WO2009002641A2 - Nanobead releasing medical devices - Google Patents

Nanobead releasing medical devices Download PDF

Info

Publication number
WO2009002641A2
WO2009002641A2 PCT/US2008/064373 US2008064373W WO2009002641A2 WO 2009002641 A2 WO2009002641 A2 WO 2009002641A2 US 2008064373 W US2008064373 W US 2008064373W WO 2009002641 A2 WO2009002641 A2 WO 2009002641A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanobeads
medical device
rapamycin
bioactive agent
layer
Prior art date
Application number
PCT/US2008/064373
Other languages
French (fr)
Other versions
WO2009002641A3 (en
Inventor
Charles H. Craig
John E. Papp
Dudley Jayasinghe
Lionel G. Hines
Dennis Orosa
Original Assignee
Abbott Cardiovascular Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Cardiovascular Systems Inc. filed Critical Abbott Cardiovascular Systems Inc.
Publication of WO2009002641A2 publication Critical patent/WO2009002641A2/en
Publication of WO2009002641A3 publication Critical patent/WO2009002641A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/18Materials at least partially X-ray or laser opaque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/624Nanocapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • This invention is generally related to nanoparticle releasing medical devices, such as drug delivery vascular stents. Description of the State of the Art
  • Stents are used not only as a mechanical intervention of vascular conditions but also as a vehicle for providing biological therapy.
  • stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway.
  • stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location.
  • Examples in patent literature disclosing stents which have been applied in PTCA (Percutaneous Transluminal Coronary Angioplasty) procedures include stents illustrated in U.S. Patent No. 4,733,665 issued to Palmaz, U.S. Patent No. 4,800,882 issued to Gianturco, and U.S. Patent No.
  • Biological therapy can be achieved by medicating the stents.
  • Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects on the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results.
  • stentable lesions are focal manifestations of widespread vascular disease.
  • the advent of drug eluting stents has brought relief from restenosis of the treated lesion, but leaves progression of regional vascular disease unaddressed.
  • the embodiments described below address the above- identified problems.
  • a medical device comprising a coating.
  • the coating comprises nanobeads embedded in a slurry.
  • the coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads.
  • the slurry can include a polymer or a non-polymer material.
  • the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof.
  • the medical device can be any drug delivery device, some examples of which are stent.
  • the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent.
  • the first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads.
  • the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent.
  • the first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent.
  • the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
  • the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
  • the bioactive agents can be any diagnostic, therapeutic, or prophylactic agent.
  • Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0- tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imat
  • the medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition.
  • medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
  • Figure 1 shows two examples of a coating including nanobeads of the present invention
  • Figure 2 shows a release profile of drug A, drug B, and drug C from a coating including the nanobeads of the present invention.
  • a medical device comprising a coating.
  • the coating comprises nanobeads embedded in a slurry.
  • the coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads.
  • the slurry can include a polymer or a non-polymer material.
  • the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof.
  • the medical device can be any drug delivery device, some examples of which are stent.
  • the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent.
  • the first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads.
  • the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent.
  • the first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent.
  • the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
  • the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
  • the bioactive agents can be any diagnostic, therapeutic, or prophylactic agent.
  • Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0- tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imat
  • the medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition.
  • medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
  • nanocapsules refers to nanoparticles having a shell encapsulating a bioactive agent.
  • matrix nanoparticles refers to nanoparticles that do not have a shell where a bioactive agent(s) is dispersed in the matrix of the nanoparticles.
  • the nanobeads generally have a size a size in the range from about 1 nm to over
  • nm e.g., about 5 nm, about 10 nm, about 20 nm, about 50 nm, about 80 nm, about 90 nm, about 95 nm, about 100 nm, about 200 nm, about 500 nm, about 800 nm, about
  • the nanobeads can have a size from about 10 nm to about 1000 nm, from about 20 nm to aobut 500 nm, or from about 50 nm to about 200 nm.
  • the coating provides for controlled release of the drug(s) through use of different physical and chemical features of the encapsulating matrix or membrane.
  • the membrane of nanobeads encapsulating a bioactive agent can open up, releasing the drug(s) at controlled intervals and/or levels.
  • Use of different physical and chemical features of the encapsulating membrane(s) / macromolecules / polymers / gels (e.g., microscopic spheres) and drug(s) e.g., varying-thickness nanoencapsulating membranes, nanoencapsulating membranes of different chemical or physical character, or some combination of these features leads to modulation of release profile of the bioactive agent in the nanobeads.
  • the nanobeads can provide a variety of delivery profiles of a bioactive agent.
  • the nanobeads can have a layered construct including different layers of spheres such that the outermost spheres have the least (or most) thick membranes (or their equivalent in terms of physical or chemical character) and the innermost spheres might have the greatest (or least) membrane thickness (or equivalent), with intermediate layers such that the overall effect is to provide for a controlled or graduated release of a drug or drugs in terms of time and intensity of the drug and different drugs with different properties (chemical physical and biological) in nanobeads of each layer to target different layers of arterial tissue.
  • Figure 1 shows an embodiment of the present invention, which is a coating design on a stent that includes the nanobeads described herein.
  • the coating includes a slurry having drug A nanobeads and drug B nanobeads.
  • the porosity and slurry to nanobead ratio can be varied to change drug total content and drug/s release rate characteristics.
  • Figure 2 shows the release profile of drug A, drug B and drug C from a coating of the present invention that includes nanobeads of drug A, drug B, and drug C.
  • the curve for Drug A provides an initial drug dose to prevent initial inflammation from the trauma to the vessel during stenting.
  • Drug B as indicated by its curve can be introduced at a later date to continue the healing process.
  • Drug C as indicated by its curve can be introduced to stop "late loss” or restenosis that occurs after say ⁇ months or 1 or 2 years.
  • an alternative approach can be to use drug A on 3 curves or one tailored curve.
  • the number of drugs and the curve shape can be designed specifically for the individual patient, taking into account diabetes, age, gender and other factors.
  • an initial burst release of drug(s) from nanobeads can be caused by the pressure onto the nanobeads, e.g., pressure from a stent or a balloon delivery device, with a more graduated response to follow that is not pressure dependent.
  • the nanobeads described herein can be used in lieu of or in combination with available coating systems for drug delivery stents. In some embodiments, the nanobeads can be used as non-stent delivery systems.
  • a patient can ingest or have delivered into the bloodstream a small molecule drug, chemical agent or catalyst to Activate/facilitate release of a drug or biopharmaceuticals that are in nanobeads, thus allowing the physician to externally control and very the rate of delivery from the nanobeads of the drug or biopharmaceuticals into the vessel wall.
  • the doctor will thus be able to change the rate of release based upon the evolving assessment of the patient
  • the mechanism for activating the nanobeads contents could be by allowing the external agent to react with the slurry, the nonobead material or the nonobead contents in such a way that the properties were changed to allow the drug to release.
  • the oral or blood stream delivered drug or other substance would itself have a therapeutic effect.
  • the oral or blood stream delivered drug or other substance together with the nonobead contents would provide a therapeutic effect different than the individual effect of each alone. In this way the combined effect could provide a much broader and varied therapy.
  • Such small molecule drug, chemical agent or catalyst can be anything that facilitates the release of nanobeads from a module including such nanobeads.
  • a small molecule drug, chemical agent or catalyst can be membrane disruptive or can change the aciditity/basicity or enzyme activity surrounding the module. Administration of the small molecule drug, chemical agent or catalyst can therefore cause the nanobeads to be released from the module in the vessel wall.
  • a magnetic material(s) compound or element
  • This can allow an electromagnetic source located external to the vascular system to provide for the release of these nanobeads and to direct where they concentrate in the vascular system.
  • Magnetic materials can be any biocompatible magnetic material. Some examples are materials containing iron, platinum elements or compounds.
  • magnetic materials can be made biocompatible by using a biocompatible coating (e.g., a coating formed of a biocompatible polymeric or non-polymeric material).
  • the nanobeads containing a drug can be chemically bonded to a drug delivery system.
  • the nanobeads can be embedded in a slurry.
  • a slurry can be, e.g., a biodurable, biodegradable or bioabsorbable material, such as polymer, ceramic, or bioglass.
  • chemically attaching the nanobeads to the delivery system can be achieved by coupling the functional groups on the surface of nanobeads and the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by grafting, e.g., by causing groups on the surface of the nanobeads to bind to the surface of the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by modification of surface of the nanobeads or the delivery system by attaching silane or siloxane groups to the surface of the nanobeads or the delivery system and then causing the nanobeads to be attached to delivery system via the silane or siloxane groups.
  • Nanobeads can be readily formed according to methods established in the art. Some examples of forming nanobeads are described in Seshadri and Sivasubramanian, Drug Delivery Technology, 7(3):39-46 (2007). Some other methods are described in the references described above. Biocompatible polymers
  • biocompatible polymers can be included in the nanobeads described above and/or a coating including the nanobeads.
  • the biocompatible polymer can be biodegradable (either bioerodable or bioabsorbable or both) or nondegradable, and can be hydrophilic or hydrophobic.
  • biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3 -hydroxyalkanoates) such as poly(3- hydroxypropanoate), poly(3-hydroxybutyrate), poly(3 -hydroxyvalerate), poly(3- hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4- hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4- hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L- lactide-co-glycolide), poly(L-lact
  • poly(ethylene oxide-co-lactic acid) PEO/PLA
  • polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, phosphoryl choline, choline, poly(aspirin), polymers and copolymers of hydroxyl bearing monomers such as 2 -hydroxy ethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n- vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-P
  • poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co- glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.
  • the nanobeads described herein or a slurry including the nanobeads can further include a biobeneficial material.
  • the biobeneficial material can be a polymeric material or non-polymeric material.
  • the biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic.
  • a biobeneficial material is one which enhances the biocompatibility of the particles or device by being non- fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
  • bioactive agents encapsulated in the nanobeads described herein can be any bioactive agent, which is a therapeutic, prophylactic, or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, and antioxidant.
  • the agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, or agents that promote the attachment, migration and proliferation of endothelial cells (e.g., natriuretic peptide such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while quenching smooth muscle cell proliferation.
  • suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
  • bioactive agent examples include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
  • anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-0-(2- hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives.
  • Examples of rapamycin derivatives include 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), 40-0-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0-tetrazole-rapamycin.
  • Examples of paclitaxel derivatives include docetaxel.
  • Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g.
  • Adriamycin ® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin e.g. Mutamycin ® from Bristol-Myers Squibb Co., Stamford, Conn.
  • antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg- chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omeg
  • anti- inflammatory agents examples include tacrolimus, dexamethasone, clobetasol, or combinations thereof.
  • cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten ® and Capozide ® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil ® and Prinzide ® from Merck & Co., Inc., Whitehouse Station, NJ).
  • an antiallergic agent is permirolast potassium.
  • Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, and genetically engineered endothelial cells.
  • the foregoing substances can also be used in the form of prodrugs or co-drugs thereof.
  • the foregoing substances also include metabolites thereof and/or prodrugs of the metabolites.
  • the foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
  • the dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained.
  • the dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the ingredient administered resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances.
  • the dose will be tailored to the specific anatomy for treatment. Some of these areas are arteries of coronary, cerebral, carotid, renal, iliac, popliteal, tibial, etc.
  • Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art.
  • patient state of health, diabetes type of anatomy, type of lesion, severity of lesion and other indicators can be used to determine dose and elution profile.
  • the bioactive agents described herein can have different release profiles, e.g., fast release (e.g., release of about 50% of the agent within 24 hours), sustained release (e.g., release of about 50% of the agent over a period of days or months), or pulse release profile.
  • the sustained release profile can be a zero order release.
  • an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient.
  • implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prostheses, cerebrospinal fluid shunts, pacemaker electrodes, catheters, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Abbott Vascular, Santa Clara, CA), anastomotic devices and connectors, orthopedic implants such as screws, spinal implants, electro-stimulatory devices.
  • the underlying structure of the device can be of virtually any design.
  • the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • ELGILOY cobalt chromium alloy
  • 316L stainless steel
  • high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
  • BIODUR 108 cobalt chrome alloy L-605, "MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-tit
  • MP35N consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum.
  • MP20N consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
  • Devices made from bioabsorbable or biodurable (biostable) polymers could also be used with the embodiments of the present invention.
  • the nanoparticles can be released from a medical device (e.g., stent) during delivery and (in the case of a stent) expansion of the device, or thereafter, and released at a desired rate and for a predetermined duration of time at the site of implantation.
  • a medical device e.g., stent
  • the medical device is a stent.
  • the stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
  • a stent having the above-described coating is particularly useful for treating diseased regions of blood vessels caused by lipid deposition, monocyte or macrophage infiltration, or dysfunctional endothelium or a combination thereof, or occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis.
  • Stents may be placed in a wide array of blood vessels, both arteries and veins.
  • an angiogram is first performed to determine the appropriate positioning for stent therapy.
  • An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken.
  • a guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway.
  • the delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance.
  • a stent having the above-described features may then be mechanically expanded or released to self expand at the desired area of treatment.
  • a post-insertion angiogram may also be utilized to confirm appropriate positioning.

Abstract

Medical devices comprising nanobeads encapsulating one or more bioactive agents and methods of use thereof are provided.

Description

NANOBEAD RELEASING MEDICAL DEVICES
BACKGROUND OF THE INVENTION
Field of the Invention
This invention is generally related to nanoparticle releasing medical devices, such as drug delivery vascular stents. Description of the State of the Art
Stents are used not only as a mechanical intervention of vascular conditions but also as a vehicle for providing biological therapy. As a mechanical intervention, stents act as scaffoldings, functioning to physically hold open and, if desired, to expand the wall of the passageway. Typically, stents are capable of being compressed, so that they can be inserted through small vessels via catheters, and then expanded to a larger diameter once they are at the desired location. Examples in patent literature disclosing stents which have been applied in PTCA (Percutaneous Transluminal Coronary Angioplasty) procedures include stents illustrated in U.S. Patent No. 4,733,665 issued to Palmaz, U.S. Patent No. 4,800,882 issued to Gianturco, and U.S. Patent No. 4,886,062 issued to Wiktor. Biological therapy can be achieved by medicating the stents. Medicated stents provide for the local administration of a therapeutic substance at the diseased site. In order to provide an efficacious concentration to the treated site, systemic administration of such medication often produces adverse or toxic side effects on the patient. Local delivery is a preferred method of treatment in that smaller total levels of medication are administered in comparison to systemic dosages, but are concentrated at a specific site. Local delivery thus produces fewer side effects and achieves more favorable results. In many patients, especially diabetic patients, stentable lesions are focal manifestations of widespread vascular disease. The advent of drug eluting stents has brought relief from restenosis of the treated lesion, but leaves progression of regional vascular disease unaddressed. The embodiments described below address the above- identified problems.
SUMMARY
In some embodiments, provided herein is a medical device comprising a coating. The coating comprises nanobeads embedded in a slurry. The coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads. The slurry can include a polymer or a non-polymer material. In some embodiments, the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof. The medical device can be any drug delivery device, some examples of which are stent.
In some embodiments, the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent. The first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads. In some embodiments, the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent. The first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent. In some embodiments, the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
In some embodiments, the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
The bioactive agents can be any diagnostic, therapeutic, or prophylactic agent. Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0- tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, or combinations thereof.
The medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition. Some examples of medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows two examples of a coating including nanobeads of the present invention; Figure 2 shows a release profile of drug A, drug B, and drug C from a coating including the nanobeads of the present invention. DETAILED DESCRIPTION
In some embodiments, provided herein is a medical device comprising a coating. The coating comprises nanobeads embedded in a slurry. The coating provides for a customizable controlled release of a bioactive agent or agents encapsulated in the nanobeads. The slurry can include a polymer or a non-polymer material. In some embodiments, the slurry comprises a material that can be one of ceramic materials, bioglass, polymer, and combinations thereof. The medical device can be any drug delivery device, some examples of which are stent. In some embodiments, the nanobeads can include a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent. The first plurality of nanobeads and the second plurality of nanobeads can be embedded in the same layer of coating or in different layers of coating, e.g., a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads. In some embodiments, the nanobeads can comprise a third plurality of nanobeads that encapsulate a third bioactive agent. The first plurality of nanobeads, the second plurality of nanobeads, and third plurality of nanobeads that encapsulate a third bioactive agent can be embedded in the same layer of slurry coating or in different layers of slurry coating, e.g., a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third bioactive agent. In some embodiments, the first bioactive agent, the second bioactive agent, and/or the third bioactive agent are the same or different.
In some embodiments, the nanobeads can include more than three pluralities of nanobeads incorporating more than three bioactive agents included in more than three different layers, the first layer including the first plurality of nanobeads, the second layer including the second plurality of nanobeads, the third layer including the third plurality of nanobeads, the fourth layer including the fourth plurality of nanobeads, etc. These agents can be the same or different.
The bioactive agents can be any diagnostic, therapeutic, or prophylactic agent. Some examples of the bioactive agents are paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6- tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3- hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0- tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, or combinations thereof.
The medical device described herein can be used to treat, prevent or ameliorate a medical condition in a patient by implanting in the patient the medical device and causing nanobeads in the medical device to release from the medical device so as to release the bioactive agent(s) to treat, prevent, or ameliorate the medical condition. Some examples of medical conditions or disorders that can be treated, prevented, or ameliorated by the medical device described herein include, but are not limited to, atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
As used herein, the term "naonparticles" and "nanobeads" can be used interchangeably. The term "nanocapsules" refers to nanoparticles having a shell encapsulating a bioactive agent. The term "matrix nanoparticles" refers to nanoparticles that do not have a shell where a bioactive agent(s) is dispersed in the matrix of the nanoparticles.
The nanobeads generally have a size a size in the range from about 1 nm to over
1000 nm, e.g., about 5 nm, about 10 nm, about 20 nm, about 50 nm, about 80 nm, about 90 nm, about 95 nm, about 100 nm, about 200 nm, about 500 nm, about 800 nm, about
900 nm, about 1000 nm or about 1500 nm. hi some embodiments, the nanobeads can have a size from about 10 nm to about 1000 nm, from about 20 nm to aobut 500 nm, or from about 50 nm to about 200 nm.
The coating provides for controlled release of the drug(s) through use of different physical and chemical features of the encapsulating matrix or membrane. Once a medical device to which the nanoparticles are coated onto is deployed, the membrane of nanobeads encapsulating a bioactive agent can open up, releasing the drug(s) at controlled intervals and/or levels. Use of different physical and chemical features of the encapsulating membrane(s) / macromolecules / polymers / gels (e.g., microscopic spheres) and drug(s) (e.g., varying-thickness nanoencapsulating membranes, nanoencapsulating membranes of different chemical or physical character, or some combination of these features) leads to modulation of release profile of the bioactive agent in the nanobeads.
The nanobeads can provide a variety of delivery profiles of a bioactive agent. For instance, in some embodiments, the nanobeads can have a layered construct including different layers of spheres such that the outermost spheres have the least (or most) thick membranes (or their equivalent in terms of physical or chemical character) and the innermost spheres might have the greatest (or least) membrane thickness (or equivalent), with intermediate layers such that the overall effect is to provide for a controlled or graduated release of a drug or drugs in terms of time and intensity of the drug and different drugs with different properties (chemical physical and biological) in nanobeads of each layer to target different layers of arterial tissue.
Figure 1 shows an embodiment of the present invention, which is a coating design on a stent that includes the nanobeads described herein. The coating includes a slurry having drug A nanobeads and drug B nanobeads. The porosity and slurry to nanobead ratio can be varied to change drug total content and drug/s release rate characteristics.
Figure 2 shows the release profile of drug A, drug B and drug C from a coating of the present invention that includes nanobeads of drug A, drug B, and drug C. The curve for Drug A provides an initial drug dose to prevent initial inflammation from the trauma to the vessel during stenting. Drug B as indicated by its curve can be introduced at a later date to continue the healing process. Drug C as indicated by its curve can be introduced to stop "late loss" or restenosis that occurs after say όmonths or 1 or 2 years. In some embodiments, an alternative approach can be to use drug A on 3 curves or one tailored curve. The number of drugs and the curve shape can be designed specifically for the individual patient, taking into account diabetes, age, gender and other factors. In some embodiments, an initial burst release of drug(s) from nanobeads can be caused by the pressure onto the nanobeads, e.g., pressure from a stent or a balloon delivery device, with a more graduated response to follow that is not pressure dependent.
In some embodiments, the nanobeads described herein can be used in lieu of or in combination with available coating systems for drug delivery stents. In some embodiments, the nanobeads can be used as non-stent delivery systems. To facilitate the release of nanobeads from the vessel wall, in some embodiments, a patient can ingest or have delivered into the bloodstream a small molecule drug, chemical agent or catalyst to Activate/facilitate release of a drug or biopharmaceuticals that are in nanobeads, thus allowing the physician to externally control and very the rate of delivery from the nanobeads of the drug or biopharmaceuticals into the vessel wall. The doctor will thus be able to change the rate of release based upon the evolving assessment of the patient The mechanism for activating the nanobeads contents could be by allowing the external agent to react with the slurry, the nonobead material or the nonobead contents in such a way that the properties were changed to allow the drug to release. In another embodiment the oral or blood stream delivered drug or other substance would itself have a therapeutic effect. In still another embodiment the oral or blood stream delivered drug or other substance together with the nonobead contents would provide a therapeutic effect different than the individual effect of each alone. In this way the combined effect could provide a much broader and varied therapy. Such small molecule drug, chemical agent or catalyst can be anything that facilitates the release of nanobeads from a module including such nanobeads. For example, a small molecule drug, chemical agent or catalyst can be membrane disruptive or can change the aciditity/basicity or enzyme activity surrounding the module. Administration of the small molecule drug, chemical agent or catalyst can therefore cause the nanobeads to be released from the module in the vessel wall. In some embodiments, a magnetic material(s) (compound or element) can be included in nanobeads. This can allow an electromagnetic source located external to the vascular system to provide for the release of these nanobeads and to direct where they concentrate in the vascular system. Magnetic materials can be any biocompatible magnetic material. Some examples are materials containing iron, platinum elements or compounds. In some embodiments, magnetic materials can be made biocompatible by using a biocompatible coating (e.g., a coating formed of a biocompatible polymeric or non-polymeric material).
Methods of forming nanobead delivery systems
In some embodiments, to effect a sustained delivery of the nanobeads, the nanobeads containing a drug can be chemically bonded to a drug delivery system. In some embodiments, the nanobeads can be embedded in a slurry. Such slurry can be, e.g., a biodurable, biodegradable or bioabsorbable material, such as polymer, ceramic, or bioglass.
In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by coupling the functional groups on the surface of nanobeads and the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by grafting, e.g., by causing groups on the surface of the nanobeads to bind to the surface of the delivery system. In some embodiments, chemically attaching the nanobeads to the delivery system can be achieved by modification of surface of the nanobeads or the delivery system by attaching silane or siloxane groups to the surface of the nanobeads or the delivery system and then causing the nanobeads to be attached to delivery system via the silane or siloxane groups. The attaching methods are well established in the art (see, e.g., Greg T. Hermanson, "Bioconjugate Techniques", Academic Pree, Elsevier, 1996; J. Biomed. Mater. Res., 60, 472; Langmuer, 18 (2002) 4090; Appl. Polym. ScL, 22,643-664; Macromolecules 34, 7236; J. Ame. Chem. Soc. (2003), 125, 1788; J. Biomed. Mater. Res. (2003), 65A, 196; Macromolecules 26, 5698; Advanced Drug Delivery Reviews, 43, (2002) 3-12, 457-458; J. Polymer ScL A, Polymer Chem, 28, 219 (1990); Nature, 378, 472 (1995); Nature 411, 59 (2001); Bioconj Chem.. 14, 517 (2003); Trans Amer. Soc. Artif Inst Organs, 18, 10 (1972); US Patent # 4,424,311; J, Adhes. ScL Technol. 7, 1065-1076 (1993); Biomaterila 23 (2002) 2043-2056; J. Ame. Chem. Soc, vol 115, No. 23m 1993, 10715; J Polymer ScL, Symposium No. 51, 135-153 (1975); Angew. Chem.., Int. Ed., 2006, 45, 2-20; Anticancer drugs, 16, 243-254; J.Contr.Res., 61, 137 (1999); Macromol Symposia, 172, 49 (2001); Biomaterial, 24, 4495 (2003); Macromoecules (2001) 34, 8657; Macromol Biosci (2004) 4, 192.
Nanobeads can be readily formed according to methods established in the art. Some examples of forming nanobeads are described in Seshadri and Sivasubramanian, Drug Delivery Technology, 7(3):39-46 (2007). Some other methods are described in the references described above. Biocompatible polymers
Any biocompatible polymers can be included in the nanobeads described above and/or a coating including the nanobeads. The biocompatible polymer can be biodegradable (either bioerodable or bioabsorbable or both) or nondegradable, and can be hydrophilic or hydrophobic. Representative biocompatible polymers include, but are not limited to, poly(ester amide), polyhydroxyalkanoates (PHA), poly(3 -hydroxyalkanoates) such as poly(3- hydroxypropanoate), poly(3-hydroxybutyrate), poly(3 -hydroxyvalerate), poly(3- hydroxyhexanoate), poly(3-hydroxyheptanoate) and poly(3-hydroxyoctanoate), poly(4- hydroxyalkanaote) such as poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4- hydroxyhexanote), poly(4-hydroxyheptanoate), poly(4-hydroxyoctanoate) and copolymers including any of the 3-hydroxyalkanoate or 4-hydroxyalkanoate monomers described herein or blends thereof, poly(D,L-lactide), poly(L-lactide), polyglycolide, poly(D,L- lactide-co-glycolide), poly(L-lactide-co-glycolide), polycaprolactone, poly(lactide-co- caprolactone), poly(glycolide-co-caprolactone), poly(dioxanone), poly(ortho esters), poly(anhydrides), poly(tyrosine carbonates) and derivatives thereof, poly(tyrosine ester) and derivatives thereof, poly(imino carbonates), poly(glycolic acid-co-trimethylene carbonate), polyp hosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene- alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, such as polyvinylidene chloride, polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene- methyl methacrylate copolymers, acrylonitrile-styrene copolymers, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, poly(glyceryl sebacate), poly(propylene fumarate), poly(n-butyl methacrylate), poly(sec -butyl methacrylate), poly(isobutyl methacrylate), poly(tert-butyl methacrylate), poly(n-propyl methacrylate), poly(isopropyl methacrylate), poly(ethyl methacrylate), poly(methyl methacrylate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, carboxymethyl cellulose, polyethers such as polyethylene glycol) (PEG), copoly(ether-esters) (e.g. poly(ethylene oxide-co-lactic acid) (PEO/PLA)), polyalkylene oxides such as poly(ethylene oxide), poly(propylene oxide), poly(ether ester), polyalkylene oxalates, phosphoryl choline, choline, poly(aspirin), polymers and copolymers of hydroxyl bearing monomers such as 2 -hydroxy ethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropylmethacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n- vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), poly(styrene-isoprene-styrene)-PEG (SIS-PEG), polystyrene- PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as collagen, chitosan, alginate, fibrin, fibrinogen, cellulose, starch, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, or combinations thereof. In some embodiments, the nanoparticles can exclude any one of the aforementioned polymers.
As used herein, the terms poly(D,L-lactide), poly(L-lactide), poly(D,L-lactide-co- glycolide), and poly(L-lactide-co-glycolide) can be used interchangeably with the terms poly(D,L-lactic acid), poly(L-lactic acid), poly(D,L-lactic acid-co-glycolic acid), or poly(L-lactic acid-co-glycolic acid), respectively.
In some embodiments, the nanobeads described herein or a slurry including the nanobeads can further include a biobeneficial material. The biobeneficial material can be a polymeric material or non-polymeric material. The biobeneficial material is preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of the particles or device by being non- fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
Bioactive Agents The bioactive agents encapsulated in the nanobeads described herein can be any bioactive agent, which is a therapeutic, prophylactic, or diagnostic agent. These agents can have anti-proliferative or anti-inflammatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, and antioxidant. The agents can be cystostatic agents, agents that promote the healing of the endothelium such as NO releasing or generating agents, agents that attract endothelial progenitor cells, or agents that promote the attachment, migration and proliferation of endothelial cells (e.g., natriuretic peptide such as CNP, ANP or BNP peptide or an RGD or cRGD peptide), while quenching smooth muscle cell proliferation. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Some other examples of the bioactive agent include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of anti-proliferative agents include rapamycin and its functional or structural derivatives, 40-0-(2- hydroxy)ethyl-rapamycin (everolimus), and its functional or structural derivatives, paclitaxel and its functional and structural derivatives. Examples of rapamycin derivatives include 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), 40-0-(3-hydroxy)propyl- rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0-tetrazole-rapamycin. Examples of paclitaxel derivatives include docetaxel. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg- chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein Ilb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3 -fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, NJ), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of anti- inflammatory agents including steroidal and nonsteroidal anti-inflammatory agents include tacrolimus, dexamethasone, clobetasol, or combinations thereof. Examples of cytostatic substances include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, NJ). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, pimecrolimus, imatinib mesylate, midostaurin, bioactive RGD, and genetically engineered endothelial cells. The foregoing substances can also be used in the form of prodrugs or co-drugs thereof. The foregoing substances also include metabolites thereof and/or prodrugs of the metabolites. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
The dosage or concentration of the bioactive agent required to produce a favorable therapeutic effect should be less than the level at which the bioactive agent produces toxic effects and greater than the level at which non-therapeutic results are obtained. The dosage or concentration of the bioactive agent can depend upon factors such as the particular circumstances of the patient, the nature of the trauma, the nature of the therapy desired, the time over which the ingredient administered resides at the vascular site, and if other active agents are employed, the nature and type of the substance or combination of substances.
In some embodiments, the dose will be tailored to the specific anatomy for treatment. Some of these areas are arteries of coronary, cerebral, carotid, renal, iliac, popliteal, tibial, etc. Therapeutic effective dosages can be determined empirically, for example by infusing vessels from suitable animal model systems and using immunohistochemical, fluorescent or electron microscopy methods to detect the agent and its effects, or by conducting suitable in vitro studies. Standard pharmacological test procedures to determine dosages are understood by one of ordinary skill in the art. In addition patient state of health, diabetes type of anatomy, type of lesion, severity of lesion and other indicators can be used to determine dose and elution profile.
The bioactive agents described herein can have different release profiles, e.g., fast release (e.g., release of about 50% of the agent within 24 hours), sustained release (e.g., release of about 50% of the agent over a period of days or months), or pulse release profile. In some embodiments, the sustained release profile can be a zero order release. Examples of Implantable Device
As used herein, an implantable device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such implantable devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), heart valve prostheses, cerebrospinal fluid shunts, pacemaker electrodes, catheters, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Abbott Vascular, Santa Clara, CA), anastomotic devices and connectors, orthopedic implants such as screws, spinal implants, electro-stimulatory devices. The underlying structure of the device can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, "MP35N," "MP20N," ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. "MP35N" and "MP20N" are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, PA. "MP35N" consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. "MP20N" consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biodurable (biostable) polymers could also be used with the embodiments of the present invention.
Method of Use In accordance with embodiments of the invention, the nanoparticles can be released from a medical device (e.g., stent) during delivery and (in the case of a stent) expansion of the device, or thereafter, and released at a desired rate and for a predetermined duration of time at the site of implantation.
Preferably, the medical device is a stent. The stent described herein is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating diseased regions of blood vessels caused by lipid deposition, monocyte or macrophage infiltration, or dysfunctional endothelium or a combination thereof, or occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, and restenosis. Stents may be placed in a wide array of blood vessels, both arteries and veins.
Representative examples of sites include the iliac, renal, carotid and coronary arteries. For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having the above-described features may then be mechanically expanded or released to self expand at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
The nanobeads can be used with a stent as described above. While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims

We claim:
1. A medical device comprising a coating, the coating comprises nanobeads embedded in a slurry, wherein the coating provides for a controlled release of a bioactive agent or agents encapsulated in the nanobeads.
2. The medical device of claim 1, wherein the slurry of a material is selected from the group consisting of ceramic materials, bioglass, polymer, and combinations thereof,
3. The medical device of claim 1, wherein the nanobeads comprise a first plurality of nanobeads that encapsulate a first bioactive agent and a second plurality of nanobeads that encapsulate a second bioactive agent.
4. The medical device of claim 1, wherein the coating comprises: a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads.
5. The medical device of claim 3, wherein the coating comprises: a first layer comprising the first plurality of nanobeads, and a second layer comprising the second plurality of nanobeads.
6. The medical device of claim 3, wherein the nanobeads further comprises a third plurality of nanobeads that encapsulate a third bioactive agent.
7. The medical device of claim 6, wherein the coating comprises: a first layer comprising the first plurality of nanobeads, a second layer comprising the second plurality of nanobeads, and a third layer comprising the third plurality of nanobeads.
8. The medical device of claim 1, wherein the nanobeads comprise more than three pluralities of nanobeads, wherein each plurality of nanobeads incorporates a bioactive agent that is the same or different from a bioactive agent included in another plurality of nanobeads.
9. The medical device of claim 8, wherein the coating comprises more than three different layers of coating, and wherein each plurality of nanobeads is included in each layer of the more than three different layers of coating.
10. The medical device of claim 4, wherein the first bioactive agent and the second bioactive agent are the same or different.
11. The medical device of claim 5, wherein the first bioactive agent and the second bioactive agent are the same or different.
12. The medical device of claim 7, wherein the first bioactive agent, the second bioactive agent, and the third bioactive agent are the same or different.
13. The medical device of claim 1, wherein the slurry comprises a polymer.
14. The medical device of claim 10, wherein the first bioactive agent and the second bioactive agent are independently selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl- rapamycin, and 40-0-tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, and a combination thereof.
15. The medical device of claim 11, wherein the first bioactive agent and the second bioactive agent are independently selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0-(2-hydroxy)ethyl-rapamycin (everolimus), 40-0-(3-hydroxy)propyl-rapamycin, 4O-0-[2-(2-hydroxy)ethoxy]ethyl- rapamycin, and 40-0-tetrazole-rapamycin, 40-epi-(Nl-tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, and a combination thereof.
16. The medical device of claim 12, wherein the first bioactive agent, the second bioactive agent, and the third bioactive agent are independently selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-l-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-0- (2-hydroxy)ethyl-rapamycin (everolimus), 40-O-(3-hydroxy)propyl-rapamycin, 40-0-[2- (2-hydroxy)ethoxy]ethyl-rapamycin, and 40-0-tetrazole-rapamycin, 40-epi-(Nl- tetrazolyl)-rapamycin (ABT-578), TAFA-93, biolimus-7, biolimus-9, clobetasol, pimecrolimus, imatinib mesylate, midostaurin, prodrugs thereof, co-drugs thereof, and a combination thereof.
17. The medical device of claim 1, which is a stent.
18. The medical device of claim 1, wherein the nanobeads are chemically attached to the surface of the medical device.
19. The medical device of claim 1, wherein the nanobeads comprise a magnetic material which optionally includes a biocompatible coating.
20. The medical device of claim 19, wherein the nanobeads are capable of being directed to a target site by an external magnetic source.
21. The medical device of claim 7, wherein: (a) the first layer comprising the first plurality of nanobeads further comprises a slurry,
(b) the second layer comprising the second plurality of nanobeads further comprises a slurry,
(c) the third layer comprising the third plurality of nanobeads further comprises a slurry, or
(d) any combination of (a)-(c).
22. The medical device of claim 9, wherein the each layer of the more than three different layers of coating further comprises a slurry.
23. The medical device of claim 21, wherein the slurry comprises a polymer.
24. The medical device of claim 22, wherein the slurry comprises a polymer.
25. A method of treating a disorder in a patient comprising implanting in the patient the medical device of claim 1 and causing the nanobeads to release from the medical device of claim 1, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
26. A method of treating a disorder in a patient comprising implanting in the patient the medical device of claim 17, and causing the nanobeads to release from the medical device of claim 17, wherein the disorder is selected from the group consisting of atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
PCT/US2008/064373 2007-06-25 2008-05-21 Nanobead releasing medical devices WO2009002641A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/823,007 US8048441B2 (en) 2007-06-25 2007-06-25 Nanobead releasing medical devices
US11/823,007 2007-06-25

Publications (2)

Publication Number Publication Date
WO2009002641A2 true WO2009002641A2 (en) 2008-12-31
WO2009002641A3 WO2009002641A3 (en) 2009-09-24

Family

ID=39643058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/064373 WO2009002641A2 (en) 2007-06-25 2008-05-21 Nanobead releasing medical devices

Country Status (2)

Country Link
US (2) US8048441B2 (en)
WO (1) WO2009002641A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703066B2 (en) * 2004-01-07 2014-04-22 Noxilizer, Inc. Sterilization system and method
US8017074B2 (en) * 2004-01-07 2011-09-13 Noxilizer, Inc. Sterilization system and device
US20070258903A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers
US20080051335A1 (en) * 2006-05-02 2008-02-28 Kleiner Lothar W Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers
US8802184B2 (en) 2007-05-30 2014-08-12 Abbott Cardiovascular Systems Inc. Medical devices containing biobeneficial particles
US8425837B2 (en) 2009-02-23 2013-04-23 Noxilizer, Inc. Device and method for gas sterilization
US8945511B2 (en) * 2009-06-25 2015-02-03 Paul Weinberger Sensitive methods for detecting the presence of cancer associated with the over-expression of galectin-3 using biomarkers derived from galectin-3
US8911766B2 (en) * 2009-06-26 2014-12-16 Abbott Cardiovascular Systems Inc. Drug delivery compositions including nanoshells for triggered drug release
SG10201405144VA (en) * 2009-08-26 2014-10-30 Otsuka Medical Devices Co Ltd Medical device for placement into a lumen and manufacturing method thereof
EP2338535B1 (en) * 2009-12-18 2012-08-01 Dentsply IH AB Medical device for short time use with quickly releasable antibacterial agent
US9295663B2 (en) 2010-07-14 2016-03-29 Abbott Cardiovascular Systems Inc. Drug coated balloon with in-situ formed drug containing microspheres
FR2977790B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
FR2977789B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
US9867909B2 (en) * 2011-09-30 2018-01-16 Sofradim Production Multilayer implants for delivery of therapeutic agents
US9220759B2 (en) 2012-02-23 2015-12-29 Abbott Cardiovascular Systems Inc. Treatment of diabetic patients with a drug eluting stent and adjunctive therapy
US9220584B2 (en) 2012-03-30 2015-12-29 Abbott Cardiovascular Systems Inc. Treatment of diabetic patients with a stent and locally administered adjunctive therapy
US20140080739A1 (en) * 2012-09-19 2014-03-20 National Cheng Kung University Nanobeads With Multiple Oriented Adapting Peptides For Binding To Capture Molecules
KR101762218B1 (en) * 2014-11-10 2017-07-27 가부시키가이샤 원더 퓨쳐 코포레이션 Touch panel, touch-panel manufacturing method, and touch-panel-integrated display device
GB2541859A (en) * 2015-04-20 2017-03-08 Heart Biotech Ltd Novel nitric oxide-eluting bioresorbable stents for percutananeous coronary interventions
WO2022246319A1 (en) * 2021-05-21 2022-11-24 Know Bio, Llc Nitric oxide-releasing devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651174A (en) * 1992-03-19 1997-07-29 Medtronic, Inc. Intravascular radially expandable stent
US5697967A (en) * 1992-03-19 1997-12-16 Medtronic, Inc. Drug eluting stent
WO1998034669A1 (en) * 1997-02-07 1998-08-13 Ensovasc Ltd., Inc. Composition and method for making a biodegradable drug delivery stent
US20050129727A1 (en) * 2003-01-31 2005-06-16 Jan Weber Localized drug delivery using drug-loaded nanocapsules
EP1681035A1 (en) * 2005-01-17 2006-07-19 Lee, Kyung Bum Multilayer-coated stent for controlled drug release and manufacturing method thereof

Family Cites Families (844)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR732895A (en) 1932-10-18 1932-09-25 Consortium Elektrochem Ind Articles spun in polyvinyl alcohol
US2386454A (en) 1940-11-22 1945-10-09 Bell Telephone Labor Inc High molecular weight linear polyester-amides
US2647017A (en) 1951-04-19 1953-07-28 Ind Res Inst Nozzle
US2701559A (en) 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US3288728A (en) 1966-02-18 1966-11-29 Union Carbide Corp Para-xylylene copolymers
US3849514A (en) 1967-11-17 1974-11-19 Eastman Kodak Co Block polyester-polyamide copolymers
GB1237035A (en) 1969-08-20 1971-06-30 Tsi Travmatologii I Ortopedii Magnesium-base alloy for use in bone surgery
US3900632A (en) 1970-02-27 1975-08-19 Kimberly Clark Co Laminate of tissue and random laid continuous filament web
US3773737A (en) 1971-06-09 1973-11-20 Sutures Inc Hydrolyzable polymers of amino acid and hydroxy acids
US3839743A (en) 1972-04-21 1974-10-08 A Schwarcz Method for maintaining the normal integrity of blood
US4104410A (en) 1973-12-21 1978-08-01 Malecki George J Processing of green vegetables for color retention in canning
US4164524A (en) 1974-05-31 1979-08-14 Ward Charles A Treatment of blood containing vessels
US4075045A (en) 1976-02-09 1978-02-21 International Business Machines Corporation Method for fabricating FET one-device memory cells with two layers of polycrystalline silicon and fabrication of integrated circuits containing arrays of the memory cells charge storage capacitors utilizing five basic pattern deliberating steps
US4132357A (en) 1976-06-23 1979-01-02 Inmont Corporation Apparatus and method for spray application of solvent-thinned coating compositions
US4110497A (en) 1976-07-02 1978-08-29 Snyder Manufacturing Co., Ltd. Striped laminate and method and apparatus for making same
US4323071A (en) 1978-04-24 1982-04-06 Advanced Catheter Systems, Inc. Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same
JPS6037735B2 (en) 1978-10-18 1985-08-28 住友電気工業株式会社 Artificial blood vessel
GB2041377B (en) 1979-01-22 1983-09-28 Woodroof Lab Inc Bio compatible and blood compatible materials and methods
DE2928007A1 (en) 1979-07-11 1981-01-15 Riess Guido Dr BONE IMPLANT BODY FOR PROSTHESES AND BONE CONNECTORS AND METHOD FOR THE PRODUCTION THEREOF
US4329383A (en) 1979-07-24 1982-05-11 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
US4226243A (en) 1979-07-27 1980-10-07 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
US4346028A (en) 1979-12-14 1982-08-24 Monsanto Company Asbestiform crystalline calcium sodium or lithium phosphate, preparation and compositions
SU1016314A1 (en) 1979-12-17 1983-05-07 Институт Физиологии Им.И.С.Бериташвили Process for producing polyester urethanes
US4343931A (en) 1979-12-17 1982-08-10 Minnesota Mining And Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
US4774039A (en) 1980-03-14 1988-09-27 Brunswick Corporation Dispersing casting of integral skinned highly asymmetric polymer membranes
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
DE3019996A1 (en) 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen HOHLORGAN
US4608984A (en) 1980-10-17 1986-09-02 Fogarty Thomas J Self-retracting dilatation catheter
US4338942A (en) 1980-10-20 1982-07-13 Fogarty Thomas J Dilatation catherter apparatus
US4439185A (en) 1981-10-21 1984-03-27 Advanced Cardiovascular Systems, Inc. Inflating and deflating device for vascular dilating catheter assembly
US4880683A (en) 1981-12-28 1989-11-14 Minnesota Mining And Manufacturing Company Hot-tackifying adhesive tape
US4516972A (en) 1982-01-28 1985-05-14 Advanced Cardiovascular Systems, Inc. Guiding catheter and method of manufacture
US4902289A (en) 1982-04-19 1990-02-20 Massachusetts Institute Of Technology Multilayer bioreplaceable blood vessel prosthesis
US4517687A (en) 1982-09-15 1985-05-21 Meadox Medicals, Inc. Synthetic woven double-velour graft
US4489670A (en) 1983-05-16 1984-12-25 Sermetel Fixture for centrifugal apparatus
US4554929A (en) 1983-07-13 1985-11-26 Advanced Cardiovascular Systems, Inc. Catheter guide wire with short spring tip and method of using the same
US4656083A (en) 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US4594407A (en) 1983-09-20 1986-06-10 Allied Corporation Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols
US4702252A (en) 1983-10-13 1987-10-27 Smiths Industries Public Limited Company Catheters
US4616652A (en) 1983-10-19 1986-10-14 Advanced Cardiovascular Systems, Inc. Dilatation catheter positioning apparatus
US4538622A (en) 1983-11-10 1985-09-03 Advanced Cardiovascular Systems, Inc. Guide wire for catheters
US5669936A (en) 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5197977A (en) 1984-01-30 1993-03-30 Meadox Medicals, Inc. Drug delivery collagen-impregnated synthetic vascular graft
US4633873A (en) 1984-04-26 1987-01-06 American Cyanamid Company Surgical repair mesh
US4596574A (en) 1984-05-14 1986-06-24 The Regents Of The University Of California Biodegradable porous ceramic delivery system for bone morphogenetic protein
US4573470A (en) 1984-05-30 1986-03-04 Advanced Cardiovascular Systems, Inc. Low-profile steerable intraoperative balloon dilitation catheter
CH671337A5 (en) 1984-06-19 1989-08-31 Ceskoslovenska Akademie Ved
US4879135A (en) 1984-07-23 1989-11-07 University Of Medicine And Dentistry Of New Jersey Drug bonded prosthesis and process for producing same
JPS6174668A (en) 1984-09-19 1986-04-16 Yoshida Kogyo Kk <Ykk> Device for supplying separate paint in rotary painting machine
IT1186142B (en) 1984-12-05 1987-11-18 Medinvent Sa TRANSLUMINAL IMPLANTATION DEVICE
SU1293518A1 (en) 1985-04-11 1987-02-28 Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий Installation for testing specimen of cross-shaped structure
US4699611A (en) 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
US5628781A (en) 1985-06-06 1997-05-13 Thomas Jefferson University Implant materials, methods of treating the surface of implants with microvascular endothelial cells, and the treated implants themselves
US4656242A (en) 1985-06-07 1987-04-07 Henkel Corporation Poly(ester-amide) compositions
US4718907A (en) 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4638805A (en) 1985-07-30 1987-01-27 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter and method
US4818559A (en) 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4611051A (en) 1985-12-31 1986-09-09 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
US4743252A (en) 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
SU1477423A1 (en) 1986-01-16 1989-05-07 Особое конструкторско-технологическое бюро Физико-технического института низких температур АН УССР Inflatable catheter
EP0257091B1 (en) 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
EP0241838B1 (en) 1986-04-07 1992-04-15 Agency Of Industrial Science And Technology Antithrombogenic material
US5350395A (en) 1986-04-15 1994-09-27 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US4882168A (en) 1986-09-05 1989-11-21 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4723549A (en) 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4722335A (en) 1986-10-20 1988-02-02 Vilasi Joseph A Expandable endotracheal tube
JPH0696023B2 (en) 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
IT1202558B (en) 1987-02-17 1989-02-09 Alberto Arpesani INTERNAL PROSTHESIS FOR THE REPLACEMENT OF A PART OF THE HUMAN BODY PARTICULARLY IN THE VASCULAR OPERATIONS
US4988356A (en) 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US5721131A (en) 1987-03-06 1998-02-24 United States Of America As Represented By The Secretary Of The Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
CA1336319C (en) 1987-03-13 1995-07-18 Cesare Gianturco Endovascular stent
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
JPS63238872A (en) 1987-03-25 1988-10-04 テルモ株式会社 Instrument for securing inner diameter of cavity of tubular organ and catheter equipped therewith
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4871542A (en) 1987-04-30 1989-10-03 Ferring Service Center, N.V. Method and apparatus useful for delivering medicinal compositions into the bladder and urinary tract
US4994560A (en) 1987-06-24 1991-02-19 The Dow Chemical Company Functionalized polyamine chelants and radioactive rhodium complexes thereof for conjugation to antibodies
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US4894231A (en) 1987-07-28 1990-01-16 Biomeasure, Inc. Therapeutic agent delivery system
KR920001501B1 (en) 1987-09-01 1992-02-15 가부시기가이샤 히다찌세이사구쇼 Black matrix color picture tube and the method of the same
DE3855725T2 (en) 1987-10-08 1997-04-17 Terumo Corp INSTRUMENT AND DEVICE FOR MAINTAINING THE INNER LUMEN DIAMETER OF A TUBULAR ORGAN
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4906423A (en) 1987-10-23 1990-03-06 Dow Corning Wright Methods for forming porous-surfaced polymeric bodies
US4932353A (en) 1987-12-18 1990-06-12 Mitsubishi Denki Kabushiki Kaisha Chemical coating apparatus
US4877030A (en) 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US5019096A (en) 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
JP2561309B2 (en) 1988-03-28 1996-12-04 テルモ株式会社 Medical material and manufacturing method thereof
US5192311A (en) 1988-04-25 1993-03-09 Angeion Corporation Medical implant and method of making
US4967606A (en) 1988-04-29 1990-11-06 Caveo Scientific Instruments, Inc. Method and apparatus for pipetting liquids
US4994298A (en) 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US4931287A (en) 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
DE3821544C2 (en) 1988-06-25 1994-04-28 H Prof Dr Med Just Dilatation catheter
US4865870A (en) 1988-07-07 1989-09-12 Becton, Dickinson And Company Method for rendering a substrate surface antithrombogenic
EP0351314B1 (en) 1988-07-11 1995-02-01 Terumo Kabushiki Kaisha Medical material and medical implement
US5502158A (en) 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
AU4191989A (en) 1988-08-24 1990-03-23 Marvin J. Slepian Biodegradable polymeric endoluminal sealing
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5226913A (en) 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US5053048A (en) 1988-09-22 1991-10-01 Cordis Corporation Thromboresistant coating
US5511726A (en) 1988-09-23 1996-04-30 Battelle Memorial Institute Nebulizer device
US4943346A (en) 1988-09-29 1990-07-24 Siemens Aktiengesellschaft Method for manufacturing printed circuit boards
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5085629A (en) 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
DE69030811T2 (en) 1989-01-27 1997-10-02 Au Membrane & Biotech Res Inst RECEPTOR MEMBRANES AND SELECTIVE CONTROL OF THE ION FLOW BY IONOPHORES
US5087244A (en) 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5289831A (en) 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
NZ228382A (en) 1989-03-17 1992-08-26 Carter Holt Harvey Plastic Pro Drug administering coil-like device for insertion in body cavity of animal
JP3133750B2 (en) 1989-03-24 2001-02-13 キヤノン株式会社 Ink jet cartridge and ink jet recording apparatus using the same
US5972505A (en) 1989-04-04 1999-10-26 Eastman Chemical Company Fibers capable of spontaneously transporting fluids
US5108755A (en) 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
US5100429A (en) 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
IL90193A (en) 1989-05-04 1993-02-21 Biomedical Polymers Int Polurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
US4990158A (en) 1989-05-10 1991-02-05 United States Surgical Corporation Synthetic semiabsorbable tubular prosthesis
US5156911A (en) 1989-05-11 1992-10-20 Landec Labs Inc. Skin-activated temperature-sensitive adhesive assemblies
DE69028528T2 (en) 1989-05-11 1997-04-24 Landec Corp BINDING UNITS ACTIVATED BY THE TEMPERATURE
US5127362A (en) 1989-05-22 1992-07-07 Tokyo Electron Limited Liquid coating device
US4994033A (en) 1989-05-25 1991-02-19 Schneider (Usa) Inc. Intravascular drug delivery dilatation catheter
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
US5116318A (en) 1989-06-06 1992-05-26 Cordis Corporation Dilatation balloon within an elastic sleeve
US5037392A (en) 1989-06-06 1991-08-06 Cordis Corporation Stent-implanting balloon assembly
US5620420A (en) 1989-06-16 1997-04-15 Kriesel; Marshall S. Fluid delivery apparatus
US5272012A (en) 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5258419A (en) 1989-06-26 1993-11-02 Minnesota Mining And Manufacturing Company Methods of preparing radiation resistant heat sealable polymer blends
US5059169A (en) 1989-07-07 1991-10-22 C. R. Bard, Inc. High-friction prostatic stent
US5084065A (en) 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5649951A (en) 1989-07-25 1997-07-22 Smith & Nephew Richards, Inc. Zirconium oxide and zirconium nitride coated stents
US5015505A (en) 1989-09-25 1991-05-14 Bridgestone/Firestone, Inc. Method and apparatus for striping a tire sidewall
JPH0648975B2 (en) 1989-10-02 1994-06-29 俊郎 樋口 Micro injection device and injection control method thereof
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5087394A (en) 1989-11-09 1992-02-11 Scimed Life Systems, Inc. Method for forming an inflatable balloon for use in a catheter
US5059166A (en) 1989-12-11 1991-10-22 Medical Innovative Technologies R & D Limited Partnership Intra-arterial stent with the capability to inhibit intimal hyperplasia
US5049132A (en) 1990-01-08 1991-09-17 Cordis Corporation Balloon catheter for delivering therapeutic agents
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
US5176638A (en) 1990-01-12 1993-01-05 Don Michael T Anthony Regional perfusion catheter with improved drug delivery control
US5460610A (en) 1990-01-12 1995-10-24 Don Michael; T. Anthony Treatment of obstructions in body passages
US5496557A (en) 1990-01-30 1996-03-05 Akzo N.V. Article for the controlled delivery of an active substance, comprising a hollow space fully enclosed by a wall and filled in full or in part with one or more active substances
ATE120377T1 (en) 1990-02-08 1995-04-15 Howmedica INFLATABLE DILATATOR.
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
NL194941C (en) 1990-02-15 2003-08-04 Cordis Corp Method for applying a physiologically active compound to a substrate surface.
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5156623A (en) 1990-04-16 1992-10-20 Olympus Optical Co., Ltd. Sustained release material and method of manufacturing the same
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5300295A (en) 1990-05-01 1994-04-05 Mediventures, Inc. Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
US5298260A (en) 1990-05-01 1994-03-29 Mediventures, Inc. Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
US5292516A (en) 1990-05-01 1994-03-08 Mediventures, Inc. Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
US5078720A (en) 1990-05-02 1992-01-07 American Medical Systems, Inc. Stent placement instrument and method
WO1991017788A1 (en) 1990-05-11 1991-11-28 Saab Mark A High-strength, thin-walled single piece catheters
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
WO1991017724A1 (en) 1990-05-17 1991-11-28 Harbor Medical Devices, Inc. Medical device polymer
US5279594A (en) 1990-05-23 1994-01-18 Jackson Richard R Intubation devices with local anesthetic effect for medical use
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
CA2038605C (en) 1990-06-15 2000-06-27 Leonard Pinchuk Crack-resistant polycarbonate urethane polymer prostheses and the like
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
WO1991019529A1 (en) 1990-06-15 1991-12-26 Cortrak Medical, Inc. Drug delivery apparatus and method
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
IT9084979A1 (en) 1990-07-30 1992-01-31 Imad Sheiban PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTIC CATHETER WITH TWO BALLOONS AT ITS DISTAL END ONE OF SMALL DIAMETER (1, 5MM. FOLLOWED BY ANOTHER BALLOON OF GREATER DIAMETER VARIABLE FROM 2, 5 TO 4 MM THE BALLOON THE SMALL BALLOON
US5342283A (en) 1990-08-13 1994-08-30 Good Roger R Endocurietherapy
IL99296A (en) 1990-08-28 1995-12-08 Meadox Medicals Inc Self-supporting woven vascular graft and its preparation
DE69114505T2 (en) 1990-08-28 1996-04-18 Meadox Medicals Inc SELF-SUPPORTING WOVEN VESSEL TRANSPLANT.
US5213561A (en) 1990-09-06 1993-05-25 Weinstein Joseph S Method and devices for preventing restenosis after angioplasty
US5258020A (en) 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
US6248129B1 (en) 1990-09-14 2001-06-19 Quanam Medical Corporation Expandable polymeric stent with memory and delivery apparatus and method
US5108417A (en) 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
US5222971A (en) 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5462990A (en) 1990-10-15 1995-10-31 Board Of Regents, The University Of Texas System Multifunctional organic polymers
DE69116130T2 (en) 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
US5104410A (en) 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
GB9027793D0 (en) 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
CS277367B6 (en) 1990-12-29 1993-01-13 Krajicek Milan Three-layered vascular prosthesis
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5893840A (en) 1991-01-04 1999-04-13 Medtronic, Inc. Releasable microcapsules on balloon catheters
US5254091A (en) 1991-01-08 1993-10-19 Applied Medical Resources Corporation Low profile balloon catheter and method for making same
CA2060067A1 (en) 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
DE69225586T2 (en) 1991-02-12 1999-01-28 Landec Corp TEMPERATURE ZONES SPECIFIC PRESSURE SENSITIVE ADHESIVE COMPOSITIONS, ADHESIVE CONTAINERS AND RELATED METHODS FOR THEIR USE
EP0525210A4 (en) 1991-02-20 1993-07-28 Tdk Corporation Composite bio-implant and production method therefor
US5116365A (en) 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
GB2253164B (en) 1991-02-22 1994-10-05 Hoechst Uk Ltd Improvements in or relating to electrostatic coating of substrates of medicinal products
WO1992015342A1 (en) 1991-03-08 1992-09-17 Keiji Igaki Stent for vessel, structure of holding said stent, and device for mounting said stent
US5383925A (en) 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5171445A (en) 1991-03-26 1992-12-15 Memtec America Corporation Ultraporous and microporous membranes and method of making membranes
US5188734A (en) 1991-03-26 1993-02-23 Memtec America Corporation Ultraporous and microporous integral membranes
DE69224636T2 (en) 1991-04-24 1998-11-05 Advanced Cardiovascular System INTERCHANGEABLE BALLOON CATHETER WITH INTEGRATED GUIDE WIRE
US5304200A (en) 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5234416A (en) 1991-06-06 1993-08-10 Advanced Cardiovascular Systems, Inc. Intravascular catheter with a nontraumatic distal tip
US5205822A (en) 1991-06-10 1993-04-27 Cordis Corporation Replaceable dilatation catheter
US5213576A (en) 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5318531A (en) 1991-06-11 1994-06-07 Cordis Corporation Infusion balloon catheter
US5147370A (en) 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US5330768A (en) 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
CA2074304C (en) 1991-08-02 1996-11-26 Cyril J. Schweich, Jr. Drug delivery catheter
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5302168A (en) 1991-09-05 1994-04-12 Hess Robert L Method and apparatus for restenosis treatment
US5269802A (en) 1991-09-10 1993-12-14 Garber Bruce B Prostatic stent
AU2575992A (en) 1991-09-12 1993-04-05 United States, as represented by Secretary Department of Health and Human Services, The Apparatus for and method of making ultra thin walled wire reinforced endotracheal tubing and product thereof
US5229045A (en) 1991-09-18 1993-07-20 Kontron Instruments Inc. Process for making porous membranes
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5464450A (en) 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
WO1993006792A1 (en) 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5366504A (en) 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5282860A (en) 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5545408A (en) 1991-10-21 1996-08-13 Peptide Technology Limited Biocompatible implant for the timing of ovulation in mares
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2380683C (en) 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5167614A (en) 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
CA2087132A1 (en) 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
EP0553960B1 (en) 1992-01-31 1997-08-27 Advanced Cardiovascular Systems, Inc. Protective membrane for stent-carrying ballon catheter
US5573934A (en) 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5591224A (en) 1992-03-19 1997-01-07 Medtronic, Inc. Bioelastomeric stent
DE69326631T2 (en) 1992-03-19 2000-06-08 Medtronic Inc Intraluminal expansion device
US5571166A (en) 1992-03-19 1996-11-05 Medtronic, Inc. Method of making an intraluminal stent
ES2116406T3 (en) 1992-03-25 1998-07-16 Cook Inc STENT VASCULAR.
GB9206736D0 (en) 1992-03-27 1992-05-13 Sandoz Ltd Improvements of organic compounds and their use in pharmaceutical compositions
DE69332950T2 (en) 1992-03-31 2004-05-13 Boston Scientific Corp., Natick BLOOD VESSEL FILTER
US5254089A (en) 1992-04-02 1993-10-19 Boston Scientific Corp. Medication dispensing balloon catheter
US5306250A (en) 1992-04-02 1994-04-26 Indiana University Foundation Method and apparatus for intravascular drug delivery
US5219980A (en) 1992-04-16 1993-06-15 Sri International Polymers biodegradable or bioerodiable into amino acids
DE69325845T2 (en) 1992-04-28 2000-01-05 Terumo Corp Thermoplastic polymer composition and medical devices made therefrom
US5383927A (en) 1992-05-07 1995-01-24 Intervascular Inc. Non-thromogenic vascular prosthesis
DE69333161T2 (en) 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
DE4222380A1 (en) 1992-07-08 1994-01-13 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5853408A (en) 1992-08-20 1998-12-29 Advanced Cardiovascular Systems, Inc. In-vivo modification of the mechanical properties of surgical devices
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5770609A (en) 1993-01-28 1998-06-23 Neorx Corporation Prevention and treatment of cardiovascular pathologies
US5278200A (en) 1992-10-30 1994-01-11 Medtronic, Inc. Thromboresistant material and articles
EP0597593A1 (en) 1992-10-30 1994-05-18 Medtronic, Inc. Thromboresistant articles
US5344455A (en) 1992-10-30 1994-09-06 Medtronic, Inc. Graft polymer articles having bioactive surfaces
US5830461A (en) 1992-11-25 1998-11-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Methods for promoting wound healing and treating transplant-associated vasculopathy
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5336518A (en) 1992-12-11 1994-08-09 Cordis Corporation Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents
FR2699168B1 (en) 1992-12-11 1995-01-13 Rhone Poulenc Chimie Method of treating a material comprising a polymer by hydrolysis.
DE4242476C1 (en) 1992-12-16 1994-08-11 Eppendorf Geraetebau Netheler Device for centrifuging samples
US5443458A (en) 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5487730A (en) 1992-12-30 1996-01-30 Medtronic, Inc. Balloon catheter with balloon surface retention means
US5423849A (en) 1993-01-15 1995-06-13 Target Therapeutics, Inc. Vasoocclusion device containing radiopaque fibers
US5308641A (en) 1993-01-19 1994-05-03 Medtronic, Inc. Biocompatibility of solid surfaces
US5350800A (en) 1993-01-19 1994-09-27 Medtronic, Inc. Method for improving the biocompatibility of solid surfaces
US5229172A (en) 1993-01-19 1993-07-20 Medtronic, Inc. Modification of polymeric surface by graft polymerization
US5595722A (en) 1993-01-28 1997-01-21 Neorx Corporation Method for identifying an agent which increases TGF-beta levels
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5360401A (en) 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
WO1994021320A1 (en) 1993-03-15 1994-09-29 Advanced Cardiovascular Systems, Inc. Fluid delivery catheter
US5368560A (en) 1993-03-29 1994-11-29 Medical Development Systems, Inc. Suction nozzle
FI92465C (en) 1993-04-14 1994-11-25 Risto Tapani Lehtinen A method for handling endo-osteal materials
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US20020055710A1 (en) 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US5824048A (en) 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
JP3595571B2 (en) 1993-05-07 2004-12-02 日精エー・エス・ビー機械株式会社 Double wall bottle and method and apparatus for molding the same
IT1276342B1 (en) 1993-06-04 1997-10-30 Ist Naz Stud Cura Dei Tumori METAL STENT COVERED WITH BIOCOMPATIBLE POLYMERIC MATERIAL
JPH0767895A (en) 1993-06-25 1995-03-14 Sumitomo Electric Ind Ltd Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5994341A (en) 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
DE69330132T2 (en) 1993-07-23 2001-11-15 Cook Inc FLEXIBLE STENT WITH A CONFIGURATION MOLDED FROM A MATERIAL SHEET
US5599307A (en) 1993-07-26 1997-02-04 Loyola University Of Chicago Catheter and method for the prevention and/or treatment of stenotic processes of vessels and cavities
DE4327024A1 (en) 1993-08-12 1995-02-16 Bayer Ag Thermoplastically processable and biodegradable aliphatic polyesteramides
US5746745A (en) 1993-08-23 1998-05-05 Boston Scientific Corporation Balloon catheter
US5409495A (en) 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
DK0716610T3 (en) 1993-08-26 2006-09-04 Genetics Inst Llc Human bone morphogenetic proteins for use in neural regeneration
US5380299A (en) 1993-08-30 1995-01-10 Med Institute, Inc. Thrombolytic treated intravascular medical device
US5618298A (en) 1993-10-23 1997-04-08 Simon; Michael Vascular prosthesis made of resorbable material
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
WO1995010989A1 (en) 1993-10-19 1995-04-27 Scimed Life Systems, Inc. Intravascular stent pump
DK0659389T3 (en) 1993-10-20 1999-02-15 Schneider Europ Ag endoprosthesis
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5855598A (en) 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5571135A (en) 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
JP3758048B2 (en) 1993-10-26 2006-03-22 帝国ピストンリング株式会社 Ring coating method and coating device
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5599301A (en) 1993-11-22 1997-02-04 Advanced Cardiovascular Systems, Inc. Motor control system for an automatic catheter inflation system
US5554673A (en) 1993-11-29 1996-09-10 Polygenex International, Inc. Dip molded polyurethane film compositions
SE501288C2 (en) 1993-11-30 1995-01-09 Corimed Gmbh Process for preparing ceramic implant material, preferably hydroxylapatite having ceramic implant material
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
WO1995019796A1 (en) 1994-01-21 1995-07-27 Brown University Research Foundation Biocompatible implants
US6051576A (en) 1994-01-28 2000-04-18 University Of Kentucky Research Foundation Means to achieve sustained release of synergistic drugs by conjugation
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US5470313A (en) 1994-02-24 1995-11-28 Cardiovascular Dynamics, Inc. Variable diameter balloon dilatation catheter
US5556413A (en) 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
CA2190121A1 (en) 1994-03-15 1995-09-21 Edith Mathiowitz Polymeric gene delivery system
AU704549B2 (en) 1994-03-18 1999-04-29 Lynx Therapeutics, Inc. Oligonucleotide N3'-P5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties
US5726297A (en) 1994-03-18 1998-03-10 Lynx Therapeutics, Inc. Oligodeoxyribonucleotide N3' P5' phosphoramidates
US5599922A (en) 1994-03-18 1997-02-04 Lynx Therapeutics, Inc. Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties
US5588962A (en) 1994-03-29 1996-12-31 Boston Scientific Corporation Drug treatment of diseased sites deep within the body
US5456661A (en) 1994-03-31 1995-10-10 Pdt Cardiovascular Catheter with thermally stable balloon
US5656082A (en) 1994-04-04 1997-08-12 Tatsumo Kabushiki Kaisha Liquid applying apparatus utilizing centrifugal force
US5399666A (en) 1994-04-21 1995-03-21 E. I. Du Pont De Nemours And Company Easily degradable star-block copolymers
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
US5567410A (en) 1994-06-24 1996-10-22 The General Hospital Corporation Composotions and methods for radiographic imaging
US5629077A (en) 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5788979A (en) 1994-07-22 1998-08-04 Inflow Dynamics Inc. Biodegradable coating with inhibitory properties for application to biocompatible materials
US5554120A (en) 1994-07-25 1996-09-10 Advanced Cardiovascular Systems, Inc. Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters
US5817327A (en) 1994-07-27 1998-10-06 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5516881A (en) 1994-08-10 1996-05-14 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
ES2138094T3 (en) 1994-09-07 2000-01-01 Synthes Ag MEDICAL DEVICE FOR IMPLEMENTATION IN LIVING ORGANISMS.
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5593403A (en) 1994-09-14 1997-01-14 Scimed Life Systems Inc. Method for modifying a stent in an implanted site
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5485496A (en) 1994-09-22 1996-01-16 Cornell Research Foundation, Inc. Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
FR2724938A1 (en) 1994-09-28 1996-03-29 Lvmh Rech POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH.
EP0785774B1 (en) 1994-10-12 2001-01-31 Focal, Inc. Targeted delivery via biodegradable polymers
US5765682A (en) 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
US5733327A (en) 1994-10-17 1998-03-31 Igaki; Keiji Stent for liberating drug
US5836965A (en) 1994-10-19 1998-11-17 Jendersee; Brad Stent delivery and deployment method
IL115755A0 (en) 1994-10-27 1996-01-19 Medinol Ltd X-ray visible stent
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
US5707385A (en) 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5628755A (en) 1995-02-20 1997-05-13 Schneider (Europe) A.G. Balloon catheter and stent delivery system
US6059752A (en) 1994-12-09 2000-05-09 Segal; Jerome Mechanical apparatus and method for dilating and irradiating a site of treatment
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5702754A (en) 1995-02-22 1997-12-30 Meadox Medicals, Inc. Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
US5869127A (en) 1995-02-22 1999-02-09 Boston Scientific Corporation Method of providing a substrate with a bio-active/biocompatible coating
US6231600B1 (en) 1995-02-22 2001-05-15 Scimed Life Systems, Inc. Stents with hybrid coating for medical devices
US6147168A (en) 1995-03-06 2000-11-14 Ethicon, Inc. Copolymers of absorbable polyoxaesters
US5854376A (en) 1995-03-09 1998-12-29 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
US5647857A (en) 1995-03-16 1997-07-15 Endotex Interventional Systems, Inc. Protective intraluminal sheath
AU5095196A (en) 1995-03-17 1996-10-08 Smith & Nephew Richards Inc. Medical implants
US5876743A (en) 1995-03-21 1999-03-02 Den-Mat Corporation Biocompatible adhesion in tissue repair
US5605696A (en) 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
EP0819011B1 (en) 1995-03-31 2003-03-12 Boston Scientific Corporation Multiple hole drug delivery balloon
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20020091433A1 (en) 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
RU2169742C2 (en) 1995-04-19 2001-06-27 Катаока Казунори Heterotelochelate block copolymer and method of preparation thereof
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US7008668B2 (en) 1995-05-09 2006-03-07 Phoqus Pharmaceuticals Limited Powder coating composition for electrostatic coating of pharmaceutical substrates
US5730698A (en) 1995-05-09 1998-03-24 Fischell; Robert E. Balloon expandable temporary radioisotope stent system
JPH11507292A (en) 1995-05-09 1999-06-29 カラーコン リミテッド Electrostatic painting
GB2316342B (en) 1995-05-09 2000-01-12 Colorcon Ltd Electrostatic coating
GB2333975B (en) 1995-05-09 2000-01-12 Colorcon Ltd Improvements in or relating to electrostatic coating of substrates
US6059810A (en) 1995-05-10 2000-05-09 Scimed Life Systems, Inc. Endovascular stent and method
JP2795824B2 (en) 1995-05-12 1998-09-10 オオタ株式会社 Surface treatment method for titanium-based implant and biocompatible titanium-based implant
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
US5711812A (en) 1995-06-06 1998-01-27 Varian Associates, Inc. Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes
US5674242A (en) 1995-06-06 1997-10-07 Quanam Medical Corporation Endoprosthetic device with therapeutic compound
US5954744A (en) 1995-06-06 1999-09-21 Quanam Medical Corporation Intravascular stent
US6774278B1 (en) 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5820917A (en) 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US7550005B2 (en) 1995-06-07 2009-06-23 Cook Incorporated Coated implantable medical device
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
US7611533B2 (en) 1995-06-07 2009-11-03 Cook Incorporated Coated implantable medical device
US6010530A (en) 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5693376A (en) 1995-06-23 1997-12-02 Wisconsin Alumni Research Foundation Method for plasma source ion implantation and deposition for cylindrical surfaces
US6209621B1 (en) 1995-07-07 2001-04-03 Depuy Orthopaedics, Inc. Implantable prostheses with metallic porous bead preforms applied during casting and method of forming the same
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
CA2179083A1 (en) 1995-08-01 1997-02-02 Michael S. Williams Composite metal and polymer locking stents for drug delivery
GB9611437D0 (en) 1995-08-03 1996-08-07 Secr Defence Biomaterial
US5962923A (en) 1995-08-07 1999-10-05 Applied Materials, Inc. Semiconductor device having a low thermal budget metal filling and planarization of contacts, vias and trenches
DE19533682A1 (en) 1995-09-12 1997-03-13 Biotronik Mess & Therapieg Process for depositing and immobilizing heparin on inorganic substrate surfaces of cardiovascular implants
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5935135A (en) 1995-09-29 1999-08-10 United States Surgical Corporation Balloon delivery system for deploying stents
US5830879A (en) 1995-10-02 1998-11-03 St. Elizabeth's Medical Center Of Boston, Inc. Treatment of vascular injury using vascular endothelial growth factor
US5723219A (en) 1995-12-19 1998-03-03 Talison Research Plasma deposited film networks
US5804318A (en) 1995-10-26 1998-09-08 Corvita Corporation Lubricious hydrogel surface modification
US5736152A (en) 1995-10-27 1998-04-07 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
US5607442A (en) 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5658995A (en) 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
US5840009A (en) 1995-12-05 1998-11-24 Isostent, Inc. Radioisotope stent with increased radiation field strength at the ends of the stent
DE19545678A1 (en) 1995-12-07 1997-06-12 Goldschmidt Ag Th Copolymers of polyamino acid esters
US6048964A (en) 1995-12-12 2000-04-11 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
DK2111876T3 (en) 1995-12-18 2011-12-12 Angiodevice Internat Gmbh Crosslinked polymer preparations and methods for their use
SG46752A1 (en) 1995-12-27 1998-02-20 Taiwan Semiconductor Mfg A method to prevent volcano effect in tungsten plug deposition
ATE290832T1 (en) 1996-01-05 2005-04-15 Medtronic Inc EXPANDABLE ENDOLUMINAL PROSTHESES
US6150630A (en) 1996-01-11 2000-11-21 The Regents Of The University Of California Laser machining of explosives
US5722984A (en) 1996-01-16 1998-03-03 Iso Stent, Inc. Antithrombogenic radioactive coating for an intravascular stent
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US6054553A (en) 1996-01-29 2000-04-25 Bayer Ag Process for the preparation of polymers having recurring agents
EP1011889B1 (en) 1996-01-30 2002-10-30 Medtronic, Inc. Articles for and methods of making stents
US5772864A (en) 1996-02-23 1998-06-30 Meadox Medicals, Inc. Method for manufacturing implantable medical devices
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US5823996A (en) 1996-02-29 1998-10-20 Cordis Corporation Infusion balloon catheter
JP2000509014A (en) 1996-03-11 2000-07-18 フォーカル,インコーポレイテッド Polymer delivery of radionuclides and radiopharmaceuticals
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5713949A (en) 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5830179A (en) 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
US5932299A (en) 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5925552A (en) 1996-04-25 1999-07-20 Medtronic, Inc. Method for attachment of biomolecules to medical devices surfaces
US5928916A (en) 1996-04-25 1999-07-27 Medtronic, Inc. Ionic attachment of biomolecules with a guanidino moiety to medical device surfaces
US6033719A (en) 1996-04-25 2000-03-07 Medtronic, Inc. Method for covalent attachment of biomolecules to surfaces of medical devices
US5653691A (en) 1996-04-25 1997-08-05 Rupp; Garry Eugene Thickened inner lumen for uniform stent expansion and method of making
US6071266A (en) 1996-04-26 2000-06-06 Kelley; Donald W. Lubricious medical devices
US6241760B1 (en) 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US6592617B2 (en) 1996-04-30 2003-07-15 Boston Scientific Scimed, Inc. Three-dimensional braided covered stent
US5955509A (en) 1996-05-01 1999-09-21 Board Of Regents, The University Of Texas System pH dependent polymer micelles
US5610241A (en) 1996-05-07 1997-03-11 Cornell Research Foundation, Inc. Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
US5951881A (en) 1996-07-22 1999-09-14 President And Fellows Of Harvard College Fabrication of small-scale cylindrical articles
US5833644A (en) 1996-05-20 1998-11-10 Percusurge, Inc. Method for emboli containment
US5733326A (en) 1996-05-28 1998-03-31 Cordis Corporation Composite material endoprosthesis
US5876433A (en) 1996-05-29 1999-03-02 Ethicon, Inc. Stent and method of varying amounts of heparin coated thereon to control treatment
US5811151A (en) 1996-05-31 1998-09-22 Medtronic, Inc. Method of modifying the surface of a medical device
US5914182A (en) 1996-06-03 1999-06-22 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5874165A (en) 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US6143037A (en) * 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5876426A (en) 1996-06-13 1999-03-02 Scimed Life Systems, Inc. System and method of providing a blood-free interface for intravascular light delivery
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
NL1003459C2 (en) 1996-06-28 1998-01-07 Univ Twente Copoly (ester amides) and copoly (ester urethanes).
US5833659A (en) 1996-07-10 1998-11-10 Cordis Corporation Infusion balloon catheter
US5711958A (en) 1996-07-11 1998-01-27 Life Medical Sciences, Inc. Methods for reducing or eliminating post-surgical adhesion formation
US5871436A (en) 1996-07-19 1999-02-16 Advanced Cardiovascular Systems, Inc. Radiation therapy method and device
US5741554A (en) 1996-07-26 1998-04-21 Bio Dot, Inc. Method of dispensing a liquid reagent
US6120535A (en) 1996-07-29 2000-09-19 Radiance Medical Systems, Inc. Microporous tubular prosthesis
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5800516A (en) 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
US5830217A (en) 1996-08-09 1998-11-03 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US6060518A (en) 1996-08-16 2000-05-09 Supratek Pharma Inc. Polymer compositions for chemotherapy and methods of treatment using the same
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
WO1998007523A1 (en) 1996-08-23 1998-02-26 Pursley Matt D Apparatus and method for nonextrusion manufacturing of catheters
US6344271B1 (en) 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US5855618A (en) 1996-09-13 1999-01-05 Meadox Medicals, Inc. Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
US5807404A (en) 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5913871A (en) 1996-09-25 1999-06-22 Medtronic, Inc. Balloon modification for improved stent fixation and deployment
US6174326B1 (en) 1996-09-25 2001-01-16 Terumo Kabushiki Kaisha Radiopaque, antithrombogenic stent and method for its production
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
NL1004162C2 (en) 1996-10-01 1998-04-02 Cordis Europ Balloon catheter for stent delivery.
FR2753907B1 (en) 1996-10-02 1999-07-16 Nycomed Lab Sa BALLOON FOR EXPANSION CATHETER AND MANUFACTURING METHOD THEREOF
US6387121B1 (en) 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
US6099561A (en) 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US6086610A (en) 1996-10-22 2000-07-11 Nitinol Devices & Components Composite self expanding stent device having a restraining element
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US5843119A (en) 1996-10-23 1998-12-01 United States Surgical Corporation Apparatus and method for dilatation of a body lumen and delivery of a prothesis therein
US6530951B1 (en) 1996-10-24 2003-03-11 Cook Incorporated Silver implantable medical device
US5833651A (en) 1996-11-08 1998-11-10 Medtronic, Inc. Therapeutic intraluminal stents
GB2356587B (en) 1996-11-13 2001-07-11 Phoqus Ltd Method and apparatus for the coating of substrates for pharmaceutical use and products for the use in producing solid dosage forms
GB2356585B (en) 1996-11-13 2001-07-11 Phoqus Ltd Method and apparatus for the coating of substrates for pharmaceutical use and intermediate products for use in producing solid dosage forms
GB9623634D0 (en) 1996-11-13 1997-01-08 Bpsi Holdings Inc Method and apparatus for the coating of substrates for pharmaceutical use
US5807244A (en) 1996-11-15 1998-09-15 Barot; Jagdish Shantilal Single use disposable iris retractor
US5846247A (en) 1996-11-15 1998-12-08 Unsworth; John D. Shape memory tubular deployment system
US5695810A (en) 1996-11-20 1997-12-09 Cornell Research Foundation, Inc. Use of cobalt tungsten phosphide as a barrier material for copper metallization
US5728751A (en) 1996-11-25 1998-03-17 Meadox Medicals, Inc. Bonding bio-active materials to substrate surfaces
ZA9710342B (en) 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US5741881A (en) 1996-11-25 1998-04-21 Meadox Medicals, Inc. Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions
US5877263A (en) 1996-11-25 1999-03-02 Meadox Medicals, Inc. Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents
US6120491A (en) 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
IT1289728B1 (en) 1996-12-10 1998-10-16 Sorin Biomedica Cardio Spa SYSTEM AND EQUIPMENT DEVICE THAT INCLUDES IT
US5871437A (en) 1996-12-10 1999-02-16 Inflow Dynamics, Inc. Radioactive stent for treating blood vessels to prevent restenosis
WO1998025549A1 (en) 1996-12-10 1998-06-18 Purdue Research Foundation Artificial vascular valves
US6045899A (en) 1996-12-12 2000-04-04 Usf Filtration & Separations Group, Inc. Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
IT1289815B1 (en) 1996-12-30 1998-10-16 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT AND RELATED PRODUCTION PROCESS
IT1291001B1 (en) 1997-01-09 1998-12-14 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT AND ITS PRODUCTION PROCESS
US5733330A (en) 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US6132809A (en) 1997-01-16 2000-10-17 Precision Valve & Automation, Inc. Conformal coating using multiple applications
US5858556A (en) 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
JP3523765B2 (en) 1997-01-24 2004-04-26 テルモ株式会社 Living organ dilator
US5997517A (en) 1997-01-27 1999-12-07 Sts Biopolymers, Inc. Bonding layers for medical device surface coatings
WO1998032779A1 (en) 1997-01-28 1998-07-30 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
DE69828387T2 (en) 1997-01-28 2005-12-08 United States Surgical Corp., Norwalk POLYESTERAMIDE, ITS PRESENTATION AND SURGICAL FABRICATED SURGICAL ARTICLES
DE69826639T2 (en) 1997-01-28 2005-10-06 United States Surgical Corp., Norwalk SURGICAL ARTICLES MADE FROM POLYESTERAMIDES WITH GROUPS DERIVED FROM AMINO ACIDS AND ALTERNATIVELY WITH GROUPS DERIVED FROM ALPHA HYDROXYLIC ACIDS
US5782742A (en) 1997-01-31 1998-07-21 Cardiovascular Dynamics, Inc. Radiation delivery balloon
US6090330A (en) 1997-02-06 2000-07-18 Matsushita Electric Industrial Co., Ltd. Laser processing method
US6159951A (en) 1997-02-13 2000-12-12 Ribozyme Pharmaceuticals Inc. 2'-O-amino-containing nucleoside analogs and polynucleotides
US6582472B2 (en) 1997-02-26 2003-06-24 Applied Medical Resources Corporation Kinetic stent
US6140431A (en) 1997-02-27 2000-10-31 Rohm And Haas Company Process for preparing continuously variable-composition copolymers
US5858990A (en) 1997-03-04 1999-01-12 St. Elizabeth's Medical Center Fas ligand compositions for treatment of proliferative disorders
US6200335B1 (en) 1997-03-31 2001-03-13 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
US6210715B1 (en) 1997-04-01 2001-04-03 Cap Biotechnology, Inc. Calcium phosphate microcarriers and microspheres
US5874101A (en) 1997-04-14 1999-02-23 Usbiomaterials Corp. Bioactive-gel compositions and methods
US5843172A (en) 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6019777A (en) 1997-04-21 2000-02-01 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
FI103715B (en) 1997-04-21 1999-08-31 Vivoxid Oy New composite and its use
US6776792B1 (en) 1997-04-24 2004-08-17 Advanced Cardiovascular Systems Inc. Coated endovascular stent
US5810871A (en) 1997-04-29 1998-09-22 Medtronic, Inc. Stent delivery system
US5879697A (en) 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US5972029A (en) 1997-05-13 1999-10-26 Fuisz Technologies Ltd. Remotely operable stent
US5969422A (en) 1997-05-15 1999-10-19 Advanced Micro Devices, Inc. Plated copper interconnect structure
US6303901B1 (en) 1997-05-20 2001-10-16 The Regents Of The University Of California Method to reduce damage to backing plate
US5891192A (en) 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
BE1011180A6 (en) 1997-05-27 1999-06-01 Medicorp R & D Benelux Sa Luminal endoprosthesis AUTO EXPANDABLE.
US6245760B1 (en) 1997-05-28 2001-06-12 Aventis Pharmaceuticals Products, Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6159978A (en) 1997-05-28 2000-12-12 Aventis Pharmaceuticals Product, Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6180632B1 (en) 1997-05-28 2001-01-30 Aventis Pharmaceuticals Products Inc. Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
US5902631A (en) 1997-06-03 1999-05-11 Wang; Lixiao Lubricity gradient for medical devices
US6106454A (en) 1997-06-17 2000-08-22 Medtronic, Inc. Medical device for delivering localized radiation
US5883011A (en) 1997-06-18 1999-03-16 Vlsi Technology, Inc. Method of removing an inorganic antireflective coating from a semiconductor substrate
US6110483A (en) 1997-06-23 2000-08-29 Sts Biopolymers, Inc. Adherent, flexible hydrogel and medicated coatings
US5898178A (en) 1997-07-02 1999-04-27 Implant Sciences Corporation Ion source for generation of radioactive ion beams
US6211249B1 (en) 1997-07-11 2001-04-03 Life Medical Sciences, Inc. Polyester polyether block copolymers
US5810873A (en) 1997-07-15 1998-09-22 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
DE19731021A1 (en) 1997-07-18 1999-01-21 Meyer Joerg In vivo degradable metallic implant
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US5980564A (en) 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6340367B1 (en) 1997-08-01 2002-01-22 Boston Scientific Scimed, Inc. Radiopaque markers and methods of using the same
US6245103B1 (en) 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US6174330B1 (en) 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
AU8901798A (en) 1997-08-08 1999-03-01 Procter & Gamble Company, The Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith
US5897911A (en) 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6316522B1 (en) 1997-08-18 2001-11-13 Scimed Life Systems, Inc. Bioresorbable hydrogel compositions for implantable prostheses
US6117979A (en) 1997-08-18 2000-09-12 Medtronic, Inc. Process for making a bioprosthetic device and implants produced therefrom
US6143370A (en) 1997-08-27 2000-11-07 Northeastern University Process for producing polymer coatings with various porosities and surface areas
US6129928A (en) 1997-09-05 2000-10-10 Icet, Inc. Biomimetic calcium phosphate implant coatings and methods for making the same
US6284333B1 (en) 1997-09-10 2001-09-04 Scimed Life Systems, Inc. Medical devices made from polymer blends containing low melting temperature liquid crystal polymers
US6010445A (en) 1997-09-11 2000-01-04 Implant Sciences Corporation Radioactive medical device and process
WO1999016871A2 (en) 1997-09-22 1999-04-08 Max-Planck-Gesellschaft Zur Forderung Der Wissensc Nucleic acid catalysts with endonuclease activity
DE69838256T2 (en) 1997-09-24 2008-05-15 Med Institute, Inc., West Lafayette RADIAL EXPANDABLE STENT
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5976182A (en) 1997-10-03 1999-11-02 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent and method of loading the same
US6120788A (en) 1997-10-16 2000-09-19 Bioamide, Inc. Bioabsorbable triglycolic acid poly(ester-amide)s
US6273850B1 (en) 1997-10-29 2001-08-14 Medtronic Ave, Inc. Device for positioning a radiation source at a stenosis treatment site
US6015541A (en) 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
US6007631A (en) 1997-11-10 1999-12-28 Speedline Technologies, Inc. Multiple head dispensing system and method
AU1455699A (en) 1997-11-10 1999-05-31 Mohammad W. Katoot Method for modifying the surface of an object
DE19881727D2 (en) 1997-11-24 2001-01-04 Herbert P Jennissen Process for immobilizing mediator molecules on inorganic and metallic implant materials
US6027510A (en) 1997-12-08 2000-02-22 Inflow Dynamics Inc. Stent delivery system
US6093463A (en) 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6149574A (en) 1997-12-19 2000-11-21 Radiance Medical Systems, Inc. Dual catheter radiation delivery system
US5986169A (en) 1997-12-31 1999-11-16 Biorthex Inc. Porous nickel-titanium alloy article
WO1999034750A1 (en) 1998-01-06 1999-07-15 Bioamide, Inc. Bioabsorbable fibers and reinforced composites produced therefrom
EP0933814A1 (en) 1998-01-28 1999-08-04 Interuniversitair Micro-Elektronica Centrum Vzw A metallization structure on a fluorine-containing dielectric and a method for fabrication thereof
US6224626B1 (en) 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6140127A (en) 1998-02-18 2000-10-31 Cordis Corporation Method of coating an intravascular stent with an endothelial cell adhesive five amino acid peptide
DK1062278T3 (en) 1998-02-23 2006-09-25 Mnemoscience Gmbh Polymers with shape memory
RU2215542C2 (en) 1998-02-23 2003-11-10 Массачусетс Инститьют Оф Текнолоджи Biodecomposing polymers able recovery of form
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6024737A (en) 1998-02-25 2000-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping device
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6024918A (en) 1998-03-13 2000-02-15 Medtronic, Inc. Method for attachment of biomolecules to surfaces of medical devices
US6019789A (en) 1998-04-01 2000-02-01 Quanam Medical Corporation Expandable unit cell and intraluminal stent
US6258371B1 (en) 1998-04-03 2001-07-10 Medtronic Inc Method for making biocompatible medical article
US6063092A (en) 1998-04-07 2000-05-16 Medtronic Inc. Heat set and crimping process to optimize stent retention
DE19916086B4 (en) 1998-04-11 2004-11-11 Inflow Dynamics Inc. Implantable prosthesis, especially vascular prosthesis (stent)
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20010029351A1 (en) 1998-04-16 2001-10-11 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US7658727B1 (en) 1998-04-20 2010-02-09 Medtronic, Inc Implantable medical device with enhanced biocompatibility and biostability
EP1555036B1 (en) 1998-04-27 2010-05-05 Surmodics Inc. Bioactive agent release coating
US20020188037A1 (en) 1999-04-15 2002-12-12 Chudzik Stephen J. Method and system for providing bioactive agent release coating
US5893852A (en) 1998-04-28 1999-04-13 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
US6013099A (en) 1998-04-29 2000-01-11 Medtronic, Inc. Medical device for delivering a water-insoluble therapeutic salt or substance
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
DE69935716T2 (en) 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
US6296603B1 (en) 1998-05-26 2001-10-02 Isostent, Inc. Radioactive intraluminal endovascular prosthesis and method for the treatment of aneurysms
US6099559A (en) 1998-05-28 2000-08-08 Medtronic Ave, Inc. Endoluminal support assembly with capped ends
KR100314496B1 (en) 1998-05-28 2001-11-22 윤동진 Non-thrombogenic heparin derivatives, process for preparation and use thereof
US6083258A (en) 1998-05-28 2000-07-04 Yadav; Jay S. Locking stent
US6174316B1 (en) 1998-05-28 2001-01-16 Medtronic, Inc. Stent delivery system
US6106889A (en) 1998-06-11 2000-08-22 Biocoat Incorporated Method of selective coating of articles
EP0966979B1 (en) 1998-06-25 2006-03-08 Biotronik AG Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE19856983A1 (en) 1998-06-25 1999-12-30 Biotronik Mess & Therapieg Implantable, bioresorbable vascular wall support, in particular coronary stent
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
KR100510387B1 (en) 1998-07-01 2005-08-30 세이코 엡슨 가부시키가이샤 Semiconductor device, method of manufacture, circuit board, and electronic device
US6010573A (en) 1998-07-01 2000-01-04 Virginia Commonwealth University Apparatus and method for endothelial cell seeding/transfection of intravascular stents
US6214115B1 (en) 1998-07-21 2001-04-10 Biocompatibles Limited Coating
NL1009738C2 (en) 1998-07-24 2000-01-25 Cordis Europ Balloon catheter with filler for stent delivery.
DE19834396C2 (en) 1998-07-30 2000-07-13 Daimlerchrysler Aerospace Ag Process for the surface coating of medical implants
US6436816B1 (en) 1998-07-31 2002-08-20 Industrial Technology Research Institute Method of electroless plating copper on nitride barrier
US6093199A (en) 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6080099A (en) 1998-08-12 2000-06-27 Syntheon, Llc Radioactive therapeutic seeds
WO2000010622A1 (en) 1998-08-20 2000-03-02 Cook Incorporated Coated implantable medical device
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
US6335029B1 (en) 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6011125A (en) 1998-09-25 2000-01-04 General Electric Company Amide modified polyesters
US6245099B1 (en) 1998-09-30 2001-06-12 Impra, Inc. Selective adherence of stent-graft coverings, mandrel and method of making stent-graft device
US6168619B1 (en) 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
WO2000023123A1 (en) 1998-10-19 2000-04-27 Synthes Ag Chur Hardenable ceramic hydraulic cement
DE19855421C2 (en) 1998-11-02 2001-09-20 Alcove Surfaces Gmbh Implant
US6187024B1 (en) 1998-11-10 2001-02-13 Target Therapeutics, Inc. Bioactive coating for vaso-occlusive devices
DE69822470T2 (en) 1998-11-12 2005-01-20 Takiron Co. Ltd. Biodegradable absorbable shape memory material
US20030099682A1 (en) * 1998-11-20 2003-05-29 Francis Moussy Apparatus and method for control of tissue/implant interactions
US6125523A (en) 1998-11-20 2000-10-03 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
US6099455A (en) 1998-11-25 2000-08-08 Isostent, Inc. Radioisotope stent with non-radioactive end sections
US6495200B1 (en) 1998-12-07 2002-12-17 Chartered Semiconductor Manufacturing Ltd. Method to deposit a seeding layer for electroless copper plating
US6294836B1 (en) 1998-12-22 2001-09-25 Cvc Products Inc. Semiconductor chip interconnect barrier material and fabrication method
US6100195A (en) 1998-12-28 2000-08-08 Chartered Semiconductor Manu. Ltd. Passivation of copper interconnect surfaces with a passivating metal layer
US6120847A (en) 1999-01-08 2000-09-19 Scimed Life Systems, Inc. Surface treatment method for stent coating
US6530950B1 (en) 1999-01-12 2003-03-11 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
DE60017363T2 (en) 1999-02-02 2006-03-02 Wright Medical Technology Inc., Arlington CONTROLLED RELEASE OF A COMPOSITE MATERIAL
US6419692B1 (en) 1999-02-03 2002-07-16 Scimed Life Systems, Inc. Surface protection method for stents and balloon catheters for drug delivery
US6193727B1 (en) 1999-02-05 2001-02-27 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6143354A (en) 1999-02-08 2000-11-07 Medtronic Inc. One-step method for attachment of biomolecules to substrate surfaces
US6187045B1 (en) 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
US6488773B1 (en) 1999-02-19 2002-12-03 Plastic Stuff, Llc Apparatus and method for spraying polymer
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6362099B1 (en) 1999-03-09 2002-03-26 Applied Materials, Inc. Method for enhancing the adhesion of copper deposited by chemical vapor deposition
US6066156A (en) 1999-03-11 2000-05-23 Advanced Cardiovascular Systems, Inc. Temperature activated adhesive for releasably attaching stents to balloons
US6183505B1 (en) 1999-03-11 2001-02-06 Medtronic Ave, Inc. Method of stent retention to a delivery catheter balloon-braided retainers
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6258099B1 (en) 1999-03-31 2001-07-10 Scimed Life Systems, Inc. Stent security balloon/balloon catheter
US6156373A (en) 1999-05-03 2000-12-05 Scimed Life Systems, Inc. Medical device coating methods and devices
US6375458B1 (en) 1999-05-17 2002-04-23 Memry Corporation Medical instruments and devices and parts thereof using shape memory alloys
WO2000071064A1 (en) 1999-05-21 2000-11-30 Micro Therapeutics, Inc. Methods for delivering in vivo uniform dispersed embolic compositions of high viscosity
US6168617B1 (en) 1999-06-14 2001-01-02 Scimed Life Systems, Inc. Stent delivery system
US6667049B2 (en) 1999-06-14 2003-12-23 Ethicon, Inc. Relic process for producing bioresorbable ceramic tissue scaffolds
FR2795326B1 (en) 1999-06-28 2001-08-31 Adir SOLID THERMOFORMABLE PHARMACEUTICAL COMPOSITION WITH CONTROLLED RELEASE
US6312459B1 (en) 1999-06-30 2001-11-06 Advanced Cardiovascular Systems, Inc. Stent design for use in small vessels
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6494862B1 (en) 1999-07-13 2002-12-17 Advanced Cardiovascular Systems, Inc. Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
US6177523B1 (en) 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
AUPQ170799A0 (en) 1999-07-20 1999-08-12 Cardiac Crc Nominees Pty Limited Shape memory polyurethane or polyurethane-urea polymers
US6569193B1 (en) 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
US6596296B1 (en) 1999-08-06 2003-07-22 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
DE19938704C1 (en) 1999-08-14 2001-10-31 Ivoclar Vivadent Ag Process for the production of reaction systems for implantation in the human and animal body as a bone substitute, which i.a. Contain calcium and phosphorus
US6479565B1 (en) 1999-08-16 2002-11-12 Harold R. Stanley Bioactive ceramic cement
US6322588B1 (en) 1999-08-17 2001-11-27 St. Jude Medical, Inc. Medical devices with metal/polymer composites
US6713119B2 (en) 1999-09-03 2004-03-30 Advanced Cardiovascular Systems, Inc. Biocompatible coating for a prosthesis and a method of forming the same
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6503556B2 (en) 2000-12-28 2003-01-07 Advanced Cardiovascular Systems, Inc. Methods of forming a coating for a prosthesis
US6287628B1 (en) 1999-09-03 2001-09-11 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
US6759054B2 (en) 1999-09-03 2004-07-06 Advanced Cardiovascular Systems, Inc. Ethylene vinyl alcohol composition and coating
US6503954B1 (en) 2000-03-31 2003-01-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6749626B1 (en) 2000-03-31 2004-06-15 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
US20040029952A1 (en) 1999-09-03 2004-02-12 Yung-Ming Chen Ethylene vinyl alcohol composition and coating
JP4172883B2 (en) 1999-09-08 2008-10-29 Hoya株式会社 Drug sustained release carrier and method for producing drug sustained release carrier
US6582417B1 (en) 1999-09-22 2003-06-24 Advanced Cardiovascular Systems, Inc. Methods and apparatuses for radiation treatment
US6576191B1 (en) 1999-09-30 2003-06-10 Therox, Inc. Apparatus for blood oxygenation
US6203551B1 (en) 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6387123B1 (en) 1999-10-13 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent with radiopaque core
WO2001026584A1 (en) 1999-10-14 2001-04-19 United Stenting, Inc. Stents with multilayered struts
US6331313B1 (en) 1999-10-22 2001-12-18 Oculex Pharmaceticals, Inc. Controlled-release biocompatible ocular drug delivery implant devices and methods
US6521284B1 (en) 1999-11-03 2003-02-18 Scimed Life Systems, Inc. Process for impregnating a porous material with a cross-linkable composition
DE19953771C1 (en) 1999-11-09 2001-06-13 Coripharm Medizinprodukte Gmbh Absorbable bone implant material and method for producing the same
US7226475B2 (en) 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US6610087B1 (en) 1999-11-16 2003-08-26 Scimed Life Systems, Inc. Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
WO2001035928A1 (en) 1999-11-17 2001-05-25 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
DE69934990T2 (en) 1999-11-23 2007-11-15 Sorin Biomedica Cardio S.R.L., Saluggia Method of transferring radioactive substances to stents in angioplasty and kit
US7947069B2 (en) 1999-11-24 2011-05-24 University Of Washington Medical devices comprising small fiber biomaterials, and methods of use
US6251136B1 (en) 1999-12-08 2001-06-26 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
US6554854B1 (en) 1999-12-10 2003-04-29 Scimed Life Systems, Inc. Process for laser joining dissimilar metals and endoluminal stent with radiopaque marker produced thereby
US6338739B1 (en) 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
US6494908B1 (en) 1999-12-22 2002-12-17 Ethicon, Inc. Removable stent for body lumens
US6981987B2 (en) 1999-12-22 2006-01-03 Ethicon, Inc. Removable stent for body lumens
US6613432B2 (en) 1999-12-22 2003-09-02 Biosurface Engineering Technologies, Inc. Plasma-deposited coatings, devices and methods
US6908624B2 (en) 1999-12-23 2005-06-21 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US6283949B1 (en) 1999-12-27 2001-09-04 Advanced Cardiovascular Systems, Inc. Refillable implantable drug delivery pump
AU2599501A (en) 1999-12-29 2001-07-09 Advanced Cardiovascular Systems Inc. Device and active component for inhibiting formation of thrombus-inflammatory cell matrix
US6481262B2 (en) 1999-12-30 2002-11-19 Advanced Cardiovascular Systems, Inc. Stent crimping tool
AU2623201A (en) 1999-12-30 2001-07-16 Kam W Leong Controlled delivery of therapeutic agents by insertable medical devices
US6444567B1 (en) 2000-01-05 2002-09-03 Advanced Micro Devices, Inc. Process for alloying damascene-type Cu interconnect lines
GB0002305D0 (en) 2000-02-01 2000-03-22 Phoqus Limited Power material for electrostatic application
US6375826B1 (en) 2000-02-14 2002-04-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing stents and method
US6447835B1 (en) 2000-02-15 2002-09-10 Scimed Life Systems, Inc. Method of coating polymeric tubes used in medical devices
KR100371559B1 (en) 2000-04-03 2003-02-06 주식회사 경원메디칼 Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6387118B1 (en) 2000-04-20 2002-05-14 Scimed Life Systems, Inc. Non-crimped stent delivery system
US6510722B1 (en) 2000-05-10 2003-01-28 Advanced Cardiovascular Systems, Inc. Stent crimping tool for producing a grooved crimp
US6270779B1 (en) 2000-05-10 2001-08-07 United States Of America Nitric oxide-releasing metallic medical devices
US20020007215A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20020005206A1 (en) 2000-05-19 2002-01-17 Robert Falotico Antiproliferative drug and delivery device
US20020007213A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020007214A1 (en) 2000-05-19 2002-01-17 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
EP1153621A1 (en) 2000-05-12 2001-11-14 MERCK PATENT GmbH Biocements based on a mixture of TCP-PHA with improved compressive strength
US6395325B1 (en) 2000-05-16 2002-05-28 Scimed Life Systems, Inc. Porous membranes
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6279368B1 (en) 2000-06-07 2001-08-28 Endovascular Technologies, Inc. Nitinol frame heating and setting mandrel
IL137090A (en) 2000-06-29 2010-04-15 Pentech Medical Devices Ltd Polymeric stent
US6585765B1 (en) 2000-06-29 2003-07-01 Advanced Cardiovascular Systems, Inc. Implantable device having substances impregnated therein and a method of impregnating the same
US20020077693A1 (en) 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6555157B1 (en) 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
WO2002009768A2 (en) 2000-07-27 2002-02-07 Rutgers, The State University Therapeutic polyesters and polyamides
US6569191B1 (en) 2000-07-27 2003-05-27 Bionx Implants, Inc. Self-expanding stent with enhanced radial expansion and shape memory
US6574851B1 (en) 2000-07-31 2003-06-10 Advanced Cardiovascular Systems, Inc. Stent made by rotational molding or centrifugal casting and method for making the same
US6451373B1 (en) 2000-08-04 2002-09-17 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
US6455424B1 (en) 2000-08-07 2002-09-24 Micron Technology, Inc. Selective cap layers over recessed polysilicon plugs
US6503538B1 (en) 2000-08-30 2003-01-07 Cornell Research Foundation, Inc. Elastomeric functional biodegradable copolyester amides and copolyester urethanes
US6903005B1 (en) 2000-08-30 2005-06-07 Micron Technology, Inc. Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics
US6585926B1 (en) 2000-08-31 2003-07-01 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
US6562136B1 (en) 2000-09-08 2003-05-13 Surmodics, Inc. Coating apparatus and method
US6485512B1 (en) 2000-09-27 2002-11-26 Advanced Cardiovascular Systems, Inc. Two-stage light curable stent and delivery system
US6254632B1 (en) 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US20020051730A1 (en) 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US6506437B1 (en) 2000-10-17 2003-01-14 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
US6558733B1 (en) 2000-10-26 2003-05-06 Advanced Cardiovascular Systems, Inc. Method for etching a micropatterned microdepot prosthesis
US6783793B1 (en) 2000-10-26 2004-08-31 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US6758859B1 (en) 2000-10-30 2004-07-06 Kenny L. Dang Increased drug-loading and reduced stress drug delivery device
US6517888B1 (en) 2000-11-28 2003-02-11 Scimed Life Systems, Inc. Method for manufacturing a medical device having a coated portion by laser ablation
US6664335B2 (en) 2000-11-30 2003-12-16 Cardiac Pacemakers, Inc. Polyurethane elastomer article with “shape memory” and medical devices therefrom
US6504307B1 (en) 2000-11-30 2003-01-07 Advanced Cardiovascular Systems, Inc. Application of variable bias voltage on a cylindrical grid enclosing a target
GB2370243B (en) 2000-12-21 2004-06-16 Phoqus Ltd Electrostatic application of powder material to solid dosage forms in an elect ric field
US7077859B2 (en) 2000-12-22 2006-07-18 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
US20020082679A1 (en) 2000-12-22 2002-06-27 Avantec Vascular Corporation Delivery or therapeutic capable agents
US6524232B1 (en) 2000-12-22 2003-02-25 Advanced Cardiovascular Systems, Inc. Method for radioactive stent delivery
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US6544543B1 (en) 2000-12-27 2003-04-08 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
US6540776B2 (en) 2000-12-28 2003-04-01 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6565599B1 (en) 2000-12-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Hybrid stent
US20020087123A1 (en) 2001-01-02 2002-07-04 Hossainy Syed F.A. Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices
US6645195B1 (en) 2001-01-05 2003-11-11 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
US6544582B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
US6740040B1 (en) 2001-01-30 2004-05-25 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
US20030032767A1 (en) 2001-02-05 2003-02-13 Yasuhiro Tada High-strength polyester-amide fiber and process for producing the same
WO2002064014A2 (en) 2001-02-09 2002-08-22 Endoluminal Therapeutics, Inc. Endomural therapy
US6563080B2 (en) 2001-02-15 2003-05-13 Scimed Life Systems, Inc. Laser cutting of stents and other medical devices
US6540777B2 (en) 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
US8262687B2 (en) 2001-02-27 2012-09-11 Kyoto Medical Planning Co., Ltd. Stent holding member and stent feeding system
WO2002072014A2 (en) 2001-03-08 2002-09-19 Volcano Therapeutics, Inc. Medical devices, compositions and methods for treating vulnerable plaque
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6623448B2 (en) 2001-03-30 2003-09-23 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
US6780424B2 (en) 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6645135B1 (en) 2001-03-30 2003-11-11 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
US6625486B2 (en) 2001-04-11 2003-09-23 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6712845B2 (en) 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
EP1383504A1 (en) 2001-04-26 2004-01-28 Control Delivery Systems, Inc. Sustained release drug delivery system containing codrugs
US6420189B1 (en) 2001-04-27 2002-07-16 Advanced Micro Devices, Inc. Superconducting damascene interconnected for integrated circuit
US6660034B1 (en) 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US7651695B2 (en) 2001-05-18 2010-01-26 Advanced Cardiovascular Systems, Inc. Medicated stents for the treatment of vascular disease
US6605154B1 (en) 2001-05-31 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent mounting device
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6743462B1 (en) 2001-05-31 2004-06-01 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating implantable devices
US6679980B1 (en) 2001-06-13 2004-01-20 Advanced Cardiovascular Systems, Inc. Apparatus for electropolishing a stent
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6572644B1 (en) 2001-06-27 2003-06-03 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
US6673154B1 (en) 2001-06-28 2004-01-06 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6706013B1 (en) 2001-06-29 2004-03-16 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
US6527863B1 (en) 2001-06-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Support device for a stent and a method of using the same to coat a stent
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US6682771B2 (en) 2001-07-02 2004-01-27 Scimed Life Systems, Inc. Coating dispensing system and method using a solenoid head for coating medical devices
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
ES2266148T5 (en) 2001-07-20 2012-11-06 Sorin Biomedica Cardio S.R.L. Stent
US6641611B2 (en) 2001-11-26 2003-11-04 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US6669980B2 (en) 2001-09-18 2003-12-30 Scimed Life Systems, Inc. Method for spray-coating medical devices
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US20030083739A1 (en) 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US20030059520A1 (en) 2001-09-27 2003-03-27 Yung-Ming Chen Apparatus for regulating temperature of a composition and a method of coating implantable devices
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US20030065377A1 (en) 2001-09-28 2003-04-03 Davila Luis A. Coated medical devices
US20030073961A1 (en) 2001-09-28 2003-04-17 Happ Dorrie M. Medical device containing light-protected therapeutic agent and a method for fabricating thereof
JP2005503865A (en) 2001-09-28 2005-02-10 ボストン サイエンティフィック リミテッド Medical device comprising nanomaterial and treatment method using the same
US20030088307A1 (en) 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US7585516B2 (en) 2001-11-12 2009-09-08 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices
US6517889B1 (en) 2001-11-26 2003-02-11 Swaminathan Jayaraman Process for coating a surface of a stent
US6703307B2 (en) 2001-11-26 2004-03-09 Advanced Micro Devices, Inc. Method of implantation after copper seed deposition
US6663880B1 (en) 2001-11-30 2003-12-16 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
US20030105530A1 (en) 2001-12-04 2003-06-05 Inion Ltd. Biodegradable implant and method for manufacturing one
US6752826B2 (en) 2001-12-14 2004-06-22 Thoratec Corporation Layered stent-graft and methods of making the same
US6605874B2 (en) 2001-12-19 2003-08-12 Intel Corporation Method of making semiconductor device using an interconnect
US6709514B1 (en) 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
GB2384199B (en) 2002-01-17 2005-04-06 Phoqus Ltd Electrostatic application of powder material to solid dosage forms
US7445629B2 (en) 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US6887270B2 (en) 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US6743463B2 (en) 2002-03-28 2004-06-01 Scimed Life Systems, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US6664187B1 (en) 2002-04-03 2003-12-16 Advanced Micro Devices, Inc. Laser thermal annealing for Cu seedlayer enhancement
US6812143B2 (en) 2002-04-26 2004-11-02 International Business Machines Corporation Process of forming copper structures
US6645547B1 (en) 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US20030236565A1 (en) 2002-06-21 2003-12-25 Dimatteo Kristian Implantable prosthesis
US6865810B2 (en) 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US20040054104A1 (en) 2002-09-05 2004-03-18 Pacetti Stephen D. Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040063805A1 (en) 2002-09-19 2004-04-01 Pacetti Stephen D. Coatings for implantable medical devices and methods for fabrication thereof
US6818063B1 (en) 2002-09-24 2004-11-16 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for minimizing coating defects
US7087263B2 (en) 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
US7455687B2 (en) 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US20040167610A1 (en) 2003-02-26 2004-08-26 Fleming James A. Locking stent
US8088404B2 (en) 2003-03-20 2012-01-03 Medtronic Vasular, Inc. Biocompatible controlled release coatings for medical devices and related methods
US20040236399A1 (en) * 2003-04-22 2004-11-25 Medtronic Vascular, Inc. Stent with improved surface adhesion
US7482034B2 (en) 2003-04-24 2009-01-27 Boston Scientific Scimed, Inc. Expandable mask stent coating method
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7318944B2 (en) 2003-08-07 2008-01-15 Medtronic Vascular, Inc. Extrusion process for coating stents
US20050038497A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050037052A1 (en) 2003-08-13 2005-02-17 Medtronic Vascular, Inc. Stent coating with gradient porosity
US20050043786A1 (en) 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US20050049693A1 (en) 2003-08-25 2005-03-03 Medtronic Vascular Inc. Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease
US20050055078A1 (en) 2003-09-04 2005-03-10 Medtronic Vascular, Inc. Stent with outer slough coating
US20050054774A1 (en) 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US7544381B2 (en) 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device
US20050060020A1 (en) 2003-09-17 2005-03-17 Scimed Life Systems, Inc. Covered stent with biologically active material
US7371228B2 (en) 2003-09-19 2008-05-13 Medtronic Vascular, Inc. Delivery of therapeutics to treat aneurysms
US20050065501A1 (en) 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US7789891B2 (en) 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US7060319B2 (en) 2003-09-24 2006-06-13 Boston Scientific Scimed, Inc. method for using an ultrasonic nozzle to coat a medical appliance
US8801692B2 (en) 2003-09-24 2014-08-12 Medtronic Vascular, Inc. Gradient coated stent and method of fabrication
US7055237B2 (en) 2003-09-29 2006-06-06 Medtronic Vascular, Inc. Method of forming a drug eluting stent
US20050074406A1 (en) 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US6984411B2 (en) 2003-10-14 2006-01-10 Boston Scientific Scimed, Inc. Method for roll coating multiple stents
US8119153B2 (en) * 2004-08-26 2012-02-21 Boston Scientific Scimed, Inc. Stents with drug eluting coatings
US20060129215A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having nanostructured regions for controlled tissue biocompatibility and drug delivery
US20060199876A1 (en) * 2005-03-04 2006-09-07 The University Of British Columbia Bioceramic composite coatings and process for making same
US20070259101A1 (en) * 2006-05-02 2007-11-08 Kleiner Lothar W Microporous coating on medical devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651174A (en) * 1992-03-19 1997-07-29 Medtronic, Inc. Intravascular radially expandable stent
US5697967A (en) * 1992-03-19 1997-12-16 Medtronic, Inc. Drug eluting stent
WO1998034669A1 (en) * 1997-02-07 1998-08-13 Ensovasc Ltd., Inc. Composition and method for making a biodegradable drug delivery stent
US20050129727A1 (en) * 2003-01-31 2005-06-16 Jan Weber Localized drug delivery using drug-loaded nanocapsules
EP1681035A1 (en) * 2005-01-17 2006-07-19 Lee, Kyung Bum Multilayer-coated stent for controlled drug release and manufacturing method thereof

Also Published As

Publication number Publication date
US20080317813A1 (en) 2008-12-25
US20120003291A1 (en) 2012-01-05
US8048441B2 (en) 2011-11-01
WO2009002641A3 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
US8048441B2 (en) Nanobead releasing medical devices
US9421223B2 (en) Nitric oxide generating medical devices
US8778376B2 (en) Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8703167B2 (en) Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US20070198080A1 (en) Coatings including an antioxidant
US7887572B2 (en) Implantable devices for accelerated healing
US20070148251A1 (en) Nanoparticle releasing medical devices
US9067002B2 (en) Tailored aliphatic polyesters for stent coatings
EP2032183A2 (en) Microporous coating on medical devices
US20160158420A1 (en) Coatings formed from stimulus-sensitive material
WO2006124365A2 (en) Endothelial cell binding coatings for rapid encapsulation of bioerodable stents
WO2008076771A2 (en) Coatings of acrylamide-based copolymers
US20070299511A1 (en) Thin stent coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08769562

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08769562

Country of ref document: EP

Kind code of ref document: A2