WO2007052377A1 - Micropump and micro fluid chip - Google Patents

Micropump and micro fluid chip Download PDF

Info

Publication number
WO2007052377A1
WO2007052377A1 PCT/JP2006/306547 JP2006306547W WO2007052377A1 WO 2007052377 A1 WO2007052377 A1 WO 2007052377A1 JP 2006306547 W JP2006306547 W JP 2006306547W WO 2007052377 A1 WO2007052377 A1 WO 2007052377A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
outer shell
lower space
micropump
groove
Prior art date
Application number
PCT/JP2006/306547
Other languages
French (fr)
Japanese (ja)
Inventor
Shunro Nishiwaki
Kenichi Tayama
Kiyohide Maguchi
Tomiiti Hasegawa
Toshio Yoshida
Yudai Furukawa
Original Assignee
Niigata Tlo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Tlo Corporation filed Critical Niigata Tlo Corporation
Priority to JP2007542231A priority Critical patent/JP4528330B2/en
Publication of WO2007052377A1 publication Critical patent/WO2007052377A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps

Definitions

  • the present invention relates to a micro flow micro pump and a micro fluid chip using the pump. More specifically, the present invention relates to a micro-flow micropump excellent in operability and a microfluidic chip in which the pump can be detachably disposed.
  • micro-channels, reaction vessels and ports, etc. have been built into the substrate, as known under the name Micro 'Total' Analysis' Systems (TAS) or Love 'on-Chip'.
  • a microdevice configured to perform various operations such as chemical reaction, synthesis, purification, extraction, generation and Z or analysis of a substance in a microstructure is proposed and partially put into practical use. Yes.
  • a structure having a microstructure such as a microchannel, a port, and a reaction vessel manufactured for such a purpose is collectively called a “microfluidic chip” or simply “microchip”.
  • the material, structure, and manufacturing method of the microfluidic chip are disclosed in, for example, Patent Document 1 and Patent Document 2.
  • a microchannel or reaction vessel in a microfluidic chip handles a fluid (mainly a liquid such as a chemical solution or a sample). For this purpose, a function for controlling the flow and transfer of the fluid is required.
  • a fluid control element a small functional component built in a microfluidic chip.
  • Common fluid control elements include microvalves and micropumps.
  • Patent Document 3 An example of a micropump used for a microfluidic chip is described in Patent Document 3.
  • This micropump is a micropump for micro flow rate that uses the flow through the membrane by the electrical effect passing through the micro region.
  • the micropump 200 of Patent Document 3 is sometimes used while being placed on the upper surface of the microfluidic chip 1.
  • the PDMS substrate 3 in the microfluidic chip 1 is formed with a fine channel 5 and ports 7 and 9 communicating with the fine channel.
  • a glass facing substrate 10 is permanently bonded to the lower surface side of the PDMS substrate 3.
  • the micro pump 100 is placed on the upper surface of the port 7.
  • the micropump 200 has an outer shell 203 and a positive electrode 2 built in the outer shell 203.
  • a liquid storage space 211 is formed in the upper part of the plus electrode 205, and a tube 213 for feeding the liquid into the liquid storage space 211 is fixed with an appropriate adhesive.
  • FIG. 20 is an exploded perspective view of the positive electrode 205 and the negative electrode 207 shown in FIG. 19 and the porous film 209 interposed between the electrodes.
  • the porous membrane 209 is actually supported by the support 217.
  • Circular openings 219 and 221 are disposed on the plus electrode 205 and the minus electrode 207, respectively.
  • the circular openings 219 and 221 have substantially the same radius as the circular opening of the support 217, i.e. the circular region where the porous membrane 209 faces the flow, and all centers are on the same axis. It is located.
  • FIG. 21 is a partial schematic cross-sectional view showing a usage example of the conventional micropump 200 as shown in FIG.
  • the conventional micropump 200 uses the driving liquid 223 supplied from the tube 213 into the liquid storage space 211 to push out another sample liquid 225 prefilled in the port 7 to the fine channel 5 and send it. May be used for liquefaction purposes. In this case, if the driving liquid 223 is not filled in the space 215 between the lower electrode 207 and the port 7, the sample liquid in the port 7 cannot be pushed out and sent to the microchannel 5. .
  • the flow rate by the porous membrane pump is about 0.1 ⁇ LZs to 100 ⁇ LZs, so it takes a considerable time to fill the space 215 with the driving liquid 223. This could delay analysis work.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-27813
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-157855
  • Patent Document 3 International Publication No. 2005Z052379 Pamphlet
  • an object of the present invention is to improve the operability of a micro pump for micro flow rate using a flow through a membrane by an electrical effect passing through a micro region.
  • the invention of claim 1 as a means for solving the above-mentioned problems is arranged such that an outer shell having a through-hole and a hollow part are vertically divided into the hollow part.
  • a micro flow micropump comprising a porous membrane interposed between a plus electrode and a minus electrode and utilizing an electroosmotic flow effect passing through the porous membrane,
  • a liquid-filling bypass flow path communicating with the lower space of the hollow portion divided by the porous membrane is disposed, and an air vent flow path communicating with the atmosphere from the lower space is disposed! /
  • a micropump characterized by squeezing.
  • the liquid such as the driving liquid is rapidly passed through the liquid filling bypass channel communicating with the lower space of the hollow portion divided into two by the porous membrane of the outer shell of the micropump.
  • the lower space can be filled.
  • the air in the lower space escapes to the atmosphere through the air vent flow path, so that there is no obstacle to filling the lower space with liquids such as driving liquid.
  • a liquid such as a driving liquid in an extremely short time, and like a conventional micropump, a voltage is applied to the lower space for a long time. Since the slow and redundant operation filled with liquids is no longer necessary, the operability or use of the micropump can be dramatically improved.
  • the invention of claim 2 as means for solving the above-mentioned problem is that the height of the inlet of the air vent channel that opens to the inside of the lower space from the bottom surface of the lower space is the lower space. 2.
  • the air in the lower space is surely received. It can be guided to the air vent channel.
  • the invention of claim 3 as means for solving the above-mentioned problem is that the bypass flow path is formed outside the outer shell or in the wall of the outer shell, and the air vent flow path is the outer shell.
  • the bypass flow path is formed outside the outer shell or in the wall of the outer shell, and the air vent flow path is the outer shell.
  • the microphone port pump according to claim 1 or 2 wherein the microphone port pump is formed in a wall of the outer shell or the outer shell.
  • the bypass channel can be formed outside the outer shell or in the wall of the outer shell, and the air vent channel can also be formed outside the outer shell or in the wall of the outer shell. So you can choose a convenient combination.
  • the invention of claim 4 as a means for solving the above-mentioned problem is that the bypass flow path formed outside the outer shell is disposed through the lower space of the outer shell.
  • the first groove is formed on either the outer wall surface of the outer shell or the adhesive surface side of the first shielding sheet, and the upper end of the first groove Is communicated with the first hole disposed through the upper space of the outer shell and shielded by the first shielding sheet, or communicated with the atmosphere at the upper end of the first shielding sheet.
  • the air vent channel formed outside the outer shell has a third hole serving as an air vent channel inlet penetrating the lower space of the outer shell, and a lower end of the third hole.
  • a second groove that communicates with the second hole and a second shielding sheet that shields the third hole and the second groove, and the second groove is formed on the outer wall surface of the outer shell.
  • the upper end of the second groove is disposed so as to penetrate through the upper space of the outer shell, and the second shielding sheet is attached to the second shielding sheet. Communicating with the fourth hole shielded by the shielding sheet, or communicating with the atmosphere at the upper end of the second shielding sheet,
  • the height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space
  • the position of the first hole of the lower space bottom force is the fourth position from the bottom of the lower space. 4.
  • the position is lower than the position of the hole.
  • the bypass flow channel or the air vent flow channel can be formed outside the outer shell in various modes, so that a convenient mode can be appropriately selected.
  • the invention of claim 5 as a means for solving the above-mentioned problems is formed in the wall of the outer shell.
  • the bypass channel formed is composed of a second hole serving as a bypass channel outlet disposed in a lower space of the outer shell and a first groove, and a lower end of the first groove is The upper end of the first groove communicates with the atmosphere on the upper end surface of the outer shell, or opens to the inner side of the upper space of the outer shell. Or communicates with a first hole that opens toward the outside of the outer shell,
  • the air vent channel formed in the wall of the outer shell includes a third hole serving as an air vent channel inlet disposed in a lower space of the outer shell and a second groove, and the second groove.
  • the lower end of the groove communicates with the third hole
  • the upper end of the second groove communicates with the atmosphere on the upper end surface of the outer shell, or the upper space of the outer shell. It opens to the inside by force or communicates with the fourth hole that opens to the outside of the outer shell,
  • the height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space
  • the first groove communicates with the first hole opening toward the inside of the upper space of the outer shell, and the second groove opens to the inside of the upper space of the outer shell. 4.
  • the bypass channel or the air vent channel can be formed in the wall of the outer shell in various modes, so that a convenient mode can be appropriately selected.
  • the invention of claim 6 as means for solving the above-mentioned problem is that the inner diameter force of the inlet (third hole) of the air vent channel opened inside the lower space is opened inside the lower space.
  • the invention according to claim 7 as means for solving the above-mentioned problem is that the shape of the first groove and the second groove is any shape selected from the group consisting of a linear shape and a meandering shape.
  • the shape of the groove can be selected as a straight line or a meandering shape as appropriate, and the shape can be selected. It has the advantage that it can be done.
  • the invention of claim 8 as means for solving the above-mentioned problem is that the outer shell is formed of polydimethylsiloxane (PDMS) or glass, and the first shielding sheet and the second shielding sheet.
  • PDMS polydimethylsiloxane
  • the PDMS shielding sheet can be self-adsorbed to the outer wall surface of the outer shell by forming the outer shell with PDMS or glass force.
  • the invention of claim 9 as means for solving the above-mentioned problem further comprises a diaphragm for closing the lower space in the vicinity of the end of the lower space of the outer shell.
  • a micropump according to any one of -8 is provided.
  • a buffer solution is conventionally interposed between the driving liquid and the sample liquid.
  • the driving force of electroosmotic flow can be transmitted to the sample liquid through the diaphragm without using a buffer solution.
  • the invention of claim 10 as means for solving the above-mentioned problems is arranged such that the outer shell having a through-hole and a hollow portion are divided into two in the vertical direction inside the hollow portion.
  • a micro flow micropump comprising a porous membrane interposed between a plus electrode and a minus electrode and utilizing an electroosmotic flow effect passing through the porous membrane,
  • a diaphragm for sealing the upper space in the vicinity of the end of the upper space of the hollow portion divided into two by the porous membrane, and near the end of the lower space of the hollow portion divided into two by the porous membrane.
  • a micropump having a diaphragm for sealing the lower space, and the sealed upper space and lower space are filled with a predetermined amount of driving liquid, respectively.
  • the driving liquid is hermetically filled in the upper space and the lower space, respectively. Apply a voltage between the electrodes to reduce the amount of driving fluid in the upper space with a large amount of driving fluid. After moving the sample solution to the lower space with the drive liquid, turn the micropump over to make the lower space with a large amount of drive liquid the upper space, and the upper part where the drive liquid is low If the space is placed in the original port opening as the lower space and a voltage is applied between the electrodes, the driving liquid can be moved from top to bottom again. As a result, complicated driving liquid supply operation can be omitted, and the driving liquid is completely prevented from being contaminated or denatured by dust, microorganisms, carbon dioxide, etc. in the atmosphere. Since the replacement or replenishment of the drive fluid is unnecessary, it is possible to save the cost of the drive fluid. The overall device configuration is simplified, and the device cost is also reduced.
  • the invention of claim 11 as a means for solving the above-mentioned problems is made of polydimethylsiloxane having one or more ports opened to the atmosphere and a fine channel communicating with the ports.
  • a microfluidic chip comprising a substrate and a counter substrate bonded to the surface of the polydimethylsiloxane substrate that is bonded to the fine channel,
  • a microfluidic chip wherein the micropump according to any one of claims 1 to 10 is detachably mounted on an upper surface of an opening of at least one of the ports.
  • micropumps can be reused in another microfluidic chip, which greatly reduces the cost. Can be realized.
  • the invention of claim 12 as means for solving the above-mentioned problems is characterized in that a sample solution replenishment path for replenishing a sample solution in the open port on a substrate on which the open port is formed, 12.
  • the sample solution replenishment path by using the sample solution replenishment path, the sample solution can be directly replenished into the port while the micro-bump remains mounted on the port. , Air venting path force Since air is vented, stable micropump operation is performed.
  • the invention of claim 13 as means for solving the above-mentioned problems is that the sample solution replenishment path has an open / close valve and a replenishment pump for feeding a sample solution from a sample solution tank into the port. Provided to control the on-off valve and the replenishment pump when replenishing the sample solution. 13.
  • control device automates the replenishment of the sample solution by operating the on-off valve provided in the sample solution replenishment path and the replenishment pump.
  • the liquids such as the driving liquid are rapidly lowered through the liquid filling bypass passage communicating with the lower space of the hollow portion divided into two by the porous membrane of the outer shell.
  • the partial space can be filled.
  • the air in the lower space escapes to the atmosphere through the air vent flow path, so that it does not become an obstacle when filling the lower space with liquids such as driving liquid.
  • a voltage is applied to the lower space over a long period of time. Since the slow and redundant operation of filling liquids is no longer necessary, the operability or usability of the micropump can be dramatically improved.
  • a buffer solution is conventionally interposed between the driving liquid and the sample liquid.
  • the driving force of the electroosmotic flow can be transmitted to the sample liquid through the diaphragm without using a buffer solution.
  • each of the upper space and the lower space with a diaphragm and filling each sealed space with a predetermined amount of driving liquid, not only the complicated driving liquid supply operation can be omitted, but also the driving liquid can be removed. Pollution and alteration by atmospheric dust, microorganisms, carbon dioxide, etc. are completely prevented. Since it is not necessary to put in and out the drive fluid, or to replace or replenish the drive fluid, not only can the cost for the drive fluid be saved, but the overall device configuration is simplified, resulting in a lower device cost.
  • micropump of the present invention can be reused any number of times by allowing it to self-adsorb on another new microfluidic chip. As a result, expensive The cost of a simple micropump is greatly reduced and extremely economical.
  • FIG. 1 is a schematic sectional view of an example of a micropump 20 according to the present invention.
  • the micropump 20 of the present invention is basically disposed between the outer shell 23, the upper electrode 25, and the lower electrode 27 in the same manner as the conventional micropump shown in FIGS. And an interstitial porous membrane 29.
  • the electrode-equipped porous membrane 29 is arranged so that the hollow portion of the outer shell 23 is divided into two vertically, and as a result, an upper space 31 and a lower space 33 are formed with the electrode-equipped porous membrane 29 as a boundary.
  • the upper electrode 25 is connected to the positive side of the DC power source, and the lower electrode 27 is connected to the negative side of the DC power source.
  • the outer shell 23 is sometimes called a pump holder.
  • the lower part of the outer shell 23 is formed with a flange portion 35 having an enlarged outer diameter and having a predetermined thickness. It is preferable. However, the arrangement of the flange portion 35 is not an essential requirement of the present invention.
  • the outer shell 23 is preferably formed from PDMS.
  • the micropump 20 can be self-adsorbed to the PDMS substrate 3 by placing it on the upper surface of the port 7 of the PDMS substrate 3 of the microfluidic chip 1. As a result, the micropump 20 can be detached from the PDMS substrate 3. In a conventional micro-mouth fluid chip, the micropump and the like are discarded together with the chip after use. However, according to the present invention, the micropump 20 is detached from the PDMS substrate 3 after the microfluidic chip 1 is used. As a result, these micropumps 20 can be reused in another microfluidic chip, and a significant cost reduction can be realized.
  • a first hole 37 that penetrates the side wall on the upper space 31 side of the outer shell 23 is opened, and a second hole 39 that penetrates the side wall on the lower space 33 side is opened.
  • a first groove 41 having a predetermined width and depth for communicating the first hole 37 and the second hole 39 is provided on the outer wall surface of the outer shell 23.
  • the first hole 37, the second hole 39, and the first groove 41 can be formed by known and conventional means.
  • the first shielding sheet 43 covering the first hole 37, the second hole 39, and the first groove 41 is adhered to the outer wall surface of the outer shell 23. 1st hole 37 and 2nd hole 39 sealed with this shielding sheet 43
  • the first groove 41 constitutes a liquid-filling bypass channel that communicates between the upper space and the lower section.
  • the inner diameters of the first hole 37 and the second hole 39 may be lmm as an example. Other inner diameters can be employed.
  • the material of the first shielding sheet 43 is not particularly limited. In order to enable self-adsorption with the outer shell 23 made of PDMS, the first shielding sheet 43 is also preferably formed from PDMS.
  • the thickness and size of the first shielding sheet 43 are not particularly limited. The thickness and the size are sufficient to seal the first hole 37, the second hole 39, and the first groove 41.
  • the no-pass channel is not limited to the driving liquid for the micropump, but can also be used for filling liquids such as liquid reagents and samples.
  • a fourth hole 47 is formed through the side wall of the outer shell 23 on the upper space 31 side at a position different from the first hole 37.
  • a third hole 45 penetrating the side wall on the lower space 33 side is formed at a position different from the second hole 39.
  • a second groove 49 having a predetermined width and depth that allows the third hole 45 and the fourth hole 47 to communicate with each other is disposed on the outer wall surface of the outer shell 23.
  • the third hole 45, the fourth hole 47, and the second groove 49 can be formed by a known and conventional method.
  • the inner diameter of the fourth hole 47 can be lmm as an example.
  • the inner diameter of the third hole 45 can be 2 mm as an example.
  • the inner diameter of the third hole 45 is smaller than the outer diameter of the bubble, there is a possibility that bubbles will accumulate around the third hole 45 and will not be discharged.
  • the inner diameter of the third hole is preferably larger than the inner diameters of the other holes. Needless to say, other inner diameters can be used.
  • a second shielding sheet 51 that covers the third hole 45, the fourth hole 47, and the second groove 49 is adhered to the outer wall surface of the outer shell 23.
  • the third hole 45, the fourth hole 47, and the second groove 49 sealed by the second shielding sheet 51 constitute an air vent channel for extracting the air in the lower space into the atmosphere.
  • the material of the second shielding sheet 51 is not particularly limited, but the second shielding sheet 51 is also preferably made of PDMS so that it can self-adsorb with the PDMS outer shell 23.
  • the thickness and size of the second shielding sheet 51 are not particularly limited. Have enough thickness and size to seal the third hole 45, the fourth hole 47 and the second groove 49 !.
  • the fourth hole 47 is located above the height of the first hole 37. If the height position of the fourth hole 47 is the same as or lower than the height position of the first hole 37, the fourth hole 47 is below the level of the driving liquid filled in the upper space 31. And air vent flow I can't serve as a road.
  • the height position of the third hole 45 may be the same force as the height position of the second hole 39, or above it.
  • the height position of the third hole 45 is higher than the height position of the second hole 39, but the electrode-equipped porous film 29 is inclined, and the upper portion of the porous film 29 is inclined. Is positioned so as to be substantially the same as the height of the third hole 45, the air in the lower space 33 is guided to the third hole 45 along the slope of the porous membrane 29 and completely and smoothly in the atmosphere. Will not be able to stay in the lower space 33.
  • the first groove 41 that allows the first hole 37 and the second hole 39 to communicate with each other can be formed in a straight line as shown in FIG. 2 (A), but FIG. 2 (B) It can also be formed in a meandering shape as shown in FIG. Compared to the straight groove, the meandering groove has an advantage that the pressure loss can be controlled because the entire distance of the groove becomes longer. As a result, it is possible to effectively prevent a disadvantageous situation in which the driving fluid flows backward from the lower space 33 to the upper space 31.
  • the number of times of meandering is not limited to the illustrated embodiment, and any number of times can be selected.
  • the meandering is not limited to the crank shape as shown in the figure, but may be a curved shape having a predetermined curvature.
  • the second groove 49 for communicating the third hole 45 and the fourth hole 47 is also completely different from the embodiment shown in FIGS. 2 (A) and 2 (B). It can be configured similarly.
  • the width and depth of the first groove 41 and the second groove 49 can be selected as appropriate within a range of several tens / z m to several hundred ⁇ m, for example.
  • the lengths of the first groove 41 and the second groove 49 can be appropriately selected within a range of several mm to several tens of mm.
  • the first groove 41A (or the second groove 49A) can also be formed on the bonding surface side of the shielding sheet 51A).
  • the first groove 41A (or the second groove 49A) is formed on the first shielding sheet 43A (or the second shielding sheet 51A) by a known photolithography method using a resist mold or the like. It can be easily formed on the adhesive side.
  • the first groove 41A (or the second groove 49A) is easily aligned with the first hole 37 and the second hole 39 (or the third hole 45 and the fourth hole 47) at both ends of the first groove 41A (or the second groove 49A).
  • the recesses 53 and 55 can be formed. However, this recess may be omitted.
  • a portion of groove 41A (or 49A) is connected to first hole 37 and second hole 39 (or third hole 45 and fourth hole 47). If crossed, it is a force that can function as a bypass passage for driving liquid filling (or an air vent passage).
  • FIG. 4 shows the first shielding sheet 43A and the second shielding sheet 51A having the first groove 41A and the second groove 49A shown in FIG.
  • FIG. 5 is a cross-sectional view of a state where it is adhered to 23A, and FIG. 5 is a perspective view thereof.
  • FIG. 6 is a schematic plan view of another embodiment of the second shielding sheet
  • FIG. 7 is a partial schematic sectional view of a micropump of the present invention using the second shielding sheet.
  • the upper end side of the second groove 49B extends to the end portion of the sheet to form an air outlet 57.
  • FIG. 8 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention.
  • the upper end side of the first groove 41B is extended to the upper end portion of the sheet to form a liquid (for example, driving liquid) injection port 59. Therefore, since it is not necessary to drill the first hole 37 for injecting liquid into the bypass channel in the side wall of the upper space 31 of the outer shell 23C, not only the manufacture of the micropump is facilitated, but also the liquid inlet By inserting a syringe into 59, liquid can be easily fed into the lower space 33.
