WO2006129731A1 - Biodegradable polyester fiber - Google Patents

Biodegradable polyester fiber Download PDF

Info

Publication number
WO2006129731A1
WO2006129731A1 PCT/JP2006/310930 JP2006310930W WO2006129731A1 WO 2006129731 A1 WO2006129731 A1 WO 2006129731A1 JP 2006310930 W JP2006310930 W JP 2006310930W WO 2006129731 A1 WO2006129731 A1 WO 2006129731A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polyester
nonwoven fabric
weight
acid
polyester fiber
Prior art date
Application number
PCT/JP2006/310930
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Obuchi
Takayuki Kuroki
Shigeyuki Motomura
Hisashi Morimoto
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007519049A priority Critical patent/JP4409601B2/en
Publication of WO2006129731A1 publication Critical patent/WO2006129731A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length

Definitions

  • the present invention relates to a biodegradable polyester fiber comprising a biodegradable polyester composition that is degradable in a natural environment, a nonwoven fabric comprising the fiber, and a sanitary article comprising the nonwoven fabric. More specifically, a biodegradable polyester composition containing a biodegradable polyester and a modifying material is prepared, and a biodegradable polyester fiber excellent in flexibility and heat shrinkage, a non-woven fabric comprising the fiber, It relates to sanitary goods made of non-woven fabric.
  • a fiber having degradability and a nonwoven fabric made of the fiber for example, cotton, hemp, wool, rayon, chitin, which are biodegradable fibers derived from natural fibers or regenerated fibers, Alginic acid and other fibers and nonwovens are known! /
  • these fibers and non-woven fabrics that also have biodegradable material strength generally have hydrophilicity and water absorption properties, they have hydrophobicity and low water absorption properties, such as top sheets of disposable diapers. It is not suitable for applications that require a dry feeling when wet.
  • these fibers and non-woven fabrics have a limit in their development as general industrial materials, where the decrease in strength and dimensional stability in a wet environment is significant.
  • these fibers are non-thermoplastic, they do not have thermoformability and are inferior in processability.
  • JP-A-7-126970 discloses a short-fiber non-woven fabric mainly composed of polylactic acid.
  • JP-A-6-212511 Patent Document 2 discloses polylactic acid short fibers useful for the production of short fiber nonwoven fabrics.
  • non-woven fabric made of polylactic acid is not flexible enough.
  • heat resistance is not sufficient as compared with nonwoven fabrics such as polypropylene, its use is limited.
  • Patent Document 3 JP-A-2003-292474 discloses a specific ester compound.
  • An example of using as a plasticizer has been disclosed, but it has been disclosed to apply this material to fibers and non-woven fabrics.
  • Patent Document 1 JP-A-7-126970
  • Patent Document 2 JP-A-6-212511
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-292474
  • An object of the present invention is to provide a biodegradable polyester fiber excellent in flexibility and heat shrinkage resistance, a nonwoven fabric, and a sanitary article comprising the nonwoven fabric.
  • the biodegradable polyester fiber according to the present invention comprises a biodegradable polyester (A) 70 to 99 parts by weight and a modifier (B) 30 to 1 part by weight (however, (A) and (B) Total 100 parts by weight
  • the modifying material (B) is an ester compound represented by the following general formula (1).
  • R 1 and R 2 are different from each other and each represents a group represented by the following general formula (2), and m represents an integer of 0 to 8.
  • R 3 represents an alkylene group having 1 to 6 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a carbon number. 7 to 15 ary reels Or an alkylaryl group having 7 to 15 carbon atoms
  • n represents an integer of 0 to 6.
  • the biodegradable polyester fiber of the present invention preferably has a heat shrinkage rate at 130 ° C. of 10% or less.
  • the biodegradable polyester (A) is preferably a lactic acid series resin, more preferably a polylactic acid.
  • the biodegradable polyester composition (C) comprises a decomposition accelerator (D) 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the biodegradable polyester (A) and the modifier (B). It may also be included.
  • the biodegradable polyester nonwoven fabric according to the present invention is characterized by comprising the biodegradable polyester fiber cable of the present invention.
  • the biodegradable polyester nonwoven fabric of the present invention has a longitudinal softness of QilS L1096 (MD).
  • the total of the A method (according to 45 ° cantilever method) described in 8.9.1 and the bending resistance in the transverse direction (CD) [conforms to the same method] is 100 mm or less. Also, the longitudinal direction (MD
  • the transverse (CD) bending resistance is more preferably 40 mm to 0 mm.
  • the sanitary article according to the present invention is the biodegradable polyester nonwoven fabric according to the present invention, and examples thereof include sanitary napkins, panty liners, disposable disposable diapers, and sanitary tampon applicators.
  • a biodegradable polyester fiber, a nonwoven fabric, and a sanitary article comprising the nonwoven fabric that are biodegradable and have practically sufficient flexibility and heat-resistant / condensation stability can be obtained.
  • biodegradable polyester fiber according to the present invention the biodegradable polyester nonwoven fabric made of the fiber capsule, and the sanitary article also having the nonwoven fabric power will be described in detail.
  • the biodegradable polyester fiber according to the present invention comprises a biodegradable polyester composition (C) containing a biodegradable polyester (A), a modifying agent (B), and a degradation accelerator (D) as necessary.
  • C biodegradable polyester composition
  • A biodegradable polyester
  • B modifying agent
  • D degradation accelerator
  • the biodegradable polyester (A) used in the present invention is, for example, a hydroxycarboxylic acid, an aliphatic polyhydric alcohol, an aromatic polyhydric alcohol, an aliphatic polycarboxylic acid, or an aromatic polyvalent carboxylic acid selected from one kind Alternatively, two or more types of aliphatic polyester or aromatic polyester that are biodegradable thermoplastic resin.
  • the biodegradable polyester (A) can take any form of a homopolymer or a copolymer (random, block, comb-shaped, etc.).
  • polylactic acid-based resin polyethylene succinate-based resin, polyethylene succinate adipate-based resin, polybutylene succinate-based resin, polybutylene succinate adipate-based resin, polybutylene succinate carbonate-based resin
  • examples include polyethylene carbonate resin, polyethylene terephthalate adipate resin, polybutylene succinate terephthalate resin, polybutylene adipate terephthalate resin S, poly-prolatatone resin S, polyglycolene acid resin It is done.
  • polylactic acid-based resin described below as well as polylactic acid, poly-strength prolatatone, polybutylene succinate, polybutylene succinate adipate, polybutylene terephthalate adipate and polyethylene terephthalate adipate are already commercially available and inexpensive. It is preferable because it is easily available.
  • the monomer units constituting them may be chemically modified or a copolymer of different monomers.
  • hydroxycarboxylic acids such as glycolic acid and 3-hydroxybutyric acid
  • polyvalent carboxylic acids such as succinic acid and adipic acid
  • polysaccharides such as cellulose acetate and ethylcellulose
  • polyhydric alcohols such as ethylene glycol and diethylene glycol.
  • It may be a copolymer of a species or two or more species and a mixture of monomers constituting the above-mentioned rosin.
  • starch-based resin, chitosan-based resin, polyvinyl alcohol-based resin, or petroleum-based resin can be blended within the range not impairing the object of the present invention.
  • the biodegradable polyester (A) has a weight average molecular weight (Mw) of preferably 60,000 to 1,000,000, more preferably 80,000 to 500,000, particularly preferably 100,000 to 300,000. Is. Generally, when the weight average molecular weight (Mw) is less than 60,000, the molded product obtained by molding the resin composition has sufficient mechanical properties, and conversely the molecular weight exceeds 1 million. In some cases, the melt viscosity at the time of molding becomes extremely high, making it difficult to handle or making it uneconomical in production.
  • Mw weight average molecular weight
  • the molecular weight distribution (MwZMn) is not particularly limited as long as it can be substantially molded and exhibits substantially sufficient mechanical properties, but generally 1.5 to 8 is preferable. 2-6 are more preferred 2-5 are particularly preferred.
  • the polylactic acid-based resin in the present invention means a polymer composition mainly composed of a polymer containing lactic acid units of 50% by weight or more, preferably 75% by weight or more,
  • a polymer containing lactic acid units of 50% by weight or more preferably 75% by weight or more
  • L-lactic acid, D-lactic acid, DL-lactic acid, a mixture thereof or lactide which is a cyclic dimer of lactic acid can be used.
  • the constitution of the lactic acid unit in the polylactic acid-based rosin includes L lactic acid, D lactic acid, and a mixture thereof, and can be appropriately selected depending on the application.
  • L-lactic acid: D-lactic acid 1:99 to 30:70. : 85 is preferable, 0.1: 99.9-6: 94 is more preferable, and 0.1: 99.9-2: 98 is particularly preferable.
  • biodegradable polyester (A) As a method for producing the biodegradable polyester (A), a known method is used. In the case of polylactic acid-based fats preferably used in the present invention, for example,
  • Cyclic dimer of lactic acid and aliphatic hydroxycarboxylic acid e.g. Ring-opening polymerization method in which melt polymerization is performed in the presence of a catalyst (see, for example, US Pat. No. 4,057,537),
  • a method of performing solid-phase polymerization in at least a part of the steps when producing a polyester polymer by performing a dehydration polycondensation reaction of lactic acid in the presence of a catalyst
  • an aliphatic polyhydric alcohol such as trimethylolpropane or glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, or a polyhydric alcohol such as a polysaccharide can coexist. It may be polymerized, or the molecular weight may be increased by using a binder (high molecular chain extender) such as diisocyanate compound.
  • a binder high molecular chain extender
  • the biodegradable polyester ( ⁇ ) is particularly preferably polylactic acid, more preferably polylactic acid-based rosin.
  • the modifier ( ⁇ ) used in the present invention is an additive that imparts flexibility and heat shrinkage resistance by being added to the biodegradable polyester ( ⁇ ), and is an ester represented by the following formula (1).
  • R 1 and R 2 are different from each other and each represents a group represented by the following general formula (2), and m represents an integer of 0 to 8.
  • R 3 represents an alkylene group having 1 to 6 carbon atoms
  • R 4 is a straight chain having 1 to 10 carbon atoms.
  • n represents an integer of 0 to 6.
  • Examples of the dibasic acid used as a raw material for the ester compound include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. . Of these, succinic acid or adipic acid is preferred.
  • Examples of the alcohol used as a raw material for the ester compound include, for example, methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylolene 1 propanol, 1, 1-dimethanol, 1 ethanol and pentano. Nore, hexanol, heptanol, octanol, phenol, benzyl alcohol, phenethyl alcohol and the like. Among these, methanol, ethanol, 1-propanol, 1-butanol, pentano, hexanol, heptanol, octanol, benzyl alcohol and phenethyl alcohol are preferred. Nord, octanol and phenethyl alcohol are more preferred.
  • Examples of the ether alcohol used as the raw material for the ester compound include the ethylene oxide adducts and propylene oxide adducts of the above alcohols. Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl etherate, ethylene glycol monobutino enoate, ethylene glycol monomono enoenoate, ethylene glycol monomono enoenoate, diethylene glycol monole.
  • Monomethylol etherenole diethyleneglycolenomonochinoleetenore, diethyleneglycolanolenobutinoylenotenole, diethyleneglycolenomonophenolatenore, diethyleneglycolanolenomonobenzyl ether, triethyleneglycolmonomethylether, triethyleneglycolmonoethyl Ether, triethylene glycol monobutyl ether, triethylene glycol monophenol mono-ethanolate, triethylene glycol mono-mono ether Ethylene oxide-attached products such as ginoleatenole; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol Noremonomethinoreethenore, Dipropyleneglycolenorethinoreatenore, Dipropyleneglycolenoremonobutinoreether, Dipropyleneglycolen
  • diethylene glycol monomethyl ether diethylene glycol monoethyl ether, diethylene glycol monobutino ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and triethylene glycol monobutyl ether are preferred. More preferred are diethylene glycol monomethyl ether, jetylene glycol monomethino ether, and diethylene glycol monobutino ether.
  • Examples of the compound obtained by reacting the dibasic acid with alcohol or ether alcohol include methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, and benzyl butyl diglycol adipate. .
  • modifying material (B) an ester compound available from Kayaba Co., Ltd. may be used.
  • the trade name: Daifati-101-101 manufactured by Daihachi Chemical Industry Co., Ltd.
  • These modifiers can be used alone or in combination of two or more.
  • the number average molecular weight (Mn) of the ester compound is not particularly limited! In general, the smaller the molecular weight, the greater the reforming effect, but the lower the stability, the surface of the molded product is blocked by bleeding out. In addition, the possibility of occurrence of contamination increases. Therefore, the number average molecular weight (Mn) of the ester compound is preferably about 200 to 1500, more preferably about 300 to 1000.
  • the biodegradable polyester composition (C) used in the present invention is a resin composition containing the biodegradable polyester (A) and the modifier (B).
  • the content of the biodegradable polyester (A) in the composition (C) is 70 to 99 parts by weight, preferably 75 to 95 parts by weight, more preferably 80 to 90 parts by weight.
  • Content is 30-1 parts by weight, preferably 25 to 5 parts by weight, more preferably 20 to: LO parts by weight (provided that the sum of (A) and (B) is 100 parts by weight).
  • the biodegradable polyester composition (C) has various additives other than the modifier (B), for example, a plasticizer, a compatibilizer, and the like, within a range not impairing the object of the present invention.
  • Antioxidants, lubricants, colorants, ultraviolet absorbers, light stabilizers, pigments, inorganic fillers and the like may be added as additional components.
  • the biodegradable polyester composition (C) includes a resin other than the biodegradable polyester (A) within a range not impairing the object of the present invention, such as polypropylene, polyethylene, polyethylene, and the like. You can also add as an additional ingredient a fat that is made from fossil resources such as salty vinyl!
  • the nonwoven fabric made from the biodegradable polyester composition of the present invention has biodegradability, when it is discarded after use as a sanitary product, it is degraded in compost or soil. As a result, the load on the landfill will be reduced.
