cotton ignition is V-2, and those below this evaluation standard It was set to notV.
  • the flame extinguishing time of the dripped material dropped by the first flame was measured and judged according to the following criteria.
  • The flame extinguishing time of the drop is less than 30 seconds
  • x The flame extinguishing time of the drop is 30 seconds or more
  • Heat resistance (deflection temperature under load; HDT) The deflection temperature under load (HDT) was measured at a load of 0.45 MPa using a 6.35 mm (1/4 inch) test piece by a method according to ISO 75-2.
  • the deflection temperature retention ratio (M) of the load is determined by the deflection temperature x (° C) of the molded product from the used base resin (mixture of component A and component B) and the flame retardant resin composition (base resin and component C).
  • Acid value of organophosphorus compound Measurement was carried out according to JIS-K-3504. (4) HPLC purity of organophosphorus compound The sample was dissolved in a 6: 4 (volume ratio) mixed solution of acetonitrile and water, and 5 ⁇ l thereof was injected into the column.
  • the product was confirmed to be bisbenzylpentaerythritol diphosphonate by mass spectral analysis, 1 H, 31 P nuclear magnetic resonance spectral analysis and elemental analysis.
  • the yield was 20.60 g, the yield was 91%, and the 31 P-NMR purity was 99%.
  • the HPLC purity measured by the method described in the text was 99%.
  • the acid value was 0.05 mgKOH / g.
  • the obtained solid was 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed. 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1,341.0 g (5.88 mol) and DMF 6,534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling.
  • the obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the resulting filtered product was dried at 120 ° C. and 1.33 ⁇ 10 2 Pa for 19 hours to obtain 1,924.4 g of white powder ( 4.41 mol) was obtained.
  • the obtained solid was analyzed by 31 P-NMR, 1 H-NMR spectrum and elemental analysis, 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenyl). Ethyl) -3,9-dioxide was confirmed.
  • the 31 P-NMR purity was 99%.
  • the HPLC purity measured by the method described in the text was 99%.
  • the acid value was 0.3 mgKOH / g.
  • polylactic acid resin component A
  • PLA-1 Commercially available polylactic acid (manufactured by Nature Works 4032D; poly L-lactic acid resin) was used (hereinafter referred to as PLA-1).
  • PLA-1 commercially available polylactic acid (LACEA H100 manufactured by Mitsui Chemicals, Inc .; poly L-lactic acid resin) was used (hereinafter referred to as PLA-2).
  • AS resin Nippon A & L Co., Ltd. Raitakku -A BS-203
  • the obtained pellets were dried in a hot air dryer at 80 ° C. for 24 hours.
  • the dried pellets were molded with an injection molding machine (J75EIII, manufactured by Nippon Steel Works).
  • the results of evaluation using molded plates are shown in Tables 1 to 3. Examples 25 to 40 and Comparative Examples 13 to 20
  • Each component shown in Tables 4 to 6 was blended in the amount (parts by weight) shown in Tables 4 to 6 by a tumbler, and pelletized with a 15 mm ⁇ twin screw extruder (manufactured by Technobell, KZW15).
  • the obtained pellets were dried in a hot air dryer at 80 ° C. for 24 hours.
  • the dried pellets were molded with an injection molding machine (J75EIII, manufactured by Nippon Steel Works).
  • the results of evaluation using the molded plate are shown in Tables 4-6. Effect of the Invention
  • the flame retardant resin composition of the present invention and a molded product formed therefrom have the following advantages compared to conventional resin compositions using plant-derived materials.
  • a resin composition using a plant-derived raw material having high flame retardancy can be obtained without substantially using a halogen-containing flame retardant.
  • the V-2 level particularly preferably the V-0 level, can be used even with a relatively small amount of use. Achieved.
  • the flame-retardant resin composition of the present invention is useful as a material for molding various molded products such as home appliance parts, electrical / electronic parts, automobile parts, machine / mechanical parts, cosmetic containers and the like.

Abstract

Disclosed is a flame-retardant resin composition that is highly flame retardant and has excellent heat-resistance and physical properties; further disclosed is a molded article of said composition. This flame-retardant resin composition contains, with respect to 100 parts by weight of (A) polylactic acid and/or a lactic acid copolymer (component A), 1-100 parts by weight of (B) a styrene-based resin and/or a polycarbonate resin (component B) and 1-100 parts by weight of (C) an organic phosphorous compound (component C) expressed by formula (1). (In the formula, X1 and X2 are aromatic-based substituted alkyl groups represented by formula (2), and are the same or different.) (In the formula, AL is a branched or a straight-chain aliphatic hydrocarbon group with 1-5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which can have a substituent; n represents an integer of 1-3, and the Ar is capable of bonding with any carbon atom in the AL.)