  • FIG. 9 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention.
  • the first groove 41C serving as a no-pass channel for feeding liquids such as driving liquid to the lower space 33 and the second groove 49C serving as an air vent channel are formed in the outer shell 23D.
  • the second hole 39 and the third hole 45 have only a length that reaches the first groove 41C and the second groove 49C that are not through holes. According to this embodiment, since it is not necessary to use the first shielding sheet and the second shielding sheet, the micropump 20D having a clean structure can be obtained.
  • the liquid inlet 59 and the air outlet 57 are both open on the upper end surface of the outer shell 23D, but the present invention is not limited to this, and the first hole communicating with the first groove 41C is provided in the upper space. It can be opened to the inside, or can be opened to the outside of the outer shell by force, and similarly, the fourth hole communicating with the second groove 49C can be opened to the inside of the upper space, Or open the outer shell by force. Tochidaru.
  • FIG. 10 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention.
  • a diaphragm 61 is disposed near the lower end of the lower space 33.
  • the diaphragm 61 can be fixed to the inner wall of the lower end of the lower space 33 by an annular diaphragm holder 62.
  • the diaphragm 61 can be disposed in the microphone port pump 20E by a mode other than that illustrated.
  • the diaphragm 61 also forms a material force having flexibility or flexibility such as a thermoplastic synthetic resin (eg, polyethylene, polyester, nylon, methyl methacrylate) or rubber (eg, silicone rubber, latex rubber, etc.).
  • a thermoplastic synthetic resin eg, polyethylene, polyester, nylon, methyl methacrylate
  • rubber eg, silicone rubber, latex rubber, etc.
  • the film thickness of the diaphragm 61 is 0.03mn! ⁇ Lmm or so.
  • the shape of the diaphragm 61 is not limited to the dome shape having an elliptical cross section as shown in the figure, but the volume of the protruding portion can be changed by changing the shape of the diaphragm, which may be circular, cone-shaped or irregular. Anything that can be done! ,.
  • the buffer may alter or contaminate the sample liquid
  • the use of the diaphragm 61 in the micropump of the present invention makes it unnecessary to use a buffer, and as a result, all the problems (a) to () are solved.
  • the electrode-containing porous membrane 29 itself used in the micropump of the present invention is a known member described in Patent Document 3.
  • the electrodes can be installed by packing around the porous membrane.
  • the porous membrane can be supported by a support.
  • the porous membrane is, for example, a nickel metal filter or a polycarbonate filter.
  • Polycarbonate filters are also commercially available as Sansho Kashima Co., Ltd. as a membrane filter.
  • This membrane is made of polycarbonate film and is a track-etched screen filter recommended for any analysis where the sample is observed on the membrane surface.
  • the polycarbonate filter has a pore size of 2 m, 5 m or 12 ⁇ m and a thickness of 11 ⁇ m.
  • the nickel metal filter has a pore size of 5 ⁇ m and a thickness of 1 O / zm.
  • a voltage of several VDC to several tens of volts for example, 2V to 15V
  • the liquid flows from the anode side to the cathode side. If the polarity of the applied voltage is reversed, the flow direction of the liquid can be reversed.
  • the flow rate by the porous membrane pumps 0. 02mm 3 Zs ⁇ 0. Can be varied within the range of 14 mm 3 Zs. The flow rate is roughly proportional to the applied voltage.
  • the driving liquid used in the micropump of the present invention can be any liquid that can cause electroosmotic flow.
  • a liquid in which fine particles having a particle size of 0.01 ⁇ m to 0.5 ⁇ m having a property of withstanding electricity in a liquid are suspended.
  • a colloidal solution for example, a polystyrene colloid solution or a silica colloid solution
  • fine particles are separated in a solution
  • no electrolysis will occur.
  • Electrolyte solution that is treated like V, pure water or purified water can also be used.
  • the method of using the micropump 20 to 20D of the present invention is as follows. First, the target sample solution is injected into port 7 of microfluidic chip 1 (see Fig. 19). Thereafter, the opening of the lower space 33 of the outer shell 23 (or 23A, 23B, 23C, 23D) of the micropump 20 (or 20A, 20B, 20C, 20D, 20E) of the present invention is aligned with the opening of the port 7. Then, the micro pump 20 is placed on the PDMS substrate 3. Since the outer shell 23 is formed of PDMS, the microphone pump 20 can self-adsorb with the PDMS substrate 3. Next, the driving liquid is filled in the upper space 31 of the outer shell 23.
  • the driving fluid flows from the first hole 37 (or the driving fluid inlet 59) into the lower space 33 through the second hole 39 through the bypass channel (first groove) 41 (or 41A to 41D).
  • the air in the lower space 33 is released from the third hole 45 through the air vent channel (second groove) 49 (or 49A to 49D) to the atmosphere through the fourth hole 47 (or air outlet 57).
  • the lower space 33 can be filled with the driving liquid simultaneously with filling the upper space 31 with the driving liquid.
  • pressure can be applied to the upper space as necessary.
  • the first hole 37 and the fourth hole 47 or the air outlet 57 can be sealed as necessary.
  • the driving liquid in the upper space 31 permeates into the lower space 33 through the porous film 29.
  • the sample solution in the port 7 is fed into the microchannel 5 by the pressure of the electroosmotic flow at that time. It is preferable that the driving solution and the sample solution do not mix and form a clear interface.
  • the micropump 20E of the present invention when a predetermined DC voltage is applied to the electrodes 25 and 27, the driving liquid in the upper space 31 permeates into the lower space 33 through the porous film 29. Since the diaphragm 61 swells to the port 7 side and the volume of the port 7 decreases, the driving force of the driving liquid is transmitted to the sample solution through the diaphragm 61. Since the driving solution and the sample solution are separated by the diaphragm 61, the micro pump 20E is useful when the sample solution and the driving solution are mixed with each other. Needless to say, the micropump having the diaphragm 61 can be used even when the driving solution and the sample solution do not mix and form a clear interface.
  • bypass flow path (first groove) 41 (or 41A) and air vent flow path (second groove) 49 (or 49 A, 49B, 49C) pressure loss is fine flow path 5 (see Fig. 10) If it is larger, the driving liquid in the lower space 33 does not flow backward from the bypass flow path 41 or the air vent flow path 49 to the upper space 31 even if the electroosmotic flow is caused. However, if the inner diameter of the bypass channel 41 or the air vent channel 49 is increased in order to facilitate the flow of the driving fluid or bubbles, backflow may occur. Inlet 59) and hole 47 (or air outlet 57) need to be sealed.
  • FIG. 11 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention.
  • driving liquid supply pipes 63 and 65 and air vent pipes 67 and 69 are arranged on the outer shell 23E.
  • the driving fluid supply pipes 63 and 65 are connected to the driving fluid source via on-off valves VI and V2, respectively.
  • the air vent pipes 67 and 69 open to the driving liquid recovery container 71 via the on-off valves V3 and V4, respectively.
  • a lid 73 covering the upper space 31 is placed on the upper end surface of the outer shell 23E.
  • the lid 73 can be used without the force used to prevent the driving fluid in the upper space 31 from being contaminated by dust, microorganisms, carbon dioxide, etc. in the atmosphere. Electrodes 25 and 27 are connected to a DC power source 64 via a switching switch 62.
  • the DC power source 64 may be a power source device that obtains a DC power source through a converter in addition to a primary battery or a secondary battery. Further, voltage adjusting means such as a variable resistor can be provided.
  • the outer shell 23E may be made of synthetic resin or metal in addition to PDMS.
  • the micropump 20 F is placed on the upper opening of the port 75 of the microchip 73.
  • the microchip 73 includes an upper surface substrate 77 and a lower surface substrate 79, and the upper surface substrate 77 has a microchannel 81 for feeding a material solution.
  • Microchannel 81 communicates with port 75! /
  • the microchip 73 is characterized in that the upper substrate 77 further has two flow paths communicating with the port 75 in addition to the microchannel 81.
  • One is a supply line 83 for supplying a sample solution to the port 75, and the other is an air vent line 85.
  • the replenishment line 83 is open near the bottom of the port 7 and the air vent line 85 is open at the top of the port 7. That is, since the air vent pipe 85 is constituted by a groove formed on the upper surface of the upper surface board 77, it is sealed by the joint 87 attached so as to cover it.
  • the supply line 83 communicates with a sample solution tank 93 with a hand pump 91 via a supply pipe 89 having an on-off valve V5.
  • the air vent line 85 opens to the sample solution recovery container 97 via an air vent pipe 95 having an on-off valve V6.
  • the air vent pipe 95 may be formed of a transparent member such as glass at the vertical portion so that the rise in the liquid level can be visually observed. Since the above-described on-off valves V1 to V6 affect the operation of the microphone pump, it is preferable to use a precise structure that does not leak when closed.
  • the microchannel 81 has start-up work and Open / close valve to prevent the replenished sample solution from flowing downstream during replenishment work
  • V7 is provided.
  • the sample solution accumulates in the port 75, and the diaphragm 61 is pushed upward, for example, as shown by the broken line in FIG. In this figure, the deformation of the diaphragm 61 is exaggeratedly drawn.
  • the liquid supply from the sample solution tank 93 is stopped and the on-off valve V5 is closed.
  • the on-off valves VI and V2 communicating with the driving fluid tank 99 and the on-off valves V3 and V4 for venting air are opened, and the driving fluid is supplied to the upper space 31 and the lower space 33 of the micropump 20F.
  • On-off valve V3, V4 force When the driving fluid comes out, the air venting is finished, so the on-off valves V1 to V4 are closed and the operation preparation of the micro pump 20F is completed.
  • the sample solution is filled before the filling of the driving liquid.
  • the driving liquid is supplied with the on-off valve V4 opened, the diaphragm 61 swells downward due to the weight of the driving liquid. This is because the sample solution cannot be supplied sufficiently.
  • the sample solution is supplied with the on-off valve V2 set to “low” and V4 set to “open” after that, the supply of the driving fluid to the lower space 30 is stopped at a predetermined amount. This is possible because the driving fluid is pushed out from the on-off valve V4. Any method can be used as long as the upper space 31, the lower space 33, and the port 75 are filled with liquid in a state where air is removed.
  • the volume of the lower space 33 increases, and eventually the diaphragm 61 approaches the original shape shown by the solid line in FIG. 14, so the operation is stopped at a predetermined timing, and the sample solution Perform replenishment work.
  • the on-off valve V5 of the supply pipe 89 and the air vent Z of the lower space 33 are opened, and the other on-off valve is closed and the hand pump Just activate 91.
  • the sample solution pumped to the port 75 pushes up the diaphragm 61 and pushes the driving liquid in the lower space 30 to the driving liquid collection container 71 through the air vent Z driving liquid discharge pipe 69 and the open / close valve V4.
  • the on-off valves V4 and V5 are closed, the on-off valve V7 is opened, and the operation of the micropump 20F is resumed.
  • FIG. 15 is a schematic diagram showing another embodiment of a microchip on which the micropump of the present invention is mounted.
  • the port 75 is enlarged so as to penetrate the bottom substrate 81 of the microchip 73.
  • a through hole is provided in the lower surface substrate 81, and a cup-shaped container 101 is disposed below the through hole.
  • the inside of the container 101 is an enlarged port 75.
  • the size and shape of the diaphragm 61 are appropriately selected according to the depth of the expansion port 75. In this way, by increasing the depth of the expansion port 75, the operable period can be extended by one sample solution replenishment.
  • FIG. 16 is a schematic diagram showing still another embodiment of a microchip on which the micropump of the present invention is mounted.
  • the sample solution is manually replenished with the hand pump 91.
  • the replenishment pump 103 that operates with a predetermined actuator is used.
  • a control device 105 that controls the operation of the replenishment pump 103 and the on-off valves V1 to V7 and the open / close operation as necessary, and performs the replenishment operation at a predetermined timing.
  • the timing of the replenishment operation is as follows: (A) Measuring the operation time of the micro pump, (B) Measuring the total flow rate with a flow meter, etc. For example, a method of measuring with a sensor can be considered. Such a configuration makes it possible to operate a microphone port pump that has been automated for a long time.
  • FIG. 17 is a schematic cross-sectional view of still another embodiment of the micropump of the present invention.
  • This micropump 20G is configured vertically symmetrically. That is, the porous membrane 27 and the pair of electrodes 25 and 27 are arranged so as to divide the inside of the outer shell 23F into two equal parts. In this case, it is not necessary to incline the porous membrane or the electrode, and it may be attached in a horizontal state. This is because there is no need to vent the air.
  • a diaphragm 61a is fixed to the upper end of the upper space 31 of the outer shell 23F divided into two equal parts by the porous film 27, and a diaphragm 61b is fixed to the lower end of the lower space 33, respectively.
  • a driving liquid 223 is hermetically filled in the closed upper space 31 defined by the diaphragm 61a and the porous film 27.
  • the driving liquid 223 is hermetically filled in the closed lower space 33 defined by the diaphragm 61b and the porous film 27.
  • the amount of driving fluid in one closed space is larger than the amount of driving fluid in the other closed space.
  • the diaphragm 61a There is only the amount of driving fluid that 61b sinks inward of the outer shell 23F.
  • FIGS. 18A to 18C A method of using the micropump 20G will be described with reference to FIGS. 18A to 18C.
  • the sealed micropump 20G shown in Fig. 17 is placed in alignment with the upper opening of the port 75 of the microchip 73.
  • the microchip itself is not limited to the illustrated embodiment, and any microchip having a port and a microchannel can be used.
  • the microchip 1 can be used.
  • the direction of the amount of driving fluid in the upper space 31 must be greater than the amount of driving fluid in the lower space 33. This can be easily confirmed by looking at the appearance of the diaphragm. In other words, the bulging side should be on the top and the concave side should be on the bottom.
  • the sample solution 225 is injected into the port 75 after the micropump 20G is arranged. Since the method for injecting the sample solution into the port 75 has already been described in detail, it will be omitted here.
  • a sample solution is injected into the port in advance, and then the micropump 20G is disposed. Connect the upper electrode 25 side to the positive side of the DC power supply and the lower electrode 27 to the negative side, and apply a predetermined voltage.
  • FIG. 18C shows a state in which the micropump 20G is turned over and aligned with the upper opening of the port 75 of the microphone mouth chip 73 and rearranged.
  • the former lower space 33 is now located on the upper side, and the upper space 31 is located on the lower side.
  • the electrode 27 since the electrode is also turned upside down, when applying a voltage, the electrode 27 must be connected to the positive side and the electrode 25 must be connected to the negative side.
  • the sample solution delivery work can be efficiently performed by repeating the operations shown in FIGS. 18A to 18C.
  • the micropump 20G shown in FIG. 17 not only the complicated driving liquid supply operation as shown in FIGS. 11 to 16 can be omitted, but the driving liquid is dust and microbes in the atmosphere. It is completely prevented from being contaminated or altered by carbon dioxide gas. Since there is no need to put in and out the drive fluid, or to replace or replenish it, not only can the cost of the drive fluid be saved, but the overall configuration of the device is simplified, resulting in lower device costs.
  • the micropump of the present invention is not limited to the illustrated embodiments, and various modifications are possible. Can be applied.
  • the first shielding sheet and the second shielding sheet are described as separate sheets, but the first shielding sheet and the second shielding sheet are one continuous sheet. It can also be.
  • the first groove and the second groove an aspect of being arranged on the outer wall surface of the outer shell, an aspect of being arranged on the shielding sheet, and an aspect of being arranged in the wall of Z or the outer shell as appropriate You can combine them conveniently.
  • the first groove is disposed on the outer wall surface of the outer shell
  • the second groove is disposed on the shielding sheet
  • the first groove is disposed on the shielding sheet
  • the second groove is disposed. It is possible to adopt a mode in which the outer shell is disposed on the outer wall surface.
  • the groove shape can also be a combination of a linear shape and a meandering shape.
  • a linear shape can also be a combination of a linear shape and a meandering shape.
  • Both the first groove and the second groove can be straight grooves or serpentine grooves, or one can be a straight groove and the other can be a serpentine groove.
  • the size of the micropump itself is not an essential requirement of the present invention! /.
  • An appropriate size can be selected according to the application.
  • the size of the sheet, hole and groove can be adjusted and changed appropriately to the optimum values.
  • the shape of the outer shell 23 is not limited to a cylindrical shape, and may be a prismatic shape. Further, the material of the outer shell 23 is not limited to PDMS, and can be glass, synthetic resin, or metal that can self-adhere with the PDMS substrate 3.
  • a microfluidic chip 1 having a cross-sectional structure as shown in FIG. 19 was produced.
  • the facing substrate 10 was made of glass with a thickness of 1 mm
  • the substrate 3 was made of PDMS with a thickness of 2 mm.
  • the width and height of microchannel 5 were 200 m each, and the length (distance) was 50 mm.
  • the inner diameter of port 9 was lmm.
  • the inner diameter of port 7 was 9 mm.
  • a micropump 20A shown in FIG. 4 was produced.
  • Micro pump 20A PDMS outer shell 23A outer diameter is 20mm, height is 18mm, upper space 31 inner diameter is 13mm, lower space 33 inner diameter is 10mm, flange 35 outer diameter is 30mm, height Was 2 mm.
  • a first hole 37 (inner diameter lmm) was drilled at a position 5 mm from the upper end of the outer shell 23A, and a second hole 39 (inner diameter lmm) was drilled at a position 6 mm from the lower surface of the flange portion 35.
  • a fourth hole 47 (inner diameter lmm) is drilled at a position 2 mm from the upper end of the outer shell 23A, and a third hole 45 (inner diameter 2 mm) is formed at a position 7.9 mm from the bottom surface of the flange portion 35.
  • the porous membrane 29 a polycarbonate porous membrane having a pore diameter of 2 ⁇ m, the number of pores of 1.500000, and a thickness of 11 m was used. Electrodes 25 and 27 were connected to the upper surface side and lower surface side of this porous membrane via packing, respectively. The outer diameter of the electrode-equipped porous membrane 29 was 13 mm. An electrode-equipped porous membrane 29 was attached in an inclined manner in the hollow portion of the outer shell 23A.
  • concave portions 53 and 55 inner diameter of 100 m, concave portion interval of 7 mm
  • first groove 41A width 100 / zm, depth 100 / zm, length 8.lm m
  • the first shielding sheet 43A made of PDMS was self-adsorbed on the outer wall surface of the outer shell 23A in alignment with the first hole 37 and the second hole 39.
  • recessed portions 53 and 55 inner diameter 100 / ⁇ ⁇ , recessed portion interval 7 mm
  • second groove 49 mm width 1000 / ⁇ ⁇ , depth 100 m, length 8. lmm
  • the second shielding sheet 51A made of PDMS was self-adsorbed on the outer wall surface of the outer shell 23A in alignment with the third hole 45 and the fourth hole 47.
  • Port 7 of the microfluidic chip 1 was filled with an oily sample liquid colored in red. Thereafter, the opening of the lower space 33 of the micropump 20A was aligned with the upper surface of the opening of the port 7, and the micropump 20A was self-adsorbed to the PDMS substrate 3.
  • Example 1 The micropump 20A in Example 1 was separated from the microfluidic chip force of Example 1 and self-adsorbed on the upper surface of the port 7 of another microfluidic chip having the same flow path structure, and the same silica as in Example 1 When a liquid feeding experiment was performed using a colloidal solution, the same result as in Example 1 was obtained. In addition, liquid leakage from the adhesive interface between the micropump 20A and the PDMS substrate 3 did not occur. From this, it can be understood that the micropump according to the present invention can be effectively used repeatedly as an external micropump in a microfluidic chip.
  • Example 3 Example 3
  • a micropump 20E shown in FIG. 10 was produced by the same method as described in Example 1.
  • a 0.3 mm thick polypropylene dome-shaped film was used for the diaphragm 61. This film was fixed to the inner wall surface at the lower end of the lower space with a synthetic resin ring. Port 7 of the microfluidic chip 1 was filled with physiological saline colored red. Thereafter, the micropump 20E was placed on the upper surface of the opening of the port 7. At this time, the diaphragm 61 was deformed so as to enter the lower space 33.
  • Example 2 In the same manner as in Example 1, the same driving fluid as that used in Example 1 was filled in the upper space and lower space of the micro pump 20E, and a DC voltage of 15 V was applied to the positive electrode 25 and the negative electrode 27. However, an electroosmotic flow from the hollow upper space 31 to the hollow lower space 33 is generated, and accordingly, the diaphragm 61 gradually swells downward, and accordingly the colored physiological saline in the port 7 flows into the fine flow path. It was confirmed that the liquid was fed to port 9 via 5.
  • the micropump of the present invention is used to collect and isolate various cells and to clone specific cells in the immunological field, hematology field, medical field, genetic engineering field, applied life science field, and the like. Effective use in microfluidic chips used for purposes such as proliferation, sorting of cells expressing specific antigens on the cell surface, body membrane cell body analysis, cell chromosome analysis, and urinary formation classification can do.
  • FIG. 1 is a partial schematic cross-sectional view of an example of an embodiment of a micropump according to the present invention.
  • FIG. 2 is a partial schematic plan view showing an example of the shape of the first groove formed on the outer wall surface of the outer shell of the micropump in FIG. 1.
  • FIG. 3 is a schematic plan view of another embodiment of the first shielding sheet or the second shielding sheet.
  • FIG. 4 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention using the shielding sheet shown in FIG.
  • FIG. 5 is a partial schematic perspective view of the micropump shown in FIG.
  • FIG. 6 is a schematic plan view of still another embodiment of the second shielding sheet.
  • FIG. 7 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention using the shielding sheet shown in FIG.
  • FIG. 8 is a partial schematic cross-sectional view of another embodiment of a micropump according to the present invention.
  • FIG. 9 is a partial schematic cross-sectional view of still another embodiment of the micropump according to the present invention.
  • FIG. 10 is a partial schematic cross-sectional view of still another embodiment of the micropump according to the present invention.
  • FIG. 11 shows a configuration of an example of an embodiment of a micropump device in which a micropump according to the present invention is mounted on a microfluidic chip, where (a) is a longitudinal sectional view and (b) is a plan view.
  • FIG. 12 is a partial cross-sectional view showing the main part of the micropump in FIG. 11, where (a) is a view from the a arrow in FIG. 11 (b) and (b) is a view from the b arrow in FIG. is there.
  • FIG. 13 is a schematic diagram showing a pump system using the micropump device of FIG.
  • FIG. 14 is a view schematically showing a liquid flow in a pump system using the micropump device of FIG. 11.
  • FIG. 15 is a schematic diagram showing a micropump device and a pump system according to another embodiment of the present invention.
  • FIG. 16 is a schematic view showing a micropump device and a pump system according to still another embodiment of the present invention.
  • FIG. 17 is a partial schematic cross-sectional view of another embodiment of a micropump according to the present invention.
  • FIG. 18A is a partial schematic cross-sectional view for explaining the operation of the micropump of FIG.
  • FIG. 18B is a partial schematic cross-sectional view illustrating the operation of the micropump of FIG.
  • 18C is a partial schematic cross-sectional view illustrating the operation of the micropump in FIG.
  • FIG. 19 is a partial schematic cross-sectional view of an example of a conventional micropump shown in Patent Document 3.
  • FIG. 20 is an exploded perspective view of the positive electrode 205 and the negative electrode 207 shown in FIG. 19 and the porous membrane 209 interposed between the electrodes.
  • FIG. 21 is a partial schematic sectional view showing an example of use of the conventional micropump 200 shown in FIG.