  • sanitary products are thrown into the toilet and reach the sewage treatment plant, they are collected and collected in a sand settling tank or activated sludge collection tank, and finally transported to the sludge treatment plant (landfill). It is preferable to decompose and disappear effectively.
  • the nonwoven fabric of the present invention made mainly of polylactic acid disappears in the earth for several years.
  • the decomposition period is 1 to 6 months. If the addition amount is increased, the decomposition period is shortened, but the physical properties of the nonwoven fabric may be impaired. Therefore, the addition amount may be appropriately selected according to the use.
  • the addition amount of the decomposition accelerator is preferably 1 to 20 parts by weight, more preferably 2 to L0 parts by weight, and particularly preferably 3 to 7 parts by weight with respect to 100 parts by weight of the biodegradable polyester composition. is there.
  • the degradation accelerator (D) used as necessary in the present invention has an action of promoting the degradation of the biodegradable polyester composition (C).
  • the degradation accelerator (D) is hydrophilic. It has polyamino acid as segment (d-1) and biodegradable as hydrophobic segment (d-2) A block or graft copolymer having polyester.
  • the hydrophobic segment is a degradable polyester that is hardly soluble or insoluble in water or a segment induced by the force, and is more hydrophobic than the other hydrophilic segment.
  • a hydrophilic segment is a polymer that is soluble in water or a segment derived therefrom, or a polymer that is sparingly soluble in water but more hydrophilic than the hydrophobic segment or its force. It is a segment.
  • the hydrophilic segment (d-1) in the decomposition accelerator (D) is not particularly limited as long as it contains a polyamino acid in the segment, but it is preferably aspartic acid. More preferably, the constituent unit derived from aspartic acid is contained as 1 mol% or more, preferably 10 mol% or more of the total amount of the hydrophilic segment. Particularly preferably, the hydrophilic segment also has a structural unit force derived from aspartic acid.
  • the hydrophobic segment (d-2) is not particularly limited as long as it contains a degradable polyester in the segment, but it is preferably derived from an aliphatic polyester. More preferably, it contains 1 mol% or more, preferably 10 mol% or more of the total amount of the lactic acid-derived structural unit, particularly preferably hydrophobic.
  • the sex segment can also be a structural unit derived from lactic acid.
  • the preferred form of the above-described degradation accelerator (D) is a structural unit derived from aspartic acid as a hydrophilic segment (d-1) and a biodegradable as a hydrophobic segment (d-2) in the structure.
  • a structural unit derived from a polyester (hereinafter referred to as a structural unit derived from a hydrophobic segment (d-2)) coexists.
  • the copolymer contains 1 mol% or more of structural units derived from aspartic acid of the hydrophilic segment (d-1) and 1 mol% or more of structural units derived from the hydrophobic segment (d-2). U, who prefers to be included.
  • the composition ratio of the aspartic acid-derived unit of the hydrophilic segment (d-1) and the unit derived from the hydrophobic segment (d-2) is not particularly limited.
  • the force is preferably 1Z1 to 1Z50.
  • the copolymer constituting the decomposition accelerator (D) contains a hydrophilic segment (d-1) class. Constituent elements other than normal acid and hydrophobic segment (d-2) may be present by copolymerization. However, the amount must be such that the properties of the decomposition accelerator (D) are not significantly impaired. Considering the points to be worked out, the amount is about 20 mol% or less.
  • aspartic acid is a force that generates a polymer having succinimide units by dehydration condensation, and the structural unit derived from aspartic acid means to include succinimide units.
  • the aspartic acid unit contained in the structure of the decomposition accelerator (D) can be a mixture of an a-amide type monomer unit and an —amide type monomer unit, and the ratio of both is not particularly limited.
  • the decomposition accelerator (D) is obtained by copolymerization reaction of aspartic acid and hydroxycarboxylic acids, lactides or latatones, and the production method thereof is not particularly limited. In general, it can be obtained by mixing aspartic acid and hydroxycarboxylic acids in a desired ratio and superposing them under heating.
  • the weight-average molecular weight (Mw) can be mixed with the biodegradable polyester composition (C) satisfactorily to increase the effect of promoting decomposition.
  • preferred ⁇ is 1000 to 100,000, more preferred ⁇ 2000 to 50,000.
  • hydrophilic segment (d-1) and the hydrophobic segment (d-2) constituting the decomposition accelerator (D) can be used without any problem regardless of the configuration of the block or graft copolymer. wear.
  • the method of mixing the biodegradable polyester (A) and the modifier (B), and, if necessary, the degradation accelerator (D) and other additives is not particularly limited!
  • a method of stirring by heating and melting or dissolving in a solvent is preferred.
  • biodegradable polyester (A), modifier (B), and degradation accelerator (D) and other additives, if necessary, are mixed using a Henschel mixer, super mixer, tumbler type mixer, etc. After that, continuous kneading is performed using a single screw or twin screw extruder.
  • a twin-screw extruder is used. Is preferred.
  • a specific spinning method includes a melt spinning method in which the composition (C) is melt-spun using an extruder; the composition (C) is dissolved in a solvent to form a solution;
  • a wet spinning method in which the solution is discharged into a poor solvent;
  • a dry spinning method in which the solution is discharged from a nozzle into a dry gas, and the like can be given.
  • a known extruder such as a single screw extruder or a twin screw extruder can be used.
  • the diameter of the nozzle (nozzle) of the extruder is a force that is appropriately determined according to the relationship between the required fiber diameter (thread diameter) and the discharge speed and take-off speed of the extruder, preferably 0.1 to 3. About Omm.
  • any of the above spinning methods it is not always necessary to stretch the fiber after spinning.
  • force stretching is performed: 1.
  • the fiber is stretched 1 to 20 times, preferably 2 to 15 times.
  • the preferred yarn diameter of the fiber is 0.5 to 40 denier.
  • the fibers of the present invention have an average fiber diameter of 7 ⁇ m to 40 ⁇ m, preferably 10 ⁇ m to 37 ⁇ m, more preferably 12 ⁇ m to 35 ⁇ m. When the average fiber diameter is in the above range, the spinnability and strength are excellent.
  • the heat shrinkage force at 130 ° C of the fiber of the present invention is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
  • the thermal shrinkage rate is 10% or less, it is easy to produce a product with almost no shrinkage during aging mold processing, etc., and even in usage forms exposed to high temperature environments close to 100 ° C Excellent.
  • the biodegradable polyester nonwoven fabric of the present invention comprises the biodegradable polyester fiber of the present invention.
  • the single fiber or the composite fiber constituting the nonwoven fabric of the present invention can be appropriately selected depending on the purpose of use, which may be either a long fiber or a short fiber.
  • Examples of the method for producing the nonwoven fabric of the present invention include known methods that are not particularly limited, such as a dry method, a spun bond method, a melt blow method, and a wet method. That is, it is obtained by spinning the biodegradable polyester composition (C) by the above method, forming a lump state of fibers called a web, and bonding the web by a conventionally known method.
  • the web production method is not particularly limited, and a known method can be adopted.
  • a card type using a flat card machine, a roller card machine, a garnet machine, etc., a melt blow type and the like can be mentioned.
  • spunbond type in which high-speed air is blown when fibers come out from the nozzle of the spinning machine and collected on a perforated conveyor perpendicular to the airflow to form a web.
  • a known method can be employed as a method for obtaining the biodegradable nonwoven fabric of the present invention from the web strength obtained as described above. For example, entanglement with a needle-one-dollar punch method, stitch bond method with entanglement with yarn, spunlace method with water flow, jet bond method, thermal bond method with heat bonding, chemical bond method with adhesive, resin bond Law.
  • basis weight of the nonwoven fabric of the present invention lg / m 2 ⁇ 50g / m 2, preferably 7g / m 2 ⁇ 50g / m 2 , more preferably 1 OgZm 2 ⁇ 40gZm 2, more preferably 12 g / m 2 it is a ⁇ 30g / m 2.
  • basis weight is in the above range, the gap between the fibers is moderate, and the packaging property, shielding property and holding property are excellent.
  • the nonwoven fabric of the present invention has a longitudinal (MD) bending resistance QilS L1096 of A Method described in 8.19.1
  • the bending resistance in the machine direction (MD) is preferably 60mn! ⁇ Omm, more preferably 50 mn! ⁇ Omm, particularly preferably 40 mm to 0 mm, and the bending resistance in the transverse direction (CD) is preferably 40 mm to 0 mm, more preferably 30 mm to Omm, particularly preferably 20 mm to 0 mm.
  • Preferred forms of the nonwoven fabric of the present invention are those in which the constituent fibers are entangled and integrated by hydroentanglement treatment, etc., those in which the fiber intersections are thermally fused and integrated by hot air treatment or the like, For example, it may be integrated by having a partial thermocompression bonding part by partial thermocompression treatment.
  • those that are partially thermocompression bonded and retain the form as a nonwoven fabric are preferred from the standpoint of strength.
  • Partially heat-bonded non-woven fabric is bonded only at the point-like fused area, so it has both flexibility and form retention. It becomes a non-woven fabric that is soft and difficult to fluff.
  • the partial thermocompression bonding refers to forming a spot-like fusion zone by embossing or ultrasonic fusion treatment.
  • the heated embossing roll and the surface are smooth.
  • suitable molded articles of the biodegradable polyester fiber according to the present invention include knitted fabrics, woven fabrics, non-woven fabrics, nets, ropes, and other various molded articles, and suitable biodegradable polyester nonwoven fabrics according to the present invention.
  • Applications include hygiene products, living materials, agricultural materials, and civil engineering materials.
  • a sanitary article can be produced by adhering and fixing the biodegradable polyester fiber or nonwoven fabric according to the present invention to each other by a known method such as hot melt bonding or heat bonding.
  • sanitary products include sanitary tampon applicators, sanitary napkins, panty liners, disposable paper diapers, and incontinence pads.
  • test pieces were collected from the nonwoven fabric in the machine direction (MD) and the transverse direction (CD), respectively.
  • Ten test pieces of 100 mm ⁇ 100 mm were cut out from the nonwoven fabric, measured according to JIS L1906, and converted to g / m 2 .
  • the bending resistance of the nonwoven fabric was measured in accordance with Method A (45 ° cantilever method) described in JIS L1096, 8.1. Specifically, 3 pieces of 2 cm ⁇ 15 cm specimens were collected from the nonwoven fabric in the machine direction (MD) and the transverse direction (CD), respectively. The short side of the test piece was placed on the scale base line on a smooth horizontal surface with a 45 ° slope at one end. Next, the specimen was gently slid in the direction of the slope by an appropriate method, and the position of the other end was read with a scale when the central point of the edge of the specimen was in contact with the slope. The bending resistance was indicated by the length (mm) that the specimen moved, and we measured three samples each, calculated the average value in the vertical and horizontal directions, and rounded them to whole numbers.
  • Method A 45 ° cantilever method described in JIS L1096, 8.1. Specifically, 3 pieces of 2 cm ⁇ 15 cm specimens were collected from the nonwoven fabric in the machine direction (MD) and the transverse direction (CD
  • a dividing line with a clearance of 100mm was made on a piece of paper with a smooth surface and gloss.
  • a bundle of fibers taken out from the non-woven fabric before being heated and pressurized with an embossing roll was placed on a piece of paper and both ends were affixed and fixed with tape. One end of the fiber was cut to obtain a bundle of 100 mm long fibers.
  • a 10 cm ⁇ 10 cm test piece was taken from the non-woven fabric and aged at 80 ° C. for 24 hours in a constant temperature dryer. Bleedability was evaluated according to the following criteria.
  • Thread breakage (twice Z10 minutes or more).
  • Example 1 the weight per unit area was 20 gZm in the same manner as in Example 1 except that only the polylactic acid [manufactured by Mitsui Chemicals, Inc., trade name: LACE A H-400] was used without adding a modifier. Two nonwoven fabrics were obtained. The obtained nonwoven fabric was evaluated by measuring mechanical strength and the like. Results in Table 1 Shown in
  • Polylactic acid resin Mitsubishi Chemicals Co., Ltd., trade name: LACEA H-400
  • aliphatic polyester Showa High Polymer Co., Ltd., trade name: Bionore # 1020
  • Melt spinning was performed by a bond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 g / m 2 .
  • the obtained nonwoven fabric was measured and evaluated by measuring the mechanical strength and the like. The results are shown in Table 1.
  • a nonwoven fabric having a basis weight of 20 gZm 2 was obtained in the same manner as in Example 1 except that the modifier was ATBC (acetyltributyl citrate) in Example 1.
  • the obtained nonwoven fabric was evaluated by measuring mechanical strength and the like. The results are shown in Table 1.
  • Preparation Example 1 Decomposition accelerator (aspartic acid lactic acid copolymer, PALS) A glass-lined 4 m 3 reactor was charged with 130 kg of aspartic acid and 500 kg of 90% L-lactic acid aqueous solution, and reacted at 180 ° C for 25 hours while distilling off the reaction water under a nitrogen stream. The product was taken out from the outlet at the bottom of the reaction kettle and cooled and solidified, and the resulting solid was pulverized to obtain a powdery polymer (aspartic acid-lactic acid copolymer, PALS). The weight average molecular weight (Mw) was 9000.
  • polylactic acid manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400
  • Daifati 101 as a modifier Yachikagaku Kogyo Co., Ltd.
  • aspartic acid lactic acid copolymer (PALS) obtained in Preparation Example 1 as a decomposition accelerator were charged and blended at a weight ratio of 80Z15Z5 to obtain pellets.
  • the obtained pellets were dried at 60-70 ° C.
  • Modified material b1 Daifatsu-101 [Daihachi Chemical Industry Co., Ltd.]
  • Modified material b2 Bionore # 1020 [Showa Polymer Co., Ltd.]
  • Modified material b3 ATBC (Acetyl "Butyl Chenic Acid) Decomposition accelerator d 1: Us / Laginate-lactic acid copolymer (PALS)
  • the nonwoven fabrics obtained in Examples 1 and 4 and Comparative Example 1 were placed in 35 ° C. distilled water, lap samples were taken for 1 week and 2 weeks, and the weight average molecular weight (Mw) was measured.
  • Mw weight average molecular weight
  • Mw was determined by comparison with a polystyrene standard sample using gel permeation chromatography (GPC) at a column temperature of 40 ° C. and a chloroform solvent. The results are shown in Table 2.

