WO2009087835A1 - Stator iron-core structure for rotating electric machine, and method for manufacturing the same - Google Patents

Stator iron-core structure for rotating electric machine, and method for manufacturing the same Download PDF

Info

Publication number
WO2009087835A1
WO2009087835A1 PCT/JP2008/071862 JP2008071862W WO2009087835A1 WO 2009087835 A1 WO2009087835 A1 WO 2009087835A1 JP 2008071862 W JP2008071862 W JP 2008071862W WO 2009087835 A1 WO2009087835 A1 WO 2009087835A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnetic pole
rotor
claw magnetic
core
Prior art date
Application number
PCT/JP2008/071862
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Makiyama
Toshiya Teramae
Keii Ueno
Yuji Enomoto
Yoshihisa Ishikawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2009087835A1 publication Critical patent/WO2009087835A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles

Definitions

  • the present invention relates to a structure of a wide variety of rotating electrical machines such as motors and generators widely used for electric power machines, industrial use, household appliances, automobiles, and the like, and a manufacturing method thereof.
  • Rotating electrical machines such as motors and generators include various types of motors and generators such as induction motors, permanent magnet synchronous motors, and DC commutator motors. Most of these rotating machines are composed of a winding and an iron core, and the principle of obtaining a rotational force by utilizing the fact that the iron core becomes an electromagnet by passing an electric current through the winding is adopted.
  • These motors are configured by forming a stator or rotor with a ferromagnetic core such as iron and winding a groove called a slot provided in the core.
  • a ferromagnetic core such as iron
  • winding a groove called a slot provided in the core usually, an iron core is formed by stacking a plurality of insulating coatings on the surface of a thin iron plate having a small iron loss such as an electromagnetic steel plate. This is to suppress eddy currents that occur as the magnetic flux of the windings and magnets changes.
  • FIG. 30A shows the relationship between the stator and the rotor
  • FIG. 30B shows an example of a rotating electrical machine including the stator and the rotor.
  • motors are desired to have high efficiency, and motors with these structures can achieve high efficiency by reducing copper loss and iron loss.
  • the point of copper loss is how to reduce the resistance of the coil. It increases in the winding ratio (space factor) of the winding (conductor) in the slot of the core and in the stacking direction of the core called the coil end. Smaller parts lead to reduced copper loss.
  • As for iron loss it is necessary to reduce hysteresis loss and eddy current loss of an iron plate or the like.
  • Patent Document 1 has a structure in which the coil end is eliminated in the axial direction, and the space factor can be improved at the same time.
  • the motor structure is shown. In this motor structure, since there is no coil end in the axial direction of the stator iron core, it is said that miniaturization can be achieved.
  • a dust core is used for the iron core.
  • the dust core is manufactured by a method in which iron powder coated with an insulating film is pressed at a very high pressure. The pressure at this time is as extremely high as 1 GPa in order to obtain a molded body having a density of 7.4 Mg / m 3.
  • the press for obtaining a molded body having an area of about 100 cm 2 is 1000 tons, and it is difficult to make a large product.
  • the obtained molded body has a very low strength. Since it is a compact that has only been compression-molded and has only a bending strength of about 150 MPa at the maximum, the strength of the iron core alone is not sufficient as a strength member of the motor. .
  • the dust core has the property of being easily rusted, and thus has many drawbacks such as being unsuitable for applications such as those used in harsh environments exposed to salt water and muddy water. is doing.
  • the inductance of the coil becomes larger than the motor structure. Since the entire coil is covered with a magnetic material, the inductance is inevitably increased. When the inductance increases, the phase difference between current and voltage increases and the power factor, which is the main characteristic of motors and generators, is reduced. In addition, since the electrical time constant becomes large, there arises a problem in characteristics such as lack of controllability.
  • the object of the present invention is to simultaneously satisfy the increase in size, increase in strength, improvement in environmental performance, and reduction in coil inductance of the claw pole type motor described in Patent Document 1, with high efficiency and small size. It is to provide rotating electricity, that is, an electric motor and a generator.
  • the stator iron core of the claw pole type motor is constituted by using a high-strength magnetic material other than the dust core. And it is set as the structure which eliminates parts other than a minimum necessary magnetic body as a magnetic circuit.
  • the claw magnetic poles constituting the claw pole motor are configured by using an iron plate such as an electromagnetic steel plate, a cold-rolled steel plate, or an electromagnetic stainless steel.
  • the stator is configured to have a stator winding that is annularly wound around the outer side of the rotor, and a shaft that is disposed at a portion facing the rotor.
  • the stator core includes stator claw magnetic poles extending alternately from both sides in the direction, and the stator core is configured by laminating steel plates.
  • the relative positional relationship of the stator for one phase arranged in the axial direction is 90 degrees in terms of the electrical angle for a two-phase rotating electrical machine, that is, the mechanical angle per one pole pair on the rotor side. It is necessary to dispose by 1/4. In the case of a three-phase rotating electric machine, it is necessary to dispose the electric angle by 120 degrees, that is, by shifting the mechanical angle per one pole pair on the rotor side by 1/3. Further, when the stator side is arranged without being shifted, it can be realized by arranging the poles of the portion corresponding to the stator on the rotor side at the angles constituting the multi-phase rotating electrical machine as described above.
  • the rotating electrical machine manufacturing method for achieving the above object includes a first step of cutting an annular material from a steel plate, and a second step of forming the stator claw magnetic pole portion and the stator back portion on the material. A step, a third step of laminating the molded material, and a fourth step of joining the laminated material.
  • Rotation established as a rotating electrical machine such as surface magnet type rotor, embedded magnet type rotor, DC field type Rundel type rotor with slip ring and brush, cage type rotor with inductor, reluctance type rotor, etc. It can handle all of the children.
  • the system can be applied to a wide range of systems that use rotating electrical machines. Although it can be used in various systems such as motors or generators, it can be expected to be resistant to deterioration due to rust, improved mechanical strength, and reduced inductance. It can be used in the machine system.
  • the claw pole type rotating electric machine of the present invention is small in size, can be highly efficient, and can be increased in temperature.
  • highly reliable products can be supplied.
  • FIG. 1 is a perspective view of one phase of the stator according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of one phase of the stator according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view and a cross-sectional view of the claw magnetic pole portion of the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the stator core according to the first embodiment of the present invention.
  • FIG. 5 shows a first example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 6 shows a second example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 7 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 8 is a diagram for explaining the molding method of Example 1 of the present invention.
  • FIG. 9 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 10 is a diagram for explaining the molding method of Example 1 of the present invention.
  • FIG. 11 is a diagram for explaining the molding method of Example 1 of the present invention.
  • FIG. 12 is a diagram for explaining the molding method of Example 1 of the present invention.
  • FIG. 13 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 14 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 15 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 16 shows a third example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 17 shows a fourth example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 16 shows a third example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 18 shows a fifth example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 19 shows a sixth example of the manufacturing method according to the first embodiment of the present invention.
  • FIG. 20 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 21 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 22 is a view for explaining the molding method of Example 1 of the present invention.
  • FIG. 23 is a diagram for explaining the molding method of Example 1 of the present invention.
  • FIG. 24 is a perspective view of one phase of the stator according to the second embodiment of the present invention.
  • FIG. 25 is an exploded perspective view of one phase of the stator according to the second embodiment of the present invention.
  • FIG. 26 is a perspective view of one magnetic pole of the stator according to the second embodiment of the present invention.
  • FIG. 27 is a first example of a manufacturing method according to the second embodiment of the present invention.
  • FIG. 28 shows a second example of the manufacturing method according to the second embodiment of the present invention.
  • FIG. 29 is a view for explaining the molding method of Example 2 of the present invention.
  • FIG. 30A is a diagram illustrating the structure of a conventional rotating electrical machine.
  • FIG. 30B is a diagram illustrating an example of a conventional rotating electrical machine.
  • FIGS. 1 is a perspective view of one phase of the stator
  • FIG. 2 is an exploded perspective view of one phase of the stator.
  • stator 1 is composed of a stator core 2 and a stator winding 3. Further, as shown in FIG. 2, the stator core 2 is formed by laminating a material composed of a claw magnetic pole portion 4, a back surface portion 6, and a side surface portion 5 in the axial direction. The stator core 2 is configured by combining parts of the same shape with the axial end surface 7 of the back surface portion 6. For this reason, winding of the stator winding
  • the stator core 2 is composed of a steel plate in which the claw magnetic pole portion 4, the back surface portion 6 and the side surface portion 5 are integrated.
  • the steel plate constituting the stator core 2 is an electromagnetic steel plate, the output characteristics of the rotating electrical machine are improved. It is possible to make it. At this time, it is not always necessary to use electromagnetic steel sheets for all layers of the stator core 2.
  • the thickness of the steel plates constituting the stator core 2 does not necessarily have to be the same for all layers.
  • the characteristics of the rotating electrical machine can be improved.
  • by increasing the thickness of the layer close to the rotor it is possible to increase the rigidity of the claw magnetic pole portion 4 in the axial center direction.
  • FIG. 3 shows a perspective view of one magnetic pole of the stator core 2 in which the claw magnetic pole portion 4 has slits 8 and a cross-sectional shape of the claw magnetic pole portion 4. It is possible to reduce the eddy current by inserting the slit 8 in the claw magnetic pole part 4. Further, the slit 8 does not necessarily have to penetrate, and may be a triangular unevenness 9, a rectangular unevenness 10, a sawtooth unevenness 11 shown in FIGS.
  • the slits 8 are not necessarily parallel to the axial direction, and may be, for example, a radial shape extending from the center of the claw magnetic pole portion 4 or a direction perpendicular to the axial direction.
  • the slits 8 and the triangular irregularities 9, the rectangular irregularities 10, the sawtooth irregularities 11 and the like do not necessarily have to be linear, and are circular when viewed from a direction perpendicular to the claw magnetic pole part 4, for example, dimples. Or an ellipse or a polygon may be sufficient.
  • FIG. 4 shows a cross section of the stator core 2.
  • FIG. 5 shows a first example of the manufacturing method according to the first embodiment of the present invention.
  • An annular material 13 is cut out from a steel plate, the claw magnetic pole portion 4 and the back surface portion 6 are formed on one of the cut out materials 13, the formed material 13 is laminated, and the laminated materials 13 are joined together.
  • FIG. 6 shows a second example of the manufacturing method according to the first embodiment of the present invention. From the step of cutting the annular material 13 from the steel plate, laminating the cut material 13, forming the claw magnetic pole portion 4 and the back surface portion 6 on the material 13 in a state where the material 13 is laminated, and joining the formed materials 13 to each other. Become.
  • the annular material 13 In the process of cutting the annular material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
  • the axial center of the material 13 and the center of the part formed on the claw magnetic pole portion 4 are aligned, and the material 13 is laminated in the thickness direction.
  • the material 13 is placed on the side surface forming tool 15 as shown in FIG.
  • a claw magnetic pole part forming tool 16 having a cylindrical shape for bending and forming the circumferential shape of the stator core 2, and for bending the back part 6 out of the plane and forming the circumferential shape of the stator core 2.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the back surface forming tool 14 having a cylindrical space as shown in FIG. Further, in FIG.
  • the claw magnetic pole part forming tool 16 and the back surface forming tool 14 are pressed into the fixed side part forming tool 15, but the fixed claw magnetic pole part forming tool 16 and the back part forming tool 14 are pressed.
  • the side surface forming tool 15 may be pushed in.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed as shown in FIG. 8B, thereby restraining the deformation of the side surface portion 5 in the circumferential direction and the axial direction. Molding to molding becomes easy.
  • the claw magnetic pole part 4 and the claw are pressed and held in the plate thickness direction by the side part forming tool 15 and the side part forming opposing tool 17. It is possible to suppress the deformation of the claw magnetic pole part 4 in the axial direction due to the friction generated between the magnetic pole part forming tools 16.
  • the claw magnetic pole portion forming opposing tool 18 facing the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween By forming the material 13 with a load applied in the plate thickness direction, the claw magnetic pole forming portion 19 undergoes bending and bending back deformation, so that the claw magnetic pole 4 is prevented from being tilted toward the center in the radial direction after the claw magnetic pole portion 4 is formed. Is possible.
  • the material 13 is formed by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed with a single material 13, so the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. is there.
  • the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned.
  • the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
  • the number of forming steps of the claw magnetic pole part 4 and the side surface part 5 can be reduced.
  • the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG.
  • the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
  • the step of joining the materials 13 to each other for example, at least one of the claw pole portion tip portion 22 or the back portion tip portion 23 is laser welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG. As shown in FIG. 15A, the projections 25 and the recesses 26, which are formed by half-cutting in the thickness direction of the material 13 as shown in FIG. In addition, this joining step is performed in the same step as the lamination or in a later step than the lamination step.
  • the following manufacturing method may be used, which is a combination of the first example of the above manufacturing method and the second example of the above manufacturing method. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining.
  • the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole part 4 and the back surface part 6 are formed on the laminated material 13. It consists of a process of laminating the molded material 13 and joining the laminated material 13.
  • FIG. 16 shows a third example of the manufacturing method according to the first embodiment of the present invention.
  • the material 13 for one magnetic pole or a plurality of magnetic poles is cut out from the steel plate, the claw magnetic pole part 4 and the back surface part 6 are formed on one piece of the cut out material 13, the formed material 13 is laminated, and the laminated materials 13 are laminated together. Are joined and assembled in the circumferential direction.
  • FIG. 17 shows a second example of the manufacturing method according to the first embodiment of the present invention.
  • the material 13 for one magnetic pole or a plurality of magnetic poles is cut out from the steel plate, the cut material 13 is laminated, the claw magnetic pole portion 4 and the back surface portion 6 are formed on the material 13 in a state where the material 13 is laminated, and the formed material 13 It consists of a process of joining together and assembling them in the circumferential direction.
  • the material 13 for one magnetic pole or a plurality of magnetic poles is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
  • the centers of the portions formed in the claw magnetic pole portions 4 are aligned, and the raw materials 13 are laminated in the thickness direction.
  • a base plate is placed on the side surface portion forming tool 15, and the claw magnetic pole portion 4 is bent out of the plane and the stator core 2 circumferential directions.
  • the claw pole part forming tool 16 having a convex arc shape in cross section for forming the shape, and the cross section for forming the back surface part 6 to be bent out of the plane and the shape in the circumferential direction of the stator core.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the back surface forming tool 14 having a concave arc shape.
  • claw pole part forming tool 16 and the back part forming tool 14 may be pushed into the fixed side part forming tool 15, or the fixed claw pole part forming tool 16 and the back part forming tool 14 may be pressed.
  • the side surface forming tool 15 may be pushed in.
  • a load is applied in the plate thickness direction by the side surface forming opposing tool 17 facing the side surface forming tool 15 with the material 13 interposed therebetween.
  • the deformation of the side surface portion 5 in the circumferential direction and the axial direction is restrained, and molding into a desired shape becomes easy.
  • the side part forming tool 15 and the side part forming opposing tool 17 are used in the plate thickness direction.
  • the claw magnetic pole portion 4 or the back surface portion 6 is deformed in the axial direction due to the friction generated between the claw magnetic pole and the claw magnetic pole portion forming tool 16 or between the back surface portion 6 and the back surface portion forming tool 14. It is possible to suppress.
  • the claw magnetic pole portion forming opposed tool 18 that faces the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween is used in the material 13 plate thickness direction.
  • the claw magnetic pole forming part is subjected to bending and bending back deformation, so that it is possible to reduce the collapse of the claw magnetic pole forming part 19 toward the center in the radial direction that occurs after the claw magnetic pole part 4 is formed. It is.
  • a load is applied in the material 13 plate thickness direction by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed with a single material 13, so the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. is there.
  • the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned.
  • the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed in a stacked state, and therefore the number of forming steps of the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
  • the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG.
  • the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
  • the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
  • the step of joining the materials 13 to each other for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG.
  • the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction.
  • this joining step is performed in the same step as the lamination or in a later step than the lamination step.
  • the following manufacturing method may be used, which is a combination of the third example of the above manufacturing method and the fourth example of the above manufacturing method. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining.
  • the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole portion 4 and the back surface portion 6 are formed on the laminated material 13.
  • the material 13 is laminated, and the laminated material 13 is joined.
  • FIG. 18 shows a fifth example of the manufacturing method according to the first embodiment of the present invention.
  • the material 13 is cut out from the strip-shaped continuous steel sheet, the step of forming at least one of the claw magnetic pole portion 4 or the back surface portion 6 of the cut-out material 13, the step of laminating the formed material 13 in a spiral shape, and the layered material 13 It consists of the process of joining.
  • the material 13 is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
  • At least one of the claw magnetic pole portion 4 or the back surface portion 6 is formed by roll forming, for example, and the strip-shaped material 13 is formed in the circumferential direction, laminated in a spiral shape, and bonded To do.
  • the claw magnetic pole portion 4 or the back surface portion 6 may not be molded, and after bonding, the non-molded portion may be molded as in the second example of the manufacturing method of Embodiment 1 of the present invention. good.
  • FIG. 19 shows a sixth example of the manufacturing method according to the first embodiment of the present invention. From the step of cutting the material 13 from the steel plate, laminating the cut material 13, forming the claw magnetic pole portion 4 and the back surface portion 6 of the laminated material 13, joining the formed material 13, and making the joined material 13 annular Become. Further, the claw magnetic pole portion 4 and the back surface portion 6 of the cut material 13 may be formed and the formed materials may be laminated.
  • the material 13 from the steel plate In the process of cutting the material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
  • the centers of the portions formed in the claw magnetic pole portion 4 are aligned, and the raw material 13 is stacked in the thickness direction.
  • a base plate is placed on the side part forming tool 15 and the claw magnetic pole part forming for bending the claw magnetic pole part 4 out of the plane is performed.
  • the claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the tool 16 and the back surface forming tool 14 for bending the back surface portion 6 out of the plane.
  • claw pole part forming tool 16 and the back part forming tool 14 may be pushed into the fixed side part forming tool 15, or the fixed claw pole part forming tool 16 and the back part forming tool 14 may be pressed.
  • the side surface forming tool 15 may be pushed in.
  • a load is applied in the plate thickness direction by the side surface forming opposing tool 17 facing the side surface forming tool 15 with the material 13 interposed therebetween.
  • the deformation of the side surface portion 5 in the circumferential direction and the axial direction is restrained, and molding into a desired shape becomes easy.
  • the side part forming tool 15 and the side part forming opposing tool 17 are used in the plate thickness direction.
  • the claw magnetic pole portion 4 or the back surface portion 6 is deformed in the axial direction due to the friction generated between the claw magnetic pole and the claw magnetic pole portion forming tool 16 or between the back surface portion 6 and the back surface portion forming tool 14. It is possible to suppress.
  • the claw magnetic pole portion forming opposed tool 18 that faces the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween is used in the material 13 plate thickness direction.
  • the claw magnetic pole forming part is subjected to bending and bending back deformation, so that it is possible to reduce the collapse of the claw magnetic pole forming part 19 toward the center in the radial direction that occurs after the claw magnetic pole part 4 is formed. It is.
  • a load is applied in the material 13 plate thickness direction by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween.
  • the radius of the corner 12 connecting the claw magnetic pole part 4 and the side part 5 can be reduced.
  • the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned.
  • the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
  • the number of forming steps of the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
  • the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG.
  • the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
  • the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
  • the step of joining the materials 13 to each other for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG.
  • the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction.
  • this joining step is performed in the same step as the lamination or in a later step than the lamination step.
  • a manufacturing method as described below which is a combination of a method of forming the raw materials 13 one by one and a method of forming the raw materials 13 in a stacked state, may be used. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining.
  • the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole portion 4 and the back surface portion 6 are formed on the laminated material 13.
  • the material 13 is laminated, and the laminated material 13 is joined.
  • the claw magnetic pole portion may fall in the axial center direction as shown in FIG.
  • the claw magnetic pole portion is overbended by pushing the conical tool 28 in the axial direction (arrow direction) as shown in FIG.
  • the tilt of the claw magnetic pole portion 4 in the axial center direction can be controlled.
  • the claw magnetic pole portion forming tool 16 is moved in the axial direction and radially outward (arrow direction) to be in the state of FIG. In this way, the tilt of the claw magnetic pole portion 4 in the axial center direction can be controlled.
  • the peripheral length of the outer peripheral portion is shortened by forming. I am prone to wrinkles. Therefore, for example, the generation of wrinkles can be suppressed by making a notch 29 toward the center in the radial direction in the outer peripheral portion of the material 13 as shown in FIG.
  • FIG. 23 shows an example of a forming method of the claw magnetic pole portion 4 such as the triangular irregularities 9, the rectangular irregularities 10, and the sawtooth irregularities 11.
  • the claw magnetic pole portion 4 is placed on the outer shape restraining tool 31 that constrains the outer shape of the claw magnetic pole portion 4, and the triangular unevenness 9, the rectangular unevenness 10, and the sawtooth
  • the surface shape of the concavo-convex forming tool 30 is transferred by the concavo-convex forming tool 30 for forming the concavo-convex 11 and the like, and the triangular concavo-convex 9, the rectangular concavo-convex 10, and the sawtooth concavo-convex 11 are formed on the claw magnetic pole portion 4. Is the method. At this time, an arbitrary uneven shape can be formed by changing the shape of the uneven forming tool 30 to be transferred.
  • the convex shape of the roller 32 is transferred to the claw magnetic pole portion 4 by pressing the roller 32 having a convex central portion against the claw magnetic pole portion 4.
  • This is a method of forming triangular irregularities 9, rectangular irregularities 10, sawtooth irregularities 11, and the like.
  • an arbitrary uneven shape can be formed by changing the convex shape of the roller 32 to be transferred.
  • FIG. 24 is a perspective view of one phase of the stator
  • FIG. 25 is an exploded perspective view of one phase of the stator
  • FIG. 26 is a perspective view of half A of one magnetic pole and B of one magnetic pole of the stator.
  • the stator 1 of the rotating electrical machine shown in FIG. 24 includes a stator core 2, a stator winding 3, and a holding plate 33.
  • the stator core 2 is formed by laminating a material composed of a claw magnetic pole portion 4, a back surface portion 6, and a side surface portion 5 in the circumferential direction.
  • the stator core 2 is arranged in the circumferential direction with one magnetic pole or half of one magnetic pole as one segment, and the holding plate 33 positions and fixes each segment.
  • it comprises by match
  • FIG. 27 shows a first example of the manufacturing method according to the second embodiment of the present invention.
  • the material 13 is cut from the steel plate, the cut material is formed, the formed material 13 is laminated, the laminated materials 13 are joined together, and the joined materials are assembled.
  • FIG. 28 shows a second example of the manufacturing method according to the second embodiment of the present invention.
  • the material 13 is cut out from the steel plate, the cut material 13 is laminated, the claw magnetic pole portion 4 and the back surface portion 6 are formed on the material 13 in a state where the material 13 is laminated, the formed materials 13 are joined together, and the joined material It consists of the process of assembling.
  • the annular material 13 In the process of cutting the annular material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
  • the centers of the materials 13 are aligned and the materials 13 are laminated in the thickness direction.
  • the material 13 is placed on the lower bending tool 34 of the bending tools 34 and 35 that are formed into a pair of opposing Z-shapes and bent.
  • the material 13 is sandwiched between the bending tool upper 35 and the bending tool lower 34 as shown in FIG.
  • the material 13 is formed as follows.
  • the bent portion of the molded material 13 and the side surface portion 5 are aligned and sequentially laminated.
  • the step of joining the materials 13 to each other for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG.
  • the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction.
  • this joining step is performed in the same step as the lamination or in a later step than the lamination step.
  • one magnetic pole or half of one magnetic pole is joined as one segment.
  • one magnetic pole or half of the primary pole is arranged and fixed by a positioning mechanism provided on the holding plate 33.
  • this positioning mechanism creates a recess having a shape as if the side surface portion 5 was transferred, and presses and fixes one magnetic pole portion or half of the primary pole.
  • a convex shape is provided in the magnetic pole arrangement part of the holding plate 33, and a convex part is provided in the side part 5, and positioning is performed.