Abstract

[PROBLEMS] To improve operability of a micropump for very low flow rate utilizing a membrane permeation flow caused by electric effect of a flow passing through a micro region. [MEANS FOR SOLVING PROBLEMS] A micropump for very low flow rate comprising a shell having a through hollow portion, and a porous membrane interposed between a plus electrode and a minus electrode and so arranged in the hollow portion as to divide it into two, and utilizing electroosmosis effect of a flow passing through the porous membrane, characterized in that a bypass channel for filling liquid is arranged to communicate with the lower space of the hollow portion divided into two by the porous membrane, and an air vent channel is arranged to communicate with the atmosphere from the lower space. In the micropump, the inlet of the air vent channel opening to the inside of the lower space has a height from the bottom face of the lower space which is preferably set to be larger than the height of the outlet of the bypass channel opening to the inside of the lower space from the bottom face of the lower space.

Description

明 細 書 技術分野  Technical field
[0001] 本発明は微小流量用マイクロポンプ及び該ポンプを使用するマイクロ流体チップに 関する。更に詳細には、本発明は、操作性に優れた微小流量用マイクロポンプ及び 該ポンプを着脱可能に配設することができるマイクロ流体チップに関する。  The present invention relates to a micro flow micro pump and a micro fluid chip using the pump. More specifically, the present invention relates to a micro-flow micropump excellent in operability and a microfluidic chip in which the pump can be detachably disposed.
背景技術  Background art
[0002] 最近、マイクロ 'トータル 'アナリシス 'システムズ( TAS)又はラブ 'オン'チップ (La b- on- Chip)などの名称で知られるように、基板内にマイクロチャネルや反応容器及び ポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出 、生成及び Z又は分析など各種の操作を行うように構成されたマイクロデバイスが提 案され、一部実用化されている。このような目的のために製作された、基板内にマイク ロチャネル、ポート及び反応容器などの微細構造を有する構造物は総称して「マイク 口流体チップ」又は単に「マイクロチップ」と呼ばれる。マイクロ流体チップの材質や構 造及び製造方法は例えば、特許文献 1及び特許文献 2などに開示されて ヽる。  [0002] Recently, micro-channels, reaction vessels and ports, etc. have been built into the substrate, as known under the name Micro 'Total' Analysis' Systems (TAS) or Love 'on-Chip'. A microdevice configured to perform various operations such as chemical reaction, synthesis, purification, extraction, generation and Z or analysis of a substance in a microstructure is proposed and partially put into practical use. Yes. A structure having a microstructure such as a microchannel, a port, and a reaction vessel manufactured for such a purpose is collectively called a “microfluidic chip” or simply “microchip”. The material, structure, and manufacturing method of the microfluidic chip are disclosed in, for example, Patent Document 1 and Patent Document 2.
[0003] マイクロ流体チップ内のマイクロチャネルや反応容器では流体(主に薬液やサンプ ル等の液体)を扱うが、その為には流体の流れや移送を制御する機能が必要になる 。特にマイクロ流体チップに内蔵した小さな機能部品は流体制御素子と呼ばれる。流 体制御素子として一般的なものはマイクロバルブやマイクロポンプなどである。  [0003] A microchannel or reaction vessel in a microfluidic chip handles a fluid (mainly a liquid such as a chemical solution or a sample). For this purpose, a function for controlling the flow and transfer of the fluid is required. In particular, a small functional component built in a microfluidic chip is called a fluid control element. Common fluid control elements include microvalves and micropumps.
[0004] マイクロ流体チップにぉ 、て使用されるマイクロポンプの一例は特許文献 3に記載 されている。このマイクロポンプは、微小領域を通る電気的効果による膜通過流れを 利用した微小流量用マイクロポンプである。図 19に示されるように、特許文献 3のマイ クロポンプ 200は、マイクロ流体チップ 1の上面に載置されて使用されることがある。 マイクロ流体チップ 1における PDMS基板 3には微細流路 5とこの微細流路に連通し たポート 7及び 9が形成されている。 PDMS基板 3の下面側には例えば、ガラス製の 対面基板 10が恒久接着されている。ポート 7の上面に、マイクロポンプ 100が載置さ れている。マイクロポンプ 200は外殻 203と、この外殻 203に内蔵されたプラス電極 2 05及びマイナス電極 207とこの電極間に間挿された多孔質膜 209とからなる。プラス 電極 205の上部は液体貯留空間 211が形成されており、この液体貯留空間 211内 に液体を給送するためのチューブ 213が適当な接着剤により固設されている。 An example of a micropump used for a microfluidic chip is described in Patent Document 3. This micropump is a micropump for micro flow rate that uses the flow through the membrane by the electrical effect passing through the micro region. As shown in FIG. 19, the micropump 200 of Patent Document 3 is sometimes used while being placed on the upper surface of the microfluidic chip 1. The PDMS substrate 3 in the microfluidic chip 1 is formed with a fine channel 5 and ports 7 and 9 communicating with the fine channel. For example, a glass facing substrate 10 is permanently bonded to the lower surface side of the PDMS substrate 3. The micro pump 100 is placed on the upper surface of the port 7. The micropump 200 has an outer shell 203 and a positive electrode 2 built in the outer shell 203. 05 and a negative electrode 207 and a porous membrane 209 interposed between the electrodes. A liquid storage space 211 is formed in the upper part of the plus electrode 205, and a tube 213 for feeding the liquid into the liquid storage space 211 is fixed with an appropriate adhesive.
[0005] 図 20は、図 19に示されるプラス電極 205及びマイナス電極 207とこの電極間に間 挿された多孔質膜 209の分解斜視図である。多孔質膜 209は実際には支持体 217 により支持されている。プラス電極 205及びマイナス電極 207にはそれぞれ円形の開 口部 219及び 221が配設されている。この円形の開口部 219及び 221は、支持体 2 17の円形の開口部すなわち多孔質膜 209が流れに面する円形の領域と実質的に 同じ半径を有し、全ての中心が同じ軸線上に位置して 、る。  FIG. 20 is an exploded perspective view of the positive electrode 205 and the negative electrode 207 shown in FIG. 19 and the porous film 209 interposed between the electrodes. The porous membrane 209 is actually supported by the support 217. Circular openings 219 and 221 are disposed on the plus electrode 205 and the minus electrode 207, respectively. The circular openings 219 and 221 have substantially the same radius as the circular opening of the support 217, i.e. the circular region where the porous membrane 209 faces the flow, and all centers are on the same axis. It is located.
[0006] 多孔質膜 209前後の電極 205, 207間に直流数 V〜数十 V (例えば、 5V〜15V) の電圧を印加すると、液体はプラス電極 205側力 マイナス電極 207側に向かって 流れる。従って、液体貯留空間 211内の液体は多孔質膜を透過してポート 7内に押 し出される。この多孔質膜ポンプによる流量は 0. 02mm3Zs〜0. 14mm3Zsの範 囲内で変化させることができる。流量は印加電圧に概ね比例する。このようなマイクロ ポンプを使用することの利点は、脈流が発生しないことである。 [0006] When a voltage of several VDC to several tens of volts (for example, 5V to 15V) is applied between the electrodes 205 and 207 around the porous membrane 209, the liquid flows toward the positive electrode 205 side minus the electrode 207 side. . Accordingly, the liquid in the liquid storage space 211 passes through the porous membrane and is pushed out into the port 7. The flow rate by the porous membrane pump can be varied by 0. 02mm 3 Zs~0. 14mm 3 Zs of within range. The flow rate is roughly proportional to the applied voltage. The advantage of using such a micropump is that no pulsating flow occurs.
[0007] 図 21は、図 19に示されるような従来のマイクロポンプ 200の或る使用例を示す部分 概要断面図である。従来のマイクロポンプ 200は、チューブ 213から液体貯留空間 2 11内に供給された駆動液 223を用いて、ポート 7内に予め充填されている別の試料 液体 225を微細流路 5に押し出して送液する目的で使用されることがある。この場合 、マイナス電極 207の下部に存在するポート 7との間の空間 215内に駆動液 223が 満たされなければ、ポート 7内の試料液体を微細流路 5に押し出して送液することが できない。空間 215の容積にもよる力 前記のように多孔質膜ポンプによる流量は 0. 1 μ LZs〜100 μ LZs程度なので、空間 215に駆動液 223を満たすにはかなりの 時間を要し、これが原因で分析作業の遅延を来すことがあった。  FIG. 21 is a partial schematic cross-sectional view showing a usage example of the conventional micropump 200 as shown in FIG. The conventional micropump 200 uses the driving liquid 223 supplied from the tube 213 into the liquid storage space 211 to push out another sample liquid 225 prefilled in the port 7 to the fine channel 5 and send it. May be used for liquefaction purposes. In this case, if the driving liquid 223 is not filled in the space 215 between the lower electrode 207 and the port 7, the sample liquid in the port 7 cannot be pushed out and sent to the microchannel 5. . Force due to the volume of the space 215 As mentioned above, the flow rate by the porous membrane pump is about 0.1 μLZs to 100 μLZs, so it takes a considerable time to fill the space 215 with the driving liquid 223. This could delay analysis work.
[0008] 特許文献 1 :特開 2000— 27813号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-27813
特許文献 2:特開 2001— 157855号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-157855
特許文献 3:国際公開第 2005Z052379号パンフレット  Patent Document 3: International Publication No. 2005Z052379 Pamphlet
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0009] 従って、本発明の目的は、微小領域を通る電気的効果による膜通過流れを利用し た微小流量用マイクロポンプの操作性を改善することである。  Accordingly, an object of the present invention is to improve the operability of a micro pump for micro flow rate using a flow through a membrane by an electrical effect passing through a micro region.
課題を解決するための手段  Means for solving the problem
[0010] 前記課題を解決するための手段としての請求項 1の発明は、貫通中空部を有する 外殻と、該中空部の内部に、該中空部を上下に 2分するように配置された、プラス電 極とマイナス電極の間に間挿された多孔質膜とからなり、前記多孔質膜を通る電気 浸透流効果を利用した微小流量用マイクロポンプにおいて、  [0010] The invention of claim 1 as a means for solving the above-mentioned problems is arranged such that an outer shell having a through-hole and a hollow part are vertically divided into the hollow part. In a micro flow micropump comprising a porous membrane interposed between a plus electrode and a minus electrode and utilizing an electroosmotic flow effect passing through the porous membrane,
前記多孔質膜により 2分された中空部の下部空間に連通する液体充填用バイパス 流路が配設されており、かつ、前記下部空間から大気に連通する空気抜き流路が配 設されて!/ヽることを特徴とするマイクロポンプを提供する。  A liquid-filling bypass flow path communicating with the lower space of the hollow portion divided by the porous membrane is disposed, and an air vent flow path communicating with the atmosphere from the lower space is disposed! / Provided is a micropump characterized by squeezing.
[0011] この発明によれば、前記マイクロポンプの外殻の多孔質膜により 2分された中空部 の下部空間に連通する液体充填用バイパス流路を介して駆動液などの液体類を迅 速に下部空間内に充填することができる。この際、下部空間内の空気は空気抜き流 路を経て大気に抜けていくので、駆動液などの液体類を下部空間に満たす際の障 害にはならない。その結果、極めて短時間のうちに下部空間に駆動液などの液体類 を充填することが可能となり、従来のマイクロポンプのように電圧を印加して長時間か けて下部空間に駆動液などの液体類を満たしていた緩慢で冗長な操作は不要にな るので、マイクロポンプの操作性又は使 、勝手が飛躍的に改善できる。  [0011] According to the present invention, the liquid such as the driving liquid is rapidly passed through the liquid filling bypass channel communicating with the lower space of the hollow portion divided into two by the porous membrane of the outer shell of the micropump. The lower space can be filled. At this time, the air in the lower space escapes to the atmosphere through the air vent flow path, so that there is no obstacle to filling the lower space with liquids such as driving liquid. As a result, it becomes possible to fill the lower space with a liquid such as a driving liquid in an extremely short time, and like a conventional micropump, a voltage is applied to the lower space for a long time. Since the slow and redundant operation filled with liquids is no longer necessary, the operability or use of the micropump can be dramatically improved.
[0012] 前記課題を解決するための手段としての請求項 2の発明は、前記下部空間の内側 に開口した前記空気抜き流路の入口の前記下部空間の底面からの高さが、前記下 部空間の内側に開口した前記バイパス流路の出口の前記下部空間の底面からの高 さ以上であることを特徴とする請求項 1記載のマイクロポンプを提供する。  [0012] The invention of claim 2 as means for solving the above-mentioned problem is that the height of the inlet of the air vent channel that opens to the inside of the lower space from the bottom surface of the lower space is the lower space. 2. The micropump according to claim 1, wherein a height of the outlet of the bypass channel opened inside is lower than a bottom surface of the lower space.
[0013] この発明によれば、液体充填用バイパス流路の下部空間出口の高さが空気抜き流 路の下部空間入口の高さと同じか又はそれよりも高いので、下部空間内の空気を確 実に空気抜き流路に誘導することができる。  [0013] According to the present invention, since the height of the lower space outlet of the liquid-filling bypass channel is equal to or higher than the height of the lower space inlet of the air vent channel, the air in the lower space is surely received. It can be guided to the air vent channel.
[0014] 前記課題を解決するための手段としての請求項 3の発明は、前記バイパス流路は、 前記外殻の外部か又は外殻の壁内に形成され、前記空気抜き流路は前記外殻の外 部か又は外殻の壁内に形成されていることを特徴とする請求項 1又は 2記載のマイク 口ポンプを提供する。 [0014] The invention of claim 3 as means for solving the above-mentioned problem is that the bypass flow path is formed outside the outer shell or in the wall of the outer shell, and the air vent flow path is the outer shell. Outside The microphone port pump according to claim 1 or 2, wherein the microphone port pump is formed in a wall of the outer shell or the outer shell.
[0015] この発明によれば、バイパス流路を外殻の外部か又は外殻の壁内に形成し、空気 抜き流路も外殻の外部か又は外殻の壁内に形成することができるので、都合の良い 組合せを選択することができる。  [0015] According to the present invention, the bypass channel can be formed outside the outer shell or in the wall of the outer shell, and the air vent channel can also be formed outside the outer shell or in the wall of the outer shell. So you can choose a convenient combination.
[0016] 前記課題を解決するための手段としての請求項 4の発明は、前記外殻の外部に形 成される前記バイパス流路は、前記外殻の下部空間に貫通して配設されたバイパス 流路出口となる第 2の穴と、下側端が該第 2の穴に連通する第 1の溝と、前記第 2の 穴及び前記第 1の溝を遮蔽する第 1の遮蔽シートとから構成されており、前記第 1の 溝は、前記外殻の外壁面上か、又は前記第 1の遮蔽シートの接着面側の何れかに 形成されており、前記第 1の溝の上側端は、外殻の上部空間に貫通して配設され、 かつ前記第 1の遮蔽シートにより遮蔽される第 1の穴に連通するか、又は、前記第 1 の遮蔽シートの上端で大気に連通しており、  [0016] The invention of claim 4 as a means for solving the above-mentioned problem is that the bypass flow path formed outside the outer shell is disposed through the lower space of the outer shell. A second hole serving as a bypass channel outlet, a first groove whose lower end communicates with the second hole, and a first shielding sheet that shields the second hole and the first groove; The first groove is formed on either the outer wall surface of the outer shell or the adhesive surface side of the first shielding sheet, and the upper end of the first groove Is communicated with the first hole disposed through the upper space of the outer shell and shielded by the first shielding sheet, or communicated with the atmosphere at the upper end of the first shielding sheet. And
前記外殻の外部に形成される前記空気抜き流路は、前記外殻の下部空間に貫通 して配設された空気抜き流路入口となる第 3の穴と、下側端が該第 3の穴に連通する 第 2の溝と、前記第 3の穴及び前記第 2の溝を遮蔽する第 2の遮蔽シートとから構成さ れており、前記第 2の溝は、前記外殻の外壁面上か、又は前記第 2の遮蔽シートの接 着面側の何れかに形成されており、前記第 2の溝の上側端は、外殻の上部空間に貫 通して配設され、かつ前記第 2の遮蔽シートにより遮蔽される第 4の穴に連通するか、 又は、前記第 2の遮蔽シートの上端で大気に連通しており、  The air vent channel formed outside the outer shell has a third hole serving as an air vent channel inlet penetrating the lower space of the outer shell, and a lower end of the third hole. A second groove that communicates with the second hole and a second shielding sheet that shields the third hole and the second groove, and the second groove is formed on the outer wall surface of the outer shell. Or the upper end of the second groove is disposed so as to penetrate through the upper space of the outer shell, and the second shielding sheet is attached to the second shielding sheet. Communicating with the fourth hole shielded by the shielding sheet, or communicating with the atmosphere at the upper end of the second shielding sheet,
前記第 3の穴の前記下部空間の底面からの高さは、前記第 2の穴の前記下部空間 の底面からの高さ以上であり、  The height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space,
前記第 1の溝が前記第 1の穴に連通し、前記第 2の溝が前記第 4の穴に連通する 場合、下部空間底面力 の第 1の穴の位置は下部空間底面からの第 4の穴の位置よ りも低いことを特徴とする請求項 3記載のマイクロポンプを提供する。  When the first groove communicates with the first hole and the second groove communicates with the fourth hole, the position of the first hole of the lower space bottom force is the fourth position from the bottom of the lower space. 4. The micropump according to claim 3, wherein the position is lower than the position of the hole.
[0017] この発明によれば、バイパス流路又は空気抜き流路を様々な態様で外殻の外部に 形成することができるので、都合の良い態様を適宜選択することができる。  [0017] According to the present invention, the bypass flow channel or the air vent flow channel can be formed outside the outer shell in various modes, so that a convenient mode can be appropriately selected.
[0018] 前記課題を解決するための手段としての請求項 5の発明は、前記外殻の壁内に形 成される前記バイパス流路は、前記外殻の下部空間に配設されたバイパス流路出口 となる第 2の穴と、第 1の溝とからなり、前記第 1の溝の下側端は該第 2の穴に連通し ており、前記第 1の溝の上側端は、前記外殻の上端面上で大気に連通するか、又は 、前記外殻の上部空間内側に向力つて開口するか若しくは前記外殻の外側に向か つて開口する第 1の穴に連通しており、 [0018] The invention of claim 5 as a means for solving the above-mentioned problems is formed in the wall of the outer shell. The bypass channel formed is composed of a second hole serving as a bypass channel outlet disposed in a lower space of the outer shell and a first groove, and a lower end of the first groove is The upper end of the first groove communicates with the atmosphere on the upper end surface of the outer shell, or opens to the inner side of the upper space of the outer shell. Or communicates with a first hole that opens toward the outside of the outer shell,
前記外殻の壁内に形成される前記空気抜き流路は、前記外殻の下部空間に配設 された空気抜き流路入口となる第 3の穴と、第 2の溝とからなり、前記第 2の溝の下側 端は該第 3の穴に連通しており、前記第 2の溝の上側端は、前記外殻の上端面上で 大気に連通するか、又は、前記外殻の上部空間内側に向力つて開口するか若しくは 前記外殻の外側に向かって開口する第 4の穴に連通しており、  The air vent channel formed in the wall of the outer shell includes a third hole serving as an air vent channel inlet disposed in a lower space of the outer shell and a second groove, and the second groove. The lower end of the groove communicates with the third hole, and the upper end of the second groove communicates with the atmosphere on the upper end surface of the outer shell, or the upper space of the outer shell. It opens to the inside by force or communicates with the fourth hole that opens to the outside of the outer shell,
前記第 3の穴の前記下部空間の底面からの高さは、前記第 2の穴の前記下部空間 の底面からの高さ以上であり、  The height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space,
前記第 1の溝が前記外殻の上部空間内側に向力つて開口する前記第 1の穴に連 通し、前記第 2の溝が前記外殻の上部空間内側に向かって開口する前記第 4の穴に 連通する場合、下部空間底面からの第 1の穴の位置は下部空間底面力 の第 4の穴 の位置よりも低いことを特徴とする請求項 3記載のマイクロポンプを提供する。  The first groove communicates with the first hole opening toward the inside of the upper space of the outer shell, and the second groove opens to the inside of the upper space of the outer shell. 4. The micropump according to claim 3, wherein, when communicating with the hole, the position of the first hole from the bottom surface of the lower space is lower than the position of the fourth hole of the bottom space bottom force.
[0019] この発明によれば、バイパス流路又は空気抜き流路を様々な態様で外殻の壁内に 形成することができるので、都合の良い態様を適宜選択することができる。  According to the present invention, the bypass channel or the air vent channel can be formed in the wall of the outer shell in various modes, so that a convenient mode can be appropriately selected.
[0020] 前記課題を解決するための手段としての請求項 6の発明は、前記下部空間の内側 に開口した前記空気抜き流路の入口(第 3の穴)の内径力 前記下部空間の内側に 開口した前記バイパス流路の出口(第 2の穴)の内径よりも大きいことを特徴とする請 求項 1〜5の何れかに記載のマイクロポンプを提供する。  [0020] The invention of claim 6 as means for solving the above-mentioned problem is that the inner diameter force of the inlet (third hole) of the air vent channel opened inside the lower space is opened inside the lower space. The micropump according to any one of claims 1 to 5, wherein the micropump is larger than an inner diameter of an outlet (second hole) of the bypass flow path.
[0021] この発明によれば、空気抜き流路の入口(第 3の穴)の内径が、バイパス流路の出 口(第 2の穴)の内径よりも大きいので、気泡は空気抜き流路の入口(第 3の穴)に滞 積することなぐスムーズに大気に逃がされる。  [0021] According to the present invention, since the inner diameter of the inlet (third hole) of the air vent channel is larger than the inner diameter of the outlet (second hole) of the bypass channel, bubbles are introduced into the inlet of the air vent channel. Escape to the atmosphere smoothly without stagnating in the (third hole).