Abstract

A biodegradable polyester fiber, nonwoven fabric and sanitary goods from the nonwoven fabric that excel in flexibility and thermal shrinkage resistance. There is provided a biodegradable polyester fiber comprised of biodegradable polyester composition (C) containing 70 to 99 parts by weight of biodegradable polyester (A) and 30 to 1 parts by weight (the sum of components (A) and (B) being 100 parts by weight) of modification material (B) of a specified ester compound. Further, there is provided a biodegradable polyester nonwoven fabric comprised of the above biodegradable polyester fiber.

Description

明 細 書  Specification
生分解性ポリエステル繊維  Biodegradable polyester fiber
技術分野  Technical field
[0001] 本発明は、自然環境下において分解性を有する生分解性ポリエステル組成物から なる生分解性ポリエステル繊維、該繊維よりなる不織布および該不織布よりなる衛生 用品に関する。さら〖こ詳しくは、生分解性ポリエステルおよび改質材を含む生分解性 ポリエステル組成物カゝらなり、柔軟性および耐熱収縮性に優れた生分解性ポリエステ ル繊維、該繊維よりなる不織布、該不織布よりなる衛生用品に関する。  [0001] The present invention relates to a biodegradable polyester fiber comprising a biodegradable polyester composition that is degradable in a natural environment, a nonwoven fabric comprising the fiber, and a sanitary article comprising the nonwoven fabric. More specifically, a biodegradable polyester composition containing a biodegradable polyester and a modifying material is prepared, and a biodegradable polyester fiber excellent in flexibility and heat shrinkage, a non-woven fabric comprising the fiber, It relates to sanitary goods made of non-woven fabric.
背景技術  Background art
[0002] 従来から、分解性を有する繊維および該繊維カゝらなる不織布としては、例えば、天 然繊維または再生繊維由来の生分解性繊維である、コットン、麻、羊毛、レーヨン、キ チン、アルギン酸等力もなる繊維および不織布が知られて!/、る。  [0002] Conventionally, as a fiber having degradability and a nonwoven fabric made of the fiber, for example, cotton, hemp, wool, rayon, chitin, which are biodegradable fibers derived from natural fibers or regenerated fibers, Alginic acid and other fibers and nonwovens are known! /
[0003] しかし、これらの生分解性材料力もなる繊維および不織布は、一般的に親水性か つ吸水性を有することから、例えば、使い捨ておむつのトップシートのように疎水性お よび低吸水性を要し、かつ、湿潤時のドライ感が要求される用途には適さない。また、 これらの繊維および不織布は、湿潤環境下での強力や寸法安定性の低下が著しぐ 一般産業用資材用途としての展開には限界があった。さらに、これらの繊維は非熱 可塑性であることから、熱成形性を有さず、加工性に劣るものであった。  [0003] However, since these fibers and non-woven fabrics that also have biodegradable material strength generally have hydrophilicity and water absorption properties, they have hydrophobicity and low water absorption properties, such as top sheets of disposable diapers. It is not suitable for applications that require a dry feeling when wet. In addition, these fibers and non-woven fabrics have a limit in their development as general industrial materials, where the decrease in strength and dimensional stability in a wet environment is significant. Furthermore, since these fibers are non-thermoplastic, they do not have thermoformability and are inferior in processability.
[0004] そこで、近年、熱可塑性かつ疎水性の生分解性重合体を用いた溶融紡糸法による 生分解性繊維や生分解性不織布に関する研究開発が盛んとなっている。例えば、ポ リ乳酸の繊維化および不織布化が種々検討されている。特に、ポリ乳酸は生分解性 ポリエステルの中でも融点が比較的高ぐ耐熱性を要する用途において有用である ため、ポリ乳酸不織布の実用化が期待されている。  [0004] Therefore, in recent years, research and development on biodegradable fibers and non-woven fabrics by melt spinning using thermoplastic and hydrophobic biodegradable polymers has become active. For example, various attempts have been made to make polylactic acid into fibers and non-woven fabrics. In particular, polylactic acid is useful in applications requiring heat resistance with a relatively high melting point among biodegradable polyesters, and therefore, practical application of polylactic acid nonwoven fabric is expected.
[0005] これまでにポリ乳酸を用いた不織布としては、特開平 7— 126970号公報 (特許文 献 1)に、ポリ乳酸を主成分とする短繊維不織布が示されており、また、ポリ乳酸短繊 維不織布の製造に有用なポリ乳酸の短繊維が特開平 6— 212511号公報 (特許文 献 2)に開示されている。しかし、ポリ乳酸よりなる不織布は柔軟性が不足しており、ま た、ポリプレピレン等の不織布と比べれば耐熱性が充分ではないため、その用途は 限定される。 [0005] As a non-woven fabric using polylactic acid, JP-A-7-126970 (Patent Document 1) discloses a short-fiber non-woven fabric mainly composed of polylactic acid. JP-A-6-212511 (Patent Document 2) discloses polylactic acid short fibers useful for the production of short fiber nonwoven fabrics. However, non-woven fabric made of polylactic acid is not flexible enough. In addition, since heat resistance is not sufficient as compared with nonwoven fabrics such as polypropylene, its use is limited.
[0006] ポリ乳酸に可塑剤等の添加剤を添加して柔軟性を付与した材料の開発にっ ヽては 、例えば、特開 2003— 292474号公報 (特許文献 3)に、特定のエステル化合物を 可塑剤として用いた例が開示されて ヽるが、この材料の繊維および不織布への適用 につ!/ヽては開示されて!ヽな ヽ。  [0006] For the development of a material provided with flexibility by adding an additive such as a plasticizer to polylactic acid, for example, JP-A-2003-292474 (Patent Document 3) discloses a specific ester compound. An example of using as a plasticizer has been disclosed, but it has been disclosed to apply this material to fibers and non-woven fabrics.
特許文献 1 :特開平 7— 126970号公報  Patent Document 1: JP-A-7-126970
特許文献 2:特開平 6— 212511号公報  Patent Document 2: JP-A-6-212511
特許文献 3:特開 2003 - 292474号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-292474
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明の課題は、柔軟性および耐熱収縮性に優れた生分解性ポリエステル繊維、 不織布および該不織布よりなる衛生用品を提供することにある。 [0007] An object of the present invention is to provide a biodegradable polyester fiber excellent in flexibility and heat shrinkage resistance, a nonwoven fabric, and a sanitary article comprising the nonwoven fabric.
課題を解決するための手段  Means for solving the problem
[0008] 本発明に係る生分解性ポリエステル繊維は、生分解性ポリエステル (A) 70〜99重 量部および改質材 (B) 30〜1重量部(ただし、 (A)と (B)の合計を 100重量部とする[0008] The biodegradable polyester fiber according to the present invention comprises a biodegradable polyester (A) 70 to 99 parts by weight and a modifier (B) 30 to 1 part by weight (however, (A) and (B) Total 100 parts by weight
)を含む生分解性ポリエステル組成物 (C)からなり、該改質材 (B)が下記一般式(1) で示されるエステルイ匕合物であることを特徴とする。 ), And the modifying material (B) is an ester compound represented by the following general formula (1).
[0009] [化 1] [0009] [Chemical 1]
R1OOC― {CH2)m— COOR2( 1 ) R 1 OOC― (CH 2 ) m — COOR 2(1)
[0010] (式中、 R1および R2は互いに異なり、それぞれ下記一般式(2)で表される基を示し、 mは 0〜8の整数を示す。 ) [Wherein, R 1 and R 2 are different from each other and each represents a group represented by the following general formula (2), and m represents an integer of 0 to 8.]
[0011] [化 2] [0011] [Chemical 2]
— (R30)nR4 . . . ( 2 ) — (R 3 0) n R 4 ... (2)
[0012] (式中、 R3は炭素数 1〜6のアルキレン基を示し、 R4は炭素数 1〜10の直鎖もしくは 分岐状のアルキル基、炭素数 6〜12のァリール基、炭素数 7〜15のァリールアルキ ル基または炭素数 7〜 15のアルキルァリール基を示し、 nは 0〜6の整数を示す。 ) 本発明の生分解性ポリエステル繊維は、 130°Cにおける熱収縮率が 10%以下であ ることが好ましい。 (In the formula, R 3 represents an alkylene group having 1 to 6 carbon atoms, R 4 represents a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a carbon number. 7 to 15 ary reels Or an alkylaryl group having 7 to 15 carbon atoms, and n represents an integer of 0 to 6. The biodegradable polyester fiber of the present invention preferably has a heat shrinkage rate at 130 ° C. of 10% or less.
[0013] 前記生分解性ポリエステル (A)は、好ましくは乳酸系榭脂、より好ましくはポリ乳酸 である。前記生分解性ポリエステル組成物(C)は、前記生分解性ポリエステル (A)と 前記改質材 (B)との合計量 100重量部に対して分解促進剤 (D) l〜20重量部をさら に含んでもよい。  [0013] The biodegradable polyester (A) is preferably a lactic acid series resin, more preferably a polylactic acid. The biodegradable polyester composition (C) comprises a decomposition accelerator (D) 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the biodegradable polyester (A) and the modifier (B). It may also be included.
[0014] 本発明に係る生分解性ポリエステル不織布は、上記本発明の生分解性ポリエステ ル繊維カゝらなることを特徴とする。  [0014] The biodegradable polyester nonwoven fabric according to the present invention is characterized by comprising the biodegradable polyester fiber cable of the present invention.
[0015] 本発明の生分解性ポリエステル不織布は、縦方向(MD)の剛軟度 QilS L1096の[0015] The biodegradable polyester nonwoven fabric of the present invention has a longitudinal softness of QilS L1096 (MD).
8. 19. 1に記載の A法 (45° カンチレバー法)に準拠]と、横方向(CD)の剛軟度 [ 同法に準拠]との合計が 100mm以下であることが好ましい。また、前記縦方向(MDIt is preferable that the total of the A method (according to 45 ° cantilever method) described in 8.9.1 and the bending resistance in the transverse direction (CD) [conforms to the same method] is 100 mm or less. Also, the longitudinal direction (MD
)の剛軟度が 60mm〜0mmであり、前記横方向(CD)の剛軟度が 40mm〜0mmで あることがより好ましい。 ) Is more preferably 60 mm to 0 mm, and the transverse (CD) bending resistance is more preferably 40 mm to 0 mm.
[0016] 本発明に係る衛生用品は、上記本発明の生分解性ポリエステル不織布カゝらなり、 たとえば、生理用ナプキン、パンティーライナー、使い捨て紙おむつおよび生理用タ ンポンアプリケータなどが挙げられる。 [0016] The sanitary article according to the present invention is the biodegradable polyester nonwoven fabric according to the present invention, and examples thereof include sanitary napkins, panty liners, disposable disposable diapers, and sanitary tampon applicators.
発明の効果  The invention's effect
[0017] 本発明によれば、生分解性を有するとともに、実用上十分な柔軟性および耐熱収 縮安定性を有する生分解性ポリエステル繊維、不織布および該不織布よりなる衛生 用品が得られる。  [0017] According to the present invention, a biodegradable polyester fiber, a nonwoven fabric, and a sanitary article comprising the nonwoven fabric that are biodegradable and have practically sufficient flexibility and heat-resistant / condensation stability can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明に係る生分解性ポリエステル繊維、該繊維カゝらなる生分解性ポリエス テル不織布および該不織布力もなる衛生用品について、詳細に説明する。 [0018] Hereinafter, the biodegradable polyester fiber according to the present invention, the biodegradable polyester nonwoven fabric made of the fiber capsule, and the sanitary article also having the nonwoven fabric power will be described in detail.
[0019] 〔生分解性ポリエステル繊維〕 [Biodegradable polyester fiber]
本発明に係る生分解性ポリエステル繊維は、生分解性ポリエステル (A)および改 質剤 (B)、必要に応じて分解促進剤 (D)などを含有する生分解性ポリエステル組成 物(C)力 得られる繊維である。 [0020] <生分解性ポリエステル (A) > The biodegradable polyester fiber according to the present invention comprises a biodegradable polyester composition (C) containing a biodegradable polyester (A), a modifying agent (B), and a degradation accelerator (D) as necessary. The resulting fiber. [0020] <Biodegradable polyester (A)>
本発明で用いられる生分解性ポリエステル (A)は、例えば、ヒドロキシカルボン酸、 脂肪族多価アルコール、芳香族多価アルコール、脂肪族多価カルボン酸、芳香族多 価カルボン酸力 選ばれる 1種または 2種以上力 なる脂肪族ポリエステルもしくは芳 香族ポリエステルであって、生分解性を有する熱可塑性榭脂である。  The biodegradable polyester (A) used in the present invention is, for example, a hydroxycarboxylic acid, an aliphatic polyhydric alcohol, an aromatic polyhydric alcohol, an aliphatic polycarboxylic acid, or an aromatic polyvalent carboxylic acid selected from one kind Alternatively, two or more types of aliphatic polyester or aromatic polyester that are biodegradable thermoplastic resin.
[0021] 上記生分解性ポリエステル (A)は、ホモポリマーまたはコポリマー(ランダム、ブロッ ク、櫛型など)のいずれの形態をとることもできる。例えば、後述するポリ乳酸系榭脂、 ポリエチレンサクシネート系榭脂、ポリエチレンサクシネートアジペート系榭脂、ポリブ チレンサクシネート系榭旨、ポリブチレンサクシネートアジペート系榭旨、ポリブチレン サクシネートカーボネート系榭脂、ポリエチレンカーボネート系榭脂、ポリエチレンテ レフタレートアジペート系樹月旨、ポリブチレンサクシネートテレフタレート系榭旨、ポリ ブチレンアジペートテレフタレート系榭 S旨、ポリ力プロラタトン系榭 S旨、ポリグリコーノレ 酸系榭脂等が挙げられる。  [0021] The biodegradable polyester (A) can take any form of a homopolymer or a copolymer (random, block, comb-shaped, etc.). For example, polylactic acid-based resin, polyethylene succinate-based resin, polyethylene succinate adipate-based resin, polybutylene succinate-based resin, polybutylene succinate adipate-based resin, polybutylene succinate carbonate-based resin, Examples include polyethylene carbonate resin, polyethylene terephthalate adipate resin, polybutylene succinate terephthalate resin, polybutylene adipate terephthalate resin S, poly-prolatatone resin S, polyglycolene acid resin It is done.
[0022] 特に、後述するポリ乳酸系榭脂、さらにはポリ乳酸、ポリ力プロラタトン、ポリプチレン サクシネート、ポリブチレンサクシネートアジペート、ポリブチレンテレフタレートアジべ ートおよびポリエチレンテレフタレートアジペートは、既に市販されており安価かつ容 易に入手可能であることから好ま 、。 [0022] In particular, the polylactic acid-based resin described below, as well as polylactic acid, poly-strength prolatatone, polybutylene succinate, polybutylene succinate adipate, polybutylene terephthalate adipate and polyethylene terephthalate adipate are already commercially available and inexpensive. It is preferable because it is easily available.