Description

難燃性樹脂組成物およびそれからの成形品Flame retardant resin composition and molded product therefrom
 本発明は、高度な難燃性、良好な耐熱性および物性を有する植物由来原料を用いた難燃性樹脂組成物およびそれからの成形品に関する。さらに詳しくは特定の有機リン化合物を含有しかつ実質的にハロゲンフリーの難燃性樹脂組成物およびそれからの成形品に関する。 The present invention relates to a flame-retardant resin composition using a plant-derived raw material having high flame retardancy, good heat resistance and physical properties, and a molded product therefrom. More particularly, the present invention relates to a flame retardant resin composition containing a specific organophosphorus compound and substantially halogen-free, and a molded article therefrom.
 樹脂製の成形品を得るための原料として、一般的にポリプロピレン(PP)、アクリロニトリル—ブタジエン—スチレン(ABS)、ポリアミド(PA6、PA66)、ポリエステル(PET、PBT)、ポリカーボネート(PC)等の樹脂が使用されている。これらの樹脂は石油資源から得られる原料を用いて製造されている。近年、石油資源の枯渇や地球環境等の問題が懸念されており、植物などの生物起源物質から得られる原料を用いた樹脂の製造が求められている。特に地球環境の問題を考えるとき、植物由来原料を用いた樹脂は、使用後に焼却されても植物の生育時に吸収した二酸化炭素量を考慮すると、炭素の収支として中立であるというカーボンニュートラルという考えから、地球環境への負荷の低い樹脂であると考えられる。
 一方、これらの植物由来原料を用いた樹脂を工業材料、特に電気/電子関係用部品、OA関連用部品または自動車部品に利用する場合、安全上の問題から難燃性の付与が必要である。
 これまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂の難燃化に関しては種々の試みがなされており、ある程度の難燃化は達成されている(特許文献1~6)。しかしながら、これらの難燃化処方は多量の難燃剤を用いたものであり、さらに難燃剤の特性から樹脂本来の物性や耐熱性を損なうものであった。
特開2001−164014公報 特開2004−277552公報 特開2005−023260公報 特開2005−139441公報 特開2007−246730公報 特開2008−019294公報
Generally, polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyamide (PA6, PA66), polyester (PET, PBT), polycarbonate (PC), etc. are used as raw materials for obtaining resin molded products. Is used. These resins are manufactured using raw materials obtained from petroleum resources. In recent years, there are concerns about problems such as exhaustion of petroleum resources and the global environment, and there is a demand for the production of resins using raw materials obtained from biogenic substances such as plants. Considering the problem of the global environment in particular, the resin that uses plant-derived materials is considered to be carbon neutral because it is neutral as a carbon balance, considering the amount of carbon dioxide absorbed during plant growth even if incinerated after use. It is considered to be a resin with a low impact on the global environment.
On the other hand, when resins using these plant-derived raw materials are used for industrial materials, particularly electrical / electronic parts, OA-related parts, or automobile parts, it is necessary to impart flame retardancy for safety reasons.
Until now, various attempts have been made for flame retardancy of resins using plant-derived materials, particularly polylactic acid resins, and a certain degree of flame retardancy has been achieved (Patent Documents 1 to 6). However, these flame retardant formulations use a large amount of flame retardant, and further impair the original physical properties and heat resistance of the resin due to the properties of the flame retardant.
JP 2001-164014 A JP 2004-277552 A JP 2005-023260 A JP-A-2005-139441 JP 2007-246730 A JP 2008-019294 A
 本発明の第1の目的は、高度な難燃性、良好な耐熱性および物性を有する植物由来原料を用いた難燃性樹脂組成物およびそれからの成形品を提供することにある。
 本発明の第2の目的は、特定の有機リン化合物を含有し、かつ実質的にハロゲンフリーの難燃性樹脂組成物およびそれからの成形品を提供することにある。
 本発明者は、生物起源物質から得られるポリ乳酸および石油資源から得られるスチレン系樹脂などの樹脂成分に特定の有機リン化合物を含有させると難燃性、耐熱性に優れた樹脂組成物が得られることを見出した。
 すなわち、本発明によれば、
 1.(A)ポリ乳酸および/または乳酸共重合体(A成分)100重量部、
(B)スチレン系樹脂および/またはポリカーボネート樹脂(B成分)1~100重量部、並びに
(C)下記式(1)で表される有機リン化合物(C成分)1~100重量部を含有する難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000013
(式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。)
Figure JPOXMLDOC01-appb-I000014
(式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基であり、Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。nは1~3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。)
 2.有機リン化合物(C成分)は、下記式(3)および下記式(4)で表される有機リン化合物よりなる群から選択される少なくとも1種の化合物である前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000015
(式中、R、Rは同一または異なっていてもよく、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。R、R、R、Rは同一または異なっていてもよく、水素原子、炭素数1~4の分岐状または直鎖状のアルキル基、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基から選択される置換基である。)
Figure JPOXMLDOC01-appb-I000016
(式中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
 3.有機リン化合物(C成分)が、下記式(5)で表される前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000017
(式中、R21、R22は同一もしくは異なり、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
 4.有機リン化合物(C成分)が、下記式(1−a)で示される化合物である前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000018
 5.有機リン化合物(C成分)が、下記式(6)で表される前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000019
(式中、R31およびR34は、同一または異なっていても良く、水素原子または炭素数1~3の脂肪族炭化水素基である。R33およびR36は、同一または異なっていても良く、炭素数1~4の脂肪族炭化水素基である。R32およびR35は、同一または異なっていてもよく、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
 6.有機リン化合物(C成分)が、下記式(1−b)で示される化合物である前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000020
 7.有機リン化合物(C成分)が、下記式(7)で表される前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000021
(式中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
 8.有機リン化合物(C成分)が、下記式(1−c)で示される化合物である前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000022
 9.有機リン化合物(C成分)が、下記式(8)で表される前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000023
(式中、R41およびR44は、同一または異なっていても良く、水素原子、炭素数1~4の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。R42、R43、R45およびR46は、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
 10.有機リン化合物(C成分)が、下記式(1−d)で示される化合物である前項1記載の難燃性樹脂組成物、
Figure JPOXMLDOC01-appb-I000024
 11.有機リン化合物(C成分)の酸価が0.7mgKOH/g以下である前項1記載の難燃性樹脂組成物、
 12.UL−94規格の難燃レベルにおいて、少なくともV−2を達成する前項1記載の難燃性樹脂組成物、
 13.スチレン系樹脂(B成分)は、200℃、5kg荷重におけるMVR値が1~100cm/10minである前項1記載の難燃性樹脂組成物、
 14.スチレン系樹脂(B成分)は、220℃、10kg荷重におけるMVR値が1~100cm/10minである前項1記載の難燃性樹脂組成物、
 15.ポリカーボネート樹脂(B成分)は、300℃、1.2kg荷重におけるMVR値が0.1~80cm/10minである請求項1記載の難燃性樹脂組成物。
 16.ポリカーボネート樹脂(B成分)は、その末端に存在するOH基の含有量が100eq/ton以下である請求項1記載の難燃性樹脂組成物。
 17.0.45MPa荷重で測定したHDTにおいて、HDT保持率が95%以上である前項1記載の難燃性樹脂組成物、および
 18.前項1記載の難燃性樹脂組成物より形成された成形品、
が提供される。
 本発明によれば、樹脂本来の特性を損なうことなく、高い難燃性を達成する植物由来原料を用いた難燃性樹脂組成物が得られる。
The first object of the present invention is to provide a flame retardant resin composition using a plant-derived raw material having high flame retardancy, good heat resistance and physical properties, and a molded product therefrom.
A second object of the present invention is to provide a flame retardant resin composition containing a specific organophosphorus compound and substantially halogen-free, and a molded article therefrom.
The present inventor obtained a resin composition excellent in flame retardancy and heat resistance when a specific organic phosphorus compound is contained in a resin component such as polylactic acid obtained from a biogenic material and a styrene resin obtained from petroleum resources. I found out that
That is, according to the present invention,
1. (A) 100 parts by weight of polylactic acid and / or lactic acid copolymer (component A),
(B) 1 to 100 parts by weight of styrene resin and / or polycarbonate resin (component B) and (C) 1 to 100 parts by weight of an organophosphorus compound (component C) represented by the following formula (1) A flammable resin composition,
Figure JPOXMLDOC01-appb-I000013
(In formula, X < 1 >, X < 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)
Figure JPOXMLDOC01-appb-I000014
(In the formula, AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.)
2. The flame retardant resin composition according to item 1 above, wherein the organophosphorus compound (component C) is at least one compound selected from the group consisting of the organophosphorus compounds represented by the following formula (3) and the following formula (4): object,
Figure JPOXMLDOC01-appb-I000015
(In the formula, R 2 and R 5 may be the same or different, and may be a phenyl group, a naphthyl group, or an anthryl group that may have a substituent. R 1 , R 3 , R 4 , R 6 are Substituents that may be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, an optionally substituted phenyl group, naphthyl group, or anthryl group .)
Figure JPOXMLDOC01-appb-I000016
(In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.)
3. The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is represented by the following formula (5):
Figure JPOXMLDOC01-appb-I000017
(Wherein R 21 and R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group, and the aromatic ring may have a substituent.)
4). The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-a):
Figure JPOXMLDOC01-appb-I000018
5). The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is represented by the following formula (6):
Figure JPOXMLDOC01-appb-I000019
(In the formula, R 31 and R 34 may be the same or different, and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. R 33 and R 36 may be the same or different. And an aliphatic hydrocarbon group having 1 to 4 carbon atoms, R 32 and R 35 may be the same or different and each is a phenyl group, a naphthyl group or an anthryl group, and has a substituent in the aromatic ring. May be.)
6). The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-b):
Figure JPOXMLDOC01-appb-I000020
7). The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is represented by the following formula (7):
Figure JPOXMLDOC01-appb-I000021
(In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.)
8). The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-c):
Figure JPOXMLDOC01-appb-I000022
9. The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is represented by the following formula (8):
Figure JPOXMLDOC01-appb-I000023
(In the formula, R 41 and R 44 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and substituted on the aromatic ring thereof. R 42 , R 43 , R 45 and R 46 may be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and have a substituent on the aromatic ring. May be.)
10. The flame retardant resin composition according to item 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-d):
Figure JPOXMLDOC01-appb-I000024
11. The flame retardant resin composition according to item 1 above, wherein the organic phosphorus compound (component C) has an acid value of 0.7 mgKOH / g or less,
12 The flame retardant resin composition according to item 1 above, which achieves at least V-2 at a flame retardant level of UL-94 standard,
13. Styrenic resin (B component), 200 ° C., the flame-retardant resin composition of above 1, wherein MVR value at 5kg load is 1 ~ 100cm 3 / 10min,
14 Styrenic resin (B component), 220 ° C., the flame-retardant resin composition of above 1, wherein MVR value at 10kg load is 1 ~ 100cm 3 / 10min,
15. Polycarbonate resin (B component), 300 ° C., the flame-retardant resin composition according to claim 1, wherein MVR value at 1.2kg load is 0.1 ~ 80cm 3 / 10min.
16. 2. The flame-retardant resin composition according to claim 1, wherein the polycarbonate resin (component B) has an OH group content at the terminal of 100 eq / ton or less.
17. The flame retardant resin composition according to item 1 above, wherein the HDT retention is 95% or more in HDT measured at a load of 0.45 MPa; A molded product formed from the flame retardant resin composition according to the preceding item 1,
Is provided.
According to this invention, the flame-retardant resin composition using the plant-derived raw material which achieves high flame retardance without impairing the original characteristic of resin is obtained.
 以下本発明の難燃性樹脂組成物についてさらに詳細に説明する。
(ポリ乳酸および/または乳酸共重合体:A成分)
 本発明においてポリ乳酸として、L−乳酸、D−乳酸、DL−乳酸またはそれらの混合物、またはL−乳酸の環状2量体であるL−ラクタイド、D−乳酸の環状2量体であるD−ラクタイド、L−乳酸とD−乳酸からの環状2量体であるメソ−ラクタイドまたはそれらの混合物を用いた重合体を挙げることができる。
 ポリ乳酸の製造方法としては、特に限定されるものではないが、一般に公知の溶融重合法、或いは、更に固相重合法を併用して製造される。具体例としては、米国特許第1,995,970号、米国特許第2,362,511号、米国特許第2,683,136号に開示されており、通常ラクタイドと呼ばれる乳酸の環状二量体から開環重合により合成される。米国特許第2,758,987号では、乳酸の環状2量体(ラクタイド)を溶融重合する開環重合法が開示されている。
 また、本発明において乳酸共重合体は、乳酸類を主原料とする共重合体であり、例えば、乳酸—ヒドロキシカルボン酸共重合体や乳酸—脂肪族多価アルコール—脂肪族多塩基酸共重合体などを挙げることができる。
 本発明で使用される乳酸共重合体に用いられるヒドロキシカルボン酸の具体例としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、4−ヒドロキシ青草酸、6−ヒドロキシカプロン酸等が挙げられ、単独或いは2種以上の混合物として使用することができる。さらにヒドロキシカルボン酸の環状エステル中間体、例えばグリコール酸の二量体であるグリコライドや6−ヒドロキシカプロン酸の環状エステルであるε−カプロラクトンを使用することもできる。
 脂肪族多価アルコールの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、デカメチレングリコール、1,4−シクロヘキサンジメタノール等の脂肪族ジオールが挙げられ、単独或いは2種以上の混合物として使用することができる。
 脂肪族多塩基酸の具体例としては、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族二塩基酸が挙げられ、単独或いは2種以上の混合物として使用することができる。
 乳酸とヒドロキシカルボン酸との共重合体は通常ラクタイドとヒドロキシカルボン酸の環状エステル中間体から開環重合により合成され、その製造法に関しては米国特許第3,635,956号、米国特許第3,797,499号に開示されている。米国特許第5,310,865号には、乳酸とヒドロキシカルボン酸の混合物を原料として、直接脱水重縮合を行う方法が開示されている。また、米国特許第4,057,537号には、乳酸と脂肪族ヒドロキシカルボン酸の環状2量体、例えばラクタイドやグリコライドとε−カプロラクトンを触媒の存在下、溶融重合する開環重合法が開示されている。開環重合によらず直接脱水重縮合により乳酸共重合体を製造する場合には、乳酸類と必要に応じて他のヒドロキシカルボン酸を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより、本発明に適した重合度の乳酸共重合体が得られる。
 また、米国特許第5,428,126号には、乳酸、脂肪族二価アルコールと脂肪族二塩基酸の混合物を直接脱水縮合する方法が開示されている。また、欧州特許公報第0712880A2号には、ポリ乳酸と脂肪族二価アルコールと脂肪族二塩基酸とのポリマーを有機溶媒存在下で縮合する方法が開示されている。
 本発明において、ポリ乳酸や乳酸共重合体の製造に際し、適当な分子量調節剤、分岐剤、その他の改質剤などの添加は差し支えない。
 本発明においては乳酸類のみの重合体であるポリ乳酸が好適に用いられ、とりわけL−乳酸を主原料とするポリL−乳酸樹脂が好ましい。また、通常L−乳酸は光学異性体であるD−乳酸を含有しており、その含有量は15重量%以下が好ましく、さらに好ましくは10重量%以下、特に好ましくは5重量%以下である。光学異性体を多く含む場合はポリ乳酸の結晶性が低減され、結果として得られるポリ乳酸はより柔軟になる。柔軟性を得たい成形体に対しては好適に利用されるが、耐熱性を要求される組成物に対しては好ましくない。
(スチレン系樹脂:B成分)
 B成分のスチレン系樹脂としては、スチレン、α−メチルスチレンまたはビニルトルエン等の芳香族ビニル単量体の単独重合体または共重合体、これらの単量体とアクリロニトリル、メチルメタクリレート等のビニル単量体および/または1,3−ブタジエン、イソプレン、1,3−ペンタジエン、1,3−ヘキサジエン等の共役ジエン単量体との共重合体が挙げられる。またポリブタジエン等のジエン系ゴム、エチレン・プロピレン系ゴム、アクリル系ゴムなどに、スチレンおよび/またはスチレン誘導体、またはスチレンおよび/またはスチレン誘導体と他のビニルモノマーをグラフト重合させたものが例示できる。
 スチレン系樹脂の具体例としては、例えばポリスチレン、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル・スチレン共重合体(AS樹脂)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレン共重合体(MBS樹脂)、メチルメタクリレート・アクリロニトリル・ブタジエン・スチレン共重合体(MABS樹脂)、アクリロニトリル・アクリルゴム・スチレン共重合体(AAS樹脂)、アクリロニトリル・エチレンプロピレン系ゴム・スチレン共重合体(AES樹脂)等の樹脂、またはこれらの混合物が挙げられる。
 また、上記芳香族ビニル単量体と共役ジエン単量体との共重合体を水素添加することによって得られる水素添加スチレン系三元共重合体も挙げられる。水素添加スチレン系三元共重合体は、共役ジエンを繰り返し単位に含む重合体を水素化した三元共重合体である。本発明において好適に使用される共役ジエンを繰り返し単位に含む重合体の具体例としては、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−イソペンタジエン共重合体等が挙げられる。水素添加方法は特に限定されることはなく、具体例としては、特開2007−301449号公報に開示されるような先行技術に基づいて実施することができる。水素添加スチレン系三元共重合体の具体例としては、スチレン−ブタジエン共重合体を水素化したスチレン−エチレン−ブチレン−スチレン三元共重合体(SEBS)、スチレン−イソプレン共重合体を水素化したスチレン−エチレン−プロピレン−スチレン三元共重合体(SEPS)、スチレン−イソペンタジエン共重合体を水素化したスチレン−エチレン−プロピレン−スチレン三元共重合体(SEEPS)等が挙げられる。
 スチレン系樹脂の重合方法としては特に限定されることはなく、アニオン重合法、カチオン重合法、遊離基重合法、配位重合法、溶液重合法、乳化重合法、塊状重合法、懸濁重合法等の従来技術を用いて製造したものを用いることができる。
 また、ゴム状重合体に芳香族ビニル単量体の重合体、または芳香族ビニル単量体およびビニル単量体の共重合体をグラフト重合させたゴム変性スチレン系樹脂(耐衝撃性ポリスチレン)は、マトリックス中にゴム状重合体が粒子状に分散してなる重合体をいい、ゴム状重合体の存在下に芳香族ビニル単量体、必要に応じてビニル単量体を加えて単量体混合物を公知の塊状重合、塊状懸濁重合、溶液重合または乳化重合することにより得られる。
 前記ゴム状重合体の例としては、ポリブタジエン、ポリ(スチレン−ブタジエン)、ポリ(アクリロニトリル−ブタジエン)等のジエン系ゴムおよび上記ジエンゴムを水素添加した飽和ゴム、イソプレンゴム、クロロプレンゴム、ポリアクリル酸ブチル等のアクリル系ゴム、およびエチレン−プロピレン−ジエンモノマー三元共重合体(EPDM)等を挙げることができ、特にジエン系ゴムが好ましい。
 上記のゴム状重合体の存在下に重合させるグラフト共重合可能な単量体混合物中の必須成分の芳香族ビニル単量体は、例えば、スチレン、α−メチルスチレン、パラメチルスチレン等であり、スチレンが最も好ましい。
 必要に応じて添加することが可能な、ビニル単量体としては、アクリロニトリル、メチルメタクリレート等が挙げられる。
 ゴム変性スチレン樹脂におけるゴム状重合体は、1~80重量%、好ましくは2~70重量%である。グラフト重合可能な単量体混合物は、99~20重量%、好ましくは98~30重量%である。
 本発明のB成分として使用するスチレン系樹脂、特に耐衝撃性ポリスチレンは、そのJIS−K−7210−1999に従って、200℃、5kg荷重の条件で測定したMVR値が1~100cm/10minの範囲が好ましく、2~80cm/10minの範囲がより好ましく、3~60cm/10minの範囲がさらに好ましく、5~50cm/10minの範囲が特に好ましい。
 またスチレン系樹脂(B成分)、特にAS樹脂やABS樹脂は、そのJIS−K−7210−1999に従って、220℃、10kg荷重の条件で測定したMVR値が1~100cm/10minの範囲が好ましく、2~80cm/10minの範囲がより好ましく、3~60cm/10minの範囲がさらに好ましく、5~50cm/10minの範囲が特に好ましい。
 スチレン系樹脂(B成分)のMVR値が1cm/10min未満では樹脂組成物の押出時や成形時等の加工性が低下することとなり、100cm/10minを超えると樹脂組成物の耐熱性や機械物性が低下することとなる。
 スチレン系樹脂(B成分)は、その分子量の尺度である還元粘度ηsp/Cが好ましくは0.2~1.5dl/gであり、より好ましくは0.3~1.4dl/gである。ここで、還元粘度ηsp/Cとは、溶液濃度0.5g/100mlのトルエン溶液を30℃で測定して求めた値である。
 スチレン系樹脂の還元粘度ηsp/Cが0.2dl/gより低い場合は、得られる樹脂組成物の耐熱性や機械物性が低下する。また、1.5dl/gよりも高い場合は、樹脂組成物の押出時や成形時等の加工性が低下することとなる。
 スチレン系樹脂のMVR値や還元粘度ηsp/Cに関する上記条件を満たすための手段としては、重合開始剤量、重合温度、連鎖移動剤量の調整等を挙げることができる。
 スチレン系樹脂(B成分)の含有量は、A成分100重量部に対して、1~100重量部であり、好ましくは5~90重量部であり、より好ましくは8~70重量部であり、さらに好ましくは10~50重量部であり、特に好ましくは15~30重量部である。
(ポリカーボネート樹脂:B成分)
 ポリカーボネート樹脂(B成分)としては、一例として塩化メチレン等の溶媒を用いて種々のジヒドロキシアリール化合物とホスゲンとの界面重合反応によって得られるもの、またはジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2’−ビス(4−ヒドロキシフェニル)プロパンとホスゲンの反応で得られるポリカーボネート樹脂である。
 ポリカーボネート樹脂(B成分)の原料となるジヒドロキシアリール化合物としては、ビス(4−ヒドロキシフェニル)メタン、1,1’−ビス(4−ヒドロキシフェニル)エタン、2,2’−ビス(4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシフェニル)ブタン、2,2’−ビス(4−ヒドロキシフェニル)オクタン、2,2’−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−tert−ブチルフェニル)プロパン、2,2’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−メトキシフェニル)プロパン、1,1’−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1’−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1’−ビス(4−ヒドロキシフェニル)シクロドデカン、4,4’−ジヒドロキシフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)ケトンなどがある。これらのジヒドロキシアリール化合物は単独でまたは2種以上組み合わせて使用できる。
 好ましいジヒドロキシアリール化合物には、耐熱性の高い芳香族ポリカーボネート樹脂を形成するビスフェノール類、2,2’−ビス(4−ヒドロキシフェニル)プロパンなどのビス(ヒドロキシフェニル)アルカン、ビス(4−ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシフェニル)シクロアルカン、ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルケトンなどである。特に好ましいジヒドロキシアリール化合物は、ビスフェノールA型芳香族ポリカーボネートを形成する2,2’−ビス(4−ヒドロキシフェニル)プロパンである。
 なお、耐熱性、機械的強度などを損なわない範囲であれば、ビスフェノールA型芳香族ポリカーボネートを製造する際、ビスフェノールAの一部を、他のジヒドロキシアリール化合物で置換してもよい。
 また、当該ポリカーボネート樹脂は、共重合成分として脂肪族ジオール化合物を共重合してもよい。脂肪族ジオール化合物の例としては、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオール、2,2−ジメチルプロパン−1,3−ジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、オクタエチレングリコール、ジプロピレングリコール、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、ビシクロヘキシル−4,4−ジオール、トリシクロ[5.2.1.02.6]デカンジメタノール、3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5.5)ウンデカン、デカリンジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール等が挙げられる。
 ポリカーボネート樹脂(B成分)を製造する基本的な手段を簡単に説明する。カーボネート前駆物質としてホスゲンを用いる界面重合法(溶液重合法)では、通常、酸結合剤および有機溶媒の存在下に反応を行う。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物、またはピリジン等のアミン化合物が用いられる。有機溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンや第四級アンモニウム塩等の触媒を用いることができ、分子量調節剤として例えばフェノールやp−tert−ブチルフェノールのようなアルキル置換フェノール等の末端停止剤を用いることが望ましい。反応温度は通常0~40℃、反応時間は数分~5時間、反応中のpHは10以上に保つのが好ましい。尚結果として得られた分子鎖末端の全てが末端停止剤に由来の構造を有する必要はない。
 カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応(溶融重合法)では、不活性ガスの存在下に所定割合の二価フェノールを炭酸ジエステルと加熱しながら攪拌し、生成するアルコールまたはフェノール類を留出させる方法により行う。反応温度は生成するアルコールまたはフェノール類の沸点等により異なるが、通常120~350℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。かかる反応の初期段階で二価フェノール等と同時にまたは反応の途中段階で末端停止剤を添加させる。また反応を促進するために現在公知のエステル交換反応に用いられる触媒を用いることができる。このエステル交換反応に用いられる炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等が挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
 ポリカーボネート樹脂(B成分)は、その末端に存在するOH基の含有量が100eq/ton以下が好ましく、0.5~70eq/tonの範囲がより好ましく、1~50eq/tonの範囲がさらに好ましく、1~30eq/tonの範囲が特に好ましく、1~20eq/tonの範囲がもっとも好ましい。かかる範囲のOH基含有量であると熱安定性に優れる。
 またポリカーボネート樹脂(B成分)は、JIS−K−7210−1999に従って、300℃、1.2kg荷重の条件で測定したMVR値が0.1~80cm/10minの範囲が好ましく、0.5~70cm/10minの範囲がより好ましく、1~60cm/10minの範囲がさらに好ましく、3~40cm/10minの範囲が特に好ましく、5~20cm/10minの範囲がもっとも好ましい。ポリカーボネート樹脂のMVR値が0.1cm/10min未満の場合は樹脂組成物の成形加工性が極端に悪化し、MVR値が80cm/10minを超えると樹脂組成物の機械特性が低下する。
 ポリカーボネート樹脂のMVR値や末端OH基含有量について上記条件を満たすための手段としては、重合温度、重合時間、末端停止剤使用量の調整等を挙げることができる。
 ポリカーボネート樹脂(B成分)の含有量は、A成分100重量部に対して、1~100重量部であり、好ましくは5~90重量部であり、より好ましくは8~70重量部であり、さらに好ましくは10~50重量部であり、特に好ましくは15~30重量部である。
(有機リン化合物:C成分)
 本発明において、C成分として使用する有機リン化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-I000025
(式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。)
Figure JPOXMLDOC01-appb-I000026
 式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基である。ALとして炭素数1~5のアルカンジイル基、炭素数1~5のアルカントリイル基、炭素数1~5アルカンテトライル基等が挙げられる。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基等が挙げられる。
 Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。置換基として、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
 nは1~3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。
 有機リン化合物は、好ましくは下記式(3)および下記式(4)で表される有機リン化合物よりなる群から選択される少なくとも1種の化合物である。
Figure JPOXMLDOC01-appb-I000027
 式(3)中、R、Rは同一または異なっていてもよく、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。置換基として、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
 R、R、R、Rは同一または異なっていてもよく、水素原子、炭素数1~4の分岐状もしくは直鎖状のアルキル基、または置換基を有しても良いフェニル基、ナフチル基またはアントリル基から選択される置換基である。炭素数1~4の分岐状もしくは直鎖状のアルキル基としてメチル基、エチル基、プロピル基、ブチル基等が挙げられる。フェニル基、ナフチル基またはアントリル基の置換基として、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
Figure JPOXMLDOC01-appb-I000028
 式(4)中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。置換基として、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
 R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基、またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。炭素数1~3の脂肪族炭化水素基として、メチル基、エチル基、プロピル基等のアルキル基が挙げられる。芳香環の置換基としてメチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
 ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。脂肪族炭化水素基として、炭素数1~4のアルカンジイル基、炭素数1~4のアルカントリイル基、炭素数1~4のアルカンテトライル基等が挙げられる。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基等が挙げられる。
 ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。芳香環の置換基としてメチル基、エチル基、プロピル基、ブチル基等の炭素数1~5のアルキル基、フッソ原子、塩素原子、臭素原子などのハロゲン原子が挙げられる。
 pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。
 有機リン化合物は、より好ましくは下記式(5)、(6)、(7)または(8)で表される有機リン化合物である。
Figure JPOXMLDOC01-appb-I000029
 上記式(5)において、R21、R22は同一もしくは異なり、その芳香環に置換基を有していてもよいフェニル基、ナフチル基またはアントリル基であり、そのうちフェニル基が好ましい。R21およびR22のフェニル基は、その芳香環の水素原子が置換されていてもよく、置換基としてはメチル、エチル、プロピル、ブチルもしくはその芳香環の結合基が、酸素原子、イオウ原子または炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基が挙げられる。
Figure JPOXMLDOC01-appb-I000030
 上記式(6)において、R31およびR34は、同一または異なっていても良く、水素原子または炭素数1~4の脂肪族炭化水素基である。好ましくは、水素原子、メチル基、エチル基であり、特に好ましくは水素原子である。R33およびR36は、同一または異なっていても良く、炭素数1~4の脂肪族炭化水素基であり、好ましくはメチル基またはエチル基である。R32およびR35は、同一または異なっていてもよく、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくはフェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよい。置換基として、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基が挙げられる。
 上記式(6)中、R32およびR35の好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等を挙げられ、特にフェニル基が好ましい。
Figure JPOXMLDOC01-appb-I000031
 上記式(7)において、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。ArおよびArの好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特にフェニル基が好ましい。
 R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。炭素数1~3の脂肪族炭化水素基としてメチル基、エチル基、プロピル基等の炭素数1~3のアルキル基が挙げられる。R11、R12、R13およびR14として、炭素数6~14のフェニル基が好ましい。フェニル基は、その芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよい。置換基として、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基が好ましい。
 上記式(7)中、ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。好ましくは炭素数1~3の分岐状または直鎖状の脂肪族炭化水素基であり、特に好ましくは炭素数1~2の分岐状または直鎖状の脂肪族炭化水素基である。脂肪族炭化水素基として、炭素数1~4のアルカンジイル基、炭素数1~4のアルカントリイル基、炭素数1~4アルカンテトライル基等が挙げられる。具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基等が挙げられる。
 上記式(7)中、ALおよびALの好ましい具体例としては、メチレン基、エチレン基、エチリデン基、トリメチレン基、プロピリデン基、イソプロピリデン基等が挙げられ、特にメチレン基、エチレン基、およびエチリデン基が好ましい。
 上記式(7)中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。フェニル基が好ましい。フェニル基は、その芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよい。置換基として、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基が好ましい。
 上記式(7)中、pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。pおよびqは、好ましくは0または1であり、特に好ましくは0である。
Figure JPOXMLDOC01-appb-I000032
 上記式(8)において、R41およびR44は、同一または異なっていても良く、水素原子、炭素数1~4の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくは水素原子、炭素数1~3の脂肪族炭化水素基、または置換基を有しても良いフェニル基である。R41およびR44がフェニル基の場合、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよい。置換基として、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基が好ましい。
 上記式(8)中、R41およびR44の好ましい具体例としては、水素原子、メチル基、エチル基、プロピル基(異性体を含む)、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特に水素原子、メチル基、またはフェニル基が好ましい。
 R42、R43、R45およびR46は、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。好ましくは、フェニル基を表し、芳香族環上の炭素原子を介してリンに結合している部分以外のどの部分に置換基を有していてもよい。置換基として、メチル、エチル、プロピル(異性体を含む)、ブチル(異性体を含む)もしくはその芳香族環への結合基が、酸素、イオウまたは炭素数1~4の脂肪族炭化水素基を介する炭素数6~14のアリール基である。
 上記式(8)中、R42、R43、R45およびR46の好ましい具体例としては、フェニル基、クレジル基、キシリル基、トリメチルフェニル基、4−フェノキシフェニル基、クミル基、ナフチル基、4−ベンジルフェニル基等が挙げられ、特にフェニル基が好ましい。
 前記式(1)で表される有機リン化合物(C成分)は、当該樹脂に対して極めて優れた難燃効果を発現する。本発明者らが知る限り、従来当該樹脂のハロゲンフリーによる難燃化において、少量の難燃剤での難燃化は困難であり、実用上多くの問題点があった。
 ところが本発明によれば、前記有機リン化合物(C成分)は驚くべきことにそれ自体単独の少量使用により当該樹脂の難燃化が容易に達成され、樹脂本来の特性、特に耐熱性を損なうことが無い。
 しかしながら、本発明ではC成分の他に、C成分以外のリン化合物、フッ素含有樹脂または他の添加剤を、C成分の使用割合の低減、成形品の難燃性の改善、成形品の物理的性質の改良、成形品の化学的性質の向上またはその他の目的のために当然配合することができる。
 本発明の難燃性樹脂組成物における難燃剤としての有機リン化合物(C成分)は、前記式(1)で表されるが、最も好ましい代表的化合物は下記式(1−a)、(1−b)、(1−c)または(1−d)で示される有機リン化合物である。
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
 次に本発明における前記有機リン化合物(C成分)の合成法について説明する。C成分は、以下に説明する方法以外の方法によって製造されたものであってもよい。
 C成分は例えばペンタエリスリトールに三塩化リンを反応させ、続いて酸化させた反応物を、ナトリウムメトキシド等のアルカリ金属化合物により処理し、次いでアラルキルハライドを反応させることにより得られる。
 また、ペンタエリスリトールにアラルキルホスホン酸ジクロリドを反応させる方法や、ペンタエリスリトールに三塩化リンを反応させることによって得られた化合物にアラルキルアルコールを反応させ、次いで高温でArbuzov転移を行う方法により得ることもできる。後者の反応は、例えば米国特許第3,141,032号明細書、特開昭54−157156号公報、特開昭53−39698号公報に開示されている。
 C成分の具体的合成法を以下説明するが、この合成法は単に説明のためであって、本発明において使用されるC成分は、これら合成法のみならず、その改変およびその他の合成法で合成されたものであってもよい。より具体的な合成法は後述する調製例に説明される。
(I)C成分中の前記(1−a)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、ベンジルブロマイドを反応させることにより得ることができる。
(II)C成分中の前記(1−b)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、1−フェニルエチルブロマイドを反応させることにより得ることができる。
(III)C成分中の前記(1−c)の有機リン化合物;
 ペンタエリスリトールに三塩化リンを反応させ、次いでターシャリーブタノールにより酸化させた反応物を、ナトリウムメトキシドにより処理し、2−フェニルエチルブロマイドを反応させることにより得ることができる。
(IV)C成分中の前記(1−d)の有機リン化合物;
 ペンタエリスリトールにジフェニルメチルホスホン酸ジクロリドを反応させることにより得ることができる。
 また別法としては、ペンタエリスリトールに三塩化リンを反応させ、得られた生成物とジフェニルメチルアルコールの反応生成物を触媒共存下で加熱処理することにより得られる。
 前述したC成分は、その酸価が0.7mgKOH/g以下、好ましくは0.5mgKOH/g以下であるものが使用される。酸価がこの範囲のC成分を使用することにより、難燃性および色相に優れた成形品が得られ、かつ熱安定性の良好な成形品が得られる。B成分は、その酸価が0.4mgKOH/g以下のものが最も好ましい。ここで酸価とは、サンプル(C成分)1g中の酸成分を中和するのに必要なKOHの量(mg)を意味する。
 さらに、C成分は、そのHPLC純度が、好ましくは少なくとも90%、より好ましくは少なくとも95%であるものが使用される。かかる高純度のものは成形品の難燃性、色相、および熱安定性に優れ好ましい。ここでB成分のHPLC純度の測定は、以下の方法を用いることにより効果的に測定が可能となる。
 カラムは野村化学(株)製Develosil ODS−7 300mm×4mmφを用い、カラム温度は40℃とした。溶媒としてはアセトニトリルと水の6:4(容量比)の混合溶液を用い、5μlを注入した。検出器はUV−260nmを用いた。
 B成分中の不純物を除去する方法としては、特に限定されるものではないが、水、メタノール等の溶剤でリパルプ洗浄(溶剤で洗浄、ろ過を数回繰り返す)を行う方法が最も効果的で、且つコスト的にも有利である。
 前記C成分は、ポリ乳酸および/または乳酸共重合体成分(A成分)100重量部に対して1~100重量部、好ましくは5~90重量部、より好ましくは10~70重量部、特に好ましくは15~50重量部の範囲で配合される。C成分の配合割合は、所望する難燃性レベル、樹脂成分(A成分およびB成分)の種類などによりその好適範囲が決定される。これら組成物を構成するA成分、B成分、およびC成分以外であっても必要に応じて他の成分を本発明の目的を損なわない限り使用することができ、他の難燃剤、難燃助剤、フッ素含有樹脂の使用によってもC成分の配合量を変えることができ、多くの場合、これらの使用によりC成分の配合割合を低減することができる。
 本発明の難燃性樹脂組成物の調製は、樹脂成分(A成分およびB成分)、有機リン化合物(C成分)および必要に応じてその他成分を、V型ブレンダー、スーパーミキサー、スーパーフローター、ヘンシェルミキサーなどの混合機を用いて予備混合し、かかる予備混合物は混練機に供給し、溶融混合する方法が好ましく採用される。混練機としては、種々の溶融混合機、例えばニーダー、単軸または二軸押出機などが使用でき、なかでも二軸押出機を用いて樹脂組成物を150~300℃、好ましくは170~280℃の温度で溶融して、サイドフィーダーにより液体成分を注入し、押出し、ペレタイザーによりペレット化する方法が好ましく使用される。
 本発明の難燃性樹脂組成物は、実質的にハロゲンを含有せず、非常に高い難燃性能を有し、家電製品部品、電気・電子部品、自動車部品、機械・機構部品、化粧品容器などの種々の成形品を成形する材料として有用である。具体的には、ブレーカー部品、スイッチ部品、モーター部品、イグニッションコイルケース、電源プラグ、電源コンセント、コイルボビン、コネクター、リレーケース、ヒューズケース、フライバクトランス部品、フォーカスブロック部品、ディストリビューターキャップ、ハーネスコネクターなどに好適に用いることができる。さらに、薄肉化の進むハウジング、ケーシングまたはシャーシ、例えば、電子・電気製品(例えば電話機、パソコン、プリンター、ファックス、コピー機、テレビ、ビデオデッキ、オーディオ機器などの家電・OA機器またはそれらの部品など)のハウジング、ケーシングまたはシャーシに有用である。特に優れた耐熱性、難燃性が要求されるプリンターの筐体、定着ユニット部品、ファックスなど家電・OA製品の機械・機構部品などとしても有用である。
 成形方法としては射出成形、ブロー成形、プレス成形等、特に限定されるものではないが、好ましくはペレット状の樹脂組成物を、射出成形機を用いて射出成形することにより製造される。
Hereinafter, the flame retardant resin composition of the present invention will be described in more detail.
(Polylactic acid and / or lactic acid copolymer: component A)
In the present invention, as polylactic acid, L-lactic acid, D-lactic acid, DL-lactic acid or a mixture thereof, L-lactide which is a cyclic dimer of L-lactic acid, or D- which is a cyclic dimer of D-lactic acid. Examples thereof include polymers using lactide, meso-lactide which is a cyclic dimer from L-lactic acid and D-lactic acid, or a mixture thereof.
The method for producing polylactic acid is not particularly limited, but is generally produced by using a known melt polymerization method or a solid phase polymerization method in combination. Specific examples are disclosed in U.S. Pat. No. 1,995,970, U.S. Pat. No. 2,362,511, U.S. Pat. No. 2,683,136, and a cyclic dimer of lactic acid generally called lactide. Is synthesized by ring-opening polymerization. US Pat. No. 2,758,987 discloses a ring-opening polymerization method in which a cyclic dimer (lactide) of lactic acid is melt-polymerized.
In the present invention, the lactic acid copolymer is a copolymer containing lactic acid as a main raw material, for example, a lactic acid-hydroxycarboxylic acid copolymer or a lactic acid-aliphatic polyhydric alcohol-aliphatic polybasic acid copolymer. Examples include coalescence.
Specific examples of the hydroxycarboxylic acid used in the lactic acid copolymer used in the present invention include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 4-hydroxy Examples include valeric acid and 6-hydroxycaproic acid, which can be used alone or as a mixture of two or more. Furthermore, a cyclic ester intermediate of hydroxycarboxylic acid, for example, glycolide which is a dimer of glycolic acid or ε-caprolactone which is a cyclic ester of 6-hydroxycaproic acid can be used.
Specific examples of the aliphatic polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1, Aliphatic diols such as 5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, decamethylene glycol, 1,4-cyclohexanedimethanol, etc. may be mentioned alone or in a mixture of two or more. Can be used as
Specific examples of the aliphatic polybasic acid include aliphatic dibasic acids such as succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid. A basic acid is mentioned, It can use individually or in mixture of 2 or more types.
A copolymer of lactic acid and hydroxycarboxylic acid is usually synthesized from a cyclic ester intermediate of lactide and hydroxycarboxylic acid by ring-opening polymerization, and the production method thereof is described in US Pat. No. 3,635,956, US Pat. 797,499. US Pat. No. 5,310,865 discloses a method in which dehydration polycondensation is directly performed using a mixture of lactic acid and hydroxycarboxylic acid as a raw material. US Pat. No. 4,057,537 discloses a ring-opening polymerization method in which a cyclic dimer of lactic acid and an aliphatic hydroxycarboxylic acid, for example, lactide or glycolide and ε-caprolactone is melt-polymerized in the presence of a catalyst. It is disclosed. In the case of producing a lactic acid copolymer by direct dehydration polycondensation without using ring-opening polymerization, lactic acid and other hydroxycarboxylic acid as necessary are preferably copolymerized in the presence of an organic solvent, particularly a phenyl ether solvent. Lactic acid co-condensation with a polymerization degree suitable for the present invention is carried out by polymerizing by a method in which water is removed from the solvent distilled off by azeotropic distillation and water is removed from the solvent, and the solvent is brought into a substantially anhydrous state. A polymer is obtained.
US Pat. No. 5,428,126 discloses a method for directly dehydrating and condensing a mixture of lactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid. European Patent Publication No. 071880A2 discloses a method of condensing a polymer of polylactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid in the presence of an organic solvent.
In the present invention, when a polylactic acid or a lactic acid copolymer is produced, an appropriate molecular weight regulator, branching agent, other modifier, etc. may be added.
In the present invention, polylactic acid, which is a polymer containing only lactic acids, is preferably used, and poly L-lactic acid resin containing L-lactic acid as a main raw material is particularly preferable. Moreover, L-lactic acid usually contains D-lactic acid which is an optical isomer, and its content is preferably 15% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less. When many optical isomers are contained, the crystallinity of polylactic acid is reduced, and the resulting polylactic acid becomes more flexible. Although it is suitably used for a molded article that is desired to obtain flexibility, it is not preferable for a composition that requires heat resistance.
(Styrene resin: B component)
As B component styrene resin, homopolymers or copolymers of aromatic vinyl monomers such as styrene, α-methylstyrene or vinyltoluene, vinyl monomers such as these monomers and acrylonitrile, methyl methacrylate, etc. And / or copolymers with conjugated diene monomers such as 1,3-butadiene, isoprene, 1,3-pentadiene and 1,3-hexadiene. Further, styrene and / or a styrene derivative, or styrene and / or a styrene derivative and another vinyl monomer may be graft polymerized on a diene rubber such as polybutadiene, ethylene / propylene rubber, or acrylic rubber.
Specific examples of the styrenic resin include polystyrene, high impact polystyrene (HIPS), acrylonitrile / styrene copolymer (AS resin), acrylonitrile / butadiene / styrene copolymer (ABS resin), methyl methacrylate / butadiene / styrene. Copolymer (MBS resin), Methyl methacrylate / Acrylonitrile / Butadiene / Styrene copolymer (MABS resin), Acrylonitrile / Acrylic rubber / Styrene copolymer (AAS resin), Acrylonitrile / Ethylene propylene rubber / Styrene copolymer (ABS resin) AES resin) or a mixture thereof.
Moreover, the hydrogenated styrene terpolymer obtained by hydrogenating the copolymer of the said aromatic vinyl monomer and a conjugated diene monomer is also mentioned. The hydrogenated styrene terpolymer is a terpolymer obtained by hydrogenating a polymer containing a conjugated diene as a repeating unit. Specific examples of the polymer containing a conjugated diene preferably used in the present invention in the repeating unit include a styrene-butadiene copolymer, a styrene-isoprene copolymer, and a styrene-isopentadiene copolymer. The hydrogenation method is not particularly limited, and as a specific example, the hydrogenation method can be carried out based on the prior art as disclosed in Japanese Patent Application Laid-Open No. 2007-301449. Specific examples of hydrogenated styrene terpolymers include styrene-ethylene-butylene-styrene terpolymers (SEBS) obtained by hydrogenating styrene-butadiene copolymers and hydrogenated styrene-isoprene copolymers. Styrene-ethylene-propylene-styrene terpolymer (SEPS), styrene-ethylene-propylene-styrene terpolymer (SEEPS) obtained by hydrogenating a styrene-isopentadiene copolymer, and the like.
The polymerization method of the styrene resin is not particularly limited, and anionic polymerization method, cationic polymerization method, free radical polymerization method, coordination polymerization method, solution polymerization method, emulsion polymerization method, bulk polymerization method, suspension polymerization method. What was manufactured using conventional techniques, such as these, can be used.
In addition, rubber-modified styrene resin (impact polystyrene) obtained by graft polymerizing a polymer of an aromatic vinyl monomer or a copolymer of an aromatic vinyl monomer and a vinyl monomer to a rubbery polymer is Refers to a polymer in which a rubber-like polymer is dispersed in the form of particles in a matrix. A monomer obtained by adding an aromatic vinyl monomer in the presence of a rubber-like polymer and, if necessary, a vinyl monomer. The mixture can be obtained by known bulk polymerization, bulk suspension polymerization, solution polymerization or emulsion polymerization.
Examples of the rubber-like polymer include diene rubbers such as polybutadiene, poly (styrene-butadiene), poly (acrylonitrile-butadiene), saturated rubber obtained by hydrogenation of the diene rubber, isoprene rubber, chloroprene rubber, polybutyl acrylate. Examples thereof include acrylic rubbers such as ethylene-propylene-diene terpolymer (EPDM), and diene rubbers are particularly preferable.
The aromatic vinyl monomer as the essential component in the graft copolymerizable monomer mixture to be polymerized in the presence of the rubbery polymer is, for example, styrene, α-methylstyrene, paramethylstyrene, and the like. Styrene is most preferred.
