WO2009058675A2 - System and method for providing secure network communications - Google Patents

System and method for providing secure network communications Download PDF

Info

Publication number
WO2009058675A2
WO2009058675A2 PCT/US2008/081078 US2008081078W WO2009058675A2 WO 2009058675 A2 WO2009058675 A2 WO 2009058675A2 US 2008081078 W US2008081078 W US 2008081078W WO 2009058675 A2 WO2009058675 A2 WO 2009058675A2
Authority
WO
WIPO (PCT)
Prior art keywords
data message
end point
controller
encrypted
point device
Prior art date
Application number
PCT/US2008/081078
Other languages
French (fr)
Other versions
WO2009058675A3 (en
Inventor
Frederick Hidle
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to CN200880114117A priority Critical patent/CN101843031A/en
Priority to EP08843801.5A priority patent/EP2213036B1/en
Publication of WO2009058675A2 publication Critical patent/WO2009058675A2/en
Publication of WO2009058675A3 publication Critical patent/WO2009058675A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/162Implementing security features at a particular protocol layer at the data link layer

Definitions

  • This disclosure relates generally to networked computing systems and more specifically to a system and method for providing secure network communications.
  • This disclosure provides a system and method for providing secure network communications.
  • a method in a first embodiment, includes receiving a data message, from a first embedded node, in a first end point device.
  • the first data message is addressed to a second embedded node.
  • the method also includes encrypting the first data message using a Layer 2 encryption process to produce an encrypted data message.
  • the encryption is transparent to the first embedded node.
  • the method further includes transmitting the encrypted data message to a second end point device.
  • Some embodiments also include receiving the encrypted data message in the second end point device, decrypting the encrypted data message to produce a second data message corresponding to the first data message, and transmitting the second data message to the second embedded node.
  • an apparatus in a second embodiment, includes a plurality of embedded node ports each configured to communicate with an embedded node.
  • the apparatus also includes an encrypted communications link port configured to communicate with an end point device.
  • the apparatus further includes a controller connected to communicate with the embedded node ports and the encrypted communications link port, where the controller is associated with an encryption controller configured to encrypt packets forming data messages with a Layer 2 encryption process.
  • the apparatus includes a storage connected to be read from and written to by the controller.
  • Some embodiments also include a memory associated with the encryption controller, where the memory stores an encryption key pair and information identifying at least one other end point device.
  • a communications network includes a plurality of embedded nodes and a first end point device.
  • the first end point device has plurality of embedded node ports each configured to communicate with an embedded node.
  • the first end point device also includes an encrypted communications link port configured to communicate with a second end point device on a second physical network, to thereby form a single logical network with the first end point device.
  • the first end point device further includes a controller connected to communicate with the embedded node ports and the encrypted communications link port, and configured to perform Layer-2 encryption.
  • the first end point device includes a storage connected to be read from and written to by the controller.
  • Some embodiments also include a second plurality of embedded nodes.
  • the second end point device has a plurality of embedded node ports each configured to communicate with a respective one of the second plurality of embedded nodes, an encrypted communications link port configured to communicate with the first end point device, a controller connected to communicate with the embedded node ports and the encrypted communications link port, and a storage connected to be read to and written by the controller .
  • FIGURE 1 is a block diagram of an example communications network 100 according to one embodiment of this disclosure.
  • FIGURE 2 is a block diagram of an end point according to one embodiment of this disclosure.
  • FIGURE 3 illustrates an example method for providing secure network communications according to one embodiment of this disclosure.
  • FIGURE 4 is a more detailed block diagram of an end point device according to one embodiment of this disclosure .
  • FIGURE 1 is a block diagram of an example communications network 100 according to one embodiment of this disclosure.
  • the embodiment of the communications network 100 shown in FIGURE 1 is for illustration only. Other embodiments of the communications network 100 may be used without departing from the scope of this disclosure.
  • first communications network 110 communicates with second communications network 120 over an encrypted communications link 140 managed by end point devices 130a and 130b. This allows secure communication between the two networks by an encrypted communication over either a direct connection or a connection via a vulnerable public or private network.
  • first end point device 130a is connected to communicate with embedded nodes 112a-112d via any known communications means, such as an Ethernet network, serial communications, hardwired or wireless communications, etc.
  • first end point device 130a and embedded nodes 112a-112s form first communications network 110.
  • four embedded nodes are shown in this example, more or less nodes can be used according to the desired implementation.
  • second end point device 130b is connected to communicate with embedded nodes 122a-122d via any known communications means, such as an Ethernet network, serial communications, hardwired or wireless communications, etc. Together, second end point device 130b and embedded nodes 122a-122s form second communications network 120. Note that while four embedded nodes are shown in this example, more or less nodes can be used according to the desired implementation. [0017] According to various embodiments, each end point device 130a/130b has multiple ports to which embedded nodes 112a-d and 122a-d are respectively attached. Each embedded node can be associated with a respective embedded device, known to those of skill in the art. The embedded nodes communicate with nodes connected to the other end point, and vice versa. For example, one or more of embedded nodes 112a-d can communicate with one or more of embedded nodes 122a-d.