[0023] これらを構成する単量体単位は化学修飾されていてもよぐ異種の単量体の共重 合物であってもよい。また、グリコール酸や 3—ヒドロキシ酪酸等のヒドロキシカルボン 酸、コハク酸やアジピン酸等の多価カルボン酸、酢酸セルロースやェチルセルロース 等の多糖類、エチレングリコールやジエチレングリコール等の多価アルコールのうち 1 種または 2種以上と、上記榭脂を構成する単量体の混合物との共重合体であっても よい。さらに、本発明の目的を阻害しない範囲で、例えばデンプン系榭脂、キトサン 系榭脂、ポリビニルアルコール系榭脂ゃ石油系榭脂を配合してもよ 、。 [0023] The monomer units constituting them may be chemically modified or a copolymer of different monomers. In addition, hydroxycarboxylic acids such as glycolic acid and 3-hydroxybutyric acid; polyvalent carboxylic acids such as succinic acid and adipic acid; polysaccharides such as cellulose acetate and ethylcellulose; and polyhydric alcohols such as ethylene glycol and diethylene glycol. It may be a copolymer of a species or two or more species and a mixture of monomers constituting the above-mentioned rosin. Further, for example, starch-based resin, chitosan-based resin, polyvinyl alcohol-based resin, or petroleum-based resin can be blended within the range not impairing the object of the present invention.
[0024] 上記生分解性ポリエステル (A)の分子量は、重量平均分子量 (Mw)で、好ましくは 6万〜 100万、より好ましくは 8万〜 50万、特に好ましくは 10万〜 30万の範囲である 。一般的に、重量平均分子量 (Mw)が 6万より小さい場合、榭脂組成物を成形加工 して得られた成形体の機械物性が充分でな力つたり、逆に分子量が 100万を超える 場合、成形加工時の溶融粘度が極端に高くなつて取扱い困難となったり、製造上不 経済となったりする場合がある。 [0024] The biodegradable polyester (A) has a weight average molecular weight (Mw) of preferably 60,000 to 1,000,000, more preferably 80,000 to 500,000, particularly preferably 100,000 to 300,000. Is. Generally, when the weight average molecular weight (Mw) is less than 60,000, the molded product obtained by molding the resin composition has sufficient mechanical properties, and conversely the molecular weight exceeds 1 million. In some cases, the melt viscosity at the time of molding becomes extremely high, making it difficult to handle or making it uneconomical in production.
[0025] 分子量分布 (MwZMn)も同様に、実質的に成形加工が可能で、実質的に充分な 機械物性を示すものであれば特に制限されないが、一般的には 1.5〜8が好ましぐ 2〜6がより好ましぐ 2〜5が特に好ましい。  Similarly, the molecular weight distribution (MwZMn) is not particularly limited as long as it can be substantially molded and exhibits substantially sufficient mechanical properties, but generally 1.5 to 8 is preferable. 2-6 are more preferred 2-5 are particularly preferred.
[0026] 本発明におけるポリ乳酸系榭脂とは、乳酸単位を 50重量%以上、好ましくは 75重 量%以上を含有する重合体を主成分とする重合体組成物を意味するものであり、原 料に用いられる乳酸類としては、 L 乳酸、 D 乳酸、 DL 乳酸、これらの混合物ま たは乳酸の環状 2量体であるラクタイドを使用することができる。  [0026] The polylactic acid-based resin in the present invention means a polymer composition mainly composed of a polymer containing lactic acid units of 50% by weight or more, preferably 75% by weight or more, As the lactic acid used for the raw material, L-lactic acid, D-lactic acid, DL-lactic acid, a mixture thereof or lactide which is a cyclic dimer of lactic acid can be used.
[0027] ポリ乳酸系榭脂中の乳酸単位の構成としては、 L 乳酸、 D 乳酸およびこれらの 混合物があるが、その用途によって適宜選択することができる。  [0027] The constitution of the lactic acid unit in the polylactic acid-based rosin includes L lactic acid, D lactic acid, and a mixture thereof, and can be appropriately selected depending on the application.
[0028] ポリ乳酸系榭脂として、 L—乳酸が主成分のポリ乳酸を用いる場合は、 D—乳酸: L 一? L酸 =0. 1:99.9〜30:70でぁることカ 子ましく、0.1:99.9〜15:85であること 力 Sより好ましく、 0.1:99.9〜6: 94であること力 Sさらに好ましく、 0.1:99.9〜2:98 であることが特に好ましい。  [0028] When polylactic acid containing L-lactic acid as a main component is used as the polylactic acid-based resin, D-lactic acid: L? L acid = 0. 1: 99.9-30: 70 Preferable, 0.1: 99.9-15: 85 More preferable than force S, more preferably 0.1: 99.9-6: 94 S 0.1: 99.9 to 2:98 is particularly preferable.
[0029] 一方、 D—乳酸が主成分のポリ乳酸を用いる場合は、 L—乳酸: D—乳酸 =1:99 〜30:70でぁることカ 子ましく、0. 1:99.9〜15:85でぁることカょり好ましく、0.1: 99.9〜6: 94であること力さらに好ましく、 0.1:99.9〜2: 98であること力 ^特に好ま しい。  [0029] On the other hand, when polylactic acid containing D-lactic acid as the main component is used, L-lactic acid: D-lactic acid = 1:99 to 30:70. : 85 is preferable, 0.1: 99.9-6: 94 is more preferable, and 0.1: 99.9-2: 98 is particularly preferable.
[0030] また、 D—乳酸と L—乳酸の構成割合が異なる 2種類以上のポリ乳酸をブレンドする ことも可能である。  [0030] It is also possible to blend two or more types of polylactic acid having different constituent ratios of D-lactic acid and L-lactic acid.
[0031] 上記生分解性ポリエステル (A)の製造方法としては、公知の方法が用いられる。本 発明で好ましく用いられるポリ乳酸系榭脂の場合、例えば、  [0031] As a method for producing the biodegradable polyester (A), a known method is used. In the case of polylactic acid-based fats preferably used in the present invention, for example,
(1)乳酸または乳酸と脂肪族ヒドロキシカルボン酸の混合物を原料として、直接脱水 重縮合する方法 (例えば、米国特許 5, 310, 865号参照)、  (1) A method of direct dehydration polycondensation using lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid as a raw material (see, for example, US Pat. No. 5,310,865),
(2)乳酸の環状二量体 (ラクタイド)を溶融重合する開環重合法 (例えば、米国特許 2 , 758, 987号参照)、  (2) a ring-opening polymerization method in which a cyclic dimer (lactide) of lactic acid is melt-polymerized (see, for example, US Pat. No. 2,758,987),
(3)乳酸と脂肪族ヒドロキシカルボン酸の環状二量体 (例えば、ラクタイドゃグリコライ ド)と ε—力プロラタトンとを、触媒の存在下、溶融重合する開環重合法 (例えば、米 国特許 4, 057, 537号参照)、 (3) Cyclic dimer of lactic acid and aliphatic hydroxycarboxylic acid (e.g. Ring-opening polymerization method in which melt polymerization is performed in the presence of a catalyst (see, for example, US Pat. No. 4,057,537),
(4)乳酸、脂肪族二価アルコールおよび脂肪族二塩基酸の混合物を、直接脱水重 縮合する方法 (例えば、米国特許 5, 428, 126号参照)、  (4) A method of directly dehydrating polycondensation of a mixture of lactic acid, aliphatic dihydric alcohol and aliphatic dibasic acid (see, for example, US Pat. No. 5,428,126),
(5)ポリ乳酸と脂肪族二価アルコールと脂肪族二塩基酸とのポリマーを、有機溶媒存 在下で縮合する方法 (例えば、欧州特許公報 0712880A2号参照)、  (5) a method of condensing a polymer of polylactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid in the presence of an organic solvent (see, for example, European Patent Publication 0712880A2),
(6)触媒の存在下で、乳酸の脱水重縮合反応を行うことによりポリエステル重合体を 製造するに際し、少なくとも一部の工程で固相重合を行う方法  (6) A method of performing solid-phase polymerization in at least a part of the steps when producing a polyester polymer by performing a dehydration polycondensation reaction of lactic acid in the presence of a catalyst.
などが挙げられる力 これらに限定されるものではない。  It is not limited to these.
[0032] また、少量のトリメチロールプロパン、グリセリンのような脂肪族多価アルコール、ブ タンテトラカルボン酸のような脂肪族多塩基酸、多糖類等のような多価アルコール類 を共存させて共重合させてもよぐまた、ジイソシァネートイ匕合物等のような結合剤(高 分子鎖延長剤)を用いて分子量を上げてもょ 、。 [0032] In addition, a small amount of an aliphatic polyhydric alcohol such as trimethylolpropane or glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, or a polyhydric alcohol such as a polysaccharide can coexist. It may be polymerized, or the molecular weight may be increased by using a binder (high molecular chain extender) such as diisocyanate compound.
[0033] 上記生分解性ポリエステル (Α)は、ポリ乳酸系榭脂であることがより好ましぐポリ乳 酸であることが特に好ま 、。 [0033] The biodegradable polyester (分解) is particularly preferably polylactic acid, more preferably polylactic acid-based rosin.
[0034] <改質剤 )> [0034] <Modifier)>
本発明で用いられる改質材 (Β)は、生分解性ポリエステル (Α)に添加することによ り柔軟性および耐熱収縮性を付与する添加剤であり、下記式(1)で示されるエステル 化合物である。  The modifier (Β) used in the present invention is an additive that imparts flexibility and heat shrinkage resistance by being added to the biodegradable polyester (Α), and is an ester represented by the following formula (1). A compound.
[0035] [化 3] [0035] [Chemical 3]
R1OOC— (CH2)m— COOR2( 1 ) R 1 OOC— (CH 2 ) m — COOR 2(1)
[0036] 式(1)中、 R1および R2は互いに異なり、それぞれ下記一般式(2)で表される基を示 し、 mは 0〜8の整数を示す。 In the formula (1), R 1 and R 2 are different from each other and each represents a group represented by the following general formula (2), and m represents an integer of 0 to 8.
[0037] [化 4] [0037] [Chemical 4]
— (R30)nR4 . . . ( 2) — (R 3 0) n R 4 ... (2 )
[0038] 式(2)中、 R3は炭素数 1〜6のアルキレン基を示し、 R4は炭素数 1〜10の直鎖もしく は分岐状のアルキル基、炭素数 6〜12のァリール基、炭素数 7〜15のァリールアル キル基または炭素数 7〜 15のアルキルァリール基を示し、 nは 0〜6の整数を示す。 [0038] In the formula (2), R 3 represents an alkylene group having 1 to 6 carbon atoms, and R 4 is a straight chain having 1 to 10 carbon atoms. Represents a branched alkyl group, an aryl group having 6 to 12 carbon atoms, an aryl group having 7 to 15 carbon atoms or an alkylaryl group having 7 to 15 carbon atoms, and n represents an integer of 0 to 6.
[0039] 上記エステルイ匕合物の原料となる二塩基酸としては、例えば、蓚酸、マロン酸、コハ ク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸など が挙げられる。これらの中ではコハク酸またはアジピン酸が好まし 、。  [0039] Examples of the dibasic acid used as a raw material for the ester compound include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. . Of these, succinic acid or adipic acid is preferred.
[0040] また、上記エステル化合物の原料となるアルコールとしては、例えば、メタノール、 エタノール、 1 プロパノール、 2—プロパノール、 1ーブタノール、 2—ブタノール、 2 ーメチノレー 1 プロパノーノレ、 1, 1ージメチノレー 1 エタノーノレ、ペンタノ一ノレ、へキ サノール、ヘプタノール、ォクタノール、フエノール、ベンジルアルコール、フエネチル アルコールなどが挙げられる。これらの中では、メタノール、エタノール、 1 プロパノ 一ノレ、 1ーブタノ一ノレ、ペンタノ一ノレ、へキサノーノレ、ヘプタノ一ノレ、ォクタノーノレ、ベ ンジルアルコール、フエネチルアルコールが好ましぐベンジルアルコール、 1ーブタ ノール、ォクタノール、フエネチルアルコールがより好ましい。  [0040] Examples of the alcohol used as a raw material for the ester compound include, for example, methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylolene 1 propanol, 1, 1-dimethanol, 1 ethanol and pentano. Nore, hexanol, heptanol, octanol, phenol, benzyl alcohol, phenethyl alcohol and the like. Among these, methanol, ethanol, 1-propanol, 1-butanol, pentano, hexanol, heptanol, octanol, benzyl alcohol and phenethyl alcohol are preferred. Nord, octanol and phenethyl alcohol are more preferred.
[0041] また、上記エステル化合物の原料となるエーテルアルコールとしては、上記アルコ ールのエチレンオキサイド付加物、プロピレンオキサイド付加物などが挙げられる。具 体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノェチルェ ーテノレ、エチレングリコーノレモノブチノレエーテノレ、エチレングリコーノレモノフエニノレエ ーテノレ、エチレングリコーノレモノべンジノレエーテノレ、ジエチレングリコーノレモノメチノレ エーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノブチ ノレエーテノレ、ジエチレングリコーノレモノフエニノレエーテノレ、ジエチレングリコーノレモノ ベンジルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコー ルモノェチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリ コーノレモノフエ-ノレエーテノレ、トリエチレングリコーノレモノべンジノレエーテノレ等のェチ レンオキサイド付カ卩物;プロピレングリコールモノメチルエーテル、プロピレングリコー ルモノェチルエーテル、プロピングレリコールモノブチルエーテル、プロピレングリコ 一ノレモノフエ-ノレエーテノレ、プロピレングリコーノレモノべンジノレエーテノレ、ジプロピレ ングリコーノレモノメチノレエーテノレ、ジプロピレングリコーノレモノェチノレエーテノレ、ジプロ ピレングリコーノレモノブチノレエーテル、ジプロピレングリコーノレモノフエ二ノレエーテル、 ジプロピレングリコーノレモノべンジノレエーテル、トリプロピレングリコーノレモノメチノレエ 一テル、トリプロピレングリコーノレモノェチノレエーテル、トリプロピレングリコーノレモノブ チノレエ一テル、トリプロピレングリコーノレモノフエ二ノレエーテル、トリプロピレングリコー ルモノべンジルエーテル等のプロピレンオキサイド付加物などが挙げられる。 [0041] Examples of the ether alcohol used as the raw material for the ester compound include the ethylene oxide adducts and propylene oxide adducts of the above alcohols. Specifically, ethylene glycol monomethyl ether, ethylene glycol monoethyl etherate, ethylene glycol monobutino enoate, ethylene glycol monomono enoenoate, ethylene glycol monomono enoenoate, diethylene glycol monole. Monomethylol etherenole, diethyleneglycolenomonochinoleetenore, diethyleneglycolanolenobutinoylenotenole, diethyleneglycolenomonophenolatenore, diethyleneglycolanolenomonobenzyl ether, triethyleneglycolmonomethylether, triethyleneglycolmonoethyl Ether, triethylene glycol monobutyl ether, triethylene glycol monophenol mono-ethanolate, triethylene glycol mono-mono ether Ethylene oxide-attached products such as ginoleatenole; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol Noremonomethinoreethenore, Dipropyleneglycolenorethinoreatenore, Dipropyleneglycolenoremonobutinoreether, Dipropyleneglycolenoremonophenol ether, Dipropylene glycol monovinyl ether ether, tripropylene glycol monomer mono ether ether, tripropylene glycol monomer monomer ether, tripropylene glycol monomer monomer alcohol, tripropylene glycol monomer monomer ether, Examples include propylene oxide adducts such as tripropylene glycol monobenzil ether.
[0042] これらの中では、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモ ノエチノレエ一テル、ジエチレングリコーノレモノブチノレエーテル、トリエチレングリコーノレ モノメチルエーテル、トリエチレングリコールモノェチルエーテル、トリエチレングリコー ルモノブチルエーテルが好ましぐジエチレングリコールモノメチルエーテル、ジェチ レングリコーノレモノェチノレエーテル、ジエチレングリコーノレモノブチノレエーテルがより 好ましい。  [0042] Of these, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutino ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and triethylene glycol monobutyl ether are preferred. More preferred are diethylene glycol monomethyl ether, jetylene glycol monomethino ether, and diethylene glycol monobutino ether.
[0043] 上記二塩基酸とアルコールまたはエーテルアルコールとの反応によって得られる化 合物としては、例えば、メチルジグリコールブチルジグリコールアジペート、ベンジルメ チルジグリコールアジペート、ベンジルブチルジグリコールアジペートなどが挙げられ る。  [0043] Examples of the compound obtained by reacting the dibasic acid with alcohol or ether alcohol include methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, and benzyl butyl diglycol adipate. .