Examples of vinyl monomers that can be added as needed include acrylonitrile and methyl methacrylate.
The rubber-like polymer in the rubber-modified styrene resin is 1 to 80% by weight, preferably 2 to 70% by weight. The monomer mixture capable of graft polymerization is 99 to 20% by weight, preferably 98 to 30% by weight.
The styrene resin used as the component B of the present invention, particularly impact-resistant polystyrene, has an MVR value of 1 to 100 cm measured at 200 ° C. under a load of 5 kg according to JIS-K-7210-1999. 3 / 10 min is preferable, 2 to 80 cm 3 / 10 min is more preferable, 3 to 60 cm 3 / 10 min is more preferable, and 5 to 50 cm 3 A range of / 10 min is particularly preferred.
Styrenic resins (component B), particularly AS resins and ABS resins, have an MVR value of 1 to 100 cm measured at 220 ° C. under a load of 10 kg in accordance with JIS-K-7210-1999. 3 / 10 min is preferable, 2 to 80 cm 3 / 10 min is more preferable, 3 to 60 cm 3 / 10 min is more preferable, and 5 to 50 cm 3 A range of / 10 min is particularly preferred.
MVR value of styrene resin (component B) is 1cm 3 If it is less than / 10 min, the processability at the time of extrusion or molding of the resin composition will be lowered, and 100 cm 3 If it exceeds / 10 min, the heat resistance and mechanical properties of the resin composition will decrease.
Styrenic resin (component B) has a reduced viscosity η which is a measure of its molecular weight. sp / C is preferably 0.2 to 1.5 dl / g, more preferably 0.3 to 1.4 dl / g. Where reduced viscosity η sp / C is a value obtained by measuring a toluene solution having a solution concentration of 0.5 g / 100 ml at 30 ° C.
Reduced viscosity η of styrene resin sp When / C is lower than 0.2 dl / g, the heat resistance and mechanical properties of the resulting resin composition are lowered. Moreover, when higher than 1.5 dl / g, the workability at the time of extrusion of a resin composition, a shaping | molding, etc. will fall.
MVR value and reduced viscosity η of styrene resin sp Examples of means for satisfying the above-mentioned conditions regarding / C include adjustment of the polymerization initiator amount, the polymerization temperature, and the chain transfer agent amount.
The content of the styrenic resin (component B) is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 8 to 70 parts by weight with respect to 100 parts by weight of the component A. More preferably, it is 10 to 50 parts by weight, and particularly preferably 15 to 30 parts by weight.
(Polycarbonate resin: B component)
Examples of polycarbonate resin (component B) are those obtained by interfacial polymerization reaction of various dihydroxyaryl compounds and phosgene using a solvent such as methylene chloride, or obtained by transesterification of dihydroxyaryl compounds and diphenyl carbonate. Can be mentioned. A typical example is a polycarbonate resin obtained by the reaction of 2,2′-bis (4-hydroxyphenyl) propane and phosgene.
Examples of the dihydroxyaryl compound used as a raw material for the polycarbonate resin (component B) include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, and 2,2′-bis (4-hydroxyphenyl). ) Propane, 2,2′-bis (4-hydroxyphenyl) butane, 2,2′-bis (4-hydroxyphenyl) octane, 2,2′-bis (4-hydroxy-3-methylphenyl) propane, 2 , 2'-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2'-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2'-bis (4-hydroxy- 3-cyclohexylphenyl) propane, 2,2′-bis (4-hydroxy-3-methoxyphenyl) propane, 1,1′-bis (4-hydroxyphenyl) Enyl) cyclopentane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 1,1′-bis (4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxyphenyl ether, 4,4′-dihydroxy- 3,3′-dimethylphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, 4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl Examples include sulfone and bis (4-hydroxyphenyl) ketone. These dihydroxyaryl compounds can be used alone or in combination of two or more.
Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonate resins, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl). Bis (hydroxyphenyl) cycloalkane such as cyclohexane, dihydroxydiphenyl sulfide, dihydroxydiphenyl sulfone, dihydroxydiphenyl ketone and the like. A particularly preferred dihydroxyaryl compound is 2,2′-bis (4-hydroxyphenyl) propane which forms a bisphenol A type aromatic polycarbonate.
In addition, if it is a range which does not impair heat resistance, mechanical strength, etc., when manufacturing bisphenol A type aromatic polycarbonate, you may substitute a part of bisphenol A with another dihydroxyaryl compound.
Moreover, the said polycarbonate resin may copolymerize an aliphatic diol compound as a copolymerization component. Examples of the aliphatic diol compound include 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,5-hexanediol, and 1,6-hexanediol. 2,2-dimethylpropane-1,3-diol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, octaethylene glycol, dipropylene glycol, cyclobutanediol, cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, 2 , 2-bis (4-hydroxycyclohexyl) propane, bicyclohexyl-4,4-diol, tricyclo [5.2.1.0. 2.6 Decane dimethanol, 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro (5.5) undecane, decalin dimethanol, norbornane dimethanol, penta And cyclopentadecanedimethanol.
The basic means for producing the polycarbonate resin (component B) will be briefly described. In the interfacial polymerization method (solution polymerization method) using phosgene as a carbonate precursor, the reaction is usually performed in the presence of an acid binder and an organic solvent. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or amine compounds such as pyridine. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In addition, a catalyst such as a tertiary amine or a quaternary ammonium salt can be used for promoting the reaction, and a terminal terminator such as an alkyl-substituted phenol such as phenol or p-tert-butylphenol is used as a molecular weight regulator. It is desirable to use it. The reaction temperature is usually 0 to 40 ° C., the reaction time is several minutes to 5 hours, and the pH during the reaction is preferably maintained at 10 or more. It should be noted that not all of the resulting molecular chain ends need to have a structure derived from a terminal terminator.
In a transesterification reaction (melt polymerization method) using a carbonic acid diester as a carbonate precursor, a predetermined proportion of dihydric phenol is stirred with the carbonic acid diester in the presence of an inert gas, and the resulting alcohol or phenol is distilled. It is done by the method. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. The reaction is completed while distilling off the alcohol or phenol produced under reduced pressure from the beginning. An end terminator is added simultaneously with the dihydric phenol or the like in the initial stage of the reaction or in the middle of the reaction. Moreover, in order to accelerate | stimulate reaction, the catalyst used for the transesterification reaction now well-known can be used. Examples of the carbonic acid diester used in the transesterification include diphenyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is particularly preferred.
In the polycarbonate resin (component B), the content of OH groups present at the ends is preferably 100 eq / ton or less, more preferably in the range of 0.5 to 70 eq / ton, and still more preferably in the range of 1 to 50 eq / ton, The range of 1 to 30 eq / ton is particularly preferable, and the range of 1 to 20 eq / ton is most preferable. When the OH group content is in this range, the thermal stability is excellent.
The polycarbonate resin (component B) has an MVR value of 0.1 to 80 cm measured under conditions of 300 ° C. and 1.2 kg load according to JIS-K-7210-1999. 3 / 10 min is preferable, 0.5 to 70 cm 3 / 10 min is more preferable, and 1 to 60 cm 3 / 10 min is more preferable, and 3 to 40 cm 3 A range of / 10 min is particularly preferable, 5 to 20 cm 3 A range of / 10 min is most preferable. The MVR value of polycarbonate resin is 0.1cm 3 If it is less than / 10 min, the moldability of the resin composition is extremely deteriorated, and the MVR value is 80 cm. 3 If it exceeds / 10 min, the mechanical properties of the resin composition deteriorate.
Examples of means for satisfying the above conditions for the MVR value and terminal OH group content of the polycarbonate resin include adjustment of polymerization temperature, polymerization time, and amount of terminal terminator used.
The content of the polycarbonate resin (component B) is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 8 to 70 parts by weight, based on 100 parts by weight of the component A. The amount is preferably 10 to 50 parts by weight, particularly preferably 15 to 30 parts by weight.
(Organic phosphorus compound: component C)
In the present invention, the organophosphorus compound used as the component C is represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000025
(Where X 1 , X 2 Are the same or different and are aromatic-substituted alkyl groups represented by the following formula (2). )
Figure JPOXMLDOC01-appb-I000026
In the formula, AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5 carbon atoms. Examples of AL include an alkanediyl group having 1 to 5 carbon atoms, an alkanetriyl group having 1 to 5 carbon atoms, and an alkanetriyl group having 1 to 5 carbon atoms. Specifically, methylene group, ethylene group, propylene group, butylene group, pentylene group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, methanetetrayl group, ethanetetrayl group, propane Examples include a tetrayl group, a butanetetrayl group, and a pentanetetrayl group.
Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Examples of the substituent include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
n represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.
The organophosphorus compound is preferably at least one compound selected from the group consisting of organophosphorus compounds represented by the following formula (3) and the following formula (4).
Figure JPOXMLDOC01-appb-I000027
In formula (3), R 2 , R 5 May be the same or different and may be a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Examples of the substituent include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
R 1 , R 3 , R 4 , R 6 May be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group, naphthyl group or anthryl group It is a group. Examples of the branched or straight chain alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of the substituent of the phenyl group, naphthyl group or anthryl group include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom. .
Figure JPOXMLDOC01-appb-I000028
In formula (4), Ar 1 And Ar 2 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. Examples of the substituent include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, propyl group and butyl group, and halogen atoms such as fluorine atom, chlorine atom and bromine atom.
R 11 , R 12 , R 13 And R 14 May be the same or different, and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. . Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms include alkyl groups such as a methyl group, an ethyl group, and a propyl group. Examples of the aromatic ring substituent include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
AL 1 And AL 2 These may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms. Examples of the aliphatic hydrocarbon group include an alkanediyl group having 1 to 4 carbon atoms, an alkanetriyl group having 1 to 4 carbon atoms, and an alkanetetrayl group having 1 to 4 carbon atoms. Specifically, methylene group, ethylene group, propylene group, butylene group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group Etc.
Ar 3 And Ar 4 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. Examples of the aromatic ring substituent include alkyl groups having 1 to 5 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.
p and q represent an integer of 0 to 3, Ar 3 And Ar 4 Each is AL 1 And AL 2 To any carbon atom.
The organophosphorus compound is more preferably an organophosphorus compound represented by the following formula (5), (6), (7) or (8).
Figure JPOXMLDOC01-appb-I000029
In the above formula (5), R 21 , R 22 Are the same or different and are a phenyl group, a naphthyl group or an anthryl group which may have a substituent on the aromatic ring, and among them, a phenyl group is preferred. R 21 And R 22 In the phenyl group, a hydrogen atom of the aromatic ring may be substituted, and as a substituent, methyl, ethyl, propyl, butyl or a bonding group of the aromatic ring is an oxygen atom, a sulfur atom or a carbon number of 1 to 4 And an aryl group having 6 to 14 carbon atoms via the aliphatic hydrocarbon group.
Figure JPOXMLDOC01-appb-I000030
In the above formula (6), R 31 And R 34 May be the same or different and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. Preferred are a hydrogen atom, a methyl group, and an ethyl group, and particularly preferred is a hydrogen atom. R 33 And R 36 May be the same or different and are an aliphatic hydrocarbon group having 1 to 4 carbon atoms, preferably a methyl group or an ethyl group. R 32 And R 35 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. It preferably represents a phenyl group, and may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring. As a substituent, methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. And an aryl group having 6 to 14 carbon atoms.
In the above formula (6), R 32 And R 35 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
Figure JPOXMLDOC01-appb-I000031
In the above formula (7), Ar 1 And Ar 2 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. Ar 1 And Ar 2 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
R 11 , R 12 , R 13 And R 14 May be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms include alkyl groups having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group. R 11 , R 12 , R 13 And R 14 Is preferably a phenyl group having 6 to 14 carbon atoms. The phenyl group may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring. As a substituent, methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. An aryl group having 6 to 14 carbon atoms is preferable.
In the above formula (7), AL 1 And AL 2 These may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms. A branched or straight chain aliphatic hydrocarbon group having 1 to 3 carbon atoms is preferred, and a branched or straight chain aliphatic hydrocarbon group having 1 to 2 carbon atoms is particularly preferred. Examples of the aliphatic hydrocarbon group include an alkanediyl group having 1 to 4 carbon atoms, an alkanetriyl group having 1 to 4 carbon atoms, and an alkanetriyl group having 1 to 4 carbon atoms. Specifically, methylene group, ethylene group, propylene group, butylene group, methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group Etc.
In the above formula (7), AL 1 And AL 2 Preferable specific examples include methylene group, ethylene group, ethylidene group, trimethylene group, propylidene group, isopropylidene group and the like, and methylene group, ethylene group and ethylidene group are particularly preferable.
In the above formula (7), Ar 3 And Ar 4 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. A phenyl group is preferred. The phenyl group may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring. As a substituent, methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. An aryl group having 6 to 14 carbon atoms is preferable.
In the above formula (7), p and q represent an integer of 0 to 3, Ar 3 And Ar 4 Each is AL 1 And AL 2 To any carbon atom. p and q are preferably 0 or 1, particularly preferably 0.
Figure JPOXMLDOC01-appb-I000032
In the above formula (8), R 41 And R 44 May be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and may have a substituent on the aromatic ring. Preferred are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or a phenyl group which may have a substituent. R 41 And R 44 When is a phenyl group, it may have a substituent in any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring. As a substituent, methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. An aryl group having 6 to 14 carbon atoms is preferable.
In the above formula (8), R 41 And R 44 Preferred examples of the hydrogen atom, methyl group, ethyl group, propyl group (including isomers), phenyl group, cresyl group, xylyl group, trimethylphenyl group, 4-phenoxyphenyl group, cumyl group, naphthyl group, 4-benzylphenyl group etc. are mentioned, Especially a hydrogen atom, a methyl group, or a phenyl group is preferable.
R 42 , R 43 , R 45 And R 46 May be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring. Preferably, it represents a phenyl group, and may have a substituent at any part other than the part bonded to phosphorus via a carbon atom on the aromatic ring. As a substituent, methyl, ethyl, propyl (including isomers), butyl (including isomers) or a bonding group to the aromatic ring is oxygen, sulfur, or an aliphatic hydrocarbon group having 1 to 4 carbon atoms. And an aryl group having 6 to 14 carbon atoms.
In the above formula (8), R 42 , R 43 , R 45 And R 46 Preferable specific examples include a phenyl group, a cresyl group, a xylyl group, a trimethylphenyl group, a 4-phenoxyphenyl group, a cumyl group, a naphthyl group, and a 4-benzylphenyl group, and a phenyl group is particularly preferable.