Abstract

The existing rotating electric machine using a molded magnetic core as an iron core is troubled by problems that the obtained molding is so low in strength as to have a small power factor, and that the electric time constant is so large as to have low controllability. Claw magnetic poles constituting a claw-pole motor are made of steel sheets such as sheets of electromagnetic steel, cold-rolled steel or electromagnetic stainless steel. The stator of the rotating electric machine is constituted of a stator coil wound annularly on the outer side of the rotor, and a stator iron core having stator claw magnetic poles extending alternately from the two axial sides to the portion facing that rotor, and the stator iron core laminates the steel sheets.

Description

回転電機用固定子鉄心構造およびその製造方法Stator core structure for rotating electrical machine and manufacturing method thereof
 本発明は、電力電機用、産業用、家電用、自動車用などに幅広く使用されるモータ、発電機などの幅広い回転電機の構造およびその製造方法に関するものである。 The present invention relates to a structure of a wide variety of rotating electrical machines such as motors and generators widely used for electric power machines, industrial use, household appliances, automobiles, and the like, and a manufacturing method thereof.
 モータ、発電機などの回転電機は、誘導電動機、永久磁石同期電動機、直流整流子モータなど、種々の形式のモータ、発電機がある。これらの回転機は、ほとんどが巻き線と鉄心で構成され、巻き線に電流を流すことで鉄心が電磁石となることを利用して回転力を得る原理が採用されている。 Rotating electrical machines such as motors and generators include various types of motors and generators such as induction motors, permanent magnet synchronous motors, and DC commutator motors. Most of these rotating machines are composed of a winding and an iron core, and the principle of obtaining a rotational force by utilizing the fact that the iron core becomes an electromagnet by passing an electric current through the winding is adopted.
 これらのモータは、固定子、または回転子を鉄などの強磁性体の鉄心で構成し、その鉄心に設けたスロットと呼ばれる溝に巻き線を施すことで構成される。通常、鉄心には電磁鋼板などの鉄損の少ない薄手の鉄板の表面に絶縁コーティングしたものを複数枚積み重ねて鉄心を構成する。これは、巻き線や磁石の磁束が変化するのに伴って発生する渦電流を抑えるためである。図30Aには、固定子と回転子の関係を示し、図30Bには固定子と回転子を備えた回転電機の例を示す。 These motors are configured by forming a stator or rotor with a ferromagnetic core such as iron and winding a groove called a slot provided in the core. Usually, an iron core is formed by stacking a plurality of insulating coatings on the surface of a thin iron plate having a small iron loss such as an electromagnetic steel plate. This is to suppress eddy currents that occur as the magnetic flux of the windings and magnets changes. FIG. 30A shows the relationship between the stator and the rotor, and FIG. 30B shows an example of a rotating electrical machine including the stator and the rotor.
 一般的にモータは高効率であることが望まれており、これらの構造のモータでは、銅損と鉄損を低減することで高効率化が達成できる。銅損は、コイルの抵抗をいかに小さくするかがポイントであり、鉄心のスロット内の巻き線(導体)の割合(占積率)を高くすることと、コイルエンドと呼ばれる鉄心の積層方向ではみだした部分を小さくすることが銅損の低減につながる。鉄損は、鉄板などのヒステリシス損と渦電流損を小さくすることが必要である。 Generally, motors are desired to have high efficiency, and motors with these structures can achieve high efficiency by reducing copper loss and iron loss. The point of copper loss is how to reduce the resistance of the coil. It increases in the winding ratio (space factor) of the winding (conductor) in the slot of the core and in the stacking direction of the core called the coil end. Smaller parts lead to reduced copper loss. As for iron loss, it is necessary to reduce hysteresis loss and eddy current loss of an iron plate or the like.
 上記より、銅損、鉄損を低減してモータを小型化する構造が提案されている。例えば、特許文献1では、コイルエンドを軸方向になくす構造で、占積率も同時に向上でき、高密度で高抵抗の特性を有する圧粉磁心を鉄心に採用してモータの鉄損も低減するモータ構造が示されている。このモータ構造では、固定子鉄心の軸方向にコイルエンド有さないために小型化も図れるとされている。
特開2006-296188号公報
From the above, a structure for reducing the motor loss by reducing copper loss and iron loss has been proposed. For example, Patent Document 1 has a structure in which the coil end is eliminated in the axial direction, and the space factor can be improved at the same time. The motor structure is shown. In this motor structure, since there is no coil end in the axial direction of the stator iron core, it is said that miniaturization can be achieved.
JP 2006-296188 A
 上記従来技術においては、鉄心に圧粉磁心を用いるために、種々の問題が残されている。ひとつには、圧粉磁心を用いるために、大型化が困難であることである。圧粉磁心は、絶縁皮膜の施された鉄粉を非常に高圧力で押し固める方法で製造される。このときの圧力は、密度7.4Mg/m3の成形体を得るのに1GPaと非常に大きい。これからわかるとおり、100cm2程度の面積を持つ成形体を得るためのプレスは、1000トンにもなり、大きいものを作ることが困難であることがわかる。 In the above prior art, various problems remain because a dust core is used for the iron core. One is that it is difficult to increase the size because a dust core is used. The dust core is manufactured by a method in which iron powder coated with an insulating film is pressed at a very high pressure. The pressure at this time is as extremely high as 1 GPa in order to obtain a molded body having a density of 7.4 Mg / m 3. As can be seen from this, the press for obtaining a molded body having an area of about 100 cm 2 is 1000 tons, and it is difficult to make a large product.
 また、そのような製造方法であるがゆえに、得られた成形体は非常に強度が低いという問題がある。圧縮成形されただけの成形体で、曲げ強度が最大でも150MPa程度の強度しかないため、鉄心だけの強度ではモータの強度メンバとしては不十分なため、モールドなどの強度向上策が必要であった。 Also, because of such a manufacturing method, there is a problem that the obtained molded body has a very low strength. Since it is a compact that has only been compression-molded and has only a bending strength of about 150 MPa at the maximum, the strength of the iron core alone is not sufficient as a strength member of the motor. .
 さらに、この圧粉磁心は錆びやすいという性質も有しているために、自動車用など、塩水、泥水などにさらされる過酷な環境下で使用される用途には不向きであるなどの欠点を多く有している。 Furthermore, the dust core has the property of being easily rusted, and thus has many drawbacks such as being unsuitable for applications such as those used in harsh environments exposed to salt water and muddy water. is doing.
 また、設計的な制限事項としては、そのモータ構造より、コイルのインダクタンスが大きくなるという問題がある。コイル全体を磁性体で覆う構造とするために、どうしてもインダクタンスが大きくなってしまうのである。インダクタンスが大きくなると、電流と電圧の位相差が大きくなりモータや発電機の主要特性である力率を低下させる。また、電気的な時定数も大きくなるので制御性に欠けるといった特性上の問題が発生する。 Also, as a design limitation, there is a problem that the inductance of the coil becomes larger than the motor structure. Since the entire coil is covered with a magnetic material, the inductance is inevitably increased. When the inductance increases, the phase difference between current and voltage increases and the power factor, which is the main characteristic of motors and generators, is reduced. In addition, since the electrical time constant becomes large, there arises a problem in characteristics such as lack of controllability.
 本発明の目的は、上記課題を解決すべく、前記特許文献1記載のクローポール型モータの大型化、高強度化、対環境性能向上、コイルインダクタンス低減を同時に満足して、高効率で小形の回転電気、すなわち電動機や発電機を提供することにある。 In order to solve the above problems, the object of the present invention is to simultaneously satisfy the increase in size, increase in strength, improvement in environmental performance, and reduction in coil inductance of the claw pole type motor described in Patent Document 1, with high efficiency and small size. It is to provide rotating electricity, that is, an electric motor and a generator.
 本発明は上記目的を達成するために、クローポール型モータの固定子鉄心を圧粉磁心以外の高強度な磁性体を用いて構成する。そして、磁気回路として必要最低限の磁性体以外の部分を無くす構造とする。 In the present invention, in order to achieve the above object, the stator iron core of the claw pole type motor is constituted by using a high-strength magnetic material other than the dust core. And it is set as the structure which eliminates parts other than a minimum necessary magnetic body as a magnetic circuit.
 具体的には、クローポールモータを構成する爪磁極を電磁鋼板、冷間圧延鋼板、電磁ステンレスなどの鉄板を用いて構成し、回転電機は、回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有する回転電機において、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成されている。 Specifically, the claw magnetic poles constituting the claw pole motor are configured by using an iron plate such as an electromagnetic steel plate, a cold-rolled steel plate, or an electromagnetic stainless steel. In the rotating electrical machine having a stator provided at a portion facing the outer periphery of the rotor, the stator is configured to have a stator winding that is annularly wound around the outer side of the rotor, and a shaft that is disposed at a portion facing the rotor. The stator core includes stator claw magnetic poles extending alternately from both sides in the direction, and the stator core is configured by laminating steel plates.
 このとき、軸方向に配置する1相分の固定子の相対位置関係は、2相回転電機であれば、電機角で90度ずつ、すなわち回転子側の一極対あたりの機械的な角度の1/4ずらして配置する必要がある。また、3相回転電機であれば、電機角で120度ずつ、すなわち回転子側の一極対あたりの機械的な角度の1/3ずらして配置する必要がある。また、固定子側はずらさないで配置した場合においては、回転子側の固定子に対応する部分の極をそれぞれ上記のように複数相回転電機を構成する角度に配置することでも実現できる。 At this time, the relative positional relationship of the stator for one phase arranged in the axial direction is 90 degrees in terms of the electrical angle for a two-phase rotating electrical machine, that is, the mechanical angle per one pole pair on the rotor side. It is necessary to dispose by 1/4. In the case of a three-phase rotating electric machine, it is necessary to dispose the electric angle by 120 degrees, that is, by shifting the mechanical angle per one pole pair on the rotor side by 1/3. Further, when the stator side is arranged without being shifted, it can be realized by arranging the poles of the portion corresponding to the stator on the rotor side at the angles constituting the multi-phase rotating electrical machine as described above.
 また、上記目的を達成するための回転電機の製造方法は、鋼板から環状の素材を切抜く第1工程と、前記素材に前記固定子爪磁極部と前記固定子背面部とを成形する第2工程と、前記成形した素材を積層する第3工程と、前記積層した素材を接合する第4工程とを備えている。 The rotating electrical machine manufacturing method for achieving the above object includes a first step of cutting an annular material from a steel plate, and a second step of forming the stator claw magnetic pole portion and the stator back portion on the material. A step, a third step of laminating the molded material, and a fourth step of joining the laminated material.
 また、本発明の固定子を有する回転電機における回転子は、種々の形式のものが適用可能である。表面磁石型回転子、埋め込み磁石型回転子、スリップリングとブラシを有する直流界磁型ルンデルタイプ回転子、また、誘導子を有するかご型回転子、リラクタンス型回転子など回転電機として成立する回転子の全てに対応が可能である。 Moreover, various types of rotors can be applied to the rotor in the rotating electrical machine having the stator of the present invention. Rotation established as a rotating electrical machine such as surface magnet type rotor, embedded magnet type rotor, DC field type Rundel type rotor with slip ring and brush, cage type rotor with inductor, reluctance type rotor, etc. It can handle all of the children.
 システムとしては、回転電機を利用する広い範囲のシステムに適用が可能である。モータ、または発電機など、多種のシステムで利用可能であるが、課題で述べた錆びによる劣化に対して強くなったこと、機械的強度の向上、インダクタンスの低減などが見込めるため、車載用の発電機システムに採用が可能となる。 The system can be applied to a wide range of systems that use rotating electrical machines. Although it can be used in various systems such as motors or generators, it can be expected to be resistant to deterioration due to rust, improved mechanical strength, and reduced inductance. It can be used in the machine system.
 本発明により、圧粉磁心で構成するクローポールモータに比べ、渦電流による鉄損を大幅に低減することができる。本発明のクローポール型回転電機は、小形で、高効率、低温度上昇とできる。また、強度の問題が解決できるため、高信頼性の製品が供給可能である According to the present invention, iron loss due to eddy current can be greatly reduced as compared with a claw pole motor constituted by a dust core. The claw pole type rotating electric machine of the present invention is small in size, can be highly efficient, and can be increased in temperature. In addition, since the problem of strength can be solved, highly reliable products can be supplied.
