WO2006071242A1 - Medical devices including metallic films and methods for making same - Google Patents

Medical devices including metallic films and methods for making same Download PDF

Info

Publication number
WO2006071242A1
WO2006071242A1 PCT/US2005/006895 US2005006895W WO2006071242A1 WO 2006071242 A1 WO2006071242 A1 WO 2006071242A1 US 2005006895 W US2005006895 W US 2005006895W WO 2006071242 A1 WO2006071242 A1 WO 2006071242A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
endoprosthesis
length
film
metallic film
Prior art date
Application number
PCT/US2005/006895
Other languages
French (fr)
Inventor
Masoud Molaei
Beren W. Correa
Original Assignee
Boston Scientific Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/025,866 external-priority patent/US8998973B2/en
Priority claimed from US11/025,464 external-priority patent/US8992592B2/en
Priority claimed from US11/025,684 external-priority patent/US7901447B2/en
Priority claimed from US11/025,867 external-priority patent/US20050197687A1/en
Priority claimed from US11/025,660 external-priority patent/US20060142838A1/en
Priority claimed from US11/025,860 external-priority patent/US8591568B2/en
Priority claimed from US11/025,158 external-priority patent/US8632580B2/en
Application filed by Boston Scientific Limited filed Critical Boston Scientific Limited
Publication of WO2006071242A1 publication Critical patent/WO2006071242A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/92Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped

Definitions

  • the invention relates to medical devices, such as endoprostheses, and methods of making the devices.
  • the body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis.
  • An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site.
  • the endoprosthesis Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen.
  • the expansion mechanism may include forcing the endoprosthesis to expand radially.
  • the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn.
  • the endoprosthesis is formed of an elastic material that can be reversibly compacted and expanded, e.g., elastically or through a material phase transition.
  • the endoprosthesis is restrained in a radially compacted condition.
  • the restraint is removed, for example, by retracting a restraining device such as an outer sheath, enabling the endoprosthesis to self-expand by its own internal elastic restoring force.
  • an endoprosthesis includes a deposited metallic film defining first and second opposed surfaces and a thickness of less than about 50 ⁇ m therebetween and at least one metal filament. The at least one filament defines a length.
  • the deposited metallic film may include deposited titanium and nickel, e.g., an alloy including nickel and titanium.
  • the deposited film may have a substantially tubular shape defining a longitudinal axis.
  • the at least one filament may extend, e.g., linearly or helically, generally along the longitudinal axis.
  • the tubular shape of the film may define a length along the longitudinal axis and the length of the filament may be at least about 30% of the length of the tubular shape of the film.
  • the endoprosthesis may include a plurality of filaments each defining a length.
  • each wire along its length may be embedded within the metallic film between the first and second surfaces.
  • Each filament may extend generally along the longitudinal axis. The length of each filament may be at least 30% of the length of the tubular shape of the film.
  • At least 75% of the filament along its length may be embedded within the metallic film between the first and second surfaces of the metallic film.
  • the filament, along its length may include a plurality of embedded portions and at least one non-embedded portion. Each embedded portion may be embedded within the metallic film between the first and second surfaces of the metallic film. Adjacent embedded portions may be spaced apart by a non-embedded portion of the filament.
  • the substantially tubular shape may defines a circumference.
  • the at least one filament may extend at least partially about the circumference.
  • the at least one filament may be an alloy comprising nickel and titanium.
  • the metallic film and the at least one filament may each have a respective tensile strength, with the tensile strength of the filament being greater than the tensile strength of the metallic firm.
  • the metallic film and the at least one filament may each have a respective, different shape set configuration.
  • the endoprosthesis may include a stent body.
  • the the stent body and the deposited film may be generally concentric.
  • an endoprosthesis includes a cover including at least one deposited metallic film.
  • the cover defines first and second opposed metallic film edges.
  • the first and second opposed metallic film edges each define a channel.
  • At least one filament may extends along the channel of each opposed metallic film edge.
  • the deposited metallic film may include deposited nickel and titanium, e.g., an alloy including nickel and titanium.
  • the cover may have a substantially tubular shape defining a longitudinal axis.
  • the at least one filament may extend generally parallel to the longitudinal axis.
  • the tubular shape may define a length along the longitudinal axis.
  • the length of the filament may be at least about 30% of the length of the tubular shape.
  • the first and second opposed edges may each define at least one offset tab.
  • the channel of each opposed edge may be formed by the offset tab.
  • the first and second opposed edges may each define a plurality of channels. Each channel may be formed by a respective offset tab.
  • the filament may extend through at least some of the channels of each opposed edge.
  • the endoprosthesis may include a stent body, At least a portion of the at least one filament and at least a portion of the stent body may be secured together.
  • the filament may define a longitudinal axis. An engagement between at least one of the channels and the filament may restrict movement of the filament along its longitudinal axis with respect to the at least one of the channels.
  • the filament may have freedom of movement along its length with respect to at least one of the channels.
  • the first and second opposed edges may be a first pair of opposed edges and metallic film of the cover may define a plurality of pairs of first and second opposed edges. Each edge of each pair may define at least one channel. A respective filament may extend through the channel of each opposed edge of each pair. Each pair of opposed edges may extend generally along the longitudinal axis. Each filament may have a length at least about 30% of the length of the tubular shape. The first and second edges of each pair of opposed edges may have at least some relative freedom of movement with respect to a circumference of the cover.
  • the invention features an endoprosthesis including a metallic film, e.g., a vapor deposited film, including nickel, titanium, and chromium.
  • a metallic film e.g., a vapor deposited film
  • nickel, titanium, and chromium e.g., nickel, titanium, and chromium.
  • a ratio of a weight of chromium of the metallic film to a combined weight of nickel, titanium, and chromium of the metallic film is at least 0.001 and can be less than 0.0075.
  • FIG. 1 is a side view of an endoprosthesis in a radially expanded state as deployed within a body passage adjacent an aneurysm.
  • Fig. 2a is a side view of a distal portion of a deployment device prior to radial expansion of the endoprosthesis.
  • Fig. 2b is a side view of the distal portion of the deployment device subsequent to radial expansion of the endoprosthesis adjacent the aneurysm.
  • Fig. 3 a is a perspective view of an endoprosthesis.
  • Fig. 3b is a cross-sectional view of the endoprosthesis of Fig. 3 a.
  • Fig. 4 is a top view of a cover of the endoprosthesis of Fig. 3 a. The cover is shown in two-dimensions and separate from the endoprosthesis.
  • Fig. 5 a is a cross-sectional end view of the cover of Fig. 4. Tabs of the cover have been formed into channels.
  • Fig. 5b is the cover of Fig. 5a.
  • the cover has been formed into a generally tubular shape.
  • Fig. 6 is a cover suitable for an endoprosthesis.
  • the cover includes tabs forming channels, which are located within a circumference of the cover.
  • Fig. 7 is an endoprosthesis having a cover formed of two cover portions.
  • Fig. 8 is a cover having channels formed via metallic film deposition.
  • Fig. 9 is a cross-sectional view of an endoprosthesis including the cover of Fig. 8.
  • Fig. 10a shows an endoprosthesis having a plurality of integral, longitudinally extending filaments.
  • Fig. 10b is a cross-sectional view of the endoprosthesis of Fig. 10a.
  • Fig. 11 is a cover suitable for an endoprosthesis.
  • the cover has a plurality of longitudinally extending filaments each having a plurality of embedded integral portions and a plurality of exposed portions.
  • an endoprosthesis 100 is deployed within a body passage, e.g., within a vessel weakened by an aneurysm, e.g., an aneurysm 25 of a vessel 26 of a human brain.
  • Endoprosthesis 100 includes a framework, e.g., a stent body 52, covered by a tubular member or cover 54.
  • the stent body provides a relatively rigid framework that secures the endoprosthesis at the treatment site.
  • the framework defines relatively large openings or fenestrations that contribute to the mechanical properties of the stent.
  • the cover 54 is relatively thin and flexible and includes smaller fenestrations that contribute to the mechanical properties of the cover and occlude the fenestrations of the stent.
  • the endoprosthesis 100 modifies an amount or velocity of blood passing between vessel 26 and aneurysm 25.
  • prosthesis 100 can be deployed to reduce or block blood flow between vessel 26 and aneurysm 25.
  • the endoprosthesis can also reduce blood flow from a feeder vessel 27. If so deployed, prosthesis 100 may sufficiently reduce blood flow to allow clotting or other healing processes to take place within aneurysm 25 and/or opening 29.
  • Tubular member 54 can provide a greater attenuation of the blood flow into the aneurysm 25 than stent body 52 alone.
  • Endoprosthesis 100 can allow some flow to pass between vessel 26 and aneurysm 25 even while providing some reduction in the rate and/or volume of flow.
  • Prosthesis 100 can also (or alternatively) allow blood to pass between vessel 26 containing the prosthesis and adjacent vessels, e.g., feeder vessel 27, while still providing reduced flow with respect to the aneurysm.