The organophosphorus compound (C component) represented by the formula (1) exhibits a very excellent flame retardant effect on the resin. As far as the present inventors know, in the conventional flame-retarding of the resin by halogen-free, it is difficult to flame-retardant with a small amount of flame retardant, and there are many problems in practical use.
However, according to the present invention, the organophosphorus compound (component C) surprisingly can be easily made flame-retardant by itself by using a small amount of itself, and the inherent properties of the resin, particularly heat resistance, are impaired. There is no.
However, in the present invention, in addition to the C component, a phosphorus compound other than the C component, a fluorine-containing resin or other additive is added to reduce the use ratio of the C component, improve the flame retardancy of the molded product, Naturally, it can be added for the purpose of improving the properties, improving the chemical properties of the molded article or other purposes.
The organophosphorus compound (C component) as a flame retardant in the flame retardant resin composition of the present invention is represented by the above formula (1), and the most preferred representative compounds are the following formulas (1-a), (1 -B), an organophosphorus compound represented by (1-c) or (1-d).
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Next, a method for synthesizing the organophosphorus compound (component C) in the present invention will be described. The component C may be produced by a method other than the method described below.
The component C is obtained, for example, by reacting pentaerythritol with phosphorus trichloride, subsequently treating the oxidized reaction product with an alkali metal compound such as sodium methoxide, and then reacting with aralkyl halide.
It can also be obtained by reacting pentaerythritol with aralkyl phosphonic acid dichloride, or reacting pentaerythritol with phosphorus trichloride and reacting aralkyl alcohol with a compound obtained by reacting pentaerythritol with phosphorus trichloride, followed by Arbuzov transition at high temperature. . The latter reaction is disclosed, for example, in U.S. Pat. No. 3,141,032, JP-A-54-157156, and JP-A-53-39698.
The specific synthesis method of the C component will be described below, but this synthesis method is merely for the purpose of explanation, and the C component used in the present invention is not limited to these synthesis methods, but also its modifications and other synthesis methods. It may be synthesized. A more specific synthesis method will be described in the preparation examples described later.
(I) the organophosphorus compound of (1-a) in component C;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with benzyl bromide.
(II) the organophosphorus compound of (1-b) in component C;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with 1-phenylethyl bromide.
(III) the organophosphorus compound of (1-c) in component C;
A reaction product obtained by reacting pentaerythritol with phosphorus trichloride and then oxidizing with tertiary butanol can be obtained by treating with sodium methoxide and reacting with 2-phenylethyl bromide.
(IV) the organophosphorus compound of the above (1-d) in component C;
It can be obtained by reacting pentaerythritol with diphenylmethylphosphonic acid dichloride.
Alternatively, it can be obtained by reacting pentaerythritol with phosphorus trichloride and heat-treating the resulting product and the reaction product of diphenylmethyl alcohol in the presence of a catalyst.
As the component C described above, those having an acid value of 0.7 mgKOH / g or less, preferably 0.5 mgKOH / g or less are used. By using a component C having an acid value in this range, a molded product excellent in flame retardancy and hue can be obtained, and a molded product excellent in thermal stability can be obtained. The component B most preferably has an acid value of 0.4 mgKOH / g or less. Here, the acid value means the amount (mg) of KOH necessary to neutralize the acid component in 1 g of the sample (C component).
Furthermore, as the component C, one whose HPLC purity is preferably at least 90%, more preferably at least 95% is used. Such a high-purity product is preferable because of excellent flame retardancy, hue, and thermal stability of the molded product. Here, the HPLC purity of the B component can be measured effectively by using the following method.
As the column, Develosil ODS-7 300 mm × 4 mmφ manufactured by Nomura Chemical Co., Ltd. was used, and the column temperature was 40 ° C. As a solvent, a mixed solution of acetonitrile and water 6: 4 (volume ratio) was used, and 5 μl was injected. The detector used was UV-260 nm.
The method for removing impurities in component B is not particularly limited, but a method of performing repulp washing with a solvent such as water or methanol (washing with a solvent, repeating filtration several times) is the most effective. It is also advantageous in terms of cost.
The component C is 1 to 100 parts by weight, preferably 5 to 90 parts by weight, more preferably 10 to 70 parts by weight, particularly preferably 100 parts by weight of polylactic acid and / or lactic acid copolymer component (component A). Is blended in the range of 15 to 50 parts by weight. The suitable range of the mixing ratio of the C component is determined by the desired flame retardancy level, the type of the resin component (A component and B component), and the like. Even if it is other than the A component, B component, and C component constituting these compositions, other components can be used as necessary as long as the purpose of the present invention is not impaired. The blending amount of the C component can be changed also by the use of the agent and the fluorine-containing resin, and in many cases, the blending ratio of the C component can be reduced by using these.
The flame-retardant resin composition of the present invention is prepared by using a resin component (component A and component B), an organic phosphorus compound (component C), and other components as necessary, a V-type blender, a super mixer, a super floater, and Henschel. A method of premixing using a mixer such as a mixer, supplying the premixture to a kneader, and melt mixing is preferably employed. As the kneader, various melt mixers such as a kneader, a single screw or a twin screw extruder can be used, and among them, the resin composition is 150 to 300 ° C., preferably 170 to 280 ° C. using the twin screw extruder. A method in which a liquid component is injected by a side feeder, extruded by a side feeder, extruded, and pelletized by a pelletizer is preferably used.
The flame retardant resin composition of the present invention is substantially free of halogen and has very high flame retardant performance, such as home appliance parts, electrical / electronic parts, automobile parts, mechanical / mechanical parts, cosmetic containers, etc. It is useful as a material for molding various molded articles. Specifically, breaker parts, switch parts, motor parts, ignition coil cases, power plugs, power outlets, coil bobbins, connectors, relay cases, fuse cases, flyback transformer parts, focus block parts, distributor caps, harness connectors, etc. Can be suitably used. Furthermore, thinning housings, casings or chassis, such as electronic and electrical products (such as telephones, personal computers, printers, fax machines, photocopiers, televisions, VCRs, audio equipment and other home appliances / OA equipment or parts thereof) Useful for housings, casings or chassis. In particular, it is also useful as a printer casing, fixing unit parts, machine / mechanical parts of home appliances and OA products such as fax machines that require particularly excellent heat resistance and flame retardancy.
Although it does not specifically limit as a molding method, such as injection molding, blow molding, press molding, etc., Preferably it manufactures by injection-molding a pellet-shaped resin composition using an injection molding machine.
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、評価は下記の方法で行った。
 (1)難燃性(UL−94評価)
 難燃性は厚さ1/16インチ(1.6mm)のテストピースを用い、難燃性の評価尺度として、米国UL規格のUL−94に規定されている垂直燃焼試験に準じて評価を行った。
 UL−94垂直燃焼試験は、試験片5本を一組の試験として行い、どの試験片も10秒間の着炎を2回繰り返す。但し、一度目の着炎で全焼する試験片に関しては、その限りではない。1回目の着炎後、炎を取り去った後の燃焼時間を測定し、消炎後、2回目の着炎を行う。2回目の着炎後、炎を取り去った後の燃焼時間を測定する。5本一組の試験で、計10回の燃焼時間が測定でき、いずれの燃焼時間も10秒以内で消火し、10回の燃焼時間の合計が50秒以内であり、且つ、滴下物が綿着火をおこさないものがV−0、いずれの燃焼時間も30秒以内で消火し、10回の燃焼時間の合計が250秒以内であり、且つ、滴下物が綿着火をおこさないものがV−1、いずれの燃焼時間も30秒以内で消火し、10回の燃焼時間の合計が250秒以内であり、且つ、滴下物が綿着火をおこすものがV−2、この評価基準以下のものをnotVとした。
 また、V−2の組成に関しては、1回目の着炎で滴下した滴下物の消炎時間を測定し、下記基準にて判定した。
○:滴下物の消炎時間が30秒未満のもの
×:滴下物の消炎時間が30秒以上のもの
 (2)耐熱性(荷重たわみ温度;HDT)
 ISO75−2に従った方法により6.35mm(1/4インチ)試験片を用いて0.45MPaの荷重で荷重たわみ温度(HDT)を測定した。また、荷重たわみ温度保持率(M)は、使用したベース樹脂(A成分とB成分の混合物)からの成形品の荷重たわみ温度x(℃)と難燃性樹脂組成物(ベース樹脂とC成分の混合物)からの成形品の荷重たわみ温度y(℃)を測定し、M=(y/x)×100(%)の計算式により算出した。
 (3)有機リン化合物の酸価
 JIS−K−3504に準拠して測定を実施した。
 (4)有機リン化合物のHPLC純度
 試料をアセトニトリルと水の6:4(容量比)の混合溶液に溶解し、その5μlをカラムに注入した。カラムは野村化学(株)製Develosil ODS−7 300mm×4mmφを用い、カラム温度は40℃とした。検出器はUV−260nmを用いた。
 (5)有機リン化合物の31P−NMR純度
 核磁気共鳴測定装置(JEOL製、JNM−AL400)により、リン原子の核磁気共鳴を測定し(DMSO−d、162MHz、積算回数3,072回)、積分面積比をリン化合物の31P−NMR純度とした。
 (6)スチレン系樹脂のMVR
 JIS−K−7210−1999に従って、200℃、5kg荷重の条件または220℃、10kg荷重の条件で測定を実施した。
 (7)ポリカーボネート樹脂のMVR
 JIS−K−7210−1999に従って、300℃、1.2kg荷重の条件で測定を実施した。
 (8)ポリカーボネート樹脂の末端OH基量
 400MHz、H−NMR(日本電子株式会社製、JNM−AL400使用)にて、末端OH基を有する芳香族のオルソ位Hピークの積分値と、ポリカーボネートの芳香族オルソ位Hピークのサテライトピークの積分値から、ポリカーボネート樹脂の末端OH基量を算出した。
調製例1
 2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド(FR−1)の調製
 温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2,250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1,651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン26.50部を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1,341.1g(5.88モル)を得た。得られた固体は31P−、H−NMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドである事を確認した。
 温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1,341.0g(5.88モル)、DMF6,534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2,613.7g(35.76モル)を添加し、該反応混合物に氷冷にてベンジルブロマイド2,037.79g(11.91モル)を滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶1,863.5g(4.56モル)を得た。得られた結晶は31P−、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイドである事を確認した。収率は76%、31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.06mgKOH/gであった。
 H−NMR(DMSO−d,300MHz):δ7.2−7.4(m,10H),4.1−4.5(m,8H),3.5(d,4H)、31P−NMR(DMSO−d,120MHz):δ23.1(S)、融点:255−256℃、元素分析 計算値:C,55.89;H,5.43、測定値:C,56.24;H,5.35
調製例2
 2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド(FR−2)の調製
 攪拌機、温度計、コンデンサーを有する反応容器に、3,9−ジベンジロキシ−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン22.55g(0.055モル)、ベンジルブロマイド19.01g(0.11モル)およびキシレン33.54g(0.32モル)を充填し、室温下攪拌しながら、乾燥窒素をフローさせた。次いでオイルバスで加熱を開始し、還流温度(約130℃)で4時間加熱、攪拌した。加熱終了後、室温まで放冷し、キシレン20mLを加え、さらに30分攪拌した。析出した結晶をろ過により分離し、キシレン20mLで2回洗浄した。得られた粗精製物とメタノール40mLをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール20mLで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶を得た。生成物は質量スペクトル分析、H、31P核磁気共鳴スペクトル分析および元素分析でビスベンジルペンタエリスリトールジホスホネートであることを確認した。収量は20.60g、収率は91%、31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.05mgKOH/gであった。
 H−NMR(DMSO−d,300MHz):δ7.2−7.4(m,10H),4.1−4.5(m,8H),3.5(d,4H)、31P−NMR(DMSO−d,120MHz):δ23.1(S)、融点:257℃
調製例3
 2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイド(FR−3)の調製
 温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2,250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1,651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン5,180.7g(61.0モル)を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1,341.1g(5.88モル)を得た。得られた固体は31P、HNMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドであることを確認した。
 温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1,341.0g(5.88モル)、DMF6,534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2,613.7g(35.76モル)を添加し、該反応混合物に氷冷にて1−フェニルエチルブロマイド2,204.06g(11.91モル)を滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の鱗片状結晶1,845.9g(4.23モル)を得た。得られた固体は31P−NMR、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイドであることを確認した。31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.03mgKOH/gであった。
 H−NMR(CDCl,300MHz):δ7.2−7.4(m,10H),4.0−4.2(m,4H),3.4−3.8(m,4H),3.3(qd,4H),1.6(ddd,6H)、31P−NMR(CDCl,120MHz):δ28.7(S)、融点:190−210℃、元素分析 計算値:C,57.80;H,6.01、測定値:C,57.83;H,5.96
調製例4
 2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド(FR−4)の調製
 温度計、コンデンサー、滴下ロートを備えた反応容器にペンタエリスリトール816.9g(6.0モル)、ピリジン19.0g(0.24モル)、トルエン2,250.4g(24.4モル)を仕込み、攪拌した。該反応容器に三塩化リン1,651.8g(12.0モル)を該滴下ロートを用い添加し、添加終了後、60℃にて加熱攪拌を行った。反応後、室温まで冷却し、得られた反応物に塩化メチレン5,180.7g(61.0モル)を添加し、氷冷しながらターシャリーブタノール889.4g(12.0モル)および塩化メチレン150.2g(1.77モル)を滴下した。得られた結晶をトルエンおよび塩化メチレンにて洗浄しろ過した。得られたろ取物を80℃、1.33×10Paで12時間乾燥し、白色の固体1,341.1g(5.88モル)を得た。得られた固体は31P、HNMRスペクトルにより2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイドであることを確認した。
 温度計、コンデンサー、滴下ロートを備えた反応容器に得られた2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジヒドロ−3,9−ジオキサイド1,341.0g(5.88モル)、DMF6,534.2g(89.39モル)を仕込み、攪拌した。該反応容器に氷冷下ナトリウムメトキシド648.7g(12.01モル)を添加した。氷冷にて2時間攪拌した後に、室温にて5時間攪拌を行った。さらにDMFを留去した後に、DMF2,613.7g(35.76モル)を添加し、該反応混合物に氷冷にて(2−ブロモエチル)ベンゼン2,183.8g(11.8モル)を滴下した。氷冷下3時間攪拌した後、DMFを留去し、水8Lを加え、析出した固体を濾取、水2Lで2回洗浄した。得られた粗精製物とメタノール4Lをコンデンサー、攪拌機を備えた反応容器に入れ、約2時間還流した。室温まで冷却後、結晶をろ過により分離し、メタノール2Lで洗浄した後、得られたろ取物を120℃、1.33×10Paで19時間乾燥し、白色の粉末1,924.4g(4.41モル)を得た。得られた固体は31P−NMR、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイドであることを確認した。31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.03mgKOH/gであった。
 H−NMR(CDCl,300MHz):δ7.1−7.4(m,10H),3.85−4.65(m,8H),2.90−3.05(m,4H),2.1−2.3(m,4H)、31P−NMR(CDCl,120MHz):δ31.5(S)、融点:245−246℃、元素分析 計算値:C,57.80;H,6.01、測定値:C,58.00;H,6.07
調製例5
 2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド(FR−5)の調製
 攪拌装置、攪拌翼、還流冷却管、温度計を備えた10リットル三つ口フラスコに、ジフェニルメチルホスホン酸ジクロリドを2,058.5g(7.22モル)とペンタエリスリトール468.3g(3.44モル)、ピリジン1,169.4g(14.8モル)、クロロホルム8,200gを仕込み、窒素気流下、60℃まで加熱し、6時間攪拌させた。反応終了後、クロロホルムを塩化メチレンで置換し、当該反応混合物に蒸留水6Lを加え攪拌し、白色粉末を析出させた。これを吸引濾過により濾取し、得られた白色物をメタノールを用いて洗浄した後、100℃、1.33×10Paで10時間乾燥し、白色の固体1,156.2gを得た。得られた固体は31P−NMR、H−NMRスペクトルおよび元素分析により2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイドであることを確認した。31P−NMR純度は99%であった。また、本文記載の方法で測定したHPLC純度は99%であった。酸価は0.3mgKOH/gであった。
 H−NMR(DMSO−d6,300MHz):δ7.20−7.60(m,20H),5.25(d,2H),4.15−4.55(m,8H)、31P−NMR(DMSO−d6,120MHz):δ20.9、融点:265℃、元素分析 計算値:C,66.43;H,5.39、測定値:C,66.14;H,5.41
 実施例、比較例で用いる各成分は以下のものを用いた。
(I)ポリ乳酸樹脂(A成分)
 (i)市販のポリ乳酸(Nature Works製 4032D;ポリL−乳酸樹脂)を用いた(以下PLA−1と称する)。
 (ii)また、市販のポリ乳酸(三井化学(株)製LACEA H100;ポリL−乳酸樹脂)を用いた(以下PLA−2と称する)。
(II)スチレン系樹脂(B成分)
 (i)市販の耐衝撃性ポリスチレン(PSジャパン(株)製PSJポリスチレンH9152)を用いた(以下HIPSと称する、200℃、5kg荷重におけるMVR値=5.7cm/10min)。
 (ii)市販のABS樹脂(日本エイアンドエル(株)製サンタックUT−61)を用いた(以下ABSと称する、220℃、10kg荷重におけるMVR値=35cm/10min)。
 (iii)市販のAS樹脂(日本エイアンドエル(株)製ライタック—A BS−203)を用いた(以下ASと称する、220℃、10kg荷重におけるMVR値=18cm/10min)。
(III)ポリカーボネート樹脂(B成分)
 (i)市販のポリカーボネート樹脂(帝人化成(株)製パンライトL−1225)を用いた(以下PC−1と称する、末端OH基含有量=14eq/ton、300℃、1.2kg荷重で測定したMVR値=10.1cm/10min)。
 (ii)市販のポリカーボネート樹脂(帝人化成(株)製パンライトL−1250)を用いた(以下PC−2と称する、末端OH基含有量=13eq/ton、300℃、1.2kg荷重で測定したMVR値=7.5cm/10min)。
(IV)有機リン化合物(C成分)
 (i)調製例1で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド{前記式(1−a)の有機リン化合物(以下FR−1と称する)}
 (ii)調製例2で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジベンジル−3,9−ジオキサイド{前記式(1−a)の有機リン化合物(以下FR−2と称する)}
 (iii)調製例3で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジα−メチルベンジル−3,9−ジオキサイド{前記式(1−b)の有機リン化合物(以下FR−3と称する)}
 (iv)調製例4で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ジ(2−フェニルエチル)−3,9−ジオキサイド{前記式(1−c)の有機リン化合物(以下FR−4と称する)}
 (v)調製例5で合成した2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン,3,9−ビス(ジフェニルメチル)−3,9−ジオキサイド{前記式(1−d)の有機リン化合物(以下FR−5と称する)}
(V)その他の有機リン化合物
 (i)1,3−フェニレンビス[ジ(2,6−ジメチルフェニル)フォスフェート](大八化学工業(株)製PX−200)を用いた(以下PX−200と称する)
実施例1~24および比較例1~12
 表1~3記載の各成分を表1~3記載の量(重量部)でタンブラーにて配合し、15mmφ二軸押出機(テクノベル製、KZW15)にてペレット化した。得られたペレットを80℃の熱風乾燥機にて24時間乾燥を行った。乾燥したペレットを射出成形機((株)日本製鋼所製 J75EIII)にて成形した。成形板を用いて評価した結果を表1~3に示した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-I000039
実施例25~40および比較例13~20
 表4~6記載の各成分を表4~6記載の量(重量部)でタンブラーにて配合し、15mmφ二軸押出機(テクノベル社製、KZW15)にてペレット化した。得られたペレットを80℃の熱風乾燥機にて24時間乾燥を行った。乾燥したペレットを射出成形機((株)日本製鋼所製 J75EIII)にて成形した。成形板を用いて評価した結果を表4~6に示した。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
発明の効果
 本発明の難燃性樹脂組成物およびそれから形成された成形品は、従来の植物由来原料を用いた樹脂組成物に比べて下記の利点が得られる。
(i)実質的にハロゲン含有難燃剤を使用することなく高度な難燃性を有する植物由来原料を用いた樹脂組成物が得られる。
(ii)難燃剤としての有機リン化合物は、植物由来原料を用いた樹脂に対して優れた難燃効果を有するので、比較的少ない使用量でもV−2レベル、特に好ましくはV−0レベルが達成される。
(iii)難燃剤として使用する有機リン化合物の構造並びに特性に起因して、植物由来原料を用いた樹脂の成形時または成形品の使用時に、植物由来原料を用いた樹脂の熱劣化をほとんど起さず、耐熱性に優れた樹脂組成物が得られる。従って難燃性、機械的強度および耐熱性がいずれもバランスよく優れた組成物が得られる。
(iv)難燃剤としての有機リン化合物は、無色であり植物由来原料を用いた樹脂に対して相溶性であるから、透明性に優れた成形品を得ることができる。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The evaluation was performed by the following method.
(1) Flame retardancy (UL-94 evaluation)
Flame retardancy is evaluated using a test piece with a thickness of 1/16 inch (1.6 mm) according to the vertical flame test defined in UL-94 of the US UL standard as a flame retardant evaluation scale. It was.
In the UL-94 vertical combustion test, five test pieces are performed as a set of tests, and each test piece repeats flame for 10 seconds twice. However, this does not apply to specimens that are burned down by the first flame. After the first flame, the combustion time after removing the flame is measured, and after the flame is extinguished, the second flame is fired. After the second flame, the burning time after removing the flame is measured. In a set of five tests, a total of 10 burning times can be measured, all burning times are extinguished within 10 seconds, the total of 10 burning times is within 50 seconds, and the dripping material is cotton. V-0 is the one that does not ignite, extinguishes within 30 seconds of any combustion time, the sum of the 10 combustion times is within 250 seconds, and the drop does not cause cotton ignition. 1. All the combustion times are extinguished within 30 seconds, the total of the 10 combustion times is within 250 seconds, and the dripping material causes cotton ignition is V-2, and those below this evaluation standard It was set to notV.