図1は本発明の実施例1の固定子1相分の斜視図である。FIG. 1 is a perspective view of one phase of the stator according to the first embodiment of the present invention. 図2は本発明の実施例1の固定子1相分の分解斜視図である。FIG. 2 is an exploded perspective view of one phase of the stator according to the first embodiment of the present invention. 図3は本発明の実施例1の爪磁極部の斜視図および横断面図である。FIG. 3 is a perspective view and a cross-sectional view of the claw magnetic pole portion of the first embodiment of the present invention. 図4は本発明の実施例1の固定子鉄心の横断面図である。FIG. 4 is a cross-sectional view of the stator core according to the first embodiment of the present invention. 図5は本発明の実施例1の製造方法の第1の例である。FIG. 5 shows a first example of the manufacturing method according to the first embodiment of the present invention. 図6は本発明の実施例1の製造方法の第2の例である。FIG. 6 shows a second example of the manufacturing method according to the first embodiment of the present invention. 図7は本発明の実施例1の成形方法について説明した図である。FIG. 7 is a view for explaining the molding method of Example 1 of the present invention. 図8は本発明の実施例1の成形方法について説明した図である。FIG. 8 is a diagram for explaining the molding method of Example 1 of the present invention. 図9は本発明の実施例1の成形方法について説明した図である。FIG. 9 is a view for explaining the molding method of Example 1 of the present invention. 図10は本発明の実施例1の成形方法について説明した図である。FIG. 10 is a diagram for explaining the molding method of Example 1 of the present invention. 図11は本発明の実施例1の成形方法について説明した図である。FIG. 11 is a diagram for explaining the molding method of Example 1 of the present invention. 図12は本発明の実施例1の成形方法について説明した図である。FIG. 12 is a diagram for explaining the molding method of Example 1 of the present invention. 図13は本発明の実施例1の成形方法について説明した図である。FIG. 13 is a view for explaining the molding method of Example 1 of the present invention. 図14は本発明の実施例1の成形方法について説明した図である。FIG. 14 is a view for explaining the molding method of Example 1 of the present invention. 図15は本発明の実施例1の成形方法について説明した図である。FIG. 15 is a view for explaining the molding method of Example 1 of the present invention. 図16は本発明の実施例1の製造方法の第3の例である。FIG. 16 shows a third example of the manufacturing method according to the first embodiment of the present invention. 図17は本発明の実施例1の製造方法の第4の例である。FIG. 17 shows a fourth example of the manufacturing method according to the first embodiment of the present invention. 図18は本発明の実施例1の製造方法の第5の例である。FIG. 18 shows a fifth example of the manufacturing method according to the first embodiment of the present invention. 図19は本発明の実施例1の製造方法の第6の例である。FIG. 19 shows a sixth example of the manufacturing method according to the first embodiment of the present invention. 図20は本発明の実施例1の成形方法について説明した図である。FIG. 20 is a view for explaining the molding method of Example 1 of the present invention. 図21は本発明の実施例1の成形方法について説明した図である。FIG. 21 is a view for explaining the molding method of Example 1 of the present invention. 図22は本発明の実施例1の成形方法について説明した図である。FIG. 22 is a view for explaining the molding method of Example 1 of the present invention. 図23は本発明の実施例1の成形方法について説明した図である。FIG. 23 is a diagram for explaining the molding method of Example 1 of the present invention. 図24は本発明の実施例2の固定子1相分の斜視図である。FIG. 24 is a perspective view of one phase of the stator according to the second embodiment of the present invention. 図25は本発明の実施例2の固定子1相分の分解斜視図である。FIG. 25 is an exploded perspective view of one phase of the stator according to the second embodiment of the present invention. 図26は本発明の実施例2の固定子1磁極分の斜視図である。FIG. 26 is a perspective view of one magnetic pole of the stator according to the second embodiment of the present invention. 図27は本発明の実施例2の製造方法の第1の例である。FIG. 27 is a first example of a manufacturing method according to the second embodiment of the present invention. 図28は本発明の実施例2の製造方法の第2の例であるFIG. 28 shows a second example of the manufacturing method according to the second embodiment of the present invention. 図29は本発明の実施例2の成形方法について説明した図である。FIG. 29 is a view for explaining the molding method of Example 2 of the present invention. 図30Aは従来例の回転電機の構造を説明する図である。FIG. 30A is a diagram illustrating the structure of a conventional rotating electrical machine. 図30Bは従来例の回転電機の例を説明する図である。FIG. 30B is a diagram illustrating an example of a conventional rotating electrical machine.
符号の説明Explanation of symbols
  1  固定子
  2  固定子鉄心
  3  固定子巻線
  4  爪磁極部
  5  側面部
  6  背面部
  7  軸方向端面
  8  スリット
  9  円形状の凹凸
  10  矩形形状の凹凸
  11  のこぎり歯の凹凸
  12  角
  13  素材
  14  背面部成形工具
  15  側面部成形工具
  16  爪磁極部成形工具
  17  側面部成形対向工具
  18  爪磁極部成形対向工具
  19  爪磁極成形部
  20  背面部成形対向工具
  21  背面部未成形部
  22  爪磁極部先端部
  23  背面部先端部
  24  爪磁極部先端押込み工具
  25  凸部
  26  凹部
  28  円錐状の工具
  29  切込み 
  30  凹凸成形工具
  31  外形拘束工具
  32  ローラ
  33  保持板
DESCRIPTION OF SYMBOLS 1 Stator 2 Stator iron core 3 Stator winding 4 Claw pole part 5 Side face part 6 Back face part 7 Axial end face 8 Slit 9 Circular unevenness 10 Rectangular unevenness 11 Irregularity of sawtooth 12 Angle 13 Material 14 Back surface part Forming tool 15 Side face forming tool 16 Claw magnetic pole part forming tool 17 Side face forming counter tool 18 Claw magnetic pole part forming counter tool 19 Claw magnetic pole forming part 20 Back part forming counter tool 21 Back part unformed part 22 Claw magnetic pole part tip part 23 Rear end portion 24 Claw pole portion end pushing tool 25 Convex portion 26 Concave portion 28 Conical tool 29 Cutting
30 Concavity and convexity forming tool 31 Constraining tool 32 Roller 33 Holding plate
 以下、図面を用いて、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施例1を図1、2に基づいて説明する。図1は固定子1相分の斜視図、図2は固定子1相分の分解斜視図である。 Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a perspective view of one phase of the stator, and FIG. 2 is an exploded perspective view of one phase of the stator.
 図1に示す回転電機の固定子1は固定子鉄心2と固定子巻線3から構成される。また、図2に示すように固定子鉄心2は爪磁極部4、背面部6、側面部5から構成される素材を軸方向に積層したものである。固定子鉄心2は同形状の部品を、背面部6の軸方向端面7を合わせることで構成される。このため、固定子巻線3の巻装を容易にすることができる。 1 is composed of a stator core 2 and a stator winding 3. Further, as shown in FIG. 2, the stator core 2 is formed by laminating a material composed of a claw magnetic pole portion 4, a back surface portion 6, and a side surface portion 5 in the axial direction. The stator core 2 is configured by combining parts of the same shape with the axial end surface 7 of the back surface portion 6. For this reason, winding of the stator winding | coil 3 can be made easy.
 固定子鉄心2は爪磁極部4、背面部6、側面部5が一体の鋼板から構成されているが、固定子鉄心2を構成する鋼板を電磁鋼板とした場合、回転電機の出力特性を向上させることが可能である。この時、必ずしも固定子鉄心2の全ての層を電磁鋼板にする必要は無い。 The stator core 2 is composed of a steel plate in which the claw magnetic pole portion 4, the back surface portion 6 and the side surface portion 5 are integrated. When the steel plate constituting the stator core 2 is an electromagnetic steel plate, the output characteristics of the rotating electrical machine are improved. It is possible to make it. At this time, it is not always necessary to use electromagnetic steel sheets for all layers of the stator core 2.
 また、固定子鉄心2を構成する鋼板の板厚は必ずしも全ての層で同じにする必要は無く、例えば、回転子に近い層の板厚を薄くすることで、回転電機の特性向上が可能であったり、例えば回転子に近い層の板厚を厚くすることで、爪磁極部4の軸中心方向への剛性を高くすることが可能であったりする。 In addition, the thickness of the steel plates constituting the stator core 2 does not necessarily have to be the same for all layers. For example, by reducing the thickness of the layers close to the rotor, the characteristics of the rotating electrical machine can be improved. For example, by increasing the thickness of the layer close to the rotor, it is possible to increase the rigidity of the claw magnetic pole portion 4 in the axial center direction.
 図3に爪磁極部4にスリット8を入れた固定子鉄心2の1磁極分の斜視図および、爪磁極部4の横断面形状を示す。爪磁極部4にスリット8を入れることで渦電流を低減することが可能である。また、このスリット8は必ずしも貫通する必要は無く、図3のBからDに示される三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などもよい。また、スリット8は必ずしも軸方向に平行である必要は無く、例えば爪磁極部4の中心から広がる放射状や、軸方向に垂直な方向であっても良い。また、スリット8および三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などは必ずしも線状である必要は無く、例えばディンプルのように爪磁極部4に垂直な方向から見て円形または楕円または多角形であっても良い。 FIG. 3 shows a perspective view of one magnetic pole of the stator core 2 in which the claw magnetic pole portion 4 has slits 8 and a cross-sectional shape of the claw magnetic pole portion 4. It is possible to reduce the eddy current by inserting the slit 8 in the claw magnetic pole part 4. Further, the slit 8 does not necessarily have to penetrate, and may be a triangular unevenness 9, a rectangular unevenness 10, a sawtooth unevenness 11 shown in FIGS. The slits 8 are not necessarily parallel to the axial direction, and may be, for example, a radial shape extending from the center of the claw magnetic pole portion 4 or a direction perpendicular to the axial direction. Further, the slits 8 and the triangular irregularities 9, the rectangular irregularities 10, the sawtooth irregularities 11 and the like do not necessarily have to be linear, and are circular when viewed from a direction perpendicular to the claw magnetic pole part 4, for example, dimples. Or an ellipse or a polygon may be sufficient.
 図4は固定子鉄心2の横断面を示している。爪磁極部4と側面部5の交わる角部12の半径が、爪磁極部4の長さの0.2倍以下とすることで、回転電機の出力特性を確保することができる。 FIG. 4 shows a cross section of the stator core 2. By setting the radius of the corner portion 12 where the claw magnetic pole portion 4 and the side surface portion 5 intersect to be 0.2 times or less the length of the claw magnetic pole portion 4, the output characteristics of the rotating electrical machine can be ensured.
 図5に本発明の実施例1の製造方法の第1の例を示す。鋼板から環状の素材13を切抜き、切抜いた素材13の1枚に対して爪磁極部4および背面部6を成形し、成形した素材13を積層し、積層した素材13同士を接合する工程からなる。図6に本発明の実施例1の製造方法の第2の例を示す。鋼板から環状の素材13を切抜き、切抜いた素材13を積層し、素材13を積層させた状態で素材13に爪磁極部4および背面部6を成形し、成形した素材13同士を接合する工程からなる。 FIG. 5 shows a first example of the manufacturing method according to the first embodiment of the present invention. An annular material 13 is cut out from a steel plate, the claw magnetic pole portion 4 and the back surface portion 6 are formed on one of the cut out materials 13, the formed material 13 is laminated, and the laminated materials 13 are joined together. . FIG. 6 shows a second example of the manufacturing method according to the first embodiment of the present invention. From the step of cutting the annular material 13 from the steel plate, laminating the cut material 13, forming the claw magnetic pole portion 4 and the back surface portion 6 on the material 13 in a state where the material 13 is laminated, and joining the formed materials 13 to each other. Become.
 鋼板から環状の素材13を切抜く工程では、例えばせん断加工、ワイヤーカット、レーザー切断、ウォータージェット、あるいは機械加工などによって所望の形状に切抜く。 In the process of cutting the annular material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
 切抜いた素板を積層する工程では、素材13の軸中心および爪磁極部4に成形される部分の中心をそろえ、素材13の板厚方向に積層する。 In the step of laminating the cut base plates, the axial center of the material 13 and the center of the part formed on the claw magnetic pole portion 4 are aligned, and the material 13 is laminated in the thickness direction.
 切抜いた素材13に爪磁極部4および背面部6を成形する工程では、例えば、図7のAに示すように素材13を側面部成形工具15上に置き、爪磁極部4の面外への曲げ成形および固定子鉄心2の周方向形状を成形するための円筒形状の爪磁極部成形工具16と、背面部6の面外への曲げ成形および固定子鉄心2の周方向形状を成形するための円筒形状の空間を有する背面部成形工具14を、図7のBのように、押込むことによって爪磁極部4および背面部6を成形する。また、図7では固定した側面部成形工具15に対して、爪磁極部成形工具16および背面部成形工具14を押込んでいるが、固定した爪磁極部成形工具16および背面部成形工具14に対して、側面部成形工具15を押込んでも良い。 In the step of forming the claw magnetic pole portion 4 and the back surface portion 6 on the cut material 13, for example, the material 13 is placed on the side surface forming tool 15 as shown in FIG. To form a claw magnetic pole part forming tool 16 having a cylindrical shape for bending and forming the circumferential shape of the stator core 2, and for bending the back part 6 out of the plane and forming the circumferential shape of the stator core 2. The claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the back surface forming tool 14 having a cylindrical space as shown in FIG. Further, in FIG. 7, the claw magnetic pole part forming tool 16 and the back surface forming tool 14 are pressed into the fixed side part forming tool 15, but the fixed claw magnetic pole part forming tool 16 and the back part forming tool 14 are pressed. The side surface forming tool 15 may be pushed in.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において図8のAに示すように、側面部成形工具15に素材13を挟んで対向する側面部成形対向工具17により、板厚方向に荷重を負荷しながら、図8のBのように、爪磁極部4および背面部6を成形することで、側面部5の周方向および軸方向への変形を拘束し、所望の成形への成形が容易となる。また、爪磁極部4を成形後に爪磁極部成形工具16を抜く工程において、側面部成形工具15と側面部成形対向工具17により板厚方向に加圧保持することで、爪磁極部4と爪磁極部成形工具16間に生じる摩擦に起因する爪磁極部4の軸方向への変形を抑制することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 in the cut material 13, as shown in FIG. 8A, by the side surface forming counter tool 17 that faces the side surface portion forming tool 15 with the material 13 interposed therebetween, While the load is applied in the plate thickness direction, the claw magnetic pole portion 4 and the back surface portion 6 are formed as shown in FIG. 8B, thereby restraining the deformation of the side surface portion 5 in the circumferential direction and the axial direction. Molding to molding becomes easy. Further, in the step of removing the claw magnetic pole part forming tool 16 after the claw magnetic pole part 4 is formed, the claw magnetic pole part 4 and the claw are pressed and held in the plate thickness direction by the side part forming tool 15 and the side part forming opposing tool 17. It is possible to suppress the deformation of the claw magnetic pole part 4 in the axial direction due to the friction generated between the magnetic pole part forming tools 16.