  • the end points relay traffic over encrypted communications link 140, which can be encrypted using any known technique, including Internet Protocol Security (IPSec), wireless encryption protocol (WEP) , Advanced Encryption Standard (AES) , and others.
  • the encrypted communications link 140 can be used to transmit data traffic including broadcast, multicast, proprietary personal or commercial data, and other forms of traffic between the two networks without modifying the IP-layer network information. All traffic between the two end points can be encrypted.
  • the end point devices 130a/130b can perform all network processing to encrypt and decrypt the packets.
  • the networks 110/120 on either side of encrypted communications link 140 can be in the same subnet or in different subnets.
  • the nodes 112a-112d and 122a-122d on either side of the encrypted segment can communicate with each other without having any awareness that the encrypted link exists.
  • the disclosed end point devices therefore enable the joining of two distinct physical networks on the same logical network, in a manner transparent to the embedded nodes.
  • End point devices 130a/130b can also act as firewalls and rate limiters pursuant to the needs of the implementation, in various disclosed embodiments.
  • MAC-layer or other security measures can be employed, including monitoring for unauthorized media access control (MAC) addresses, disabling ports to which unauthorized nodes are attached, and other methods involving securing the network.
  • MAC media access control
  • FIGURE 2 is a block diagram of an end point device 230 that can be used as end point devices 130a/130b according to one embodiment of this disclosure.
  • the embodiment of the end point device 230 shown in FIGURE 2 is for illustration only. Other embodiments of the end point device 230 may be used without departing from the scope of this disclosure.
  • end point device 230 is implemented as an embedded computer system.
  • End point device 230 includes a plurality of embedded node ports 212a-212d, configured to be connected to and communicate with embedded nodes such as embedded nodes 112a-112d. Again, although four embedded node ports are shown in this example, the number of ports can be increased or decreased depending on the required implementation.
  • Embedded node ports 212a-212d can be implemented using any known communications port, including in particular a conventional Ethernet port.
  • End point device 230 also includes an encrypted communications link port 240 that is configured to be connected to and communicate over encrypted communications link 140.
  • encrypted communications link port can include an RF transceiver and related hardware and software to implement a wireless communication link as known to those of skill in the art.
  • Encrypted communications link port 240 can be implemented using any known communications port, including in particular a conventional Ethernet port.
  • End point device 230 further includes a controller 250 configured and connected to communicate with embedded node ports 212a-d and encrypted communications link port 240.
  • Controller 250 which can be implemented, for example, as a microprocessor or microcontroller, also communicates with storage 260, which can be implemented as any computer-usable medium.
  • Controller 250 can be configured to execute an operating system, networking drivers, encryption drivers, and filtering software that acts upon the relayed traffic.
  • the software stored in storage 260, can be configured to attach two independent network interfaces, such as embedded node ports 212a-212d and encrypted communications link port 240, and relay all traffic incoming on one interface to the output of the other, and vice versa.
  • An encryption controller 270 associated with controller 250, can be configured to encrypt all traffic outgoing and decrypt all traffic incoming, regardless of source or destination MAC or IP address, to be transmitted over encrypted communications link port 240.
  • End point device 230 can also be configured to transparently perform rate-limiting and filtering/rejection of undesired traffic.
  • encryption controller is implemented as an FPGA.
  • controller 250 only acts to wrap the passing traffic in a header and to perform Firewalling or other activities on incoming/outgoing traffic after decryption (inbound) or before encryption (outbound) , and to perform other general routing and control functions for end point device 230. In some embodiments, it also acts as an FTE controller should this device be made to support a proprietary network such as the FAULT TOLERANT ETHERNET (FTE) network from HONEYWELL INTERNATIONAL INC. In some embodiments, controller 250 is independent of, and "unaware" of, the encryption controller 270, so that encryption controller 270 performs its functions without any control by or interaction with controller 250, other than passing the data packets.
  • FTE FAULT TOLERANT ETHERNET
  • Ethernet physical layer converts the received analog signal to a digital packet on an media independent interface (Mil) bus, and that packet is received by Encryption Controller 270, which decrypts the packet (which was encrypted using the Layer 2 scheme) . It then passes the unencrypted packet to the controller 250, which unwraps the payload, performs filtering on the resulting packet (whether it be UDP, TCP, IP, FTE, Multicast, or otherwise) , and passes it to the embedded node.
  • Mo media independent interface
  • FIGURE 3 illustrates an example method 300 for providing secure network communications according to one embodiment of this disclosure.
  • the embodiment of the method 300 shown in FIGURE 3 is for illustration only. Other embodiments of the method 300 may be used without departing from the scope of this disclosure.
  • an embedded node 112a transmits a first data message for embedded node 122a.
  • the first data message can, for example, be formatted as a conventional internet protocol (IP) message and is addressed to embedded node 122a.
  • IP internet protocol
  • first end point device 130a receives the first data message and encrypts the data message to produce an encrypted data message.
  • first end point device 130a transmits the encrypted data message across encrypted communications link 140 to second end point device 130b.
  • second end point device 130b receives the encrypted data message and decrypts it to produce a second data message corresponding to the first data message.
  • second end point device 130b transmits the second data message to embedded node 122a.
  • the encryption and transmission between the first and second end point devices have been transparent to embedded nodes 112a and 122a.
  • Reply messages and other messages between the embedded nodes can be accomplished using the same or similar process as described above.
  • a single embedded node can "multicast" or broadcast a message to multiple recipient embedded nodes.