[0044] 上記改質材 (B)としては、巿場カゝら入手できるエステルイ匕合物を用いることも可能 である。巿場カも入手できるものの例として、商品名:ダイフアツティ— 101 (大八化学 工業 (株)製)などを挙げることができる。また、これらの改質材を単独で用いても、 2 種類以上を組み合わせて用いてもょ ヽ。  [0044] As the modifying material (B), an ester compound available from Kayaba Co., Ltd. may be used. As an example of what can be obtained from Kayaba, the trade name: Daifati-101-101 (manufactured by Daihachi Chemical Industry Co., Ltd.) can be mentioned. These modifiers can be used alone or in combination of two or more.
[0045] 上記エステル化合物の数平均分子量 (Mn)は、特に限定されな!、が、一般に分子 量が小さいほど改質効果が大きい反面、安定性が低ぐ成形品表面へのブリードアゥ トによるブロッキングおよび汚れ発生の可能性が大きくなる。そのため、エステル化合 物の数平均分子量(Mn)は、 200〜 1500程度が好ましぐ 300〜1000程度力 り 好ましい。  [0045] The number average molecular weight (Mn) of the ester compound is not particularly limited! In general, the smaller the molecular weight, the greater the reforming effect, but the lower the stability, the surface of the molded product is blocked by bleeding out. In addition, the possibility of occurrence of contamination increases. Therefore, the number average molecular weight (Mn) of the ester compound is preferably about 200 to 1500, more preferably about 300 to 1000.
[0046] <生分解性ポリエステル組成物(C) >  [0046] <Biodegradable polyester composition (C)>
本発明で用いられる生分解性ポリエステル組成物(C)は、上記生分解性ポリエステ ル (A)と上記改質材 (B)とを含む榭脂組成物である。前記組成物 (C)における生分 解性ポリエステル (A)の含有量は、 70〜99重量部、好ましくは 75〜95重量部、より 好ましくは 80〜90重量部であり、改質剤(B)の含有量は、 30〜1重量部、好ましくは 25〜5重量部、より好ましくは 20〜: LO重量部である(ただし、(A)と (B)の合計を 100 重量部とする)。 The biodegradable polyester composition (C) used in the present invention is a resin composition containing the biodegradable polyester (A) and the modifier (B). The content of the biodegradable polyester (A) in the composition (C) is 70 to 99 parts by weight, preferably 75 to 95 parts by weight, more preferably 80 to 90 parts by weight. ) Content is 30-1 parts by weight, preferably 25 to 5 parts by weight, more preferably 20 to: LO parts by weight (provided that the sum of (A) and (B) is 100 parts by weight).
[0047] 上記生分解性ポリエステル組成物(C)には、本発明の目的を損なわな ヽ範囲で、 上記改質材 (B)以外の各種添加剤、例えば、可塑剤、相容化剤、酸化防止剤、滑剤 、着色剤、紫外線吸収剤、光安定剤、顔料、無機フイラ一等を付加成分として添加し てもよい。  [0047] The biodegradable polyester composition (C) has various additives other than the modifier (B), for example, a plasticizer, a compatibilizer, and the like, within a range not impairing the object of the present invention. Antioxidants, lubricants, colorants, ultraviolet absorbers, light stabilizers, pigments, inorganic fillers and the like may be added as additional components.
[0048] また、上記生分解性ポリエステル組成物(C)には、本発明の目的を損なわな ヽ範 囲で上記生分解性ポリエステル (A)以外の榭脂、例えば、ポリプロピレン、ポリエチレ ン、ポリ塩ィ匕ビニル等の化石資源を原料とする榭脂を付加成分として混合してもよ!ヽ  [0048] In addition, the biodegradable polyester composition (C) includes a resin other than the biodegradable polyester (A) within a range not impairing the object of the present invention, such as polypropylene, polyethylene, polyethylene, and the like. You can also add as an additional ingredient a fat that is made from fossil resources such as salty vinyl!
[0049] く分解促進剤(D) > [0049] Decomposition accelerator (D)>
本発明の生分解性ポリエステル組成物で作られた不織布は、生分解性を有するた め、生理用品として使用後廃棄された場合、コンポストや土中で分解される。その結 果、ごみ処理場の負荷を低減させることになる。特に、生理用品がトイレに流されて 下水処理場に到達した場合、砂沈槽または活性汚泥回収槽にて沈澱回収され、最 終的に汚泥処理場 (埋立)に運ばれるため、汚泥処理場で効果的に分解消滅するこ とが好ましい。  Since the nonwoven fabric made from the biodegradable polyester composition of the present invention has biodegradability, when it is discarded after use as a sanitary product, it is degraded in compost or soil. As a result, the load on the landfill will be reduced. In particular, when sanitary products are thrown into the toilet and reach the sewage treatment plant, they are collected and collected in a sand settling tank or activated sludge collection tank, and finally transported to the sludge treatment plant (landfill). It is preferable to decompose and disappear effectively.
[0050] 生分解性ポリエステル組成物からなる不織布の生分解期間が短いほど、埋立地の 減容化となり好ましい。ポリ乳酸を主体として作られた本発明の不織布は、土中でお よそ数年力かって消滅するが、ポリ乳酸の分解期間をさらに短縮させるために、分解 促進剤を含有させることが好ましい。分解促進剤を含有させることにより、前記分解期 間は 1〜6ヶ月となる。添加量を増せば、分解期間は短くなるが、不織布の物性が損 なわれる場合があるため、用途に応じて適宜添加量を選択すればよい。  [0050] The shorter the biodegradation period of the non-woven fabric made of the biodegradable polyester composition, the better the landfill volume is reduced. The nonwoven fabric of the present invention made mainly of polylactic acid disappears in the earth for several years. However, it is preferable to contain a decomposition accelerator in order to further shorten the decomposition period of polylactic acid. By including a decomposition accelerator, the decomposition period is 1 to 6 months. If the addition amount is increased, the decomposition period is shortened, but the physical properties of the nonwoven fabric may be impaired. Therefore, the addition amount may be appropriately selected according to the use.
[0051] 分解促進剤の添加量は、生分解性ポリエステル組成物 100重量部に対し、好ましく は 1〜20重量部、より好ましくは 2〜: L0重量部、特に好ましくは 3〜7重量部である。  [0051] The addition amount of the decomposition accelerator is preferably 1 to 20 parts by weight, more preferably 2 to L0 parts by weight, and particularly preferably 3 to 7 parts by weight with respect to 100 parts by weight of the biodegradable polyester composition. is there.
[0052] 本発明で必要に応じて用いられる分解促進剤 (D)は、上記生分解性ポリエステル 組成物(C)の分解を促進する作用を有するものであって、具体的には、親水性セグ メント(d— 1)としてポリアミノ酸を有し、疎水性セグメント (d— 2)として上記生分解性 ポリエステルを有するブロックもしくはグラフト共重合体である。 [0052] The degradation accelerator (D) used as necessary in the present invention has an action of promoting the degradation of the biodegradable polyester composition (C). Specifically, the degradation accelerator (D) is hydrophilic. It has polyamino acid as segment (d-1) and biodegradable as hydrophobic segment (d-2) A block or graft copolymer having polyester.
[0053] 本発明において、疎水性セグメントとは、特に水に難溶もしくは不溶である分解性 ポリエステルまたはそれ力 誘導されたセグメントであり、もう一方の親水性セグメント よりも疎水的なものである。また、親水性セグメントとは、水に可溶なポリマーまたはそ れから誘導されたセグメント、あるいは、水に難溶であっても前記疎水性セグメントより も親水的であるポリマーまたはそれ力も誘導されたセグメントである。  [0053] In the present invention, the hydrophobic segment is a degradable polyester that is hardly soluble or insoluble in water or a segment induced by the force, and is more hydrophobic than the other hydrophilic segment. In addition, a hydrophilic segment is a polymer that is soluble in water or a segment derived therefrom, or a polymer that is sparingly soluble in water but more hydrophilic than the hydrophobic segment or its force. It is a segment.
[0054] 上記分解促進剤 (D)における親水性セグメント (d— 1)としては、そのセグメント中 にポリアミノ酸を含有するものであればよぐ特に限定されるものではないが、好ましく はァスパラギン酸由来の構成単位を含有するものであり、より好ましくは、ァスパラギ ン酸由来の構成単位を、親水性セグメントの全体量のうち 1モル%以上、好ましくは 1 0モル%以上として含有するものであり、特に好ましくは、親水性セグメントがァスパラ ギン酸由来の構成単位力もなるものである。  [0054] The hydrophilic segment (d-1) in the decomposition accelerator (D) is not particularly limited as long as it contains a polyamino acid in the segment, but it is preferably aspartic acid. More preferably, the constituent unit derived from aspartic acid is contained as 1 mol% or more, preferably 10 mol% or more of the total amount of the hydrophilic segment. Particularly preferably, the hydrophilic segment also has a structural unit force derived from aspartic acid.
[0055] また、疎水性セグメント(d— 2)としては、そのセグメント中に分解性ポリエステルを 含有するものであればよぐ特に限定されるものではないが、好ましくは脂肪族ポリエ ステルに由来する構成単位を含有するものであり、より好ましくは、乳酸由来の構成 単位を、疎水性セグメントの全体量のうち 1モル%以上、好ましくは 10モル%以上含 有するものであり、特に好ましくは、疎水性セグメントが乳酸由来の構成単位力もなる ものである。  [0055] The hydrophobic segment (d-2) is not particularly limited as long as it contains a degradable polyester in the segment, but it is preferably derived from an aliphatic polyester. More preferably, it contains 1 mol% or more, preferably 10 mol% or more of the total amount of the lactic acid-derived structural unit, particularly preferably hydrophobic. The sex segment can also be a structural unit derived from lactic acid.
[0056] 上記分解促進剤 (D)の好ま ヽ形態は、構造中に、親水性セグメント (d— 1)として ァスパラギン酸に由来する構成単位と、疎水性セグメント(d—2)として生分解性ポリ エステルに由来する構成単位 (以下、疎水性セグメント (d—2)に由来する構成単位 とする。)とが共存する。この共重合体中には、親水性セグメント (d— 1)のァスパラギ ン酸に由来する構成単位 1モル%以上と、疎水性セグメント (d—2)に由来する構成 単位 1モル%以上とが含まれて 、ることが好ま U、。  [0056] The preferred form of the above-described degradation accelerator (D) is a structural unit derived from aspartic acid as a hydrophilic segment (d-1) and a biodegradable as a hydrophobic segment (d-2) in the structure. A structural unit derived from a polyester (hereinafter referred to as a structural unit derived from a hydrophobic segment (d-2)) coexists. The copolymer contains 1 mol% or more of structural units derived from aspartic acid of the hydrophilic segment (d-1) and 1 mol% or more of structural units derived from the hydrophobic segment (d-2). U, who prefers to be included.
[0057] 上記分解促進剤 (D)において、親水性セグメント(d— 1)のァスパラギン酸由来単 位と疎水性セグメント(d—2)由来単位との組成比は、特に限定されるものではない 力 好ましくは 1Z1〜1Z50である。  [0057] In the decomposition accelerator (D), the composition ratio of the aspartic acid-derived unit of the hydrophilic segment (d-1) and the unit derived from the hydrophobic segment (d-2) is not particularly limited. The force is preferably 1Z1 to 1Z50.
[0058] 上記分解促進剤 (D)を構成する共重合体中には、親水性セグメント(d— 1)のァス ノ ラギン酸および疎水性セグメント (d— 2)以外の構成要素が共重合により存在して いてもよい。ただし、その量は分解促進剤 (D)の性質を大きく損なわない程度である ことが必要であり、力かる点を考慮すると、その量はおよそ 20モル%以下である。 [0058] The copolymer constituting the decomposition accelerator (D) contains a hydrophilic segment (d-1) class. Constituent elements other than normal acid and hydrophobic segment (d-2) may be present by copolymerization. However, the amount must be such that the properties of the decomposition accelerator (D) are not significantly impaired. Considering the points to be worked out, the amount is about 20 mol% or less.
[0059] なお、ァスパラギン酸は、脱水縮合してコハク酸イミド単位を有する重合体を生成す る力 ァスパラギン酸に由来する構成単位とは、コハク酸イミド単位をも含む意味であ る。また、分解促進剤 (D)の構造に含まれるァスパラギン酸単位は、 a—アミド型単 量体単位および —アミド型単量体単位が混在し得るものであり、両者の比は特に 限定されない。 Note that aspartic acid is a force that generates a polymer having succinimide units by dehydration condensation, and the structural unit derived from aspartic acid means to include succinimide units. Further, the aspartic acid unit contained in the structure of the decomposition accelerator (D) can be a mixture of an a-amide type monomer unit and an —amide type monomer unit, and the ratio of both is not particularly limited.
[0060] 上記分解促進剤 (D)は、ァスパラギン酸と、ヒドロキシカルボン酸類、ラクチド類また はラタトン類との共重合反応により得られ、その製造方法は特に限定されない。一般 には、ァスパラギン酸とヒドロキシカルボン酸類等とを所望の比で混合し、加熱下に重 合すること〖こより得ることができる。  [0060] The decomposition accelerator (D) is obtained by copolymerization reaction of aspartic acid and hydroxycarboxylic acids, lactides or latatones, and the production method thereof is not particularly limited. In general, it can be obtained by mixing aspartic acid and hydroxycarboxylic acids in a desired ratio and superposing them under heating.
[0061] 上記分解促進剤 (D)の分子量につ 1ヽては、上記生分解性ポリエステル組成物(C) と良好に混合でき、分解促進効果を大きくする点から、重量平均分子量 (Mw)が、好 まし <は 1000〜 10万、より好まし <は 2000〜5万である。 [0061] Regarding the molecular weight of the decomposition accelerator (D), the weight-average molecular weight (Mw) can be mixed with the biodegradable polyester composition (C) satisfactorily to increase the effect of promoting decomposition. However, preferred <is 1000 to 100,000, more preferred <2000 to 50,000.
[0062] 上記分解促進剤 (D)を構成する親水性セグメント (d— 1)および疎水性セグメント( d— 2)は、ブロックまたはグラフト共重合体のいずれの構成をとつても問題なく使用で きる。 [0062] The hydrophilic segment (d-1) and the hydrophobic segment (d-2) constituting the decomposition accelerator (D) can be used without any problem regardless of the configuration of the block or graft copolymer. wear.
[0063] <組成物(C)の調製方法 >  [0063] <Method for preparing composition (C)>
本発明にお 、て、生分解性ポリエステル (A)および改質材 (B)、必要に応じて分解 促進剤 (D)や他の添加剤を混合する方法は特に限定されな!ヽが、加熱溶融または 溶媒に溶解させて、攪拌混合する方法が好ましい。例えば、生分解性ポリエステル( A)および改質材 (B)、必要に応じて分解促進剤(D)や他の添加剤を、ヘンシェルミ キサ一、スーパーミキサー、タンブラ一型ミキサー等を用いて混合した後、一軸また は二軸スクリュー型押出機を用いて連続混練する。ここで、生分解性ポリエステル (A )および改質材 (B)、必要に応じて用いられる分解促進剤 (D)や他の添加剤の分散 性をより向上させるためには、二軸押出機の方が好ま 、。  In the present invention, the method of mixing the biodegradable polyester (A) and the modifier (B), and, if necessary, the degradation accelerator (D) and other additives is not particularly limited! A method of stirring by heating and melting or dissolving in a solvent is preferred. For example, biodegradable polyester (A), modifier (B), and degradation accelerator (D) and other additives, if necessary, are mixed using a Henschel mixer, super mixer, tumbler type mixer, etc. After that, continuous kneading is performed using a single screw or twin screw extruder. Here, in order to further improve the dispersibility of the biodegradable polyester (A) and the modifier (B), and the degradation accelerator (D) and other additives used as necessary, a twin-screw extruder is used. Is preferred.
[0064] <生分解性ポリエステル繊維の製造方法 > 本発明に係る生分解性ポリエステル繊維を得る方法としては、公知の紡糸方法が 適用され、単独紡糸でも複合紡糸でもよぐ特に複合紡糸の形態としては、芯鞘型お よび並列型複合紡糸が挙げられる。具体的な紡糸方法としては、上記組成物(C)を 、押出機を用いて溶融紡糸する溶融紡糸法;上記組成物 (C)を溶媒に溶解して溶液 とした後、該溶液をノズル力ゝら貧溶媒中に吐出させる湿式紡糸法;該溶液をノズルか ら乾燥気体中に吐出させる乾式紡糸法などが挙げられる。なお、前記溶融紡糸法に は、一軸押出機や二軸押出機等の公知の押出機を用いることができる。押出機の口 金 (ノズル)の口径は、必要とする繊維の直径 (糸径)と、押出機の吐出速度や引き取 り速度との関係によって適宜決定される力 好ましくは 0. 1〜3. Omm程度である。 <Method for producing biodegradable polyester fiber> As a method for obtaining the biodegradable polyester fiber according to the present invention, a known spinning method is applied, and single spinning or composite spinning may be used. Particularly, the composite spinning forms include core-sheath type and parallel type composite spinning. It is done. A specific spinning method includes a melt spinning method in which the composition (C) is melt-spun using an extruder; the composition (C) is dissolved in a solvent to form a solution; In addition, a wet spinning method in which the solution is discharged into a poor solvent; a dry spinning method in which the solution is discharged from a nozzle into a dry gas, and the like can be given. In the melt spinning method, a known extruder such as a single screw extruder or a twin screw extruder can be used. The diameter of the nozzle (nozzle) of the extruder is a force that is appropriately determined according to the relationship between the required fiber diameter (thread diameter) and the discharge speed and take-off speed of the extruder, preferably 0.1 to 3. About Omm.
[0065] 上記紡糸法のいずれにおいても、紡糸後の繊維の延伸は必ずしも行う必要はない 力 延伸を行う場合には、 1. 1〜20倍、好ましくは 2〜15倍に延伸する。繊維の好ま しい糸径は 0. 5〜40デニールである。 [0065] In any of the above spinning methods, it is not always necessary to stretch the fiber after spinning. When force stretching is performed: 1. The fiber is stretched 1 to 20 times, preferably 2 to 15 times. The preferred yarn diameter of the fiber is 0.5 to 40 denier.
[0066] 本発明の繊維は、平均繊維径が 7 μ m以上 40 μ m以下であり、好ましくは 10 μ m 以上 37 μ m以下、より好ましくは 12 μ m以上 35 μ m以下である。平均繊維径が前記 範囲であると、紡糸性および強度に優れる。 [0066] The fibers of the present invention have an average fiber diameter of 7 µm to 40 µm, preferably 10 µm to 37 µm, more preferably 12 µm to 35 µm. When the average fiber diameter is in the above range, the spinnability and strength are excellent.
[0067] 本発明の繊維は、 130°Cにおける熱収縮率力 好ましくは 10%以下、より好ましく は 8%以下、さらに好ましくは 5%以下である。熱収縮率が 10%以下であると、熟成 型加工等での収縮がほとんどなぐ製品化が容易であり、また、 100°C近い高温環境 下にさらされるような使用形態でも、形態保持性に優れる。 [0067] The heat shrinkage force at 130 ° C of the fiber of the present invention is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less. When the thermal shrinkage rate is 10% or less, it is easy to produce a product with almost no shrinkage during aging mold processing, etc., and even in usage forms exposed to high temperature environments close to 100 ° C Excellent.
[0068] 〔生分解性ポリエステル不織布〕 [0068] [Biodegradable polyester nonwoven fabric]
本発明の生分解性ポリエステル不織布は、前記本発明の生分解性ポリエステル繊 維からなる。本発明の不織布を構成する単繊維または複合繊維は、長繊維または短 繊維のいずれでもよぐ使用目的により適宜選択できる。  The biodegradable polyester nonwoven fabric of the present invention comprises the biodegradable polyester fiber of the present invention. The single fiber or the composite fiber constituting the nonwoven fabric of the present invention can be appropriately selected depending on the purpose of use, which may be either a long fiber or a short fiber.
[0069] 本発明の不織布の製造方法としては、特に制限がなぐ公知の方法、例えば、乾式 法、スパンボンド法、メルトブロー法、湿式法などが挙げられる。すなわち、生分解性 ポリエステル組成物(C)を上記のような方法で紡糸した後、ウェブと呼ばれる繊維の 塊状態を形成し、該ウェブを従来公知の方法により結合することにより得られる。 [0069] Examples of the method for producing the nonwoven fabric of the present invention include known methods that are not particularly limited, such as a dry method, a spun bond method, a melt blow method, and a wet method. That is, it is obtained by spinning the biodegradable polyester composition (C) by the above method, forming a lump state of fibers called a web, and bonding the web by a conventionally known method.
[0070] 上記ウェブの製造方法としては特に限定されず、公知の方法を採用することができ る。例えば、フラットカード機、ローラカード機、ガーネット機等を用いるカード式や、メ ルトブロー式などが挙げられる。また、榭脂を紡糸する際、紡糸機のノズルから繊維 が出るときに高速空気を吹き付け、気流に直角な穴あきコンベア上に集めてウェブを 形成させるスパンボンド式でもよ 、。 [0070] The web production method is not particularly limited, and a known method can be adopted. The For example, a card type using a flat card machine, a roller card machine, a garnet machine, etc., a melt blow type and the like can be mentioned. Also, when spinning fiber, spunbond type, in which high-speed air is blown when fibers come out from the nozzle of the spinning machine and collected on a perforated conveyor perpendicular to the airflow to form a web.
[0071] 上記のようにして得られたウェブ力ゝら本発明の生分解性不織布を得る方法としては 、公知の方法を採用することができる。例えば、針により交絡させる-一ドルパンチ法 、糸により交絡させるステッチボンド法、水流により交絡させるスパンレース法、ジエツ トボンド法、熱により接着させるサーマルボンド法、接着剤を利用するケミカルボンド 法、レジンボンド法などが挙げられる。  [0071] As a method for obtaining the biodegradable nonwoven fabric of the present invention from the web strength obtained as described above, a known method can be employed. For example, entanglement with a needle-one-dollar punch method, stitch bond method with entanglement with yarn, spunlace method with water flow, jet bond method, thermal bond method with heat bonding, chemical bond method with adhesive, resin bond Law.
[0072] 本発明の不織布の目付は、 lg/m2〜50g/m2、好ましくは 7g/m2〜50g/m2、 より好ましくは 1 OgZm2〜40gZm2、さらに好ましくは 12g/m2〜 30g/m2である。 目付が前記範囲にあると、繊維間の間隙が適度で、包装性、遮蔽性および保持性に 優れる。 [0072] basis weight of the nonwoven fabric of the present invention, lg / m 2 ~50g / m 2, preferably 7g / m 2 ~50g / m 2 , more preferably 1 OgZm 2 ~40gZm 2, more preferably 12 g / m 2 it is a ~ 30g / m 2. When the basis weight is in the above range, the gap between the fibers is moderate, and the packaging property, shielding property and holding property are excellent.
[0073] 本発明の不織布は、縦方向(MD)の剛軟度 QilS L1096の 8. 19. 1に記載の A法  [0073] The nonwoven fabric of the present invention has a longitudinal (MD) bending resistance QilS L1096 of A Method described in 8.19.1
(45° カンチレバー法)に準拠]と、横方向(CD)の剛軟度 [同法に準拠]との合計値 力 好ましくは 100mm〜Omm、より好ましくは 90mm〜Omm、特に好ましくは 80m m〜Ommである。剛軟度が前記範囲であると柔軟性に優れる。剛軟度は低いほど柔 軟性に優れる。  (Compliant with 45 ° cantilever method) and lateral (CD) bending resistance [Compliant with the same method] Force preferably 100 mm to Omm, more preferably 90 mm to Omm, particularly preferably 80 mm to Omm. When the bending resistance is in the above range, the flexibility is excellent. The lower the bending resistance, the better the flexibility.
[0074] また、前記縦方向(MD)の剛軟度は、好ましくは 60mn!〜 Omm、より好ましくは 50 mn!〜 Omm、特に好ましくは 40mm〜0mmであり、横方向(CD)の剛軟度は、好ま しくは 40mm〜0mm、より好ましくは 30mm〜Omm、特に好ましくは 20mm〜0mm である。  [0074] The bending resistance in the machine direction (MD) is preferably 60mn! ~ Omm, more preferably 50 mn! ˜Omm, particularly preferably 40 mm to 0 mm, and the bending resistance in the transverse direction (CD) is preferably 40 mm to 0 mm, more preferably 30 mm to Omm, particularly preferably 20 mm to 0 mm.
[0075] 本発明の不織布の好ましい形態は、構成繊維同士が水流交絡処理等により交絡し て一体化してなるもの、熱風処理等により繊維交点が熱融着して一体化してなるもの 、また、部分熱圧着処理により部分的な熱圧着部を有することにより一体化してなるも のなどが挙げられる。中でも、部分的に熱圧着されて不織布としての形態が保持され ているものが、強力の点から好ましい。部分的に熱圧着された不織布は、点状融着 区域においてのみ接着されているため、柔軟性と形態保持性とを兼ね備えたものと なり、柔らかくて毛羽立ちにくい不織布となる。 [0075] Preferred forms of the nonwoven fabric of the present invention are those in which the constituent fibers are entangled and integrated by hydroentanglement treatment, etc., those in which the fiber intersections are thermally fused and integrated by hot air treatment or the like, For example, it may be integrated by having a partial thermocompression bonding part by partial thermocompression treatment. Among these, those that are partially thermocompression bonded and retain the form as a nonwoven fabric are preferred from the standpoint of strength. Partially heat-bonded non-woven fabric is bonded only at the point-like fused area, so it has both flexibility and form retention. It becomes a non-woven fabric that is soft and difficult to fluff.
[0076] ここで、部分的な熱圧着とは、エンボス加工または超音波融着処理によって点状融 着区域を形成することをいい、具体的には、加熱されたエンボスロールと表面が平滑 なロールとの間にウェブを通して繊維間に点状融着区域を形成する方法、あるいは、 パターンロール上で超音波による高周波を印加してパターン部の繊維間に点状融着 区域を形成する方法がある。  [0076] Here, the partial thermocompression bonding refers to forming a spot-like fusion zone by embossing or ultrasonic fusion treatment. Specifically, the heated embossing roll and the surface are smooth. There is a method of forming a dotted fused area between fibers through a web between the rolls, or a method of forming a dotted fused area between fibers in a pattern portion by applying a high frequency by ultrasonic waves on a pattern roll. is there.
[0077] 〔用途〕 [0077] [Usage]
本発明に係る生分解性ポリエステル繊維の好適な成形品の例として、編物、織物、 不織布、網、ロープ、その他の各種成形品が挙げられ、本発明に係る生分解性ポリ エステル不織布の好適な用途としては、衛生用品、生活資材、農業資材、土木資材 が挙げられる。  Examples of suitable molded articles of the biodegradable polyester fiber according to the present invention include knitted fabrics, woven fabrics, non-woven fabrics, nets, ropes, and other various molded articles, and suitable biodegradable polyester nonwoven fabrics according to the present invention. Applications include hygiene products, living materials, agricultural materials, and civil engineering materials.
[0078] 本発明に係る生分解性ポリエステル繊維または不織布を、公知のホットメルト接着 あるいは熱接着などの方法で相互に接着して固定することにより、衛生用品を製造 することができる。衛生用品としては、例えば、生理用タンポンアプリケータ、生理用 ナプキン、パンティーライナー、使い捨て紙おむつ、失禁用パッド等が挙げられる。  [0078] A sanitary article can be produced by adhering and fixing the biodegradable polyester fiber or nonwoven fabric according to the present invention to each other by a known method such as hot melt bonding or heat bonding. Examples of sanitary products include sanitary tampon applicators, sanitary napkins, panty liners, disposable paper diapers, and incontinence pads.
[0079] 本発明の生分解性ポリエステル繊維または不織布を用いることにより、生分解性を 有するとともに、実用上十分な柔軟性および耐熱収縮安定性を有する衛生用品が得 られる。  [0079] By using the biodegradable polyester fiber or nonwoven fabric of the present invention, a sanitary article having biodegradability and practically sufficient flexibility and heat shrinkage stability can be obtained.
[0080] [実施例]  [0080] [Example]
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施 例に限定されるものではない。なお、実施例等における物性等の各種測定'評価方 法は以下のとおりである。  EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples. In addition, various measurements such as physical properties in Examples and the like 'evaluation methods are as follows.
[0081] <機械強度 > [0081] <Mechanical strength>
下記に示した手順以外は全て JIS L 1906に準拠して測定した。  All the procedures other than those shown below were measured in accordance with JIS L 1906.
1)不織布から試験片(幅 25mm、長さ 200mm)を、縦方向(MD)および横方向(C D)用にそれぞれ 5枚採取した。  1) Five test pieces (width 25 mm, length 200 mm) were collected from the nonwoven fabric in the machine direction (MD) and the transverse direction (CD), respectively.
2)採取した各試験片にっき、引張試験機 (インストロン社製 5564型)を用い、チヤッ ク間 100mm、引張速度 lOOmmZminの条件で引張試験を行った。試験片が破断 に至るまでに示した最大荷重値 (NZ25mm)を測定し、それらの平均値を算出した 。また、最大荷重時の伸びを引張最大点伸度 (%)とし、それらの平均値を算出した。 2) A tension test was performed on each collected specimen using a tensile tester (type 5564 manufactured by Instron Co., Ltd.) under the conditions of 100 mm between the chucks and a tensile speed of lOOmmZmin. Test piece breaks The maximum load value (NZ25mm) shown up to was measured, and the average value was calculated. In addition, the elongation at the maximum load was defined as the maximum tensile elongation (%), and the average value was calculated.
[0082] <目付量 >  [0082] <Amount of basis weight>
不織布から 100mm X 100mmの試験片を 10枚切り出し、 JIS L1906に準拠して 測定し、 g/m2に換算した。 Ten test pieces of 100 mm × 100 mm were cut out from the nonwoven fabric, measured according to JIS L1906, and converted to g / m 2 .
[0083] <剛軟度 >  [0083] <Bending softness>
不織布の剛軟度を、 JIS L1096の 8. 19. 1に記載されている A法 (45° カンチレ バー法)に準拠して測定した。具体的には、不織布から、 2cm X 15cmの試験片を縦 方向(MD)および横方向(CD)用にそれぞれ 3枚採取した。一端が 45度の斜面をも つ、表面の滑らかな水平台の上に、試験片の短辺をスケール基線に合わせて置いた 。次に、適当な方法によって試験片を斜面の方向に緩やかに滑らせて、試験片のー 端の中央点が斜面と接したとき他端の位置をスケールによって読んだ。剛軟度は、試 験片が移動した長さ (mm)で示され、それぞれ 3枚を測り、縦方向および横方向それ ぞれの平均値を算出し、整数位に丸めた。  The bending resistance of the nonwoven fabric was measured in accordance with Method A (45 ° cantilever method) described in JIS L1096, 8.1. Specifically, 3 pieces of 2 cm × 15 cm specimens were collected from the nonwoven fabric in the machine direction (MD) and the transverse direction (CD), respectively. The short side of the test piece was placed on the scale base line on a smooth horizontal surface with a 45 ° slope at one end. Next, the specimen was gently slid in the direction of the slope by an appropriate method, and the position of the other end was read with a scale when the central point of the edge of the specimen was in contact with the slope. The bending resistance was indicated by the length (mm) that the specimen moved, and we measured three samples each, calculated the average value in the vertical and horizontal directions, and rounded them to whole numbers.
[0084] <熱収縮率 >  [0084] <Heat shrinkage rate>
1)表面が滑らかで光沢のある紙片に空間距離 100mmの区分線を作った。エンボス ロールにより加熱加圧処理される前の不織布からとりだした繊維の束を、紙片に置き 両端をテープで貼り付け固着させた。繊維の一端を切断し、 100mm長の繊維の束 を得た。  1) A dividing line with a clearance of 100mm was made on a piece of paper with a smooth surface and gloss. A bundle of fibers taken out from the non-woven fabric before being heated and pressurized with an embossing roll was placed on a piece of paper and both ends were affixed and fixed with tape. One end of the fiber was cut to obtain a bundle of 100 mm long fibers.
2)この試料を、乾燥機(130°C)で 1分間加熱した。  2) This sample was heated in a dryer (130 ° C) for 1 minute.
3)加熱後の繊維の長さを測定し、 { (加熱前長さ(100mm)—加熱後長さ) Z加熱前 長さ(100mm) } X 100 (%)で計算し、 3回の平均値を熱収縮率とした。  3) Measure the length of the fiber after heating, {(length before heating (100mm) —length after heating) Z length before heating (100mm)} X 100 (%) The value was defined as the heat shrinkage rate.
[0085] <繊維径>  [0085] <Fiber diameter>
光学顕微鏡にて測定し、 10ケ所の平均値を繊維径とした。  Measured with an optical microscope, the average value at 10 locations was taken as the fiber diameter.
[0086] <ブリードテスト > [0086] <Bleed test>
不織布から 10cm X 10cmの試験片を採取し、恒温乾燥機中で 80°C X 24時間の エージングを行った。以下の基準でブリード性を評価した。  A 10 cm × 10 cm test piece was taken from the non-woven fabric and aged at 80 ° C. for 24 hours in a constant temperature dryer. Bleedability was evaluated according to the following criteria.
AA:改質材のブリードなし BB:改質材のブリード少しあり AA: No bleed of modifier BB: There is a slight bleed of modifier
CC :改質材のブリードあり。  CC: There is a bleed of the modifier.
[0087] <成形性 (紡糸性) > [0087] <Formability (spinnability)>
溶融紡糸中 10分間における糸切れの回数を目視で行った。以下の基準で成形性 (紡糸性)を評価した。  The number of yarn breaks during 10 minutes during melt spinning was visually observed. Formability (spinnability) was evaluated according to the following criteria.
〇:糸切れなし  ○: No thread breakage
△:糸切れあり(1回 Zio分以下)  △: Thread breakage (once Zio minutes or less)
X:糸切れあり(2回 Z10分以上)。  X: Thread breakage (twice Z10 minutes or more).
[0088] 〔実施例 1〕  [Example 1]
生分解性ポリエステルとしてポリ乳酸 [三井ィ匕学 (株)製、商品名: LACEA H-400] を用い、二軸押出機にて 200〜220°Cで、改質材としてダイフアツティ- 101 [大八化 学工業 (株)製]を装入しながら、重量比 85Z15でブレンドし、ペレットを得た。得られ たペレットを 60〜70°Cで乾燥した。乾燥を行ったペレットを用いてスパンボンド法に より溶融紡糸を行い、ウェブをエンボスロールで加熱加圧処理して目付量が 20gZm 2の不織布を得た。得られた不織布について機械強度、剛軟度等を測定して評価し た。結果を表 1に示す。  Using polylactic acid [manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400] as biodegradable polyester, at 200-220 ° C with a twin screw extruder, Daifati 101 as a modifier The mixture was blended at a weight ratio of 85Z15 while charging [Hachikagaku Kogyo Co., Ltd.] to obtain pellets. The obtained pellets were dried at 60-70 ° C. The dried pellets were melt-spun by the spunbond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 gZm2. The obtained nonwoven fabric was evaluated by measuring mechanical strength, bending resistance, and the like. The results are shown in Table 1.
[0089] 〔実施例 2〕  [Example 2]
生分解性ポリエステルとしてポリ乳酸 [三井ィ匕学 (株)製、商品名: LACEA H-400] を用い、二軸押出機にて 200〜220°Cで、改質材としてダイフアツティ- 101 [大八化 学工業 (株)製]を装入しながら、重量比 75Z25でブレンドし、ペレットを得た。得られ たペレットを 60〜70°Cで乾燥した。乾燥を行ったペレットを用いてスパンボンド法に より溶融紡糸を行い、ウェブをエンボスロールで加熱加圧処理して目付量が 20gZm 2の不織布を得た。得られた不織布について機械強度、剛軟度等を測定して評価し た。結果を表 1に示す。  Using polylactic acid [manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400] as biodegradable polyester, at 200-220 ° C with a twin screw extruder, Daifati 101 as a modifier The mixture was blended at a weight ratio of 75Z25 while charging [made by Hachikagaku Kogyo Co., Ltd.] to obtain pellets. The obtained pellets were dried at 60-70 ° C. The dried pellets were melt-spun by the spunbond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 gZm2. The obtained nonwoven fabric was evaluated by measuring mechanical strength, bending resistance, and the like. The results are shown in Table 1.
[0090] 〔比較例 1〕  [Comparative Example 1]
実施例 1において、改質材を添加せずポリ乳酸 [三井化学 (株)製、商品名: LACE A H-400]のみとしたこと以外は、実施例 1と同様の方法で目付量が 20gZm2の不 織布を得た。得られた不織布について機械強度等を測定して評価した。結果を表 1 に示す。 In Example 1, the weight per unit area was 20 gZm in the same manner as in Example 1 except that only the polylactic acid [manufactured by Mitsui Chemicals, Inc., trade name: LACE A H-400] was used without adding a modifier. Two nonwoven fabrics were obtained. The obtained nonwoven fabric was evaluated by measuring mechanical strength and the like. Results in Table 1 Shown in
[0091] 〔比較例 2〕  [0091] [Comparative Example 2]
ポリ乳酸榭脂 (三井化学 (株)製、商品名: LACEA H-400)と脂肪族ポリエステル( 昭和高分子 (株)製、商品名:ビオノーレ # 1020)とを重量比 85Z15でブレンドし、 スパンボンド法により溶融紡糸を行 、、ウェブをエンボスロールで加熱加圧処理して 目付量が 20g/m2の不織布を得た。得られた不織布につ!ヽて機械強度等を測定し て評価した。結果を表 1に示す。 Polylactic acid resin (Mitsui Chemicals Co., Ltd., trade name: LACEA H-400) and aliphatic polyester (Showa High Polymer Co., Ltd., trade name: Bionore # 1020) were blended at a weight ratio of 85Z15 and spanned. Melt spinning was performed by a bond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 g / m 2 . The obtained nonwoven fabric was measured and evaluated by measuring the mechanical strength and the like. The results are shown in Table 1.
[0092] 〔比較例 3〕  [Comparative Example 3]
実施例 1において、改質材を ATBC (ァセチルトリブチルクェン酸)としたこと以外は 、実施例 1と同様の方法で目付量が 20gZm2の不織布を得た。得られた不織布につ いて機械強度等を測定して評価した。結果を表 1に示す。 A nonwoven fabric having a basis weight of 20 gZm 2 was obtained in the same manner as in Example 1 except that the modifier was ATBC (acetyltributyl citrate) in Example 1. The obtained nonwoven fabric was evaluated by measuring mechanical strength and the like. The results are shown in Table 1.
[0093] 〔比較例 4〕  [0093] [Comparative Example 4]
生分解性ポリエステルとしてポリ乳酸 [三井ィ匕学 (株)製、商品名: LACEA H-400] を用い、二軸押出機にて 200〜220°Cで、改質材としてダイフアツティ- 101 [大八化 学工業 (株)製]を装入しながら、重量比 65Z35でブレンドし、ペレットを得た。得られ たペレットを 60〜70°Cで乾燥した。乾燥を行ったペレットを用いてスパンボンド法に より溶融紡糸を行い、ウェブをエンボスロールで加熱加圧処理して目付量が 20gZm 2の不織布を得た。得られた不織布について機械強度、剛軟度等を測定して評価し た。結果を表 1に示す。  Using polylactic acid [manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400] as biodegradable polyester, at 200-220 ° C with a twin screw extruder, Daifati 101 as a modifier The mixture was blended at a weight ratio of 65Z35 while charging [Hachikagaku Kogyo Co., Ltd.] to obtain pellets. The obtained pellets were dried at 60-70 ° C. The dried pellets were melt-spun by the spunbond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 gZm2. The obtained nonwoven fabric was evaluated by measuring mechanical strength, bending resistance, and the like. The results are shown in Table 1.
[0094] 〔実施例 3〕  [Example 3]
生分解性ポリエステルとしてポリ乳酸 [三井ィ匕学 (株)製、商品名: LACEA H-400] を用い、二軸押出機にて 200〜220°Cで、改質材としてダイフアツティ- 101 [大八化 学工業 (株)製]を装入しながら、重量比 90Z10でブレンドし、ペレットを得た。得られ たペレットを 60〜70°Cで乾燥した。乾燥を行ったペレットを用いてスパンボンド法に より溶融紡糸を行い、ウェブをエンボスロールで加熱加圧処理して目付量が 20gZm 2の不織布を得た。得られた不織布について機械強度、剛軟度等を測定して評価し た。結果を表 1に示す。  Using polylactic acid [manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400] as biodegradable polyester, at 200-220 ° C with a twin screw extruder, Daifati 101 as a modifier The mixture was blended at a weight ratio of 90Z10 while charging [Hachikagaku Kogyo Co., Ltd.]. The obtained pellets were dried at 60-70 ° C. The dried pellets were melt-spun by the spunbond method, and the web was heated and pressurized with an embossing roll to obtain a nonwoven fabric having a basis weight of 20 gZm2. The obtained nonwoven fabric was evaluated by measuring mechanical strength, bending resistance, and the like. The results are shown in Table 1.
[0095] 〔調製例 1〕分解促進剤 (ァスパラギン酸 乳酸共重合体、 PALS) グラスライニングした 4m3の反応機にし -ァスパラギン酸 130kgおよび 90%L -乳 酸水溶液 500kgを装入し、窒素気流下、反応水を留去しながら 180°Cで 25時間反 応させた。反応釜下部の取り出し口より生成物を取り出して冷却固化させ、得られた 固体を粉砕し、粉末状ポリマー (ァスパラギン酸-乳酸共重合体、 PALS)を得た。重 量平均分子量(Mw)は 9000であった。 [Preparation Example 1] Decomposition accelerator (aspartic acid lactic acid copolymer, PALS) A glass-lined 4 m 3 reactor was charged with 130 kg of aspartic acid and 500 kg of 90% L-lactic acid aqueous solution, and reacted at 180 ° C for 25 hours while distilling off the reaction water under a nitrogen stream. The product was taken out from the outlet at the bottom of the reaction kettle and cooled and solidified, and the resulting solid was pulverized to obtain a powdery polymer (aspartic acid-lactic acid copolymer, PALS). The weight average molecular weight (Mw) was 9000.
[0096] 〔実施例 4〕  [Example 4]
生分解性ポリエステルとしてポリ乳酸 [三井ィ匕学 (株)製、商品名: LACEA H-400] を用い、二軸押出機にて 200〜220°Cで、改質材としてダイフアツティ- 101 [大八化 学工業 (株)製]と、分解促進剤として調整例 1で得られたァスパラギン酸 乳酸共重 合体 (PALS)とを装入しながら、重量比 80Z15Z5でブレンドし、ペレットを得た。得 られたペレットを 60〜70°Cで乾燥した。乾燥を行ったペレットを用いてスパンボンド 法により溶融紡糸を行い、ウェブをエンボスロールで加熱加圧処理して目付量が 20g Zm2の不織布を得た。得られた不織布について機械強度、剛軟度等を測定して評 価した。結果を表 1に示す。 Using polylactic acid [manufactured by Mitsui Chemicals Co., Ltd., trade name: LACEA H-400] as biodegradable polyester, at 200-220 ° C with a twin screw extruder, Daifati 101 as a modifier Yachikagaku Kogyo Co., Ltd.] and aspartic acid lactic acid copolymer (PALS) obtained in Preparation Example 1 as a decomposition accelerator were charged and blended at a weight ratio of 80Z15Z5 to obtain pellets. The obtained pellets were dried at 60-70 ° C. Was melt spun by spunbond method using drying was performed pellets, basis weight and heat and pressure treatment a web with an embossing roll to obtain a 20 g Zm 2 of the nonwoven fabric. The obtained nonwoven fabric was evaluated by measuring mechanical strength, bending resistance, and the like. The results are shown in Table 1.
[0097] [表 1] [0097] [Table 1]
改質材 b1:ダイフアツティ- 101 [大八化学工業 (株)製] 改質材 b2 :ビオノーレ #1020 [昭和高分子 (株)製] 改質材 b3 :ATBC (ァセチル 」ブチルクェン酸) 分解促進剤 d 1:ァス / ラギン酸-乳酸共重合体 (PALS) Modified material b1: Daifatsu-101 [Daihachi Chemical Industry Co., Ltd.] Modified material b2: Bionore # 1020 [Showa Polymer Co., Ltd.] Modified material b3: ATBC (Acetyl "Butyl Chenic Acid) Decomposition accelerator d 1: Us / Laginate-lactic acid copolymer (PALS)
[0098] 上記表 1に示すように、実施例 1〜4と比較例 1〜4との対比から、特定の改質材を 特定の割合でブレンドした実施例 1〜4が、機械強度と剛軟度のバランス、および耐 熱収縮性に優れることが判った。 [0098] As shown in Table 1 above, from comparison between Examples 1 to 4 and Comparative Examples 1 to 4, Examples 1 to 4 in which specific modifiers were blended at specific ratios were mechanical strength and rigidity. It was found that the softness balance and heat shrink resistance were excellent.
[0099] 〔参考例〕  [0099] [Reference Example]
上記実施例 1、 4および比較例 1で得られた不織布を、 35°Cの蒸留水中に入れ、 1 週間、 2週間のラップサンプルを採取し、その重量平均分子量 (Mw)を測定した。分 子量保持率を以下の方法にて算出した。  The nonwoven fabrics obtained in Examples 1 and 4 and Comparative Example 1 were placed in 35 ° C. distilled water, lap samples were taken for 1 week and 2 weeks, and the weight average molecular weight (Mw) was measured. The molecular weight retention was calculated by the following method.
[0100] 分子量保持率 = (ラップサンプルの Mw) / (試験前の Mw) X 100 (%) [0100] Molecular weight retention = (Mw of lap sample) / (Mw before test) X 100 (%)
なお、 Mwは、ゲルパーミエーシヨンクロマトグラフィー(GPC)を用い、カラム温度 4 0°C、クロ口ホルム溶媒にてポリスチレン標準サンプルとの比較で求めた。結果を表 2 に示す。  Mw was determined by comparison with a polystyrene standard sample using gel permeation chromatography (GPC) at a column temperature of 40 ° C. and a chloroform solvent. The results are shown in Table 2.
[0101] [表 2] 参考例 1 参考例 2 参考例 3 実施例 4の 例 1の 比較例 1の 不織布の種類 [0101] [Table 2] Reference Example 1 Reference Example 2 Reference Example 3 Example 4 Example 4 Example 1 Nonwoven Fabric Type
不織布 不織布 不織布 Nonwoven Nonwoven Nonwoven
0曰目 100 100 100 分子量保持率(%) 7曰目 82 98 99 0 series 100 100 100 Molecular weight retention (%) 7 series 82 98 99
14曰目 74 95 97  14th Eye 74 95 97

Claims

請求の範囲 [1] 生分解性ポリエステル (A) 70〜99重量部および改質材 (B) 30〜1重量部(ただし 、 (A)と (B)の合計を 100重量部とする)を含む生分解性ポリエステル組成物(C)か らなり、該改質材 (B)が下記一般式(1)で示されるエステルイ匕合物であることを特徴 とする生分解性ポリエステル繊維。 Claims [1] Biodegradable polyester (A) 70 to 99 parts by weight and modifier (B) 30 to 1 part by weight (provided that the sum of (A) and (B) is 100 parts by weight) A biodegradable polyester fiber comprising the biodegradable polyester composition (C), wherein the modifying material (B) is an ester compound represented by the following general formula (1).
[化 1]  [Chemical 1]
R1OOC― (CH2)m— COOR2( 1 ) R 1 OOC― (CH 2 ) m — COOR 2(1)
(式中、 R1および R2は互いに異なり、それぞれ下記一般式 (2)で表される基を示し、 mは 0〜8の整数を示す。 ) (In the formula, R 1 and R 2 are different from each other, and each represents a group represented by the following general formula (2), and m represents an integer of 0 to 8.)
[化 2] 一 (R30)nR4 . . . ( 2 ) [Chemical 2] One (R 3 0) n R 4 ... (2)
(式中、 R3は炭素数 1〜6のアルキレン基を示し、 R4は炭素数 1〜10の直鎖もしくは 分岐状のアルキル基、炭素数 6〜12のァリール基、炭素数 7〜15のァリールアルキ ル基または炭素数 7〜 15のアルキルァリール基を示し、 nは 0〜6の整数を示す。 )(Wherein R 3 represents an alkylene group having 1 to 6 carbon atoms, R 4 represents a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 7 to 15 carbon atoms. And an arylaryl group having 7 to 15 carbon atoms, and n represents an integer of 0 to 6.)
[2] 130°Cにおける熱収縮率が 10%以下であることを特徴とする請求項 1に記載の生 分解性ポリエステル繊維。 [2] The biodegradable polyester fiber according to claim 1, wherein the thermal shrinkage at 130 ° C is 10% or less.
[3] 前記生分解性ポリエステル (A)が乳酸系榭脂であることを特徴とする請求項 1に記 載の生分解性ポリエステル繊維。  [3] The biodegradable polyester fiber according to [1], wherein the biodegradable polyester (A) is a lactic acid resin.
[4] 前記生分解性ポリエステル (A)がポリ乳酸であることを特徴とする請求項 1に記載 の生分解性ポリエステル繊維。  [4] The biodegradable polyester fiber according to [1], wherein the biodegradable polyester (A) is polylactic acid.
[5] 前記生分解性ポリエステル組成物(C)が、前記生分解性ポリエステル (A)と前記改 質材 (B)との合計量 100重量部に対して、分解促進剤 (D) l〜20重量部をさらに含 むことを特徴とする請求項 1に記載の生分解性ポリエステル繊維。  [5] The biodegradable polyester composition (C) contains 100 parts by weight of the total amount of the biodegradable polyester (A) and the modified material (B). The biodegradable polyester fiber according to claim 1, further comprising 20 parts by weight.
[6] 請求項 1〜5の 、ずれか〖こ記載の生分解性ポリエステル繊維カゝらなることを特徴と する生分解性ポリエステル不織布。  [6] A biodegradable polyester nonwoven fabric characterized by comprising a biodegradable polyester fiber cable according to any one of claims 1 to 5.
[7] 縦方向(MD)の剛軟度 QilS L1096の 8. 19. 1に記載の A法 (45° カンチレバー 法)に準拠]と、横方向(CD)の剛軟度 [同法に準拠]との合計値が 100mm以下であ ることを特徴とする請求項 6に記載の生分解性ポリエステル不織布。 [7] Longitudinal (MD) bending resistance QilS L1096 Method A as described in 8.1. 7. The biodegradable polyester nonwoven fabric according to claim 6, wherein the total value of the conformity] and the transverse (CD) bending resistance [according to the law] is 100 mm or less.
[8] 前記縦方向(MD)の剛軟度が 60mn!〜 Ommであることを特徴とする請求項 7に記 載の生分解性ポリエステル不織布。 [8] The longitudinal direction (MD) bending resistance is 60mn! The biodegradable polyester nonwoven fabric according to claim 7, wherein the biodegradable polyester nonwoven fabric is Omm.
[9] 前記横方向(CD)の剛軟度力 0mn!〜 Ommであることを特徴とする請求項 7に記 載の生分解性ポリエステル不織布。 [9] Bending softness in the transverse direction (CD) 0mn! The biodegradable polyester nonwoven fabric according to claim 7, wherein the biodegradable polyester nonwoven fabric is Omm.
[10] 請求項 6〜9の 、ずれか〖こ記載の生分解性ポリエステル不織布カゝらなることを特徴 とする衛生用品。 [10] A sanitary article comprising the biodegradable polyester nonwoven fabric according to any one of claims 6 to 9.
[11] 前記衛生用品が、生理用ナプキン、パンティーライナー、使い捨て紙おむつおよび 生理用タンポンアプリケータカ 選ばれる少なくとも 1種であることを特徴とする請求 項 10に記載の衛生用品。  11. The sanitary product according to claim 10, wherein the sanitary product is at least one selected from a sanitary napkin, a panty liner, a disposable paper diaper, and a sanitary tampon applicator.
PCT/JP2006/310930 2005-06-01 2006-05-31 Biodegradable polyester fiber WO2006129731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007519049A JP4409601B2 (en) 2005-06-01 2006-05-31 Biodegradable polyester fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-161196 2005-06-01
JP2005161196 2005-06-01

Publications (1)

Publication Number Publication Date
WO2006129731A1 true WO2006129731A1 (en) 2006-12-07

Family

ID=37481660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310930 WO2006129731A1 (en) 2005-06-01 2006-05-31 Biodegradable polyester fiber

Country Status (2)

Country Link
JP (1) JP4409601B2 (en)
WO (1) WO2006129731A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2512802A1 (en) * 2009-12-17 2012-10-24 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work
US9416485B2 (en) 2009-12-17 2016-08-16 3M Innovative Properties Company Process of making dimensionally stable nonwoven fibrous webs
US9487893B2 (en) 2009-03-31 2016-11-08 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
JP2016210981A (en) * 2015-05-08 2016-12-15 学校法人立教学院 Biodegradable resin porous body
US10138576B2 (en) 2008-06-12 2018-11-27 3M Innovative Properties Company Biocompatible hydrophilic compositions
JP2021509448A (en) * 2018-01-02 2021-03-25 プリマロフト,インコーポレイテッド Biodegradable synthetic fiber and its manufacturing method
WO2024038205A1 (en) * 2022-08-19 2024-02-22 Vyld Gmbh Alginate tampon and production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748769A (en) * 1992-11-11 1995-02-21 Mitsui Toatsu Chem Inc Degradable nonwoven fabric and its production
WO1996025538A1 (en) * 1995-02-14 1996-08-22 Chisso Corporation Biodegradable fiber and nonwoven fabric
JPH11116788A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Polylactic acid resin composition
JPH11181262A (en) * 1997-12-25 1999-07-06 Shimadzu Corp Lactic acid-based polymer composition and its molded product
JP2002146170A (en) * 2000-11-17 2002-05-22 Unitika Ltd Crystalline polylactic acid resin composition and film and sheet using the same
JP2003292474A (en) * 2002-04-02 2003-10-15 Daihachi Chemical Industry Co Ltd Ester compound, plasticizer for biodegradable aliphatic polyester resin and biodegradable resin composition
JP2004189770A (en) * 2002-12-06 2004-07-08 Uniplas Shiga Kk Biodegradable resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748769A (en) * 1992-11-11 1995-02-21 Mitsui Toatsu Chem Inc Degradable nonwoven fabric and its production
WO1996025538A1 (en) * 1995-02-14 1996-08-22 Chisso Corporation Biodegradable fiber and nonwoven fabric
JPH11116788A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Polylactic acid resin composition
JPH11181262A (en) * 1997-12-25 1999-07-06 Shimadzu Corp Lactic acid-based polymer composition and its molded product
JP2002146170A (en) * 2000-11-17 2002-05-22 Unitika Ltd Crystalline polylactic acid resin composition and film and sheet using the same
JP2003292474A (en) * 2002-04-02 2003-10-15 Daihachi Chemical Industry Co Ltd Ester compound, plasticizer for biodegradable aliphatic polyester resin and biodegradable resin composition
JP2004189770A (en) * 2002-12-06 2004-07-08 Uniplas Shiga Kk Biodegradable resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138576B2 (en) 2008-06-12 2018-11-27 3M Innovative Properties Company Biocompatible hydrophilic compositions
US9487893B2 (en) 2009-03-31 2016-11-08 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
US9416485B2 (en) 2009-12-17 2016-08-16 3M Innovative Properties Company Process of making dimensionally stable nonwoven fibrous webs
US9194065B2 (en) 2009-12-17 2015-11-24 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
CN102762370B (en) * 2009-12-17 2015-11-25 3M创新有限公司 Non woven fibre web of dimensionally stable and production and preparation method thereof
CN105274733A (en) * 2009-12-17 2016-01-27 3M创新有限公司 Dimensionally stable nonwoven fibrous webs and methods of making and using the same
EP2512802A1 (en) * 2009-12-17 2012-10-24 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
EP2512802A4 (en) * 2009-12-17 2013-09-18 3M Innovative Properties Co Dimensionally stable nonwoven fibrous webs and methods of making and using the same
CN102762370A (en) * 2009-12-17 2012-10-31 3M创新有限公司 Dimensionally stable nonwoven fibrous webs and methods of making and using the same
WO2014038608A1 (en) * 2012-09-07 2014-03-13 三井化学株式会社 Aqueous dispersion, and additive for fracturing work
JP5946536B2 (en) * 2012-09-07 2016-07-06 三井化学株式会社 Aqueous dispersions and additives for fracturing work
JPWO2014038608A1 (en) * 2012-09-07 2016-08-12 三井化学株式会社 Aqueous dispersions and additives for fracturing work
JP2016210981A (en) * 2015-05-08 2016-12-15 学校法人立教学院 Biodegradable resin porous body
JP2021509448A (en) * 2018-01-02 2021-03-25 プリマロフト,インコーポレイテッド Biodegradable synthetic fiber and its manufacturing method
WO2024038205A1 (en) * 2022-08-19 2024-02-22 Vyld Gmbh Alginate tampon and production method

Also Published As

Publication number Publication date
JP4409601B2 (en) 2010-02-03
JPWO2006129731A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4409601B2 (en) Biodegradable polyester fiber
EP1397538B2 (en) Multicomponent fibers comprising starch and biodegradable polymers
CA2446092C (en) Fibers comprising starch and biodegradable polymers
CA2440545C (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends
US5171309A (en) Polyesters and their use in compostable products such as disposable diapers
AU2002309682B2 (en) Fibers comprising starch and polymers
EP1397539B1 (en) Multicomponent fibers comprising starch and polymers
AU2002259167A1 (en) Multicomponent fibers comprising starch and biodegradable polymers
AU2002258508A1 (en) Fibers comprising polyhydroxyalkanoate copolymer/polylactic acid polymer or copolymer blends
AU2002309683A1 (en) Fibers comprising starch and biodegradable polymers
AU2002309682A1 (en) Fibers comprising starch and polymers
AU2002309684A1 (en) Multicomponent fibers comprising starch and polymers
EP0568593A1 (en) Novel polyesters and their use in compostable products such as disposable diapers
JPH11510194A (en) Nonwoven material containing biodegradable copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007519049

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756850

Country of ref document: EP

Kind code of ref document: A1