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において側面部成形対向工具17を用いない場合では、爪磁極部4の成形および背面部6の成形を同一ストロークで行う必要があるが、側面部成形対向工具17を用いた場合では、図9および図10に示すように、爪磁極部4の成形と背面部6の成形を別ストロークで成形することが可能となる。 Moreover, when the side part shaping | molding opposing tool 17 is not used in the process of shape | molding the nail | claw magnetic pole part 4 and the back surface part 6 to the cut-out raw material 13, it is necessary to perform the shaping | molding of the claw magnetic pole part 4 and the shaping | molding of the back surface part 6 by the same stroke. However, when the side surface forming counter tool 17 is used, as shown in FIGS. 9 and 10, the claw magnetic pole portion 4 and the back surface portion 6 can be formed with different strokes.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において図11に示すように、爪磁極部成形工具16に素材13を挟んで対向する爪磁極部成形対向工具18により、素材13板厚方向に荷重を負荷した状態で成形することで、爪磁極成形部19が曲げ曲げ戻し変形を受けるため、爪磁極部4成形後に生じる爪磁極4の半径方向中心向きの倒れを低減することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 in the cut material 13, as shown in FIG. 11, the claw magnetic pole portion forming opposing tool 18 facing the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween, By forming the material 13 with a load applied in the plate thickness direction, the claw magnetic pole forming portion 19 undergoes bending and bending back deformation, so that the claw magnetic pole 4 is prevented from being tilted toward the center in the radial direction after the claw magnetic pole portion 4 is formed. Is possible.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において図12に示すように、背面部成形工具14に素材13を挟んで対向する背面部成形対向工具20により、素材13板厚方向に荷重を負荷した状態で成形することで、背面部未成形部21において面外への変形が拘束されるため、背面部6の成形後に生じる背面部6のしわを抑制することが可能である。 Further, as shown in FIG. 12, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 in the cut out material 13, the material 13 is formed by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween. By molding in a state in which a load is applied in the plate thickness direction, deformation of the rear surface portion unmolded portion 21 to the out-of-plane is restrained, and thus wrinkles of the rear surface portion 6 that occur after the rear surface portion 6 is molded can be suppressed. Is possible.
 製造方法の第1の例では素材13が1枚の状態で爪磁極部4および背面部6を成形するため、爪磁極部4と側面部5をつなぐ角12の半径を小さくすることが可能である。ただし、各層において同じ寸法形状の素材13を用いた場合、図13のAに示すように各層にでは側面部6が異なるため、爪磁極部先端部22および背面部先端部23が揃わない。この時、機械加工などにより爪磁極部先端部22および背面部先端部23をそろえても良いが、各層での素材13の寸法を成形後の寸法に合わせておくことで、図13のBに示すように爪磁極部先端部22および背面部先端部23をそろえることができ、機械加工などが省略可能となる。 In the first example of the manufacturing method, the claw magnetic pole portion 4 and the back surface portion 6 are formed with a single material 13, so the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. is there. However, when the material 13 having the same size and shape is used in each layer, the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned. At this time, the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
 製造方法の第2の例では、積層した状態で爪磁極部4および背面部6を成形するため、爪磁極部4および側面部5の成形工程数を低減させることが可能である。ただし、爪磁極部4と側面部5をつなぐ角12の半径を、積層した板厚の合計した寸法より小さくすることができないため、例えば図14のAに示すように、爪磁極部先端押込み工具24にて、軸方向(矢印方向)に押込むことで、図14のBのように爪磁極部4と側面部5をつなぐ角12の半径を小さくすることができる。 In the second example of the manufacturing method, since the claw magnetic pole part 4 and the back surface part 6 are formed in a stacked state, the number of forming steps of the claw magnetic pole part 4 and the side surface part 5 can be reduced. However, since the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG. By pushing in the axial direction (arrow direction) at 24, the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced as shown in FIG.
 成形した素材13を積層する工程では、成形した素材13の軸中心および成形した爪磁極部4の周方向位置を、背面部6の外周半径が板厚分大きい、爪磁極部4および背面部6を成形した素材13に順次積層する。 In the step of laminating the molded material 13, the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
 素材13同士を接合する工程では、例えば爪磁極部先端部22または背面部先端部23の少なくとも一方をレーザー溶接したり、接着剤を用いて、隣接する素材13と順次接合したり、図15のAに示すような素材13板厚方向に半抜きされて形成された凸部25と凹部26を図15のBのように合わせる事で接合する。また、この接合工程は積層と同じ工程または積層工程より後工程で行う。 In the step of joining the materials 13 to each other, for example, at least one of the claw pole portion tip portion 22 or the back portion tip portion 23 is laser welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG. As shown in FIG. 15A, the projections 25 and the recesses 26, which are formed by half-cutting in the thickness direction of the material 13 as shown in FIG. In addition, this joining step is performed in the same step as the lamination or in a later step than the lamination step.
 また、前述の製造方法の第1の例および前述の製造方法の第2の例を組合わせた、次に示すような製造方法でもよい。鋼板から環状の素材13を切抜き、切抜いた素材13の爪磁極部4を成形し、成形した素材13を積層し、積層した素材13の背面部6を成形し、成形した素材13を接合する工程からなる、または、鋼板から環状の素材13を切抜き、切抜いた素材13の背面部6を成形し、成形した素材13を積層し、積層した素材13の爪磁極部4を成形し、成形した素材13を接合する工程からなる。あるいは、鋼板から環状の素材13を切抜き、切抜いた素材13を、固定子鉄心2を構成する積層枚数未満の枚数を積層し、積層した素材13に爪磁極部4および背面部6を成形し、成形した素材13を積層し、積層した素材13を接合する工程からなる。 Further, the following manufacturing method may be used, which is a combination of the first example of the above manufacturing method and the second example of the above manufacturing method. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining. Alternatively, the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole part 4 and the back surface part 6 are formed on the laminated material 13. It consists of a process of laminating the molded material 13 and joining the laminated material 13.
 図16に本発明の実施例1の製造方法の第3の例を示す。鋼板から1磁極分または複数磁極分の素材13を切抜き、切抜いた素材13の1枚に対して爪磁極部4および背面部6を成形し、成形した素材13を積層し、積層した素材13同士を接合、周方向に組立てる工程からなる。図17に本発明の実施例1の製造方法の第2の例を示す。鋼板から1磁極分または複数磁極分の素材13を切抜き、切抜いた素材13を積層し、素材13を積層させた状態で素材13に爪磁極部4および背面部6を成形し、成形した素材13同士を接合し、周方向に組立てる工程からなる。 FIG. 16 shows a third example of the manufacturing method according to the first embodiment of the present invention. The material 13 for one magnetic pole or a plurality of magnetic poles is cut out from the steel plate, the claw magnetic pole part 4 and the back surface part 6 are formed on one piece of the cut out material 13, the formed material 13 is laminated, and the laminated materials 13 are laminated together. Are joined and assembled in the circumferential direction. FIG. 17 shows a second example of the manufacturing method according to the first embodiment of the present invention. The material 13 for one magnetic pole or a plurality of magnetic poles is cut out from the steel plate, the cut material 13 is laminated, the claw magnetic pole portion 4 and the back surface portion 6 are formed on the material 13 in a state where the material 13 is laminated, and the formed material 13 It consists of a process of joining together and assembling them in the circumferential direction.
 鋼板から1磁極分または複数磁極分の素材13を切抜く工程では、例えばせん断加工、ワイヤーカット、レーザー切断、ウォータージェット、あるいは機械加工などによって所望の形状に切抜く。 In the process of cutting out the material 13 for one magnetic pole or a plurality of magnetic poles from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
 切抜いた素板を積層する工程では、爪磁極部4に成形される部分の中心をそろえ、素材13の板厚方向に積層する。 In the step of laminating the cut base plates, the centers of the portions formed in the claw magnetic pole portions 4 are aligned, and the raw materials 13 are laminated in the thickness direction.
 切抜いた素材13に爪磁極部4および背面部6を成形する工程では、例えば素板を側面部成形工具15上に置き、爪磁極部4の面外への曲げ成形および固定子鉄心2周方向形状を成形するための横断面が凸の円弧形状であるの爪磁極部成形工具16と、背面部6の面外への曲げ成形および固定子鉄心2周方向形状を成形するための横断面が凹の円弧形状である背面部成形工具14を、押込むことによって爪磁極部4および背面部6を成形する。
また、固定した側面部成形工具15に対して、爪磁極部成形工具16および背面部成形工具14を押込んでもよいし、固定した爪磁極部成形工具16および背面部成形工具14に対して、側面部成形工具15を押込んでも良い。
In the step of forming the claw magnetic pole portion 4 and the back surface portion 6 into the cut material 13, for example, a base plate is placed on the side surface portion forming tool 15, and the claw magnetic pole portion 4 is bent out of the plane and the stator core 2 circumferential directions. The claw pole part forming tool 16 having a convex arc shape in cross section for forming the shape, and the cross section for forming the back surface part 6 to be bent out of the plane and the shape in the circumferential direction of the stator core. The claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the back surface forming tool 14 having a concave arc shape.
Further, the claw pole part forming tool 16 and the back part forming tool 14 may be pushed into the fixed side part forming tool 15, or the fixed claw pole part forming tool 16 and the back part forming tool 14 may be pressed. The side surface forming tool 15 may be pushed in.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、側面部成形工具15に素材13を挟んで対向する側面部成形対向工具17により、板厚方向に荷重を負荷しながら爪磁極部4および背面部6を成形することで、側面部5の周方向および軸方向への変形を拘束し、所望の成形への成形が容易となる。また、爪磁極または背面部6の少なくとも一方の成形後に、対応する爪磁極部成形工具16または背面部成形工具14を抜く工程において、側面部成形工具15と側面部成形対向工具17により板厚方向に加圧保持することで、爪磁極と爪磁極部成形工具16間または背面部6と背面部成形工具14間に生じる摩擦に起因する爪磁極部4または背面部6の軸方向への変形を抑制することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 on the cut material 13, a load is applied in the plate thickness direction by the side surface forming opposing tool 17 facing the side surface forming tool 15 with the material 13 interposed therebetween. However, by forming the claw magnetic pole portion 4 and the back surface portion 6, the deformation of the side surface portion 5 in the circumferential direction and the axial direction is restrained, and molding into a desired shape becomes easy. Further, in the step of removing the corresponding claw pole part forming tool 16 or the back part forming tool 14 after forming at least one of the claw magnetic pole or the back part 6, the side part forming tool 15 and the side part forming opposing tool 17 are used in the plate thickness direction. By pressing and holding, the claw magnetic pole portion 4 or the back surface portion 6 is deformed in the axial direction due to the friction generated between the claw magnetic pole and the claw magnetic pole portion forming tool 16 or between the back surface portion 6 and the back surface portion forming tool 14. It is possible to suppress.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において側面部成形対向工具17を用いない場合では、爪磁極部4の成形および背面部6の成形を同一ストロークで行う必要があるが、側面部成形対向工具17を用いた場合では、爪磁極部4の成形と背面部6の成形を別ストロークで成形することが可能となる。 Moreover, when the side part shaping | molding opposing tool 17 is not used in the process of shape | molding the nail | claw magnetic pole part 4 and the back surface part 6 to the cut-out raw material 13, it is necessary to perform the shaping | molding of the claw magnetic pole part 4 and the shaping | molding of the back surface part 6 by the same stroke. However, when the side surface forming counter tool 17 is used, the claw magnetic pole portion 4 and the back surface portion 6 can be formed with different strokes.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、爪磁極部成形工具16に素材13を挟んで対向する爪磁極部成形対向工具18により、素材13板厚方向に荷重を負荷した状態で成形することで、爪時磁極成形部が曲げ曲げ戻し変形を受けるため、爪磁極部4成形後に生じる爪磁極成形部19の半径方向中心向きの倒れを低減することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 on the cut material 13, the claw magnetic pole portion forming opposed tool 18 that faces the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween is used in the material 13 plate thickness direction. By molding with the load applied, the claw magnetic pole forming part is subjected to bending and bending back deformation, so that it is possible to reduce the collapse of the claw magnetic pole forming part 19 toward the center in the radial direction that occurs after the claw magnetic pole part 4 is formed. It is.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、背面部成形工具14に素材13を挟んで対向する背面部成形対向工具20により、素材13板厚方向に荷重を負荷した状態で成形することで、背面部6未成形部において面外への変形が拘束されるため、背面部6成形後に生じる背面部6成形部のしわを抑制することが可能あり、背面部6成形部が曲げ曲げ戻し変形を受けるため、背面部6成形後に生じる爪磁極成形部の半径方向外向きの倒れを低減することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 in the cut material 13, a load is applied in the material 13 plate thickness direction by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween. By molding in a loaded state, the deformation to the out-of-plane is restrained in the unmolded portion of the back surface 6, so that it is possible to suppress the wrinkles of the back surface 6 molded portion that occurs after the back surface 6 is molded. Since the 6 molded portion undergoes bending and bending back deformation, it is possible to reduce the outward collapse of the claw magnetic pole molded portion that occurs after the back surface portion 6 is molded.