  • endoprosthesis 100 is deployed to aneurysm 25 using a deployment device 30, such as a catheter that can be threaded through a tortuous pathway.
  • the device 30 includes a retractable outer sheath 31 and an inner catheter 32.
  • Device 30 is introduced over a guide wire 37 extending along the interior 28 of vessel 26.
  • the endoprosthesis 100 is radially compacted between outer sheath 31 and inner catheter 32 adjacent a distal opening 40 of the outer sheath.
  • the outer sheath 31 is retracted upon reaching the desired deployment site, e.g., aneurysm 25.
  • endoprosthesis 100 self-expands by its own internal elastic restoring force when the radially restraining outer sheath is retracted.
  • deployment of prosthesis 100 may include use of a balloon or other device to radially expand prosthesis 100 within vessel 26.
  • the imier catheter 32 and guide wire 37 are withdrawn from vessel 26.
  • Suitable delivery systems include the Neuroform, Neuroform2, and Wingspan Stent System available from Boston Scientific Target Therapeutics, Fremont, CA.
  • the outer sheath and/or inner catheter includes a reinforcing member to respectively resist elongation or compression as the outer sheath is withdrawn.
  • Such reinforcing members include polymer shafts, braids, and coil structures.
  • endoprosthesis 100 Upon expansion, endoprosthesis 100 assumes a shape and radial extent generally coextensive with an inner surface of the vessel 26, e.g., a tubular shape centered about a longitudinal axis al of the prosthesis (Fig. 1).
  • prosthesis 100 can have a diameter d of between, for example, 1 mm to 46 mm.
  • a prosthesis for deployment within a vessel at an aneurysm can have an expanded diameter d of from about 2 mm to about 6 mm, e.g., about 2.5 mm to about 4.5 mm.
  • prosthesis 100 can have a length along axis al of at least 5 mm, at least 10 mm, e.g., at least about 30 mm.
  • An exemplary embodiment has an expanded diameter of about 3.5 mm and a length of about 15 mm.
  • the stent body has a closed cell framework, an open cell framework, a helical framework, a braided framework, or combination thereof.
  • the cover can be fixed to the stent by, e.g. fasteners.
  • Attachment techniques include brazing, welding or attachment with a filament, rivots or grommets, or crimping, or adhesive, m
  • the tubular member differs from a fabric at least in that the tubular member lacks fibers than can be pushed apart to receive a filament as by sewing a fabric. Accordingly, the fenestrations can be formed prior to the process of passing the filament through the tubular member. Fenestrations that receive the filaments can be formed by, e.g., etching, laser cutting, or a photolithographic process.
  • the cover is formed of a thin film that exhibits advantageous properties such as strength, toughness, and flexibility by selection of the composition of the film, processing techniques, and mechanical configuration.
  • the film is a vapor-deposited material composed of a nickel-titanium alloy having a strength additive, e.g. chromium.
  • the film has a thickness of about 50 ⁇ m or less, e.g. about 4-35 ⁇ m, and includes fine fenestrations, which facilitate collapsing the film to small diameter for delivery into the body and expansion at the treatment site, while impeding blood access to the aneurysm, hi particular embodiments, the film is processed to modify dislocations, which contribute to strength and toughness of the thin film.
  • Deposited materials are formed by depositing film constituents from a suspended state, e.g. in a vapor or a vacuum onto a surface.
  • the constituents are suspended, e.g. by bombarding, heating or sputtering a bulk target.
  • the suspended constituents deposit on a substrate to form the film.
  • Deposited films can exhibit highly uniform thickness and microstructure in very thin films, e.g. about 50 ⁇ m or less, e.g. 4- 35 ⁇ m.
  • Deposition techniques include sputter deposition, pulsed laser deposition, ion beam deposition and plasma deposition. Suitable deposition processes are described in Busch et al. U.S. 5,061,914, Bose et al. U.S. 6,605,111, Johnston U.S. 6,533,905, and Gupta et al. U.S. 2004/0014253, the entire contents of all of which are hereby incorporated by reference.
  • the deposited film is an alloy that includes nickel and titanium, and a strength additive or additives, which modify a mechanical property, e.g., a hardness or elasticity, of the film.
  • the film is a tertiary alloy that has substantially no other components besides nickel, titanium, and additive present in an amount greater than 1%, 0.5% or 0.2% or less than 20%, 10%, or 5% by weight of the film.
  • the film may consist essentially of nickel, titanium, and chromium.
  • the deposited film includes between 54 and 57 weight percent nickel with the balance composed essentially of titanium and chromium.
  • a ratio of a weight of chromium of the firm to a combined weight of nickel, titanium, and chromium of the film is at least 0.001, at least 0.002 e.g., at least 0.0025.
  • the ratio of the weight of chromium of the film to the combined weight of chromium, nickel, and titanium of the film can be 0.02 or less, 0.01 or less, e.g., 0.0075 or less.
  • the ratio of the weight of chromium to the combined weight of chromium, nickel, and titanium of the film can be about 0.0025.
  • the alloy exhibits superelastic or pseudo- elastic properties.
  • a metallic film can be combined with one or more filaments in an endoprosthesis cover. Because the filaments and film may have very different mechanical properties, e.g., elongation before break and tensile strengths, the filaments and film cooperate to lend the cover desirable mechanical properties, e.g., toughness along the circumferential, radial, and/or longitudinal dimensions, hi embodiments, a filament secures portions of a film relative to other portions of the film such as to maintain the three-dimensional shape of the cover and/or to secure the film with respect to a stent body.
  • the filaments and film may have very different mechanical properties, e.g., elongation before break and tensile strengths, the filaments and film cooperate to lend the cover desirable mechanical properties, e.g., toughness along the circumferential, radial, and/or longitudinal dimensions, hi embodiments, a filament secures portions of a film relative to other portions of the film such as to maintain the three-dimensional shape of the cover and/or to secure the film with respect
  • an endoprosthesis 150 includes a cover 154 encircling a stent body 152.
  • First and second edges 157 and 159 of cover 152 define a plurality of offset tabs 156i (Fig. 4).
  • each tab defines a respective channel 158i (Fig. 3a).
  • Different channels 158i are coaxial with one another parallel to a length 1 of cover 152.
  • a filament 160 seen in Fig. 3b extends within the coaxial channels along the length 1 and prevents cover 154 from unrolling by securing offset tabs 156i relative to one another.
  • Filament 160 can include, e.g., a suture, a polymer, a textile, or a metal, e.g., a metal wire formed of gold, platinum, stainless steel, or a shape memory metal, e.g., nitinol.
  • a filament can include a combination of such materials, e.g., a composite.
  • the filament can be braided and need not have a circular configuration, e.g., the filament can be ribbon shaped.
  • the filament typically has a thickness or radial dimension of less than a thickness of the film.
  • the member is a metal wire having a diameter of about 10 ⁇ m or less, about 8 ⁇ , e.g., about 5 ⁇ m or less.
  • the filament 160 can have a higher tensile strength than the film of the cover 154.
  • a ratio of the tensile strength of the filament 160 to the tensile strength of the film is at least about 1.5, e.g., at least about 2.
  • the ratio may be about 4 or less, e.g., about 3 or less.
  • the filament may be a nitinol wire having a tensile strength of at least 200 ksi, at least 250 ksi, e.g., at least 300 ksi.
  • An exemplary metallic film has a tensile strength of 150 ksi.
  • the filament 160 includes a wire of shape memory metal that is shape set differently from a shape set of the metallic film.
  • one of the member 160 and metallic film is shape set at a configuration corresponding to the radially compressed state within a delivery device while the other of the member and film is shape set at a configuration corresponding to the radially expanded state within a body passage.
  • a primary difference in the shape set between the member 160 and the cover may be in the shape set length, with one of the member and cover having a longer shape set length than the other.
  • An exemplary method of manufacturing cover 154 includes depositing a metallic film on a substrate.
  • the cover can be provided with fenestrations 62, which are not shown in Fig. 3a.
  • Tabs 156i can be formed by photolithography or machined, e.g., by laser cutting, from a larger deposited film. Referring to Fig. 5a, each tab 156i is turned about itself to form a respective channel 158i. Referring to Fig. 5b, if not deposited on a three-dimensional substrate, the film can be rolled, e.g., about a mandrel, to provide a three-dimensional shape.
  • Adjacent tabs 156i are relatively secured by filament 160.