[0022] 前記課題を解決するための手段としての請求項 7の発明は、前記第 1の溝及び第 2 の溝の形状は、直線状及び蛇行状からなる群から選択される何れかの形状であるこ とを特徴とする請求項 1〜6の何れかに記載のマイクロポンプを提供する。 [0023] この発明によれば、溝の形状として、直線状又は蛇行状の適宜都合の良!、形状を 選択でき、特に蛇行状形状の場合、溝全体の距離が長くなるので圧力損失を制御す ることが可能になるという利点を有する。 [0022] The invention according to claim 7 as means for solving the above-mentioned problem is that the shape of the first groove and the second groove is any shape selected from the group consisting of a linear shape and a meandering shape. The micropump according to any one of claims 1 to 6, wherein the micropump is provided. [0023] According to the present invention, the shape of the groove can be selected as a straight line or a meandering shape as appropriate, and the shape can be selected. It has the advantage that it can be done.
[0024] 前記課題を解決するための手段としての請求項 8の発明は、前記外殻がポリジメチ ルシロキサン (PDMS)又はガラスから形成されており、前記第 1の遮蔽シート及び第 2の遮蔽シートが PDMS力も形成されていることを特徴とする請求項 1〜7の何れか に記載のマイクロポンプを提供する。  [0024] The invention of claim 8 as means for solving the above-mentioned problem is that the outer shell is formed of polydimethylsiloxane (PDMS) or glass, and the first shielding sheet and the second shielding sheet. The micropump according to any one of claims 1 to 7, wherein PDMS force is also formed.
[0025] この発明によれば、外殻を PDMS又はガラス力 形成することにより、 PDMS製遮 蔽シートを外殻の外壁面に自己吸着させることが可能になる。  [0025] According to the present invention, the PDMS shielding sheet can be self-adsorbed to the outer wall surface of the outer shell by forming the outer shell with PDMS or glass force.
[0026] 前記課題を解決するための手段としての請求項 9の発明は、前記外殻の下部空間 の端部付近に、前記下部空間を閉塞する隔膜を更に有することを特徴とする請求項 1〜8の何れかに記載のマイクロポンプを提供する。  [0026] The invention of claim 9 as means for solving the above-mentioned problem further comprises a diaphragm for closing the lower space in the vicinity of the end of the lower space of the outer shell. A micropump according to any one of -8 is provided.
[0027] この発明によれば、駆動液と試料液体とが明瞭な界面を形成できず、互いに混じり 合ってしまうような場合、従来は駆動液と試料液体との間に緩衝液を介在させて ヽた 力 緩衝液を使用することなぐ隔膜を介して電気浸透流の駆動力を試料液体に伝 達することができる。その結果、緩衝液の使用に伴う様々な問題点を全て解決できる  [0027] According to the present invention, when the driving liquid and the sample liquid cannot form a clear interface and are mixed with each other, a buffer solution is conventionally interposed between the driving liquid and the sample liquid.力 力 The driving force of electroosmotic flow can be transmitted to the sample liquid through the diaphragm without using a buffer solution. As a result, all the various problems associated with the use of buffer solutions can be solved.
[0028] 前記課題を解決するための手段としての請求項 10の発明は、貫通中空部を有する 外殻と、該中空部の内部に、該中空部を上下に 2分するように配置された、プラス電 極とマイナス電極の間に間挿された多孔質膜とからなり、前記多孔質膜を通る電気 浸透流効果を利用した微小流量用マイクロポンプにおいて、 [0028] The invention of claim 10 as means for solving the above-mentioned problems is arranged such that the outer shell having a through-hole and a hollow portion are divided into two in the vertical direction inside the hollow portion. In a micro flow micropump comprising a porous membrane interposed between a plus electrode and a minus electrode and utilizing an electroosmotic flow effect passing through the porous membrane,
前記多孔質膜により 2分された中空部の上部空間の端部付近に前記上部空間を 密封する隔膜を有し、かつ、多孔質膜により 2分された中空部の下部空間の端部付 近に前記下部空間を密封する隔膜を有し、前記密封された上部空間及び下部空間 内にはそれぞれ所定量の駆動液が充填されていることを特徴とするマイクロポンプを 提供する。  There is a diaphragm for sealing the upper space in the vicinity of the end of the upper space of the hollow portion divided into two by the porous membrane, and near the end of the lower space of the hollow portion divided into two by the porous membrane There is provided a micropump having a diaphragm for sealing the lower space, and the sealed upper space and lower space are filled with a predetermined amount of driving liquid, respectively.
[0029] この発明によれば、駆動液は上部空間及び下部空間にそれぞれ密封充填されて いる。電極間に電圧を印加して、多量の駆動液を有する上部空間内の駆動液を少量 の駆動液を有する下部空間に移動させて試料溶液の送液を終了した後、マイクロポ ンプをひっくり返して、多量の駆動液を有する下部空間を上部空間とし、駆動液が少 量になった上部空間を下部空間として元のポート開口部に載置し直し、電極間に電 圧を印加すれば、再び駆動液を上から下へ移動させることができる。その結果、煩雑 な駆動液供給操作を省略できるばかりか、駆動液が大気中の塵埃、微生物、炭酸ガ スなどにより汚染されたり、変質したりすることが完全に防止される。駆動液の出し入 れゃ交換又は補充などが不必要になるため、駆動液に力かる費用を節約できるばか り力 装置構成全体がシンプルになるので、装置コストも安価になる。 According to the present invention, the driving liquid is hermetically filled in the upper space and the lower space, respectively. Apply a voltage between the electrodes to reduce the amount of driving fluid in the upper space with a large amount of driving fluid. After moving the sample solution to the lower space with the drive liquid, turn the micropump over to make the lower space with a large amount of drive liquid the upper space, and the upper part where the drive liquid is low If the space is placed in the original port opening as the lower space and a voltage is applied between the electrodes, the driving liquid can be moved from top to bottom again. As a result, complicated driving liquid supply operation can be omitted, and the driving liquid is completely prevented from being contaminated or denatured by dust, microorganisms, carbon dioxide, etc. in the atmosphere. Since the replacement or replenishment of the drive fluid is unnecessary, it is possible to save the cost of the drive fluid. The overall device configuration is simplified, and the device cost is also reduced.
[0030] 前記課題を解決するための手段としての請求項 11の発明は、 1個以上の大気に向 力つて開口したポートと、該ポートに連通する微細流路を有するポリジメチルシロキサ ン製基板と、該ポリジメチルシロキサン製基板の微細流路形成面に貼り合わされる対 面基板とからなるマイクロ流体チップにぉ ヽて、  [0030] The invention of claim 11 as a means for solving the above-mentioned problems is made of polydimethylsiloxane having one or more ports opened to the atmosphere and a fine channel communicating with the ports. Over a microfluidic chip comprising a substrate and a counter substrate bonded to the surface of the polydimethylsiloxane substrate that is bonded to the fine channel,
前記ポートのうちの少なくとも 1個のポートの開口上面に、請求項 1〜10の何れかに 記載のマイクロポンプを着脱可能に載置したことを特徴とするマイクロ流体チップを提 供する。  A microfluidic chip, wherein the micropump according to any one of claims 1 to 10 is detachably mounted on an upper surface of an opening of at least one of the ports.
[0031] この発明によれば、マイクロ流体チップ使用後は PDMS基板力 マイクロポンプを 脱離させることにより、これらマイクロポンプを別のマイクロ流体チップで再使用するこ とができ、大幅なコスト低減を実現することができる。  [0031] According to the present invention, after the microfluidic chip is used, by removing the PDMS substrate force micropump, these micropumps can be reused in another microfluidic chip, which greatly reduces the cost. Can be realized.
[0032] 前記課題を解決するための手段としての請求項 12の発明は、前記開口ポートが形 成されている基板に、前記開口ポート内に試料溶液を補給するための試料溶液補給 路と、前記開口ポート内の空気を抜くための空気抜き路が更に形成されていることを 特徴とする請求項 11に記載のマイクロ流体チップを提供する。  [0032] The invention of claim 12 as means for solving the above-mentioned problems is characterized in that a sample solution replenishment path for replenishing a sample solution in the open port on a substrate on which the open port is formed, 12. The microfluidic chip according to claim 11, further comprising an air vent path for venting air from the open port.
[0033] この発明によれば、試料溶液補給路を使用することにより、ポート上にマイクロボン プが載置されたままの状態で、ポート内に試料溶液を直接補給することができ、その 際、空気抜き路力 空気抜きがされるので安定なマイクロポンプ動作がなされる。  [0033] According to the present invention, by using the sample solution replenishment path, the sample solution can be directly replenished into the port while the micro-bump remains mounted on the port. , Air venting path force Since air is vented, stable micropump operation is performed.
[0034] 前記課題を解決するための手段としての請求項 13の発明は、前記試料溶液補給 路には、開閉弁と、試料溶液タンクから前記ポート内に試料溶液を送液する補給ボン プとが設けられ、試料溶液補給時に、前記開閉弁と前記補給ポンプとを操作する制 御装置が更に設けられていることを特徴とする請求項 12記載のマイクロ流体チップを 提供する。 [0034] The invention of claim 13 as means for solving the above-mentioned problems is that the sample solution replenishment path has an open / close valve and a replenishment pump for feeding a sample solution from a sample solution tank into the port. Provided to control the on-off valve and the replenishment pump when replenishing the sample solution. 13. The microfluidic chip according to claim 12, further comprising a control device.
[0035] この発明によれば、制御装置が、試料溶液補給路に設けた開閉弁と、補給ポンプ を操作することで、試料溶液の補給が自動化される。  [0035] According to this invention, the control device automates the replenishment of the sample solution by operating the on-off valve provided in the sample solution replenishment path and the replenishment pump.
発明の効果  The invention's effect
[0036] 本発明のマイクロポンプによれば、外殻の多孔質膜により 2分された中空部の下部 空間に連通する液体充填用バイパス流路を介して駆動液などの液体類を迅速に下 部空間内に充填することができる。この際、下部空間内の空気は空気抜き流路を経 て大気に抜けていくので、駆動液などの液体類を下部空間に満たす際の障害には ならない。その結果、極めて短時間のうちに下部空間に駆動液などの液体類を充填 することが可能となり、従来のマイクロポンプのように電圧を印加して長時間かけて下 部空間に駆動液などの液体類を満たしていた緩慢で冗長な操作は不要になるので、 マイクロポンプの操作性又は使い勝手が飛躍的に改善できる。  [0036] According to the micropump of the present invention, the liquids such as the driving liquid are rapidly lowered through the liquid filling bypass passage communicating with the lower space of the hollow portion divided into two by the porous membrane of the outer shell. The partial space can be filled. At this time, the air in the lower space escapes to the atmosphere through the air vent flow path, so that it does not become an obstacle when filling the lower space with liquids such as driving liquid. As a result, it becomes possible to fill the lower space with a liquid such as a driving liquid in an extremely short time, and like a conventional micropump, a voltage is applied to the lower space over a long period of time. Since the slow and redundant operation of filling liquids is no longer necessary, the operability or usability of the micropump can be dramatically improved.
[0037] また、駆動液と試料液体とが明瞭な界面を形成できず、互いに混じり合ってしまうよ うな場合、従来は駆動液と試料液体との間に緩衝液を介在させていたが、下部空間 の端部に隔膜を配設することにより、緩衝液を使用することなぐ隔膜を介して電気浸 透流の駆動力を試料液体に伝達することができる。その結果、緩衝液の使用に伴う 様々な問題点を全て解決できる。  [0037] If the driving liquid and the sample liquid cannot form a clear interface and are mixed with each other, a buffer solution is conventionally interposed between the driving liquid and the sample liquid. By disposing the diaphragm at the end of the space, the driving force of the electroosmotic flow can be transmitted to the sample liquid through the diaphragm without using a buffer solution. As a result, all the various problems associated with the use of buffer solutions can be solved.
[0038] 更に、上部空間及び下部空間を隔膜でそれぞれ密閉し、各密閉空間内に所定量 の駆動液を充填しておくことにより、煩雑な駆動液供給操作を省略できるばかりか、 駆動液が大気中の塵埃、微生物、炭酸ガスなどにより汚染されたり、変質したりするこ とが完全に防止される。駆動液の出し入れや交換又は補充などが不必要になるため 、駆動液に力かる費用を節約できるばかりか、装置構成全体がシンプルになるので、 装置コストも安価になる。  [0038] Furthermore, by sealing each of the upper space and the lower space with a diaphragm and filling each sealed space with a predetermined amount of driving liquid, not only the complicated driving liquid supply operation can be omitted, but also the driving liquid can be removed. Pollution and alteration by atmospheric dust, microorganisms, carbon dioxide, etc. are completely prevented. Since it is not necessary to put in and out the drive fluid, or to replace or replenish the drive fluid, not only can the cost for the drive fluid be saved, but the overall device configuration is simplified, resulting in a lower device cost.
[0039] また、マイクロポンプの外殻を PDMS又はガラスで形成することにより、マイクロ流体 チップの PDMS基板に対して自己吸着させることが可能になり、使用後にマイクロ流 体チップ自体は廃棄されても、本発明のマイクロポンプは別の新たなマイクロ流体チ ップに再び自己吸着させることにより何度でも再使用が可能になる。その結果、高価 なマイクロポンプに要するコストが大幅に軽減され、極めて経済的である。 [0039] Further, by forming the outer shell of the micropump with PDMS or glass, it becomes possible to self-adsorb to the PDMS substrate of the microfluidic chip, and even if the microfluidic chip itself is discarded after use. The micropump of the present invention can be reused any number of times by allowing it to self-adsorb on another new microfluidic chip. As a result, expensive The cost of a simple micropump is greatly reduced and extremely economical.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、図面を参照しながら本発明の好ましい実施態様について具体的に説明する 。図 1は本発明によるマイクロポンプ 20の一例の概要断面図である。図 1に示される ように、本発明のマイクロポンプ 20は基本的に図 19及び図 20に示された従来のマイ クロポンプと同様に、外殻 23と、上部電極 25と下部電極 27の間に間挿された多孔質 膜 29とからなる。また、電極具備多孔質膜 29は外殻 23の中空部を上下に 2分するよ うに配置され、その結果、電極具備多孔質膜 29を境にして上部空間 31と下部空間 3 3が形成される。図示されていないが、上部電極 25は直流電源のプラス側に接続さ れ、下部電極 27は直流電源のマイナス側に接続されている。しかし、目的に応じて、 プラス、マイナスを逆に接続することもできる。外殻 23はポンプホルダーと呼ばれるこ ともある。マイクロポンプ 20をマイクロ流体チップ 1 (図 19参照)の上面に安定的に載 置可能にするため、外殻 23の下部は拡大外径を有する所定の厚さのフランジ部 35 が形成されていることが好ましい。しかし、このフランジ部 35の配設自体は本発明の 必須要件ではない。外殻 23は PDMSから形成されていることが好ましい。外殻 23が PDMSから形成されていると、マイクロ流体チップ 1の PDMS基板 3のポート 7の上面 に載置することにより、マイクロポンプ 20を PDMS基板 3に自己吸着させることができ る。その結果、マイクロポンプ 20は PDMS基板 3に対して脱着可能となる。従来のマ イク口流体チップでは、使用後に、マイクロポンプなどはチップと共に廃棄されてしま うが、本発明によれば、マイクロ流体チップ 1の使用後は PDMS基板 3からマイクロポ ンプ 20を脱離させることにより、これらマイクロポンプ 20を別のマイクロ流体チップで 再使用することができ、大幅なコスト低減を実現することができる。  Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic sectional view of an example of a micropump 20 according to the present invention. As shown in FIG. 1, the micropump 20 of the present invention is basically disposed between the outer shell 23, the upper electrode 25, and the lower electrode 27 in the same manner as the conventional micropump shown in FIGS. And an interstitial porous membrane 29. Further, the electrode-equipped porous membrane 29 is arranged so that the hollow portion of the outer shell 23 is divided into two vertically, and as a result, an upper space 31 and a lower space 33 are formed with the electrode-equipped porous membrane 29 as a boundary. The Although not shown, the upper electrode 25 is connected to the positive side of the DC power source, and the lower electrode 27 is connected to the negative side of the DC power source. However, depending on the purpose, plus and minus can be reversed. The outer shell 23 is sometimes called a pump holder. In order to allow the micropump 20 to be stably placed on the upper surface of the microfluidic chip 1 (see FIG. 19), the lower part of the outer shell 23 is formed with a flange portion 35 having an enlarged outer diameter and having a predetermined thickness. It is preferable. However, the arrangement of the flange portion 35 is not an essential requirement of the present invention. The outer shell 23 is preferably formed from PDMS. When the outer shell 23 is made of PDMS, the micropump 20 can be self-adsorbed to the PDMS substrate 3 by placing it on the upper surface of the port 7 of the PDMS substrate 3 of the microfluidic chip 1. As a result, the micropump 20 can be detached from the PDMS substrate 3. In a conventional micro-mouth fluid chip, the micropump and the like are discarded together with the chip after use. However, according to the present invention, the micropump 20 is detached from the PDMS substrate 3 after the microfluidic chip 1 is used. As a result, these micropumps 20 can be reused in another microfluidic chip, and a significant cost reduction can be realized.
[0041] 図 1において、外殻 23の上部空間 31側の側壁を貫通する第 1の穴 37を開設し、下 部空間 33側の側壁を貫通する第 2の穴 39を開設し、この第 1の穴 37と第 2の穴 39を 連通させる、所定の幅と深さを有する第 1の溝 41を外殻 23の外壁面に配設する。第 1の穴 37、第 2の穴 39及び第 1の溝 41は公知慣用の手段で形成することができる。 第 1の穴 37、第 2の穴 39及び第 1の溝 41を覆い隠す第 1の遮蔽シート 43を外殻 23 の外壁面に接着させる。この遮蔽シート 43でシールされた第 1の穴 37、第 2の穴 39 及び第 1の溝 41は、上部空間と下部区間を連通する液体充填用バイパス流路を構 成する。第 1の穴 37及び第 2の穴 39の内径は一例として lmmであることができる。そ の他の内径を採用することもできる。第 1の遮蔽シート 43の材質は特に限定されない 力 PDMS製外殻 23と自己吸着可能にするため、第 1の遮蔽シート 43も PDMSから 形成することが好ましい。第 1の遮蔽シート 43の厚さ及びサイズは特に限定されない 。第 1の穴 37、第 2の穴 39及び第 1の溝 41をシールするのに必要十分な厚さ及びサ ィズを有すればよい。ノ ィパス流路はマイクロポンプのための駆動液に限らず、液状 の試薬やサンプルなどの液体類全般の充填用としても利用できる。 In FIG. 1, a first hole 37 that penetrates the side wall on the upper space 31 side of the outer shell 23 is opened, and a second hole 39 that penetrates the side wall on the lower space 33 side is opened. A first groove 41 having a predetermined width and depth for communicating the first hole 37 and the second hole 39 is provided on the outer wall surface of the outer shell 23. The first hole 37, the second hole 39, and the first groove 41 can be formed by known and conventional means. The first shielding sheet 43 covering the first hole 37, the second hole 39, and the first groove 41 is adhered to the outer wall surface of the outer shell 23. 1st hole 37 and 2nd hole 39 sealed with this shielding sheet 43 The first groove 41 constitutes a liquid-filling bypass channel that communicates between the upper space and the lower section. The inner diameters of the first hole 37 and the second hole 39 may be lmm as an example. Other inner diameters can be employed. The material of the first shielding sheet 43 is not particularly limited. In order to enable self-adsorption with the outer shell 23 made of PDMS, the first shielding sheet 43 is also preferably formed from PDMS. The thickness and size of the first shielding sheet 43 are not particularly limited. The thickness and the size are sufficient to seal the first hole 37, the second hole 39, and the first groove 41. The no-pass channel is not limited to the driving liquid for the micropump, but can also be used for filling liquids such as liquid reagents and samples.
[0042] 図 1において、外殻 23の上部空間 31側の側壁には、前記第 1の穴 37と異なる位置 に、第 4の穴 47が貫通して開設されている。同様に、下部空間 33側の側壁を貫通す る第 3の穴 45が、前記第 2の穴 39と異なる位置に開設されている。そして、この第 3の 穴 45と第 4の穴 47を連通させる、所定の幅と深さを有する第 2の溝 49が外殻 23の外 壁面に配設されている。第 3の穴 45、第 4の穴 47及び第 2の溝 49は公知慣用の手 段で形成することができる。第 4の穴 47の内径は一例として lmmであることができる 。第 3の穴 45の内径は一例として 2mmであることができる。第 3の穴 45の内径が気 泡の外径よりも小さいと、第 3の穴 45の周囲に気泡が滞積して排出されなくなる恐れ がある。効率的に空気抜きを行うために、第 3の穴の内径は他の穴の内径よりも大き いことが好ましい。言うまでもなぐその他の内径も採用できる。第 3の穴 45、第 4の穴 47及び第 2の溝 49を覆い隠す第 2の遮蔽シート 51を外殻 23の外壁面に接着させる 。この第 2の遮蔽シート 51でシールされた第 3の穴 45、第 4の穴 47及び第 2の溝 49 は、下部空間内の空気を大気中に抜くための空気抜き流路を構成する。第 2の遮蔽 シート 51の材質は特に限定されないが、 PDMS製外殻 23と自己吸着可能にするた め、第 2の遮蔽シート 51も PDMSから形成することが好ましい。第 2の遮蔽シート 51 の厚さ及びサイズは特に限定されない。第 3の穴 45、第 4の穴 47及び第 2の溝 49を シールするのに必要十分な厚さ及びサイズを有すればよ!、。  In FIG. 1, a fourth hole 47 is formed through the side wall of the outer shell 23 on the upper space 31 side at a position different from the first hole 37. Similarly, a third hole 45 penetrating the side wall on the lower space 33 side is formed at a position different from the second hole 39. A second groove 49 having a predetermined width and depth that allows the third hole 45 and the fourth hole 47 to communicate with each other is disposed on the outer wall surface of the outer shell 23. The third hole 45, the fourth hole 47, and the second groove 49 can be formed by a known and conventional method. The inner diameter of the fourth hole 47 can be lmm as an example. The inner diameter of the third hole 45 can be 2 mm as an example. If the inner diameter of the third hole 45 is smaller than the outer diameter of the bubble, there is a possibility that bubbles will accumulate around the third hole 45 and will not be discharged. In order to efficiently vent the air, the inner diameter of the third hole is preferably larger than the inner diameters of the other holes. Needless to say, other inner diameters can be used. A second shielding sheet 51 that covers the third hole 45, the fourth hole 47, and the second groove 49 is adhered to the outer wall surface of the outer shell 23. The third hole 45, the fourth hole 47, and the second groove 49 sealed by the second shielding sheet 51 constitute an air vent channel for extracting the air in the lower space into the atmosphere. The material of the second shielding sheet 51 is not particularly limited, but the second shielding sheet 51 is also preferably made of PDMS so that it can self-adsorb with the PDMS outer shell 23. The thickness and size of the second shielding sheet 51 are not particularly limited. Have enough thickness and size to seal the third hole 45, the fourth hole 47 and the second groove 49 !.