 製造方法の第3の例では素材13が1枚の状態で爪磁極部4および背面部6を成形するため、爪磁極部4と側面部5をつなぐ角12の半径を小さくすることが可能である。ただし、各層において同じ寸法形状の素材13を用いた場合、図13のAに示すように各層にでは側面部6が異なるため、爪磁極部先端部22および背面部先端部23が揃わない。この時、機械加工などにより爪磁極部先端部22および背面部先端部23をそろえても良いが、各層での素材13の寸法を成形後の寸法に合わせておくことで、図13のBに示すように爪磁極部先端部22および背面部先端部23をそろえることができ、機械加工などが省略可能となる。 In the third example of the manufacturing method, the claw magnetic pole portion 4 and the back surface portion 6 are formed with a single material 13, so the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. is there. However, when the material 13 having the same size and shape is used in each layer, the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned. At this time, the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
 製造方法の第4の例では、積層した状態で爪磁極部4および背面部6を成形するため、爪磁極部4および側面部5の成形工程数を低減させることが可能である。ただし、爪磁極部4と側面部5をつなぐ角12の半径を、積層した板厚の合計した寸法より小さくすることができないため、例えば図14に示すように、爪磁極部先端押込み工具24にて、軸方向に押込むことで爪磁極部4と側面部5をつなぐ角12の半径を小さくすることができる。 In the fourth example of the manufacturing method, the claw magnetic pole portion 4 and the back surface portion 6 are formed in a stacked state, and therefore the number of forming steps of the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. However, since the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG. Thus, by pushing in the axial direction, the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
 成形した素材13を積層する工程では、成形した素材13の軸中心および成形した爪磁極部4の周方向位置を、背面部6の外周半径が板厚分大きい、爪磁極部4および背面部6を成形した素材13に順次積層する。 In the step of laminating the molded material 13, the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
 素材13同士を接合する工程では、例えば爪磁極部先端部22または背面部先端部23の少なくとも一方をレーザー溶接したり、接着剤を用いて、隣接する素材13と順次接合したり、図15に示すような素材13板厚方向に半抜きされて形成された凸部25と凹部26を合わせる事で接合する。また、この接合工程は積層と同じ工程または積層工程より後工程で行う。 In the step of joining the materials 13 to each other, for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG. As shown, the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction. In addition, this joining step is performed in the same step as the lamination or in a later step than the lamination step.
 また、前述の製造方法の第3の例および前述の製造方法の第4の例を組合わせた、次に示すような製造方法でもよい。鋼板から環状の素材13を切抜き、切抜いた素材13の爪磁極部4を成形し、成形した素材13を積層し、積層した素材13の背面部6を成形し、成形した素材13を接合する工程からなる、または、鋼板から環状の素材13を切抜き、切抜いた素材13の背面部6を成形し、成形した素材13を積層し、積層した素材13の爪磁極部4を成形し、成形した素材13を接合する工程からなる。あるいは、鋼板から環状の素材13を切抜き、切抜いた素材13を固定子鉄心2を構成する積層枚数未満の枚数を積層し、積層した素材13に爪磁極部4および背面部6を成形し、成形した素材13を積層し、積層した素材13を接合する工程からなる。 Further, the following manufacturing method may be used, which is a combination of the third example of the above manufacturing method and the fourth example of the above manufacturing method. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining. Alternatively, the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole portion 4 and the back surface portion 6 are formed on the laminated material 13. The material 13 is laminated, and the laminated material 13 is joined.
 図18に本発明の実施例1の製造方法の第5の例を示す。帯状の連続した鋼板から素材13を切抜き、切抜いた素材13の爪磁極部4または背面部6の少なくとも一方を成形する工程と、成形した素材13をらせん状に積層する工程と、積層した素材13を接合する工程からなる。 FIG. 18 shows a fifth example of the manufacturing method according to the first embodiment of the present invention. The material 13 is cut out from the strip-shaped continuous steel sheet, the step of forming at least one of the claw magnetic pole portion 4 or the back surface portion 6 of the cut-out material 13, the step of laminating the formed material 13 in a spiral shape, and the layered material 13 It consists of the process of joining.
 帯所の連続した鋼板から素材13を切抜く工程では、例えばせん断加工、ワイヤーカット、レーザー切断、ウォータージェット、あるいは機械加工などによって所望の形状に切抜く。 In the process of cutting the material 13 from the continuous steel plate in the belt, the material 13 is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
 切抜いた帯状の素板13に対して、例えばロールフォーミングにより、爪磁極部4または背面部6の少なくとも一方を成形するとともに、帯状の素材13を周方向に成形し、らせん状に積層し、接合する。この時、爪磁極部4または背面部6は成形されていなくてもよく、接合後、成形されていない部分を本発明の実施例1の製造方法の第2の例のように成形しても良い。 For the cut strip-shaped base plate 13, at least one of the claw magnetic pole portion 4 or the back surface portion 6 is formed by roll forming, for example, and the strip-shaped material 13 is formed in the circumferential direction, laminated in a spiral shape, and bonded To do. At this time, the claw magnetic pole portion 4 or the back surface portion 6 may not be molded, and after bonding, the non-molded portion may be molded as in the second example of the manufacturing method of Embodiment 1 of the present invention. good.
 図19に本発明の実施例1の製造方法の第6の例を示す。鋼板から素材13を切抜き、切抜いた素材13を積層し、積層した素材13の爪磁極部4および背面部6を成形し、成形した素材13を接合し、接合した素材13を環状にする工程からなる。また、切抜いた素材13の爪磁極部4および背面部6を成形し、成形した素材を積層してもよい。 FIG. 19 shows a sixth example of the manufacturing method according to the first embodiment of the present invention. From the step of cutting the material 13 from the steel plate, laminating the cut material 13, forming the claw magnetic pole portion 4 and the back surface portion 6 of the laminated material 13, joining the formed material 13, and making the joined material 13 annular Become. Further, the claw magnetic pole portion 4 and the back surface portion 6 of the cut material 13 may be formed and the formed materials may be laminated.
 鋼板から素材13を切抜く工程では、例えばせん断加工、ワイヤーカット、レーザー切断、ウォータージェット、あるいは機械加工などによって所望の形状に切抜く。 In the process of cutting the material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
 切抜いた素板を積層する工程では、爪磁極部4に成形される部分の中心をそろえ、素材13の板厚方向に積層する。
 切抜いた素材13に爪磁極部4および背面部6を成形する工程では、例えば素板を側面部成形工具15上に置き、爪磁極部4の面外への曲げ成形するための爪磁極部成形工具16と、背面部6の面外への曲げ成形するための背面部成形工具14を、押込むことによって爪磁極部4および背面部6を成形する。また、固定した側面部成形工具15に対して、爪磁極部成形工具16および背面部成形工具14を押込んでもよいし、固定した爪磁極部成形工具16および背面部成形工具14に対して、側面部成形工具15を押込んでも良い。
In the step of stacking the cut base plates, the centers of the portions formed in the claw magnetic pole portion 4 are aligned, and the raw material 13 is stacked in the thickness direction.
In the step of forming the claw magnetic pole part 4 and the back surface part 6 in the cut material 13, for example, a base plate is placed on the side part forming tool 15 and the claw magnetic pole part forming for bending the claw magnetic pole part 4 out of the plane is performed. The claw magnetic pole portion 4 and the back surface portion 6 are formed by pressing the tool 16 and the back surface forming tool 14 for bending the back surface portion 6 out of the plane. Further, the claw pole part forming tool 16 and the back part forming tool 14 may be pushed into the fixed side part forming tool 15, or the fixed claw pole part forming tool 16 and the back part forming tool 14 may be pressed. The side surface forming tool 15 may be pushed in.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、側面部成形工具15に素材13を挟んで対向する側面部成形対向工具17により、板厚方向に荷重を負荷しながら爪磁極部4および背面部6を成形することで、側面部5の周方向および軸方向への変形を拘束し、所望の成形への成形が容易となる。また、爪磁極または背面部6の少なくとも一方の成形後に、対応する爪磁極部成形工具16または背面部成形工具14を抜く工程において、側面部成形工具15と側面部成形対向工具17により板厚方向に加圧保持することで、爪磁極と爪磁極部成形工具16間または背面部6と背面部成形工具14間に生じる摩擦に起因する爪磁極部4または背面部6の軸方向への変形を抑制することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 on the cut material 13, a load is applied in the plate thickness direction by the side surface forming opposing tool 17 facing the side surface forming tool 15 with the material 13 interposed therebetween. However, by forming the claw magnetic pole portion 4 and the back surface portion 6, the deformation of the side surface portion 5 in the circumferential direction and the axial direction is restrained, and molding into a desired shape becomes easy. Further, in the step of removing the corresponding claw pole part forming tool 16 or the back part forming tool 14 after forming at least one of the claw magnetic pole or the back part 6, the side part forming tool 15 and the side part forming opposing tool 17 are used in the plate thickness direction. By pressing and holding, the claw magnetic pole portion 4 or the back surface portion 6 is deformed in the axial direction due to the friction generated between the claw magnetic pole and the claw magnetic pole portion forming tool 16 or between the back surface portion 6 and the back surface portion forming tool 14. It is possible to suppress.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において側面部成形対向工具17を用いない場合では、爪磁極部4の成形および背面部6の成形を同一ストロークで行う必要があるが、側面部成形対向工具17を用いた場合では、爪磁極部4の成形と背面部6の成形を別ストロークで成形することが可能となる。 Moreover, when the side part shaping | molding opposing tool 17 is not used in the process of shape | molding the nail | claw magnetic pole part 4 and the back surface part 6 to the cut-out raw material 13, it is necessary to perform the shaping | molding of the claw magnetic pole part 4 and the shaping | molding of the back surface part 6 by the same stroke. However, when the side surface forming counter tool 17 is used, the claw magnetic pole portion 4 and the back surface portion 6 can be formed with different strokes.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、爪磁極部成形工具16に素材13を挟んで対向する爪磁極部成形対向工具18により、素材13板厚方向に荷重を負荷した状態で成形することで、爪時磁極成形部が曲げ曲げ戻し変形を受けるため、爪磁極部4成形後に生じる爪磁極成形部19の半径方向中心向きの倒れを低減することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 on the cut material 13, the claw magnetic pole portion forming opposed tool 18 that faces the claw magnetic pole portion forming tool 16 with the material 13 interposed therebetween is used in the material 13 plate thickness direction. By molding with the load applied, the claw magnetic pole forming part is subjected to bending and bending back deformation, so that it is possible to reduce the collapse of the claw magnetic pole forming part 19 toward the center in the radial direction that occurs after the claw magnetic pole part 4 is formed. It is.
 また、切抜いた素材13に爪磁極部4および背面部6を成形する工程において、背面部成形工具14に素材13を挟んで対向する背面部成形対向工具20により、素材13板厚方向に荷重を負荷した状態で成形することで、背面部6未成形部において面外への変形が拘束されるため、背面部6成形後に生じる背面部6成形部のしわを抑制することが可能あり、背面部6成形部が曲げ曲げ戻し変形を受けるため、背面部6成形後に生じる爪磁極成形部の半径方向外向きの倒れを低減することが可能である。 Further, in the step of forming the claw magnetic pole portion 4 and the back surface portion 6 in the cut material 13, a load is applied in the material 13 plate thickness direction by the back surface forming counter tool 20 facing the back surface forming tool 14 with the material 13 interposed therebetween. By molding in a loaded state, the deformation to the out-of-plane is restrained in the unmolded portion of the back surface 6, so that it is possible to suppress the wrinkles of the back surface 6 molded portion that occurs after the back surface 6 is molded. Since the 6 molded portion undergoes bending and bending back deformation, it is possible to reduce the outward collapse of the claw magnetic pole molded portion that occurs after the back surface portion 6 is molded.
 素材13を1枚の状態で爪磁極部4および背面部6を成形した場合、爪磁極部4と側面部5をつなぐ角12の半径を小さくすることが可能である。ただし、各層において同じ寸法形状の素材13を用いた場合、図13のAに示すように各層にでは側面部6が異なるため、爪磁極部先端部22および背面部先端部23が揃わない。この時、機械加工などにより爪磁極部先端部22および背面部先端部23をそろえても良いが、各層での素材13の寸法を成形後の寸法に合わせておくことで、図13のBに示すように爪磁極部先端部22および背面部先端部23をそろえることができ、機械加工などが省略可能となる。 When the claw magnetic pole part 4 and the back surface part 6 are formed with the material 13 in a single state, the radius of the corner 12 connecting the claw magnetic pole part 4 and the side part 5 can be reduced. However, when the material 13 having the same size and shape is used in each layer, the side surface portion 6 is different in each layer as shown in FIG. 13A, and therefore the claw pole portion tip portion 22 and the back portion tip portion 23 are not aligned. At this time, the claw pole tip 22 and the back tip 23 may be aligned by machining or the like, but by matching the dimensions of the material 13 in each layer with the dimensions after molding, the shape shown in FIG. As shown, the claw magnetic pole tip 22 and the back tip 23 can be aligned, and machining can be omitted.