  • FIGURE 4 is a more detailed block diagram of an end point device 230 according to one embodiment of this disclosure.
  • FIGURE 4 also includes an illustration of packet events that occur during processing.
  • End point device 230 includes embedded node ports 212a and 212b (and others) that can be implemented, for example, as Ethernet interfaces. These embedded node ports can be connected to communicate with each other via switch 410. Each embedded node port can communicate with a respective embedded node, such as embedded node 122a. These communications could be packet-based and can include an unencrypted packet data, shown as packet 402.
  • the embedded node ports 212a/b and/or switch 410 communicate with controller 250, for example over a media independent interface (Mil) bus, known to those of skill in the art. These communications could also be packet-based and can include an unencrypted packet data, shown as packet 404.
  • Mc media independent interface
  • Controller 250 can include a MAC filter and IP filter, which can be used to filter traffic not from other authorized end points.
  • the controller 250 can implement other known commercial, public, or proprietary functions.
  • the processor 250 also wraps the packet 404 in a wrapper, using any known public or private wrapping technique, and includes the original packet 404 as its payload.
  • the wrapped packet is communicated to the encryption controller 420, shown as packet 406, in some embodiments over an Mil bus.
  • the encryption controller 420 can be implemented as a microprocessor, microcontroller, or otherwise, including as field-programmable gate array (FPGA) . Also, the functions of encryption controller 420 can be implemented by controller 250.
  • FPGA field-programmable gate array
  • encryption controller 420 is associated with a secure, encrypted flash memory 422.
  • Flash memory 422 can contain an encryption key pair and MAC address for each authorized end point device.
  • the flash memory 422 is programmed by the manufacturer and is not accessible by the end user.
  • the encryption controller 420 encrypts the entire packet 406 and appends a Layer-2 header with its own MAC address, shown as packet 408.
  • packet 408 has a payload that is encrypted data including packet 406 and all headers above Layer 2. Encryption controller 420 then communicates packet 408 to encrypted communications link port 240, which can be implemented as an Ethernet interface. The communications can be over an Mil bus.
  • the encryption is done at Layer 2 by a commercial, publicly available, or proprietary code in an FPGA and not by a high-level operating system, which may have known vulnerabilities .
  • Performing the encryption at Layer 2 gives the advantage that there is no unencrypted data except the source and destination MAC addresses of the two end points, thereby securing even the MAC addresses of the embedded nodes, even when the traffic is MAC broadcast.
  • two end point devices When two end point devices are communicating, in some embodiments, they exchange a sequence of handshake packets to establish authenticity using codes based on a rotating time table. In various embodiments, the two end point devices verify encryption keys by exchanging and testing (decrypting and verifying) an encrypted message, thereby performing a challenge/response exchange.
  • the encryption and decryption is transparent to the second embedded node. In various embodiments, the decryption is transparent to the first embedded node. In various embodiments, the second data message is identical to the first data message.
  • the encryption controller is configured to receive a first data message from an embedded node port, encrypt the first data message to produce an encrypted data message, and transmit the encrypted data message to the encrypted communications link port.
  • the controller is configured to receive an encrypted data message from the encrypted communications link port, decrypt the encrypted data message to produce a decrypted data message, and transmit the decrypted date message to at least one of the embedded node ports.
  • the controller is configured perform an encryption process that is transparent to devices connected to the embedded node ports. In various embodiments, the controller is configured to transparently perform rate-limiting functions.
  • the controller is configured to transparently perform filtering of undesired traffic using at least one of IP filtering or media access control (MAC) filtering.
  • the controller is configured to execute an operating system, networking drivers, encryption drivers, and filtering software .
  • Layer 2 refers to the Data Link Layer of the protocol stack, as known to those of skill in the art and defined by the Open System Interconnection (OSI) model for data communications, hereby incorporated by reference. Layer 2 establishes the physical connection between the local telecommunications device and the remote destination and defines the Data Frame as the physical transmission medium between nodes.
  • OSI Open System Interconnection
  • Layer 2 encryption is much more flexible for point-to-point applications where routing is not a consideration. Layer 2 encryption also provides platform independence because client systems will not require special software or hardware to manage routing decisions.
  • Virtual Private Network is the term commonly used to describe the capability to segregate private traffic on a publicly shared network infrastructure and is typically a Level 3 solution. The majority of the
  • VPN market is focused on tunneling and encryption at Layer
  • various functions described above are implemented or supported by a computer program that is formed from computer readable program code and that is embodied in a computer useable medium.
  • computer readable program code includes any type of computer code, including source code, object code, and executable code.
  • computer useable medium includes any type of medium capable of being accessed by a computer, such as read only memory (ROM) , random access memory (RAM) , a hard disk drive, a compact disc (CD) , a digital video disc (DVD) , or any other type of memory.
  • Couple and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another.
  • application refers to one or more computer programs, sets of instructions, procedures, functions, objects, classes, instances, or related data adapted for implementation in a suitable computer language.
  • the term “or” is inclusive, meaning and/or.
  • controller means any device, system, or part thereof that controls at least one operation.
  • a controller can be implemented in hardware, firmware, software, or some combination of at least two of the same.
  • the functionality associated with any particular controller can be centralized or distributed, whether locally or remotely.