[0043] 重要なことは、第 4の穴 47が第 1の穴 37の高さ位置よりも上部に位置することである 。第 4の穴 47の高さ位置が第 1の穴 37の高さ位置と同じか又はそれよりも下だと、第 4の穴 47は上部空間 31に充填される駆動液の液面レベル以下となり、空気抜き流 路としての機能を果たすことができな 、。 What is important is that the fourth hole 47 is located above the height of the first hole 37. If the height position of the fourth hole 47 is the same as or lower than the height position of the first hole 37, the fourth hole 47 is below the level of the driving liquid filled in the upper space 31. And air vent flow I can't serve as a road.
[0044] 第 3の穴 45の高さ位置は、第 2の穴 39の高さ位置と同じ力、又はそれよりも上部に 位置することができる。図 1では、第 3の穴 45の高さ位置は、第 2の穴 39の高さ位置 よりも上になっているが、電極具備多孔質膜 29を傾斜させ、多孔質膜 29の傾斜上部 が第 3の穴 45の高さ位置と略同一になるように配置すると、下部空間 33内の空気は 多孔質膜 29の傾斜に沿って第 3の穴 45に導かれ完全かつスムーズに大気中に逃 力 Sされ、下部空間 33内に留まることは無い。  [0044] The height position of the third hole 45 may be the same force as the height position of the second hole 39, or above it. In FIG. 1, the height position of the third hole 45 is higher than the height position of the second hole 39, but the electrode-equipped porous film 29 is inclined, and the upper portion of the porous film 29 is inclined. Is positioned so as to be substantially the same as the height of the third hole 45, the air in the lower space 33 is guided to the third hole 45 along the slope of the porous membrane 29 and completely and smoothly in the atmosphere. Will not be able to stay in the lower space 33.
[0045] 第 1の穴 37と第 2の穴 39を連通させる第 1の溝 41は、図 2 (A)に示されるような直 線状に形成することもできるが、図 2 (B)に示されるような蛇行状に形成することもでき る。直線状の溝に比べて、蛇行状の溝は溝全体の距離が長くなるので圧力損失を制 御することが可能になるという利点を有する。その結果、駆動液が下部空間 33から上 部空間 31へ逆流するような不都合な事態を効果的に防止することができる。蛇行回 数は図示された実施態様に限定されず、任意の回数を選択することができる。また、 蛇行は図示されたようなクランク形状に限定されず、所定の曲率を有する曲線形状で あることもできる。特別には図示されていないが、第 3の穴 45と第 4の穴 47を連通さ せる第 2の溝 49も、図 2 (A)及び図 2 (B)に示された実施態様と全く同様に構成する ことができる。第 1の溝 41及び第 2の溝 49の幅及び深さは例えば、数十/ z m〜数百 μ mの範囲内で適宜選択することができる。第 1の溝 41及び第 2の溝 49の長さは数 mm〜数十 mmの範囲内で適宜選択することができる。  [0045] The first groove 41 that allows the first hole 37 and the second hole 39 to communicate with each other can be formed in a straight line as shown in FIG. 2 (A), but FIG. 2 (B) It can also be formed in a meandering shape as shown in FIG. Compared to the straight groove, the meandering groove has an advantage that the pressure loss can be controlled because the entire distance of the groove becomes longer. As a result, it is possible to effectively prevent a disadvantageous situation in which the driving fluid flows backward from the lower space 33 to the upper space 31. The number of times of meandering is not limited to the illustrated embodiment, and any number of times can be selected. Further, the meandering is not limited to the crank shape as shown in the figure, but may be a curved shape having a predetermined curvature. Although not specifically shown, the second groove 49 for communicating the third hole 45 and the fourth hole 47 is also completely different from the embodiment shown in FIGS. 2 (A) and 2 (B). It can be configured similarly. The width and depth of the first groove 41 and the second groove 49 can be selected as appropriate within a range of several tens / z m to several hundred μm, for example. The lengths of the first groove 41 and the second groove 49 can be appropriately selected within a range of several mm to several tens of mm.
[0046] 別法として、外殻 23の外壁面上に第 1の溝 41及び第 2の溝 49を配設する代わりに 、図 3に示すように、第 1の遮蔽シート 43A (又は第 2の遮蔽シート 51A)の接着面側 に第 1の溝 41 A (又は第 2の溝 49A)を形成することもできる。この場合、第 1の溝 41 A (又は第 2の溝 49A)は、レジスト铸型などを使用する公知の光リソグラフィ一法など により第 1の遮蔽シート 43A (又は第 2の遮蔽シート 51A)の接着面側に容易に形成 することができる。第 1の溝 41A (又は第 2の溝 49A)の両端には、第 1の穴 37及び第 2の穴 39 (又は第 3の穴 45及び第 4の穴 47)との位置合わせを容易にするために凹 陥部 53, 55を形成することもできる。しかし、この凹陥部は無くてもよい。溝 41A (又 は 49A)の一部が第 1の穴 37及び第 2の穴 39 (又は第 3の穴 45及び第 4の穴 47)と 交差すれば、駆動液充填用バイパス流路 (又は空気抜き流路)として機能することが できる力 である。 [0046] Alternatively, instead of disposing the first groove 41 and the second groove 49 on the outer wall surface of the outer shell 23, as shown in FIG. The first groove 41A (or the second groove 49A) can also be formed on the bonding surface side of the shielding sheet 51A). In this case, the first groove 41A (or the second groove 49A) is formed on the first shielding sheet 43A (or the second shielding sheet 51A) by a known photolithography method using a resist mold or the like. It can be easily formed on the adhesive side. The first groove 41A (or the second groove 49A) is easily aligned with the first hole 37 and the second hole 39 (or the third hole 45 and the fourth hole 47) at both ends of the first groove 41A (or the second groove 49A). In order to achieve this, the recesses 53 and 55 can be formed. However, this recess may be omitted. A portion of groove 41A (or 49A) is connected to first hole 37 and second hole 39 (or third hole 45 and fourth hole 47). If crossed, it is a force that can function as a bypass passage for driving liquid filling (or an air vent passage).
[0047] 図 4は、図 3に示された第 1の溝 41A及び第 2の溝 49Aを接着面側に有する第 1の 遮蔽シート 43A及び第 2の遮蔽シート 51Aをマイクロポンプ 20Aの外殻 23Aに接着 させた状態の断面図であり、図 5はその斜視図である。  [0047] FIG. 4 shows the first shielding sheet 43A and the second shielding sheet 51A having the first groove 41A and the second groove 49A shown in FIG. FIG. 5 is a cross-sectional view of a state where it is adhered to 23A, and FIG. 5 is a perspective view thereof.
[0048] 図 6は第 2の遮蔽シートの別の実施態様の概要平面図であり、図 7はこの第 2の遮 蔽シートを用いた本発明のマイクロポンプの部分概要断面図である。図 6に示される ように、第 2の遮蔽シート 51Bでは、第 2の溝 49Bの上端側がシートの端部にまで延 長され、空気出口 57を形成している。これにより、外殻 23Bの上部空間 31の側壁に 空気抜き用の貫通した第 4の穴 47を設ける必要が無くなる。  FIG. 6 is a schematic plan view of another embodiment of the second shielding sheet, and FIG. 7 is a partial schematic sectional view of a micropump of the present invention using the second shielding sheet. As shown in FIG. 6, in the second shielding sheet 51B, the upper end side of the second groove 49B extends to the end portion of the sheet to form an air outlet 57. As a result, there is no need to provide a fourth hole 47 that penetrates the air in the side wall of the upper space 31 of the outer shell 23B.
[0049] 図 8は本発明のマイクロポンプの別の実施態様の部分概要断面図である。この実 施態様では、第 1の遮蔽シート 43Bは、第 1の溝 41Bの上端側がシートの上端部にま で延長され、液体 (例えば、駆動液など)注入口 59を形成している。従って、バイパス 流路に液体を注入するための第 1の穴 37を外殻 23Cの上部空間 31の側壁に穿設 する必要が無いので、マイクロポンプの製造が容易になるばかりか、液体注入口 59 にシリンジを挿入することにより簡単に液体を下部空間 33内に送液することができる  FIG. 8 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention. In this embodiment, in the first shielding sheet 43B, the upper end side of the first groove 41B is extended to the upper end portion of the sheet to form a liquid (for example, driving liquid) injection port 59. Therefore, since it is not necessary to drill the first hole 37 for injecting liquid into the bypass channel in the side wall of the upper space 31 of the outer shell 23C, not only the manufacture of the micropump is facilitated, but also the liquid inlet By inserting a syringe into 59, liquid can be easily fed into the lower space 33.
[0050] 図 9は本発明のマイクロポンプの更に別の実施態様の部分概要断面図である。この マイクロポンプ 20Dでは、駆動液などの液体類を下部空間 33に送液するためのノ ィ パス流路となる第 1の溝 41C及び空気抜き流路となる第 2の溝 49Cが外殻 23Dの壁 内に配設されている。従って、この実施態様では、第 2の穴 39及び第 3の穴 45は貫 通孔ではなぐ第 1の溝 41C及び第 2の溝 49Cに達する長さしか有しない。この実施 態様によれば、第 1の遮蔽シート及び第 2の遮蔽シートを使用する必要がないので、 すっきりとした構造のマイクロポンプ 20Dが得られる。液体注入口 59及び空気出口 5 7は何れも外殻 23Dの上端面上に開口しているが、この態様に限定されず、第 1の溝 41Cに連通する第 1の穴を、上部空間の内側に向かって開口させるか、又は外殻の 外側に向力つて開口させることもでき、同様に、第 2の溝 49Cに連通する第 4の穴を 上部空間の内側に向かって開口させるか、又は外殻の外側に向力つて開口させるこ とちでさる。 FIG. 9 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention. In this micropump 20D, the first groove 41C serving as a no-pass channel for feeding liquids such as driving liquid to the lower space 33 and the second groove 49C serving as an air vent channel are formed in the outer shell 23D. Located in the wall. Accordingly, in this embodiment, the second hole 39 and the third hole 45 have only a length that reaches the first groove 41C and the second groove 49C that are not through holes. According to this embodiment, since it is not necessary to use the first shielding sheet and the second shielding sheet, the micropump 20D having a clean structure can be obtained. The liquid inlet 59 and the air outlet 57 are both open on the upper end surface of the outer shell 23D, but the present invention is not limited to this, and the first hole communicating with the first groove 41C is provided in the upper space. It can be opened to the inside, or can be opened to the outside of the outer shell by force, and similarly, the fourth hole communicating with the second groove 49C can be opened to the inside of the upper space, Or open the outer shell by force. Tochidaru.
[0051] 図 10は本発明のマイクロポンプの更に他の実施態様の部分概要断面図である。こ のマイクロポンプ 20Eでは、下部空間 33の下端寄りに、隔膜 61が配設されている。 隔膜 61は例えば、環状の隔膜ホルダー 62により下部空間 33の下端内壁面に定着 させることができる。言うまでもなぐ図示された以外の態様によっても隔膜 61をマイク 口ポンプ 20Eに配設することができる。隔膜 61は熱可塑性合成樹脂(例えば、ポリエ チレン、ポリエステル、ナイロン、メチルメタタリレートなど)又はゴム(例えば、シリコー ンゴム、ラテックスゴムなど)などのような可撓性又は柔軟性を有する素材力も形成さ れていることが好ましい。隔膜 61の膜厚は 0. 03mn!〜 lmm程度である。隔膜 61の 形状は図示されているような断面が楕円状のドーム形に限定されず、円形、コーン形 あるいは不定形であってもよぐ形状を変えることにより突出した部分の容積を変化さ せることができるものであればよ!、。  FIG. 10 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention. In the micropump 20E, a diaphragm 61 is disposed near the lower end of the lower space 33. For example, the diaphragm 61 can be fixed to the inner wall of the lower end of the lower space 33 by an annular diaphragm holder 62. Needless to say, the diaphragm 61 can be disposed in the microphone port pump 20E by a mode other than that illustrated. The diaphragm 61 also forms a material force having flexibility or flexibility such as a thermoplastic synthetic resin (eg, polyethylene, polyester, nylon, methyl methacrylate) or rubber (eg, silicone rubber, latex rubber, etc.). It is preferable that The film thickness of the diaphragm 61 is 0.03mn! ~ Lmm or so. The shape of the diaphragm 61 is not limited to the dome shape having an elliptical cross section as shown in the figure, but the volume of the protruding portion can be changed by changing the shape of the diaphragm, which may be circular, cone-shaped or irregular. Anything that can be done! ,.
[0052] 駆動液と試料液体とが明瞭な界面を形成せず、互いに混じり合ってしまう場合には 、駆動液と試料液体とを分離させるために緩衝液を使用する必要性がある。しかし、 緩衝液の使用には次のような問題点が存在する。  [0052] If the driving liquid and the sample liquid do not form a clear interface and are mixed with each other, it is necessary to use a buffer solution to separate the driving liquid and the sample liquid. However, the following problems exist in the use of buffer solutions.
(a)緩衝液が試料液体を変質させたり、汚染したりすることがある;  (a) the buffer may alter or contaminate the sample liquid;
(b)緩衝液による分離が上手く行かず、場合により駆動液が試料液体に混合して汚 染する可能性がある;  (b) Separation with the buffer solution may not be successful, and in some cases the drive solution may be contaminated by mixing with the sample liquid;
(c)マイクロポンプの始動、試料液体の補充、メンテナンス等の際に、 3種類の液体 をノ、ンドリングしなければならず、作業が繁雑となる;及び ( c ) When starting the micropump, replenishing the sample liquid, performing maintenance, etc., the three types of liquids must be removed and handled, and the work becomes complicated; and
(d)緩衝液を保持するために特別な管路を設ける必要が生じ、構造が複雑となり、マ イク口チップへの組み込みが難しくなる。  (d) It is necessary to provide a special pipe line to hold the buffer solution, the structure becomes complicated, and it becomes difficult to incorporate it into the microphone tip.
図 10に示されるように、本発明のマイクロポンプにおいて隔膜 61を使用することに より緩衝液の使用は不要となり、その結果、前記 (a)〜( の問題点は全て解決される  As shown in FIG. 10, the use of the diaphragm 61 in the micropump of the present invention makes it unnecessary to use a buffer, and as a result, all the problems (a) to () are solved.
[0053] 本発明のマイクロポンプで使用される電極具備多孔質膜 29自体は前記特許文献 3 に記載された公知の部材である。例えば、多孔質膜前後にパッキンを入れて電極を 設置したものであることができる。多孔質膜は支持体により支持させることができる。 多孔質膜は例えば、ニッケル金属フィルター又はポリカーボネートフィルターなどで ある。ポリカーボネートフィルタ一は (株)三商カもァイソポア (登録商標)メンブレンフ ィルターとして市販されている。このメンブレンはポリカーボネートフィルムからなり、メ ンブレン表面で試料を観察するあらゆる分析に推奨されるトラックエッチドスクリーン フィルタである。このポリカーボネートフィルターの孔径は 2 m、 5 m又は 12 μ m で、厚さは 11 μ mである。一方、ニッケル金属フィルターの孔径は 5 μ mで、厚さは 1 O /z mである。膜前後の電極間に直流数 V〜数十 V (例えば、 2V〜15V)の電圧を 印加すると、液体は陽極側から陰極側に向カゝつて流れる。印加電圧の極性を逆にす ると、液体の流動方向を逆転させることができる。この多孔質膜ポンプによる流量は 0 . 02mm3Zs〜0. 14mm3Zsの範囲内で変化させることができる。流量は印加電圧 に概ね比例する。 [0053] The electrode-containing porous membrane 29 itself used in the micropump of the present invention is a known member described in Patent Document 3. For example, the electrodes can be installed by packing around the porous membrane. The porous membrane can be supported by a support. The porous membrane is, for example, a nickel metal filter or a polycarbonate filter. Polycarbonate filters are also commercially available as Sansho Kashima Co., Ltd. as a membrane filter. This membrane is made of polycarbonate film and is a track-etched screen filter recommended for any analysis where the sample is observed on the membrane surface. The polycarbonate filter has a pore size of 2 m, 5 m or 12 μm and a thickness of 11 μm. On the other hand, the nickel metal filter has a pore size of 5 μm and a thickness of 1 O / zm. When a voltage of several VDC to several tens of volts (for example, 2V to 15V) is applied between the electrodes before and after the membrane, the liquid flows from the anode side to the cathode side. If the polarity of the applied voltage is reversed, the flow direction of the liquid can be reversed. The flow rate by the porous membrane pumps 0. 02mm 3 Zs~0. Can be varied within the range of 14 mm 3 Zs. The flow rate is roughly proportional to the applied voltage.
[0054] 本発明のマイクロポンプで使用される駆動液は、電気浸透流を起こすことが出来る 液体であれば全て使用できる。一例として、液体中で耐電する性質を有している粒径 0. 01 μ m〜0. 5 μ mの微粒子を浮遊させた液体を使用することができる。具体的に は、溶液中に微粒子を分離させたコロイド状溶液 (例えば、ポリスチレンコロイド溶液 やシリカコロイド溶液)を駆動液として用いることができる。また、電気分解が発生しな [0054] The driving liquid used in the micropump of the present invention can be any liquid that can cause electroosmotic flow. As an example, it is possible to use a liquid in which fine particles having a particle size of 0.01 μm to 0.5 μm having a property of withstanding electricity in a liquid are suspended. Specifically, a colloidal solution (for example, a polystyrene colloid solution or a silica colloid solution) in which fine particles are separated in a solution can be used as a driving liquid. Also, no electrolysis will occur.
Vヽように処理されて ヽる電解質溶液や、純水又は精製水なども使用することができる Electrolyte solution that is treated like V, pure water or purified water can also be used.
[0055] 本発明のマイクロポンプ 20〜20Dの使用方法は次の通りである。先ず、マイクロ流 体チップ 1 (図 19参照)のポート 7〖こ目的の試料溶液を注入する。その後、本発明の マイクロポンプ 20 (又は 20A, 20B, 20C, 20D, 20E)の外殻 23 (又は 23A, 23B, 23C, 23D)の下部空間 33の開口とポート 7の開口とを位置合わせして、マイクロポ ンプ 20を PDMS基板 3上に載置する。外殻 23が PDMSで形成されているため、マ イク口ポンプ 20は PDMS基板 3と自己吸着することができる。次いで、外殻 23の上部 空間 31内に駆動液を充填する。駆動液は第 1の穴 37 (又は駆動液注入口 59)から バイパス流路 (第 1の溝) 41 (又は 41A〜41D)を経て第 2の穴 39より下部空間 33に 流れ込む。下部空間 33の空気は第 3の穴 45から空気抜き流路 (第 2の溝) 49 (又は 49A〜49D)を経て第 4の穴 47 (又は空気出口 57)より大気に解放される。その結果 、上部空間 31に駆動液を充填すると同時に下部空間 33にも駆動液を満たすことが できる。上部空間 31から下部空間 33に駆動液を満たす際、必要に応じて上部空間 に圧力を印加することもできる。また、必要に応じて、第 1の穴 37と第 4の穴 47又は 空気出口 57を封止することもできる。上部空間 31及び下部空間 33に駆動液が満た されたら、電極 25及び 27に所定の DC電圧を印加すると、上部空間 31内の駆動液 が多孔質膜 29を介して下部空間 33内に浸透していき、その際の電気浸透流の圧力 によりポート 7内の試料溶液は微細流路 5内に送液される。駆動液と試料溶液が混ざ り合わず、明瞭な界面を形成することが好ましい。 [0055] The method of using the micropump 20 to 20D of the present invention is as follows. First, the target sample solution is injected into port 7 of microfluidic chip 1 (see Fig. 19). Thereafter, the opening of the lower space 33 of the outer shell 23 (or 23A, 23B, 23C, 23D) of the micropump 20 (or 20A, 20B, 20C, 20D, 20E) of the present invention is aligned with the opening of the port 7. Then, the micro pump 20 is placed on the PDMS substrate 3. Since the outer shell 23 is formed of PDMS, the microphone pump 20 can self-adsorb with the PDMS substrate 3. Next, the driving liquid is filled in the upper space 31 of the outer shell 23. The driving fluid flows from the first hole 37 (or the driving fluid inlet 59) into the lower space 33 through the second hole 39 through the bypass channel (first groove) 41 (or 41A to 41D). The air in the lower space 33 is released from the third hole 45 through the air vent channel (second groove) 49 (or 49A to 49D) to the atmosphere through the fourth hole 47 (or air outlet 57). as a result In addition, the lower space 33 can be filled with the driving liquid simultaneously with filling the upper space 31 with the driving liquid. When filling the driving fluid from the upper space 31 to the lower space 33, pressure can be applied to the upper space as necessary. Further, the first hole 37 and the fourth hole 47 or the air outlet 57 can be sealed as necessary. When the upper space 31 and the lower space 33 are filled with the driving liquid, when a predetermined DC voltage is applied to the electrodes 25 and 27, the driving liquid in the upper space 31 permeates into the lower space 33 through the porous film 29. The sample solution in the port 7 is fed into the microchannel 5 by the pressure of the electroosmotic flow at that time. It is preferable that the driving solution and the sample solution do not mix and form a clear interface.
[0056] 本発明のマイクロポンプ 20Eの場合、電極 25及び 27に所定の DC電圧を印加する と、上部空間 31内の駆動液が多孔質膜 29を介して下部空間 33内に浸透していき、 隔膜 61がポート 7側に膨らみ、ポート 7の容積が減少するので、駆動液の駆動力が 隔膜 61を介して試料溶液に伝達される。駆動液と試料溶液が隔膜 61により分離され るので、試料溶液と駆動液が互いに混じり合ってしまうような場合には、マイクロボン プ 20Eが有用である。言うまでもなぐ駆動液と試料溶液が混ざり合わず、明瞭な界 面を形成する場合であっても、隔膜 61を有するマイクロポンプを使用することができ る。 In the case of the micropump 20E of the present invention, when a predetermined DC voltage is applied to the electrodes 25 and 27, the driving liquid in the upper space 31 permeates into the lower space 33 through the porous film 29. Since the diaphragm 61 swells to the port 7 side and the volume of the port 7 decreases, the driving force of the driving liquid is transmitted to the sample solution through the diaphragm 61. Since the driving solution and the sample solution are separated by the diaphragm 61, the micro pump 20E is useful when the sample solution and the driving solution are mixed with each other. Needless to say, the micropump having the diaphragm 61 can be used even when the driving solution and the sample solution do not mix and form a clear interface.
[0057] バイパス流路 (第 1の溝) 41 (又は 41A)及び空気抜き流路 (第 2の溝) 49 (又は 49 A, 49B, 49C)の圧力損失が微細流路 5 (図 10参照)よりも大きい場合、電気浸透流 を起こさせても、下部空間 33内の駆動液がバイパス流路 41や空気抜き流路 49から 上部空間 31に逆流することは無い。しかし、駆動液や気泡を流れ易くするために、バ ィパス流路 41や空気抜き流路 49の内径を大きくすると、逆流が生じることもあり得る ので、そのような場合には、穴 37 (又は注入口 59)及び穴 47 (又は空気出口 57)を 封止する必要がある。  [0057] Bypass flow path (first groove) 41 (or 41A) and air vent flow path (second groove) 49 (or 49 A, 49B, 49C) pressure loss is fine flow path 5 (see Fig. 10) If it is larger, the driving liquid in the lower space 33 does not flow backward from the bypass flow path 41 or the air vent flow path 49 to the upper space 31 even if the electroosmotic flow is caused. However, if the inner diameter of the bypass channel 41 or the air vent channel 49 is increased in order to facilitate the flow of the driving fluid or bubbles, backflow may occur. Inlet 59) and hole 47 (or air outlet 57) need to be sealed.