 素材13を積層した状態で爪磁極部4および背面部6を成形した場合、爪磁極部4および側面部5の成形工程数を低減させることが可能である。ただし、爪磁極部4と側面部5をつなぐ角12の半径を、積層した板厚の合計した寸法より小さくすることができないため、例えば図14に示すように、爪磁極部先端押込み工具24にて、軸方向に押込むことで爪磁極部4と側面部5をつなぐ角12の半径を小さくすることができる。 When the claw magnetic pole portion 4 and the back surface portion 6 are formed in a state where the material 13 is laminated, the number of forming steps of the claw magnetic pole portion 4 and the side surface portion 5 can be reduced. However, since the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 cannot be made smaller than the total dimension of the laminated plate thicknesses, for example, as shown in FIG. Thus, by pushing in the axial direction, the radius of the corner 12 connecting the claw magnetic pole portion 4 and the side surface portion 5 can be reduced.
 成形した素材13を積層する工程では、成形した素材13の軸中心および成形した爪磁極部4の周方向位置を、背面部6の外周半径が板厚分大きい、爪磁極部4および背面部6を成形した素材13に順次積層する。 In the step of laminating the molded material 13, the claw magnetic pole portion 4 and the back surface portion 6 are arranged such that the outer peripheral radius of the back surface portion 6 is larger by the thickness of the axial center of the molded material 13 and the circumferential position of the formed claw magnetic pole portion 4. Are sequentially laminated on the molded material 13.
 素材13同士を接合する工程では、例えば爪磁極部先端部22または背面部先端部23の少なくとも一方をレーザー溶接したり、接着剤を用いて、隣接する素材13と順次接合したり、図15に示すような素材13板厚方向に半抜きされて形成された凸部25と凹部26を合わせる事で接合する。また、この接合工程は積層と同じ工程または積層工程より後工程で行う。 In the step of joining the materials 13 to each other, for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG. As shown, the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction. In addition, this joining step is performed in the same step as the lamination or in a later step than the lamination step.
 また、前述の素材13を1枚ずつ成形する方法と、素材13を積層した状態で成形する方法を組み合わせた、次に示すような製造方法でもよい。鋼板から環状の素材13を切抜き、切抜いた素材13の爪磁極部4を成形し、成形した素材13を積層し、積層した素材13の背面部6を成形し、成形した素材13を接合する工程からなる、または、鋼板から環状の素材13を切抜き、切抜いた素材13の背面部6を成形し、成形した素材13を積層し、積層した素材13の爪磁極部4を成形し、成形した素材13を接合する工程からなる。あるいは、鋼板から環状の素材13を切抜き、切抜いた素材13を固定子鉄心2を構成する積層枚数未満の枚数を積層し、積層した素材13に爪磁極部4および背面部6を成形し、成形した素材13を積層し、積層した素材13を接合する工程からなる。 Further, a manufacturing method as described below, which is a combination of a method of forming the raw materials 13 one by one and a method of forming the raw materials 13 in a stacked state, may be used. Cutting the annular material 13 from the steel plate, forming the claw magnetic pole portion 4 of the cut material 13, laminating the formed material 13, forming the back surface portion 6 of the laminated material 13, and joining the formed material 13 Or an annular material 13 cut out from a steel plate, a back surface portion 6 of the cut material 13 is formed, the formed material 13 is laminated, a claw magnetic pole portion 4 of the laminated material 13 is formed, and the formed material 13 of joining. Alternatively, the annular material 13 is cut out from the steel plate, the cut material 13 is laminated in a number less than the number of layers constituting the stator core 2, and the claw magnetic pole portion 4 and the back surface portion 6 are formed on the laminated material 13. The material 13 is laminated, and the laminated material 13 is joined.
 上述した本発明の実施例1の製造方法の例では、成形後に爪磁極部が図20のCに示すように軸中心方向に倒れることがある。この場合、爪磁極部4を成形した後に、図20のAに示すように円錐状の工具28を軸方向(矢印方向)に押込むことによって、爪磁極部をオーバーベンドさせ、図20のDのように爪磁極部4の軸中心方向の倒れを制御できる。 In the example of the manufacturing method of the first embodiment of the present invention described above, the claw magnetic pole portion may fall in the axial center direction as shown in FIG. In this case, after the claw magnetic pole portion 4 is formed, the claw magnetic pole portion is overbended by pushing the conical tool 28 in the axial direction (arrow direction) as shown in FIG. As described above, the tilt of the claw magnetic pole portion 4 in the axial center direction can be controlled.
 また、図21のAに示すように、爪磁極部成形工具16を軸方向および半径方向外向き(矢印方向)に移動させて図21のBの状態にすることによっても、図21のCのように爪磁極部4の軸中心方向の倒れを制御できる。 Further, as shown in FIG. 21A, the claw magnetic pole portion forming tool 16 is moved in the axial direction and radially outward (arrow direction) to be in the state of FIG. In this way, the tilt of the claw magnetic pole portion 4 in the axial center direction can be controlled.
 上述した本発明の実施例1の製造方法の1から5の例において、鋼板から切抜いた素材13から背面部6を成形する際、成形により外周部の周長が短くなることに起因してしわが発生しやすくなる。そこで、例えば、図22に示すような、素材13の外周部に半径方向中心向きの切込み29を入れることによってしわの発生の抑制が可能となる。 In the examples 1 to 5 of the manufacturing method of the first embodiment of the present invention described above, when the back surface portion 6 is formed from the material 13 cut out from the steel plate, the peripheral length of the outer peripheral portion is shortened by forming. I am prone to wrinkles. Therefore, for example, the generation of wrinkles can be suppressed by making a notch 29 toward the center in the radial direction in the outer peripheral portion of the material 13 as shown in FIG.
 図23に爪磁極部4の三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などの成形方法の例を示す。1つ目の例は、図23のABに示すように爪磁極部4の外形を拘束する外形拘束工具31に爪磁極部4を置き、三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などを成形する凹凸成形工具30にて、凹凸成形工具30の表面形状を転写させ爪磁極部4に三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などを成形する方法である。この時、転写させる凹凸成形工具30の形状を変えることで、任意の凹凸形状が成形可能である。 FIG. 23 shows an example of a forming method of the claw magnetic pole portion 4 such as the triangular irregularities 9, the rectangular irregularities 10, and the sawtooth irregularities 11. In the first example, as shown in AB of FIG. 23, the claw magnetic pole portion 4 is placed on the outer shape restraining tool 31 that constrains the outer shape of the claw magnetic pole portion 4, and the triangular unevenness 9, the rectangular unevenness 10, and the sawtooth The surface shape of the concavo-convex forming tool 30 is transferred by the concavo-convex forming tool 30 for forming the concavo-convex 11 and the like, and the triangular concavo-convex 9, the rectangular concavo-convex 10, and the sawtooth concavo-convex 11 are formed on the claw magnetic pole portion 4. Is the method. At this time, an arbitrary uneven shape can be formed by changing the shape of the uneven forming tool 30 to be transferred.
 2つ目の例は、図23のCに示すように、中央部が凸なローラ32を爪磁極部4に押し付けることによって、ローラ32の凸部形状を転写させることにより、爪磁極部4に三角形状の凹凸9、矩形形状の凹凸10、のこぎり歯の凹凸11などを成形する方法である。この時、転写させるローラ32に凸部形状を変えることにより、任意の凹凸形状が成形可能である。 In the second example, as shown in FIG. 23C, the convex shape of the roller 32 is transferred to the claw magnetic pole portion 4 by pressing the roller 32 having a convex central portion against the claw magnetic pole portion 4. This is a method of forming triangular irregularities 9, rectangular irregularities 10, sawtooth irregularities 11, and the like. At this time, an arbitrary uneven shape can be formed by changing the convex shape of the roller 32 to be transferred.
 本発明の実施例2を図24、25、26に基づいて説明する。図24は固定子1相分の斜視図、図25は固定子1相分の分解斜視図、図26は固定子の1磁極の半分A、および1磁極分Bの斜視図である。 Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 24 is a perspective view of one phase of the stator, FIG. 25 is an exploded perspective view of one phase of the stator, and FIG. 26 is a perspective view of half A of one magnetic pole and B of one magnetic pole of the stator.
 図24に示す回転電機の固定子1は固定子鉄心2と固定子巻線3と保持板33から構成される。また、固定子鉄心2は爪磁極部4、背面部6、側面部5から構成される素材を周方向に積層したものである。図25および26に示すように固定子鉄心2は1磁極あるいは、1磁極の半部を1つのセグメントとして周方向に配置し保持板33にて各セグメントの位置決めおよび固定を行う。また、背面部6の軸方向端面7を合わせることで構成されるめ、固定子巻線3の巻装を容易にすることができる。 The stator 1 of the rotating electrical machine shown in FIG. 24 includes a stator core 2, a stator winding 3, and a holding plate 33. The stator core 2 is formed by laminating a material composed of a claw magnetic pole portion 4, a back surface portion 6, and a side surface portion 5 in the circumferential direction. As shown in FIGS. 25 and 26, the stator core 2 is arranged in the circumferential direction with one magnetic pole or half of one magnetic pole as one segment, and the holding plate 33 positions and fixes each segment. Moreover, since it comprises by match | combining the axial direction end surface 7 of the back surface part 6, the winding of the stator coil | winding 3 can be made easy.
 図27に本発明の実施例2の製造方法の第1の例を示す。鋼板から素材13を切抜き、切抜いた素材を成形し、成形した素材13を積層し、積層した素材13同士を接合すし、接合した素材を組立てる工程からなる。図28に本発明の実施例2の製造方法の第2の例を示す。鋼板から素材13を切抜き、切抜いた素材13を積層し、素材13を積層させた状態で素材13に爪磁極部4および背面部6を成形し、成形した素材13同士を接合し、接合した素材を組立てる工程からなる。 FIG. 27 shows a first example of the manufacturing method according to the second embodiment of the present invention. The material 13 is cut from the steel plate, the cut material is formed, the formed material 13 is laminated, the laminated materials 13 are joined together, and the joined materials are assembled. FIG. 28 shows a second example of the manufacturing method according to the second embodiment of the present invention. The material 13 is cut out from the steel plate, the cut material 13 is laminated, the claw magnetic pole portion 4 and the back surface portion 6 are formed on the material 13 in a state where the material 13 is laminated, the formed materials 13 are joined together, and the joined material It consists of the process of assembling.
 鋼板から環状の素材13を切抜く工程では、例えばせん断加工、ワイヤーカット、レーザー切断、ウォータージェット、あるいは機械加工などによって所望の形状に切抜く。 In the process of cutting the annular material 13 from the steel plate, it is cut into a desired shape by, for example, shearing, wire cutting, laser cutting, water jet, or machining.
 切抜いた素板を積層する工程では、素材13の中心をそろえ、素材13の板厚方向に積層する。 In the step of laminating the cut base plates, the centers of the materials 13 are aligned and the materials 13 are laminated in the thickness direction.
 素材13を成形する工程では、例えば、図29のAに示すように、対向する1組のZ字状に成形する曲げ工具34と35の、曲げ工具下34の上に素材13を置き、曲げ工具上35を素材13の板厚方向(矢印方向)に押込むことにより、図29のBのように素材13が曲げ工具上35と曲げ工具下34の間に挟まれて、図29のCのように素材13が成形される。 In the step of forming the material 13, for example, as shown in FIG. 29A, the material 13 is placed on the lower bending tool 34 of the bending tools 34 and 35 that are formed into a pair of opposing Z-shapes and bent. By pushing the tool upper 35 in the plate thickness direction (arrow direction) of the material 13, the material 13 is sandwiched between the bending tool upper 35 and the bending tool lower 34 as shown in FIG. The material 13 is formed as follows.
 成形した素材13を積層する工程では、成形した素材13の曲げ部と、側面部5をそろえて順次積層する。 In the step of laminating the molded material 13, the bent portion of the molded material 13 and the side surface portion 5 are aligned and sequentially laminated.
 素材13同士を接合する工程では、例えば爪磁極部先端部22または背面部先端部23の少なくとも一方をレーザー溶接したり、接着剤を用いて、隣接する素材13と順次接合したり、図15に示すような素材13板厚方向に半抜きされて形成された凸部25と凹部26を合わせる事で接合する。また、この接合工程は積層と同じ工程または積層工程より後工程で行う。この接合工程では、1磁極あるいは1磁極の半分を1つのセグメントとして接合する。 In the step of joining the materials 13 to each other, for example, at least one of the claw magnetic pole tip 22 or the back tip 23 is laser-welded, or sequentially joined to the adjacent material 13 using an adhesive, as shown in FIG. As shown, the material 13 is joined by combining the convex part 25 and the concave part 26 formed by being half-cut in the plate thickness direction. In addition, this joining step is performed in the same step as the lamination or in a later step than the lamination step. In this joining step, one magnetic pole or half of one magnetic pole is joined as one segment.
 接合した素材を組立てる工程では、保持板33に設けた位置決めの機構により1磁極分あるいは1次極の半分を配置して固定する。この位置決めの機構は例えば側面部5を転写したような形状の凹みを作成し、1磁極分あるいは1次極の半分を圧入して固定する。あるいは、保持板33の磁極配置部に凸形状を設け、側面部5に凸部を設け、位置決めを行う。 In the process of assembling the joined materials, one magnetic pole or half of the primary pole is arranged and fixed by a positioning mechanism provided on the holding plate 33. For example, this positioning mechanism creates a recess having a shape as if the side surface portion 5 was transferred, and presses and fixes one magnetic pole portion or half of the primary pole. Or a convex shape is provided in the magnetic pole arrangement part of the holding plate 33, and a convex part is provided in the side part 5, and positioning is performed.