Abstract

A method includes receiving a data message, from a first embedded node (112a-112d), in a first end point device (130a). The first data message is addressed to a second embedded node (122a-122d). The method also includes encrypting the first data message to produce an encrypted data message, where the encryption is transparent to the first embedded node. The method further includes transmitting the encrypted data message to a second end point device (130b). An apparatus includes a plurality of embedded node ports (212a-212d) each configured to communicate with an embedded node. The apparatus also includes an encrypted communications link port (240) configured to communicate with an end point device. The apparatus further includes a controller (250, 270) connected to communicate with the embedded node ports and the encrypted communications link port. In addition, the apparatus includes a storage (260) connected to be read from and written to by the controller.

Description

SYSTEM AND METHOD FOR PROVIDING SECURE NETWORK COMMUNICATIONS
TECHNICAL FIELD
[0001] This disclosure relates generally to networked computing systems and more specifically to a system and method for providing secure network communications.
BACKGROUND
[0002] Often it is necessary to have encrypted traffic on a network for security. However, in massive embedded deployments, the processing overhead involved in implementing typical network security, such as IPSec or other encrypted network engines, combined with limited processing resources makes it impractical to implement in an embedded device.
SUMMARY
[0003] This disclosure provides a system and method for providing secure network communications.
[0004] In a first embodiment, a method includes receiving a data message, from a first embedded node, in a first end point device. The first data message is addressed to a second embedded node. The method also includes encrypting the first data message using a Layer 2 encryption process to produce an encrypted data message. The encryption is transparent to the first embedded node. The method further includes transmitting the encrypted data message to a second end point device. Some embodiments also include receiving the encrypted data message in the second end point device, decrypting the encrypted data message to produce a second data message corresponding to the first data message, and transmitting the second data message to the second embedded node.
[0005] In a second embodiment, an apparatus includes a plurality of embedded node ports each configured to communicate with an embedded node. The apparatus also includes an encrypted communications link port configured to communicate with an end point device. The apparatus further includes a controller connected to communicate with the embedded node ports and the encrypted communications link port, where the controller is associated with an encryption controller configured to encrypt packets forming data messages with a Layer 2 encryption process. In addition, the apparatus includes a storage connected to be read from and written to by the controller. Some embodiments also include a memory associated with the encryption controller, where the memory stores an encryption key pair and information identifying at least one other end point device.
[0006] In a third embodiment, a communications network includes a plurality of embedded nodes and a first end point device. The first end point device has plurality of embedded node ports each configured to communicate with an embedded node. The first end point device also includes an encrypted communications link port configured to communicate with a second end point device on a second physical network, to thereby form a single logical network with the first end point device. The first end point device further includes a controller connected to communicate with the embedded node ports and the encrypted communications link port, and configured to perform Layer-2 encryption. In addition, the first end point device includes a storage connected to be read from and written to by the controller. Some embodiments also include a second plurality of embedded nodes. The second end point device has a plurality of embedded node ports each configured to communicate with a respective one of the second plurality of embedded nodes, an encrypted communications link port configured to communicate with the first end point device, a controller connected to communicate with the embedded node ports and the encrypted communications link port, and a storage connected to be read to and written by the controller .
[0007] Other technical features may be readily apparent to one skilled in the art from the following figures, descriptions, and claims. BRIEF DESCRIPTION OF THE DRAWINGS
[0008] For a more complete understanding of this disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
[0009] FIGURE 1 is a block diagram of an example communications network 100 according to one embodiment of this disclosure;
[0010] FIGURE 2 is a block diagram of an end point according to one embodiment of this disclosure;
[0011] FIGURE 3 illustrates an example method for providing secure network communications according to one embodiment of this disclosure; and
[0012] FIGURE 4 is a more detailed block diagram of an end point device according to one embodiment of this disclosure .
DETAILED DESCRIPTION
[0013] FIGURE 1 is a block diagram of an example communications network 100 according to one embodiment of this disclosure. The embodiment of the communications network 100 shown in FIGURE 1 is for illustration only. Other embodiments of the communications network 100 may be used without departing from the scope of this disclosure.
[0014] As illustrated in FIGURE 1, various disclosed embodiments include network end point devices, shown as first end point device 130a and second end point device 130b, that can encrypt all network traffic between two separate networks. In this figure, first communications network 110 communicates with second communications network 120 over an encrypted communications link 140 managed by end point devices 130a and 130b. This allows secure communication between the two networks by an encrypted communication over either a direct connection or a connection via a vulnerable public or private network.
[0015] In this figure, first end point device 130a is connected to communicate with embedded nodes 112a-112d via any known communications means, such as an Ethernet network, serial communications, hardwired or wireless communications, etc. Together, first end point device 130a and embedded nodes 112a-112s form first communications network 110. Note that while four embedded nodes are shown in this example, more or less nodes can be used according to the desired implementation.
[0016] Similarly, in this figure, second end point device 130b is connected to communicate with embedded nodes 122a-122d via any known communications means, such as an Ethernet network, serial communications, hardwired or wireless communications, etc. Together, second end point device 130b and embedded nodes 122a-122s form second communications network 120. Note that while four embedded nodes are shown in this example, more or less nodes can be used according to the desired implementation. [0017] According to various embodiments, each end point device 130a/130b has multiple ports to which embedded nodes 112a-d and 122a-d are respectively attached. Each embedded node can be associated with a respective embedded device, known to those of skill in the art. The embedded nodes communicate with nodes connected to the other end point, and vice versa. For example, one or more of embedded nodes 112a-d can communicate with one or more of embedded nodes 122a-d.
[0018] The end points relay traffic over encrypted communications link 140, which can be encrypted using any known technique, including Internet Protocol Security (IPSec), wireless encryption protocol (WEP) , Advanced Encryption Standard (AES) , and others. The encrypted communications link 140 can be used to transmit data traffic including broadcast, multicast, proprietary personal or commercial data, and other forms of traffic between the two networks without modifying the IP-layer network information. All traffic between the two end points can be encrypted. [0019] The end point devices 130a/130b can perform all network processing to encrypt and decrypt the packets. The networks 110/120 on either side of encrypted communications link 140 can be in the same subnet or in different subnets. The nodes 112a-112d and 122a-122d on either side of the encrypted segment can communicate with each other without having any awareness that the encrypted link exists. The disclosed end point devices therefore enable the joining of two distinct physical networks on the same logical network, in a manner transparent to the embedded nodes.
[0020] End point devices 130a/130b can also act as firewalls and rate limiters pursuant to the needs of the implementation, in various disclosed embodiments. Moreover, MAC-layer or other security measures can be employed, including monitoring for unauthorized media access control (MAC) addresses, disabling ports to which unauthorized nodes are attached, and other methods involving securing the network.
[0021] FIGURE 2 is a block diagram of an end point device 230 that can be used as end point devices 130a/130b according to one embodiment of this disclosure. The embodiment of the end point device 230 shown in FIGURE 2 is for illustration only. Other embodiments of the end point device 230 may be used without departing from the scope of this disclosure.
[0022] According to one disclosed embodiment, end point device 230 is implemented as an embedded computer system. End point device 230 includes a plurality of embedded node ports 212a-212d, configured to be connected to and communicate with embedded nodes such as embedded nodes 112a-112d. Again, although four embedded node ports are shown in this example, the number of ports can be increased or decreased depending on the required implementation. Embedded node ports 212a-212d can be implemented using any known communications port, including in particular a conventional Ethernet port.
[0023] End point device 230 also includes an encrypted communications link port 240 that is configured to be connected to and communicate over encrypted communications link 140. Note that in other implementations, encrypted communications link port can include an RF transceiver and related hardware and software to implement a wireless communication link as known to those of skill in the art. Encrypted communications link port 240 can be implemented using any known communications port, including in particular a conventional Ethernet port.
[0024] End point device 230 further includes a controller 250 configured and connected to communicate with embedded node ports 212a-d and encrypted communications link port 240. Controller 250, which can be implemented, for example, as a microprocessor or microcontroller, also communicates with storage 260, which can be implemented as any computer-usable medium.
[0025] Controller 250 can be configured to execute an operating system, networking drivers, encryption drivers, and filtering software that acts upon the relayed traffic. The software, stored in storage 260, can be configured to attach two independent network interfaces, such as embedded node ports 212a-212d and encrypted communications link port 240, and relay all traffic incoming on one interface to the output of the other, and vice versa. An encryption controller 270, associated with controller 250, can be configured to encrypt all traffic outgoing and decrypt all traffic incoming, regardless of source or destination MAC or IP address, to be transmitted over encrypted communications link port 240. End point device 230 can also be configured to transparently perform rate-limiting and filtering/rejection of undesired traffic. In various embodiments, encryption controller is implemented as an FPGA. [0026] In various embodiments, controller 250 only acts to wrap the passing traffic in a header and to perform Firewalling or other activities on incoming/outgoing traffic after decryption (inbound) or before encryption (outbound) , and to perform other general routing and control functions for end point device 230. In some embodiments, it also acts as an FTE controller should this device be made to support a proprietary network such as the FAULT TOLERANT ETHERNET (FTE) network from HONEYWELL INTERNATIONAL INC. In some embodiments, controller 250 is independent of, and "unaware" of, the encryption controller 270, so that encryption controller 270 performs its functions without any control by or interaction with controller 250, other than passing the data packets.
[0027] When an encrypted packet arrives, the Ethernet physical layer (PHY) converts the received analog signal to a digital packet on an media independent interface (Mil) bus, and that packet is received by Encryption Controller 270, which decrypts the packet (which was encrypted using the Layer 2 scheme) . It then passes the unencrypted packet to the controller 250, which unwraps the payload, performs filtering on the resulting packet (whether it be UDP, TCP, IP, FTE, Multicast, or otherwise) , and passes it to the embedded node.
[0028] Similarly, when an unencrypted packet arrives from an embedded node, the controller 250 receives it, performs any filtering or rate limiting, then wraps it in a header, as described in more detail below. The controller then passes it to the encryption controller 270, which encrypts the entire wrapped packet (MAC addresses and all) , packages it into a Layer 2 frame, and sends it out to the Ethernet PHY, which converts it to the analog signal for the wire. [0029] FIGURE 3 illustrates an example method 300 for providing secure network communications according to one embodiment of this disclosure. The embodiment of the method 300 shown in FIGURE 3 is for illustration only. Other embodiments of the method 300 may be used without departing from the scope of this disclosure.
[0030] At step 302, an embedded node 112a transmits a first data message for embedded node 122a. The first data message can, for example, be formatted as a conventional internet protocol (IP) message and is addressed to embedded node 122a.
[0031] At step 304, first end point device 130a receives the first data message and encrypts the data message to produce an encrypted data message.
[0032] At step 306, first end point device 130a transmits the encrypted data message across encrypted communications link 140 to second end point device 130b.
[0033] At step 308, second end point device 130b receives the encrypted data message and decrypts it to produce a second data message corresponding to the first data message.
[0034] At step 310, second end point device 130b transmits the second data message to embedded node 122a. The encryption and transmission between the first and second end point devices have been transparent to embedded nodes 112a and 122a.
[0035] Reply messages and other messages between the embedded nodes can be accomplished using the same or similar process as described above. In some embodiments, a single embedded node can "multicast" or broadcast a message to multiple recipient embedded nodes.
[0036] FIGURE 4 is a more detailed block diagram of an end point device 230 according to one embodiment of this disclosure. FIGURE 4 also includes an illustration of packet events that occur during processing.
[0037] End point device 230 includes embedded node ports 212a and 212b (and others) that can be implemented, for example, as Ethernet interfaces. These embedded node ports can be connected to communicate with each other via switch 410. Each embedded node port can communicate with a respective embedded node, such as embedded node 122a. These communications could be packet-based and can include an unencrypted packet data, shown as packet 402.
[0038] The embedded node ports 212a/b and/or switch 410 communicate with controller 250, for example over a media independent interface (Mil) bus, known to those of skill in the art. These communications could also be packet-based and can include an unencrypted packet data, shown as packet 404.
[0039] Controller 250 can include a MAC filter and IP filter, which can be used to filter traffic not from other authorized end points. The controller 250 can implement other known commercial, public, or proprietary functions.
[0040] In some embodiments, the processor 250 also wraps the packet 404 in a wrapper, using any known public or private wrapping technique, and includes the original packet 404 as its payload. The wrapped packet is communicated to the encryption controller 420, shown as packet 406, in some embodiments over an Mil bus.
[0041] The encryption controller 420 can be implemented as a microprocessor, microcontroller, or otherwise, including as field-programmable gate array (FPGA) . Also, the functions of encryption controller 420 can be implemented by controller 250.
[0042] In some embodiments, encryption controller 420 is associated with a secure, encrypted flash memory 422. Flash memory 422 can contain an encryption key pair and MAC address for each authorized end point device. In particular embodiments, the flash memory 422 is programmed by the manufacturer and is not accessible by the end user. [0043] In various embodiments, the encryption controller 420 encrypts the entire packet 406 and appends a Layer-2 header with its own MAC address, shown as packet 408. In various embodiments, packet 408 has a payload that is encrypted data including packet 406 and all headers above Layer 2. Encryption controller 420 then communicates packet 408 to encrypted communications link port 240, which can be implemented as an Ethernet interface. The communications can be over an Mil bus. [0044] In some embodiments, the encryption is done at Layer 2 by a commercial, publicly available, or proprietary code in an FPGA and not by a high-level operating system, which may have known vulnerabilities . Performing the encryption at Layer 2 gives the advantage that there is no unencrypted data except the source and destination MAC addresses of the two end points, thereby securing even the MAC addresses of the embedded nodes, even when the traffic is MAC broadcast.