  • the filament 160 can be inserted along the common axis of channels 158i or inserted laterally through a terminal gap ⁇ g of each tab. If present, the terminal gap of each tab can be closed after introducing member 160.
  • film 154 can be disposed with respect to a stent body, e.g., about the stent body (Fig. 3b).
  • the cover and stent body can be relatively secured with, e.g., one or more filaments 59, which pass through fenestrations of the cover and engage framework members 58 of the stent body. In embodiments, some or all of the tabs engage a portion of the stent body, e.g., a framework member 58, to secure the cover and stent body.
  • filament 160 and some or all of tabs 156i have little or no relative freedom of movement.
  • each tab 156i may mechanically engage filament 160 via a tight fit between respective channel 158i and the member 160.
  • An adhesive or other polymer may also or alternatively be used to enhance the engagement between the filament and the channels of the tabs.
  • filament 160 and some or all of channels 158i allow some relative freedom of movement, e.g., longitudinal or circumferential freedom of movement.
  • Longitudinal freedom of movement may be provided by a filament not tightly engaged by the channels, e.g., by a filament having a diameter smaller than an inner diameter of the channels.
  • Circumferential freedom of movement can be provided by circumferentially elongating the channels so that the cover edges 157,159 can move circumferentially relative to one another, e.g., toward and away from one anther.
  • Adjacent tabs 156i and 156i ⁇ l may define gaps (not shown) to allow the cover edges some relative longitudinal freedom of movement.
  • An elastic polymer may fill the channels to help retain the filament yet allow some relative movement.
  • Channels 158i are shown as extending coaxially the entire length of the cover. In some embodiments, channels 158i extend along only a portion of the cover length, e.g., 1 A the length or less, Vs the length or less, or 1 A the length or less. The resulting "shorter" channel may be located anywhere along the length of the endoprosthesis, e.g., centrally or distally or proximally relative to an implanted prosthesis.
  • Channels 158i are shown as generally parallel with a longitudinal axis of the endoprosthesis 150.
  • the channels 158i and filaments can have other configurations, e.g., circumferential, curved, or helical about the endoprosthesis.
  • a cover 225 includes tabs 227i and channels 229i located within an external circumference of the cover. Accordingly, when relatively secured and placed concentrically with respect to a stent body, the cover forms a relatively smooth outer surface with little or no ridge-like protrusion resulting from the tabs 227i. Channels 229i may also be used to engage a framework member 58 of a stent body, which engagement can secure the cover and stent body.
  • a cover 175 having first and second cover portions 177,179 encircles a stent body having framework members 58.
  • Each cover portion defines first and second edges.
  • First edges and second edges of cover portions 177,179 are secured to one another by first and second sets of offset tabs 181i,183i, which form respective channels 182i,184i.
  • the channels of different tabs are coaxial aligned and extend along at least a portion of the length of the endoprosthesis.
  • a filament 160 extends along the coaxial channels.
  • Cover portions 177,179 may have some freedom of movement relative to one another.
  • an endoprosthesis can accommodate delivery or deployment within a tortuous body passage having small radius curves. Freedom of movement between the cover portions can be provided using, e.g., the techniques described for providing relative freedom of movement between a filament and cover.
  • an endoprosthesis cover 200 includes tabs having integral channels 208i formed by, e.g., three-dimensional deposition over a sacrificial medium. Each integral channel defines a complete circumference without a seam resulting from mechanical channel formation.
  • An endoprosthesis 201 is formed by positioning the cover 200 about a stent body having framework members 58 and securing the tabs with a filament 160 (Fig. 9).
  • An exemplary method of manufacturing cover 200 includes depositing a first layer of metallic film on a substrate, whether two- or three-dimensional.
  • a sacrificial medium e.g., chromium
  • the sacrificial medium is photolithographically deposited over portions of the previously deposited film.
  • the sacrificial medium is formed of a material, e.g., chromium, that can be removed, e.g., by etching, from the metallic film without damage thereto. Additional material of the metallic film is deposited over the sacrificial medium to complete the film. Subsequently, the sacrificial medium is removed from the remaining film leaving behind the integral channels.
  • a cover 300 (shown without a stent body) includes longitudinal channels 302 each formed by depositing metal about a filament 160.
  • the filament is typically a metal ribbon or wire, e.g., a metal wire of shape memory alloy. Depositing the metallic film about the wire secures the two together and ensures that the mechanical properties of each are communicated to the other without losses resulting from slippage.
  • filaments 160 are shown as extending linearly along the longitudinal axis of the endprosthesis, one or more of the filaments can have other longitudinally extending configurations, e.g., circumferential, curved, or helical. Filaments may intersect or cross one another, hi other embodiments, some or all the wires do not intersect or cross another wire.
  • An exemplary method for forming cover 300 includes depositing a first layer of metallic film. Wires 160 are positioned adjacent the deposited film. Additional metal is deposited over the wires to integrate the wires and film, hi an alternative method, wires 160 are positioned over a substrate. A first amount of metallic film is deposited over the wires and substrate. Subsequently, the first amount of film and substrate are separated and additional metal film is deposited to integrate the wires and film.
  • a cover 325 includes a plurality of partially exposed filaments 160. Portions of the filaments 160 are embedded within a deposited metallic film of the cover and other portions of the filaments are left exposed. When formed about a stent body, the exposed portions of wire 160 can engage framework members of the stent body to secure the cover and stent body together. Another filament, e.g., a suture or wire, can be threaded through exposed portions of filaments 160 to secure the cover to a stent body or to retain the cover in a three-dimensional shape.
  • a deposited thin film and including one or more filaments is useable as an endoprosthesis without a supporting stent.
  • an endoprosthesis without a supporting stent can include a deposited thin film including one or more at least partially embedded wires contributing to radial and/or longitudinal strength of the film.
  • the filaments, whether embedded or not extend beyond an end of the endoprosthesis.
  • the extending filaments can be used to, e.g., re-sheath the endoprosthesis in order to change its position or withdraw it from a lumen, or to pull the endoprosthesis along a body lumen.
  • an endoprosthesis has a generally tubular shape.
  • the endoprosthesis (or stent body 52 or tubular member 54 individually) has or includes other shapes such as conical, oblate, and branched.
  • the endoprosthesis may have a closed end to form, e.g., a basket shape.
  • Thin films discussed above, composed of Ni-Ti-strength additive alloys and/or with modified microstructures, can be used in other applications. Examples include baskets, filters, catheters, guidewires, and medical balloons, such as an angioplasty balloon. Filaments of such endoprostheses may intersect or be woven to define a shape of the endoprosthesis.
  • endoprostheses including a thin film as well as related systems and methods are described in U.S. provisional patent application no. 60/549,287, filed March 2, 2004, which application is incorporated herein by reference.
  • An endoprosthesis may include a cover disposed externally to a framework as shown and/or internally of a framework. Endoprostheses having a cover including, e.g., a deposited thin film, disposed internally of a framework are described in U.S. patent application no. **/*** ? *** 5 attorney docket no.
  • An endoprosthesis may include features to enhance a flexibility of the endoprosthesis as described in U.S. patent application no. **/*** *** ⁇ attorney docket no. 10527-568001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.
  • composition and/or fabrication method of a deposited thin film of an endoprosthesis may include features that enhance a strength or toughness of the film as described in U.S. patent application no. **/***,***, attorney docket no. 10527-570001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.
  • An endoprosthesis may include a deposited thin film and a polymer as described in U.S. patent application no. **/***,*** > attorney docket no. 10527-596001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.

Abstract

Medical devices, such as endoprostheses, and methods of making the devices are disclosed. The medical device (100) can include a composite cover (154) formed of a deposited metallic film. The cover may include one or more filaments (160), e.g., wires, which cooperate with the film to provide desirable mechanical properties. The wires may be integrated with the film by depositing the film over the wires.

Description

MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME
FIELD OF THE INVENTION The invention relates to medical devices, such as endoprostheses, and methods of making the devices.
BACKGROUND
The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced, or even replaced, with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, for example, so that it can contact the walls of the lumen. The expansion mechanism may include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn.
In another delivery technique, the endoprosthesis is formed of an elastic material that can be reversibly compacted and expanded, e.g., elastically or through a material phase transition. During introduction into the body, the endoprosthesis is restrained in a radially compacted condition. Upon reaching the desired implantation site, the restraint is removed, for example, by retracting a restraining device such as an outer sheath, enabling the endoprosthesis to self-expand by its own internal elastic restoring force. SUMMARY OF THE INVENTION
The invention relates to medical devices, such as endoprostheses, and methods of making the devices. Exemplary endoprostheses include stents, covered stents, and stent- grafts. In some embodiments, an endoprosthesis includes a deposited metallic film defining first and second opposed surfaces and a thickness of less than about 50 μm therebetween and at least one metal filament. The at least one filament defines a length.
At least a portion of the filament along its length is embedded within the deposited metallic film its first and second surfaces. The deposited metallic film may include deposited titanium and nickel, e.g., an alloy including nickel and titanium.
The deposited film may have a substantially tubular shape defining a longitudinal axis. The at least one filament may extend, e.g., linearly or helically, generally along the longitudinal axis. The tubular shape of the film may define a length along the longitudinal axis and the length of the filament may be at least about 30% of the length of the tubular shape of the film.
The endoprosthesis may include a plurality of filaments each defining a length.
At least a portion of each wire along its length may be embedded within the metallic film between the first and second surfaces. Each filament may extend generally along the longitudinal axis. The length of each filament may be at least 30% of the length of the tubular shape of the film.
At least 75% of the filament along its length may be embedded within the metallic film between the first and second surfaces of the metallic film. The filament, along its length, may include a plurality of embedded portions and at least one non-embedded portion. Each embedded portion may be embedded within the metallic film between the first and second surfaces of the metallic film. Adjacent embedded portions may be spaced apart by a non-embedded portion of the filament.
The substantially tubular shape may defines a circumference. The at least one filament may extend at least partially about the circumference. The at least one filament may be an alloy comprising nickel and titanium.
The metallic film and the at least one filament may each have a respective tensile strength, with the tensile strength of the filament being greater than the tensile strength of the metallic firm. The metallic film and the at least one filament may each have a respective, different shape set configuration.
The endoprosthesis may include a stent body. The the stent body and the deposited film may be generally concentric.
In some embodiments, an endoprosthesis includes a cover including at least one deposited metallic film. The cover defines first and second opposed metallic film edges. The first and second opposed metallic film edges each define a channel. At least one filament may extends along the channel of each opposed metallic film edge.
The deposited metallic film may include deposited nickel and titanium, e.g., an alloy including nickel and titanium.
The cover may have a substantially tubular shape defining a longitudinal axis. The at least one filament may extend generally parallel to the longitudinal axis. The tubular shape may define a length along the longitudinal axis. The length of the filament may be at least about 30% of the length of the tubular shape.
The first and second opposed edges may each define at least one offset tab. The channel of each opposed edge may be formed by the offset tab. The first and second opposed edges may each define a plurality of channels. Each channel may be formed by a respective offset tab. The filament may extend through at least some of the channels of each opposed edge.
The endoprosthesis may include a stent body, At least a portion of the at least one filament and at least a portion of the stent body may be secured together. The filament may define a longitudinal axis. An engagement between at least one of the channels and the filament may restrict movement of the filament along its longitudinal axis with respect to the at least one of the channels. The filament may have freedom of movement along its length with respect to at least one of the channels.
The first and second opposed edges may be a first pair of opposed edges and metallic film of the cover may define a plurality of pairs of first and second opposed edges. Each edge of each pair may define at least one channel. A respective filament may extend through the channel of each opposed edge of each pair. Each pair of opposed edges may extend generally along the longitudinal axis. Each filament may have a length at least about 30% of the length of the tubular shape. The first and second edges of each pair of opposed edges may have at least some relative freedom of movement with respect to a circumference of the cover.
In one aspect, the invention features an endoprosthesis including a metallic film, e.g., a vapor deposited film, including nickel, titanium, and chromium. A ratio of a weight of chromium of the metallic film to a combined weight of nickel, titanium, and chromium of the metallic film is at least 0.001 and can be less than 0.0075.
Other aspects, features, and advantages of the invention will be apparent from the description of the preferred embodiments thereof and from the claims.
BRIEF DESCRIPTION OF THE FIGURES Fig. 1 is a side view of an endoprosthesis in a radially expanded state as deployed within a body passage adjacent an aneurysm.
Fig. 2a is a side view of a distal portion of a deployment device prior to radial expansion of the endoprosthesis.
Fig. 2b is a side view of the distal portion of the deployment device subsequent to radial expansion of the endoprosthesis adjacent the aneurysm. Fig. 3 a is a perspective view of an endoprosthesis. Fig. 3b is a cross-sectional view of the endoprosthesis of Fig. 3 a. Fig. 4 is a top view of a cover of the endoprosthesis of Fig. 3 a. The cover is shown in two-dimensions and separate from the endoprosthesis. Fig. 5 a is a cross-sectional end view of the cover of Fig. 4. Tabs of the cover have been formed into channels.
Fig. 5b is the cover of Fig. 5a. The cover has been formed into a generally tubular shape.
Fig. 6 is a cover suitable for an endoprosthesis. The cover includes tabs forming channels, which are located within a circumference of the cover. Fig. 7 is an endoprosthesis having a cover formed of two cover portions.
Fig. 8 is a cover having channels formed via metallic film deposition.
Fig. 9 is a cross-sectional view of an endoprosthesis including the cover of Fig. 8.
Fig. 10a shows an endoprosthesis having a plurality of integral, longitudinally extending filaments.
Fig. 10b is a cross-sectional view of the endoprosthesis of Fig. 10a.
Fig. 11 is a cover suitable for an endoprosthesis. The cover has a plurality of longitudinally extending filaments each having a plurality of embedded integral portions and a plurality of exposed portions.
DETAILED DESCRIPTION
Referring to Fig. 1, an endoprosthesis 100 is deployed within a body passage, e.g., within a vessel weakened by an aneurysm, e.g., an aneurysm 25 of a vessel 26 of a human brain. Endoprosthesis 100 includes a framework, e.g., a stent body 52, covered by a tubular member or cover 54. The stent body provides a relatively rigid framework that secures the endoprosthesis at the treatment site. The framework defines relatively large openings or fenestrations that contribute to the mechanical properties of the stent. The cover 54 is relatively thin and flexible and includes smaller fenestrations that contribute to the mechanical properties of the cover and occlude the fenestrations of the stent. The endoprosthesis 100 modifies an amount or velocity of blood passing between vessel 26 and aneurysm 25. For example, prosthesis 100 can be deployed to reduce or block blood flow between vessel 26 and aneurysm 25. The endoprosthesis can also reduce blood flow from a feeder vessel 27. If so deployed, prosthesis 100 may sufficiently reduce blood flow to allow clotting or other healing processes to take place within aneurysm 25 and/or opening 29. Tubular member 54 can provide a greater attenuation of the blood flow into the aneurysm 25 than stent body 52 alone. Endoprosthesis 100, however, can allow some flow to pass between vessel 26 and aneurysm 25 even while providing some reduction in the rate and/or volume of flow. Prosthesis 100 can also (or alternatively) allow blood to pass between vessel 26 containing the prosthesis and adjacent vessels, e.g., feeder vessel 27, while still providing reduced flow with respect to the aneurysm.
Referring to Figs. 2a and 2b, endoprosthesis 100 is deployed to aneurysm 25 using a deployment device 30, such as a catheter that can be threaded through a tortuous pathway. The device 30 includes a retractable outer sheath 31 and an inner catheter 32. Device 30 is introduced over a guide wire 37 extending along the interior 28 of vessel 26. During introduction, the endoprosthesis 100 is radially compacted between outer sheath 31 and inner catheter 32 adjacent a distal opening 40 of the outer sheath.
Referring particularly to Fig. 2b, the outer sheath 31 is retracted upon reaching the desired deployment site, e.g., aneurysm 25. In some embodiments, endoprosthesis 100 self-expands by its own internal elastic restoring force when the radially restraining outer sheath is retracted. Alternatively, or in combination with self-expansion, deployment of prosthesis 100 may include use of a balloon or other device to radially expand prosthesis 100 within vessel 26. After deploying the endoprosthesis, the imier catheter 32 and guide wire 37 are withdrawn from vessel 26. Suitable delivery systems include the Neuroform, Neuroform2, and Wingspan Stent System available from Boston Scientific Target Therapeutics, Fremont, CA. hi embodiments, the outer sheath and/or inner catheter includes a reinforcing member to respectively resist elongation or compression as the outer sheath is withdrawn. Such reinforcing members include polymer shafts, braids, and coil structures.
Upon expansion, endoprosthesis 100 assumes a shape and radial extent generally coextensive with an inner surface of the vessel 26, e.g., a tubular shape centered about a longitudinal axis al of the prosthesis (Fig. 1). Depending upon the application, prosthesis 100 can have a diameter d of between, for example, 1 mm to 46 mm. hi certain embodiments, a prosthesis for deployment within a vessel at an aneurysm can have an expanded diameter d of from about 2 mm to about 6 mm, e.g., about 2.5 mm to about 4.5 mm. Depending upon the application, prosthesis 100 can have a length along axis al of at least 5 mm, at least 10 mm, e.g., at least about 30 mm. An exemplary embodiment has an expanded diameter of about 3.5 mm and a length of about 15 mm. hi embodiments, the stent body has a closed cell framework, an open cell framework, a helical framework, a braided framework, or combination thereof.
The cover can be fixed to the stent by, e.g. fasteners. Attachment techniques include brazing, welding or attachment with a filament, rivots or grommets, or crimping, or adhesive, m some embodiments, the tubular member differs from a fabric at least in that the tubular member lacks fibers than can be pushed apart to receive a filament as by sewing a fabric. Accordingly, the fenestrations can be formed prior to the process of passing the filament through the tubular member. Fenestrations that receive the filaments can be formed by, e.g., etching, laser cutting, or a photolithographic process. Attachment techniques are described in USSN , titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, attorney Docket No. 10527-566001, filed contemporaneously herewith, which application is incorporated herein by reference.
The cover is formed of a thin film that exhibits advantageous properties such as strength, toughness, and flexibility by selection of the composition of the film, processing techniques, and mechanical configuration. For example, in particular embodiments, the film is a vapor-deposited material composed of a nickel-titanium alloy having a strength additive, e.g. chromium. The film has a thickness of about 50 μm or less, e.g. about 4-35 μm, and includes fine fenestrations, which facilitate collapsing the film to small diameter for delivery into the body and expansion at the treatment site, while impeding blood access to the aneurysm, hi particular embodiments, the film is processed to modify dislocations, which contribute to strength and toughness of the thin film.
Deposited materials are formed by depositing film constituents from a suspended state, e.g. in a vapor or a vacuum onto a surface. In embodiments, the constituents are suspended, e.g. by bombarding, heating or sputtering a bulk target. The suspended constituents deposit on a substrate to form the film. Deposited films can exhibit highly uniform thickness and microstructure in very thin films, e.g. about 50 μm or less, e.g. 4- 35 μm. Deposition techniques include sputter deposition, pulsed laser deposition, ion beam deposition and plasma deposition. Suitable deposition processes are described in Busch et al. U.S. 5,061,914, Bose et al. U.S. 6,605,111, Johnston U.S. 6,533,905, and Gupta et al. U.S. 2004/0014253, the entire contents of all of which are hereby incorporated by reference.
In particular embodiments, the deposited film is an alloy that includes nickel and titanium, and a strength additive or additives, which modify a mechanical property, e.g., a hardness or elasticity, of the film. In particular embodiments, the film is a tertiary alloy that has substantially no other components besides nickel, titanium, and additive present in an amount greater than 1%, 0.5% or 0.2% or less than 20%, 10%, or 5% by weight of the film. The film may consist essentially of nickel, titanium, and chromium. In embodiments, the deposited film includes between 54 and 57 weight percent nickel with the balance composed essentially of titanium and chromium. In some embodiments, a ratio of a weight of chromium of the firm to a combined weight of nickel, titanium, and chromium of the film is at least 0.001, at least 0.002 e.g., at least 0.0025. The ratio of the weight of chromium of the film to the combined weight of chromium, nickel, and titanium of the film can be 0.02 or less, 0.01 or less, e.g., 0.0075 or less. The ratio of the weight of chromium to the combined weight of chromium, nickel, and titanium of the film can be about 0.0025. hi embodiments, the alloy exhibits superelastic or pseudo- elastic properties. Superelastic or pseudo-elastic metal alloy, as described, for example, in Schetsky, L. McDonald, "Shape Memory Alloys," Encyclopedia of Chemical Technology (3rd ed.), John Wiley & Sons, 1982, vol. 20. pp. 726-736; and commonly assigned U.S.S.N. 10/346,487, filed January 17, 2003.
A metallic film can be combined with one or more filaments in an endoprosthesis cover. Because the filaments and film may have very different mechanical properties, e.g., elongation before break and tensile strengths, the filaments and film cooperate to lend the cover desirable mechanical properties, e.g., toughness along the circumferential, radial, and/or longitudinal dimensions, hi embodiments, a filament secures portions of a film relative to other portions of the film such as to maintain the three-dimensional shape of the cover and/or to secure the film with respect to a stent body.
Referring to Figs. 3a, 3b, and 4, an endoprosthesis 150 includes a cover 154 encircling a stent body 152. First and second edges 157 and 159 of cover 152 define a plurality of offset tabs 156i (Fig. 4). When formed as a cover, each tab defines a respective channel 158i (Fig. 3a). Different channels 158i are coaxial with one another parallel to a length 1 of cover 152. A filament 160 seen in Fig. 3b extends within the coaxial channels along the length 1 and prevents cover 154 from unrolling by securing offset tabs 156i relative to one another. Filament 160 can include, e.g., a suture, a polymer, a textile, or a metal, e.g., a metal wire formed of gold, platinum, stainless steel, or a shape memory metal, e.g., nitinol. A filament can include a combination of such materials, e.g., a composite. The filament can be braided and need not have a circular configuration, e.g., the filament can be ribbon shaped. The filament typically has a thickness or radial dimension of less than a thickness of the film. In embodiments, the member is a metal wire having a diameter of about 10 μm or less, about 8 μ, e.g., about 5 μm or less.
The filament 160 can have a higher tensile strength than the film of the cover 154. In embodiments, a ratio of the tensile strength of the filament 160 to the tensile strength of the film is at least about 1.5, e.g., at least about 2. The ratio may be about 4 or less, e.g., about 3 or less. The filament may be a nitinol wire having a tensile strength of at least 200 ksi, at least 250 ksi, e.g., at least 300 ksi. An exemplary metallic film has a tensile strength of 150 ksi.
In some embodiments, the filament 160 includes a wire of shape memory metal that is shape set differently from a shape set of the metallic film. In some embodiments, one of the member 160 and metallic film is shape set at a configuration corresponding to the radially compressed state within a delivery device while the other of the member and film is shape set at a configuration corresponding to the radially expanded state within a body passage. A primary difference in the shape set between the member 160 and the cover may be in the shape set length, with one of the member and cover having a longer shape set length than the other.
An exemplary method of manufacturing cover 154 includes depositing a metallic film on a substrate. The cover can be provided with fenestrations 62, which are not shown in Fig. 3a. Tabs 156i can be formed by photolithography or machined, e.g., by laser cutting, from a larger deposited film. Referring to Fig. 5a, each tab 156i is turned about itself to form a respective channel 158i. Referring to Fig. 5b, if not deposited on a three-dimensional substrate, the film can be rolled, e.g., about a mandrel, to provide a three-dimensional shape.
Adjacent tabs 156i are relatively secured by filament 160. The filament 160 can be inserted along the common axis of channels 158i or inserted laterally through a terminal gap Δg of each tab. If present, the terminal gap of each tab can be closed after introducing member 160. Either before or after positioning filament 160 with respect to tabs 156i, film 154 can be disposed with respect to a stent body, e.g., about the stent body (Fig. 3b). The cover and stent body can be relatively secured with, e.g., one or more filaments 59, which pass through fenestrations of the cover and engage framework members 58 of the stent body. In embodiments, some or all of the tabs engage a portion of the stent body, e.g., a framework member 58, to secure the cover and stent body.
In some embodiments, filament 160 and some or all of tabs 156i have little or no relative freedom of movement. For example, each tab 156i may mechanically engage filament 160 via a tight fit between respective channel 158i and the member 160. An adhesive or other polymer may also or alternatively be used to enhance the engagement between the filament and the channels of the tabs.
In embodiments, filament 160 and some or all of channels 158i allow some relative freedom of movement, e.g., longitudinal or circumferential freedom of movement. During radial compression and expansion of an endoprosthesis, the cover 154 and filament 160 move relatively to accommodate different length changes without deforming the cover or endoprosthesis. Longitudinal freedom of movement may be provided by a filament not tightly engaged by the channels, e.g., by a filament having a diameter smaller than an inner diameter of the channels. Circumferential freedom of movement can be provided by circumferentially elongating the channels so that the cover edges 157,159 can move circumferentially relative to one another, e.g., toward and away from one anther. Adjacent tabs 156i and 156i±l may define gaps (not shown) to allow the cover edges some relative longitudinal freedom of movement. An elastic polymer may fill the channels to help retain the filament yet allow some relative movement.
Channels 158i are shown as extending coaxially the entire length of the cover. In some embodiments, channels 158i extend along only a portion of the cover length, e.g., 1A the length or less, Vs the length or less, or 1A the length or less. The resulting "shorter" channel may be located anywhere along the length of the endoprosthesis, e.g., centrally or distally or proximally relative to an implanted prosthesis.
Channels 158i are shown as generally parallel with a longitudinal axis of the endoprosthesis 150. In embodiments, the channels 158i and filaments can have other configurations, e.g., circumferential, curved, or helical about the endoprosthesis.
Referring to Fig. 6, a cover 225 includes tabs 227i and channels 229i located within an external circumference of the cover. Accordingly, when relatively secured and placed concentrically with respect to a stent body, the cover forms a relatively smooth outer surface with little or no ridge-like protrusion resulting from the tabs 227i. Channels 229i may also be used to engage a framework member 58 of a stent body, which engagement can secure the cover and stent body.
Referring to Fig. 7, a cover 175 having first and second cover portions 177,179 encircles a stent body having framework members 58. Each cover portion defines first and second edges. First edges and second edges of cover portions 177,179 are secured to one another by first and second sets of offset tabs 181i,183i, which form respective channels 182i,184i. The channels of different tabs are coaxial aligned and extend along at least a portion of the length of the endoprosthesis. A filament 160 extends along the coaxial channels. Although only two cover portions are shown, an endoprosthesis can have even more cover portions, e.g., 3 or more, 4 or more, or 5 or more, which combine to form a generally tubular cover.
Cover portions 177,179 may have some freedom of movement relative to one another. For example, by allowing longitudinal or circumferential freedom of movement between different cover portions, an endoprosthesis can accommodate delivery or deployment within a tortuous body passage having small radius curves. Freedom of movement between the cover portions can be provided using, e.g., the techniques described for providing relative freedom of movement between a filament and cover. Referring to Figs. 8 and 9, an endoprosthesis cover 200 includes tabs having integral channels 208i formed by, e.g., three-dimensional deposition over a sacrificial medium. Each integral channel defines a complete circumference without a seam resulting from mechanical channel formation. An endoprosthesis 201 is formed by positioning the cover 200 about a stent body having framework members 58 and securing the tabs with a filament 160 (Fig. 9).
An exemplary method of manufacturing cover 200 includes depositing a first layer of metallic film on a substrate, whether two- or three-dimensional. A sacrificial medium, e.g., chromium, is photolithographically deposited over portions of the previously deposited film. The sacrificial medium is formed of a material, e.g., chromium, that can be removed, e.g., by etching, from the metallic film without damage thereto. Additional material of the metallic film is deposited over the sacrificial medium to complete the film. Subsequently, the sacrificial medium is removed from the remaining film leaving behind the integral channels.
Referring to Figs. 10a and 10b, a cover 300 (shown without a stent body) includes longitudinal channels 302 each formed by depositing metal about a filament 160. In this embodiment, the filament is typically a metal ribbon or wire, e.g., a metal wire of shape memory alloy. Depositing the metallic film about the wire secures the two together and ensures that the mechanical properties of each are communicated to the other without losses resulting from slippage. Although filaments 160 are shown as extending linearly along the longitudinal axis of the endprosthesis, one or more of the filaments can have other longitudinally extending configurations, e.g., circumferential, curved, or helical. Filaments may intersect or cross one another, hi other embodiments, some or all the wires do not intersect or cross another wire.
An exemplary method for forming cover 300 includes depositing a first layer of metallic film. Wires 160 are positioned adjacent the deposited film. Additional metal is deposited over the wires to integrate the wires and film, hi an alternative method, wires 160 are positioned over a substrate. A first amount of metallic film is deposited over the wires and substrate. Subsequently, the first amount of film and substrate are separated and additional metal film is deposited to integrate the wires and film.
Referring to Fig. 11, a cover 325 includes a plurality of partially exposed filaments 160. Portions of the filaments 160 are embedded within a deposited metallic film of the cover and other portions of the filaments are left exposed. When formed about a stent body, the exposed portions of wire 160 can engage framework members of the stent body to secure the cover and stent body together. Another filament, e.g., a suture or wire, can be threaded through exposed portions of filaments 160 to secure the cover to a stent body or to retain the cover in a three-dimensional shape. In some embodiments, a deposited thin film and including one or more filaments is useable as an endoprosthesis without a supporting stent. For example, an endoprosthesis without a supporting stent can include a deposited thin film including one or more at least partially embedded wires contributing to radial and/or longitudinal strength of the film. In some embodiments, the filaments, whether embedded or not, extend beyond an end of the endoprosthesis. The extending filaments can be used to, e.g., re-sheath the endoprosthesis in order to change its position or withdraw it from a lumen, or to pull the endoprosthesis along a body lumen.
In the embodiment shown, an endoprosthesis has a generally tubular shape. In some embodiments, however, the endoprosthesis (or stent body 52 or tubular member 54 individually) has or includes other shapes such as conical, oblate, and branched. The endoprosthesis may have a closed end to form, e.g., a basket shape. Thin films, discussed above, composed of Ni-Ti-strength additive alloys and/or with modified microstructures, can be used in other applications. Examples include baskets, filters, catheters, guidewires, and medical balloons, such as an angioplasty balloon. Filaments of such endoprostheses may intersect or be woven to define a shape of the endoprosthesis.
Other examples of endoprostheses including a thin film as well as related systems and methods are described in U.S. provisional patent application no. 60/549,287, filed March 2, 2004, which application is incorporated herein by reference. An endoprosthesis may include a cover disposed externally to a framework as shown and/or internally of a framework. Endoprostheses having a cover including, e.g., a deposited thin film, disposed internally of a framework are described in U.S. patent application no. **/***?***5 attorney docket no. 10527-567001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference. An endoprosthesis may include features to enhance a flexibility of the endoprosthesis as described in U.S. patent application no. **/*** *** ^ attorney docket no. 10527-568001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.
The composition and/or fabrication method of a deposited thin film of an endoprosthesis may include features that enhance a strength or toughness of the film as described in U.S. patent application no. **/***,***, attorney docket no. 10527-570001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.
An endoprosthesis may include a deposited thin film and a polymer as described in U.S. patent application no. **/***,***> attorney docket no. 10527-596001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR MAKING SAME, and filed concurrently herewith, which application is incorporated herein by reference.
Methods for loading an endoprosthesis into a delivery device and systems for delivering an endoprosthesis to a treatment site are described in U.S. patent application no. **/***,***, attorney docket no. 10527-569001, titled MEDICAL DEVICES INCLUDING METALLIC FILMS AND METHODS FOR LOADING AND DEPLOYING SAME, which application is incorporated herein by reference.
All publications, references, applications, and patents referred to herein are incorporated by reference in their entirety.
Other embodiments are within the claims.

Claims

CLAIMSWhat is claimed is:
1. An endoprosthesis, comprising: a deposited metallic film defining first and second opposed surfaces and a thickness of less than about 50 μm therebetween; and at least one metal filament, the at least one filament defining a length, at least a portion of the filament along its length being embedded within the metal metallic film between the first and second surfaces.
2. The endoprosthesis of claim 1, wherein the deposited metallic film comprises deposited titanium and nickel.
3. The endoprosthesis of claim 1, wherein the deposited film has a substantially tubular shape defining a longitudinal axis and the at least one filament extends generally along the longitudinal axis.
4. The endoprosthesis of claim 3, wherein the tubular shape of the film defines a length along the longitudinal axis and the length of the filament is at least about 30% of the length of the tubular shape of the film.
5. The endoprosthesis of claim 4, comprising a plurality of filaments each defining a length, at least a portion of each wire along its length being embedded within the metal alloy between the first and second surfaces of the metallic film, each filament extending generally along the longitudinal axis, the length of each filament being at least 30% of the length of the tubular shape of the film.
6. The endoprosthesis of claim 4, wherein at least 75% of the filament along its length is embedded within the metal alloy between the first and second surfaces of the metallic film.
7. The endoprosthesis of claim 4, wherein the filament, along its length, comprises a plurality of embedded portions and at least one non-embedded portion, each embedded portion being embedded within the metal alloy between the first and second surfaces of the metallic film, adjacent embedded portions being spaced apart by a non-embedded portion of the filament.
8. The endoprosthesis of claim 4, wherein the at least one filament comprises an alloy comprising nickel and titanium.
9. The endoprosthesis of claim 8, wherein the metallic film and the at least one filament each have a respective tensile strength, the tensile strength of the filament being greater than the tensile strength of the metallic film.
10. An endoprosthesis, comprising: a cover comprising at least one deposited metallic film, the cover defining first and second opposed metallic film edges, the first and second opposed metallic film edges each defining a channel; and at least one filament, the at least one filament extending through the channel of each opposed metallic film edge.
11. The endoprosthesis of claim 10, wherein the deposited metallic film comprises deposited nickel and titanium.
12. The endoprosthesis of claim 10, wherein the cover has a substantially tubular shape defining a longitudinal axis and the at least one filament extends generally parallel to the longitudinal axis.
13. The endoprosthesis of claim 12, wherein the tubular shape defines a length along the longitudinal axis and the length of the filament is at least about 30% of the length of the shape.
14. The endoprosthesis of claim 12, wherein the first and second opposed edges each define at least one offset tab, the channel of each opposed edge being formed by the offset tab.
15. The endoprosthesis of claim 14, wherein the first and second opposed edges each define a plurality of channels, each channel being formed by a respective offset tab, the filament extending through at least some of the channels of each opposed edge.
16. The endoprosthesis of claim 12, wherein endoprosthesis comprises a stent body, at least a portion of the at least one filament and at least a portion of the stent body being secured together.
17. The endoprosthesis of claim 12, wherein the filament defines a longitudinal axis, an engagement between at least one of the channels and the filament restricting movement of the filament along its longitudinal axis with respect to the at least one of the channels.
18. The endoprosthesis of claim 12, wherein the first and second opposed edges are a first pair of opposed edges and metallic film of the cover defines a plurality of pairs of first and second opposed edges, each edge of each pair defining at least one channel, a respective filament extending through the channel of each opposed edge of each pair.
19. The endoprosthesis of claim 18, wherein each pair of opposed edges extends generally along the longitudinal axis and each filament has a length at least about 30% of the length of the tubular shape.
20. The endoprosthesis of claim 19, wherein the first and second edges of each pair of opposed edges have at least some relative freedom of movement with respect to a circumference of the cover.
PCT/US2005/006895 2004-12-29 2005-03-02 Medical devices including metallic films and methods for making same WO2006071242A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US11/025,464 2004-12-29
US11/025,684 2004-12-29
US11/025,866 US8998973B2 (en) 2004-03-02 2004-12-29 Medical devices including metallic films
US11/025,464 US8992592B2 (en) 2004-12-29 2004-12-29 Medical devices including metallic films
US11/025,684 US7901447B2 (en) 2004-12-29 2004-12-29 Medical devices including a metallic film and at least one filament
US11/025,867 US20050197687A1 (en) 2004-03-02 2004-12-29 Medical devices including metallic films and methods for making same
US11/025,867 2004-12-29
US11/025,866 2004-12-29
US11/025,860 2004-12-29
US11/025,158 2004-12-29
US11/025,660 US20060142838A1 (en) 2004-12-29 2004-12-29 Medical devices including metallic films and methods for loading and deploying same
US11/025,860 US8591568B2 (en) 2004-03-02 2004-12-29 Medical devices including metallic films and methods for making same
US11/025,158 US8632580B2 (en) 2004-12-29 2004-12-29 Flexible medical devices including metallic films
US11/025,660 2004-12-29

Publications (1)

Publication Number Publication Date
WO2006071242A1 true WO2006071242A1 (en) 2006-07-06

Family

ID=34961317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/006895 WO2006071242A1 (en) 2004-12-29 2005-03-02 Medical devices including metallic films and methods for making same

Country Status (1)

Country Link
WO (1) WO2006071242A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
WO2011134663A3 (en) * 2010-04-28 2012-09-13 Acandis Gmbh & Co. Kg Method for producing a medical device for endoluminal treatments, and starting product for producing a medical device
US8591568B2 (en) 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8864815B2 (en) 2004-12-29 2014-10-21 Boston Scientific Scimed, Inc. Medical devices including metallic film and at least one filament
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8998973B2 (en) 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US9023094B2 (en) 2007-06-25 2015-05-05 Microvention, Inc. Self-expanding prosthesis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032013A1 (en) * 1999-11-19 2001-10-18 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
WO2003013337A2 (en) * 2001-08-07 2003-02-20 Advanced Bio Prosthetic Surfaces, Ltd. Medical grafts having plurality of microperforations
WO2004028340A2 (en) * 2002-09-26 2004-04-08 Advanced Bio Prosthetic Surfaces, Ltd. High strength vacuum deposited nitionol alloy films, medical thin film graft materials and method of making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010032013A1 (en) * 1999-11-19 2001-10-18 Denes Marton Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
WO2003013337A2 (en) * 2001-08-07 2003-02-20 Advanced Bio Prosthetic Surfaces, Ltd. Medical grafts having plurality of microperforations
WO2004028340A2 (en) * 2002-09-26 2004-04-08 Advanced Bio Prosthetic Surfaces, Ltd. High strength vacuum deposited nitionol alloy films, medical thin film graft materials and method of making same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591568B2 (en) 2004-03-02 2013-11-26 Boston Scientific Scimed, Inc. Medical devices including metallic films and methods for making same
US8998973B2 (en) 2004-03-02 2015-04-07 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8632580B2 (en) 2004-12-29 2014-01-21 Boston Scientific Scimed, Inc. Flexible medical devices including metallic films
US8864815B2 (en) 2004-12-29 2014-10-21 Boston Scientific Scimed, Inc. Medical devices including metallic film and at least one filament
US8992592B2 (en) 2004-12-29 2015-03-31 Boston Scientific Scimed, Inc. Medical devices including metallic films
US7854760B2 (en) 2005-05-16 2010-12-21 Boston Scientific Scimed, Inc. Medical devices including metallic films
US8152841B2 (en) 2005-05-16 2012-04-10 Boston Scientific Scimed, Inc. Medical devices including metallic films
US9023094B2 (en) 2007-06-25 2015-05-05 Microvention, Inc. Self-expanding prosthesis
WO2011134663A3 (en) * 2010-04-28 2012-09-13 Acandis Gmbh & Co. Kg Method for producing a medical device for endoluminal treatments, and starting product for producing a medical device

Similar Documents

Publication Publication Date Title
US9833310B2 (en) Medical devices including metallic film and at least one filament
CA2558132C (en) Medical devices including metallic films and methods for making same
US20150190255A1 (en) Medical devices including metallic films and methods for making same
US8632580B2 (en) Flexible medical devices including metallic films
US8152841B2 (en) Medical devices including metallic films
US20050197687A1 (en) Medical devices including metallic films and methods for making same
US20060142838A1 (en) Medical devices including metallic films and methods for loading and deploying same
US7749264B2 (en) Medical devices and methods of making the same
EP1877112B1 (en) Medical devices and methods of making the same
WO2006071242A1 (en) Medical devices including metallic films and methods for making same
WO2006071245A1 (en) Medical devices including metallic films and methods for loading and deploying same
US8435280B2 (en) Flexible stent with variable width elements
EP2231214A2 (en) Flexible stent-graft device having patterned polymeric coverings
WO2006071244A1 (en) Medical devices including metallic films and methods for making the same
US8992592B2 (en) Medical devices including metallic films
WO2006071243A1 (en) Medical devices including metallic films and methods for making same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05724439

Country of ref document: EP

Kind code of ref document: A1