Claims (24)

  1.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有する回転電機において、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成されていることを特徴とする回転電機。 In a rotating electrical machine having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, the stator is annularly wound around the rotor. It is composed of a winding and a stator core having stator claw magnetic poles that alternately extend from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates. A rotating electric machine characterized by
  2.  請求項1記載の回転電機であって、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されていることを特徴とする回転電機。 2. The rotating electrical machine according to claim 1, wherein the stator claw magnetic pole of the stator iron core, and the stator iron core rear surface facing the stator claw magnetic pole and the stator winding sandwich the rotation axis of the rotor. A steel plate is laminated in a radial direction around the center, and a stator side surface portion connecting the stator claw magnetic pole and the stator back portion is configured by laminating steel plates in an axial direction. Rotating electric machine.
  3.  請求項1記載の回転電機であって、前記固定子鉄心が周方向に鋼板を積層することで構成されていることを特徴とする回転電機。 2. The rotating electrical machine according to claim 1, wherein the stator core is configured by laminating steel plates in a circumferential direction.
  4.  請求項1に記載の回転電機であって、前記固定子鉄心を構成する鋼板の少なくとも1枚が電磁鋼板もしくは磁気抵抗の少ない鋼板であることを特徴とする回転電機。 2. The rotating electrical machine according to claim 1, wherein at least one of the steel plates constituting the stator core is an electromagnetic steel plate or a steel plate with low magnetic resistance.
  5.  請求項1に記載の回転電機であって、厚さの異なる鋼板を組合せて構成することを特徴とする回転電機。 The rotating electrical machine according to claim 1, wherein the rotating electrical machine is configured by combining steel plates having different thicknesses.
  6.  請求項2記載の回転電機であって、前記固定子鉄心の前記固定子爪磁極と前記固定子背面部と前記固定子側面部とが一体である鋼板を積層することで構成されていることを特徴とする回転電機。 It is a rotary electric machine of Claim 2, Comprising: It is comprised by laminating | stacking the steel plate with which the said stator claw magnetic pole of the said stator core, the said stator back part, and the said stator side part are integral. A rotating electric machine that is characterized.
  7.  請求項2に記載の回転電機であって、前記固定子爪磁極の前記回転子と対向する前記回転子との対向面を構成する鋼板にスリットまたは凹凸形状を少なくとも1本以上構成することを特徴とする回転電機。 It is a rotary electric machine of Claim 2, Comprising: At least 1 slit or uneven | corrugated shape is comprised in the steel plate which comprises the opposing surface with the said rotor which opposes the said rotor of the said stator nail | claw magnetic pole. Rotating electric machine.
  8.  請求項3に記載の回転電機であって、前記爪磁極と前期固定子背面部と前期固定子側面部からなる1磁極分あるいは1磁極の半分を1組としたセグメントと、前期固定子鉄心の周方向の位置決める保持板から構成されることを特徴とする回転電機。 4. The rotating electrical machine according to claim 3, wherein a segment of one magnetic pole portion or one half of one magnetic pole composed of the claw magnetic pole, the first stator back portion and the first stator side portion, and a first stator core A rotating electric machine comprising a holding plate for positioning in a circumferential direction.
  9.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から環状の素材を切抜く第1工程と、前記素材に前記固定子爪磁極部と前記固定子背面部とを成形する第2工程と、前記成形した素材を積層する第3工程と、前記積層した素材を接合する第4工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and A stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is a first step of cutting an annular material from a steel plate in a method of manufacturing a rotating electrical machine configured by laminating steel plates in an axial direction. And the stator claw magnetic pole part and the stator on the material A second step of forming a surface, the third step and the method of manufacturing a rotary electric machine, characterized in that it comprises a fourth step of bonding the material to the laminate which laminated material described above forming.
  10.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から環状の素材を切抜く第1工程と、前記素材を積層する第2工程と、前記積層した素材に前記固定子爪磁極部と前記固定子背面部とを成形する第3工程と、前記成形した素材を接合する第4工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and A stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is a first step of cutting an annular material from a steel plate in a method of manufacturing a rotating electrical machine configured by laminating steel plates in an axial direction. A second step of laminating the materials, and laminating Third step and method for producing a rotary electric machine, characterized in that it comprises a fourth step of bonding the material to the forming of molding and said stator rear portion and the stator pawl magnetic pole portion in the material.
  11.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から1磁極または複数磁極分の素材を切抜く第1工程と、前記素材に前記固定子爪磁極部と前記固定子背面部とを成形する第2工程と、前記成形した素材を積層する第3工程と、前記積層された素材を接合する第4工程と、前記接合した素材を周方向に組立てる第5工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and In the method of manufacturing a rotating electrical machine, the stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction. First step of cutting out, and the stator claw on the material A second step of molding the pole portion and the stator back portion, a third step of laminating the molded material, a fourth step of joining the laminated material, and the joined material in the circumferential direction. And a fifth step of assembling the rotating electric machine.
  12.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から1磁極または複数磁極分の素材を切抜く第1工程と、前記素材を積層する第2工程と、前記積層した素材に前記固定子爪磁極部と前記固定子背面部とを成形する第3工程と、前記成形した素材を接合する第4工程と、前記接合した素材を周方向に組立てる第5工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and In the method of manufacturing a rotating electrical machine, the stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction. A first step of cutting and a second step of laminating the materials And a third step of forming the stator claw magnetic pole portion and the stator back portion on the laminated material, a fourth step of joining the molded material, and assembling the joined materials in the circumferential direction. A method of manufacturing a rotating electrical machine, comprising: a fifth step.
  13.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、帯状に連続した鋼板から素材を切抜く第1工程と、前記素材に前記固定子爪磁極部と前記固定子背面部とを成形する第2工程と、前記成形した素材をらせん状に積層する第3工程と、前記積層した素材を接合する第4工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and In the method of manufacturing a rotating electrical machine, the stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction. 1 step, the stator claw pole part and the front A rotating electrical machine manufacturing comprising: a second step of forming a stator back surface portion; a third step of laminating the molded material in a spiral shape; and a fourth step of joining the laminated material. Method.
  14.  請求項9に記載の回転電機の製造方法であって、前記固定子爪磁極を成形する固定子爪磁極成形工具の前記固定子爪磁極部を成形する部分が軸に垂直な横断面が円弧形状であり、前記固定子背面部を成形する固定子背面部成形工具の前記固定子背面部を成形する部分が軸に垂直な横断面が円弧形状であり、前記固定子爪磁極成形型および前記固定子背面部成形型と前記素材を挟んだ位置に配置し前記固定子爪磁極成形工具より大きく前記固定子背面部成形工具より小さい前記固定子側面部を成形する固定子側面部成形工具を固定子爪磁極成形型および固定子背面部成形型に対して相対的に前記回転子の軸方向に押込むことを特徴とする回転電機の製造方法。 10. The method of manufacturing a rotating electrical machine according to claim 9, wherein a portion of the stator claw magnetic pole forming tool for forming the stator claw magnetic pole forming portion of the stator claw magnetic pole portion that is perpendicular to the axis is a circular cross section. The stator back part forming tool for forming the stator back part has a circular cross section perpendicular to the axis of the part for forming the stator back part, and the stator claw magnetic pole forming die and the fixing A stator side part forming tool which is arranged at a position sandwiching the back part forming die and the material and forms the stator side part which is larger than the stator claw magnetic pole forming tool and smaller than the stator back part forming tool. A method of manufacturing a rotating electrical machine, wherein the claw magnetic pole forming die and the stator back portion forming die are pushed relative to each other in the axial direction of the rotor.
  15.  請求項14に記載の回転電機の製造方法であって、前記固定子爪磁極成形工具を前記回転子の軸方向および半径方向外向きに押込むことを特徴する回転電機の製造方法。 15. The method of manufacturing a rotating electrical machine according to claim 14, wherein the stator claw pole forming tool is pushed in an axial direction and a radial outward direction of the rotor.
  16.  請求項9に記載の回転電機の製造方法において、各層の前記固定子爪磁極の高さまたは前記固定子背面部の高さの少なくとも一方が前記回転子の半径方向に揃う形状の素材を使用することを特徴とする回転電機の製造方法。 10. The method of manufacturing a rotating electrical machine according to claim 9, wherein a material having a shape in which at least one of the height of the stator claw magnetic pole of each layer or the height of the back surface of the stator is aligned in the radial direction of the rotor is used. The manufacturing method of the rotary electric machine characterized by the above-mentioned.
  17.  請求項10に記載の回転電機の製造方法において、前記固定子爪磁極先端部を前記回転子の軸方向に押込み、前記固定子爪磁極と前記固定子側面部の交わる角部半径を小さくする工程を備えることを特徴とする回転電機の製造方法。 The method of manufacturing a rotating electrical machine according to claim 10, wherein the stator pawl magnetic pole tip is pushed in the axial direction of the rotor to reduce a corner radius where the stator pawl magnetic pole and the stator side face intersect. The manufacturing method of the rotary electric machine characterized by the above-mentioned.
  18.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成されている回転電機の製造方法において、外周部に前記回転子の半径方向中心向きに切込みが入っている前記素材を使用することを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and In the method of manufacturing a rotating electrical machine, a stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction. Use the material with a notch Method of manufacturing a rotary electric machine, wherein.
  19.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と前記固定子背面部と前記固定子側面部とが一体である鋼板を積層することで構成され、前記固定子鉄心が周方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から素材を切抜く第1工程と、前記素材を成形する第2工程と、前記成形した素材を積層する第3工程と、前記積層した素材を接合する第4工程と、前記素材を組立てる第5工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and A stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction, and the stator claw magnetic pole of the stator core, the stator back surface portion, and the fixing It is composed by laminating steel plates that are integral with the child side surface. In the method of manufacturing a rotating electrical machine in which the stator core is formed by laminating steel plates in the circumferential direction, a first step of cutting out a material from the steel plate, a second step of forming the material, and the formed material A method of manufacturing a rotating electrical machine, comprising: a third step of laminating the layers, a fourth step of joining the laminated materials, and a fifth step of assembling the materials.
  20.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と前記固定子背面部と前記固定子側面部とが一体である鋼板を積層することで構成され、前記固定子鉄心が周方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から素材を切抜く第1工程と、前記素材を積層する第2工程と、前記積層した素材を成形する第3工程と、前記成形した素材を接合する第4工程と、前記素材を組立てる第5工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and A stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction, and the stator claw magnetic pole of the stator core, the stator back surface portion, and the fixing It is composed by laminating steel plates that are integral with the child side surface. In the method of manufacturing a rotating electrical machine in which the stator core is formed by laminating steel plates in the circumferential direction, a first step of cutting a material from a steel plate, a second step of laminating the material, and the laminated material The manufacturing method of the rotary electric machine characterized by including the 3rd process of shape | molding, the 4th process of joining the said shape | molded raw material, and the 5th process of assembling the said raw material.
  21.  回転自在に設けられた回転子と、該回転子の外周と対向する部位に設けられた固定子とを有し、前記固定子は前記回転子の外側に環状に巻装された固定子巻線と、前記回転子と対向する部位に軸方向両側からそれぞれが交互に延びる固定子爪磁極を有した固定子鉄心とで構成され、前記固定子鉄心が鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と、前記固定子爪磁極と前記固定子巻線を挟んで向かい合う固定子鉄心背面部は回転子の回転軸を中心とする半径方向に鋼板を積層し、かつ、前記固定子爪磁極と前記固定子背面部とをつなぐ固定子側面部は軸方向に鋼板を積層することで構成され、前記固定子鉄心の前記固定子爪磁極と前記固定子背面部と前記固定子側面部とが一体である鋼板を積層することで構成され、前記固定子鉄心が周方向に鋼板を積層することで構成されている回転電機の製造方法において、鋼板から素材を切抜く第1工程と、前記素材を積層する第2工程と、前記積層した素材を接合する第3工程と、前記接合した素材を成形する第4工程と、前記素材を組立てる第5工程とを備えることを特徴とする回転電機の製造方法。 A stator winding having a rotor provided rotatably and a stator provided at a portion facing the outer periphery of the rotor, wherein the stator is annularly wound around the outer side of the rotor And a stator core having stator claw magnetic poles alternately extending from both sides in the axial direction at a portion facing the rotor, and the stator core is configured by laminating steel plates, and the fixed The stator claw magnetic pole of the core, and the stator core back surface facing the stator claw magnetic pole and the stator winding are laminated with steel plates in the radial direction about the rotation axis of the rotor; and A stator side surface portion connecting the stator claw magnetic pole and the stator back surface portion is formed by laminating steel plates in the axial direction, and the stator claw magnetic pole of the stator core, the stator back surface portion, and the fixing It is composed by laminating steel plates that are integral with the child side surface. In the method of manufacturing a rotating electrical machine in which the stator core is formed by laminating steel plates in the circumferential direction, a first step of cutting a material from a steel plate, a second step of laminating the material, and the laminated material The manufacturing method of the rotary electric machine characterized by including the 3rd process of joining, the 4th process of shape | molding the said joined raw material, and the 5th process of assembling the said raw material.
  22.  請求項19に記載の回転電機の製造方法において、前記素材を固定子爪磁極部側から固定子背面部側に向けて、前記素材の面外方向に山谷あるいは谷山とZ状に曲げることを特徴とする回転電機の製造方法。 20. The method of manufacturing a rotating electrical machine according to claim 19, wherein the material is bent in a Z-valley or valley-mountain Z direction in an out-of-plane direction of the material from the stator claw magnetic pole portion side toward the stator back surface portion side. A method of manufacturing a rotating electrical machine.
  23.  請求項9に記載の回転電機の製造方法において、前記素材を板厚方向に半抜きして形成された凸部と凹部を合わせるかしめ、あるいは、レーザー溶接、あるいは接着により接合することを特徴とする回転電機の製造方法。 10. The method of manufacturing a rotating electrical machine according to claim 9, wherein the projections and recesses formed by half-pulling the material in the thickness direction are joined together by caulking, laser welding, or bonding. A method of manufacturing a rotating electrical machine.
  24.  請求項19に記載の回転電機の製造方法において、前記素材を板厚方向に半抜きして形成された凸部と凹部を合わせるかしめ、あるいは、レーザー溶接、あるいは接着により接合することを特徴とする回転電機の製造方法。 20. The method of manufacturing a rotating electrical machine according to claim 19, wherein the convex portions and the concave portions formed by half-pulling the raw material in the plate thickness direction are joined together by caulking, laser welding, or bonding. A method of manufacturing a rotating electrical machine.
PCT/JP2008/071862 2008-01-07 2008-12-02 Stator iron-core structure for rotating electric machine, and method for manufacturing the same WO2009087835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008000697A JP2009165273A (en) 2008-01-07 2008-01-07 Stator core structure for rotary electric machine and its manufacturing method
JP2008-000697 2008-01-07

Publications (1)

Publication Number Publication Date
WO2009087835A1 true WO2009087835A1 (en) 2009-07-16

Family

ID=40852962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071862 WO2009087835A1 (en) 2008-01-07 2008-12-02 Stator iron-core structure for rotating electric machine, and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2009165273A (en)
WO (1) WO2009087835A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973006A (en) * 2013-01-24 2014-08-06 阿斯莫株式会社 Rotor, Stator And Motor
US20150162786A1 (en) * 2013-12-10 2015-06-11 Electric Torque Machines, Inc. Transverse flux stator geometry
CN104779750A (en) * 2015-04-13 2015-07-15 广东博宇集团有限公司 Motor stator fabricating process
CN105324579A (en) * 2013-07-05 2016-02-10 三菱电机株式会社 Electric fan and electric vacuum cleaner
CN106411006A (en) * 2016-11-15 2017-02-15 华中科技大学 Claw-pole-structure rotor of axial flux permanent magnet
CN108512318A (en) * 2017-02-27 2018-09-07 通用汽车环球科技运作有限责任公司 Stator module for motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022278B2 (en) 2008-03-12 2012-09-12 株式会社日立製作所 Stator core for rotating electrical machine and method for manufacturing the same
JP2013201811A (en) * 2012-03-23 2013-10-03 Hitachi Automotive Systems Ltd Single-phase claw pole type motor
US20140265714A1 (en) * 2013-03-13 2014-09-18 Remy Technologies, L.L.C. Transverse flux stator core manufacture
CN211830366U (en) * 2020-03-06 2020-10-30 瑞声通讯科技(常州)有限公司 Stepping motor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117357U (en) * 1990-03-12 1991-12-04
JPH06261532A (en) * 1993-03-05 1994-09-16 Canon Precision Inc Manufacture of comb-like teeth of stator for stepping motor
JPH09247915A (en) * 1996-03-12 1997-09-19 Denso Corp Ac generator for vehicle
JP2000184682A (en) * 1998-12-10 2000-06-30 Mitsubishi Electric Corp Stator core and its manufacture
JP2001037108A (en) * 1999-07-15 2001-02-09 Mitsuba Corp Generator for bicycle
JP2002345179A (en) * 2001-05-07 2002-11-29 Jianzhun Electric Mach Ind Co Ltd Improved structure of stator set of motor
JP2003333777A (en) * 2002-05-09 2003-11-21 Shimano Inc Claw-pole generator and hub dynamo for bicycle
JP2004229403A (en) * 2003-01-22 2004-08-12 Ichinomiya Denki:Kk Claw pole type generator
JP2005051941A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Split stator core
JP2005151785A (en) * 2003-11-16 2005-06-09 Yoshimitsu Okawa Synchronous generator having annular armature coil
JP2006067697A (en) * 2004-08-26 2006-03-09 Seiko Instruments Inc Stator core, manufacturing method thereof, motor, and recording medium drive unit
JP2006087289A (en) * 2004-09-15 2006-03-30 Lg Electronics Inc Stator of motor and manufacturing method therefor
JP2007336624A (en) * 2006-06-12 2007-12-27 Hitachi Ltd Multi-phase claw tooth type permanent magnet motor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117357U (en) * 1990-03-12 1991-12-04
JPH06261532A (en) * 1993-03-05 1994-09-16 Canon Precision Inc Manufacture of comb-like teeth of stator for stepping motor
JPH09247915A (en) * 1996-03-12 1997-09-19 Denso Corp Ac generator for vehicle
JP2000184682A (en) * 1998-12-10 2000-06-30 Mitsubishi Electric Corp Stator core and its manufacture
JP2001037108A (en) * 1999-07-15 2001-02-09 Mitsuba Corp Generator for bicycle
JP2002345179A (en) * 2001-05-07 2002-11-29 Jianzhun Electric Mach Ind Co Ltd Improved structure of stator set of motor
JP2003333777A (en) * 2002-05-09 2003-11-21 Shimano Inc Claw-pole generator and hub dynamo for bicycle
JP2004229403A (en) * 2003-01-22 2004-08-12 Ichinomiya Denki:Kk Claw pole type generator
JP2005051941A (en) * 2003-07-30 2005-02-24 Toyota Motor Corp Split stator core
JP2005151785A (en) * 2003-11-16 2005-06-09 Yoshimitsu Okawa Synchronous generator having annular armature coil
JP2006067697A (en) * 2004-08-26 2006-03-09 Seiko Instruments Inc Stator core, manufacturing method thereof, motor, and recording medium drive unit
JP2006087289A (en) * 2004-09-15 2006-03-30 Lg Electronics Inc Stator of motor and manufacturing method therefor
JP2007336624A (en) * 2006-06-12 2007-12-27 Hitachi Ltd Multi-phase claw tooth type permanent magnet motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973006A (en) * 2013-01-24 2014-08-06 阿斯莫株式会社 Rotor, Stator And Motor
US9887608B2 (en) 2013-01-24 2018-02-06 Asmo Co., Ltd. Rotor, stator and motor
US10862380B2 (en) 2013-01-24 2020-12-08 Denso Corporation Rotor, stator and motor
CN105324579A (en) * 2013-07-05 2016-02-10 三菱电机株式会社 Electric fan and electric vacuum cleaner
US20150162786A1 (en) * 2013-12-10 2015-06-11 Electric Torque Machines, Inc. Transverse flux stator geometry
US9509181B2 (en) * 2013-12-10 2016-11-29 Electric Torque Machines Inc. Transverse flux stator geometry
CN104779750A (en) * 2015-04-13 2015-07-15 广东博宇集团有限公司 Motor stator fabricating process
CN106411006A (en) * 2016-11-15 2017-02-15 华中科技大学 Claw-pole-structure rotor of axial flux permanent magnet
CN106411006B (en) * 2016-11-15 2018-07-24 华中科技大学 A kind of claw-pole structure rotor of axial flux permanent magnet body
CN108512318A (en) * 2017-02-27 2018-09-07 通用汽车环球科技运作有限责任公司 Stator module for motor

Also Published As

Publication number Publication date
JP2009165273A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2009087835A1 (en) Stator iron-core structure for rotating electric machine, and method for manufacturing the same
JP5020034B2 (en) Rotating electric machine
JP5022278B2 (en) Stator core for rotating electrical machine and method for manufacturing the same
CN111033980B (en) Divided core connection body and armature manufacturing method
JP2010220288A (en) Core block and magnetic pole core for motors using the core block
JP2010246171A (en) Axial gap type dynamo-electric machine
WO2005065332A2 (en) Electrodynabmic appatatus and method of manufacture
JP4417856B2 (en) Reciprocating motor stator
JP2009005421A (en) Rotary electric machine
WO2014102950A1 (en) Rotating electrical machine
JP2008104288A (en) Capacitor motor, and manufacturing method therefor
JP2009050116A (en) Capacitor motor, and manufacturing method thereof
KR102043943B1 (en) Double stator and Motor having the same
Akita et al. A new core
JP2011114989A (en) Rotary electric machine
WO2011120564A1 (en) Rotor disc, rotor assembly, synchronous machine, and method of producing thereof
JP5311290B2 (en) Manufacturing method of stator core for axial gap type rotating electrical machine
KR100556817B1 (en) Stater structure for reciprocating motor
JP6995183B1 (en) Motor core structure
JPH0654471A (en) Armature of rotating electric machine
JP5311289B2 (en) Manufacturing method of rotor core for axial gap type rotating electrical machine
JP2005333695A (en) Exciter and rotary electric machine employing it
JP5518353B2 (en) Stator structure and rotating electric machine using the same
KR20150125826A (en) Single stator and Motor having the thereof
JP2007053867A (en) Permanent-magnet motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869763

Country of ref document: EP

Kind code of ref document: A1