Moreover, regarding the composition of V-2, the flame extinguishing time of the dripped material dropped by the first flame was measured and judged according to the following criteria.
○: The flame extinguishing time of the drop is less than 30 seconds x: The flame extinguishing time of the drop is 30 seconds or more (2) Heat resistance (deflection temperature under load; HDT)
The deflection temperature under load (HDT) was measured at a load of 0.45 MPa using a 6.35 mm (1/4 inch) test piece by a method according to ISO 75-2. The deflection temperature retention ratio (M) of the load is determined by the deflection temperature x (° C) of the molded product from the used base resin (mixture of component A and component B) and the flame retardant resin composition (base resin and component C). The deflection temperature under load y (° C.) of the molded product from the mixture of the above was measured and calculated by the formula M = (y / x) × 100 (%).
(3) Acid value of organophosphorus compound Measurement was carried out according to JIS-K-3504.
(4) HPLC purity of organophosphorus compound The sample was dissolved in a 6: 4 (volume ratio) mixed solution of acetonitrile and water, and 5 μl thereof was injected into the column. As the column, Develosil ODS-7 300 mm × 4 mmφ manufactured by Nomura Chemical Co., Ltd. was used, and the column temperature was 40 ° C. The detector used was UV-260 nm.
(5) 31 P-NMR purity of organophosphorus compound The nuclear magnetic resonance of a phosphorus atom was measured with a nuclear magnetic resonance measuring apparatus (manufactured by JEOL, JNM-AL400) (DMSO-d 6 , 162 MHz, cumulative number 3,072 times). ), And the integrated area ratio was the 31 P-NMR purity of the phosphorus compound.
(6) MVR of styrene resin
According to JIS-K-7210-1999, measurement was carried out under conditions of 200 ° C. and 5 kg load or 220 ° C. and 10 kg load.
(7) MVR of polycarbonate resin
In accordance with JIS-K-7210-1999, measurement was performed under the conditions of 300 ° C. and 1.2 kg load.
(8) Amount of terminal OH group of polycarbonate resin 400 MHz, 1 H-NMR (manufactured by JEOL Ltd., using JNM-AL400), integral value of aromatic ortho-position H peak having terminal OH group, and polycarbonate The terminal OH group amount of the polycarbonate resin was calculated from the integrated value of the satellite peak of the aromatic ortho-position H peak.
Preparation Example 1
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide (FR-1) Thermometer, condenser, and dropping funnel The reaction vessel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2,250.4 g (24.4 mol) of toluene and stirred. 1,651.8 g (12.0 mol) of phosphorus trichloride was added to the reaction vessel using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after completion of the addition. After the reaction, the reaction mixture was cooled to room temperature, and 26.50 parts of methylene chloride was added to the resulting reaction product, and 889.4 g (12.0 moles) of tertiary butanol and 150.2 g (1.77 moles) of methylene chloride were cooled with ice. Mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1,341.1 g (5.88 mol) of a white solid. The obtained solid was obtained by 31 P-, 1 H-NMR spectrum as 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide. I confirmed it.
2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1,341.0 g (5.88 mol) and DMF 6,534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. Further, after distilling off DMF, 2,613.7 g (35.76 mol) of DMF was added, and 2,037.79 g (11.91 mol) of benzyl bromide was added dropwise to the reaction mixture under ice cooling. After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the obtained filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to give white scaly crystals 1,863. 5 g (4.56 mol) was obtained. The obtained crystals were obtained by 31 P-, 1 H-NMR spectrum and elemental analysis, 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9- It was confirmed that it was a dioxide. The yield was 76%, and 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.06 mgKOH / g.
1 H-NMR (DMSO-d 6 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.1-4.5 (m, 8H), 3.5 (d, 4H), 31 P -NMR (DMSO-d 6, 120MHz ): δ23.1 (S), melting point: 255-256 ° C., elemental analysis: calculated: C, 55.89; H, 5.43 , measurement values: C, 56.24 H, 5.35
Preparation Example 2
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide (FR-2) Reaction with stirrer, thermometer, condenser In a container, 22,9-dibenzyloxy-2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane 22.55 g (0.055 mol), benzyl bromide 19.01 g (0.11 mol) ) And 33.54 g (0.32 mol) of xylene, and dry nitrogen was allowed to flow while stirring at room temperature. Next, heating was started in an oil bath, and the mixture was heated and stirred at a reflux temperature (about 130 ° C.) for 4 hours. After heating, the mixture was allowed to cool to room temperature, 20 mL of xylene was added, and the mixture was further stirred for 30 minutes. The precipitated crystals were separated by filtration and washed twice with 20 mL of xylene. The obtained crude product and 40 mL of methanol were placed in a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration and washed with 20 mL of methanol, and the obtained filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to obtain white scaly crystals. The product was confirmed to be bisbenzylpentaerythritol diphosphonate by mass spectral analysis, 1 H, 31 P nuclear magnetic resonance spectral analysis and elemental analysis. The yield was 20.60 g, the yield was 91%, and the 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.05 mgKOH / g.
1 H-NMR (DMSO-d 6 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.1-4.5 (m, 8H), 3.5 (d, 4H), 31 P -NMR (DMSO-d 6, 120MHz ): δ23.1 (S), melting point: 257 ° C.
Preparation Example 3
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-diα-methylbenzyl-3,9-dioxide (FR-3) Thermometer, condenser, A reaction vessel equipped with a dropping funnel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2,250.4 g (24.4 mol) of toluene and stirred. 1,651.8 g (12.0 mol) of phosphorus trichloride was added to the reaction vessel using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after completion of the addition. After the reaction, the reaction mixture was cooled to room temperature, and 5,180.7 g (61.0 mol) of methylene chloride was added to the resulting reaction product, and 889.4 g (12.0 mol) of tertiary butanol and methylene chloride were added while cooling with ice. 150.2 g (1.77 mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1,341.1 g (5.88 mol) of a white solid. The obtained solid was 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed.
2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1,341.0 g (5.88 mol) and DMF 6,534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. After further distilling off DMF, 2,613.7 g (35.76 mol) of DMF was added, and 2,204.06 g (11.91 mol) of 1-phenylethyl bromide was added dropwise to the reaction mixture under ice cooling. . After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the resulting filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to give white scaly crystals 1,845. 9 g (4.23 mol) was obtained. The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-diα-methylbenzyl by 31 P-NMR, 1 H-NMR spectrum and elemental analysis. It was confirmed to be −3,9-dioxide. The 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.03 mgKOH / g.
1 H-NMR (CDCl 3 , 300 MHz): δ 7.2-7.4 (m, 10H), 4.0-4.2 (m, 4H), 3.4-3.8 (m, 4H), 3.3 (qd, 4H), 1.6 (ddd, 6H), 31 P-NMR (CDCl 3 , 120 MHz): δ 28.7 (S), melting point: 190-210 ° C., elemental analysis calculated value: C, 57.80; H, 6.01, measured value: C, 57.83; H, 5.96
Preparation Example 4
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide (FR-4) Thermometer A reactor equipped with a condenser and a dropping funnel was charged with 816.9 g (6.0 mol) of pentaerythritol, 19.0 g (0.24 mol) of pyridine, and 2,250.4 g (24.4 mol) of toluene and stirred. . 1,651.8 g (12.0 mol) of phosphorus trichloride was added to the reaction vessel using the dropping funnel, and the mixture was heated and stirred at 60 ° C. after completion of the addition. After the reaction, the reaction mixture was cooled to room temperature, and 5,180.7 g (61.0 mol) of methylene chloride was added to the resulting reaction product, and 889.4 g (12.0 mol) of tertiary butanol and methylene chloride were added while cooling with ice. 150.2 g (1.77 mol) was added dropwise. The obtained crystals were washed with toluene and methylene chloride and filtered. The obtained filtered product was dried at 80 ° C. and 1.33 × 10 2 Pa for 12 hours to obtain 1,341.1 g (5.88 mol) of a white solid. The obtained solid was 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide according to 31 P, 1 HNMR spectrum. confirmed.
2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dihydro-3,9-dioxide obtained in a reaction vessel equipped with a thermometer, condenser and dropping funnel 1,341.0 g (5.88 mol) and DMF 6,534.2 g (89.39 mol) were charged and stirred. Sodium methoxide 648.7 g (12.01 mol) was added to the reaction vessel under ice cooling. After stirring for 2 hours under ice cooling, the mixture was stirred for 5 hours at room temperature. Further, after DMF was distilled off, 2,613.7 g (35.76 mol) of DMF was added, and 2,183.8 g (11.8 mol) of (2-bromoethyl) benzene was added dropwise to the reaction mixture under ice cooling. did. After stirring for 3 hours under ice cooling, DMF was distilled off, 8 L of water was added, and the precipitated solid was collected by filtration and washed twice with 2 L of water. The obtained crude product and 4 L of methanol were put into a reaction vessel equipped with a condenser and a stirrer and refluxed for about 2 hours. After cooling to room temperature, the crystals were separated by filtration, washed with 2 L of methanol, and the resulting filtered product was dried at 120 ° C. and 1.33 × 10 2 Pa for 19 hours to obtain 1,924.4 g of white powder ( 4.41 mol) was obtained. The obtained solid was analyzed by 31 P-NMR, 1 H-NMR spectrum and elemental analysis, 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenyl). Ethyl) -3,9-dioxide was confirmed. The 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.03 mgKOH / g.
1 H-NMR (CDCl 3 , 300 MHz): δ 7.1-7.4 (m, 10H), 3.85-4.65 (m, 8H), 2.90-3.05 (m, 4H), 2.1-2.3 (m, 4H), 31 P-NMR (CDCl 3 , 120 MHz): δ 31.5 (S), melting point: 245-246 ° C., elemental analysis calculated: C, 57.80; H , 6.01, measured value: C, 58.00; H, 6.07
Preparation Example 5
Preparation of 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide (FR-5) Stirring device, stirring blade In a 10-liter three-necked flask equipped with a reflux condenser and a thermometer, 2,058.5 g (7.22 mol) of diphenylmethylphosphonic dichloride and 468.3 g (3.44 mol) of pentaerythritol, pyridine 1, 169.4 g (14.8 mol) and 8,200 g of chloroform were charged, heated to 60 ° C. under a nitrogen stream, and stirred for 6 hours. After completion of the reaction, chloroform was replaced with methylene chloride, and 6 L of distilled water was added to the reaction mixture and stirred to precipitate a white powder. This was collected by suction filtration, and the resulting white product was washed with methanol and then dried at 100 ° C. and 1.33 × 10 2 Pa for 10 hours to obtain 1,156.2 g of a white solid. . The obtained solid was found to be 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (diphenylmethyl) by 31 P-NMR, 1 H-NMR spectrum and elemental analysis. It was confirmed to be −3,9-dioxide. The 31 P-NMR purity was 99%. The HPLC purity measured by the method described in the text was 99%. The acid value was 0.3 mgKOH / g.
1 H-NMR (DMSO-d6, 300 MHz): δ 7.20-7.60 (m, 20H), 5.25 (d, 2H), 4.15-4.55 (m, 8H), 31 P- NMR (DMSO-d6, 120 MHz): δ 20.9, melting point: 265 ° C., elemental analysis calculated: C, 66.43; H, 5.39, measured: C, 66.14; H, 5.41
The following were used for each component used in Examples and Comparative Examples.
(I) Polylactic acid resin (component A)
(I) Commercially available polylactic acid (manufactured by Nature Works 4032D; poly L-lactic acid resin) was used (hereinafter referred to as PLA-1).
(Ii) In addition, commercially available polylactic acid (LACEA H100 manufactured by Mitsui Chemicals, Inc .; poly L-lactic acid resin) was used (hereinafter referred to as PLA-2).
(II) Styrenic resin (component B)
(I) using a commercially available high impact polystyrene (PS Japan Ltd. PSJ Polystyrene H9152) (hereinafter referred to as HIPS, 200 ℃, MVR value at 5kg load = 5.7cm 3 / 10min).
(Ii) a commercially available ABS resin was used (Nippon A & L Co. Santakku UT-61) (hereinafter referred to as ABS, 220 ° C., MVR value at 10kg load = 35cm 3 / 10min).
(Iii) a commercially available AS resin (Nippon A & L Co., Ltd. Raitakku -A BS-203) was used (hereinafter referred to as AS, 220 ° C., MVR value at 10kg load = 18cm 3 / 10min).
(III) Polycarbonate resin (component B)
(I) A commercially available polycarbonate resin (Panlite L-1225 manufactured by Teijin Chemicals Ltd.) was used (hereinafter referred to as PC-1, terminal OH group content = 14 eq / ton, measured at 300 ° C., 1.2 kg load) the MVR value = 10.1cm 3 / 10min).
(Ii) Using commercially available polycarbonate resin (Panlite L-1250 manufactured by Teijin Chemicals Ltd.) (hereinafter referred to as PC-2, terminal OH group content = 13 eq / ton, measured at 300 ° C., 1.2 kg load) the MVR value = 7.5cm 3 / 10min).
(IV) Organophosphorus compound (component C)
(I) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide synthesized in Preparation Example 1 {formula (1-a ) Organophosphorus compound (hereinafter referred to as FR-1)}
(Ii) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-dibenzyl-3,9-dioxide synthesized in Preparation Example 2 {the above formula (1-a ) Organophosphorus compound (hereinafter referred to as FR-2)}
(Iii) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-diα-methylbenzyl-3,9-dioxide synthesized in Preparation Example 3 (1-b) Organophosphorus Compound (hereinafter referred to as FR-3)}
(Iv) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-di (2-phenylethyl) -3,9-dioxide synthesized in Preparation Example 4 Organophosphorus compound of formula (1-c) (hereinafter referred to as FR-4)}
(V) 2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane, 3,9-bis (diphenylmethyl) -3,9-dioxide synthesized in Preparation Example 5 (1-d) Organophosphorus Compound (hereinafter referred to as FR-5)}
(V) Other organophosphorus compounds (i) 1,3-phenylenebis [di (2,6-dimethylphenyl) phosphate] (PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) (hereinafter referred to as PX-) 200)
Examples 1 to 24 and Comparative Examples 1 to 12
Each component described in Tables 1 to 3 was blended in a tumbler in the amount (parts by weight) described in Tables 1 to 3, and pelletized with a 15 mmφ twin screw extruder (manufactured by Technobel, KZW15). The obtained pellets were dried in a hot air dryer at 80 ° C. for 24 hours. The dried pellets were molded with an injection molding machine (J75EIII, manufactured by Nippon Steel Works). The results of evaluation using molded plates are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-I000039
Examples 25 to 40 and Comparative Examples 13 to 20
Each component shown in Tables 4 to 6 was blended in the amount (parts by weight) shown in Tables 4 to 6 by a tumbler, and pelletized with a 15 mmφ twin screw extruder (manufactured by Technobell, KZW15). The obtained pellets were dried in a hot air dryer at 80 ° C. for 24 hours. The dried pellets were molded with an injection molding machine (J75EIII, manufactured by Nippon Steel Works). The results of evaluation using the molded plate are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Effect of the Invention The flame retardant resin composition of the present invention and a molded product formed therefrom have the following advantages compared to conventional resin compositions using plant-derived materials.
(I) A resin composition using a plant-derived raw material having high flame retardancy can be obtained without substantially using a halogen-containing flame retardant.
(Ii) Since the organophosphorus compound as a flame retardant has an excellent flame retardant effect on a resin using a plant-derived raw material, the V-2 level, particularly preferably the V-0 level, can be used even with a relatively small amount of use. Achieved.
(Iii) Due to the structure and characteristics of the organophosphorus compound used as a flame retardant, the resin using the plant-derived raw material is hardly thermally deteriorated when molding the resin using the plant-derived raw material or when using the molded product. In addition, a resin composition having excellent heat resistance is obtained. Therefore, a composition having excellent balance of flame retardancy, mechanical strength and heat resistance can be obtained.
(Iv) Since the organophosphorus compound as a flame retardant is colorless and compatible with a resin using a plant-derived raw material, a molded product excellent in transparency can be obtained.
 本発明の難燃性樹脂組成物は、家電製品部品、電気・電子部品、自動車部品、機械・機構部品、化粧品容器などの種々の成形品を成形する材料として有用である。 The flame-retardant resin composition of the present invention is useful as a material for molding various molded products such as home appliance parts, electrical / electronic parts, automobile parts, machine / mechanical parts, cosmetic containers and the like.