[0045] When two end point devices are communicating, in some embodiments, they exchange a sequence of handshake packets to establish authenticity using codes based on a rotating time table. In various embodiments, the two end point devices verify encryption keys by exchanging and testing (decrypting and verifying) an encrypted message, thereby performing a challenge/response exchange.
[0046] In various embodiments, the encryption and decryption is transparent to the second embedded node. In various embodiments, the decryption is transparent to the first embedded node. In various embodiments, the second data message is identical to the first data message.
[0047] In various embodiments, the encryption controller is configured to receive a first data message from an embedded node port, encrypt the first data message to produce an encrypted data message, and transmit the encrypted data message to the encrypted communications link port. In various embodiments, the controller is configured to receive an encrypted data message from the encrypted communications link port, decrypt the encrypted data message to produce a decrypted data message, and transmit the decrypted date message to at least one of the embedded node ports. In various embodiments, the controller is configured perform an encryption process that is transparent to devices connected to the embedded node ports. In various embodiments, the controller is configured to transparently perform rate-limiting functions. In various embodiments, the controller is configured to transparently perform filtering of undesired traffic using at least one of IP filtering or media access control (MAC) filtering. In some embodiments, the controller is configured to execute an operating system, networking drivers, encryption drivers, and filtering software . [0048] The term "Layer 2" refers to the Data Link Layer of the protocol stack, as known to those of skill in the art and defined by the Open System Interconnection (OSI) model for data communications, hereby incorporated by reference. Layer 2 establishes the physical connection between the local telecommunications device and the remote destination and defines the Data Frame as the physical transmission medium between nodes.
[0049] Layer 2 is primarily used for high-speed/high- data throughput point-to-point applications between telecommunication devices or facilities. In order to achieve these high-speeds, hardware encryption is predominantly used. Encryption at this level encapsulates any Layer 2 protocol crossing the link, unlike Layer 3 where only IP packets are encrypted. For this reason, Layer
2 encryption is much more flexible for point-to-point applications where routing is not a consideration. Layer 2 encryption also provides platform independence because client systems will not require special software or hardware to manage routing decisions.
[0050] Virtual Private Network (VPN) is the term commonly used to describe the capability to segregate private traffic on a publicly shared network infrastructure and is typically a Level 3 solution. The majority of the
VPN market is focused on tunneling and encryption at Layer
3 and thus is subject to the configuration overheads associated with routing decisions and the vulnerabilities discussed above. [0051] In some embodiments, various functions described above are implemented or supported by a computer program that is formed from computer readable program code and that is embodied in a computer useable medium. The phrase "computer readable program code" includes any type of computer code, including source code, object code, and executable code. The phrase "computer useable medium" includes any type of medium capable of being accessed by a computer, such as read only memory (ROM) , random access memory (RAM) , a hard disk drive, a compact disc (CD) , a digital video disc (DVD) , or any other type of memory.
[0052] It may be advantageous to set forth definitions of certain words and phrases used throughout this patent document. The term "couple" and its derivatives refer to any direct or indirect communication between two or more elements, whether or not those elements are in physical contact with one another. The term "application" refers to one or more computer programs, sets of instructions, procedures, functions, objects, classes, instances, or related data adapted for implementation in a suitable computer language. The terms "include" and "comprise," as well as derivatives thereof, mean inclusion without limitation. The term "or" is inclusive, meaning and/or. The phrases "associated with" and "associated therewith," as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like. The term "controller" means any device, system, or part thereof that controls at least one operation. A controller can be implemented in hardware, firmware, software, or some combination of at least two of the same. The functionality associated with any particular controller can be centralized or distributed, whether locally or remotely.
[0053] While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method comprising: receiving (304) a data message, from a first embedded node (112a-112d), in a first end point device (130a), the first data message being addressed to a second embedded node (122a-122d) ; encrypting (304) the first data message using a Layer 2 encryption process to produce an encrypted data message, the encryption being transparent to the first embedded node; and transmitting (306) the encrypted data message to a second end point device (130b) .
2. The method of Claim 1, further comprising: receiving (306) the encrypted data message in the second end point device; decrypting (308) the encrypted data message to produce a second data message corresponding to the first data message; and transmitting (310) the second data message to the second embedded node.
3. The method of Claim 2, wherein: the encryption and decryption are transparent to the second embedded node; and the decryption is transparent to the first embedded node .
4. The method of Claim 1, wherein the second data message is identical to the first data message.
5. An apparatus comprising: a plurality of embedded node ports (212a-212d) each configured to communicate with an embedded node (112a-112d, 122a-122d) ; an encrypted communications link port (240) configured to communicate with an end point device (130a-130b) ; a controller (250) connected to communicate with the embedded node ports and the encrypted communications link port, the controller associated with an encryption controller (270, 420) configured to encrypt packets forming data messages with a Layer 2 encryption process; and a storage (260) connected to be read from and written to by the controller.
6. The apparatus of Claim 5, wherein the encryption controller is configured to receive a first data message from an embedded node port, encrypt the first data message to produce an encrypted data message, and transmit the encrypted data message to the encrypted communications link port.
7. The apparatus of Claim 5, wherein the encryption controller is configured to receive an encrypted data message from the encrypted communications link port, decrypt the encrypted data message to produce a decrypted data message, and transmit the decrypted date message to at least one of the embedded node ports.
8. The apparatus of Claim 5, further comprising a memory (422) associated with the encryption controller, the memory storing an encryption key pair and information identifying at least one other end point device.
9. The apparatus of Claim 5, wherein the controller is configured to transparently perform at least one of: rate-limiting functions; and filtering of undesired traffic using at least one of IP filtering or media access control (MAC) filtering.
10. A communications network comprising a plurality of embedded nodes (112a-112d) ; and a first end point device (130a) on a first physical network (110) , the first end point device having: a plurality of embedded node ports (212a-212d) each configured to communicate with a respective one of the embedded nodes; an encrypted communications link port (240) configured to communicate with a second end point device (130b) on a second physical network (120) , to thereby form a single logical network with the first end point device; a controller (250, 270) connected to communicate with the embedded node ports and the encrypted communications link port and configured to perform Layer-2 encryption; and a storage (260) connected to be read from and written to by the controller.
PCT/US2008/081078 2007-10-30 2008-10-24 System and method for providing secure network communications WO2009058675A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880114117A CN101843031A (en) 2007-10-30 2008-10-24 System and method for providing secure network communications
EP08843801.5A EP2213036B1 (en) 2007-10-30 2008-10-24 System and method for providing secure network communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/981,213 2007-10-30
US11/981,213 US8775790B2 (en) 2007-10-30 2007-10-30 System and method for providing secure network communications

Publications (2)

Publication Number Publication Date
WO2009058675A2 true WO2009058675A2 (en) 2009-05-07
WO2009058675A3 WO2009058675A3 (en) 2009-06-18

Family

ID=40584431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/081078 WO2009058675A2 (en) 2007-10-30 2008-10-24 System and method for providing secure network communications

Country Status (4)

Country Link
US (1) US8775790B2 (en)
EP (1) EP2213036B1 (en)
CN (1) CN101843031A (en)
WO (1) WO2009058675A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271775B2 (en) * 2008-12-17 2012-09-18 Cisco Technology, Inc. Layer two encryption for data center interconnectivity
US8296564B2 (en) 2009-02-17 2012-10-23 Microsoft Corporation Communication channel access based on channel identifier and use policy
US8914874B2 (en) * 2009-07-21 2014-12-16 Microsoft Corporation Communication channel claim dependent security precautions
CN102549555B (en) * 2009-10-07 2015-04-22 惠普发展公司,有限责任合伙企业 Notification protocol based endpoint caching of host memory
US9811667B2 (en) * 2011-09-21 2017-11-07 Mcafee, Inc. System and method for grouping computer vulnerabilities
EP2672673B1 (en) * 2012-06-07 2016-05-25 Alcatel Lucent Apparatus and method for secure data processing
US8931046B2 (en) * 2012-10-30 2015-01-06 Stateless Networks, Inc. System and method for securing virtualized networks
US9684805B2 (en) * 2013-08-20 2017-06-20 Janus Technologies, Inc. Method and apparatus for securing computer interfaces
FR3029311B1 (en) * 2014-11-27 2017-01-06 Thales Sa METHOD FOR MANAGING AN ARCHITECTURE AND ASSOCIATED ARCHITECTURE
US10341311B2 (en) * 2015-07-20 2019-07-02 Schweitzer Engineering Laboratories, Inc. Communication device for implementing selective encryption in a software defined network
CN105162789B (en) * 2015-09-21 2019-05-03 北京鼎普信息技术有限公司 A kind of data encryption/decryption method and device
US10382441B2 (en) 2016-10-13 2019-08-13 Honeywell International Inc. Cross security layer secure communication
US10749692B2 (en) 2017-05-05 2020-08-18 Honeywell International Inc. Automated certificate enrollment for devices in industrial control systems or other systems
US10374803B2 (en) * 2017-10-06 2019-08-06 Stealthpath, Inc. Methods for internet communication security
US10375019B2 (en) 2017-10-06 2019-08-06 Stealthpath, Inc. Methods for internet communication security
US10397186B2 (en) 2017-10-06 2019-08-27 Stealthpath, Inc. Methods for internet communication security
US10630642B2 (en) 2017-10-06 2020-04-21 Stealthpath, Inc. Methods for internet communication security
US10367811B2 (en) * 2017-10-06 2019-07-30 Stealthpath, Inc. Methods for internet communication security
US10361859B2 (en) 2017-10-06 2019-07-23 Stealthpath, Inc. Methods for internet communication security
US11283733B2 (en) * 2018-10-02 2022-03-22 Arista Networks, Inc. Proxy ports for network device functionality
US11418434B2 (en) 2018-10-02 2022-08-16 Arista Networks, Inc. Securing MPLS network traffic
US11558423B2 (en) * 2019-09-27 2023-01-17 Stealthpath, Inc. Methods for zero trust security with high quality of service