[0058] 図 11は本発明のマイクロポンプの更に他の実施態様の部分概要断面図である。こ の実施態様では、図 1〜図 10に示されたバイパス流路 (第 1の溝) 41 (又は 41A)及 び空気抜き流路(第 2の溝) 49 (又は 49A, 49B, 49C)の代わりに、外殻 23Eに駆 動液供給管 63及び 65と、空気抜き管 67及び 69が配設されている。駆動液供給管 6 3及び 65はそれぞれ、開閉弁 VI及び V2を介して駆動液源に接続されている。また 、空気抜き管 67及び 69はそれぞれ、開閉弁 V3及び V4を介して駆動液回収容器 7 1に開口して 、る。外殻 23Eの上端面には上部空間 31を覆う蓋 73が載置されて 、る 。蓋 73は上部空間 31内の駆動液が大気中の塵埃、微生物、炭酸ガスなどにより汚 染されることを防止するために使用される力 無くても力まわない。電極 25及び 27は 切換スィッチ 62を介して直流電源 64に接続されて ヽる。直流電源 64としては一次電 池や二次電池などの他、交流電源カゝらコンバータを介して直流電源を得る電源装置 であってもよい。また、可変抵抗器などの電圧調整手段を具備することもできる。図 1 1に示されるマイクロポンプの場合、外殻 23Eは、 PDMSの他、合成樹脂や金属から 作製されていてもよい。 FIG. 11 is a partial schematic cross-sectional view of still another embodiment of the micropump of the present invention. In this embodiment, the bypass flow path (first groove) 41 (or 41A) and air vent flow path (second groove) 49 (or 49A, 49B, 49C) shown in FIGS. Instead, driving liquid supply pipes 63 and 65 and air vent pipes 67 and 69 are arranged on the outer shell 23E. The driving fluid supply pipes 63 and 65 are connected to the driving fluid source via on-off valves VI and V2, respectively. Also The air vent pipes 67 and 69 open to the driving liquid recovery container 71 via the on-off valves V3 and V4, respectively. A lid 73 covering the upper space 31 is placed on the upper end surface of the outer shell 23E. The lid 73 can be used without the force used to prevent the driving fluid in the upper space 31 from being contaminated by dust, microorganisms, carbon dioxide, etc. in the atmosphere. Electrodes 25 and 27 are connected to a DC power source 64 via a switching switch 62. The DC power source 64 may be a power source device that obtains a DC power source through a converter in addition to a primary battery or a secondary battery. Further, voltage adjusting means such as a variable resistor can be provided. In the case of the micropump shown in FIG. 11, the outer shell 23E may be made of synthetic resin or metal in addition to PDMS.
[0059] 図 11に示されるように、マイクロポンプ 20Fは、マイクロチップ 73のポート 75の開口 上部に載置されている。マイクロチップ 73は従来のマイクロチップ 1と同様に、上面基 板 77と下面基板 79とから構成されており、上面基板 77は料溶液を送液するための マイクロチャネル 81を有する。マイクロチャネル 81はポート 75に連通して!/、る。  As shown in FIG. 11, the micropump 20 F is placed on the upper opening of the port 75 of the microchip 73. Like the conventional microchip 1, the microchip 73 includes an upper surface substrate 77 and a lower surface substrate 79, and the upper surface substrate 77 has a microchannel 81 for feeding a material solution. Microchannel 81 communicates with port 75! /
[0060] 図 12に示されるように、このマイクロチップ 73の特徴は、上面基板 77がマイクロチ ャネル 81の他に、ポート 75に連通する 2つの流路を更に有することである。一方は、 ポート 75に試料溶液を補給する補給管路 83であり、他方は空気抜き管路 85である 。図示されているように、補給管路 83はポート 7の底部近傍に開口している力 空気 抜き管路 85はポート 7の頂部に開口している。すなわち、空気抜き管路 85は上面基 板 77の上面に形成した溝で構成されているので、これを覆うように取り付けた継手 8 7によって密封されている。  As shown in FIG. 12, the microchip 73 is characterized in that the upper substrate 77 further has two flow paths communicating with the port 75 in addition to the microchannel 81. One is a supply line 83 for supplying a sample solution to the port 75, and the other is an air vent line 85. As shown in the figure, the replenishment line 83 is open near the bottom of the port 7 and the air vent line 85 is open at the top of the port 7. That is, since the air vent pipe 85 is constituted by a groove formed on the upper surface of the upper surface board 77, it is sealed by the joint 87 attached so as to cover it.
[0061] 図 11に示されるようなマイクロチップ 73に実装されたマイクロポンプ 20Fの動作に ついて図 13及び図 14を参照しながら説明する。補給管路 83は開閉弁 V5を有する 供給管 89を介して、手押しポンプ 91付きの試料溶液タンク 93に連絡している。空気 抜き管路 85は、開閉弁 V6を有する空気抜き管 95を介して試料溶液回収容器 97に 開口している。空気抜き管 95は、例えば、垂直部分がガラスなどの透明部材で形成 し、液面の上昇を目視できるようにしてもよい。なお、上述した開閉弁 V1〜V6は、マ イク口ポンプの動作に影響するものであるので、閉鎖時には漏れが無 、ような精密な 構造のものを使用することが好ましい。また、マイクロチャネル 81には、始動作業や 補給作業の際に、補給された試料溶液が下流側に流れないようにするための開閉弁The operation of the micropump 20F mounted on the microchip 73 as shown in FIG. 11 will be described with reference to FIGS. 13 and 14. The supply line 83 communicates with a sample solution tank 93 with a hand pump 91 via a supply pipe 89 having an on-off valve V5. The air vent line 85 opens to the sample solution recovery container 97 via an air vent pipe 95 having an on-off valve V6. For example, the air vent pipe 95 may be formed of a transparent member such as glass at the vertical portion so that the rise in the liquid level can be visually observed. Since the above-described on-off valves V1 to V6 affect the operation of the microphone pump, it is preferable to use a precise structure that does not leak when closed. In addition, the microchannel 81 has start-up work and Open / close valve to prevent the replenished sample solution from flowing downstream during replenishment work
V7が設けられている。 V7 is provided.
[0062] ポンプ本体 20Fの上部空間 31及び下部空間 33のいずれにも駆動液が充填されて おらず、し力も、ポート 75内にも試料溶液が充填されていない状態で始動する際に は、先ず、開閉弁 VI, V2及び試料溶液タンク 93も開閉弁 V8と、マイクロチャネル 8 1へ通じる開閉弁 V7を閉じ、開閉弁 V4, V5, V6を開いて、試料溶液タンク 93の手 押しポンプ 91を操作し、試料溶液をポート 75に送る。空気抜き管路 95の先端側から 試料溶液が出てきたら、ポート 75内の空気が押し出されたので、開閉弁 V6を閉じる 。ポート 75内には試料溶液が溜まっていき、隔膜 61を上方に押し出し、例えば、図 1 4の破線で示すようになる。なお、この図では、隔膜 61の変形を誇張して描いている oポート 75内に十分な量の試料溶液が溜まったら、試料溶液タンク 93からの送液を 止め、開閉弁 V5を閉じる。  [0062] When starting in a state in which neither the upper space 31 nor the lower space 33 of the pump main body 20F is filled with the driving liquid and the sample solution is filled in the port 75, First, the open / close valves VI and V2 and the sample solution tank 93 are also closed by the open / close valve V8 and the open / close valve V7 leading to the microchannel 81, and the open / close valves V4, V5 and V6 are opened. To feed the sample solution to port 75. When the sample solution comes out from the front end side of the air vent line 95, the air in the port 75 is pushed out, so the on-off valve V6 is closed. The sample solution accumulates in the port 75, and the diaphragm 61 is pushed upward, for example, as shown by the broken line in FIG. In this figure, the deformation of the diaphragm 61 is exaggeratedly drawn. When a sufficient amount of sample solution has accumulated in the port 75, the liquid supply from the sample solution tank 93 is stopped and the on-off valve V5 is closed.
[0063] 次に、駆動液タンク 99に連絡する開閉弁 VI, V2と空気抜き用の開閉弁 V3, V4を 開いて、駆動液をマイクロポンプ 20Fの上部空間 31及び下部空間 33に供給する。 開閉弁 V3, V4力 駆動液が出るようになったら、空気抜きが終わったので、開閉弁 V1〜V4を閉じ、マイクロポンプ 20Fの動作準備を完了する。なお、多孔質薄膜 29 や電極 25, 27近傍の空気抜きを十分に行うには、しばらくマイクロポンプを準備運転 してから、もう一度上記の駆動液供給動作をおこなうことが好ましい。  Next, the on-off valves VI and V2 communicating with the driving fluid tank 99 and the on-off valves V3 and V4 for venting air are opened, and the driving fluid is supplied to the upper space 31 and the lower space 33 of the micropump 20F. On-off valve V3, V4 force When the driving fluid comes out, the air venting is finished, so the on-off valves V1 to V4 are closed and the operation preparation of the micro pump 20F is completed. In order to sufficiently vent the air in the vicinity of the porous thin film 29 and the electrodes 25 and 27, it is preferable to perform the above-described driving liquid supply operation again after preparing the micro pump for a while.
[0064] 上記において、試料溶液の充填を駆動液の充填よりも先に行ったのは、開閉弁 V4 を開いた状態で駆動液を供給すると、隔膜 61が駆動液の自重で下方へ膨らんでし まい、十分に試料溶液を供給できないからである。しカゝしながら、下部空間 30への駆 動液の供給を所定量で止め、その後に開閉弁 V2を「閑」、 V4を「開」とした状態で試 料溶液を供給すれば、やがて駆動液が開閉弁 V4より押し出されるので、このようにし てもよい。上部空間 31、下部空間 33及びポート 75のいずれにも、空気が抜けた状 態で液が充填されればょ 、のであって、やり方は任意である。  [0064] In the above, the sample solution is filled before the filling of the driving liquid. When the driving liquid is supplied with the on-off valve V4 opened, the diaphragm 61 swells downward due to the weight of the driving liquid. This is because the sample solution cannot be supplied sufficiently. However, if the sample solution is supplied with the on-off valve V2 set to “low” and V4 set to “open” after that, the supply of the driving fluid to the lower space 30 is stopped at a predetermined amount. This is possible because the driving fluid is pushed out from the on-off valve V4. Any method can be used as long as the upper space 31, the lower space 33, and the port 75 are filled with liquid in a state where air is removed.
[0065] このようにして、上部空間 31、下部空間 33及びポート 75にそれぞれの液が供給さ れた状態で、開閉弁 VIと V7のみを開いて電極 25、 27間に所定電圧を印加して、マ イク口ポンプを作動させる。開閉弁 VIを「開」とするのは、駆動液のヘッド hを一定に 維持するためである。これにより、多孔質膜 29を駆動液中の微粒子が通過し、これに 伴って上部空間 31から下部空間 33へ駆動液が微小量ずつ流れる。これにより、隔 膜 61が下方へ膨らみ、下部空間 33の容積が増大してポート 75の容積が減少し、試 料溶液がポート 75からマイクロチャネル 81へと送り出される。隔膜 61が非圧縮性な ので、駆動液の流量と試料溶液の流量は常に一致する。 [0065] In this way, with the respective liquids supplied to the upper space 31, the lower space 33 and the port 75, only the on-off valves VI and V7 are opened, and a predetermined voltage is applied between the electrodes 25 and 27. Then, operate the microphone pump. Open / close valve VI is set to “open” to keep the driving fluid head h constant. It is for maintaining. As a result, the fine particles in the driving liquid pass through the porous film 29, and accordingly, the driving liquid flows from the upper space 31 to the lower space 33 minutely. As a result, the diaphragm 61 swells downward, the volume of the lower space 33 increases, the volume of the port 75 decreases, and the sample solution is sent out from the port 75 to the microchannel 81. Since the diaphragm 61 is incompressible, the flow rate of the driving solution and the flow rate of the sample solution always match.
[0066] マイクロポンプ 20Fの動作に伴い、下部空間 33の容積が増加し、やがて、隔膜 61 が図 14において実線で示す原形に近ずぐそこで、所定のタイミングで運転を停止し 、試料溶液の補充作業を行う。これは、供給管 89の開閉弁 V5と、下部空間 33の空 気抜き Z駆動液排出のための開閉弁 V4とを「開」とし、他の開閉弁を「閉」の状態で 、手押しポンプ 91を作動すればよい。これによりポート 75に圧送された試料溶液は 隔膜 61を押し上げ、下部空間 30内の駆動液を空気抜き Z駆動液排出管 69及び開 閉弁 V4より駆動液回収容器 71へと押し出す。所定量が供給されたところで、開閉弁 V4, V5を閉じ、開閉弁 V7を「開」として、マイクロポンプ 20Fの動作を再開すればよ い。 [0066] With the operation of the micropump 20F, the volume of the lower space 33 increases, and eventually the diaphragm 61 approaches the original shape shown by the solid line in FIG. 14, so the operation is stopped at a predetermined timing, and the sample solution Perform replenishment work. This is because the on-off valve V5 of the supply pipe 89 and the air vent Z of the lower space 33 are opened, and the other on-off valve is closed and the hand pump Just activate 91. As a result, the sample solution pumped to the port 75 pushes up the diaphragm 61 and pushes the driving liquid in the lower space 30 to the driving liquid collection container 71 through the air vent Z driving liquid discharge pipe 69 and the open / close valve V4. When the predetermined amount is supplied, the on-off valves V4 and V5 are closed, the on-off valve V7 is opened, and the operation of the micropump 20F is resumed.
[0067] 図 15は、本発明のマイクロポンプが実装されるマイクロチップの他の実施態様を示 す概要図である。マイクロチップ 73の下面基板 81を貫通するようにポート 75を拡大 する。具体的には、下面基板 81に貫通孔を設け、該貫通孔の下部にカップ状の容 器 101を配置する。容器 101の内部が拡大ポート 75となる。拡大ポート 75の深さに 応じて隔膜 61のサイズ及び形状を適宜選択する。このようにして、拡大ポート 75の深 さを大きくすることにより、 1回の試料溶液補給によって動作可能な期間を延長するこ とがでさる。  FIG. 15 is a schematic diagram showing another embodiment of a microchip on which the micropump of the present invention is mounted. The port 75 is enlarged so as to penetrate the bottom substrate 81 of the microchip 73. Specifically, a through hole is provided in the lower surface substrate 81, and a cup-shaped container 101 is disposed below the through hole. The inside of the container 101 is an enlarged port 75. The size and shape of the diaphragm 61 are appropriately selected according to the depth of the expansion port 75. In this way, by increasing the depth of the expansion port 75, the operable period can be extended by one sample solution replenishment.
[0068] 図 16は、本発明のマイクロポンプが実装されるマイクロチップの更に他の実施態様 を示す概要図である。上記の実施態様では、試料溶液の補給を手押しポンプ 91で 人手により行った力 図 16の実施態様では、所定のァクチユエータで動作する補給 ポンプ 103を用いる。更に、この実施態様では、この補給ポンプ 103の動作と開閉弁 V1〜V7び開閉動作を必要に応じて制御し、所定のタイミングで補給動作を行う制 御装置 105が設けられている。補給動作を行うタイミングは、(A)マイクロポンプの動 作時間を測定する、(B)流量計等により総流量を測定する、(C)隔膜 61の変形をセン サで測定する等の方法が考えられる。このような構成により、長期に自動化したマイク 口ポンプ運転が可能となる。 FIG. 16 is a schematic diagram showing still another embodiment of a microchip on which the micropump of the present invention is mounted. In the above embodiment, the sample solution is manually replenished with the hand pump 91. In the embodiment of FIG. 16, the replenishment pump 103 that operates with a predetermined actuator is used. Further, in this embodiment, there is provided a control device 105 that controls the operation of the replenishment pump 103 and the on-off valves V1 to V7 and the open / close operation as necessary, and performs the replenishment operation at a predetermined timing. The timing of the replenishment operation is as follows: (A) Measuring the operation time of the micro pump, (B) Measuring the total flow rate with a flow meter, etc. For example, a method of measuring with a sensor can be considered. Such a configuration makes it possible to operate a microphone port pump that has been automated for a long time.
[0069] 図 17は、本発明のマイクロポンプの更に別の実施態様の概要断面図である。この マイクロポンプ 20Gは上下対称に構成されている。すなわち、外殻 23Fの内部を 2等 分するように、多孔質膜 27と、一対の電極 25及び 27を配設する。この場合、多孔質 膜や電極を傾斜させて取付ける必要は無ぐ水平な状態に取付ければよい。空気抜 きを行う必要が無いからである。多孔質膜 27により 2等分された外殻 23Fの上部空間 31の上端には隔膜 61aが、また、下部空間 33の下端には隔膜 61bがそれぞれ固着 されている。隔膜 61aと多孔質膜 27により画成される閉塞上部空間 31内には駆動液 223が密封充填されている。同様に、隔膜 61bと多孔質膜 27により画成される閉塞 下部空間 33内にも駆動液 223が密封充填されている。ここで重要なことは、一方の 閉塞空間内の駆動液量が、他方の閉塞空間内の駆動液量よりも多いことである。例 えば、図示されているように、閉塞上部空間 31内には隔膜 61aが外殻 23Fの外方へ 向かって膨隆するほど駆動液が存在するのに対して、閉塞下部空間 33内には隔膜 61bが外殻 23Fの内方へ向かって窪む程度の量の駆動液しか存在しない。各空間 内の駆動液量に差を付けるのは簡単である。外殻 23Fの内容積は既知であるから、 その 2等分量に相当する量の駆動液を注射器などのような公知慣用の手段で閉塞上 部空間 31及び閉塞下部空間 33内にそれぞれ注入する。その後、電極に電圧を印 加して電気浸透流を発生させ、一方の空間内の駆動液を他方の空間内へ移動させ ればよい。移動先の空間内の駆動液量は増大し、反対に移動元の空間内の駆動液 量は減少する。換言すれば、移動先の空間内の圧力は増大するので隔膜が膨隆す るのに対して、移動元の空間内の圧力は低下するので隔膜は凹む。従って、この実 施態様におけるマイクロポンプ 20Gでは、駆動液はポンプ内に常に密封状態で保持 され、駆動液の出し入れや交換又は補充などは特別な場合を除いて行われない。  FIG. 17 is a schematic cross-sectional view of still another embodiment of the micropump of the present invention. This micropump 20G is configured vertically symmetrically. That is, the porous membrane 27 and the pair of electrodes 25 and 27 are arranged so as to divide the inside of the outer shell 23F into two equal parts. In this case, it is not necessary to incline the porous membrane or the electrode, and it may be attached in a horizontal state. This is because there is no need to vent the air. A diaphragm 61a is fixed to the upper end of the upper space 31 of the outer shell 23F divided into two equal parts by the porous film 27, and a diaphragm 61b is fixed to the lower end of the lower space 33, respectively. A driving liquid 223 is hermetically filled in the closed upper space 31 defined by the diaphragm 61a and the porous film 27. Similarly, the driving liquid 223 is hermetically filled in the closed lower space 33 defined by the diaphragm 61b and the porous film 27. What is important here is that the amount of driving fluid in one closed space is larger than the amount of driving fluid in the other closed space. For example, as shown in the drawing, there is a driving liquid in the closed upper space 31 as the diaphragm 61a bulges outward from the outer shell 23F, whereas in the closed lower space 33, the diaphragm 61a There is only the amount of driving fluid that 61b sinks inward of the outer shell 23F. It is easy to make a difference in the amount of drive fluid in each space. Since the inner volume of the outer shell 23F is known, an amount of driving fluid corresponding to the bisected amount is injected into the closed upper space 31 and the closed lower space 33 by a known and conventional means such as a syringe. Thereafter, a voltage is applied to the electrode to generate an electroosmotic flow, and the driving liquid in one space is moved into the other space. The amount of driving fluid in the destination space increases, and conversely, the amount of driving fluid in the source space decreases. In other words, the pressure in the movement destination space increases, so that the diaphragm bulges, while the pressure in the movement source space decreases, so that the diaphragm is recessed. Therefore, in the micropump 20G in this embodiment, the driving liquid is always kept in a sealed state in the pump, and the driving liquid is not put in and out, replaced or replenished except in special cases.
[0070] 図 18A〜図 18Cを参照しながら、マイクロポンプ 20Gの使用方法を説明する。図 1 7に示される密閉型マイクロポンプ 20Gをマイクロチップ 73のポート 75の開口上部に 位置合わせして配置する。マイクロチップ自体は図示された態様のものに限定されず 、ポートとマイクロチャネルを有するものであれば全て使用できる。例えば、図 19にお けるマイクロチップ 1なども当然使用できる。ポート 75の開口上部に配置した状態の 時、上部空間 31内の駆動液の量の方力 下部空間 33内の駆動液量よりも多くなけ ればならない。これは隔膜の外観を見れば容易に確認できる。すなわち、膨隆してい る方が上で、凹んでいる方を下にすればよい。図 18Aに示されたマクロチップ 73の 場合、マイクロポンプ 20Gを配置後に、ポート 75内に試料溶液 225を注入する。ポー ト 75内への試料溶液の注入方法については既に具体的に説明したのでここでは省 略する。補給管路 83などの機構を有しないマイクロチップの場合、予めポート内に試 料溶液を注入しておき、その後、マイクロポンプ 20Gを配置すればよい。上部電極 2 5側を直流電源のプラス側に、下部電極 27をマイナス側に接続して所定の電圧を印 加する。 [0070] A method of using the micropump 20G will be described with reference to FIGS. 18A to 18C. The sealed micropump 20G shown in Fig. 17 is placed in alignment with the upper opening of the port 75 of the microchip 73. The microchip itself is not limited to the illustrated embodiment, and any microchip having a port and a microchannel can be used. For example, in Figure 19 Of course, the microchip 1 can be used. When placed in the upper part of the opening of the port 75, the direction of the amount of driving fluid in the upper space 31 must be greater than the amount of driving fluid in the lower space 33. This can be easily confirmed by looking at the appearance of the diaphragm. In other words, the bulging side should be on the top and the concave side should be on the bottom. In the case of the macro chip 73 shown in FIG. 18A, the sample solution 225 is injected into the port 75 after the micropump 20G is arranged. Since the method for injecting the sample solution into the port 75 has already been described in detail, it will be omitted here. In the case of a microchip that does not have a mechanism such as the supply line 83, a sample solution is injected into the port in advance, and then the micropump 20G is disposed. Connect the upper electrode 25 side to the positive side of the DC power supply and the lower electrode 27 to the negative side, and apply a predetermined voltage.
[0071] 電圧の印加により多孔質膜 29を通して電気浸透流が発生し、上部空間 31内の駆 動液 223が下部空間 33に向力つて移動する。この移動に伴い、下部空間 33の隔膜 61bが下方へ膨らみ、下部空間 33の容積が増大してポート 75の容積が減少し、試 料溶液 225がポート 75からマイクロチャネル 81へと送り出される。隔膜 6 lbが非圧縮 性なので、駆動液の流量と試料溶液の流量は常に一致する。図 18Bに示されるよう に、下部空間 33の隔膜 61bの下方への膨隆が限界に達した時点で、電圧の印加を 止める。  By applying voltage, an electroosmotic flow is generated through the porous membrane 29, and the driving liquid 223 in the upper space 31 moves toward the lower space 33 by force. With this movement, the diaphragm 61b in the lower space 33 swells downward, the volume of the lower space 33 increases, the volume of the port 75 decreases, and the sample solution 225 is sent from the port 75 to the microchannel 81. Since the 6 lb diaphragm is incompressible, the flow rate of the driving fluid and the sample solution always match. As shown in FIG. 18B, the application of voltage is stopped when the downward bulge of the diaphragm 61b in the lower space 33 reaches the limit.