Claims (18)

  1.  (A)ポリ乳酸および/または乳酸共重合体(A成分)100重量部、
    (B)スチレン系樹脂および/またはポリカーボネート樹脂(B成分)1~100重量部、並びに
    (C)下記式(1)で表される有機リン化合物(C成分)1~100重量部を含有する難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
    (式中、X、Xは同一もしくは異なり、下記式(2)で表される芳香族置換アルキル基である。)
    Figure JPOXMLDOC01-appb-I000002
    (式中、ALは炭素数1~5の分岐状または直鎖状の脂肪族炭化水素基であり、Arは置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。nは1~3の整数を示し、ArはAL中の任意の炭素原子に結合することができる。)
    (A) 100 parts by weight of polylactic acid and / or lactic acid copolymer (component A),
    (B) 1 to 100 parts by weight of styrene resin and / or polycarbonate resin (component B) and (C) 1 to 100 parts by weight of an organophosphorus compound (component C) represented by the following formula (1) A flammable resin composition.
    Figure JPOXMLDOC01-appb-I000001
    (In formula, X < 1 >, X < 2 > is the same or different, and is an aromatic substituted alkyl group represented by following formula (2).)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, AL is a branched or straight-chain aliphatic hydrocarbon group having 1 to 5 carbon atoms, and Ar is a phenyl group, a naphthyl group, or an anthryl group which may have a substituent. Represents an integer of 1 to 3, and Ar can be bonded to any carbon atom in AL.)
  2.  有機リン化合物(C成分)は、下記式(3)および下記式(4)で表される有機リン化合物よりなる群から選択される少なくとも1種の化合物である請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000003
    (式中、R、Rは同一または異なっていてもよく、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基である。R、R、R、Rは同一または異なっていてもよく、水素原子、炭素数1~4の分岐状または直鎖状のアルキル基、置換基を有しても良いフェニル基、ナフチル基、またはアントリル基から選択される置換基である。)
    Figure JPOXMLDOC01-appb-I000004
    (式中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
    The flame retardant resin according to claim 1, wherein the organophosphorus compound (component C) is at least one compound selected from the group consisting of the organophosphorus compounds represented by the following formula (3) and the following formula (4). Composition.
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, R 2 and R 5 may be the same or different, and may be a phenyl group, a naphthyl group, or an anthryl group that may have a substituent. R 1 , R 3 , R 4 , R 6 are Substituents that may be the same or different and are selected from a hydrogen atom, a branched or straight chain alkyl group having 1 to 4 carbon atoms, an optionally substituted phenyl group, naphthyl group, or anthryl group .)
    Figure JPOXMLDOC01-appb-I000004
    (In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.)
  3.  有機リン化合物(C成分)が、下記式(5)で表される請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000005
    (式中、R21、R22は同一もしくは異なり、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is represented by the following formula (5).
    Figure JPOXMLDOC01-appb-I000005
    (Wherein R 21 and R 22 are the same or different and are a phenyl group, a naphthyl group or an anthryl group, and the aromatic ring may have a substituent.)
  4.  有機リン化合物(C成分)が、下記式(1−a)で示される化合物である請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000006
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-a).
    Figure JPOXMLDOC01-appb-I000006
  5.  有機リン化合物(C成分)が、下記式(6)で表される請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000007
    (式中、R31およびR34は、同一または異なっていても良く、水素原子または炭素数1~3の脂肪族炭化水素基である。R33およびR36は、同一または異なっていても良く、炭素数1~4の脂肪族炭化水素基である。R32およびR35は、同一または異なっていてもよく、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is represented by the following formula (6).
    Figure JPOXMLDOC01-appb-I000007
    (In the formula, R 31 and R 34 may be the same or different, and are a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. R 33 and R 36 may be the same or different. And an aliphatic hydrocarbon group having 1 to 4 carbon atoms, R 32 and R 35 may be the same or different and each is a phenyl group, a naphthyl group or an anthryl group, and has a substituent in the aromatic ring. May be.)
  6.  有機リン化合物(C成分)が、下記式(1−b)で示される化合物である請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000008
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-b).
    Figure JPOXMLDOC01-appb-I000008
  7.  有機リン化合物(C成分)が、下記式(7)で表される請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000009
    (式中、ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。R11、R12、R13およびR14は、同一または異なっていても良く、水素原子、炭素数1~3の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。ALおよびALは、同一または異なっていても良く、炭素数1~4の分岐状または直鎖状の脂肪族炭化水素基である。ArおよびArは、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。pおよびqは0~3の整数を示し、ArおよびArはそれぞれALおよびALの任意の炭素原子に結合することができる。)
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is represented by the following formula (7).
    Figure JPOXMLDOC01-appb-I000009
    (In formula, Ar < 1 > and Ar < 2 > may be the same or different, and are a phenyl group, a naphthyl group, or an anthryl group, and may have a substituent in the aromatic ring. R < 11 >, R < 12 >, R 13 and R 14 may be the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and has a substituent on the aromatic ring. AL 1 and AL 2 may be the same or different and are branched or straight-chain aliphatic hydrocarbon groups having 1 to 4 carbon atoms, Ar 3 and Ar 4 may be the same or May be different, and may be a phenyl group, a naphthyl group or an anthryl group, and may have a substituent in the aromatic ring, p and q each represent an integer of 0 to 3, and Ar 3 and Ar 4 each represent AL And it can be attached to any carbon atom of AL 2.)
  8.  有機リン化合物(C成分)が、下記式(1−c)で示される化合物である請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000010
    The flame retardant resin composition according to claim 1, wherein the organophosphorus compound (component C) is a compound represented by the following formula (1-c).
    Figure JPOXMLDOC01-appb-I000010
  9.  有機リン化合物(C成分)が、下記式(8)で表される請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000011
    (式中、R41およびR44は、同一または異なっていても良く、水素原子、炭素数1~4の脂肪族炭化水素基またはフェニル基、ナフチル基もしくはアントリル基であり、その芳香環に置換基を有していてもよい。R42、R43、R45およびR46は、同一または異なっていても良く、フェニル基、ナフチル基またはアントリル基であり、その芳香環に置換基を有していてもよい。)
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is represented by the following formula (8).
    Figure JPOXMLDOC01-appb-I000011
    (In the formula, R 41 and R 44 may be the same or different and are a hydrogen atom, an aliphatic hydrocarbon group having 1 to 4 carbon atoms, a phenyl group, a naphthyl group or an anthryl group, and substituted on the aromatic ring thereof. R 42 , R 43 , R 45 and R 46 may be the same or different and are a phenyl group, a naphthyl group or an anthryl group, and have a substituent on the aromatic ring. May be.)
  10.  有機リン化合物(C成分)が、下記式(1−d)で示される化合物である請求項1記載の難燃性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000012
    The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) is a compound represented by the following formula (1-d).
    Figure JPOXMLDOC01-appb-I000012
  11.  有機リン化合物(C成分)の酸価が0.7mgKOH/g以下である請求項1記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 1, wherein the organic phosphorus compound (component C) has an acid value of 0.7 mgKOH / g or less.
  12.  UL−94規格の難燃レベルにおいて、少なくともV−2を達成する請求項1記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 1, which achieves at least V-2 at a flame retardant level of UL-94 standard.
  13.  スチレン系樹脂(B成分)は、200℃、5kg荷重におけるMVR値が1~100cm/10minである請求項1記載の難燃性樹脂組成物。 Styrenic resin (B component), 200 ° C., the flame-retardant resin composition according to claim 1, wherein MVR value at 5kg load is 1 ~ 100cm 3 / 10min.
  14.  スチレン系樹脂(B成分)は、220℃、10kg荷重におけるMVR値が1~100cm/10minである請求項1記載の難燃性樹脂組成物。 Styrenic resin (B component), 220 ° C., the flame-retardant resin composition according to claim 1, wherein MVR value at 10kg load is 1 ~ 100cm 3 / 10min.
  15.  ポリカーボネート樹脂(B成分)は、300℃、1.2kg荷重におけるMVR値が0.1~80cm/10minである請求項1記載の難燃性樹脂組成物。 Polycarbonate resin (B component), 300 ° C., the flame-retardant resin composition according to claim 1, wherein MVR value at 1.2kg load is 0.1 ~ 80cm 3 / 10min.
  16.  ポリカーボネート樹脂(B成分)は、その末端に存在するOH基の含有量が100eq/ton以下である請求項1記載の難燃性樹脂組成物。 2. The flame retardant resin composition according to claim 1, wherein the polycarbonate resin (component B) has a content of OH groups present at its ends of 100 eq / ton or less.
  17.  0.45MPa荷重で測定したHDTにおいて、HDT保持率が95%以上である請求項1記載の難燃性樹脂組成物。 The flame retardant resin composition according to claim 1, wherein the HDT retention is 95% or more in HDT measured at a load of 0.45 MPa.
  18.  請求項1記載の難燃性樹脂組成物より形成された成形品。 A molded article formed from the flame retardant resin composition according to claim 1.
PCT/JP2010/052484 2009-02-19 2010-02-12 Flame-retardant resin composition and molded article thereof WO2010095699A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/201,929 US8859655B2 (en) 2009-02-19 2010-02-12 Flame retardant resin composition and molded article thereof
EP10743825.1A EP2399959A4 (en) 2009-02-19 2010-02-12 Flame-retardant resin composition and molded article thereof
CN2010800033823A CN102227472A (en) 2009-02-19 2010-02-12 Flame-retardant resin composition and molded article thereof
JP2011500652A JP5622717B2 (en) 2009-02-19 2010-02-12 Flame retardant resin composition and molded product therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-036535 2009-02-19
JP2009036535 2009-02-19
JP2009036536 2009-02-19
JP2009-036536 2009-02-19