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188194A1 (en) 2003-10-07 2005-08-25 Koolspan, Inc. Automatic hardware-enabled virtual private network system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319712A (en) * 1993-08-26 1994-06-07 Motorola, Inc. Method and apparatus for providing cryptographic protection of a data stream in a communication system
US7162738B2 (en) 1998-11-03 2007-01-09 Tumbleweed Communications Corp. E-mail firewall with stored key encryption/decryption
US6418423B1 (en) * 1999-01-29 2002-07-09 International Business Machines Corporation Method and apparatus for executing neural network applications on a network of embedded devices
JP2001237824A (en) 2000-02-22 2001-08-31 Mitsubishi Electric Corp Information communication repeater
JP2003318880A (en) 2002-04-24 2003-11-07 Nti:Kk Communication system, communication device and communication method
EP1498798A4 (en) * 2002-04-23 2010-04-14 Panasonic Corp Server device and program management system
CN100366007C (en) 2002-05-01 2008-01-30 爱立信电话股份有限公司 System, apparatus and method for SIM-based authentication and encryption in wireless local area network access
US7441267B1 (en) * 2003-03-19 2008-10-21 Bbn Technologies Corp. Method and apparatus for controlling the flow of data across a network interface
US7392378B1 (en) * 2003-03-19 2008-06-24 Verizon Corporate Services Group Inc. Method and apparatus for routing data traffic in a cryptographically-protected network
US7711948B2 (en) * 2003-09-30 2010-05-04 Cisco Technology, Inc. Method and apparatus of communicating security/encryption information to a physical layer transceiver
US7313686B2 (en) * 2003-09-30 2007-12-25 Cisco Technology, Inc. Method and apparatus of integrating link layer security into a physical layer transceiver
KR100542436B1 (en) * 2003-12-22 2006-01-11 한국전자통신연구원 System on chip development appratus for wireline and wirelessline internet phone
US7334117B2 (en) * 2004-08-04 2008-02-19 National Instruments Corporation Device boot loader for processing one or more requests from a host computer system concurrently with loading or updating the firmware of the device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050188194A1 (en) 2003-10-07 2005-08-25 Koolspan, Inc. Automatic hardware-enabled virtual private network system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2213036A4

Also Published As

Publication number Publication date
CN101843031A (en) 2010-09-22
US8775790B2 (en) 2014-07-08
WO2009058675A3 (en) 2009-06-18
EP2213036A2 (en) 2010-08-04
US20090113202A1 (en) 2009-04-30
EP2213036B1 (en) 2018-03-14
EP2213036A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2213036B1 (en) System and method for providing secure network communications
CN102801695B (en) Virtual private network (VPN) communication equipment and data pack transmission method thereof
EP1378093B1 (en) Authentication and encryption method and apparatus for a wireless local access network
US8379638B2 (en) Security encapsulation of ethernet frames
JP5785346B1 (en) Switching facility and data processing method supporting link layer security transmission
US9369550B2 (en) Protocol for layer two multiple network links tunnelling
EP2043296A1 (en) Relay device
EP1953954B1 (en) Encryption/decryption device for secure communications between a protected network and an unprotected network and associated methods
KR20120106830A (en) Method and system for secret communication between nodes
JP2006101051A (en) Server, vpn client, vpn system, and software
Dhall et al. Implementation of IPSec protocol
US6775769B1 (en) Cryptographic apparatus, encryptor, and decryptor
US20190124055A1 (en) Ethernet security system and method
US8094634B2 (en) Sender and/or helper node modifications to enable security features in cooperative wireless communications
CN111698245A (en) VxLAN security gateway and two-layer security network construction method based on state cryptographic algorithm
WO2016165277A1 (en) Ipsec diversion implementing method and apparatus
US20050063381A1 (en) Hardware acceleration for unified IPSec and L2TP with IPSec processing in a device that integrates wired and wireless LAN, L2 and L3 switching functionality
WO2005008998A1 (en) Initialization vector generation algorithm and hardware architecture
Makda et al. Security implications of cooperative communications in wireless networks
US20120216036A1 (en) Encryption methods and systems
US20080059788A1 (en) Secure electronic communications pathway
KR101845776B1 (en) MACsec adapter apparatus for Layer2 security
CN117201232A (en) High-performance IPSec VPN method
JP4413708B2 (en) Network relay device, network system, and encrypted communication method
CN113746861A (en) Data transmission encryption and decryption method and encryption and decryption system based on state encryption technology

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880114117.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08843801

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008843801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE