WO2008005390A1 - Method of manufacturing a stent by blow molding and the manufactured stent - Google Patents

Method of manufacturing a stent by blow molding and the manufactured stent Download PDF

Info

Publication number
WO2008005390A1
WO2008005390A1 PCT/US2007/015242 US2007015242W WO2008005390A1 WO 2008005390 A1 WO2008005390 A1 WO 2008005390A1 US 2007015242 W US2007015242 W US 2007015242W WO 2008005390 A1 WO2008005390 A1 WO 2008005390A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
stent
mold
indentation
protrusion
Prior art date
Application number
PCT/US2007/015242
Other languages
French (fr)
Inventor
Klaus Kleine
David C. Gale
Original Assignee
Abbott Cardiovascular Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Cardiovascular Systems Inc. filed Critical Abbott Cardiovascular Systems Inc.
Publication of WO2008005390A1 publication Critical patent/WO2008005390A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/844Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents folded prior to deployment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4273Auxiliary operations after the blow-moulding operation not otherwise provided for
    • B29C49/4278Cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/079Auxiliary parts or inserts
    • B29C2949/08Preforms made of several individual parts, e.g. by welding or gluing parts together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/54Moulds for undercut articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • B29L2031/7534Cardiovascular protheses

Definitions

  • This invention relates to a method of fabricating a stent.
  • This invention relates to radially expandable endoprostheses which are adapted to be implanted in a body lumen.
  • An “endoprosthesis” corresponds to an artificial implantable medical device that is placed inside the body.
  • a “lumen” refers to a cavity of a tubular organ such as a blood vessel.
  • These endoprostheses are commonly referred to as stents.
  • Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels.
  • Steps refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system.
  • Restenosis refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty or valvuloplasty) with apparent success.
  • the cylindrical structure of stents is typically composed of a scaffolding that includes a pattern or network of interconnecting structural elements or struts.
  • the scaffolding can be formed from wires, tubes, or planar films of material rolled into a cylindrical shape.
  • a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier.
  • the polymeric carrier can include an active agent or drug.
  • the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. Longitudinal flexibility facilitates delivery of the stent and radial rigidity is needed to hold open a body lumen.
  • the pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent.
  • a number of techniques have been suggested to fabricate stents from tubes and planar films or sheets.
  • One such technique involves laser cutting or etching a pattern onto a material. Laser cutting may be performed on a planar film of a material which is then rolled into a tube. Alternatively, a desired pattern may be etched directly onto a tube. Fabricating a stent from a tube is preferable due to time and cost considerations.
  • Other techniques involve cutting a desired pattern into a sheet or a tube via chemical etching or electrical discharge machining. Laser cutting of stents has been described in a number of publications including U.S. Pat. No. 5,780,807 to Saunders, U.S. Pat. No. 5,922,005 to Richter and U.S. Pat. No.
  • a stent it is desirable for a stent to have certain mechanical properties to facilitate delivery and deployment of a stent, especially in the bending portions of the stent that are bent during crimping and expansion of the stent.
  • longitudinal flexibility is important for successful delivery of the stent.
  • radial rigidity and strength are vital characteristics in deployment and for holding open a body lumen.
  • the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. The pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent.
  • One technique for strengthening the bending portions of a stent is to laser cut the stent such as to widen the bending portions of the stent.
  • the invention provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the inside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.
  • the invention also provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; and fabricating a stent with the expanded tube.
  • FIG. 1 depicts a tube for use in forming a stent.
  • FIG. 2 depicts a three-dimensional stent with a pattern.
  • FIG. 3 A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having indentations.
  • FIG. 3B depicts an axial cross-section of a radially expanded tube after blow molding a gas or liquid into the mold.
  • FIG. 3C depicts an axial cross-section of a radially expanded tube having protrusions.
  • FIG. 3D depicts another embodiment of an axial cross-section of a radially expanded tube having protrusions.
  • FIG.4 A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having protrusions.
  • FIG. 4B depicts an axial cross-section of a radially expanded tube after blow molding a gas into the mold.
  • FIG. 4C depicts an axial cross-section of a radially expanded tube having indentions.
  • FIG. 5 A depicts an axial cross-section of a polymeric tube inserted in a tapered cylindrical mold.
  • FIG. 5B depicts an axial cross-section of a radially expanded tube after blowing a gas or liquid into the mold.
  • FIG. 5C depicts an axial cross-section of a tapered radially expanded tube.
  • FIG. 6 A depicts a portion of a strut having a uniform thickness and a relatively wider bending portion.
  • FIG. 6B depicts a portion of a strut after crimping, where portion of strut has a uniform thickness and the wider bending portion that has flipped upward.
  • FIG. 7 A depicts a portion of a strut before crimping having a relatively thicker bending portion.
  • FIG. 7B depicts a portion of a strut after crimping having a relatively thicker bending portion.
  • FIG. 7C depicts a portion of a strut having a relatively thicker bending portion, and, in addition, features on the abluminal or luminal side.
  • FIG. 8 depicts one embodiment of a machine-controlled system for laser machining a tube, circumventing any features that have been formed on the stent.
  • FIG. 9(a) depicts a close-up axial view of a region where a laser beam interacts with a tube having features.
  • FIG. 9(b) depicts a close-up end view of a region where a laser beam interacts with a tube having features.
  • Stress refers to force per unit area, as in the force acting through a small area within a plane. Stress can be divided into components, normal and parallel to the plane, called normal stress and shear stress, respectively. True stress denotes the stress where force and area are measured at the same time. Conventional stress, as applied to tension and compression tests, is force divided by the original gauge length.
  • Elastic limit refers to the maximum stress that a material will withstand without permanent deformation.
  • Strength refers to the maximum stress in a direction in testing which a material will withstand prior to fracture. The ultimate strength is calculated from the maximum load applied during the test divided by the original cross-sectional area.
  • Stress refers to the amount of elongation or compression that occurs in a material at a given stress or load. Elongation may be defined as the increase in length which occurs when subjected to stress. It is typically expressed as a percentage of the original length.
  • the "glass transition temperature,” Tg is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to aplastic state at atmospheric pressure.
  • Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs.
  • Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Above Tg, molecular orientation may be induced with applied stress since rotation of polymer chains, and hence segmental mobility is possible. Between Tg and the melting temperature of the polymer, T m , rotational barriers exist, however, the barriers are not great enough to substantially prevent segmental mobility.
  • Embodiments of the method can be used to fabricate devices including, but not limited to, stents, balloon-expandable stents, stent-grafts, and grafts.
  • Various embodiments to manufacture a stent with desirable features are described herein.
  • Some embodiments to manufacture the device include fabricating the stent from a polymer conduit or tube.
  • the tube may be cylindrical or substantially cylindrical in shape.
  • FIG. 1 depicts a tube 100.
  • Tube 100 is a cylinder with an outside diameter 110 . and an inside diameter 120.
  • FIG. 1 also depicts an outside surface 130 and a cylindrical axis 140 of tube 100.
  • the "diameter" of the tube refers to the outside diameter of tube.
  • the polymeric tube may be used to fabricate a stent. Fabrication may include forming a pattern that includes at least one interconnecting element or strut on the elongated tube.
  • the stent may be formed by laser cutting a pattern on the elongated tube. Representative examples of lasers that may be used include an ultra fast laser, excimer, carbon dioxide, and YAG. Chemical etching may also be used to form a pattern on the elongated tube.
  • FIG. 2 depicts a three-dimensional view of a stent 150 which may be formed from tube 100 in FIG. 1.
  • FIG. 2 depicts a pattern or network of struts 160. The pattern is not limited to the depicted stent pattern.
  • the polymeric tube for use in manufacturing a stent has a desired strength and flexibility in the longitudinal direction, as shown by an arrow 135 in FIG. 1, and in the transverse or radial direction, as shown by an arrow 145 in FIG. 1.
  • the desired strength and flexibility can be induced by radial expansion and/or axial deformation.
  • a tube can be radially deformed by blow molding.
  • the invention provides blow molding a tube to form a tube having a variable diameter and/or features such as indentations. There are many advantages to fabricating tubes with a variable diameter and/or features such as indentions, such as increased stent retention and features such as pockets filled with drugs or radio- opaque substances.
  • the cylindrical mold may include features where, upon conveying a gas or liquid at a selected pressure into a proximal end of the polymeric tube, the cylindrical mold acts to control the diameter of the expanded polymeric tube by limiting the expansion to the inside diameter of the cylindrical mold.
  • the pressure of the conveyed gas may be used to control the expansion of the polymeric tube to a desired diameter, while a distal end of the polymeric tube may be closed.
  • the inside diameter of the cylindrical mold with features corresponds to the desired shape and diameter of the formed polymeric tube.
  • the inside surface of the mold may include features such as protrusions, projections, grooves, indentations, flanges, overhangs, and extensions. Other features are also possible.
  • the embodiments disclosed herein allow formation of a tube with a variable diameter and/or features on the outside surface of the tube.
  • the invention also provides fabricating a stent having portions that are thicker than other portions of the stent.
  • FIG. 3 A depicts an axial cross-section of a polymeric tube 300 with an outside diameter 310 positioned within a cylindrical mold 320 having indentations 330 on the inside surface of the mold 320. Cylindrical mold 320 with indentations 330 acts to limit the expansion of polymeric tube 300 to the inside surface of mold 320.
  • the indentations form a tube 300 with a variable diameter.
  • Polymeric tube 300 may be closed at a distal end 350 to conform to the outside surface of mold 320. Any gas, such as air, may be conveyed, as indicated by an arrow 360, into an open proximal end 370 of polymeric tube 300. A liquid may also be conveyed into the open proximal end 370 to provide pressure on the inside of the tube. The gas or liquid can be heated to a temperature sufficient to deform the polymeric tube. This temperature can be above the glass transition temperature of the polymer. The pressure of the gas is selected to sufficiently expand the polymeric tube to conform to the inside surface of cylindrical mold 320. Polymeric tube 300 may be heated by the gas or liquid to a temperature above ambient temperature, for example above Tg of the polymer. Alternatively, heat may be applied to the exterior of cylindrical mold 320. The conveyed gas combined with the applied heat may act to radially expand polymeric tube 300, as indicated by an arrow 380.
  • Any gas such as air
  • a liquid may also be conveyed into the open proximal end 370
  • FIG. 3B depicts an axial cross-section of a polymeric tube 300 having protrusions 390 that are formed after blowing a gas at a selected temperature and pressure into the cylindrical mold 320.
  • tube 300 includes protrusions 390 that are formed during the blow molding process.
  • FIG. 4 A depicts an axial cross-section of a polymeric tube 400 having an outside diameter 310 positioned within a cylindrical mold 410 having protrusions 420.
  • Cylindrical mold 410 with protrusions 420 acts to limit the expansion of polymeric tube 400 to an expanded diameter 340, which conforms to the surface of the mold.
  • indentations 430 are formed in polymeric tube 400.
  • Cylindrical mold 410 includes protrusions 420.
  • FIG. 4B depicts an axial cross- section of a radially expanded tube 400 after blowing a gas or liquid at a selected temperature and pressure into the cylindrical mold 410.
  • indentations 430 are formed in polymeric tube 400 by blow molding polymeric tube 400 against cylindrical mold 410 having protrusions 420.
  • tube 400 includes grooves 430 formed during the blow molding process.
  • the indentations in the tube are arranged in the tube as desired. For example, if the indentations are to be used as depots to hold drugs, the indentations may be arranged linearly along the entire length of the tube. Also, the indentations may be arranged such that when the pattern is cut into the tube, the indentations encompass portions of the stent requiring flexibility.
  • the indentations can be of any shape, not just circular.
  • FIG. 4D depicts stent strut 440 having indentations 450 and a protrusion 460 on the bending portion 465 of the stent portion.
  • FIG. 5 A depicts an axial cross-section of a polymeric tube 500 with an outside diameter 520 positioned within a cylindrical mold 510, where cylindrical mold 510 is tapered along its length.
  • Cylindrical mold 510 acts to limit the expansion of polymeric tube 500 to an expanded diameter 530 on one end of the polymeric tube 500 and diameter 540 on the other end of the polymeric tube 500.
  • Cylindrical mold 510 has a tapered diameter, such that the diameter 540 on the end of formed tube 500 is expanded more than the other end 530 of tube upon blow molding.
  • FIG. 5B depicts an axial cross-section of a radially expanded tube 500 after blowing a gas at a selected temperature and pressure into the cylindrical mold 510.
  • a tapered polymeric tube 500 is formed by expanding polymeric tube 500 to conform to the inner surface of cylindrical mold 510. As depicted in FIG. 5C 3 formed tube 500 includes a tapered diameter from diameter 540 to diameter 530.
  • the tapered stent may be adapted to improve the attachment of the stent to the delivery system and facilitate the delivery of the mounted stent into and through a bodily lumen.
  • FIGURES 5 depict a uniform tapering shape
  • the invention includes arbitrary axial cross-sections which can be formed by blow molding. As mentioned previously, selected portions of the stent using blow molding may be formed to have greater or lesser mass relative to other portions of the stent. For example, high strain regions may be made up of more polymeric mass relative to other portions of the stent. Similarly, lower strain regions that require flexibility may be of a lesser mass.
  • FIG. 6 A depicts a portion of a strut 600 having a uniform thickness on the sidewall 635 and a relatively wider bending portion 620, where width is indicated by "W". That is, thickness 610 of bending portion 620 is substantially the same as the thickness of ends 615 of strut 600.
  • Strut 600 includes a luminal or abluminal side and a side wall 625. The bending portion 620 of strut 600 is bent during crimping the stent onto a balloon-catheter assembly and during expansion of the stent when the stent is deployed.
  • bending portion 620 of strut 600 is caused to flip upwards or "chip" when the strut is bent 600 during crimping and/or expansion as depicted by arrows 630. Chipping can become problematic because stent protrusion and non-uniform apposition on the vessel wall is unwanted in a vessel wall.
  • FIG. 7 A and 7B depicts a portion of a strut 700 having a variable thickness. That is, thickness 710 of the bending portion 720 is greater than the thickness of the ends 715 of strut 700.
  • Strut 700 includes a bending portion 720 that is bent during crimping the stent onto a balloon-catheter assembly and/or during expanding the stent when the stent is deployed. As depicted in FIG. 7B, the bending portion 720 of strut 700 may have a low or no tendency to flip outward when the strut is bent during crimping, for example.
  • strut portions requiring greater flexibility such as linking struts, may be formed to be thinner than other strut portions. Therefore, with blow molding, parts having various thicknesses can be designed to be at selected portions of a stent.
  • a portion of a strut 700 has a thicker bending portion 720 as well as protrusions 730 located at selected portions of abluminal or luminal surface 725.
  • a portion of strut is made to be thicker as well as wider relative to other portions of the stent.
  • the polymeric tube may be heated such that the temperature of the polymeric tube is greater than or equal to Tg and less than T m of the polymer. Heating above Tg facilitates expansion, since a polymer becomes more flexible above Tg.
  • cooling the deformed tube may be cooled at a temperature below an ambient temperature to below the Tg of the polymer.
  • cooling the deformed polymer tube may include cooling the deformed polymer tube at a temperature at or near an ambient temperature to below the Tg of the polymer.
  • the tube may be laser cut to form a stent.
  • a stent may be fabricated by use of a laser beam collimated to a 1 to 10 mm beam diameter. The tube is then cut by focusing a beam, such as a 0.5 to 2 mm wide beam, on the polymeric tube. A stent pattern may then be cut into the tube by moving the tube in an axial and rotary direction with respect to the cutting beam or by moving the beam.
  • FIG. 8 depicts an embodiment of a portion of a machine-controlled system for laser machining a tube. In FIG.
  • a polymeric tube 800 is disposed in a rotatable collet fixture 810 of a machine-controlled apparatus 820 for positioning tube 800 relative to a laser 830.
  • tube 800 is rotated and moved axially relative to laser 830 which may also be machine-controlled.
  • the laser selectively removes the material from the tube resulting in a pattern cut into the tube 800.
  • the tube 800 is therefore cut into the discrete pattern of a finished stent.
  • the process of cutting a pattern for the stent into the tube is automated except for loading and unloading the length of tube 800.
  • the process may be done, for example, using a CNC-opposing collet fixture 840 for axial rotation of the length of tubing.
  • Collet fixture 840 may act in conjunction with a CNC X/Y table 850 to move the length of tube axially relative to a machine-controlled laser 830 as described.
  • the entire space between collets can be patterned using a laser set-up of the foregoing example.
  • the program for control of the apparatus is dependent on the particular configuration used and the pattern formed. Therefore, a pattern that circumvents any features formed on the tube can. be accomplished using the program for control of the apparatus.
  • Machining a fine structure also requires the ability to manipulate the tube with precision.
  • CNC equipment manufactured and sold by Anorad Corporation in Hauppauge, New York may be used for positioning the tube.
  • a unique rotary mechanism may be used that allows the computer program to be written as if the pattern were being machined from a flat sheet, allowing utilization of both circular and linear interpolation in programming.
  • the axial and rotary motion may be controlled by a CNC system.
  • a CNC controlled axis may also control the focus position on the polymeric tube. After indexing the CNC system to a specific position on tube, the system traces the pattern in the x, y, z coordinate system.
  • the finished structure of the stent is very small, a precision drive mechanism is required that supports and drives both ends of the tubular structure as it is cut. Since both ends are driven, they are preferably aligned and precisely synchronized. Otherwise, as the stent is being cut, the stent may twist and distort.
  • the stent produces stents with a fine precision structure cut from a small diameter thin-walled cylindrical tube. Cutting a fine structure around features on a stent surface created by the present invention (e.g., a 0.0035 inch strut width (0.889 mm)) requires precise laser focusing and minimal heat input. To satisfy these requirements, a laser technology adapted to micro-machine the tube may be implemented according to the present embodiments.
  • FIGs. 9(a) and 9(b) show that apparatus 900 incorporates a monocular viewing, focusing, and cutting head 930.
  • a rotary axis 940 and X-Y stages 950 for rotating and translating the work piece are also shown.
  • a CNC controller 960 is also incorporated into apparatus 300.
  • FIG. 9(a) depicts a close-up axial view of the region where the laser beam interacts with the substrate target material.
  • a laser beam 900 is focused by a focusing lens 910 on a tube 920 is supported by a CNC controlled rotary collet 930 at one end and a tube support pin 940 at another end.
  • FIG. 9(a) depicts a close-up axial view of the region where the laser beam interacts with the substrate target material.
  • a laser beam 900 is focused by a focusing lens 910 on a tube 920 is supported by a CNC controlled rotary collet 930 at one end and a tube support pin 940 at another end.
  • the laser can incorporate a coaxial gas jet assembly 950 having a coaxial gas jet 960 and a nozzle 970 that helps to remove debris from the kerf and cools the region where the beam interacts with the material as the beam cuts and vaporizes a substrate.
  • Coaxial gas jet nozzle 970 e.g., 0.018 inch diameter (0.457 mm)
  • a focused beam 980 with approximately 0.010 inch (2.54 mm) between a tip 990 of nozzle 970 and a tube 920.
  • an optical system for modifying a laser beam according to the embodiments described herein may be positioned between cutting head 930 (depicted in FIG. 9(a) and 9(b)) and the substrate target material.
  • a mandrel 992 e.g., approx. 0.034 inch diameter (0.864 mm) supported by a mandrel beam block 995 is placed inside the tube and is allowed to roll on the bottom of the tube 985 as the pattern is cut, which acts as a beam/debris block protecting the far wall inner diameter.
  • a close-up end view along mandrel beam block 995 shows laser beam 980 impinging on tube 985 in FIG. 9(b).
  • the laser enables the machining of narrow kerf widths to circumvent the features formed on the stent surface, while minimizing the heat input into the material.
  • smooth, narrow cuts in a tube with very fine geometries are made without damaging the narrow struts that define the stent structure.
  • the stent can be made partially or completely from a biodegradable, bioabsorbable, or biostable polymer. Biostable refers to polymers that are not biodegradable.
  • biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body.
  • the processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like.
  • the stents made from a biodegradable polymer the stent is intended to remain in the body for a duration of time until its intended function is accomplished.
  • polymers that may be used to fabricate a stent using the methods disclosed herein include poly(N-acetylglucosamine) (Chitin), Chitoson, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), ⁇ oly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), poly(trimethylene carbonate), co-poly(ether-esters) (e.g.
  • PEO/PLA polyphosphazenes
  • biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid
  • polyurethanes silicones
  • polyesters polyolefins, polyisobutylene and ethylene-alphaolefin copolymers
  • acrylic polymers and copolymers other than polyacrylates vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides,
  • polymers that may be especially well suited for use in fabricating a stent according to the methods disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluororpropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, NJ), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, PA), poly(L-lactic acid), ⁇ oly(ca ⁇ rolactone), ethylene- vinyl acetate copolymers, and polyethylene glycol.
  • EVAL ethylene vinyl alcohol copolymer
  • poly(vinylidene fluoride-co-hexafluororpropene) e.g., SOLEF 21508, available from Solvay Solexis PVDF

Abstract

The invention provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube (400) into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold(410,420); radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the outside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.

Description

METHOD OF MANUFACTURING A STENT BY BLOW MOLDING AND THE MANUFACTURED STENT
BACKGROUND OF THE INVENTION Field of the Invention This invention relates to a method of fabricating a stent.
Description of the State of the Art
This invention relates to radially expandable endoprostheses which are adapted to be implanted in a body lumen. An "endoprosthesis" corresponds to an artificial implantable medical device that is placed inside the body. A "lumen" refers to a cavity of a tubular organ such as a blood vessel. These endoprostheses are commonly referred to as stents. Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumen such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. "Stenosis" refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce body vessels and prevent restenosis following angioplasty in the vascular system. "Restenosis" refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty or valvuloplasty) with apparent success.
The cylindrical structure of stents is typically composed of a scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed from wires, tubes, or planar films of material rolled into a cylindrical shape. In addition, a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier. The polymeric carrier can include an active agent or drug. Furthermore, the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. Longitudinal flexibility facilitates delivery of the stent and radial rigidity is needed to hold open a body lumen. The pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent.
A number of techniques have been suggested to fabricate stents from tubes and planar films or sheets. One such technique involves laser cutting or etching a pattern onto a material. Laser cutting may be performed on a planar film of a material which is then rolled into a tube. Alternatively, a desired pattern may be etched directly onto a tube. Fabricating a stent from a tube is preferable due to time and cost considerations. Other techniques involve cutting a desired pattern into a sheet or a tube via chemical etching or electrical discharge machining. Laser cutting of stents has been described in a number of publications including U.S. Pat. No. 5,780,807 to Saunders, U.S. Pat. No. 5,922,005 to Richter and U.S. Pat. No. 5,906,759 to Richter. It is desirable for a stent to have certain mechanical properties to facilitate delivery and deployment of a stent, especially in the bending portions of the stent that are bent during crimping and expansion of the stent. For example, longitudinal flexibility is important for successful delivery of the stent. In addition, radial rigidity and strength are vital characteristics in deployment and for holding open a body lumen. The pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. The pattern should be designed to maintain the necessary longitudinal flexibility and radial rigidity of the stent. One technique for strengthening the bending portions of a stent is to laser cut the stent such as to widen the bending portions of the stent. However, upon crimping a stent that includes wider bending portions, oftentimes the stent flips upwards or "chip" when the strut is bent during crimping and/or expansion. What is needed in the art is a method of fabricating a stent to mechanically strengthen the stent in selected portions.
SUMMARY OF THE INVENTION The invention provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the inside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.
The invention also provides a method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; and fabricating a stent with the expanded tube.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts a tube for use in forming a stent. FIG. 2 depicts a three-dimensional stent with a pattern.
FIG. 3 A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having indentations. FIG. 3B depicts an axial cross-section of a radially expanded tube after blow molding a gas or liquid into the mold.
FIG. 3C depicts an axial cross-section of a radially expanded tube having protrusions. FIG. 3D depicts another embodiment of an axial cross-section of a radially expanded tube having protrusions.
FIG.4 A depicts an axial cross-section of a polymeric tube inserted in a cylindrical mold having protrusions.
FIG. 4B depicts an axial cross-section of a radially expanded tube after blow molding a gas into the mold.
FIG. 4C depicts an axial cross-section of a radially expanded tube having indentions.
FIG. 5 A depicts an axial cross-section of a polymeric tube inserted in a tapered cylindrical mold. FIG. 5B depicts an axial cross-section of a radially expanded tube after blowing a gas or liquid into the mold.
FIG. 5C depicts an axial cross-section of a tapered radially expanded tube. FIG. 6 A depicts a portion of a strut having a uniform thickness and a relatively wider bending portion. FIG. 6B depicts a portion of a strut after crimping, where portion of strut has a uniform thickness and the wider bending portion that has flipped upward.
FIG. 7 A depicts a portion of a strut before crimping having a relatively thicker bending portion.
FIG. 7B depicts a portion of a strut after crimping having a relatively thicker bending portion. FIG. 7C depicts a portion of a strut having a relatively thicker bending portion, and, in addition, features on the abluminal or luminal side.
FIG. 8 depicts one embodiment of a machine-controlled system for laser machining a tube, circumventing any features that have been formed on the stent. FIG. 9(a) depicts a close-up axial view of a region where a laser beam interacts with a tube having features.
FIG. 9(b) depicts a close-up end view of a region where a laser beam interacts with a tube having features.
DETAILED DESCRIPTION OF THE INVENTION
For the purposes of the present invention, the following terms and definitions apply:
"Stress" refers to force per unit area, as in the force acting through a small area within a plane. Stress can be divided into components, normal and parallel to the plane, called normal stress and shear stress, respectively. True stress denotes the stress where force and area are measured at the same time. Conventional stress, as applied to tension and compression tests, is force divided by the original gauge length.
"Elastic limit" refers to the maximum stress that a material will withstand without permanent deformation. "Strength" refers to the maximum stress in a direction in testing which a material will withstand prior to fracture. The ultimate strength is calculated from the maximum load applied during the test divided by the original cross-sectional area.
"Strain" refers to the amount of elongation or compression that occurs in a material at a given stress or load. Elongation may be defined as the increase in length which occurs when subjected to stress. It is typically expressed as a percentage of the original length.
The "glass transition temperature," Tg, is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to aplastic state at atmospheric pressure. In other words, the Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs. Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Above Tg, molecular orientation may be induced with applied stress since rotation of polymer chains, and hence segmental mobility is possible. Between Tg and the melting temperature of the polymer, Tm, rotational barriers exist, however, the barriers are not great enough to substantially prevent segmental mobility. As the temperature of a polymer is increased above Tg, the energy barriers to rotation decrease and segmental mobility of polymer chains tend to increase. As a result, as the temperature increases, molecular orientation is more easily induced with applied stress. Embodiments of the method can be used to fabricate devices including, but not limited to, stents, balloon-expandable stents, stent-grafts, and grafts. Various embodiments to manufacture a stent with desirable features are described herein. Some embodiments to manufacture the device include fabricating the stent from a polymer conduit or tube. The tube may be cylindrical or substantially cylindrical in shape. For example, FIG. 1 depicts a tube 100. Tube 100 is a cylinder with an outside diameter 110 . and an inside diameter 120. FIG. 1 also depicts an outside surface 130 and a cylindrical axis 140 of tube 100. When referred to below, unless otherwise specified, the "diameter" of the tube refers to the outside diameter of tube.
The polymeric tube may be used to fabricate a stent. Fabrication may include forming a pattern that includes at least one interconnecting element or strut on the elongated tube. The stent may be formed by laser cutting a pattern on the elongated tube. Representative examples of lasers that may be used include an ultra fast laser, excimer, carbon dioxide, and YAG. Chemical etching may also be used to form a pattern on the elongated tube. FIG. 2 depicts a three-dimensional view of a stent 150 which may be formed from tube 100 in FIG. 1. FIG. 2 depicts a pattern or network of struts 160. The pattern is not limited to the depicted stent pattern.
The polymeric tube for use in manufacturing a stent has a desired strength and flexibility in the longitudinal direction, as shown by an arrow 135 in FIG. 1, and in the transverse or radial direction, as shown by an arrow 145 in FIG. 1. The desired strength and flexibility can be induced by radial expansion and/or axial deformation. A tube can be radially deformed by blow molding. The invention provides blow molding a tube to form a tube having a variable diameter and/or features such as indentations. There are many advantages to fabricating tubes with a variable diameter and/or features such as indentions, such as increased stent retention and features such as pockets filled with drugs or radio- opaque substances.
Several embodiments disclosed herein provide applying radial pressure to a polymeric tube by positioning the polymeric tube within a cylindrical mold. The cylindrical mold may include features where, upon conveying a gas or liquid at a selected pressure into a proximal end of the polymeric tube, the cylindrical mold acts to control the diameter of the expanded polymeric tube by limiting the expansion to the inside diameter of the cylindrical mold. The pressure of the conveyed gas may be used to control the expansion of the polymeric tube to a desired diameter, while a distal end of the polymeric tube may be closed. The inside diameter of the cylindrical mold with features corresponds to the desired shape and diameter of the formed polymeric tube. The inside surface of the mold may include features such as protrusions, projections, grooves, indentations, flanges, overhangs, and extensions. Other features are also possible. The embodiments disclosed herein allow formation of a tube with a variable diameter and/or features on the outside surface of the tube. The invention also provides fabricating a stent having portions that are thicker than other portions of the stent. FIG. 3 A depicts an axial cross-section of a polymeric tube 300 with an outside diameter 310 positioned within a cylindrical mold 320 having indentations 330 on the inside surface of the mold 320. Cylindrical mold 320 with indentations 330 acts to limit the expansion of polymeric tube 300 to the inside surface of mold 320. The indentations form a tube 300 with a variable diameter. When the polymeric tube 300 expands from diameter 310 to diameter 340, protrusions 390 are formed on the outside surface of the polymeric tube 300.
Polymeric tube 300 may be closed at a distal end 350 to conform to the outside surface of mold 320. Any gas, such as air, may be conveyed, as indicated by an arrow 360, into an open proximal end 370 of polymeric tube 300. A liquid may also be conveyed into the open proximal end 370 to provide pressure on the inside of the tube. The gas or liquid can be heated to a temperature sufficient to deform the polymeric tube. This temperature can be above the glass transition temperature of the polymer. The pressure of the gas is selected to sufficiently expand the polymeric tube to conform to the inside surface of cylindrical mold 320. Polymeric tube 300 may be heated by the gas or liquid to a temperature above ambient temperature, for example above Tg of the polymer. Alternatively, heat may be applied to the exterior of cylindrical mold 320. The conveyed gas combined with the applied heat may act to radially expand polymeric tube 300, as indicated by an arrow 380.
FIG. 3B depicts an axial cross-section of a polymeric tube 300 having protrusions 390 that are formed after blowing a gas at a selected temperature and pressure into the cylindrical mold 320. As depicted in FIG. 3C, tube 300 includes protrusions 390 that are formed during the blow molding process.
FIG. 4 A depicts an axial cross-section of a polymeric tube 400 having an outside diameter 310 positioned within a cylindrical mold 410 having protrusions 420. Cylindrical mold 410 with protrusions 420 acts to limit the expansion of polymeric tube 400 to an expanded diameter 340, which conforms to the surface of the mold. When a polymeric tube 400 expands from diameter 310, indentations 430 are formed in polymeric tube 400. Cylindrical mold 410 includes protrusions 420. FIG. 4B depicts an axial cross- section of a radially expanded tube 400 after blowing a gas or liquid at a selected temperature and pressure into the cylindrical mold 410. As depicted in FIG.4B, indentations 430 are formed in polymeric tube 400 by blow molding polymeric tube 400 against cylindrical mold 410 having protrusions 420. As depicted in FIG. 4C, tube 400 includes grooves 430 formed during the blow molding process. The indentations in the tube are arranged in the tube as desired. For example, if the indentations are to be used as depots to hold drugs, the indentations may be arranged linearly along the entire length of the tube. Also, the indentations may be arranged such that when the pattern is cut into the tube, the indentations encompass portions of the stent requiring flexibility. The indentations can be of any shape, not just circular. The indentations of the tube are formed to coincide with the specific parts of the stent pattern. For example, FIG. 4D depicts stent strut 440 having indentations 450 and a protrusion 460 on the bending portion 465 of the stent portion. One advantage to forming features on a stent by blow molding rather than by laser cutting is that blow molding avoids deleterious effects on the mechanical portions of the stent caused by heat from lasers that create a heat affected zone.
FIG. 5 A depicts an axial cross-section of a polymeric tube 500 with an outside diameter 520 positioned within a cylindrical mold 510, where cylindrical mold 510 is tapered along its length. Cylindrical mold 510 acts to limit the expansion of polymeric tube 500 to an expanded diameter 530 on one end of the polymeric tube 500 and diameter 540 on the other end of the polymeric tube 500. Cylindrical mold 510 has a tapered diameter, such that the diameter 540 on the end of formed tube 500 is expanded more than the other end 530 of tube upon blow molding. FIG. 5B depicts an axial cross-section of a radially expanded tube 500 after blowing a gas at a selected temperature and pressure into the cylindrical mold 510. A tapered polymeric tube 500 is formed by expanding polymeric tube 500 to conform to the inner surface of cylindrical mold 510. As depicted in FIG. 5C3 formed tube 500 includes a tapered diameter from diameter 540 to diameter 530. There are many advantages to using a tapered stent. For example, the tapered stent may be adapted to improve the attachment of the stent to the delivery system and facilitate the delivery of the mounted stent into and through a bodily lumen. Although FIGURES 5 depict a uniform tapering shape, the invention includes arbitrary axial cross-sections which can be formed by blow molding. As mentioned previously, selected portions of the stent using blow molding may be formed to have greater or lesser mass relative to other portions of the stent. For example, high strain regions may be made up of more polymeric mass relative to other portions of the stent. Similarly, lower strain regions that require flexibility may be of a lesser mass.
FIG. 6 A depicts a portion of a strut 600 having a uniform thickness on the sidewall 635 and a relatively wider bending portion 620, where width is indicated by "W". That is, thickness 610 of bending portion 620 is substantially the same as the thickness of ends 615 of strut 600. Strut 600 includes a luminal or abluminal side and a side wall 625. The bending portion 620 of strut 600 is bent during crimping the stent onto a balloon-catheter assembly and during expansion of the stent when the stent is deployed. If the abluminal or luminal surface 625 of bending portion 620 is made wider, bending portion 620 of strut 600 is caused to flip upwards or "chip" when the strut is bent 600 during crimping and/or expansion as depicted by arrows 630. Chipping can become problematic because stent protrusion and non-uniform apposition on the vessel wall is unwanted in a vessel wall.
FIG. 7 A and 7B depicts a portion of a strut 700 having a variable thickness. That is, thickness 710 of the bending portion 720 is greater than the thickness of the ends 715 of strut 700. Strut 700 includes a bending portion 720 that is bent during crimping the stent onto a balloon-catheter assembly and/or during expanding the stent when the stent is deployed. As depicted in FIG. 7B, the bending portion 720 of strut 700 may have a low or no tendency to flip outward when the strut is bent during crimping, for example. The greater thickness of the sidewall 735 in bending portion 720 of the stent strut 700 provides a greater strength with little or no out of plane bending as shown in FIG. 6B. In addition, strut portions requiring greater flexibility, such as linking struts, may be formed to be thinner than other strut portions. Therefore, with blow molding, parts having various thicknesses can be designed to be at selected portions of a stent. In one embodiment, as depicted in FIG. 7C, a portion of a strut 700 has a thicker bending portion 720 as well as protrusions 730 located at selected portions of abluminal or luminal surface 725. In one embodiment, a portion of strut is made to be thicker as well as wider relative to other portions of the stent.
In one embodiment, the polymeric tube may be heated such that the temperature of the polymeric tube is greater than or equal to Tg and less than Tm of the polymer. Heating above Tg facilitates expansion, since a polymer becomes more flexible above Tg.
After the polymeric tube is radially expanded by blow molding the tube, it may be desirable to cool the radially expanded tube below the Tg of the polymer to retain induced molecular orientation. Some embodiments may include cooling the deformed tube prior to fabrication of the medical device. The deformed tube may be cooled at a temperature below an ambient temperature to below the Tg of the polymer. Alternatively, cooling the deformed polymer tube may include cooling the deformed polymer tube at a temperature at or near an ambient temperature to below the Tg of the polymer.
After the polymeric tube is radially expanded by blow molding the tube, the tube may be laser cut to form a stent. A stent may be fabricated by use of a laser beam collimated to a 1 to 10 mm beam diameter. The tube is then cut by focusing a beam, such as a 0.5 to 2 mm wide beam, on the polymeric tube. A stent pattern may then be cut into the tube by moving the tube in an axial and rotary direction with respect to the cutting beam or by moving the beam. FIG. 8 depicts an embodiment of a portion of a machine-controlled system for laser machining a tube. In FIG. 8, a polymeric tube 800 is disposed in a rotatable collet fixture 810 of a machine-controlled apparatus 820 for positioning tube 800 relative to a laser 830. According to machine-encoded instructions, tube 800 is rotated and moved axially relative to laser 830 which may also be machine-controlled. The laser selectively removes the material from the tube resulting in a pattern cut into the tube 800. The tube 800 is therefore cut into the discrete pattern of a finished stent.
The process of cutting a pattern for the stent into the tube is automated except for loading and unloading the length of tube 800. Referring again to FIG. 8, the process may be done, for example, using a CNC-opposing collet fixture 840 for axial rotation of the length of tubing. Collet fixture 840 may act in conjunction with a CNC X/Y table 850 to move the length of tube axially relative to a machine-controlled laser 830 as described. The entire space between collets can be patterned using a laser set-up of the foregoing example. The program for control of the apparatus is dependent on the particular configuration used and the pattern formed. Therefore, a pattern that circumvents any features formed on the tube can. be accomplished using the program for control of the apparatus.
Machining a fine structure also requires the ability to manipulate the tube with precision. CNC equipment manufactured and sold by Anorad Corporation in Hauppauge, New York may be used for positioning the tube. In addition, a unique rotary mechanism may be used that allows the computer program to be written as if the pattern were being machined from a flat sheet, allowing utilization of both circular and linear interpolation in programming. Thus, the axial and rotary motion may be controlled by a CNC system. A CNC controlled axis may also control the focus position on the polymeric tube. After indexing the CNC system to a specific position on tube, the system traces the pattern in the x, y, z coordinate system. Since the finished structure of the stent is very small, a precision drive mechanism is required that supports and drives both ends of the tubular structure as it is cut. Since both ends are driven, they are preferably aligned and precisely synchronized. Otherwise, as the stent is being cut, the stent may twist and distort. The stent produces stents with a fine precision structure cut from a small diameter thin-walled cylindrical tube. Cutting a fine structure around features on a stent surface created by the present invention (e.g., a 0.0035 inch strut width (0.889 mm)) requires precise laser focusing and minimal heat input. To satisfy these requirements, a laser technology adapted to micro-machine the tube may be implemented according to the present embodiments.
Additionally, FIGs. 9(a) and 9(b) show that apparatus 900 incorporates a monocular viewing, focusing, and cutting head 930. A rotary axis 940 and X-Y stages 950 for rotating and translating the work piece are also shown. A CNC controller 960 is also incorporated into apparatus 300. FIG. 9(a) depicts a close-up axial view of the region where the laser beam interacts with the substrate target material. A laser beam 900 is focused by a focusing lens 910 on a tube 920 is supported by a CNC controlled rotary collet 930 at one end and a tube support pin 940 at another end. As shown by FIG. 9(a), the laser can incorporate a coaxial gas jet assembly 950 having a coaxial gas jet 960 and a nozzle 970 that helps to remove debris from the kerf and cools the region where the beam interacts with the material as the beam cuts and vaporizes a substrate. Coaxial gas jet nozzle 970 (e.g., 0.018 inch diameter (0.457 mm)) is centered around a focused beam 980 with approximately 0.010 inch (2.54 mm) between a tip 990 of nozzle 970 and a tube 920. In certain embodiments, an optical system for modifying a laser beam according to the embodiments described herein may be positioned between cutting head 930 (depicted in FIG. 9(a) and 9(b)) and the substrate target material.
It may also be necessary to block laser beam 980 as it cuts through the top surface of the tube to prevent the beam, along with the molten material and debris from the cut, from impinging on the inside opposite surface of tube 990. To this end, a mandrel 992 (e.g., approx. 0.034 inch diameter (0.864 mm)) supported by a mandrel beam block 995 is placed inside the tube and is allowed to roll on the bottom of the tube 985 as the pattern is cut, which acts as a beam/debris block protecting the far wall inner diameter. A close-up end view along mandrel beam block 995 shows laser beam 980 impinging on tube 985 in FIG. 9(b).
Hence, the laser enables the machining of narrow kerf widths to circumvent the features formed on the stent surface, while minimizing the heat input into the material. In this way, smooth, narrow cuts in a tube with very fine geometries are made without damaging the narrow struts that define the stent structure. The stent can be made partially or completely from a biodegradable, bioabsorbable, or biostable polymer. Biostable refers to polymers that are not biodegradable. The terms biodegradable, bioabsorbable, and bioerodable are used interchangeably and refer to polymers that are capable of being completely degraded and/or eroded when exposed to bodily fluids such as blood and can be gradually resorbed, absorbed and/or eliminated by the body. The processes of breaking down and eventual absorption and elimination of the polymer can be caused by, for example, hydrolysis, metabolic processes, bulk or surface erosion, and the like. For stents made from a biodegradable polymer, the stent is intended to remain in the body for a duration of time until its intended function is accomplished.
Representative examples of polymers that may be used to fabricate a stent using the methods disclosed herein include poly(N-acetylglucosamine) (Chitin), Chitoson, poly(hydroxyvalerate), poly(lactide-co-glycolide), poly(hydroxybutyrate), ρoly(hydroxybutyrate-co-valerate), polyorthoester, polyanhydride, poly(glycolic acid), poly(D,L-lactic acid), poly(glycolic acid-co-trimethylene carbonate), poly(trimethylene carbonate), co-poly(ether-esters) (e.g. PEO/PLA), polyphosphazenes, biomolecules (such as fibrin, fibrinogen, cellulose, starch, collagen and hyaluronic acid), polyurethanes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers other than polyacrylates, vinyl halide polymers and copolymers (such as polyvinyl chloride), polyvinyl ethers (such as polyvinyl methyl ether), polyvinylidene halides (such as polyvinylidene chloride), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics (such as polystyrene), polyvinyl esters (such as polyvinyl acetate), acrylonitrile-styrene copolymers, ABS resins, polyamides (such as Nylon 66 and polycaprolactam), polycarbonates, polyoxymethylenes, polyimides, polyethers, polyurethanes, rayon, rayon-triacetate, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose. Additional representative examples of polymers that may be especially well suited for use in fabricating a stent according to the methods disclosed herein include ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(butyl methacrylate), poly(vinylidene fluoride-co-hexafluororpropene) (e.g., SOLEF 21508, available from Solvay Solexis PVDF, Thorofare, NJ), polyvinylidene fluoride (otherwise known as KYNAR, available from ATOFINA Chemicals, Philadelphia, PA), poly(L-lactic acid), ρoly(caρrolactone), ethylene- vinyl acetate copolymers, and polyethylene glycol. While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims

WHAT IS CLAIMED IS:
1. Method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a variable diameter along a portion of the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the variable diameter portion of the inside surface of the mold, causing the radially expanded tube to have a variable diameter along the conformed length of the tube; and fabricating a stent from the expanded tube.
2. The method according to Claim 1, wherein the variable diameter of the formed tube is tapered from a larger diameter to a smaller diameter along the length of the tube.
3. The method according to Claim 1 , wherein the variable diameter of the formed tube is tapered from a larger diameter to a smaller diameter from the central portion of the tube to the ends of the tube.
4. The method according to Claim 1, wherein the tube is a biodegradable and/or biostable polymer.
5. The method according to Claim 1, further comprising heating the tube with the liquid or gas to a temperature above Tg of the polymer before and/or during expansion.
6. The method according to Claim 1, wherein fabricating is laser cutting a pattern in the tube.
7. A stent formed by the method of Claim 1.
8. A method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having a protrusion or indentation on the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to protrusion or indentation on the inside surface of the mold, the protrusion in the mold causing an indentation on the outside surface of the tube, or the indentation in the mold causing a protrusion on the outside surface of the tube; and fabricating a stent with the expanded tube.
9. The method according to Claim 8, wherein the thickness at the protrusion on the expanded tube is greater than other portions of the expanded tube.
10. The method according to Claim 8, wherein the thickness at the indentation on the expanded tube is less than other portions of the expanded tube.
11. The method according to Claim 8, wherein the stent is fabricated so that bending portions are located in the thicker portions.
12. The method according to Claim 8, wherein fabricating a stent from the polymeric tube comprises laser cutting a pattern having the indentation or protrusion on the surface of a strut.
13. The method according to Claim 8, wherein the indentation comprises a groove.
14. The method according to Claim 8, wherein the tube comprises a biodegradable and/or biostable polymer.
15. The method according to Claim 8, further comprising heating the tube with the liquid or gas to a temperature above Tg of the polymer before and/or during expansion.
16. A stent formed by the method of Claim 8.
17. A method of manufacturing a stent, the method comprising: disposing a polymeric tube into a cylindrical mold, the cylindrical mold having an indentation or a protrusion on the inside surface of the mold; radially expanding the tube by blowing a gas or liquid into the cylindrical mold, the outside surface of the tube conforming to the indentation or protrusion of the inside surface of the mold, the indentation or protrusion on the mold causing a feature on the outside surface of the tube; and fabricating a stent with the expanded tube.
18. The method according to Claim 17, wherein the feature formed on the outside surface of the tube is an indentation, and the method further comprises filling the indentation with a radio-opaque material.
19. The method according to Claim 17, wherein the feature formed on the outside surface of the tube is an indentation, and the method further comprises filling the indentation with a drug.
20. The method according to Claim 17, wherein the cylindrical mold has both an indentation and a protrusion on the inside surface, thereby forming both a protrusion and an indentation on the outside surface of the tube.
PCT/US2007/015242 2006-06-30 2007-06-28 Method of manufacturing a stent by blow molding and the manufactured stent WO2008005390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/479,111 2006-06-30
US11/479,111 US7740791B2 (en) 2006-06-30 2006-06-30 Method of fabricating a stent with features by blow molding

Publications (1)

Publication Number Publication Date
WO2008005390A1 true WO2008005390A1 (en) 2008-01-10

Family

ID=38683542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/015242 WO2008005390A1 (en) 2006-06-30 2007-06-28 Method of manufacturing a stent by blow molding and the manufactured stent

Country Status (2)

Country Link
US (3) US7740791B2 (en)
WO (1) WO2008005390A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182890B2 (en) 2007-01-19 2012-05-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8373090B2 (en) 2009-09-04 2013-02-12 Abbott Cardiovascular Systems Inc. Method and apparatus to prevent stent damage caused by laser cutting
US8636792B2 (en) 2007-01-19 2014-01-28 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8814930B2 (en) 2007-01-19 2014-08-26 Elixir Medical Corporation Biodegradable endoprosthesis and methods for their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9278485B2 (en) 2009-09-04 2016-03-08 Abbott Cardiovascular Systems Inc. Method to prevent stent damage caused by laser cutting
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9730819B2 (en) 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
EP4215663A1 (en) 2022-01-20 2023-07-26 ecobrain AG Process for manufacturing components from reclaimed textile fabric products

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US9517149B2 (en) 2004-07-26 2016-12-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8268228B2 (en) * 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US20060020330A1 (en) 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US20110066222A1 (en) * 2009-09-11 2011-03-17 Yunbing Wang Polymeric Stent and Method of Making Same
US7731890B2 (en) * 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8012402B2 (en) 2008-08-04 2011-09-06 Abbott Cardiovascular Systems Inc. Tube expansion process for semicrystalline polymers to maximize fracture toughness
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8501079B2 (en) * 2009-09-14 2013-08-06 Abbott Cardiovascular Systems Inc. Controlling crystalline morphology of a bioabsorbable stent
US7875233B2 (en) * 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
US8002817B2 (en) * 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8545514B2 (en) * 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9198687B2 (en) * 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8066757B2 (en) * 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US7998524B2 (en) 2007-12-10 2011-08-16 Abbott Cardiovascular Systems Inc. Methods to improve adhesion of polymer coatings over stents
WO2009089297A2 (en) * 2008-01-07 2009-07-16 Intersect Partners, Llc Novel enhanced ptna rapid exchange type of catheter system
ES2647310T3 (en) 2008-02-22 2017-12-20 Covidien Lp Device for flow restoration
WO2009140256A1 (en) * 2008-05-13 2009-11-19 Ethicon, Inc. Method of manufacturing a polymeric stent with a hybrid support structure
US8765040B2 (en) 2008-08-11 2014-07-01 Abbott Cardiovascular Systems Inc. Medical device fabrication process including strain induced crystallization with enhanced crystallization
US8372332B2 (en) * 2008-08-11 2013-02-12 Abbott Cardiovascular Systems Inc. Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct
US20100100170A1 (en) * 2008-10-22 2010-04-22 Boston Scientific Scimed, Inc. Shape memory tubular stent with grooves
US20100244305A1 (en) * 2009-03-24 2010-09-30 Contiliano Joseph H Method of manufacturing a polymeric stent having improved toughness
US20100244334A1 (en) * 2009-03-24 2010-09-30 Contiliano Joseph H Method of manufacturing a polymeric stent having a circumferential ring configuration
US20100244304A1 (en) * 2009-03-31 2010-09-30 Yunbing Wang Stents fabricated from a sheet with increased strength, modulus and fracture toughness
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8370120B2 (en) 2010-04-30 2013-02-05 Abbott Cardiovascular Systems Inc. Polymeric stents and method of manufacturing same
US20110282428A1 (en) * 2010-05-13 2011-11-17 Boston Scientific Scimed, Inc. Biodegradable composite stent
US9751156B2 (en) 2010-07-14 2017-09-05 Atex Technologies Inc. Fabric cutting system
US8540619B2 (en) * 2010-07-14 2013-09-24 Atex Technologies, Inc. Fabric cutting system and method
US9095420B2 (en) * 2011-01-24 2015-08-04 Tufts Medical Center, Inc. Endovascular stent
TW201311226A (en) * 2011-05-06 2013-03-16 Ind Tech Res Inst Method for manufacturing bioabsorbable stents
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
CN102371670A (en) * 2011-10-14 2012-03-14 微创医疗器械(上海)有限公司 New processing method of biodegradable stent
US10639179B2 (en) 2012-11-21 2020-05-05 Ram Medical Innovations, Llc System for the intravascular placement of a medical device
CA2882364C (en) 2013-03-15 2017-01-03 Boston Scientific Scimed, Inc. Anti-migration micropatterned stent coating
US9549806B2 (en) 2013-08-12 2017-01-24 Abbott Cardiovascular Systems Inc. Bioresorbable laryngotracheal stent and methods of treatment
US10327890B2 (en) * 2014-01-22 2019-06-25 Biotronik Ag Thermochemically treated miniature tubes as semifinished products for vascular stents
JP2017505817A (en) 2014-02-04 2017-02-23 アボット カーディオバスキュラー システムズ インコーポレイテッド Drug delivery scaffold or stent having a coating based on NOVOLIMUS and lactide so that the binding of NOVOLIMUS to the coating is minimized
US10064745B2 (en) 2014-03-18 2018-09-04 Abbott Cardiovascular Systems Inc. Tapered scaffolds
JP6720180B2 (en) 2014-12-19 2020-07-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stent with anti-migration element
US9636244B2 (en) 2015-04-09 2017-05-02 Mubin I. Syed Apparatus and method for proximal to distal stent deployment
US9908297B2 (en) 2015-08-20 2018-03-06 Abbott Cardiovascular Systems Inc. Scaffolds having variable wall thickness
US10327929B2 (en) 2015-10-30 2019-06-25 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US11020256B2 (en) 2015-10-30 2021-06-01 Ram Medical Innovations, Inc. Bifurcated “Y” anchor support for coronary interventions
US10492936B2 (en) 2015-10-30 2019-12-03 Ram Medical Innovations, Llc Apparatus and method for improved access of procedural catheter in tortuous vessels
US10779976B2 (en) 2015-10-30 2020-09-22 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US10173031B2 (en) 2016-06-20 2019-01-08 Mubin I. Syed Interchangeable flush/selective catheter
US10653510B2 (en) 2016-11-09 2020-05-19 Boston Scientific Scimed, Inc. Stent including displacement capabilities
JP7017394B2 (en) * 2017-12-14 2022-02-08 株式会社小糸製作所 Light guide device
US10857014B2 (en) 2018-02-18 2020-12-08 Ram Medical Innovations, Llc Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions
US11672681B2 (en) 2019-01-28 2023-06-13 Mubin I. Syed Variable flow stent
JP2023510553A (en) 2020-01-13 2023-03-14 ボストン サイエンティフィック サイムド,インコーポレイテッド anti-migration stent
US11786355B2 (en) 2020-01-30 2023-10-17 Boston Scientific Scimed, Inc. Radial adjusting self-expanding stent with anti-migration features

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030208254A1 (en) * 2002-05-03 2003-11-06 James Shortt Method and apparatus for mounting a stent onto a stent delivery system
US20050187615A1 (en) * 2004-02-23 2005-08-25 Williams Michael S. Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture
US20060076708A1 (en) * 2004-09-30 2006-04-13 Bin Huang Method of fabricating a biaxially oriented implantable medical device

Family Cites Families (348)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US236565A (en) * 1881-01-11 Traction-engine
US62148A (en) * 1867-02-19 Francis mil-liken
US187495A (en) * 1877-02-20 Improvement in wrappers for bonbons
US111149A (en) * 1871-01-24 Improvement in toy carriages
US100865A (en) * 1870-03-15 crosby
US111590A (en) * 1871-02-07 Improvement in lubricators for loose pulleys
US161114A (en) * 1875-03-23 Improvement in hay-elevators
US2922255A (en) * 1956-03-22 1960-01-26 Gen Electric Mold apparatus for casting glass
GB1237035A (en) 1969-08-20 1971-06-30 Tsi Travmatologii I Ortopedii Magnesium-base alloy for use in bone surgery
US3900632A (en) 1970-02-27 1975-08-19 Kimberly Clark Co Laminate of tissue and random laid continuous filament web
BE758156R (en) * 1970-05-13 1971-04-28 Ethicon Inc ABSORBABLE SUTURE ELEMENT AND ITS
US3839743A (en) 1972-04-21 1974-10-08 A Schwarcz Method for maintaining the normal integrity of blood
US4104410A (en) 1973-12-21 1978-08-01 Malecki George J Processing of green vegetables for color retention in canning
US4110497A (en) 1976-07-02 1978-08-29 Snyder Manufacturing Co., Ltd. Striped laminate and method and apparatus for making same
JPS6037735B2 (en) * 1978-10-18 1985-08-28 住友電気工業株式会社 Artificial blood vessel
DE2928007A1 (en) 1979-07-11 1981-01-15 Riess Guido Dr BONE IMPLANT BODY FOR PROSTHESES AND BONE CONNECTORS AND METHOD FOR THE PRODUCTION THEREOF
US4346028A (en) 1979-12-14 1982-08-24 Monsanto Company Asbestiform crystalline calcium sodium or lithium phosphate, preparation and compositions
DE3019996A1 (en) 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen HOHLORGAN
GB2089276B (en) 1980-11-19 1984-09-05 Metal Box Co Ltd Thermoplastics tubular articles
FR2510411B1 (en) 1981-07-30 1986-09-12 Ethicon Inc CROSSLINKED POLYDIOXANONE SURGICAL APPARATUS AND METHOD FOR THE PRODUCTION THEREOF
US4902289A (en) * 1982-04-19 1990-02-20 Massachusetts Institute Of Technology Multilayer bioreplaceable blood vessel prosthesis
US4517687A (en) 1982-09-15 1985-05-21 Meadox Medicals, Inc. Synthetic woven double-velour graft
US4656083A (en) 1983-08-01 1987-04-07 Washington Research Foundation Plasma gas discharge treatment for improving the biocompatibility of biomaterials
US4594407A (en) 1983-09-20 1986-06-10 Allied Corporation Prosthetic devices derived from krebs-cycle dicarboxylic acids and diols
FR2554386B1 (en) 1983-11-07 1986-02-07 Plastic Omnium Cie METHOD FOR MANUFACTURING PROFILED TUBES IN PLASTIC MATERIAL, DEVICE FOR CARRYING OUT SAID METHOD, AND PROFILED TUBES OBTAINED
US5197977A (en) * 1984-01-30 1993-03-30 Meadox Medicals, Inc. Drug delivery collagen-impregnated synthetic vascular graft
US4633873A (en) * 1984-04-26 1987-01-06 American Cyanamid Company Surgical repair mesh
US4596574A (en) 1984-05-14 1986-06-24 The Regents Of The University Of California Biodegradable porous ceramic delivery system for bone morphogenetic protein
CH671337A5 (en) 1984-06-19 1989-08-31 Ceskoslovenska Akademie Ved
US4879135A (en) 1984-07-23 1989-11-07 University Of Medicine And Dentistry Of New Jersey Drug bonded prosthesis and process for producing same
IT1186142B (en) * 1984-12-05 1987-11-18 Medinvent Sa TRANSLUMINAL IMPLANTATION DEVICE
US4718907A (en) * 1985-06-20 1988-01-12 Atrium Medical Corporation Vascular prosthesis having fluorinated coating with varying F/C ratio
US4818559A (en) 1985-08-08 1989-04-04 Sumitomo Chemical Company, Limited Method for producing endosseous implants
DE3676393D1 (en) * 1985-08-12 1991-02-07 Mitsui Petrochemical Ind BLOW FILM AND METHOD AND DEVICE FOR PRODUCING THE SAME.
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4698196A (en) 1985-12-24 1987-10-06 Xerox Corporation Method and apparatus for extruding creaseless thin walled tubes
US4743252A (en) 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
EP0257091B1 (en) 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
EP0241838B1 (en) 1986-04-07 1992-04-15 Agency Of Industrial Science And Technology Antithrombogenic material
US4702884A (en) 1986-07-03 1987-10-27 The United States Of America As Represented By The Secretary Of The Navy Glass-lined pipes
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
US4722335A (en) * 1986-10-20 1988-02-02 Vilasi Joseph A Expandable endotracheal tube
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US5059211A (en) 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5527337A (en) 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4877030A (en) 1988-02-02 1989-10-31 Andreas Beck Device for the widening of blood vessels
US5192311A (en) * 1988-04-25 1993-03-09 Angeion Corporation Medical implant and method of making
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US5502158A (en) 1988-08-08 1996-03-26 Ecopol, Llc Degradable polymer composition
US5328471A (en) 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
CA1322628C (en) 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5085629A (en) * 1988-10-06 1992-02-04 Medical Engineering Corporation Biodegradable stent
US4977901A (en) 1988-11-23 1990-12-18 Minnesota Mining And Manufacturing Company Article having non-crosslinked crystallized polymer coatings
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
DE69030811T2 (en) 1989-01-27 1997-10-02 Au Membrane & Biotech Res Inst RECEPTOR MEMBRANES AND SELECTIVE CONTROL OF THE ION FLOW BY IONOPHORES
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5289831A (en) * 1989-03-09 1994-03-01 Vance Products Incorporated Surface-treated stent, catheter, cannula, and the like
NZ228382A (en) 1989-03-17 1992-08-26 Carter Holt Harvey Plastic Pro Drug administering coil-like device for insertion in body cavity of animal
US5147302A (en) 1989-04-21 1992-09-15 Scimed Life Systems, Inc. Method of shaping a balloon of a balloon catheter
US5108755A (en) 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US4990158A (en) 1989-05-10 1991-02-05 United States Surgical Corporation Synthetic semiabsorbable tubular prosthesis
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5087394A (en) * 1989-11-09 1992-02-11 Scimed Life Systems, Inc. Method for forming an inflatable balloon for use in a catheter
US5971954A (en) 1990-01-10 1999-10-26 Rochester Medical Corporation Method of making catheter
ATE120377T1 (en) 1990-02-08 1995-04-15 Howmedica INFLATABLE DILATATOR.
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5545208A (en) 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5156623A (en) 1990-04-16 1992-10-20 Olympus Optical Co., Ltd. Sustained release material and method of manufacturing the same
US5123917A (en) 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5290271A (en) * 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5279594A (en) * 1990-05-23 1994-01-18 Jackson Richard R Intubation devices with local anesthetic effect for medical use
US6060451A (en) 1990-06-15 2000-05-09 The National Research Council Of Canada Thrombin inhibitors based on the amino acid sequence of hirudin
US5236447A (en) 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
US5112457A (en) 1990-07-23 1992-05-12 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
US5455040A (en) 1990-07-26 1995-10-03 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
DE69114505T2 (en) * 1990-08-28 1996-04-18 Meadox Medicals Inc SELF-SUPPORTING WOVEN VESSEL TRANSPLANT.
IL99296A (en) 1990-08-28 1995-12-08 Meadox Medicals Inc Self-supporting woven vascular graft and its preparation
US5108417A (en) 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
US5258020A (en) * 1990-09-14 1993-11-02 Michael Froix Method of using expandable polymeric stent with memory
US5163952A (en) 1990-09-14 1992-11-17 Michael Froix Expandable polymeric stent with memory and delivery apparatus and method
DE69116130T2 (en) 1990-10-18 1996-05-15 Ho Young Song SELF-EXPANDING, ENDOVASCULAR DILATATOR
US5104410A (en) 1990-10-22 1992-04-14 Intermedics Orthopedics, Inc Surgical implant having multiple layers of sintered porous coating and method
US5163951A (en) 1990-12-27 1992-11-17 Corvita Corporation Mesh composite graft
CS277367B6 (en) 1990-12-29 1993-01-13 Krajicek Milan Three-layered vascular prosthesis
EP0525210A4 (en) * 1991-02-20 1993-07-28 Tdk Corporation Composite bio-implant and production method therefor
US5116365A (en) 1991-02-22 1992-05-26 Cordis Corporation Stent apparatus and method for making
WO1992015342A1 (en) 1991-03-08 1992-09-17 Keiji Igaki Stent for vessel, structure of holding said stent, and device for mounting said stent
US5383925A (en) * 1992-09-14 1995-01-24 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5356433A (en) 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5500013A (en) 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5234457A (en) 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
US5545408A (en) 1991-10-21 1996-08-13 Peptide Technology Limited Biocompatible implant for the timing of ovulation in mares
US5167614A (en) 1991-10-29 1992-12-01 Medical Engineering Corporation Prostatic stent
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
CA2087132A1 (en) * 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
US5573934A (en) * 1992-04-20 1996-11-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
DE69332950T2 (en) 1992-03-31 2004-05-13 Boston Scientific Corp., Natick BLOOD VESSEL FILTER
DE4222380A1 (en) 1992-07-08 1994-01-13 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
CA2103846A1 (en) 1992-08-13 1994-02-14 Patricia-Ann Truter Hydrogel composition and methods of making it
US5853408A (en) 1992-08-20 1998-12-29 Advanced Cardiovascular Systems, Inc. In-vivo modification of the mechanical properties of surgical devices
US5342621A (en) 1992-09-15 1994-08-30 Advanced Cardiovascular Systems, Inc. Antithrombogenic surface
US5830461A (en) 1992-11-25 1998-11-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Methods for promoting wound healing and treating transplant-associated vasculopathy
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
US5443458A (en) 1992-12-22 1995-08-22 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method of manufacture
EP0604022A1 (en) 1992-12-22 1994-06-29 Advanced Cardiovascular Systems, Inc. Multilayered biodegradable stent and method for its manufacture
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
JP3583801B2 (en) 1993-03-03 2004-11-04 ボストン サイエンティフィック リミテッド Luminal stents and implants
FI92465C (en) * 1993-04-14 1994-11-25 Risto Tapani Lehtinen A method for handling endo-osteal materials
US5441515A (en) 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5464650A (en) 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5994341A (en) * 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
EG20321A (en) 1993-07-21 1998-10-31 Otsuka Pharma Co Ltd Medical material and process for producing the same
DE69330132T2 (en) 1993-07-23 2001-11-15 Cook Inc FLEXIBLE STENT WITH A CONFIGURATION MOLDED FROM A MATERIAL SHEET
DK0716610T3 (en) 1993-08-26 2006-09-04 Genetics Inst Llc Human bone morphogenetic proteins for use in neural regeneration
DK0659389T3 (en) 1993-10-20 1999-02-15 Schneider Europ Ag endoprosthesis
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5599301A (en) * 1993-11-22 1997-02-04 Advanced Cardiovascular Systems, Inc. Motor control system for an automatic catheter inflation system
SE501288C2 (en) 1993-11-30 1995-01-09 Corimed Gmbh Process for preparing ceramic implant material, preferably hydroxylapatite having ceramic implant material
US5626611A (en) 1994-02-10 1997-05-06 United States Surgical Corporation Composite bioabsorbable materials and surgical articles made therefrom
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
AU704549B2 (en) 1994-03-18 1999-04-29 Lynx Therapeutics, Inc. Oligonucleotide N3'-P5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties
US5726297A (en) * 1994-03-18 1998-03-10 Lynx Therapeutics, Inc. Oligodeoxyribonucleotide N3' P5' phosphoramidates
US5599922A (en) * 1994-03-18 1997-02-04 Lynx Therapeutics, Inc. Oligonucleotide N3'-P5' phosphoramidates: hybridization and nuclease resistance properties
US5399666A (en) * 1994-04-21 1995-03-21 E. I. Du Pont De Nemours And Company Easily degradable star-block copolymers
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5629077A (en) 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5670558A (en) 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US5554120A (en) 1994-07-25 1996-09-10 Advanced Cardiovascular Systems, Inc. Polymer blends for use in making medical devices including catheters and balloons for dilatation catheters
US5817327A (en) * 1994-07-27 1998-10-06 The Trustees Of The University Of Pennsylvania Incorporation of biologically active molecules into bioactive glasses
US5591230A (en) * 1994-09-07 1997-01-07 Global Therapeutics, Inc. Radially expandable stent
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5593403A (en) * 1994-09-14 1997-01-14 Scimed Life Systems Inc. Method for modifying a stent in an implanted site
US5578073A (en) 1994-09-16 1996-11-26 Ramot Of Tel Aviv University Thromboresistant surface treatment for biomaterials
US5649977A (en) 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
EP0785774B1 (en) * 1994-10-12 2001-01-31 Focal, Inc. Targeted delivery via biodegradable polymers
US5765682A (en) 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
IL115755A0 (en) 1994-10-27 1996-01-19 Medinol Ltd X-ray visible stent
US5707385A (en) * 1994-11-16 1998-01-13 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
US6017577A (en) 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
US5919570A (en) 1995-02-01 1999-07-06 Schneider Inc. Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices
US5876743A (en) * 1995-03-21 1999-03-02 Den-Mat Corporation Biocompatible adhesion in tissue repair
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US5837313A (en) 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US6120536A (en) 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US5628786A (en) 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
JP2795824B2 (en) * 1995-05-12 1998-09-10 オオタ株式会社 Surface treatment method for titanium-based implant and biocompatible titanium-based implant
US5954744A (en) 1995-06-06 1999-09-21 Quanam Medical Corporation Intravascular stent
US5591199A (en) 1995-06-07 1997-01-07 Porter; Christopher H. Curable fiber composite stent and delivery system
CA2178541C (en) * 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5820917A (en) * 1995-06-07 1998-10-13 Medtronic, Inc. Blood-contacting medical device and method
US5667767A (en) 1995-07-27 1997-09-16 Micro Therapeutics, Inc. Compositions for use in embolizing blood vessels
GB9611437D0 (en) 1995-08-03 1996-08-07 Secr Defence Biomaterial
US5830879A (en) 1995-10-02 1998-11-03 St. Elizabeth's Medical Center Of Boston, Inc. Treatment of vascular injury using vascular endothelial growth factor
US5736152A (en) * 1995-10-27 1998-04-07 Atrix Laboratories, Inc. Non-polymeric sustained release delivery system
US5607442A (en) * 1995-11-13 1997-03-04 Isostent, Inc. Stent with improved radiopacity and appearance characteristics
US6048964A (en) 1995-12-12 2000-04-11 Stryker Corporation Compositions and therapeutic methods using morphogenic proteins and stimulatory factors
DK2111876T3 (en) 1995-12-18 2011-12-12 Angiodevice Internat Gmbh Crosslinked polymer preparations and methods for their use
ATE290832T1 (en) 1996-01-05 2005-04-15 Medtronic Inc EXPANDABLE ENDOLUMINAL PROSTHESES
US6150630A (en) 1996-01-11 2000-11-21 The Regents Of The University Of California Laser machining of explosives
EP1011889B1 (en) 1996-01-30 2002-10-30 Medtronic, Inc. Articles for and methods of making stents
JP2000509014A (en) 1996-03-11 2000-07-18 フォーカル,インコーポレイテッド Polymer delivery of radionuclides and radiopharmaceuticals
US6241760B1 (en) 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US6071266A (en) 1996-04-26 2000-06-06 Kelley; Donald W. Lubricious medical devices
US6592617B2 (en) 1996-04-30 2003-07-15 Boston Scientific Scimed, Inc. Three-dimensional braided covered stent
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5733326A (en) * 1996-05-28 1998-03-31 Cordis Corporation Composite material endoprosthesis
US5874165A (en) * 1996-06-03 1999-02-23 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto polymeric subtrates
US5914182A (en) 1996-06-03 1999-06-22 Gore Hybrid Technologies, Inc. Materials and methods for the immobilization of bioactive species onto polymeric substrates
US5830178A (en) 1996-10-11 1998-11-03 Micro Therapeutics, Inc. Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
US5800516A (en) 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
US6344271B1 (en) 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US5855618A (en) * 1996-09-13 1999-01-05 Meadox Medicals, Inc. Polyurethanes grafted with polyethylene oxide chains containing covalently bonded heparin
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US6387121B1 (en) 1996-10-21 2002-05-14 Inflow Dynamics Inc. Vascular and endoluminal stents with improved coatings
US5868781A (en) * 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US5833651A (en) 1996-11-08 1998-11-10 Medtronic, Inc. Therapeutic intraluminal stents
US5728751A (en) * 1996-11-25 1998-03-17 Meadox Medicals, Inc. Bonding bio-active materials to substrate surfaces
US5877263A (en) * 1996-11-25 1999-03-02 Meadox Medicals, Inc. Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents
US5741881A (en) 1996-11-25 1998-04-21 Meadox Medicals, Inc. Process for preparing covalently bound-heparin containing polyurethane-peo-heparin coating compositions
IT1289728B1 (en) 1996-12-10 1998-10-16 Sorin Biomedica Cardio Spa SYSTEM AND EQUIPMENT DEVICE THAT INCLUDES IT
US5980972A (en) 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
IT1291001B1 (en) 1997-01-09 1998-12-14 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT AND ITS PRODUCTION PROCESS
US5733330A (en) 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US6159951A (en) 1997-02-13 2000-12-12 Ribozyme Pharmaceuticals Inc. 2'-O-amino-containing nucleoside analogs and polynucleotides
US6582472B2 (en) 1997-02-26 2003-06-24 Applied Medical Resources Corporation Kinetic stent
US6210715B1 (en) 1997-04-01 2001-04-03 Cap Biotechnology, Inc. Calcium phosphate microcarriers and microspheres
US5874101A (en) * 1997-04-14 1999-02-23 Usbiomaterials Corp. Bioactive-gel compositions and methods
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
FI103715B (en) 1997-04-21 1999-08-31 Vivoxid Oy New composite and its use
US5891386A (en) 1997-04-25 1999-04-06 Medtronic, Inc. Method for making catheter balloons
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
CA2232250C (en) 1997-05-14 2007-06-26 Navius Corporation Balloon for a dilation catheter and method for manufacturing a balloon
US6303901B1 (en) 1997-05-20 2001-10-16 The Regents Of The University Of California Method to reduce damage to backing plate
US5891192A (en) 1997-05-22 1999-04-06 The Regents Of The University Of California Ion-implanted protein-coated intralumenal implants
US6056993A (en) 1997-05-30 2000-05-02 Schneider (Usa) Inc. Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
DE19731021A1 (en) 1997-07-18 1999-01-21 Meyer Joerg In vivo degradable metallic implant
US5980928A (en) 1997-07-29 1999-11-09 Terry; Paul B. Implant for preventing conjunctivitis in cattle
US6340367B1 (en) 1997-08-01 2002-01-22 Boston Scientific Scimed, Inc. Radiopaque markers and methods of using the same
US6245103B1 (en) 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US5980564A (en) 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6174330B1 (en) 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6117979A (en) 1997-08-18 2000-09-12 Medtronic, Inc. Process for making a bioprosthetic device and implants produced therefrom
US6129928A (en) 1997-09-05 2000-10-10 Icet, Inc. Biomimetic calcium phosphate implant coatings and methods for making the same
US6284333B1 (en) 1997-09-10 2001-09-04 Scimed Life Systems, Inc. Medical devices made from polymer blends containing low melting temperature liquid crystal polymers
US6010445A (en) * 1997-09-11 2000-01-04 Implant Sciences Corporation Radioactive medical device and process
WO1999016871A2 (en) 1997-09-22 1999-04-08 Max-Planck-Gesellschaft Zur Forderung Der Wissensc Nucleic acid catalysts with endonuclease activity
DE69838256T2 (en) 1997-09-24 2008-05-15 Med Institute, Inc., West Lafayette RADIAL EXPANDABLE STENT
US5976182A (en) 1997-10-03 1999-11-02 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent and method of loading the same
US6015541A (en) * 1997-11-03 2000-01-18 Micro Therapeutics, Inc. Radioactive embolizing compositions
DE19881727D2 (en) 1997-11-24 2001-01-04 Herbert P Jennissen Process for immobilizing mediator molecules on inorganic and metallic implant materials
US6093463A (en) 1997-12-12 2000-07-25 Intella Interventional Systems, Inc. Medical devices made from improved polymer blends
US5957975A (en) 1997-12-15 1999-09-28 The Cleveland Clinic Foundation Stent having a programmed pattern of in vivo degradation
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US5986169A (en) 1997-12-31 1999-11-16 Biorthex Inc. Porous nickel-titanium alloy article
WO1999034750A1 (en) * 1998-01-06 1999-07-15 Bioamide, Inc. Bioabsorbable fibers and reinforced composites produced therefrom
US6224626B1 (en) 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
DK1062278T3 (en) 1998-02-23 2006-09-25 Mnemoscience Gmbh Polymers with shape memory
RU2215542C2 (en) 1998-02-23 2003-11-10 Массачусетс Инститьют Оф Текнолоджи Biodecomposing polymers able recovery of form
US5938697A (en) 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6110188A (en) 1998-03-09 2000-08-29 Corvascular, Inc. Anastomosis method
US6113629A (en) 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6083258A (en) 1998-05-28 2000-07-04 Yadav; Jay S. Locking stent
US6015433A (en) 1998-05-29 2000-01-18 Micro Therapeutics, Inc. Rolled stent with waveform perforation pattern
EP0966979B1 (en) 1998-06-25 2006-03-08 Biotronik AG Implantable bioresorbable support for the vascular walls, in particular coronary stent
DE19856983A1 (en) 1998-06-25 1999-12-30 Biotronik Mess & Therapieg Implantable, bioresorbable vascular wall support, in particular coronary stent
US6153252A (en) 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
CA2338788A1 (en) * 1998-09-02 2000-03-09 Scimed Life Systems, Inc. Drug delivery device for stent
EP2138135B1 (en) * 1998-09-08 2016-12-21 Kabushikikaisha Igaki Iryo Sekkei Stent for vessel
WO2000023123A1 (en) 1998-10-19 2000-04-27 Synthes Ag Chur Hardenable ceramic hydraulic cement
DE19855421C2 (en) 1998-11-02 2001-09-20 Alcove Surfaces Gmbh Implant
DE69822470T2 (en) 1998-11-12 2005-01-20 Takiron Co. Ltd. Biodegradable absorbable shape memory material
US20010014821A1 (en) 1998-11-16 2001-08-16 Mohamad Ike Juman Balloon catheter and stent delivery system having enhanced stent retention
US6125523A (en) 1998-11-20 2000-10-03 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
DE60017363T2 (en) 1999-02-02 2006-03-02 Wright Medical Technology Inc., Arlington CONTROLLED RELEASE OF A COMPOSITE MATERIAL
US6187045B1 (en) 1999-02-10 2001-02-13 Thomas K. Fehring Enhanced biocompatible implants and alloys
US6066156A (en) 1999-03-11 2000-05-23 Advanced Cardiovascular Systems, Inc. Temperature activated adhesive for releasably attaching stents to balloons
US6183505B1 (en) * 1999-03-11 2001-02-06 Medtronic Ave, Inc. Method of stent retention to a delivery catheter balloon-braided retainers
US6667049B2 (en) 1999-06-14 2003-12-23 Ethicon, Inc. Relic process for producing bioresorbable ceramic tissue scaffolds
US6312459B1 (en) 1999-06-30 2001-11-06 Advanced Cardiovascular Systems, Inc. Stent design for use in small vessels
US6177523B1 (en) * 1999-07-14 2001-01-23 Cardiotech International, Inc. Functionalized polyurethanes
AUPQ170799A0 (en) 1999-07-20 1999-08-12 Cardiac Crc Nominees Pty Limited Shape memory polyurethane or polyurethane-urea polymers
US6569193B1 (en) 1999-07-22 2003-05-27 Advanced Cardiovascular Systems, Inc. Tapered self-expanding stent
DE19938704C1 (en) 1999-08-14 2001-10-31 Ivoclar Vivadent Ag Process for the production of reaction systems for implantation in the human and animal body as a bone substitute, which i.a. Contain calcium and phosphorus
US6479565B1 (en) 1999-08-16 2002-11-12 Harold R. Stanley Bioactive ceramic cement
US6379381B1 (en) 1999-09-03 2002-04-30 Advanced Cardiovascular Systems, Inc. Porous prosthesis and a method of depositing substances into the pores
JP4172883B2 (en) 1999-09-08 2008-10-29 Hoya株式会社 Drug sustained release carrier and method for producing drug sustained release carrier
WO2001026584A1 (en) 1999-10-14 2001-04-19 United Stenting, Inc. Stents with multilayered struts
US7226475B2 (en) * 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
DE19953771C1 (en) * 1999-11-09 2001-06-13 Coripharm Medizinprodukte Gmbh Absorbable bone implant material and method for producing the same
WO2001035928A1 (en) 1999-11-17 2001-05-25 Microchips, Inc. Microfabricated devices for the delivery of molecules into a carrier fluid
US6936066B2 (en) * 1999-11-19 2005-08-30 Advanced Bio Prosthetic Surfaces, Ltd. Complaint implantable medical devices and methods of making same
US7947069B2 (en) 1999-11-24 2011-05-24 University Of Washington Medical devices comprising small fiber biomaterials, and methods of use
US6554854B1 (en) 1999-12-10 2003-04-29 Scimed Life Systems, Inc. Process for laser joining dissimilar metals and endoluminal stent with radiopaque marker produced thereby
US6981987B2 (en) 1999-12-22 2006-01-03 Ethicon, Inc. Removable stent for body lumens
US6338739B1 (en) 1999-12-22 2002-01-15 Ethicon, Inc. Biodegradable stent
US6494908B1 (en) 1999-12-22 2002-12-17 Ethicon, Inc. Removable stent for body lumens
US6572813B1 (en) 2000-01-13 2003-06-03 Advanced Cardiovascular Systems, Inc. Balloon forming process
US6375826B1 (en) 2000-02-14 2002-04-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing stents and method
KR100788336B1 (en) 2000-03-13 2007-12-27 케이지 이가키 Wire rods for vascular stents and vascular stents with the use of the same
KR100371559B1 (en) 2000-04-03 2003-02-06 주식회사 경원메디칼 Calcium phosphate artificial bone as osteoconductive and biodegradable bone substitute material
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
EP1153621A1 (en) 2000-05-12 2001-11-14 MERCK PATENT GmbH Biocements based on a mixture of TCP-PHA with improved compressive strength
US6395326B1 (en) 2000-05-31 2002-05-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
IL137090A (en) 2000-06-29 2010-04-15 Pentech Medical Devices Ltd Polymeric stent
US6569191B1 (en) 2000-07-27 2003-05-27 Bionx Implants, Inc. Self-expanding stent with enhanced radial expansion and shape memory
US6574851B1 (en) * 2000-07-31 2003-06-10 Advanced Cardiovascular Systems, Inc. Stent made by rotational molding or centrifugal casting and method for making the same
US6485512B1 (en) 2000-09-27 2002-11-26 Advanced Cardiovascular Systems, Inc. Two-stage light curable stent and delivery system
US6805898B1 (en) * 2000-09-28 2004-10-19 Advanced Cardiovascular Systems, Inc. Surface features of an implantable medical device
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6746773B2 (en) 2000-09-29 2004-06-08 Ethicon, Inc. Coatings for medical devices
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US6517888B1 (en) 2000-11-28 2003-02-11 Scimed Life Systems, Inc. Method for manufacturing a medical device having a coated portion by laser ablation
US6664335B2 (en) 2000-11-30 2003-12-16 Cardiac Pacemakers, Inc. Polyurethane elastomer article with “shape memory” and medical devices therefrom
US6878790B2 (en) 2000-11-30 2005-04-12 The Procter & Gamble Company High molecular weight polyolefin and catalyst and process for polymerizing said polyolefin
US6565599B1 (en) 2000-12-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Hybrid stent
US6540777B2 (en) 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
US6563080B2 (en) * 2001-02-15 2003-05-13 Scimed Life Systems, Inc. Laser cutting of stents and other medical devices
US8262687B2 (en) 2001-02-27 2012-09-11 Kyoto Medical Planning Co., Ltd. Stent holding member and stent feeding system
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US8182527B2 (en) * 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US6679980B1 (en) * 2001-06-13 2004-01-20 Advanced Cardiovascular Systems, Inc. Apparatus for electropolishing a stent
US6521865B1 (en) * 2001-06-14 2003-02-18 Advanced Cardiovascular Systems, Inc. Pulsed fiber laser cutting system for medical implants
US6695920B1 (en) * 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US6926733B2 (en) * 2001-08-02 2005-08-09 Boston Scientific Scimed, Inc. Method for enhancing sheet or tubing metal stent radiopacity
US7083639B2 (en) 2001-09-26 2006-08-01 Medtronic Vascular, Inc. Stent delivery catheter with grooved balloon and methods of making same
JP2005503865A (en) 2001-09-28 2005-02-10 ボストン サイエンティフィック リミテッド Medical device comprising nanomaterial and treatment method using the same
US7572287B2 (en) * 2001-10-25 2009-08-11 Boston Scientific Scimed, Inc. Balloon expandable polymer stent with reduced elastic recoil
US20030105530A1 (en) 2001-12-04 2003-06-05 Inion Ltd. Biodegradable implant and method for manufacturing one
US6752826B2 (en) 2001-12-14 2004-06-22 Thoratec Corporation Layered stent-graft and methods of making the same
US6866805B2 (en) * 2001-12-27 2005-03-15 Advanced Cardiovascular Systems, Inc. Hybrid intravascular stent
US20030187495A1 (en) 2002-04-01 2003-10-02 Cully Edward H. Endoluminal devices, embolic filters, methods of manufacture and use
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US20030236563A1 (en) 2002-06-20 2003-12-25 Dan Fifer Stent delivery catheter with retention bands
US6780261B2 (en) * 2002-06-27 2004-08-24 Scimed Life Systems, Inc. Method of manufacturing an implantable stent having improved mechanical properties
US7141063B2 (en) 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US6818063B1 (en) 2002-09-24 2004-11-16 Advanced Cardiovascular Systems, Inc. Stent mandrel fixture and method for minimizing coating defects
US20040098090A1 (en) 2002-11-14 2004-05-20 Williams Michael S. Polymeric endoprosthesis and method of manufacture
US7455687B2 (en) 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US7128868B2 (en) 2003-01-10 2006-10-31 Boston Scientific Scimed, Inc. Balloon wing forming apparatus and method
US20040143317A1 (en) 2003-01-17 2004-07-22 Stinson Jonathan S. Medical devices
US20040167610A1 (en) 2003-02-26 2004-08-26 Fleming James A. Locking stent
US6846323B2 (en) * 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
US20050137678A1 (en) 2003-12-22 2005-06-23 Medtronic Vascular, Inc. Low profile resorbable stent
US7264458B2 (en) * 2004-01-07 2007-09-04 Boston Scientific Scimed, Inc. Process and apparatus for forming medical device balloons
US20050196485A1 (en) 2004-01-13 2005-09-08 Martin Cass Heat transfer system for a mold
US20050177130A1 (en) 2004-02-10 2005-08-11 Angioscore, Inc. Balloon catheter with spiral folds
US20090012598A1 (en) * 2004-06-29 2009-01-08 Abbate Anthony J Method of fabricating an implantable medical device by deformation of a tube or a sheet
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US20060020330A1 (en) * 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7306585B2 (en) * 2004-09-30 2007-12-11 Engineering Resources Group, Inc. Guide catheter
ATE538833T1 (en) * 2005-03-18 2012-01-15 Cook Medical Technologies Llc WIRE GUIDES WITH NEW OUTER LAYER AREAS AND CHAMBERS TO IMPROVE HYDROPHILIC PROPERTIES AND RELEASE OF THERAPEUTIC ACTIVE INGREDIENTS
US20060224226A1 (en) 2005-03-31 2006-10-05 Bin Huang In-vivo radial orientation of a polymeric implantable medical device
US7381048B2 (en) * 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7476245B2 (en) * 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US20070135895A1 (en) 2005-12-13 2007-06-14 Robert Burgermeister Polymeric stent having modified molecular structures in both the hoops and selected segments of the flexible connectors
US20070282433A1 (en) * 2006-06-01 2007-12-06 Limon Timothy A Stent with retention protrusions formed during crimping
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
US7901452B2 (en) * 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030208254A1 (en) * 2002-05-03 2003-11-06 James Shortt Method and apparatus for mounting a stent onto a stent delivery system
US20050187615A1 (en) * 2004-02-23 2005-08-25 Williams Michael S. Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture
US20060076708A1 (en) * 2004-09-30 2006-04-13 Bin Huang Method of fabricating a biaxially oriented implantable medical device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566371B2 (en) 2007-01-19 2017-02-14 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8323760B2 (en) 2007-01-19 2012-12-04 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8636792B2 (en) 2007-01-19 2014-01-28 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8814930B2 (en) 2007-01-19 2014-08-26 Elixir Medical Corporation Biodegradable endoprosthesis and methods for their fabrication
US9119905B2 (en) 2007-01-19 2015-09-01 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8182890B2 (en) 2007-01-19 2012-05-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8373090B2 (en) 2009-09-04 2013-02-12 Abbott Cardiovascular Systems Inc. Method and apparatus to prevent stent damage caused by laser cutting
US9278485B2 (en) 2009-09-04 2016-03-08 Abbott Cardiovascular Systems Inc. Method to prevent stent damage caused by laser cutting
US9730819B2 (en) 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10076431B2 (en) 2016-05-16 2018-09-18 Elixir Medical Corporation Uncaging stent
US10271976B2 (en) 2016-05-16 2019-04-30 Elixir Medical Corporation Uncaging stent
US10383750B1 (en) 2016-05-16 2019-08-20 Elixir Medical Corporation Uncaging stent
US10786374B2 (en) 2016-05-16 2020-09-29 Elixir Medical Corporation Uncaging stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
US11622872B2 (en) 2016-05-16 2023-04-11 Elixir Medical Corporation Uncaging stent
EP4215663A1 (en) 2022-01-20 2023-07-26 ecobrain AG Process for manufacturing components from reclaimed textile fabric products

Also Published As

Publication number Publication date
US7740791B2 (en) 2010-06-22
US20160046058A1 (en) 2016-02-18
US20080001333A1 (en) 2008-01-03
US20100256742A1 (en) 2010-10-07
US9808982B2 (en) 2017-11-07

Similar Documents

Publication Publication Date Title
US9808982B2 (en) Tapered polymeric stent and method of fabricating same
US10390979B2 (en) Manufacturing process for polymeric stents
US7875233B2 (en) Method of fabricating a biaxially oriented implantable medical device
EP1773566B1 (en) Method of fabricating an implantable medical device with biaxially oriented polymers
US7731890B2 (en) Methods of fabricating stents with enhanced fracture toughness
US8043553B1 (en) Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US20090012598A1 (en) Method of fabricating an implantable medical device by deformation of a tube or a sheet
US10058439B2 (en) Deformation of a polymer tube in the fabrication of a medical article
WO2007149457A1 (en) Fabricating a stent with selected properties in the radial and axial directions
US8173062B1 (en) Controlled deformation of a polymer tube in fabricating a medical article
US8241554B1 (en) Method of forming a stent pattern on a tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07796607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07796607

Country of ref document: EP

Kind code of ref document: A1