[0072] その後、マイクロポンプ 20Gをマイクロチップ 73から外し、マイクロポンプ 20Gを上 下転倒させて(すなわち、ひっくり返して)マイクロチップ 73のポート 75の開口上部に 位置合わせして再び配置する。図 18Cは、マイクロポンプ 20Gをひっくり返してマイク 口チップ 73のポート 75の開口上部に位置合わせして再配置した状態を示す。従前 の下部空間 33が今度は上側に位置し、上部空間 31は下側に位置する。この場合、 電極も上下ひっくり返っているので、電圧を印加する場合には、電極 27をプラス側に 接続し、電極 25をマイナス側に接続しなければならない。斯くして、電極間に電圧を 印加すれば再び電気浸透流が発生し、駆動液 223は上側から下側に流れ、ポート 7 5内の試料溶液 225をマイクロチャネル 81に送出させることができる。従って、図 18 A〜図 18Cの操作を繰り返すことにより、試料溶液送出作業を効率的に実施すること ができる。 [0073] 図 17に示されるマイクロポンプ 20Gを使用することにより、図 11〜図 16に示される ような煩雑な駆動液供給操作を省略できるばかりか、駆動液が大気中の塵埃、微生 物、炭酸ガスなどにより汚染されたり、変質したりすることが完全に防止される。駆動 液の出し入れや交換又は補充などが不必要になるため、駆動液に力かる費用を節 約できるばかりか、装置構成全体がシンプルになるので、装置コストも安価になる。 [0072] After that, the micropump 20G is removed from the microchip 73, and the micropump 20G is turned upside down (that is, turned over) so as to be aligned with the upper opening of the port 75 of the microchip 73 and disposed again. FIG. 18C shows a state in which the micropump 20G is turned over and aligned with the upper opening of the port 75 of the microphone mouth chip 73 and rearranged. The former lower space 33 is now located on the upper side, and the upper space 31 is located on the lower side. In this case, since the electrode is also turned upside down, when applying a voltage, the electrode 27 must be connected to the positive side and the electrode 25 must be connected to the negative side. Thus, when a voltage is applied between the electrodes, an electroosmotic flow is generated again, and the driving liquid 223 flows from the upper side to the lower side, so that the sample solution 225 in the port 75 can be sent to the microchannel 81. Therefore, the sample solution delivery work can be efficiently performed by repeating the operations shown in FIGS. 18A to 18C. [0073] By using the micropump 20G shown in FIG. 17, not only the complicated driving liquid supply operation as shown in FIGS. 11 to 16 can be omitted, but the driving liquid is dust and microbes in the atmosphere. It is completely prevented from being contaminated or altered by carbon dioxide gas. Since there is no need to put in and out the drive fluid, or to replace or replenish it, not only can the cost of the drive fluid be saved, but the overall configuration of the device is simplified, resulting in lower device costs.
[0074] 以上、本発明のマイクロポンプの具体的な実施態様について図面を参照しながら 説明してきた力 本発明のマイクロポンプは例示された実施態様にのみ限定されるも のではなぐ様々な改変を施すことができる。例えば、図示された実施態様では、第 1 の遮蔽シートと第 2の遮蔽シートが別々のシートとして説明されているが、第 1の遮蔽 シートと第 2の遮蔽シートは一枚の連続的なシートであることもできる。  [0074] As described above, specific embodiments of the micropump of the present invention have been described with reference to the drawings. The micropump of the present invention is not limited to the illustrated embodiments, and various modifications are possible. Can be applied. For example, in the illustrated embodiment, the first shielding sheet and the second shielding sheet are described as separate sheets, but the first shielding sheet and the second shielding sheet are one continuous sheet. It can also be.
[0075] 第 1の溝及び第 2の溝を形成する際、外殻の外壁面に配設する態様と遮蔽シートに 配設する態様及び Z又は外殻の壁内に配設する態様を適宜都合良く組み合わせる こともできる。例えば、第 1の溝を外殻の外壁面に配設し、第 2の溝を遮蔽シートに配 設したり、逆に、第 1の溝を遮蔽シートに配設し、第 2の溝を外殻の外壁面に配設す る態様を採用することちでさる。  [0075] When forming the first groove and the second groove, an aspect of being arranged on the outer wall surface of the outer shell, an aspect of being arranged on the shielding sheet, and an aspect of being arranged in the wall of Z or the outer shell as appropriate You can combine them conveniently. For example, the first groove is disposed on the outer wall surface of the outer shell, the second groove is disposed on the shielding sheet, and conversely, the first groove is disposed on the shielding sheet, and the second groove is disposed. It is possible to adopt a mode in which the outer shell is disposed on the outer wall surface.
[0076] また、溝の形状も直線状と蛇行状を組み合わせて使用することもできる。例えば、第[0076] The groove shape can also be a combination of a linear shape and a meandering shape. For example,
1の溝及び第 2の溝の両方とも直線状の溝か又は蛇行状の溝であることもできるし、 一方が直線状の溝で他方が蛇行状の溝であることもできる。 Both the first groove and the second groove can be straight grooves or serpentine grooves, or one can be a straight groove and the other can be a serpentine groove.
[0077] マイクロポンプ自体のサイズは本発明の必須要件ではな!/、。用途に応じて適宜の サイズを選択することができる。マイクロポンプの選択された特定のサイズに応じて、 シート、穴及び溝の各サイズを適宜最適値に調整、変更することができる。 [0077] The size of the micropump itself is not an essential requirement of the present invention! /. An appropriate size can be selected according to the application. Depending on the specific size of the micropump, the size of the sheet, hole and groove can be adjusted and changed appropriately to the optimum values.
[0078] また、外殻 23の形状は円柱状に限らず、角柱状であることもできる。更に、外殻 23 の材質は PDMSだけに限定されず、 PDMS基板 3と自己接着することができるガラ ス、合成樹脂類、金属類であることもできる。 [0078] The shape of the outer shell 23 is not limited to a cylindrical shape, and may be a prismatic shape. Further, the material of the outer shell 23 is not limited to PDMS, and can be glass, synthetic resin, or metal that can self-adhere with the PDMS substrate 3.
[0079] 本発明のマイクロポンプで使用される駆動液として食塩水を使用すると電圧印加後 に電気分解が起こり、気泡発生や流量の時間的減少が見られるので好ましくな 、。 ポリスチレンコロイド溶液やシリカコロイド溶液では、このような気泡発生や流量の時 間的減少が見られず、流量は一定になる。 実施例 1 [0079] When saline is used as the driving liquid used in the micropump of the present invention, electrolysis occurs after voltage application, and bubbles are generated and the flow rate is decreased with time. In the colloidal polystyrene solution and the colloidal silica solution, such bubbles are not generated and the flow rate is not reduced over time, and the flow rate is constant. Example 1
(1)図 19に示されるような断面構造を有するマイクロ流体チップ 1を作製した。対面 基板 10は厚さ lmmのガラス製であり、基板 3は厚さ 2mmの PDMS製であった。微 細流路 5の幅及び高さは各 200 mであり、長さ(距離)は 50mmであった。ポート 9 の内径は lmmであった。ポート 7の内径は 9mmとした。  (1) A microfluidic chip 1 having a cross-sectional structure as shown in FIG. 19 was produced. The facing substrate 10 was made of glass with a thickness of 1 mm, and the substrate 3 was made of PDMS with a thickness of 2 mm. The width and height of microchannel 5 were 200 m each, and the length (distance) was 50 mm. The inner diameter of port 9 was lmm. The inner diameter of port 7 was 9 mm.
(2)図 4に示されるマイクロポンプ 20Aを作製した。マイクロポンプ 20Aの PDMS製 外殻 23Aの外径は 20mm、高さは 18mmであり、上部空間 31の内径は 13mm、下 部空間 33の内径は 10mm、フランジ部 35の外径は 30mm、高さは 2mmであった。 外殻 23Aの上端から 5mmの位置に第 1の穴 37 (内径 lmm)を穿設し、フランジ部 3 5の下面から 6mmの位置に第 2の穴 39 (内径 lmm)を穿設した。同様に、外殻 23A の上端から 2mmの位置に第 4の穴 47 (内径 lmm)を穿設し、フランジ部 35の下面か ら 7. 9mmの位置に第 3の穴 45 (内径 2mm)を穿設した。多孔質膜 29として、孔径 2 μ m、孔数 1500000個、厚さ 11 mのポリカーボネート多孔質膜を使用した。この 多孔質膜の上面側及び下面側にパッキンを介して電極 25及び 27をそれぞれ接続さ せた。電極具備多孔質膜 29の外径は 13mmであった。外殻 23Aの中空部内に電極 具備多孔質膜 29を傾斜させて取り付けた。次いで、凹陥部 53及び 55 (内径各 100 m、凹陥部間隔 7mm)及び第 1の溝 41A (幅 100 /z m、深さ 100 /z m、長さ 8. lm m)が形成されて!、る PDMS製第 1の遮蔽シート 43 Aを、第 1の穴 37及び第 2の穴 3 9と位置合わせさせて外殻 23Aの外壁面に自己吸着させた。同様に、凹陥部 53及 び 55 (内径各 100 /ζ πι、凹陥部間隔 7mm)及び第 2の溝 49Α (幅 1000 /ζ πι、深さ 1 00 m、長さ 8. lmm)が形成されている PDMS製第 2の遮蔽シート 51Aを、第 3の 穴 45及び第 4の穴 47と位置合わせさせて外殻 23Aの外壁面に自己吸着させた。  (2) A micropump 20A shown in FIG. 4 was produced. Micro pump 20A PDMS outer shell 23A outer diameter is 20mm, height is 18mm, upper space 31 inner diameter is 13mm, lower space 33 inner diameter is 10mm, flange 35 outer diameter is 30mm, height Was 2 mm. A first hole 37 (inner diameter lmm) was drilled at a position 5 mm from the upper end of the outer shell 23A, and a second hole 39 (inner diameter lmm) was drilled at a position 6 mm from the lower surface of the flange portion 35. Similarly, a fourth hole 47 (inner diameter lmm) is drilled at a position 2 mm from the upper end of the outer shell 23A, and a third hole 45 (inner diameter 2 mm) is formed at a position 7.9 mm from the bottom surface of the flange portion 35. Drilled. As the porous membrane 29, a polycarbonate porous membrane having a pore diameter of 2 μm, the number of pores of 1.500000, and a thickness of 11 m was used. Electrodes 25 and 27 were connected to the upper surface side and lower surface side of this porous membrane via packing, respectively. The outer diameter of the electrode-equipped porous membrane 29 was 13 mm. An electrode-equipped porous membrane 29 was attached in an inclined manner in the hollow portion of the outer shell 23A. Next, concave portions 53 and 55 (inner diameter of 100 m, concave portion interval of 7 mm) and first groove 41A (width 100 / zm, depth 100 / zm, length 8.lm m) are formed! The first shielding sheet 43A made of PDMS was self-adsorbed on the outer wall surface of the outer shell 23A in alignment with the first hole 37 and the second hole 39. Similarly, recessed portions 53 and 55 (inner diameter 100 / ζ πι, recessed portion interval 7 mm) and second groove 49 mm (width 1000 / ζ πι, depth 100 m, length 8. lmm) are formed. The second shielding sheet 51A made of PDMS was self-adsorbed on the outer wall surface of the outer shell 23A in alignment with the third hole 45 and the fourth hole 47.
(3)マイクロ流体チップ 1のポート 7に赤色に着色された油性サンプル液を満たした 。その後、このポート 7の開口上面にマイクロポンプ 20Aの下部空間 33の開口を位置 合わせさせて、マイクロポンプ 20Aを PDMS基板 3に自己吸着させた。  (3) Port 7 of the microfluidic chip 1 was filled with an oily sample liquid colored in red. Thereafter, the opening of the lower space 33 of the micropump 20A was aligned with the upper surface of the opening of the port 7, and the micropump 20A was self-adsorbed to the PDMS substrate 3.
(4)マイクロポンプ 20Aの中空部上部空間 31内にイオン交換水 (イオンを取り除!ヽ た蒸留水)にシリカ粒子 (粒子径: 0. 09 m)を濃度 1%で分散させたコロイド溶液を 駆動液として充填した。また、同じコロイド溶液を注射器で第 1の穴 37から注入した。 コロイド溶液が第 1の穴 37から第 1の溝 41Aを経て第 2の穴 39より中空部下部空間 3 3内に流入するのが確認された。中空部下部空間 33がコロイド溶液で満たされるまで に要した時間は 10秒間であった。 (4) Colloidal solution in which silica particles (particle size: 0.09 m) are dispersed at a concentration of 1% in ion exchange water (distilled water from which ions have been removed) in the hollow upper space 31 of the micropump 20A. Was filled as a driving fluid. The same colloidal solution was injected from the first hole 37 with a syringe. It was confirmed that the colloidal solution flows from the first hole 37 through the first groove 41A into the hollow lower space 33 through the second hole 39. The time required for the hollow space 33 to be filled with the colloidal solution was 10 seconds.
(5)下部空間 33内がコロイド溶液で満たされた時点で、第 4の穴 47を封止した。プ ラス電極 25及びマイナス電極 27に DC電圧 15Vを印加したところ、中空部上部空間 31から中空部下部空間 33への電気浸透流が発生し、それに伴い、ポート 7内の油 性着色液が微細流路 5を経てポート 9にまで送液されて 、くのが確認できた。駆動液 と油性着色液との間には明瞭な界面が存在していた。  (5) When the lower space 33 is filled with the colloidal solution, the fourth hole 47 is sealed. When a DC voltage of 15 V is applied to the positive electrode 25 and the negative electrode 27, an electroosmotic flow from the hollow upper space 31 to the hollow lower space 33 is generated, and accordingly, the oily colored liquid in the port 7 is fine. It was confirmed that the liquid was fed to port 9 through channel 5. A clear interface existed between the driving liquid and the oily coloring liquid.
実施例 2  Example 2
[0081] 実施例 1におけるマイクロポンプ 20Aを、実施例 1のマイクロ流体チップ力 剥離し 、同じ流路構造を有する別のマイクロ流体チップのポート 7の上面に自己吸着させ、 実施例 1と同じシリカコロイド溶液を用いて送液実験を行ったところ、実施例 1と同じ 結果が得られた。また、マイクロポンプ 20Aと PDMS基板 3との接着界面からの漏液 は発生しな力つた。このことから、本発明によるマイクロポンプは、マイクロ流体チップ における外付けマイクロポンプとして有効に繰り返し使用出来ることが理解できる。 実施例 3  [0081] The micropump 20A in Example 1 was separated from the microfluidic chip force of Example 1 and self-adsorbed on the upper surface of the port 7 of another microfluidic chip having the same flow path structure, and the same silica as in Example 1 When a liquid feeding experiment was performed using a colloidal solution, the same result as in Example 1 was obtained. In addition, liquid leakage from the adhesive interface between the micropump 20A and the PDMS substrate 3 did not occur. From this, it can be understood that the micropump according to the present invention can be effectively used repeatedly as an external micropump in a microfluidic chip. Example 3
[0082] 図 10に示されるマイクロポンプ 20Eを実施例 1に述べた方法と同様な方法で作製 した。隔膜 61には厚さ 0. 3mmのポリプロピレン製のドーム状の形状をしたフィルムを 使用した。このフィルムを合成樹脂製のリングで下部空間下端内壁面に定着させた。 マイクロ流体チップ 1のポート 7に赤色に着色された生理食塩水を満たした。その後、 このポート 7の開口上面にマイクロポンプ 20Eを載置した。このとき、隔膜 61は下部空 間 33内に入り込むように変形させておいた。実施例 1と同様な方法で、マイクロボン プ 20Eの上部空間及び下部空間に実施例 1で使用されたものと同じ駆動液を充填し 、プラス電極 25及びマイナス電極 27に DC電圧 15Vを印加したところ、中空部上部 空間 31から中空部下部空間 33への電気浸透流が発生し、それに伴い、隔膜 61が 徐々に下側に膨らみ、それに応じてポート 7内の着色生理食塩水が微細流路 5を経 てポート 9にまで送液されていくのが確認できた。  A micropump 20E shown in FIG. 10 was produced by the same method as described in Example 1. For the diaphragm 61, a 0.3 mm thick polypropylene dome-shaped film was used. This film was fixed to the inner wall surface at the lower end of the lower space with a synthetic resin ring. Port 7 of the microfluidic chip 1 was filled with physiological saline colored red. Thereafter, the micropump 20E was placed on the upper surface of the opening of the port 7. At this time, the diaphragm 61 was deformed so as to enter the lower space 33. In the same manner as in Example 1, the same driving fluid as that used in Example 1 was filled in the upper space and lower space of the micro pump 20E, and a DC voltage of 15 V was applied to the positive electrode 25 and the negative electrode 27. However, an electroosmotic flow from the hollow upper space 31 to the hollow lower space 33 is generated, and accordingly, the diaphragm 61 gradually swells downward, and accordingly the colored physiological saline in the port 7 flows into the fine flow path. It was confirmed that the liquid was fed to port 9 via 5.
産業上の利用可能性 [0083] 本発明のマイクロポンプは、免疫学的分野、血液学的分野、医学的分野、遺伝子 工学的分野、応用生命科学的分野などにおいて、種々の細胞の採取や単離、特定 細胞のクローニングゃ増殖、細胞表面に特定抗原を発現した細胞の分取、細胞膜分 子の胴体解析、細胞染色体の解析、尿中の有形成分類の解析などの目的に使用さ れるマイクロ流体チップで有効に利用することができる。 Industrial applicability [0083] The micropump of the present invention is used to collect and isolate various cells and to clone specific cells in the immunological field, hematology field, medical field, genetic engineering field, applied life science field, and the like. Effective use in microfluidic chips used for purposes such as proliferation, sorting of cells expressing specific antigens on the cell surface, body membrane cell body analysis, cell chromosome analysis, and urinary formation classification can do.
図面の簡単な説明  Brief Description of Drawings
[0084] [図 1]本発明によるマイクロポンプの実施態様の一例の部分概要断面図である。  FIG. 1 is a partial schematic cross-sectional view of an example of an embodiment of a micropump according to the present invention.
[図 2]図 1におけるマイクロポンプの外殻の外壁面に形成される第 1の溝の形状の具 体例を示す部分概要平面図である。  2 is a partial schematic plan view showing an example of the shape of the first groove formed on the outer wall surface of the outer shell of the micropump in FIG. 1. FIG.
[図 3]第 1の遮蔽シート又は第 2の遮蔽シートの別の実施態様の概要平面図である。  FIG. 3 is a schematic plan view of another embodiment of the first shielding sheet or the second shielding sheet.
[図 4]図 3に示される遮蔽シートを使用した本発明のマイクロポンプの別の実施態様 の部分概要断面図である。  4 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention using the shielding sheet shown in FIG.
[図 5]図 4に示されるマイクロポンプの部分概要斜視図である。  5 is a partial schematic perspective view of the micropump shown in FIG.
[図 6]第 2の遮蔽シートの更に別の実施態様の概要平面図である。  FIG. 6 is a schematic plan view of still another embodiment of the second shielding sheet.
[図 7]図 6に示される遮蔽シートを使用した本発明のマイクロポンプの別の実施態様 の部分概要断面図である。  7 is a partial schematic cross-sectional view of another embodiment of the micropump of the present invention using the shielding sheet shown in FIG.
[図 8]本発明によるマイクロポンプの他の実施態様の部分概要断面図である。  FIG. 8 is a partial schematic cross-sectional view of another embodiment of a micropump according to the present invention.
[図 9]本発明によるマイクロポンプの更に別の実施態様の部分概要断面図である。  FIG. 9 is a partial schematic cross-sectional view of still another embodiment of the micropump according to the present invention.
[図 10]本発明によるマイクロポンプの更に他の実施態様の部分概要断面図である。  FIG. 10 is a partial schematic cross-sectional view of still another embodiment of the micropump according to the present invention.
[図 11]本発明によるマイクロポンプをマイクロ流体チップに実装したマイクロポンプ装 置の実施態様の一例の構成を示すもので、 (a)は縦断面図、(b)は平面図である。  FIG. 11 shows a configuration of an example of an embodiment of a micropump device in which a micropump according to the present invention is mounted on a microfluidic chip, where (a) is a longitudinal sectional view and (b) is a plan view.
[図 12]図 11のマイクロポンプの要部を示す部分断面図であり、(a)は図 11 (b)の a矢 視図、(b)は図 11 (b)の b矢視図である。  FIG. 12 is a partial cross-sectional view showing the main part of the micropump in FIG. 11, where (a) is a view from the a arrow in FIG. 11 (b) and (b) is a view from the b arrow in FIG. is there.
[図 13]図 11のマイクロポンプ装置を用いたポンプシステムを示す概要図である。  13 is a schematic diagram showing a pump system using the micropump device of FIG.
[図 14]図 11のマイクロポンプ装置を用いたポンプシステムにおける液フローを模式的 に示す図である。  FIG. 14 is a view schematically showing a liquid flow in a pump system using the micropump device of FIG. 11.
[図 15]本発明による他の実施態様のマイクロポンプ装置及びポンプシステムを示す 概要図である。 [図 16]本発明による更に他の実施態様のマイクロポンプ装置及びポンプシステムを 示す概要図である。 FIG. 15 is a schematic diagram showing a micropump device and a pump system according to another embodiment of the present invention. FIG. 16 is a schematic view showing a micropump device and a pump system according to still another embodiment of the present invention.
[図 17]本発明によるマイクロポンプの別の実施態様の部分概要断面図である。  FIG. 17 is a partial schematic cross-sectional view of another embodiment of a micropump according to the present invention.
[図 18A]図 17のマイクロポンプの動作を説明する部分概要断面図である。  FIG. 18A is a partial schematic cross-sectional view for explaining the operation of the micropump of FIG.
[図 18B]図 17のマイクロポンプの動作を説明する部分概要断面図である。  FIG. 18B is a partial schematic cross-sectional view illustrating the operation of the micropump of FIG.
[図 18C]図 17のマイクロポンプの動作を説明する部分概要断面図である。  18C is a partial schematic cross-sectional view illustrating the operation of the micropump in FIG.
[図 19]特許文献 3に示される従来のマイクロポンプの一例の部分概要断面図である。  FIG. 19 is a partial schematic cross-sectional view of an example of a conventional micropump shown in Patent Document 3.
[図 20]図 19に示されるプラス電極 205及びマイナス電極 207とこの電極間に間挿さ れた多孔質膜 209の分解斜視図である。  20 is an exploded perspective view of the positive electrode 205 and the negative electrode 207 shown in FIG. 19 and the porous membrane 209 interposed between the electrodes.
[図 21]図 19に示される従来のマイクロポンプ 200の或る使用例を示す部分概要断面 図である。  FIG. 21 is a partial schematic sectional view showing an example of use of the conventional micropump 200 shown in FIG.
符号の説明 Explanation of symbols
1 マイクロ流体チップ  1 Microfluidic chip
3 PDMS基板  3 PDMS substrate
5 微細流路  5 Fine channel
7 ポート  7 ports
9 ポート  9 port
10 対面基板  10 facing board
20, 20A〜20G 本発明のマイクロポンプ  20, 20A-20G Micro pump of the present invention
23, 23A〜23E 外殻  23, 23A-23E Outer shell
25 上部電極  25 Upper electrode
27 下部電極  27 Bottom electrode
29 多孔質膜  29 Porous membrane
31 上部空間  31 Upper space
33 下部空間  33 Lower space
35 フランジ部  35 Flange
37 第 1の穴  37 1st hole
39 第 2の穴 , 41A 41C 第 1の溝, 43A, 43B 第 1の遮蔽シー -卜 第 3の穴 39 Second hole , 41A 41C 1st groove, 43A, 43B 1st shield sea- 卜 3rd hole
第 4の穴 4th hole
, 49A 49C 第 2の溝, 49A 49C Second groove
, 51A 51B 第 2の遮蔽シー小, 55 凹陥部 , 51A 51B 2nd shielding sea small, 55 concave
空気出口  Air outlet
液体注入口 Liquid inlet
, 61a, 61b 隔膜 , 61a, 61b diaphragm
隔膜ホルダー  Diaphragm holder
試料溶液補給路  Sample solution supply path
空気抜き路  Air vent
試料溶液補給管  Sample solution supply tube
試料溶液タンク  Sample solution tank
制御装置  Control device
-V7 開閉弁  -V7 On-off valve
開放弁  Release valve
従来のマイクロポンプ プラス電極  Conventional micropump plus electrode
マイナス電極  Negative electrode
多孔質膜  Porous membrane
液体貯留空間  Liquid storage space
送液チューブ  Liquid feeding tube
下部空間  Lower space
多孔質膜支持体  Porous membrane support
開口部  Aperture
開口部 223 駆動液 225 試料液体 Aperture 223 Driving liquid 225 Sample liquid

Claims

請求の範囲 The scope of the claims
[1] 貫通中空部を有する外殻と、該中空部の内部に、該中空部を上下に 2分するように 配置された、プラス電極とマイナス電極の間に間挿された多孔質膜とからなり、前記 多孔質膜を通る電気浸透流効果を利用した微小流量用マイクロポンプにおいて、 前記多孔質膜により 2分された中空部の下部空間に連通する液体充填用バイパス 流路が配設されており、かつ、前記下部空間から大気に連通する空気抜き流路が配 設されて!/ヽることを特徴とするマイクロポンプ。  [1] An outer shell having a through-hole, and a porous membrane disposed inside the hollow so as to divide the hollow into two vertically, and interposed between a plus electrode and a minus electrode, In the micro-flow micropump using the electroosmotic flow effect passing through the porous membrane, a liquid-filling bypass channel communicating with the lower space of the hollow portion divided by the porous membrane is disposed. A micropump characterized by having an air vent channel communicating with the atmosphere from the lower space!
[2] 前記下部空間の内側に開口した前記空気抜き流路の入口の前記下部空間の底面 力 の高さ力 前記下部空間の内側に開口した前記バイパス流路の出口の前記下 部空間の底面力 の高さ以上であることを特徴とする請求項 1記載のマイクロポンプ  [2] Height force of bottom surface force of the lower space at the inlet of the air vent channel opened inside the lower space Bottom force of the lower space at the outlet of the bypass channel opened inside the lower space The micropump according to claim 1, wherein the micropump is at least a height of
[3] 前記バイパス流路は、前記外殻の外部か又は外殻の壁内に形成され、前記空気抜 き流路は前記外殻の外部か又は外殻の壁内に形成されていることを特徴とする請求 項 1又は 2記載のマイクロポンプ。 [3] The bypass flow path is formed outside the outer shell or in the wall of the outer shell, and the air vent flow path is formed outside the outer shell or in the wall of the outer shell. The micropump according to claim 1 or 2, wherein
[4] 前記外殻の外部に形成される前記バイパス流路は、前記外殻の下部空間に貫通し て配設されたバイパス流路出口となる第 2の穴と、下側端が該第 2の穴に連通する第 1の溝と、前記第 2の穴及び前記第 1の溝を遮蔽する第 1の遮蔽シートとから構成され ており、前記第 1の溝は、前記外殻の外壁面上か、又は前記第 1の遮蔽シートの接着 面側の何れかに形成されており、前記第 1の溝の上側端は、外殻の上部空間に貫通 して配設され、かつ前記第 1の遮蔽シートにより遮蔽される第 1の穴に連通するか、又 は、前記第 1の遮蔽シートの上端で大気に連通しており、  [4] The bypass channel formed outside the outer shell has a second hole serving as a bypass channel outlet disposed through the lower space of the outer shell, and a lower end of the bypass channel. A first groove that communicates with the second hole, and a first shielding sheet that shields the second hole and the first groove. The first groove is formed outside the outer shell. It is formed either on the wall surface or on the bonding surface side of the first shielding sheet, and the upper end of the first groove is disposed so as to penetrate through the upper space of the outer shell, and Communicates with the first hole shielded by one shielding sheet, or communicates with the atmosphere at the upper end of the first shielding sheet,
前記外殻の外部に形成される前記空気抜き流路は、前記外殻の下部空間に貫通 して配設された空気抜き流路入口となる第 3の穴と、下側端が該第 3の穴に連通する 第 2の溝と、前記第 3の穴及び前記第 2の溝を遮蔽する第 2の遮蔽シートとから構成さ れており、前記第 2の溝は、前記外殻の外壁面上か、又は前記第 2の遮蔽シートの接 着面側の何れかに形成されており、前記第 2の溝の上側端は、外殻の上部空間に貫 通して配設され、かつ前記第 2の遮蔽シートにより遮蔽される第 4の穴に連通するか、 又は、前記第 2の遮蔽シートの上端で大気に連通しており、 前記第 3の穴の前記下部空間の底面からの高さは、前記第 2の穴の前記下部空間 の底面からの高さ以上であり、 The air vent channel formed outside the outer shell has a third hole serving as an air vent channel inlet penetrating the lower space of the outer shell, and a lower end of the third hole. A second groove that communicates with the second hole and a second shielding sheet that shields the third hole and the second groove, and the second groove is formed on the outer wall surface of the outer shell. Or the upper end of the second groove is disposed so as to penetrate through the upper space of the outer shell, and the second shielding sheet is attached to the second shielding sheet. Communicating with the fourth hole shielded by the shielding sheet, or communicating with the atmosphere at the upper end of the second shielding sheet, The height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space,
前記第 1の溝が前記第 1の穴に連通し、前記第 2の溝が前記第 4の穴に連通する 場合、下部空間底面力 の第 1の穴の位置は下部空間底面からの第 4の穴の位置よ りも低いことを特徴とする請求項 3記載のマイクロポンプ。  When the first groove communicates with the first hole and the second groove communicates with the fourth hole, the position of the first hole of the lower space bottom force is the fourth position from the bottom of the lower space. 4. The micropump according to claim 3, wherein the position is lower than the position of the hole.
[5] 前記外殻の壁内に形成される前記バイパス流路は、前記外殻の下部空間に配設さ れたバイパス流路出口となる第 2の穴と、第 1の溝とからなり、前記第 1の溝の下側端 は該第 2の穴に連通しており、前記第 1の溝の上側端は、前記外殻の上端面上で大 気に連通するか、又は、前記外殻の上部空間内側に向力つて開口するか若しくは前 記外殻の外側に向かって開口する第 1の穴に連通しており、 [5] The bypass channel formed in the outer shell wall includes a second hole serving as a bypass channel outlet disposed in a lower space of the outer shell and a first groove. The lower end of the first groove communicates with the second hole, and the upper end of the first groove communicates with the atmosphere on the upper end surface of the outer shell, or It opens to the inner side of the upper space of the outer shell or communicates with the first hole that opens toward the outer side of the outer shell,
前記外殻の壁内に形成される前記空気抜き流路は、前記外殻の下部空間に配設 された空気抜き流路入口となる第 3の穴と、第 2の溝とからなり、前記第 2の溝の下側 端は該第 3の穴に連通しており、前記第 2の溝の上側端は、前記外殻の上端面上で 大気に連通するか、又は、前記外殻の上部空間内側に向力つて開口するか若しくは 前記外殻の外側に向かって開口する第 4の穴に連通しており、  The air vent channel formed in the wall of the outer shell includes a third hole serving as an air vent channel inlet disposed in a lower space of the outer shell and a second groove, and the second groove. The lower end of the groove communicates with the third hole, and the upper end of the second groove communicates with the atmosphere on the upper end surface of the outer shell, or the upper space of the outer shell. It opens to the inside by force or communicates with the fourth hole that opens to the outside of the outer shell,
前記第 3の穴の前記下部空間の底面からの高さは、前記第 2の穴の前記下部空間 の底面からの高さ以上であり、  The height of the third hole from the bottom surface of the lower space is equal to or higher than the height of the second hole from the bottom surface of the lower space,
前記第 1の溝が前記外殻の上部空間内側に向力つて開口する前記第 1の穴に連 通し、前記第 2の溝が前記外殻の上部空間内側に向かって開口する前記第 4の穴に 連通する場合、下部空間底面からの第 1の穴の位置は下部空間底面力 の第 4の穴 の位置よりも低いことを特徴とする請求項 3記載のマイクロポンプ。  The first groove communicates with the first hole opening toward the inside of the upper space of the outer shell, and the second groove opens to the inside of the upper space of the outer shell. 4. The micropump according to claim 3, wherein when communicating with the hole, the position of the first hole from the bottom surface of the lower space is lower than the position of the fourth hole of the bottom space bottom force.
[6] 前記下部空間の内側に開口した前記空気抜き流路の入口(第 3の穴)の内径が、前 記下部空間の内側に開口した前記バイパス流路の出口(第 2の穴)の内径よりも大き いことを特徴とする請求項 1〜5の何れかに記載のマイクロポンプ。 [6] The inner diameter of the inlet (third hole) of the air vent channel opened inside the lower space is the inner diameter of the outlet (second hole) of the bypass channel opened inside the lower space. The micropump according to claim 1, wherein the micropump is larger than the micropump.
[7] 前記第 1の溝及び第 2の溝の形状は、直線状及び蛇行状からなる群から選択される 何れかの形状であることを特徴とする請求項 1〜6の何れかに記載のマイクロポンプ。 [7] The shape of each of the first groove and the second groove is any one selected from the group consisting of a linear shape and a meandering shape. Micro pump.
[8] 前記外殻がポリジメチルシロキサン (PDMS)又はガラス力 形成されており、前記第 1の遮蔽シート及び第 2の遮蔽シートが PDMSから形成されていることを特徴とする 請求項 1〜7の何れかに記載のマイクロポンプ。 [8] The outer shell is formed of polydimethylsiloxane (PDMS) or glass force, and the first shielding sheet and the second shielding sheet are formed of PDMS. The micropump according to any one of claims 1 to 7.
[9] 前記外殻の下部空間の端部付近に、前記下部空間を閉塞する隔膜を更に有するこ とを特徴とする請求項 1〜8の何れかに記載のマイクロポンプ。  9. The micropump according to any one of claims 1 to 8, further comprising a diaphragm that closes the lower space in the vicinity of an end of the lower space of the outer shell.
[10] 貫通中空部を有する外殻と、該中空部の内部に、該中空部を上下に 2分するように 配置された、プラス電極とマイナス電極の間に間挿された多孔質膜とからなり、前記 多孔質膜を通る電気浸透流効果を利用した微小流量用マイクロポンプにおいて、 前記多孔質膜により 2分された中空部の上部空間の端部付近に前記上部空間を 密封する隔膜を有し、かつ、多孔質膜により 2分された中空部の下部空間の端部付 近に前記下部空間を密封する隔膜を有し、前記密封された上部空間及び下部空間 内にはそれぞれ所定量の駆動液が充填されていることを特徴とするマイクロポンプ。  [10] An outer shell having a penetrating hollow portion, and a porous membrane interposed between the plus electrode and the minus electrode, arranged inside the hollow portion so as to divide the hollow portion into two vertically In the micropump for micro flow rate utilizing the electroosmotic flow effect passing through the porous membrane, a diaphragm for sealing the upper space in the vicinity of the end of the upper space of the hollow portion divided into two by the porous membrane And having a diaphragm for sealing the lower space in the vicinity of the end of the lower space of the hollow portion divided into two by the porous membrane, and each of the sealed upper space and lower space has a predetermined amount. A micropump characterized by being filled with a driving fluid.
[11] 1個以上の大気に向かって開口したポートと、該ポートに連通する微細流路を有する ポリジメチルシロキサン製基板と、該ポリジメチルシロキサン製基板の微細流路形成 面に貼り合わされる対面基板とからなるマイクロ流体チップにおいて、  [11] One or more ports opened to the atmosphere, a polydimethylsiloxane substrate having a fine channel communicating with the port, and a facing surface bonded to a surface of the polydimethylsiloxane substrate formed with a fine channel In a microfluidic chip comprising a substrate,
前記ポートのうちの少なくとも 1個のポートの開口上面に、請求項 1〜10の何れかに 記載のマイクロポンプを着脱可能に載置したことを特徴とするマイクロ流体チップ。  A microfluidic chip, wherein the micropump according to any one of claims 1 to 10 is detachably mounted on an opening upper surface of at least one of the ports.
[12] 前記開口ポートが形成されている基板に、前記開口ポート内に試料溶液を補給する ための試料溶液補給路と、前記開口ポート内の空気を抜くための空気抜き路が更に 形成されて ヽることを特徴とする請求項 11に記載のマイクロ流体チップ。  [12] A substrate on which the opening port is formed is further formed with a sample solution supply path for supplying a sample solution in the opening port and an air vent path for extracting air in the opening port. 12. The microfluidic chip according to claim 11, wherein:
[13] 前記試料溶液補給路には、開閉弁と、試料溶液タンクから前記ポート内に試料溶液 を送液する補給ポンプとが設けられ、試料溶液補給時に、前記開閉弁と前記補給ポ ンプとを操作する制御装置が更に設けられていることを特徴とする請求項 12記載の マイクロ流体チップ。  [13] The sample solution replenishment path is provided with an on-off valve and a replenishment pump for feeding the sample solution from the sample solution tank into the port, and when the sample solution is replenished, the on-off valve, the replenishment pump, 13. The microfluidic chip according to claim 12, further comprising a control device for operating.
PCT/JP2006/306547 2005-11-02 2006-03-29 Micropump and micro fluid chip WO2007052377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542231A JP4528330B2 (en) 2005-11-02 2006-03-29 Micropump and microfluidic chip

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005319456 2005-11-02
JP2005-319456 2005-11-02
JP2005365593 2005-12-19
JP2005-365593 2005-12-19

Publications (1)

Publication Number Publication Date
WO2007052377A1 true WO2007052377A1 (en) 2007-05-10

Family

ID=38005538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306547 WO2007052377A1 (en) 2005-11-02 2006-03-29 Micropump and micro fluid chip

Country Status (2)

Country Link
JP (1) JP4528330B2 (en)
WO (1) WO2007052377A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132657B1 (en) 2010-04-14 2012-04-02 인제대학교 산학협력단 Peristaltic micropump driven by single control signal and method for fabricating the same
JP2013531222A (en) * 2010-04-28 2013-08-01 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド Sample analysis system and method of use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923426A (en) * 1974-08-15 1975-12-02 Alza Corp Electroosmotic pump and fluid dispenser including same
JPH10281070A (en) * 1997-04-09 1998-10-20 Horiba Ltd Diaphragm pump operating by uniformly distributed load
WO2003092662A1 (en) * 2002-05-01 2003-11-13 Microlin, L.C. Fluid delivery device having an electrochemical pump with an anionic exchange membrane and associated method
JP2004226207A (en) * 2003-01-22 2004-08-12 Asahi Kasei Corp Liquid-feeding mechanism and analyzer provided with the same
WO2005052379A1 (en) * 2003-11-27 2005-06-09 Niigata Tlo Corporation Micro flow rate generator, pump and pump system
JP2005525691A (en) * 2001-09-28 2005-08-25 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Electroosmotic microchannel cooling system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725109B2 (en) * 2002-09-19 2005-12-07 財団法人生産技術研究奨励会 Microfluidic device
JP2006026791A (en) * 2004-07-15 2006-02-02 Fluidware Technologies Kk Micro-fluid chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923426A (en) * 1974-08-15 1975-12-02 Alza Corp Electroosmotic pump and fluid dispenser including same
JPH10281070A (en) * 1997-04-09 1998-10-20 Horiba Ltd Diaphragm pump operating by uniformly distributed load
JP2005525691A (en) * 2001-09-28 2005-08-25 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Electroosmotic microchannel cooling system
WO2003092662A1 (en) * 2002-05-01 2003-11-13 Microlin, L.C. Fluid delivery device having an electrochemical pump with an anionic exchange membrane and associated method
JP2004226207A (en) * 2003-01-22 2004-08-12 Asahi Kasei Corp Liquid-feeding mechanism and analyzer provided with the same
WO2005052379A1 (en) * 2003-11-27 2005-06-09 Niigata Tlo Corporation Micro flow rate generator, pump and pump system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132657B1 (en) 2010-04-14 2012-04-02 인제대학교 산학협력단 Peristaltic micropump driven by single control signal and method for fabricating the same
JP2013531222A (en) * 2010-04-28 2013-08-01 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド Sample analysis system and method of use

Also Published As

Publication number Publication date
JP4528330B2 (en) 2010-08-18
JPWO2007052377A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
US20180029033A1 (en) Multilayer disposable cartridge for ferrofluid-based assays and method of use
Xu et al. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS)
US7870964B2 (en) Implementation of microfluidic components in a microfluidic system
US4343705A (en) Biological liquid fractionation using alternate opposite flow directions across a membrane
US4522713A (en) Apparatus for static membrane filtration
US20090126813A1 (en) Liquid-Transport Device and System
RU2011139195A (en) SYSTEM AND METHOD FOR AUTOMATIC FORMATION OF LIQUID MIXTURES AND WORK WITH THEM
US9186638B2 (en) Microfluidic structure
JP6172711B2 (en) Fluid control device for microchip and use thereof
KR20090049414A (en) Disposable multi-layered filtration device for the separation of blood plasma
JP2003506679A (en) Fluid interconnects, interconnect manifolds and microfluidic devices for internal delivery of gas and application of reduced pressure
CN109174220B (en) Biochip and chip control method
WO2006083598A2 (en) Method and apparatus for pumping liquids using directional growth and elimination of bubbles
CN109070079B (en) Sample separation kit and sample separation device
CN106902902B (en) Microfluid chip sampling system and adaptive pipe
CN101452003B (en) Liquid storage pool micropump completely-integrated in micro-fluidic chip
JP6366226B2 (en) Microchip reactor
JP4528330B2 (en) Micropump and microfluidic chip
US20080044894A1 (en) Cellular culture chip device
US20210395659A1 (en) Micro-Fluidic Particle Concentrator and Filtering Device
JP2004226207A (en) Liquid-feeding mechanism and analyzer provided with the same
CN109055204B (en) Organ chip for drug screening
JP2007177769A (en) Micropump device
JP2006026791A (en) Micro-fluid chip
CN212348767U (en) Micro-droplet generating device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730495

Country of ref document: EP

Kind code of ref document: A1