Publications (1)

Publication Number Publication Date
WO2010095699A1 true WO2010095699A1 (en) 2010-08-26

Family

ID=42633979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052484 WO2010095699A1 (en) 2009-02-19 2010-02-12 Flame-retardant resin composition and molded article thereof

Country Status (7)

Country Link
US (1) US8859655B2 (en)
EP (1) EP2399959A4 (en)
JP (1) JP5622717B2 (en)
KR (1) KR20110127125A (en)
CN (1) CN102227472A (en)
TW (1) TWI464212B (en)
WO (1) WO2010095699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057297A1 (en) * 2010-10-27 2012-05-03 帝人化成株式会社 Flame-retardant resin composition and molded article produced from same
JP2012092231A (en) * 2010-10-27 2012-05-17 Teijin Chem Ltd Flame-retardant resin composition and molded article composed of the same
JP2012092230A (en) * 2010-10-27 2012-05-17 Teijin Chem Ltd Flame-retardant resin composition and molded article composed of the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732985B (en) * 2012-06-26 2014-02-26 常州灵达特种纤维有限公司 Preparation method of halogen free flame retardation polypropylene bulked filament
US9346922B2 (en) 2013-11-26 2016-05-24 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
US9284414B2 (en) 2013-11-26 2016-03-15 Globalfoundries Inc. Flame retardant polymers containing renewable content
JP6524625B2 (en) * 2014-09-24 2019-06-05 富士ゼロックス株式会社 Resin composition and resin molded body
US10155907B2 (en) 2016-12-12 2018-12-18 International Business Machines Corporation Cross-linkable flame retardant materials
US10570252B2 (en) * 2017-03-08 2020-02-25 International Business Machines Corporation Flame retardant lactide monomors for polylactide synthesis

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995970A (en) 1931-04-04 1935-03-26 Du Pont Polymeric lactide resin
US2362511A (en) 1939-11-21 1944-11-14 Du Pont Modified glycolide resins
US2683136A (en) 1950-10-25 1954-07-06 Du Pont Copolymers of hydroxyacetic acid with other alcohol acids
US2758987A (en) 1952-06-05 1956-08-14 Du Pont Optically active homopolymers containing but one antipodal species of an alpha-monohydroxy monocarboxylic acid
US3141032A (en) 1963-01-23 1964-07-14 Union Carbide Corp Dialkyl pentaerythritol diphosphonates and phosphite phosphonates
US3635956A (en) 1968-03-01 1972-01-18 Squibb & Sons Inc Benzothiazines related compounds derivatives and salts thereof
US3797499A (en) 1970-05-13 1974-03-19 Ethicon Inc Polylactide fabric graphs for surgical implantation
US4057537A (en) 1975-01-28 1977-11-08 Gulf Oil Corporation Copolymers of L-(-)-lactide and epsilon caprolactone
JPS5339698A (en) 1976-09-21 1978-04-11 Borg Warner Flame resisting phosphonate composition
JPS54157156A (en) 1978-05-30 1979-12-11 Borg Warner Fire resistant polycarbonate composition
US5310865A (en) 1991-12-18 1994-05-10 Mitsui Toatsu Chemicals, Incorporated Polyhydroxycarboxylic acid and preparation process thereof
US5428126A (en) 1993-04-02 1995-06-27 Mitsui Toatsu Chemicals, Inc. Aliphatic polyester and preparation process thereof
EP0712880A2 (en) 1994-11-17 1996-05-22 Mitsui Toatsu Chemicals, Incorporated Preparation process of degradable block copolyesters
JP2004018765A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018767A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018766A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018764A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2005139431A (en) * 2003-10-16 2005-06-02 Nippon Polystyrene Kk Method for molding polystyrene-based resin using master batch and molded product produced by the method for molding
JP2005538239A (en) * 2002-09-09 2005-12-15 ビーエーエスエフ アクチェンゲゼルシャフト Anion polymerized high impact polystyrene with good flowability
JP2006016558A (en) * 2004-07-05 2006-01-19 Mitsubishi Engineering Plastics Corp Polyester resin composition and molding
JP2007301449A (en) 2006-05-09 2007-11-22 Tsrc Corp Method for hydrogenating conjugated diene polymer
WO2008026575A1 (en) * 2006-09-01 2008-03-06 Kaneka Corporation Polyester-containing resin composition
JP2008156616A (en) * 2006-11-28 2008-07-10 Toray Ind Inc Resin composition and molded product made therefrom

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164014A (en) 1999-12-07 2001-06-19 Ado Cosmic Kk Biodegradable flame-retardant thermal insulation material
KR100821536B1 (en) * 2001-05-15 2008-04-11 데이진 가세이 가부시키가이샤 Flame?retardant resin composition and molded article therefrom
JP2004277552A (en) 2003-03-14 2004-10-07 Toray Ind Inc Flame-retardant biodegradable resin crosslinked foam
JP4379019B2 (en) 2003-07-04 2009-12-09 東レ株式会社 Electrical / electronic parts
JP4378130B2 (en) * 2003-07-29 2009-12-02 帝人化成株式会社 Aromatic polycarbonate resin composition
EP2172520A1 (en) 2003-10-14 2010-04-07 Mitsubishi Plastics, Inc. Flame-retardant injection-molded object
JP2005139441A (en) 2003-10-15 2005-06-02 Mitsubishi Plastics Ind Ltd Injection molded product
JP2005264086A (en) * 2004-03-22 2005-09-29 Toray Ind Inc Polylactic acid resin composition and its molded article
JP2007246730A (en) 2006-03-16 2007-09-27 Du Pont Mitsui Polychem Co Ltd Flame-retardant resin composition
JP2008019294A (en) 2006-07-11 2008-01-31 Unitika Ltd Flame-retardant polylactic acid resin composition
JP2008088226A (en) * 2006-09-29 2008-04-17 Mitsubishi Plastics Ind Ltd Flame-retardant resin composition and injection molded article
EP2287253B1 (en) * 2008-05-27 2016-01-06 Teijin Chemicals, Ltd. Flame-retardant resin composition and molding derived therefrom

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1995970A (en) 1931-04-04 1935-03-26 Du Pont Polymeric lactide resin
US2362511A (en) 1939-11-21 1944-11-14 Du Pont Modified glycolide resins
US2683136A (en) 1950-10-25 1954-07-06 Du Pont Copolymers of hydroxyacetic acid with other alcohol acids
US2758987A (en) 1952-06-05 1956-08-14 Du Pont Optically active homopolymers containing but one antipodal species of an alpha-monohydroxy monocarboxylic acid
US3141032A (en) 1963-01-23 1964-07-14 Union Carbide Corp Dialkyl pentaerythritol diphosphonates and phosphite phosphonates
US3635956A (en) 1968-03-01 1972-01-18 Squibb & Sons Inc Benzothiazines related compounds derivatives and salts thereof
US3797499A (en) 1970-05-13 1974-03-19 Ethicon Inc Polylactide fabric graphs for surgical implantation
US4057537A (en) 1975-01-28 1977-11-08 Gulf Oil Corporation Copolymers of L-(-)-lactide and epsilon caprolactone
JPS5339698A (en) 1976-09-21 1978-04-11 Borg Warner Flame resisting phosphonate composition
JPS54157156A (en) 1978-05-30 1979-12-11 Borg Warner Fire resistant polycarbonate composition
US5310865A (en) 1991-12-18 1994-05-10 Mitsui Toatsu Chemicals, Incorporated Polyhydroxycarboxylic acid and preparation process thereof
US5428126A (en) 1993-04-02 1995-06-27 Mitsui Toatsu Chemicals, Inc. Aliphatic polyester and preparation process thereof
EP0712880A2 (en) 1994-11-17 1996-05-22 Mitsui Toatsu Chemicals, Incorporated Preparation process of degradable block copolyesters
JP2004018765A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018767A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018766A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2004018764A (en) * 2002-06-19 2004-01-22 Teijin Chem Ltd Flame-retardant resin composition and molding prepared therefrom
JP2005538239A (en) * 2002-09-09 2005-12-15 ビーエーエスエフ アクチェンゲゼルシャフト Anion polymerized high impact polystyrene with good flowability
JP2005139431A (en) * 2003-10-16 2005-06-02 Nippon Polystyrene Kk Method for molding polystyrene-based resin using master batch and molded product produced by the method for molding
JP2006016558A (en) * 2004-07-05 2006-01-19 Mitsubishi Engineering Plastics Corp Polyester resin composition and molding
JP2007301449A (en) 2006-05-09 2007-11-22 Tsrc Corp Method for hydrogenating conjugated diene polymer
WO2008026575A1 (en) * 2006-09-01 2008-03-06 Kaneka Corporation Polyester-containing resin composition
JP2008156616A (en) * 2006-11-28 2008-07-10 Toray Ind Inc Resin composition and molded product made therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2399959A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057297A1 (en) * 2010-10-27 2012-05-03 帝人化成株式会社 Flame-retardant resin composition and molded article produced from same
JP2012092231A (en) * 2010-10-27 2012-05-17 Teijin Chem Ltd Flame-retardant resin composition and molded article composed of the same
JP2012092230A (en) * 2010-10-27 2012-05-17 Teijin Chem Ltd Flame-retardant resin composition and molded article composed of the same
EP2634217A4 (en) * 2010-10-27 2016-01-06 Teijin Ltd Flame-retardant resin composition and molded article produced from same

Also Published As

Publication number Publication date
JPWO2010095699A1 (en) 2012-08-30
US8859655B2 (en) 2014-10-14
EP2399959A4 (en) 2014-10-22
KR20110127125A (en) 2011-11-24
US20110301266A1 (en) 2011-12-08
JP5622717B2 (en) 2014-11-12
EP2399959A1 (en) 2011-12-28
TW201038665A (en) 2010-11-01
CN102227472A (en) 2011-10-26
TWI464212B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5622717B2 (en) Flame retardant resin composition and molded product therefrom
JP5371974B2 (en) Flame retardant resin composition and molded product therefrom
US8304476B2 (en) Flame retardant resin composition and molded article thereof
JP5563249B2 (en) Flame retardant resin composition and molded product therefrom
WO2012057297A1 (en) Flame-retardant resin composition and molded article produced from same
JP5378881B2 (en) Flame retardant resin composition and molded product therefrom
JP5784894B2 (en) Flame retardant resin composition and molded product therefrom
JP6659590B2 (en) Flame retardant resin composition and molded article therefrom
JP5378712B2 (en) Flame retardant resin composition and molded product therefrom
JP5346708B2 (en) Flame retardant resin composition and molded product therefrom
JP3948812B2 (en) Flame retardant resin composition
JP5394813B2 (en) Flame retardant resin composition and molded product therefrom
JP5420987B2 (en) Flame retardant resin composition and molded product therefrom
WO2011070689A1 (en) Flame-retardant resin composition and molded products thereof
JP2010275347A (en) Flame-retardant resin composition and molded product made therefrom

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003382.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016552

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011500652

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010743825

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13201929

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 5925/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE