WO2004090042A1 - Blends mit form-gedächtnis-eigenschaften - Google Patents

Blends mit form-gedächtnis-eigenschaften Download PDF

Info

Publication number
WO2004090042A1
WO2004090042A1 PCT/EP2004/003066 EP2004003066W WO2004090042A1 WO 2004090042 A1 WO2004090042 A1 WO 2004090042A1 EP 2004003066 W EP2004003066 W EP 2004003066W WO 2004090042 A1 WO2004090042 A1 WO 2004090042A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
segment
segments
block copolymers
pca
Prior art date
Application number
PCT/EP2004/003066
Other languages
English (en)
French (fr)
Inventor
Andreas Lendlein
Ute Ridder
Original Assignee
Mnemoscience Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mnemoscience Gmbh filed Critical Mnemoscience Gmbh
Priority to JP2006504820A priority Critical patent/JP2006523246A/ja
Priority to CA2521721A priority patent/CA2521721C/en
Priority to EP04722543A priority patent/EP1611205B1/de
Priority to US10/552,654 priority patent/US20070088135A1/en
Priority to DE502004008484T priority patent/DE502004008484D1/de
Priority to BRPI0409361-5A priority patent/BRPI0409361A/pt
Publication of WO2004090042A1 publication Critical patent/WO2004090042A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4283Hydroxycarboxylic acid or ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2280/00Compositions for creating shape memory

Definitions

  • the present invention relates to blends with shape-memory properties, which are preferably biodegradable, block copolymers, suitable for the production of such blends, processes for the production of the block copolymers and for the production of the blends and uses of the products mentioned above.
  • SMP polymers SMP materials
  • SMP materials shape-memory polymers
  • a combination of the polymer morphology with the processing and programming method enables a shape memory effect.
  • the material is usually brought into permanent shape by melting via the highest thermal transition T PERM using conventional processing methods.
  • the raw material may be deformed by heating above the noise temperature T TRANS and fixed in this state, by cooling to a temperature below T trans. So you get temporary shape.
  • This process is called programming (see Figure 1).
  • An external stimulus usually a change in temperature, can restore the permanent form. If the stimulus is a change in temperature, one speaks of a thermally induced shape-memory effect (FIG. 2).
  • Shape memory polymers must have two separate phases with different temperature transitions.
  • the phase with the highest temperature transition T PERM determines the permanent shape and the phase with the lower temperature transition determines the so-called switching temperature of the shape-memory effect T TRANS -
  • T PERM phase with the highest temperature transition
  • T TRANS switching temperature of the shape-memory effect
  • This physical crosslinking is thermally reversible, such materials can be processed thermoplastically above T PERM . They are thermoplastic elastomers.
  • a second phase which has a lower transition temperature, serves as the switching segment. This transition can be either a glass transition temperature (Tg) or a melt transition (Tm).
  • Tg glass transition temperature
  • Tm melt transition
  • block copolymers the two different phase-forming segments are chemically covalently linked to one another.
  • shape memory polymers are known from WO 99/42147. This published specification also describes mixtures of two thermoplastic SMP materials. A similar disclosure is also available in WO 99/42528.
  • JP-A-11-209595 describes a polymer composition which is biodegradable, melt-moldable and has shape-memory properties.
  • This polymer composition comprises a polymer mixture mainly containing polylactide and polyepsiloncaprolactone.
  • JP-A-2-123129 discloses a thermoplastic composition which is moldable in the molten state and has shape-memory property.
  • This composition comprises an aromatic polyester and an aliphatic polylactone.
  • EP-A-1000958 discloses a biodegradable shape memory material based on a lactide polymer.
  • WO 01/07499 discloses shape-memory polyurethanes which can also be used in the form of mixtures.
  • JP-A-04-342762 discloses shape memory compositions with improved properties in terms of coloring and handling, which compositions comprise at least one shape memory polymer.
  • Thermochimica Acta 243 (2), 253 (1994) examines two solution-based shape-memory polymers. Polymer mixtures were also examined.
  • the object of the present invention to provide a mixture with shape-memory properties, the polymers on which the mixture is based preferably not having to be shape-memory materials themselves.
  • the mixture should preferably be biodegradable.
  • the present invention provides block copolymers which are suitable for producing mixtures according to the invention, as well as processes for producing the mixture and the block copolymers and uses of the block copolymers and the mixtures. Preferred embodiments of these aspects of the present invention are specified in the respective subclaims.
  • Figure 1 schematically represents the shape-memory effect.
  • Figure 2 shows schematically a temperature-induced shape-memory effect.
  • Figure 3 schematically shows a polymer blend in accordance with the present invention.
  • the present invention thus provides a mixture of two different block copolymers, the mixture showing shape-memory properties.
  • the two block copolymers each comprise at least one hard segment and at least one soft segment. Both segments are preferably selected from the group of segments linked by ester bonds, ester ether segments also being preferred according to the invention.
  • the respective segments are preferably selected from non-aromatic segments and particularly preferably show the Block copolymers to be used according to the invention themselves have no shape-memory properties, but only the mixture.
  • the block copolymers used in the mixture according to the invention are preferably selected so that the respective soft segments are identical, so that the block copolymers differ only in terms of the hard segments. This ensures good miscibility and satisfactory shape-memory properties.
  • An alternative way of ensuring good miscibility (compatibility) of the two block copolymers is that, if there are also different soft segments, the groups in the block copolymers which connect the different blocks are selected such that good miscibility is achieved. This is possible in particular in the case of block copolymers which are connected by urethane segments.
  • the urethane segments ensure miscibility, so that the soft segments of the two block copolymers which are at least present in the mixture can also be different from one another, which enables the mechanical properties to be additionally influenced.
  • the hard segments are selected from segments that are crystalline or partially crystalline, while the soft segments are selected from amorphous segments.
  • both the hard segment and the soft segment can be in the form of homopolymer segments or in the form of copolymer segments.
  • the soft segment is preferably selected from copolymer segments.
  • the two block copolymers essential to the invention can be present in any mixing ratio, but it has been shown that satisfactory shape-memory properties are obtained when the two block copolymers are present in the mixture in a proportion of 10: 1 to 1:10.
  • the block copolymers to be used in the mixture according to the invention are particularly preferably selected from block copolymers whose hard segments are are selected from poly-p-dioxanone and poly-epsilon-caprolactone and their soft segments are selected from copoly-epsilon-caprolactone-glycolide and a polyester or polyetherester segment from an aliphatic dicarboxylic acid and an aliphatic diol, preferably polyalkylene adipate.
  • the individual segments are preferably present in the block copolymers in such a way that they are linked to one another by urethane bonds.
  • Such block copolymers can be prepared, for example, from corresponding diol-functionalized macromonomers (ie precursors corresponding to the segments) if these macromonomers are in the form of diols, so that a block copolymer with urethane bonds can be obtained by reaction with an isocyanate.
  • any customary isocyanate can be used, but trimethylhexamethylene diisocyanate is preferred.
  • the molecular weights of the respective block copolymers and their polydispersities are not critical as long as high polymer compounds are present. Typical molecular weights are in the range from 7,500 to 250,000 (number average molecular weight), molecular weights from 10,000 to 150,000 and in particular from 20,000 to 80,000 (number average molecular weight) being preferred.
  • the individual segments within the block copolymers preferably have molecular weights in the range from 1,000 to 20,000 (number average of the segments) and in particular in the range from 2,000 to 10,000 (number average molecular weight).
  • the polydispersities of the block copolymers are preferably in the range from 1.5 to 5, and particularly preferably in the range from 2 to 4, these values not being particularly critical for the preparation of mixtures with shape-memory properties.
  • the mixtures according to the invention moreover have a transition temperature for the shape-memory effect which is in the range of the body temperature, so that for this reason also the materials according to the invention are particularly suitable for use in the medical field.
  • the mixtures according to the invention can also have constituents which do not adversely affect the properties of the mixtures according to the invention and which are expedient or necessary in the particular area of use.
  • the additional constituents listed here can also be used when the block copolymers according to the invention are used, depending on the requirements of the area of use.
  • additional components are e.g. medicinally / pharmaceutically active materials, additives for further modification of the physical properties or auxiliary substances such as colorants or fillers etc.
  • the hard segments of the block copolymers according to the invention are preferably selected from poly-p-dioxanone and poly-epsilon-caprolactone.
  • the soft segments are preferably selected from copoly-epsilon-caprolactone glycolide and a polyester or polyetherester segment from an aliphatic dicarboxylic acid and an aliphatic diol, preferably polyalkylene adipinate.
  • the alkylene component in the polyalkylene adipinate is preferably selected from ethylene, buthylene and diethylene, so that this soft segment can be obtained by reacting adipic acid or a suitable derivative thereof with the diols ethylene glycol, buthylene glycol and diethylene glycol.
  • the diols mentioned above can be used either individually or in any mixture.
  • the hard segment of poly-p-dioxanone, which can be used according to the invention in the block copolymer has preferably a molecular weight of 1,500 to up to 5,000, in particular ⁇ sondere preferably 2500-4000.
  • a particularly preferred embodiment of this hard segment has the following schematic formula, where n and m are each ⁇ wells chosen so that the molecular weights (number average) above are achieved, wherein the respective percentage depends on the method of manufacture.
  • Another hard segment preferred according to the invention is a poly-epsilon caprolactone, with a number average molecular weight of 1,000 to 20,000, preferably 1,200 to 12,000 and particularly preferably 1,250 to 10,000. Depending on the molecular weight, this hard segment has a melting temperature of 35 ° to 54 ° C.
  • This hard segment can be represented schematically by the following formula, where n and m in turn represent the respective proportions necessary to achieve the above-mentioned molecular weights.
  • Both hard segments are preferably in the form of diols before the block copolymer is prepared, so that a polyurethane can be obtained by reaction with an isocyanate.
  • This amorphous, non-crystallizable soft segment preferably has a molecular weight of 1,000 to 5,000, particularly preferably 2,000 to 3,000 (number average molecular weight).
  • This soft segment can be represented schematically by the following formula, a poly-epsilon-caprolactone-ran-glycolide being particularly preferred.
  • This segment too is preferably in the form of a diol before the block copolymers are prepared, so that the above-mentioned reaction with an isocyanate makes it possible to produce polyurethane.
  • This soft segment comprises a condensation product of an aliphatic dicarboxylic acid and an aliphatic diol.
  • the dicarboxylic acid component preferably has 2 to 8 carbon atoms and, in addition to the two carboxyl groups, can also have further substituents, such as halogen atoms or hydroxyl groups, or a double or triple bond in the chain, which could enable a further modification of the block copolymers at a later stage.
  • dicarboxylic acids which can be used individually or in combination, include adipic acid, glucaric acid, succinic acid, oxalic acid, malonic acid, pimelic acid, maleic acid, fumaric acid and acetylenedicarboxylic acid, with adipic acid being preferred.
  • the diol component preferably comprises 2 to 8 carbon atoms and is preferably selected from glycols with an even number of carbon atoms, particularly preferably from ethylene glycol, butylene glycol and diethylene glycol. These diols are preferably in a mixture, a mixture of the last three diols being particularly preferred.
  • this soft segment can be represented by the following formula and is a polyether ester of adipic acid and the diols mentioned above.
  • This soft segment also preferably has terminal hydroxyl groups, so that polyurethane formation is possible by reaction with an isocyanate.
  • This segment preferably has a molecular weight of 500 to 5,000, particularly preferably 1,000 to 2,000 (number average molecular weight).
  • the glass transition temperature varies from approx. -61 ° to -55 ° C with increasing molar mass.
  • a particularly preferred soft segment is commercially available under the name Diorez® (hereinafter PADOH), which is a polyetherester diol composed of adipic acid, ethylene glycol, butylene glycol and diethylene glycol and can be represented by the following schematic formula.
  • PADOH Diorez®
  • the hard and soft segments mentioned above can be combined to form block copolymers, an isocyanate being preferred, particularly preferably trimethylhexamethylene diisocyanate (mixture of isomers) being used.
  • the reaction can proceed in the usual manner, although care must be taken to ensure an equimolar batch amount, in particular in order to obtain sufficiently high molecular weights.
  • the block copolymers from PPDO and CG are therefore referred to below as PDCG
  • the block copolymers from PPDO and AD are hereinafter referred to as PDA
  • the block copolymers from PCL and AD are hereinafter referred to as PCA
  • the block copolymers from PCL and CG are hereinafter referred to as PCCG.
  • These block copolymers are particularly suitable for producing the polymer mixtures according to the invention, mixtures of PDA and PCA in particular being preferred.
  • PDCG polydispersities preferably from 1.5 to 5, more preferably from 1.7 to 4.5.
  • Number average molecular weight is preferably from 8,000 to 60,000, more preferably from 10,000 to 50,000.
  • PCA polydispersities preferably from 1.5 to 8, more preferably from 1.7 to 4. Number average molecular weight, preferably from 20,000 to 150,000, more preferably from 25,000 to 110,000.
  • PDA polydispersity preferably from 2 to 4, more preferably from 2.5 to 3.6.
  • Number average molecular weight preferably from 10,000 to 50,000, more preferably from 20,000 to 35,000.
  • the proportion of hard segment in the block copolymer is preferably in the range from 25 to 75% by weight, more preferably in the range from 25 to 60% by weight for PDCG, in the range from 35 to 70% by weight for PDA and preferably in the range of 30 to 75% by weight for PCA.
  • the block copolymers according to the invention are thermoplastic materials which, although they themselves have no shape-memory properties, surprisingly show shape-memory properties when mixed with one another.
  • the individual block copolymers are interesting and potentially valuable substances, especially in the medical field.
  • the block copolymers according to the invention have good tissue compatibility and can be degraded in a physiological environment, with no toxic degradation products being produced.
  • the thermoplastic processability also makes it possible to spin the materials into threads, which can then be knitted if necessary.
  • filaments are obtained which are of interest, for example, as suture material, and on the other hand three-dimensional frameworks which are of interest as carriers in the field of tissue engineering.
  • block copolymers according to the invention are particularly suitable for producing the mixtures according to the invention which have shape-memory properties.
  • the respective block copolymers are selected in accordance with the criteria mentioned above.
  • the mixtures then show a shape-memory effect, which can be explained as follows.
  • the mixture according to the invention comprises two block copolymers which differ in terms of the hard segments but are identical in terms of the soft segments.
  • the melting temperature of a hard segment forms the highest thermal transition and is above the operating temperature, while the glass transition of the amorphous soft segment is below this temperature. At least two phases are present below the melting range of the first-mentioned hard segment. Crystalline domains of the hard segment influence the mechanical strength, while rubber-elastic areas of the amorphous soft segment determine the elasticity.
  • the mixtures according to the invention thus combine good elastic properties with good mechanical strength.
  • the permanent form of the polymer mixture of two block copolymers results from the thermally reversible crosslinking the hard segment-forming phase in block copolymer A.
  • This phase is characterized by a melt transition above the switching temperature.
  • the temporary shape is fixed by the crystallization of a switching segment that forms the hard segment-forming phase in block copolymer B.
  • the melting transition of this segment determines T T RANS for the shape-memory transition.
  • the non-crystallizable soft segment of the block copolymers forms a third, rubber-elastic phase (soft phase) in the polymer mixtures and is formed from the same amorphous segment.
  • This amorphous segment contributes on the one hand to the miscibility of the block copolymers and on the other hand to the elasticity of the polymer mixtures. This concept is shown schematically in FIG.
  • the segments forming the two phases which determine the temporary and permanent shape, are not covalently linked to one another, since they belong to two different block copolymers.
  • the shape-memory properties and the mechanical properties can be controlled by varying the proportions of the multi-block copolymers used in the mixture.
  • the polymer mixtures according to the invention can be prepared in a manner known to the person skilled in the art. However, preference is given here to the mixture in the extruder (extrusion mixing) and the mixture in the dissolved state, it being possible for polymer mixtures which have been mixed particularly well to be obtained. From the point of view of handling, however, extrusion mixing is preferred, in particular since larger amounts of polymer can also be processed without having to resort to potentially risky solvents.
  • a group of potentially biocompatible, degradable materials are polymers from the macrodiols PPDO and ran-GG.
  • the homo- / co-polymers which are composed of the same monomers, are known to be biocompatible and are already used for medical applications.
  • the structural concept is based on the model of the phase-separated multiblock copolymers with a partially crystalline hard segment (PPDO), whose melting temperature T m is higher than the operating temperature Tuse, and an amorphous soft segment (ra ⁇ -CG) with a low glass transition temperature T g .
  • PPDO partially crystalline hard segment
  • ra ⁇ -CG amorphous soft segment
  • the crystallizable diol affects strength, and the non-crystallizable, amorphous diol determines the elasticity and properties of the polymer at low temperatures.
  • TMDI 2,2,4- and 2,4,4-trimethylhexamethylene diisocyanate
  • reaction must be carried out with the exclusion of moisture, since the isocyanates react with water to form amines, which lead to the undesirable formation of urea derivatives.
  • urethane groups can react further with an isocyanate to form allophanate and urea groups to form biuret.
  • the concentrations of the macrodiols are varied during the synthesis of the polymers.
  • composition of the polymers produced (Tab. 0.1) is determined by means of 1 H-NMR spectroscopy and the molar mass by means of GPC.
  • PDCG 45 900 78 200 1.70 55 35 10
  • the proportion of hard segment determined varies between 28% by weight and 55% by weight and corresponds approximately to the proportion of PPDO used in the respective reaction mixture.
  • Average molar masses M w of 42000 g-mol -1 to 89000 g-mol -1 are achieved.
  • the partially increased values of the polydispersity (up to 4.53) indicate weaving reactions which lead to branching of the polymer.
  • multiblock copolymers made of PPDO and PADOH.
  • the synthesis and composition of the polymers is followed by the idea of the thermal and mechanical properties. Finally, the results of the hydrolytic degradation of this polymer system are presented.
  • PPDO poly (alkylene glycol adipate) diol
  • PADOH poly (alkylene glycol adipate) diol
  • TMDI poly (alkylene glycol adipate) diol
  • Poly ( alkylene glycol adipate) diol consists of a combination of adipic acid and the diols ethylene glycol, butylene glycol and diethylene glycol and is described as biocompatible and degradable.
  • the average molar masses M ⁇ of the PADOH used are 1000 g-mol "1 (PADOH1000) or 2000 g-mor 1 (PADOH2000).
  • the synthesis of the PDA polymers proceeds analogously to the synthesis of the PDCG polymers described above.
  • the average molecular weights of the polymers produced, determined by means of GPC, and the composition of these polymers, which contain PADOH with a molecular weight M n of 1000 g-mol '1 (PADOH1000) and are determined by means of 1 H-NMR spectroscopy, are listed in Table 0.2.
  • the values obtained for M w are between 66000 g-mol "1 and 97000 g-mol " 1 with a polydispersity between 2.65 and 3.36.
  • the proportion by weight of the semi-crystalline hard segment is 42% by weight, 50% by weight and 64% by weight, the TMD1 proportion is 13% by weight.
  • the proportion of hard segment in the resulting polymer roughly corresponds to the proportion weighed in.
  • the values obtained for M w are between 77100 g-mol "1 and 82200 g-mol " 1 , the polydispersity is between 2.98 and 3.56.
  • the proportion of semi-crystalline hard segment is between 42% by weight and 66% by weight with a proportion of TMDI of 9% by weight.
  • the proportions of hard segment obtained in the polymer correspond to the weighed-in conditions within the error limits.
  • PCL with different molar masses M n of 1250 g-mol "1 , 2000 g-mol " 1 and 10000 g-mol "1 is used as the semi-crystalline hard segment for this polymer system.
  • PADOH is used as the amorphous soft segment and TMDI is used as the linking unit Molar mass M n of the soft segment is 1000 g-mol "1 or 2000 g-mol '1 .
  • the synthesis of the PCA multiblock copolymers proceeds analogously to the previously presented syntheses of the PDCG polymers and the PDA polymers.
  • the molar masses are determined by means of GPC and reach values of 48800 g-mol "1 to 177600 g-mol " 1 for M w .
  • the composition of the polymers is determined by means of 1 H NMR spectroscopy (Tab. 0.).
  • Table 0.4 Molar masses M n , M w , polydispersity PD determined by means of GPC (see chapter) and composition of the PCA polymers, determined by means of 1 H-NMR spectroscopy, which contain PADOH1000 as an amorphous soft segment and PCL of different molar masses as a hard segment ,
  • PCA (32.2.1) 2000 30500 64900 2.13 32 52 16
  • PCA (52,10,1) 10000 45200 99400 2.13 52 36 12
  • PCA (59,10,1) 10000 46400 82100 1.77 59 31 10
  • PCA (72,10,1) 10000 31800 100700 3.17 72 20 8
  • the polydispersity of the materials is between 1.75 and 6.75 and increases with increasing molecular weight.
  • the proportion of semi-crystalline segment ranges from 32% by weight to 72% by weight for the PCL2000 used, while a proportion of 51% by weight to 72% by weight is present for the PCL10000 used.
  • PCL1250 the lowest molar mass of PCL used, only a polymer with 51% by weight of partially crystalline segments is synthesized, since this material is very waxy and does not appear to be suitable for further investigations. All materials are manufactured in batches up to 100 g.
  • the proportion by weight of partially crystalline segment is 47% by weight or 68% by weight with a PADOH1000 proportion of 38% by weight or 20% by weight, which corresponds approximately to the ratio used.
  • PADOH1000 proportion 38% by weight or 20% by weight, which corresponds approximately to the ratio used.
  • materials with PADOH2000 as the soft segment and PCL2000 as the semi-crystalline segment are produced in micro batches (Tab. 0.).
  • the molar masses M obtained are between 164,000 g-mol "1 and 280,000 g-mol " 1 with a polydispersity of 2.62 to 3.15.
  • the percentage by weight of PCL obtained is 48% by weight or 69% by weight with a PADOH2000 percentage of 41% by weight or 21% by weight.
  • the ratio of the diols obtained in the polymers obtained corresponds approximately to the proportions used.
  • the multiblock copolymers (PDA and PCA polymers) described above are mixed together in different proportions by weight.
  • the crystallizable segment PPDO contained in the PDA polymers serves as the hard segment forming phase and the crystallizable PCL blocks contained in the PCA polymers (M n 2000 g-mol "1 ) serve as the switching segment forming phase.
  • the third amorphous contained in both polymers In contrast to the phase-separated multiblock copolymers described as shape-memory polymers, the two phase-forming segments in the polymer mixtures are not covalently linked to one another since they belong to different multiblock copolymers. the amorphous PADOH phase take place.
  • the properties of the polymer mixtures are presented, which are produced from the solution of the polymers PDA and PCA from the macro batches. First, the manufacture and determination of the composition, then the thermal and mechanical properties, and then the shape memory properties will be discussed.
  • the weight ratios of the polymer mixtures vary from 10: 1 to 6: 1, 4: 1, 2: 1, 1: 1, 1: 2 and 1: 4 weight of PDA polymer: weight of PCA polymer.
  • the composition of the binary polymer mixtures prepared in this way is determined by means of 1 H-NMR spectroscopy and compared with the corresponding weight. The composition is determined in order to be able to rule out possible losses of a polymer in the solution and the subsequent precipitation step.
  • FIG. 1 A comparison of the corresponding compositions of the binary polymer mixtures from solution is shown in FIG.
  • the individual diagrams of the series of mixtures are divided according to the polymer which contains the macrodiol PPDO as a partially crystalline segment: diagram A shows the polymer mixtures which contain PDA (42) as a component, diagram B shows the polymer mixtures which contain PDA (50) and Diagram C shows the polymer blends containing PDA (64). Since each PDA component was mixed with two PCA polymers, four mixing lines are plotted in each diagram, two lines corresponding to the composition after weighing in and two lines corresponding to the composition determined by 1 H-NMR spectroscopy. Shape memory properties of the polymer mixtures from solution
  • the shape memory properties of the polymer blends are investigated using cyclic thermomechanical experiments. In particular, the influence of the composition of the polymer mixtures on the shape memory properties is shown.
  • the shape memory properties are investigated by strain-controlled cyclic thermomechanical experiments.
  • the sample is stretched to a predetermined maximum elongation ( ⁇ m ) at a temperature above the switching segment transition temperature (T) and held for a certain time (t ha ).
  • the material is then opened at constant cooling with the cooling rate ß c cooled to a temperature below the switching segment transition temperature (T
  • the sample is then relaxed, the clamps of the material testing machine are returned to the starting position. By heating the sample to T and holding it for a period of time t b , the permanent shape of the sample is restored; this completes a cycle and can start again.
  • Fig. 1 shows the typical course for a strain-controlled, cyclic, thermomechanical tension-strain experiment.
  • Fig..1 Schematic representation of a strain-controlled cyclic thermomechanical tensile-strain experiment. The specimen is fixed at maximum elongation ⁇ m at T
  • the proportion of the maximum elongation ⁇ u fixed by the cooling process thus represents the measure for the fixation in cycle N.
  • the strain fixation ratio Rf (Engl. Strain fixity rate) can be determined from the ratio of the elongation ⁇ u of the stretched, fixed sample and the real one determine maximum elongation ⁇ :
  • the strain recovery ratio R r (cycle recovery) of cycle N is calculated from the strain ⁇ and ⁇ p in cycle N and the strain ⁇ p of the sample in the following cycle. It applies to the calculation of R r (1) that ⁇ p (N-1) is set to zero.
  • Fig. 2 shows the measurement program of the strain-controlled cycle schematically.
  • the dotted lines change the temperature from T h to T
  • the vertical line () describes the end of the first cycle. This is followed by the following cycle.
  • Fig.2 Schematic representation of the principle of the strain-controlled thermomechanical cycle. The change in temperature from T h to T ⁇ or T ⁇ to T h is indicated by a dotted line (). The last vertical line (- -) marks the end of the first cycle.
  • the standard parameters for the strain-controlled cycle are, Chap. refer to.
  • the holding times at T> T trans and T ⁇ T trans are 15 min. It will measured five cycles each. Further observations that are accessible from the strain-controlled cycle are the relaxation behavior of the sample and the change in tension when the material is fixed.
  • the real elongation ⁇ reached is slightly above ⁇ m for all cycles. It is striking that the strain recovery ratio only reaches about 64% in the first cycle. This can be explained by a flow of the amorphous segments or by plastic deformation of the hard segment.
  • the curves of the subsequent cycles reach values for R r of more than 90%. This shows that a high stretch recovery ratio is only possible if the material has already been stretched.
  • a change in tension can be observed during T> Ttrans with constant elongation and the subsequent cooling process. First of all, it decreases and then rises again. This relationship is shown in Fig. 4 as a function of time. The course of the temperature as a function of time is also shown.
  • Fig. 4 Temperature T (-) and stress ⁇ (-) as a function of time during a strain-controlled cyclic thermomechanical cycle using the polymer blend PDA (50) / PCA (47) as an example [22/28].
  • Rr (1-5) is the average strain fixation ratio from cycles 1 to 5
  • R r (1) or R r (2) is the strain recovery ratio in the 1st or 2nd cycle
  • R r (2-4) the average strain recovery ratio from cycles 2 to 4.
  • the elongation fixation ratio of the samples increases with increasing proportion of the switching segment forming phase and is between 67% and 97%.
  • the increase in R f with increasing switching segment content is due to the fact that, during the cooling of the sample, the formation of the crystallites for fixing the temporary shape can take place to an increasing extent. With a higher proportion of blocks determining the switching segment, a higher crystallinity is to be expected, so that a stronger physical cross-linking can take place and the temporary shape is better fixed.
  • R r is between 55% and 85% for the first cycle and assumes values of over 88% in the second cycle.
  • the increase in R r after the first cycle is probably due to a plastic deformation of the segments. Relaxation processes take place, in which physical cross-linking points are loosened and crystallites of the phase forming the hard segment are oriented in the direction of the acting force. Only after stretching one or more times are the samples in equilibrium and the values for R r (2-4) approach a constant value of over 90%.
  • R r increases with increasing PPDO content, since the permanent form of the material is formed by the physical cross-linking points of the hard segment. Within the scope of the measurement accuracy, almost no influence of the PPDO content on R r can be seen.
  • the values for R r of the polymer mixture PML42 / 68 are around 98%, while a slight increase in R r can be observed for the other mixture series.
  • the flakes of the pure multiblock copolymers are first extruded and the strand obtained is broken up into granules.
  • the granules of the multiblock copolymers can then be weighed out in the selected proportions and then extruded to form polymer mixtures.
  • the strand of polymer mixture obtained is comminuted to granules again to ensure homogeneous mixing and extruded a second time
  • the composition in the resulting strand is examined as a function of the residence time in the extruder during the second extrusion.
  • a polymer mixture is selected as an example and the strand is divided into sections. These sections are examined for their composition by means of 1 H-NMR spectroscopy.
  • the extruded strand of a polymer mixture PDA (42) / PCA (68) [23/40] is divided into uniform sections of 70 cm in length, and each section (T0 - T9) 1 H-NMR spectroscopy is examined (Fig. 5).
  • TO represents the composition at the beginning of the second extrusion
  • T1 to T8 describe the composition of the strand at a distance of 70 cm
  • T9 represents the composition of the end of the last strand piece.
  • the proportions of PPDO and PCL fluctuate.
  • the proportion of PCL is initially high (45% by weight) and drops to 39% by weight.
  • the proportion of PPDO increases from 21% by weight to 25% by weight.
  • the proportion of PADOH does not change from the beginning; after section T4, the proportions of PPDO and PCL also assume constant values. For the further thermal and mechanical characterizations of the polymer mixtures, therefore, sections from the middle of the extruded strand are selected.
  • the results of the binary polymer mixtures obtained from solution serve as the basis for the selection of the compositions of the possible polymer mixtures. From the multitude of possible polymer blends, those are selected that allow a quantification of the shape memory properties. In addition, three blends are made from the polymer PDA (64) in combination with PCA (68). The combinations produced are listed in Tab.
  • Tab. 9 Overview of the extruded binary polymer mixtures.
  • the individual blending systems are named according to the multiblock copolymers used, with PME: "polymer blending by means of extrusion”.
  • PDA (64.1) - PME64 / 68 The weighed-in ratios of the polymer granules vary from 4: 1 to 2: 1, 1: 1 and 1: 2 weight of PDA polymer: weight of PCA polymer.
  • Fig. Shows the typical course of a strain-controlled, cyclic, thermomechanical experiment for the extruded polymer mixture PDA (50) / PCA (68) [30/27].
  • the stretch recovery ratio R r of the first cycle is approximately 60%. Only then is the value for R r 90%.
  • the physical cross-linking points are solved by relaxation processes and the crystallites of the phase forming the hard segment are oriented in the direction of the force acting on them.
  • the elongation fixation ratio Rf is about 90% from the first cycle.
  • the experimentally obtained results from the strain-controlled, cyclic, thermomechanical cycles of the extruded polymer mixtures can be found in tab.
  • R r of the first cycle R r (1) is below the strain recovery ratio of the second cycle R r (2) for all polymer blends.
  • R r for the first cycle is between 59% and 70%, that for the second between 82% and 95%. The values of R r increase within a mixture series with increasing hard segment share.
  • the stretch fixation ratio of the materials should depend on the share of the switching segment; the higher this proportion, the better it should be possible to fix the temporary shape.
  • R f increases from 73% to 99% with an increasing proportion of blocks forming the switching segment.
  • the temporary shape is fixed by the crystallization of the switching segment during the cooling process. The greater the switching segment content, the higher the crystallinity to be expected, which causes the material to be physically crosslinked. This improves the fixation of the temporary shape.

Abstract

Die vorliegende Erfindung betrifft eine Polymermischung mit Form-Gedächtnis-Eigenschaft, umfassend zwei unterschiedliche Blockcopolymere jeweils enthaltend mindestens ein Hartsegment und mindestens ein Weichsegment, wobei die beiden unterschiedlichen Blockcopolymere das gleiche Weichsegment umfassen und sich lediglich im Hinblick auf das Hartsegment unterscheiden.

Description

Blends mit Form-Gβdächtnis-Eigenschaften
Die vorliegende Erfindung betrifft Blends mit Form-Gedächtnis-Eigenschaften, die vorzugsweise biologisch abbaubar sind, Blockcopolymere, geeignet zur Herstellung solcher Blends, Verfahren zur Herstellung der Blockcopolymere sowie zur Herstellung der Blends und Verwendungen der oben genannten Produkte.
STAND DER TECHNIK
Die Nachfrage nach maßgeschneiderten Hochleistungspolymeren mit einem breiten Eigenschaftsprofil nimmt stetig zu. Daher wird nach immer neuen Wegen gesucht, diese Polymere möglichst kostengünstig herzustellen. Eine Möglichkeit Polymere mit maßgeschneiderten Eigenschaften zu erhalten, liegt in der Synthese neuer Monomere und deren Polymirisation zu Homo- oder Copolymeren sowie der Entwicklung neuer Polymiri- sationverfahren. Derartige Entwicklungen sind jedoch mit einem hohen Kosten- und Zeitaufwand verbunden, so dass diese nur rentabel sind, wenn die erforderlichen Eigenschaften nicht auf anderem Weg erzielt werden können und ein hoher Absatz für neu entwickelte Polymere zu erwarten ist.
Auf Grund der gestiegenen Anwendungsmengen von Kunststoffen in Wachstumsbereichen, scheint es ökonomisch sinnvoll, die neuen Anforderungen an Polymere durch Kombination vorhandener Polymere zu erreichen, bzw. neue, vergleichsweise- einfache Polymere zu entwickeln, die in Kombination mit weiteren Polymeren ein gefordertes Anforderungsprofil erfüllen.
Wichtig bei der Herstellung von Polymermischungen ist jedoch, dass, insbesondere zum Erreichen eines einheitlichen und reproduzierbaren Eigenschaftsprofil, eine möglichst gute und einfache Durchmischung der verschiedenen Polymere in der Mischung (Blend) sichergestellt sein muss.
Eine wichtige Klasse an neuartigen Polymersystemen, die in letzter Zeit sehr viel Aufmerksamkeit erfahren haben, sind die sogenannten Form-Gedächtnis-Polymere (im folgenden auch SMP-Polymere oder SMP-Materialien), wobei es sich um Werkstoffe han- delt, die durch einen externen Stimulus ihre äußere Form ändern können. Üblicherweise wird dabei durch eine Kombination aus der Polymermorphologie mit der Verarbeitungsund Programmierungsmethode ein Form-Gedächtnis-Effekt (Shape Memory Effekt) ermöglicht. Dabei wird üblicherweise mittels konventioneller Verarbeitungsmethoden das Material durch Aufschmelzen über den höchsten thermischen Übergang TPERM in die permanente Form gebracht. Der Grundstoff kann durch Aufheizen über die Schalltemperatur TTRANS deformiert und in diesem Zustand, durch Abkühlen auf eine Temperatur von unterhalb TTRANS fixiert werden. So erhält man temporäre Form. Dieser Vorgang wird Programmierung genannt (siehe Figur 1). Durch einen externen Stimulus, üblicherweise eine Temperaturänderung, kann die Wiederherstellung der permanenten Form erreicht werden. Handelt es sich bei dem Stimulus um eine Temperaturänderung, so spricht man von einem thermisch induzierten Form-Gedächtnis-Effekt (Figur 2).
Form-Gedächtnis-Polymere müssen über zwei separate Phasen mit unterschiedlichen Temperaturübergängen verfügen. Dabei bestimmt die Phase mit dem höchsten Temperaturübergang TPERM die permanente Form und die Phase mit dem niedrigeren Temperaturübergang die sogenannte Schalttemperatur des Form-Gedächtnis-Effekts TTRANS- In den letzten Jahren hat eine gezielte Entwicklung von Formgedächtnispolymeren begonnen. Zunehmend wird über lineare, phasensegregierte Multiblockcopolymere, meist Polyurethansysteme, unter dem Oberbegriff Form-Gedächtnis-Polymer berichtet. Diese Materialien, die üblicherweise elastisch sind, verfügen über eine Phase mit hoher Übergangstemperatur TPE (Hartsegment bildende Phase), die als physikalischer Vernetzer wirkt und die permanente Form bestimmt. Die physikalische Vernetzung erfolgt üblicherweise durch Kristallisation einzelner Polymersegmente oder durch Erstarrung a- morpher Bereiche. Diese physikalische Vernetzung ist thermisch reversibel, oberhalb von TPERM sind solche Materialien thermoplastisch verarbeitbar. Es handelt sich um thermoplastische Elastomere. Als Schaltsegment dient eine zweite Phase, die über eine niedrigere Übergangstemperatur verfügt. Dieser Übergang kann sowohl eine Glasübergangstemperatur (Tg) oder auch ein Schmelzübergang (Tm) sein. Im Fall der Blockcopolymere sind die beiden verschiedenen Phasen bildenden Segmente chemisch kova- lent miteinander verknüpft. Aus der WO 99/42147 sind verschiedene Form-Gedächtnis-Polymere bekannt. Diese Offenlegungsschrift beschreibt auch Mischungen aus zwei thermoplastischen SMP- Materialien. Eine ähnliche Offenbarung liegt auch in der WO 99/42528 vor.
Die JP-A-11-209595 beschreibt eine Polymerzusammensetzung, die bioabbaubar ist und schmelzformbar ist und Form-Gedächtnis-Eigenschaften aufweist. Diese Polymerzusammensetzung umfasst eine Polymermischung, hauptsächlich enthaltend Polylactid und Polyepsiloncaprolacton.
Die JP-A-2-123129 offenbart eine thermoplastische Zusammensetzung, die im geschmolzenen Zustand formbar ist und Form-Gedächtnis-Eigenschaft aufweist. Diese Zusammensetzung umfasst einen aromatischen Polyester und ein aliphatisches Polylac- ton.
Die EP-A-1000958 offenbart ein bioabbaubares Form-Gedächtnis-Material, basierend auf einem Lactidpolymer.
Aus der WO 01/07499 sind Form-Gedächtnis-Polyurethane bekannt, die auch in der Form von Mischungen eingesetzt werden können.
Die JP-A-04-342762 offenbart Form-Gedächtnis-Zusammensetzungen mit verbesserten Eigenschaften im Hinblick auf Färbung und Handhabbarkeit, wobei diese Zusammensetzungen mindestens ein Form-Gedächtnis-Polymer aufweisen.
In Thermochimica Acta 243(2), 253 (1994) werden zwei lösungsbasierende Form- Gedächtnis-Polymere untersucht. Dabei wurden auch Polymermischungen untersucht.
Der Nachteil der oben genannten bekannten Form-Gedächtnis-Materialien ist allerdings, dass auch bei Polymermischungen der Form-Gedächtnis-Effekt nur durch den Einsatz eines Polymeren mit Form-Gedächtnis-Eigenschaften sichergestellt werden kann. Solche speziellen Polymere erfordern jedoch einen großen Aufwand bei der Herstellung und es ist nicht sichergestellt, dass für ein Polymersystem bei allen denkbaren Mischungsverhältnissen tatsächlich ein Form-Gedächtnis-Effekt auftritt. AUFGABE DER ERFINDUNG
Ausgehend von den oben dargestellten Nachteilen ist es die Aufgabe der vorliegenden Erfindung eine Mischung mit Form-Gedächtnis-Eigenschaften anzugeben, wobei vorzugsweise die der Mischung zugrunde liegenden Polymere selbst keine Form- Gedächtnis-Materialien sein müssen. Darüber hinaus sollte die Mischung bevorzugt bioabbaubar sein.
KURZE BESCHREIBUNG DER ERFINDUNG
Die oben genannte Aufgabe wird durch die Polymermischung nach Anspruch 1 gelöst. Bevorzugte Ausführungsformen sind in den Unteransprüchen angegeben. Darüber hinaus stellt die vorliegende Erfindung Blockcopolymere zur Verfügung, die zur Herstellung erfindungsgemäßer Mischungen geeignet sind, sowie Verfahren zur Herstellung der Mischung und der Blockcopolymere und Verwendungen der Blockcopolymere und der Mischungen. Bevorzugte Ausführungsformen dieser Aspekte der vorliegenden Erfindung sind in den jeweiligen Unteransprüchen angegeben.
KURZE BESCHREIBUNG DER FIGUREN
Figur 1 stellt schematisch den Form-Gedächtnis-Effekt dar. Figur 2 zeigt schematisch einen Temperatur induzierten Form-Gedächtnis-Effekt. Figur 3 zeigt schematisch eine Polymermischung in Übereinstimmung mit der vorliegenden Erfindung.
DETAILLIERTE BESCHREIBUNG DER ERFINDUNG
Die vorliegende Erfindung stellt also eine Mischung aus zwei unterschiedlichen Block- copolymeren zur Verfügung, wobei die Mischung Form-Gedächtnis-Eigenschaften zeigt. Die beiden Blockcopolymere umfassen jeweils mindestens ein Hartsegment und mindestens ein Weichsegment. Beide Segmente werden vorzugsweise aus der Gruppe der durch Esterbindungen verknüpften Segmente ausgewählt, wobei auch Esterethersegmente erfindungsgemäß bevorzugt sind. Bevorzugt sind die jeweiligen Segmente ausgewählt aus nicht aromatischen Segmenten und insbesondere bevorzugt zeigen die erfindungsgemäß einzusetzenden Blockcopolymere selbst keine Form-Gedächtnis- Eigenschaften, sondern lediglich die Mischung.
Die in der erfindungsgemäßen Mischung eingesetzten Blockcopolymere sind vorzugsweise so ausgewählt, dass die jeweiligen Weichsegmente identisch sind, so dass sich die Blockcopolymere lediglich im Hinblick auf die Hartsegmente unterscheiden. So lassen sich gute Mischbarkeit und zufriedenstellende Form-Gedächtnis-Eigenschaften sicherstellen.
Eine alternative Art der Sicherstellung einer guten Mischbarkeit (Verträglichkeit) der beiden Blockcopolymere besteht darin, dass, bei Vorliegen auch unterschiedlicher Weichsegmente, die Gruppen in den Blockcopolymeren, die die unterschiedlichen Blöcke verbinden so ausgewählt sind, dass eine gute Mischbarkeit erreicht wird. Dies ist insbesondere bei Blockcopolymeren möglich, die durch Urethan-Segmente verbunden sind. Die Urethan-Segmente sichern die Mischbarkeit, so dass die Weichsegmente der beiden in der Mischung mindenstens vorliegenden Blockcopolymere auch verschieden voneinander sein können, was eine zusätzliche Beeinflussung der mechanischen Eigenschaften ermöglicht.
Erfindungsgemäß sind die Hartsegmente ausgewählt unter Segmenten, die kristallin oder teilkristallin sind, während die Weichsegmente unter amorphen Segmenten ausgewählt sind.
Prinzipiell können sowohl das Hartsegment als auch das Weichsegment in der Form von Homopolymersegmenten vorliegen oder in der Form von Copolymersegmenten. Bevorzugt ist jedoch das Weichsegment ausgewählt unter Copolymersegmenten.
Prinzipiell können die beiden erfindungswesentlichen Blockcopolymere in beliebigen Mischungsverhältnissen vorliegen, es hat sich jedoch gezeigt, dass zufriedenstellende Form-Gedächtnis-Eigenschaften erhalten werden, wenn die beiden Blockcopolymere in der Mischung in einem Anteil von 10 : 1 bis 1 : 10 vorliegen.
Die in der erfindungsgemäßen Mischung einzusetzenden Blockcopolymere werden insbesondere bevorzugt ausgewählt unter Blockcopolymeren, deren Hartsegmente ausge- wählt werden unter Poly-p-dioxanon und Poly-epsilon-caprolacton und deren Weichsegmente ausgewählt werden unter Copoly-epsilon-caprolacton-glykolid und einem Polyester- oder Polyetherestersegment aus einer aliphatischen Dicarbonsäure und einem aliphatischen Diol, bevorzugt Polyalkylenadipinat.
Die einzelnen Segmente liegen bevorzugt in den Blockcopolymeren so vor, dass sie durch Urethanbindungen miteinander verknüpft sind. Derartige Blockcopolymere lassen sich beispielsweise aus entsprechenden diolfunktionalisierten Makromonomeren (d. h. den Segmenten entsprechenden Vorläufersubstanzen) herstellen, wenn diese Makro- monomere in der Form von Diolen vorliegen, so dass durch die Umsetzung mit einem Isocyanat ein Blockcopolymer mit Urethanbindungen erhalten werden kann. Prinzipiell kann dabei jedes übliche Isocyanat eingesetzt werden, bevorzugt ist jedoch das Isocyanat Trimethylhexamethylendiisocyanat.
Die Molgewichte der jeweiligen Blockcopolymere sowie deren Polydispersitäten sind nicht kritisch, so lange hochpolymere Verbindungen vorliegen. Übliche Molgewichte liegen im Bereich von 7.500 bis 250.000 (Zahlenmittel des Molekulargewichts), wobei Molekulargewichte von 10.000 bis 150.000 und insbesondere von 20.000 bis 80.000 (Zahlenmittel des Molekulargewichts) bevorzugt sind. Die einzelnen Segmente innerhalb der Blockcopolymere weisen dabei bevorzugt Molekulargewichte im Bereich von 1.000 bis 20.000 (Zahlenmittel der Segmente) und insbesondere im Bereich von 2.000 bis 10.000 (Zahlenmittel des Molekulargewichts) auf.
Die Polydispersitäten der Blockcopolymere liegen bevorzugt im Bereich von 1 ,5 bis 5, und insbesondere bevorzugt im Bereich von 2 bis 4, wobei diese Werte sich als nicht besonders kritisch für die Herstellung von Mischungen mit Form-Gedächtnis- Eigenschaften erwiesen haben.
Weitere Ausführungen zu Molgewichten der Segmente und der Blockcopolymere werden weiter unten noch einmal im Hinblick auf besonders bevorzugte Blockcopolymere gemacht. Die dort angeführten Werte, die jeweils einzelne Blockcopolymere betreffen, gelten auch entsprechend für die erfindungsgemäßen Mischungen. Die erfindungsgemäßen Mischungen, in ihrer bevorzugten Ausgestaltung, d. h. insbesondere wenn nicht aromatische Estersegmente und/oder Esterethersegmente vorliegen, zeigen eine ausgezeichnete Bioverträglichkeit und Bioabbaubarkeit, so dass insbesondere ein Einsatz im medizinischen Bereich denkbar ist, beispielsweise in der Form von Implantatmaterial, im Bereich Tissue Engineering, als Nervengeweberegenerations- unterstützungsmaterial oder als Hautersatzmaterial.
Die erfindungsgemäßen Mischungen weisen darüber hinaus eine Übergangstemperatur für den Form-Gedächtnis-Effekt auf, die im Bereich der Körpertemperatur liegt, so dass auch aus diesem Grund die erfindungsgemäßen Materialien insbesondere geeignet zum Einsatz im medizinischen Bereich sind.
Die erfindungsgemäßen Mischungen können neben den erfindungswesentlichen Blockcopolymeren noch weiter Bestandteile aufweisen, die die Eigenschaften der erfindungsgemäßen Mischungen nicht nachteilig beeinflussen und im jeweiligen Einsatzbereich sinnvoll bzw. notwendig sind. Die hier angeführten zusätzlichen Bestandteile können auch bei einer Verwendung der erfindungsgemäßen Blockcopolymere eingesetzt werden, je nach den Erfordernissen des Einsatzbereichs. Derartige zusätzliche Bestandteile sind z.B. medizinisch/pharmazeutisch wirksame Materialien, Additive zur weiteren Modifikation der physikalischen Eigenschaften oder Hilfsstoffe, wie Farbmittel oder Füllstoffe usw.
Im folgenden werden einige bevorzugte spezielle Blockcopolymere beschrieben, die zur Herstellung der erfindungsgemäßen Mischung geeignet sind.
Wie bereits oben ausgeführt, werden die Hartsegmente der erfindungsgemäßen Blockcopolymere bevorzugt ausgewählt unter Poly-p-dioxanon und Poly-epsilon-caprolacton. Die Weichsegmente werden bevorzugt ausgewählt unter Copoly-epsilon-caprolacton- glykolid sowie einem Polyester- oder Polyetherestersegment aus einer aliphatischen Dicarbonsäure und einem aliphatischen Diol, bevorzugt Polyalkylenadipinat. Die Alky- lenkomponente im Polyalkylenadipinat ist bevorzugt ausgewählt unter Ethylen, Buthylen und Diethylen, so dass dieses Weichsegment erhalten werden kann durch die Umsetzung von Adipinsäure oder eines geeigneten Derivats davon mit den Diolen Ethylengly- kol, Buthylenglykol und Diethylenglykol. Die vorstehend genannten Diole können entweder einzeln oder auch in einer beliebigen Mischung eingesetzt werden. Hartsegment aus Poly-p-dioi anon
Das Hartsegment aus Poly-p-dioxanon, das erfindungsgemäß in den Blockcopolymeren eingesetzt werden kann, weist bevorzugt ein Molgewicht von 1.500 bis 5.000 auf, insbe¬ sondere bevorzugt von 2.500 bis 4.000. Eine besonders bevorzugte Ausführungsform dieses Hartsegments weist die folgende schematische Formel auf, wobei n und m je¬ weils so gewählt sind, dass die oben genannten Molgewichte (Zahlenmittel) erreicht werden, wobei der jeweilige Anteil vom Herstellungsverfahren abhängt.
Figure imgf000009_0001
Hartsegment aus Polv-epsilon-caprolacton
Ein weiteres erfindungsgemäß bevorzugtes Hartsegment ist ein Poly-epsilon- caprolacton, mit einem Zahlenmittel des Molekulargewichts von 1.000 bis 20.000, bevorzugt 1.200 bis 12.000 und insbesondere bevorzugt 1.250 bis 10.000. Dieses Hartsegment weist, in Abhängigkeit vom Molekulargewicht, eine Schmelztemperatur von 35° bis 54° C auf. Dieses Hartsegment kann schematisch durch die folgende Formel dargestellt werden, wobei n und m wiederum die jeweiligen Anteile darstellen, notwendig zum Erreichen der oben genannten Molekulargewichte.
Figure imgf000009_0002
Beide Hartsegmente liegen bevorzugt, vor Herstellung des Blockcopolymers, in der Form von Diolen vor, so dass durch eine Umsetzung mit einem Isocyanat ein Polyurethan erhalten werden kann.
Weichsegment aus Polv-epsilon-caprolacton-gtykolid
Dieses amorphe, nicht kristallisierbare Weichsegment hat bevorzugt ein Molekulargewicht von 1.000 bis 5.000 insbesondere bevorzugt von 2.000 bis 3.000 (Zahlenmittel des Molekulargewichts). Schematisch kann dieses Weichsegment durch die folgende Formel dargestellt werden, wobei insbesondere ein Poly-epsilon-caprolacton-ran-glykolid bevorzugt ist. Auch dieses Segment liegt bevorzugt vor der Herstellung der Blockcopolymere in der Form eines Diols vor, so dass durch die oben genannte Umsetzung mit einem Isocyanat eine Polyurethanerzeugung möglich ist.
= Ho- TfcrT f OH
Figure imgf000010_0001
Weichseqment aus Dicarbonsäure und Diol, bevorzugt Polyalkylenadipinat
Dieses Weichsegment umfasst ein Kondensationsprodukt aus einer aliphatischen Dicarbonsäure und einem aliphatischen Diol. Die Dicarbonsäurekomponente weist bevorzugt 2 bis 8 Kohlenstoffatome auf und kann neben den beiden Carboxylgruppen noch weitere Substituenten aufweisen, wie Halogenatome oder Hydroxylgruppen, oder eine Doppel- oder Dreifachbindung in der Kette, was eine spätere weitere Modifikation der Blockcopolymere ermöglichen könnte. Repräsentative Beispiele solcher Dicarbonsäu- ren, die einzeln oder in Kombination eingesetzt werden können, umfassen Adipinsäure, Glucarsäure, Bernsteinsäure, Oxalsäure, Malonsäure, Pimelinsäure, Maleinsäure, Fu- marsäure und Acetylendicarbonsäure, wobei Adipinsäure bevorzugt ist. Die Diolkompo- nente umfasst bevorzugt 2 bis 8 Kohlenstoffatome und wird bevorzugt ausgewählt aus Glokolen mit gerader Kohlenstoffatomanzahl, insbesondere bevorzugt unter Ethylengly- kol, Butylenglykol und Diethylenglykol. Diese Diole liegen bevorzugt in Mischung vor, wobei eine Mischung aus den drei letztgenannten Diolen insbesondere bevorzugt ist. Die besonders bevorzugte Ausführungsform dieses Weichsegments kann durch die folgende Formel dargestellt werden und ist ein Polyetherester aus Adipinsäure und den oben genannten Diolen. Auch dieses Weichsegment weist bevorzugt terminale Hydroxylgruppen auf, so dass durch eine Umsetzung mit einem Isocyanat eine Polyurethanbildung möglich ist. Dieses Segment hat bevorzugt ein Molekulargewicht von 500 bis 5.000, insbesondere bevorzugt von 1.000 bis 2.000 (Zahlenmittel des Molekulargewichts). Die Glasübergangstemperatur variiert dabei von ca. -61 ° bis -55° C mit steigender Molmasse. Kommerziell ist ein besonders bevorzugtes Weichsegment unter der Bezeichnung Diorez ® erhältlich (im folgenden PADOH), was ein Polyetheresterdiol aus Adipinsäure, Ethylenglykol, Butylenglykol und Diethylenglykol ist und durch die folgende schematische Formel dargestellt werden kann.
Figure imgf000011_0001
Die oben genannten Hart- und Weichsegmente lassen sich zu Blockcopolymeren verbinden, wobei bevorzugt ein Isocyanat, insbesondere bevorzugt Trimethylhexamethy- lendiisocyanat (Isomerengemisch) verwendet wird. Die Reaktion kann in üblicher Art und Weise ablaufen, wobei allerdings auf eine äquimolare Ansatzmenge geachtet werden muss, insbesondere um ausreichen hohe Molekulargewichte zu erhalten.
Blockcopolymere
Die Benennung der Blockcopolymere im folgenden basiert auf den nachstehend angegebenen Abkürzungen:
Hartsegmente
Po!y-p-dioxanon: PPDO Poly-epsilon-caprolacton: PCL Weichsegmente
Poly-epsilon-caprolacton-glykolid: CG
Polyalkylenadipinat: AD
Die Blockcopolymere aus PPDO und CG werden daher im folgenden PDCG, die Blockcopolymere aus PPDO und AD werden im folgenden PDA genannt, die Blockcopolymere aus PCL und AD werden im folgenden PCA genannt und die Blockcopolymere aus PCL und CG werden im folgenden PCCG genannt. Diese Blockcopolymere eignen sich insbesondere zur Herstellung der erfindungsgemäßen Polymermischungen, wobei insbesondere Mischungen aus PDA und PCA bevorzugt sind.
Diese vier Kombinationen an Hart- bzw. Weichsegmenten stellen die erfindungsgemäßen Blockcopolymere dar, wobei für diese Blockcopolymere die oben angeführten allgemeinen Aussagen zu Polydispersitäten und Molekulargewichten gelten. Für die einzelnen Blockcopolymere können jedoch noch speziellere bevorzugte Bereiche genannt werden.
PDCG: Polydispersitäten bevorzugt von 1 ,5 bis 5, stärker bevorzugt von 1 ,7 bis 4,5. Zahlenmittel des Molekulargewichts bevorzugt von 8.000 bis 60.000, stärker bevorzugt von 10.000 bis 50.000.
PCA: Polydispersitäten bevorzugt von 1,5 bis 8, stärker bevorzugt von 1,7 bis 4. Zahlenmittel des Molekulargewichts bevorzugt von 20.000 bis 150.000, stärker bevorzugt von 25.000 bis 110.000.
PDA: Polydispersität bevorzugt von 2 bis 4, stärker bevorzugt von 2,5 bis 3,6. Zahlenmittel des Molekulargewichts bevorzugt von 10.000 bis 50.000, stärker bevorzugt von 20.000 bis 35.000.
Bei den erfindungsgemäßen Blockcopolymeren liegt der Anteil an Hartsegment im Blockcopolymer bevorzugt im Bereich von 25 bis 75 Gew.-%, stärker bevorzugt im Bereich von 25 bis 60 Gew.-% für PDCG, im Bereich von 35 bis 70 Gew.-% für PDA und bevorzugt im Bereich von 30 bis 75 Gew.-% für PCA. Die erfindungsgemäßen Blockcopolymere sind thermoplastische Materialien, die, obwohl sie selbst keine Form-Gedächtnis-Eigenschaften aufweisen, in Mischung miteinander überraschenderweise Form-Gedächtnis-Eigenschaften zeigen. Daneben sind die einzelnen Blockcopolymere aber bereits auf Grund ihrer Materialeigenschaften interessante und potentiell wertvolle Substanzen, insbesondere im Medizinbereich.
Die erfindungsgemäßen Blockcopolymere weisen eine gute Gewebeverträglichkeit auf und sind in physiologischer Umgebung abbaubar, wobei keine toxischen Abbauprodukte entstehen. Die thermoplastische Verarbeitbarkeit ermöglicht es weiterhin, die Materialien zu Fäden zu verspinnen, die gegebenenfalls anschließend verstrickt werden können. Zum einen erhält man somit Filamente, die beispielsweise als Nahtmaterial von Interesse sind, andererseits dreidimensionale Gerüste, die als Träger im Bereich Tissue Engineering von Interesse sind.
Besonders geeignet sind die erfindungsgemäßen Blockcopolymere jedoch zur Herstellung der erfindungsgemäßen Mischungen, die Form-Gedächtnis-Eigenschaften aufweisen. Dabei werden die jeweiligen Blockcopolymere in Übereinstimmung mit den oben genannten Kriterien ausgewählt. Die Mischungen zeigen dann einen Form-Gedächtnis- Effekt, der wie folgt erklärbar ist.
Die erfindungsgemäße Mischung umfasst zwei Blockcopolymere, die sich im Hinblick auf die Hartsegmente unterscheiden aber im Hinblick auf die Weichsegmente identisch sind. Die Schmelztemperatur eines Hartsegments bildet den höchsten thermischen Ü- bergang und liegt über der Gebrauchstemperatur, während der Glasübergang des a- morphen Weichsegments unterhalb dieser Temperatur liegt. Unterhalb des Schmelzbereichs des erstgenannten Hartsegments liegen mindestens zwei Phasen vor. Kristalline Domänen des Hartsegments beeinflussen die mechanische Festigkeit, während kau- tschuk-elastische Bereiche des amorphen Weichsegments die Elastizität bestimmen. Somit vereinen die erfindungsgemäßen Mischungen gute elastische Eigenschaften mit guter mechanischer Festigkeit.
Die permanente Form der Polymermischung zweier Blockcopolymere, die im folgenden A und B genannt werden (Figur 3), resultiert aus der thermisch reversiblen Vernetzung der Hartsegment bildenden Phase im Blockcopolymer A. Diese Phase zeichnet sich durch einen Schmelzübergang oberhalb der Schalttemperatur aus. Die Fixierung der temporären Form erfolgt durch die Kristallisation eines Schaltsegments, das die Hartsegment bildende Phase im Blockcopolymer B bildet. Der Schmelzübergang dieses Segments bestimmt TTRANS für den Form-Gedächtnis-Übergang. Das nicht kristallisierbare Weichsegment der Blockcopolymere bildet in den Polymermischungen eine dritte, kautschukelastische Phase (Weichphase) und wird aus dem gleichen amorphen Segment gebildet. Dieses amorphe Segment trägt zum einen zur Mischbarkeit der Blockcopolymere und zum anderen zur Elastizität der Polymermischungen bei. Schematisch ist dieses Konzept in Figur 3 dargestellt.
Die die beiden Phasen bildenden Segmente, die die temporäre und permanente Form bestimmen, sind nicht kovalent miteinander verknüpft, da sie zu zwei unterschiedlichen Blockcopolymeren gehören. Eine Steuerung der Form-Gedächtnis-Eigenschaften sowie der mechanischen Eigenschaften kann durch Variation der Anteile der eingesetzten Mul- tiblockcopolymere in der Mischung erzielt werden.
Die Herstellung der erfindungsgemäßen Polymermischungen kann in einer dem Fachmann bekannten Art und Weise erfolgen. Bevorzugt sind hier jedoch die Mischung im Extruder (Extrusionsvermischung) und die Mischung in gelöstem Zustand, wobei besonders gut durchmischte Polymermischungen erhalten werden können. Im Hinblick auf die Handhabbarkeit ist jedoch die Extrusionsvermischung bevorzugt, insbesondere da hierbei auch größere Mengen an Polymer verarbeitet werden können, ohne das auf potentiell risikobehaftete Lösungsmittel zurückgegriffen werden muss.
Die folgenden Beispiele erläutern die Erfindung weiter. BEISPIELE
Eine Gruppe potentiell biokompatibler, abbaubarer Materialien stellen Polymere aus den Makrodiolen PPDO und ran-GG dar. Die Homo-/Coρolymere, die aus den gleichen Monomeren aufgebaut sind, sind als biokompatibel bekannt und werden bereits für medizinische Anwendungen eingesetzt. Als strukturelles Konzept dient das Modell der phasenseparierten Multiblockcopolymere mit einem teilkristallinen Hartsegment (PPDO), dessen Schmelztemperatur Tm höher als die Gebrauchstemperatur Tuse ist, und einem amorphen Weichsegment (raπ-CG) mit einer tiefen Glasübergangstemperatur Tg. Das kristallisierbare Diol beeinflusst die Festigkeit, und das nicht kristallisierbare, amorphe Diol bestimmt die Elastizität und die Eigenschaften des Polymers bei tiefen Temperaturen.
Synthese und Zusammensetzung der Multiblockcopolymere
Zur Synthese von Multiblockcopolymeren des Typs PDCG aus den Makrodiolen PPDO (Mn = 2800 g-mol"1) und rat?-CG (Mn = 2500 g-mol"1) bietet sich die Umsetzung mit einem Diisocyanat als Verknüpfungseinheit an (Gl. 4.1 ).
n HO — | PPD0 | — OH + m
(4.1 )
Figure imgf000015_0001
Um einen hohen Umsatz zu erzielen, muss auf den Einsatz von äquimolaren Anteilen der Edukte bezogen auf die Endgruppen geachtet werden. Für die Synthese des PDCG wird als Verknüpfungseinheit das aliphatische Isomerengemisch aus 2,2,4- und 2,4,4-Trimethylhexamethylendiisocyanat (TMDI) ausgewählt, da einerseits die Bildung von kristallinen Urethansegmenten verhindert wird und andererseits aliphati- sehe Amine als Abbauprodukte eine geringere Toxizität aufweisen als aromatische Amine.
Die Umsetzung muss unter Feuchtigkeitsausschluss durchgeführt werden, da die Isocyanate mit Wasser zu Aminen reagieren, die zur unerwünschten Bildung von Harnstoffderivaten führen. Bei hoher Temperatur können Urethangruppen mit einem Isocyanat zu Allophanat und Harnstoffgruppen zu Biuret weiter reagieren. Diese Nebenreaktionen .verändern die Zusammensetzung des Reaktionsgemisches durch den Verlust der Äquimolarität, was zu niedrigeren Reaktionsumsätzen führt.
Um den Einfluss des Hartsegmentanteils im Produkt auf die thermischen und mechanischen Eigenschaften sowie die hydrolytische Abbaugeschwindigkeit zu untersuchen, werden die Konzentrationen der Makrodiole bei der Synthese der Polymere variiert.
Die Zusammensetzung der hergestellten Polymere (Tab. 0.1 ) wird mittels 1H-NMR- Spektroskopie und die Molmasse mittels GPC ermittelt.
Tab. 0.1 : Molmassen Mn und M , Polydispersität PD, bestimmt mittels GPC (vgl. Kap.), und Zusammensetzung der PDCG-Polymere, bestimmt mittels H-NMR-Spektroskopie.
Mn Mw PPDO ran —CG T DI
Polymer PD g•mol"1 g-mol-1 Gew.-% Gew.-% Gew.-%
PDCG(28) 21000 48400 2,30 28 64 8
PDCG(30) 19700 89300 4,53 30 59 11
PDCG(43) 26800 74600 2,78 43 50 7
PDCG(52) 11300 42400 3,75 52 40 8
PDCG(55) 45900 78200 1,70 55 35 10 Der ermittelte Anteil an Hartsegment variiert zwischen 28 Gew.-% und 55 Gew.-% und entspricht in etwa dem Anteil des eingesetzten PPDO im jeweiligen Reaktionsansatz. Es werden mittlere Molmassen Mw von 42000 g-mol-1 bis 89000 g-mol-1 erreicht. Die teilweise erhöhten Werte der Polydispersität (bis 4,53) weisen auf Webenreaktionen hin, die zur Verzweigung des Polymers führen.
Eine weitere Gruppe biokompatibler, abbaubarer Multiblockcopolymere stellen Multiblockcopolymere aus PPDO und PADOH dar. An die Synthese und Zusammensetzung der Polymere schließen sich die Vorstellung der thermischen und mechanischen Eigenschaften an. Abschließend werden die Ergebnisse des hydrolytischen Abbaus dieses Polymersystems vorgestellt.
Synthese und Zusammensetzung der Polymere
Für dieses Polymersystem wird PPDO mit einer Molmasse Mn von 2800 g-mol"1 als teilkristallines Hartsegment und ein Poly(alkylenglykoiadipat)diol (PADOH, Diorez®, IV) als amorphes Weichsegment eingesetzt, als Verknüpfungseinheit findet TMDI als Isomerengemisch Verwendung. Poly(alkylenglykoladipat)diol besteht aus einer Kombination von Adipinsäure und den Diolen Ethylenglykol, Butylenglykol und Diethylenglykol und ist als biokompatibel und degradierbar beschrieben. Die verwendeten mittleren Molmassen Mπ des eingesetzten PADOH betragen 1000 g-mol"1 (PADOH1000) bzw. 2000 g-mor1 (PADOH2000).
Die Synthese der PDA-Polymere verläuft analog der oben beschriebenen Synthese der PDCG-Polymere. Im Hinblick auf kommerzielle Anwendungen und eine damit verbundene thermoplastische Verarbeitung ist es wichtig, die Polymere in größeren Mengen synthetisieren zu können. Dies konnte in Ansätzen bis 800 g realisiert werden.
Die mittels GPC bestimmten mittleren Molmassen der hergestellten Polymere und die mittels 1H-NMR-Spektroskopie bestimmte Zusammensetzung dieser Polymere, die PADOH mit einer Molmasse Mn von 1000 g-mol'1 (PADOH1000) enthalten, sind in Tab. 0.2 aufgeführt. Tab. 0.2: Molmassen Mn und Mw und Polydispersität PD, bestimmt mittels GPG (vgl. Kap.), und Zusammensetzung, bestimmt mittels H-NMR- Spektroskopie, der PDA-Polymer-Ansätze bis 800 g Produkt, die PADOH1000 als amorphes Weichsegment enthalten.
Mn w PPDO PADOH TMDI
Polymer PD g • mo 1 g • moP1 Gew.-% Gew. - % Gew. - %
PDA(42,1 ) 32500 96600 2,97 42 45 13
PDA(50,1 ) 25000 66300 2,65 50 37 13
PDA(64,1 ) 23900 80200 3,36 64 24 12
Die erzielten Werte für Mw liegen zwischen 66000 g-mol"1 und 97000 g-mol"1 bei einer Polydispersität zwischen 2,65 und 3,36. Der Gewichtsanteil des teilkristallinen Hartsegments beträgt 42 Gew.-%, 50 Gew.-% und 64 Gew.-%, der TMDl-Anteil liegt bei 13 Gew.-%. Bei den vorgestellten Ansätzen entspricht der Anteil an Hartsegment im resultierenden Polymer in etwa dem eingewogenem Anteil.
Zur Untersuchung des Einflusses der Kettenlänge des Weichsegments auf die thermischen und mechanischen Eigenschaften der Polymere werden zwei Polymere mit PADOH mit einer Molmasse Mn von 2000 g-mol"1 (PADOH2000) synthetisiert. Die erzielten Molmassen und Zusammensetzungen sind in Tab. 0.3 dargestellt. Tab. 0.3: Molmassen Mn und Mw, Polydispersität PD, bestimmt mittels GPC, und Zusammensetzung der PDA-Polymere, bestimmt mittels 1H-NMR- Spektroskopie, mit PADOH2000 als amorphem Weichsegment.
Mn Mw PPDO PADOH TMDI
Polymer PD g • mo 1 g moP1 Gew. - % Gew. - % Gew. - %
PDA(42,2) 25900 77100 2,98 42 49 9 PDA(66,2) 23100 82200 3,56 66 25 9
Die erhaltenen Werte für Mw liegen zwischen 77100 g-mol"1 und 82200 g-mol"1, die Polydispersität beträgt zwischen 2,98 und 3,56. Der Anteil an teilkristallinem Hartsegment liegt zwischen 42 Gew.-% bzw. 66 Gew.-% bei einem Anteil an TMDI von 9 Gew.-%. Die erhaltenen Anteile an Hartsegment im Polymer entsprechen im Rahmen der Fehlergrenzen den eingewogenen Verhältnissen.
Ein weiteres untersuchtes System sind Multiblockcopolymere aus Caprolacton und Alkylenglykaladipat. Als teilkristallines Hartsegment wird für dieses Polymersystem PCL mit verschiedenen Molmassen Mn von 1250 g-mol"1, 2000 g-mol"1 und 10000 g-mol"1 eingesetzt. Als amorphes Weichsegment wird PADOH verwendet und als Verknüpfungseinheit findet TMDI Verwendung. Die Molmasse Mn des Weichsegments beträgt 1000 g-mol"1 bzw. 2000 g-mol'1.
Die Synthese der PCA-Multiblockcopolymere verläuft analog zu den bisher vorgestellten Synthesen der PDCG-Polymere und der PDA-Polymere. Die Molmassen werden mittels GPC bestimmt und erreichen für Mw Werte von 48800 g-mol"1 bis 177600 g-mol"1. Die Zusammensetzung der Polymere wird mittels 1H-NMR- Spektroskopie bestimmt (Tab. 0.). Tab. 0.4: Molmassen Mn, Mw, Polydispersität PD bestimmt mittels GPC (vgl. Kap.) und Zusammensetzung der PCA-Polymere, bestimmt mittels 1H- NMR-Spektroskopie, die PADOH1000 als amorphes Weichsegment und PCL unterschiedlicher Molmasse als Hartsegment enthalten.
n M PCL PADOH TMDI
Polymer PD g-mol-1 g-mol-1 g• mol-1 Gew -% Gew.-% Gew.-%
PCA(51,1250,1) 1250 27900 48800 1,75 51 5ü 16
PCA(32,2,1) 2000 30500 64900 2,13 32 52 16
PCA(50,2,1) 2000 36900 96600 2,62 50 34 16
PCA(72,2,1) 2000 47400 177600 6,75 72 14 14
PCA(51,10,1) 10000 54100 143900 2,66 51 38 11
PCA(52,10,1) 10000 45200 99400 2,13 52 36 12
PCA(59,10,1) 10000 46400 82100 1,77 59 31 10
PCA(72,10,1) 10000 31800 100700 3,17 72 20 8
Die Polydispersität der Materialien liegt zwischen 1 ,75 und 6,75 und steigt mit zunehmender Molmasse. Der Anteil an teilkristallinem Segment reicht für eingesetztes PCL2000 von 32 Gew.-% bis 72 Gew.-%, während für eingesetztes PCL10000 ein Anteil von 51 Gew.-% bis 72 Gew.-% vorliegt. Für PCL1250, die niedrigste verwendete Molmasse des PCL, wird lediglich ein Polymer mit 51 Gew.-% teilkristallinen Segmenten synthetisiert, da dieses Material sehr wachsartig ist und für weitere Untersuchungen nicht geeignet erscheint. Alle Materialien werden in Ansätzen bis 100 g hergestellt. Im Hinblick auf eine kommerzielle Anwendung und eine damit verbundene thermoplastische Verarbeitung werden aus diesem System zwei Polymere, mit PCL2000 und PADOH1000 als Standarddiole, ausgewählt und in Ansätzen bis 600 g synthetisiert. Die Zusammensetzung und erzielten Molmassen der resultierenden Materialien sind in beschrieben. Die in diesen Makroansätzen erzielten Werte für Mw sind höher als für die Mikroansätze und liegen bei 360000 g-mol"1 bis 375000 g-mol"1. Tab. 0.5: Molmassen Mn und Mw, Polydispersität PD bestimmt mittels GPC (vgl. Kap.) und Zusammensetzung der PCA-Polymer-Makroansätze mit PADOH1000 als amorphem Weichsegment und PCL2000 als teilkristallinem Hartsegment bestimmt mittels 1H-NMR-Spektroskopie.
Mn M w PCL PADOH TMDI
Polymer PD g mol-1 g • mol-1 Gew. - % Gew. -% Gew. - %
PCA(47,2,1) 102900 375200 3,65 47 38 15 PCA(68,2,1) 96700 359100 3,71 68 20 12
Der Gewichtsanteil an teilkristallinem Segment liegt bei 47 Gew.-% bzw. 68 Gew.-% mit einem PADOH1000-Anteil von 38 Gew.-% bzw. 20 Gew.-%, was etwa dem eingesetzten Verhältnis entspricht. Zur Untersuchung des Einflusses der Molmasse des Weichsegments werden Materialien mit PADOH2000 als Weichsegment und PCL2000 als teilkristallinem Segment in Mikroansätzen hergestellt (Tab. 0.).
Tab. 0.6: Molmassen Mn und Mw, Polydispersität PD bestimmt mittels GPC (vgl. Kap.) und Zusammensetzung der PCA-Polymere bestimmt mittels 1H- NMR-Spektroskopie mit PADOH2000 als amorphem Weichsegment und PCL2000 als teilkristallinem Hartsegment.
Mn w PCL PADOH TMDI
Polymer PD g • mol-1 g • mol-1 Gew.- % Gew. - % Gew.- %
PCA(48,2,2) 88600 279200 3,15 48 42 10 PCA(69,2,2) 62700 164100 2,62 69 21 10
Die erzielten Molmassen M liegen zwischen 164000 g-mol"1 und 280000 g-mol"1 bei einer Polydispersität von 2,62 bis 3,15. Der erzielte Gewichtsanteil an PCL liegt bei 48 Gew.-% bzw. 69 Gew.-% mit einem PADOH2000-Anteil von 41 Gew.-% bzw. 21 Gew.-%. Das erzielte Verhältnis der Diole in den erhaltenen Polymeren entspricht etwa den eingesetzten Anteilen. Polymermischungen
Hier werden Polymermischungen beschrieben, die einen thermisch induzierten Formgedächtniseffekt aufweisen. Dazu werden die oben beschriebenen Multiblockcopolymere (PDA- und PCA-Polymere) in unterschiedlichen Gewichtsanteilen miteinander gemischt. Dabei dient das in den PDA-Polymeren enthaltene kristallisierbare Segment PPDO als Hartsegment bildende Phase und die in den PCA-Polymeren enthaltenen kristallisierbaren PCL-Blöcke (Mn 2000 g-mol"1) als Schaltsegment bildende Phase. Das in beiden Polymeren enthaltene dritte amorphe PADOH-Segment trägt zur Entropie-Elastizität der Polymermischungen bei. Im Gegensatz zu den als Formgedächtnispolymeren beschriebenen phasenseparierten Multiblockcopolymeren sind die beiden phasenbildenden Segmente in den Polymermischungen nicht kovalent miteinander verknüpft, da sie zu unterschiedlichen Multiblockcopolymeren gehören. Eine physikalische Verknüpfung kann über die dritte Phase, die amorphe PADOH-Phase erfolgen.
Es werden zwei Verfahren zur Herstellung der Polymermischungen vorgestellt. Dabei handelt es sich einerseits um die Copräzipitation aus Lösung und andererseits um die Coextrusion.
Herstellung binärer Polymermischungen aus Lösung
Zunächst werden die Eigenschaften der Polymermischungen vorgestellt, die aus Lösung der Polymere PDA und PCA aus den Makroansätzen hergestellt werden. Dabei soll zunächst auf die Herstellung und Bestimmung der Zusammensetzung, dann auf die thermischen und mechanischen Eigenschaften, anschließend auf die Formgedächtniseigenschaften eingegangen werden.
Herstellung binärer Polymermischunqen aus Lösung und Bestimmung der Zusammensetzung
Zur Herstellung der Polymermischungen aus Lösung stehen drei PDA-Polymere und zwei PCA-Polymere mit PADOH1000 als amorphem Weichsegment zur Verfügung, von denen jeweils zwei miteinander zu binären Polymermischungen verarbeitet wer- den. Dadurch sind sechs verschiedene Mischungsreihen zugänglich, die in Tab. 0. aufgeführt werden.
Tab. 0.7: Übersicht über die möglichen binären Polymermischungen: Die einzelnen Mischungsreihen werden entsprechend den eingesetzten Multiblockcopolymeren benannt, mit PML: „Polymermischung aus Lösung".
PCA(47,2,1 ) PCA(68,2,1 )
PDA(42,1 ) PML42/47 PML42/68
PDA(50,1) PML50/47 PML50/68
PDA(64,1 ) PML64/47 PML64/68
Die Gewichtsverhältnisse der Polymermischungen variieren von 10:1 über 6:1 , 4:1 , 2:1 , 1 :1 , 1 :2 bis zu 1 :4 Einwaage PDA-Polymer : Einwaage PCA-Polymer. Die Zusammensetzung der so hergestellten binären Polymermischungen wird mittels 1H-NMR-Spektroskopie ermittelt und mit der entsprechenden Einwaage verglichen. Die Zusammensetzung wird bestimmt, um eventuelle Verluste eines Polymers bei dem Lösungs- und dem anschließenden Fällungsschritt ausschließen zu können.
In ist ein Vergleich der entsprechenden Zusammensetzungen der binären Polymermischungen aus Lösung dargestellt. Die einzelnen Diagramme der Mischungsreihen sind nach dem Polymer aufgeteilt, welches das Makrodiol PPDO als teilkristallines Segment enthält: Diagramm A gibt die Polymermischungen wieder, die PDA(42) als eine Komponente enthalten, Diagramm B gibt die Polymermischungen wieder, die PDA(50) enthalten und Diagramm C stellt die Polymermischungen dar, die PDA(64) enthalten. Da jede PDA-Komponente mit zwei PCA-Polymeren gemischt wurde, sind in jedem Diagramm vier Mischungslinien aufgetragen, wobei zwei Linien der Zusammensetzung nach Einwaage und zwei Linien der 1H-NMR-spektroskopisch ermittelten Zusammensetzung entsprechen. Formαedächtniseigenschaften der Polvmermischungen aus Lösung
In diesem Kapitel werden die Formgedächtniseigenschaften der hergestellten Polymermischungen aus Lösung untersucht. Bei diesem System wird die permanente Form durch die Kristallite der PPDO-Segmente bestimmt, die als physikalische Vernetzungsstellen wirken. Als Schaltsegment bildende Phase dienen die PCL-Segmente, die eine Fixierung der temporären Form durch eine Kristallisation der Segmente ermöglichen. Der Unterschied zu den schon beschriebenen Polyethe- resterurethanen mit Formgedächtniseffekt besteht zum einen darin, dass diese beiden phasenbildenden Segmente in den Polymermischungen nicht kovalent miteinander verknüpft sind, und zum anderen in der Anwesenheit einer dritten Komponente, dem amorphen PADOH. Diese trägt zur Entropie-Elastizität der Polymermischungen bei. In Abb. ist der Formgedächtniseffekt in den Polymermischungen schematisch dargestellt. Dabei ist die Dehnung des Materials oberhalb Ttrans möglich, da die PCL-Segmente amorph vorliegen und beweglich sind. Bei der Dehnung werden sie orientiert und bei Abkühlen unter Ttrans kristallisieren diese Segmente, und die temporäre Form wird fixiert. Bei erneuter Erhöhung der Temperatur werden die Kristallite der PCL-Segmente wieder aufgeschmolzen und die Ketten nehmen eine geknäulte Konformation an. Die Probe kehrt in ihre permanente Form zurück (siehe Figur 3).
Die Formgedächtniseigenschaften der Polymermischungen werden mittels zyklischer thermomechanischer Experimente untersucht. Dabei wird insbesondere der Einfluss der Zusammensetzung der Polymermischungen auf die Formgedächtniseigenschaften gezeigt.
Dehnungsgeregelte thermomechanische Testmethode
Die Untersuchung der Formgedächtniseigenschaften erfolgt durch dehnungsgeregelte zyklische thermomechanische Experimente. Dabei wird die Probe bei einer Temperatur oberhalb der Schaltsegmentübergangstemperatur (T ) auf eine vorgegebene maximale Dehnung (εm) verstreckt und eine bestimmte Zeit gehalten (tha). Anschließend wird das Material bei konstanter Dehnung mit der Abkühlrate ßc auf eine Temperatur unterhalb der Schaltsegmentübergangstemperatur (T|) abgekühlt. Dieser Zustand wird eine Zeit gehalten (t|), um den verstreckten Zustand zu fixieren. Anschließend wird die Probe entspannt, die Klemmen der Materialprüfmaschine werden wieder in die Ausgangsposition gebracht. Durch Erwärmen der Probe auf T und Halten über einen Zeitraum t b wird die permanente Form der Probe wieder hergestellt; damit ist ein Zyklus abgeschlossen und kann von vorne beginnen. In Abb. 1 ist der typische Verlauf für ein dehnungsgeregeltes, zyklisches, thermomechani- sches Zug-Dehnungsexperiment schematisch dargestellt.
Figure imgf000025_0001
Abb..1 : Schematische Darstellung eines dehnungsgeregelten zyklischen ther- momechanischen Zug-Dehnungsexperimentes. Die Fixierung der Probe findet bei maximaler Dehnung εm bei T| statt, die Wiederherstellung der Form im entspannten Zustand bei Th.
Aus diesen Zyklen können wichtige Größen zur Quantifizierung der Formgedächtniseigenschaften ermittelt werden. So stellt der durch den Abkühlprozess fixierte Anteil der maximalen Dehnung εu das Maß für die Fixierung im Zyklus N dar. Das Dehnungsfixierungsverhältnis Rf (engl. strain fixity rate) lässt sich aus dem Verhältnis der Dehnung εu der gedehnten, fixierten Probe und der realen maximalen Dehnung ει bestimmen:
Figure imgf000026_0001
Das Dehnungsrückstellungsverhältnis Rr (engl. strain recovery rate) des Zyklus N wird aus der Dehnung ει und εp im Zyklus N und der Dehnung εp der Probe im folgenden Zyklus berechnet. Dabei gilt für die Berechnung von Rr(1), dass εp(N-1 ) gleich null gesetzt wird.
Figure imgf000026_0002
In Abb. 2 ist das Messprogramm des dehnungsgeregelten Zyklus schematisch dargestellt. Die gepunkteten Linien machen einen Wechsel der Temperatur von Th zu T| deutlich. Die vertikale Linie ( ) beschreibt das Ende des ersten Zyklus. Daran schließt sich der nachfolgende Zyklus an.
Figure imgf000026_0003
Abb.2: Schematische Darstellung des Prinzips des dehnungsgeregelten ther- momechanischen Zyklus. Die Änderung der Temperatur von Th zu Tι bzw. Tι zu Th ist mit einer gepunkteten Linie ( ) angedeutet. Die letzte vertikale Linie (— -) kennzeichnet das Ende des ersten Zyklus.
Die Standardparameter für den durchgeführten dehnungsgeregelten Zyklus sind, Kap. zu entnehmen. Die Haltezeiten bei T > Ttrans und T < Ttrans betragen 15 min. Es werden jeweils fünf Zyklen gemessen. Weitere Beobachtungen, die aus dem dehnungsgeregelten Zyklus zugänglich werden, sind das Relaxationsverhalten der Probe und die Änderung der Spannung bei Fixierung des Materials.
Einfluss der Zusammensetzung
Die Untersuchung der Formgedächtniseigenschaften in Abhängigkeit von der Zusammensetzung der binären Polymermischung aus Lösung wird bei den Materialien untersucht, die bei T > Ttrans eine Dehnung von 100 % zulassen. Betrachtet man die mechanischen Eigenschaften bei 50°C, so können die Polymermischungen, die PDA(64) enthalten, nicht untersucht werden, da deren Dehnbarkeit nicht ausreichend hoch ist. Abb. 3 stellt den typischen Verlauf eines Standardexperiments am Beispiel der Polymermischung PDA(50)/PCA(47)[22/28] dar. Gezeigt sind die Zyklen N = 1 und die nachfolgenden Zyklen N = 2 bis 5.
Figure imgf000027_0001
Abb. 3: Darstellung eines dehnungsgeregelten zyklischen thermomechani- schen Zug-Dehnungsexperiments am Beispiel der Polymermischung PDA(50)/PCA(47)[22/28] bei Th = 50 °C, Tι = 0 °C und εm = 100 %.
Die erreichte reale Dehnung ει liegt für alle Zyklen etwas oberhalb von εm. Auffällig ist, dass das Dehnungsrückstellungsverhältnis im ersten Zyklus nur etwa 64 % erreicht. Dies ist durch ein Fließen der amorphen Segmente oder durch plastische Verformung des Hartsegmentes zu erklären. Die Kurven der nachfolgenden Zyklen erreichen Werte für Rr von mehr als 90 %. Dies zeigt, dass ein hohes Dehnungs- rückstellungsverhältnis nur dann möglich ist, wenn das Material schon einmal verstreckt wurde. Weiterhin kann während T > Ttrans bei konstanter Dehnung und dem anschließenden Abkühlprozess eine Änderung der Spannung beobachtet werden. Zunächst nimmt diese ab, um anschließend wieder anzusteigen. Dieser Zusammenhang ist in Abb. 4 in Abhängigkeit von der Zeit dargestellt. Zusätzlich wird der Verlauf der Temperatur in Abhängigkeit von der Zeit dargestellt.
Figure imgf000029_0001
0 1000 2000 3000 4000 5000 6000 7000 8000 t/s
Abb. 4: Temperatur T ( — ) und Spannung σ (-) in Abhängigkeit von der Zeit während eines dehnungsgeregelten zyklischen thermomechanischen Zyklus am Beispiel der Polymermischung PDA(50)/PCA(47)[22/28].
Der Abfall der Spannung bei gleichbleibender Dehnung bei T > Ttrans ist auf eine Spannungsrelaxation zurückzuführen. Beim Abkühlen auf T < Ttrans steigt die Spannung wieder an. Dies wird auf die Kristallisation der das Schaltsegment bildenden Phase zurückgeführt.
In Tab. sind die experimentell erhaltenen Resultate aus den dehnungsgeregelten, thermomechanischen Zyklen zu finden. Dabei geben die Werte Rf(1-5) den Mittelwert aus allen Zyklen (N = 1-5), und Rr(2-4) den Mittelwert aus den Zyklen N = 2 bis N = 4 an. Alle Zyklen werden mit einer maximalen Dehnung εm von 100 % durchgeführt. Tab. 8: Formgedächtniseigenschaften der binären Polymermischungen aus
Lösung in dehnungsgeregelten, zyklischen thermomechanischen Zug- Dehnungsexperimenten (vgl. Kap.). Rr(1-5) ist das durchschnittliche Dehnungsfixierungsverhältnis aus den Zyklen 1 bis 5, Rr(1 ), bzw. Rr(2) ist das Dehnungsrückstellungsverhältnis im 1. bzw. 2. Zyklus, Rr(2-4) ist das gemittelte Dehnungsrückstellungsverhältnis aus den Zyklen 2 bis 4.
(l)
Polymermischung RfO-5) Rr R,(2) Rr(2-4)
% % % % %
PDA(42)/PCA(47)[19/24] 100 81 ,9 + 0,8 80,3 97,1 97,3 + 0,2
PDA(42)/PCA(47)[26/16] 100 68,1 + 0,3 73,9 96,3 .98,1 + 1,6
PDA(42)/PCA(47)[28/14] 100 66,9 + 1 ,0 84,7 96,8 98,9 + 2,0
PDA(42)/PCA(68)[13/48] 100 93,7 + 0,5 76,6 94,5 97,4 + 3,9
PDA(42)/PCA(68)[18/37] 100 92,2 + 0,3 73,3 96,6 98,6 ± 3,6
PDA(42)/PCA(68)[27/25] 100 84,5 + 0,3 72,8 97,2 98,2 ± 0,9
PDA(42)/PCA(68)[28/16] 100 72,8 + 0,3 76,8 95,9 97,2 ± 1,6
PDA(50)/PCA(47)[20/31] 100 89,9 + 1 ,6 62,1 87,7 90,6 ± 2,8
PDA(50)/PCA(47)[22/28] 100 85,4 ± 2,1 63,8 95,1 95,1 ± 3,0
PDA(50)/PCA(47)[29/20] 100 80,9 + 0,3 55,0 91 ,0 94,6 ±3,2
PDA(50)/PCA(47)[43/11] 100 77,8 ± 2,9 63,8 92,0 95,1 ± 3,0
PDA(50)/PCA(68)[18/45] 100 96,3 ± 0,8 58,6 95,7 94,6 ± 3,3
PDA(50)/PCA(68)[28/32] 100 90,8 ± 0,6 55,3 94,4 94,0 ± 1 ,5
PDA(50)/PCA(68)[35/23] 100 86,4 ± 1,1 57,1 91,8 96,5 ± 5,4
PDA(50)/PCA(68)[40/15] 100 79,7 + 2,0 66,0 104,5 101,9 + 12,1
Das Dehnungsfixierungsverhältnis der Proben steigt mit zunehmendem Anteil an Schaltsegment bildender Phase und liegt zwischen 67 % und 97 %. Die Zunahme von Rf mit steigendem Schaltsegmentgehalt ist dadurch bedingt, dass während des Abkühlens der Probe die Bildung der Kristallite zur Fixierung der temporären Form in zunehmendem Maß erfolgen kann. Bei einem höheren Anteil an Schaltsegment bestimmenden Blöcken ist eine höhere Kristallinität zu erwarten, so dass eine stärkere physikalische Vernetzung erfolgen kann und die temporäre Form besser fixiert wird.
Rr liegt für den ersten Zyklus zwischen 55 % und 85 % und nimmt im zweiten Zyklus Werte von über 88 % an. Der Anstieg von Rr nach dem ersten Zyklus ist vermutlich durch eine plastische Verformung der Segmente begründet. Es finden Relaxationsprozesse statt, bei denen physikalische Vernetzungsstellen gelöst werden und sich Kristallite der Hartsegment bildenden Phase in Richtung der einwirkenden Kraft orientieren. Erst nach ein- bis mehrmaliger Verstreckung sind die Proben in einem Gleichgewicht und die Werte für Rr(2-4) nähern sich einem konstanten Wert von ü- ber 90 % an.
Es ist zu erwarten, dass Rr mit steigendem PPDO-Gehalt zunimmt, da die permanente Form des Materials durch die physikalischen Vernetzungsstellen des Hartsegments gebildet wird. Im Rahmen der Messgenauigkeit ist fast kein Einfluss des PPDO-Gehalts auf Rr zu erkennen. So liegen die Werte für Rr der Polymermischung PML42/68 bei etwa 98 %, während für die weiteren Mischungsreihen ein leichter Anstieg von Rr zu beobachten ist.
Für eine kommerzielle Herstellung von Polymermischungen bietet sich die Verarbeitung der Multiblockcopolymere zu Polymermischungen durch Extrusion an. Daher werden in diesem Abschnitt die Eigenschaften der binären Polymermischungen vorgestellt, die mittels Extrusion hergestellt werden. Dabei wird zunächst die Herstellung und Zusammensetzung erläutert, dann werden die thermischen Eigenschaften dargestellt, und im Anschluss an die mechanischen Eigenschaften werden die Formgedächtniseigenschaften untersucht. Herstellung binarer Polymermischungen mittels Extrusion und Bestimmung der Zusammensetzung
Um die Polymere mittels Extrusion zu Mischungen verarbeiten zu können, werden zunächst die Flocken der reinen Multiblockcopolymere (PDA und PCA) extrudiert und der erhaltene Strang zu Granulat zerkleinert. Die Granulate der Multiblockcopolymere können dann in den gewählten Verhaltnissen eingewogen und anschließend zu Polymermischungen extrudiert werden Der erhaltene Strang der Polymermischung wird zur Gewahrleistung einer homogenen Durchmischung erneut zu Granulat zerkleinert und ein zweites mal extrudiert
Um die gleichmaßige Verteilung der einzelnen Komponenten zu überprüfen, wird die Zusammensetzung im resultierenden Strang in Abhängigkeit von der Verweilzeit im Extruder wahrend der zweiten Extrusion untersucht Dazu wird exemplarisch eine Polymermischung ausgewählt und der Strang in Abschnitte unterteilt. Diese Abschnitte werden mittels 1H-NMR-Spektroskopιe auf ihre Zusammensetzung hin untersucht Der extrudierte Strang einer Polymermischung PDA(42)/PCA(68)[23/40] wird in gleichmäßige Abschnitte von 70 cm Lange unterteilt, und jedes Teilstuck (T0 - T9) wird 1H-NMR-spektroskopιsch untersucht (Abb. 5).
Figure imgf000032_0001
Abb. 5: Zusammensetzung der extrudierten Polymermischung
PDA(42)/PCA(68)[23/40] in Abhängigkeit von der Verweilzeit im Extruder während der zweiten Extrusion. TO gibt die Zusammensetzung zu Beginn der 2. Extrusion wieder, T1 bis T8 beschreiben die Zusammensetzungen des Strangs in einem Abstand von 70 cm und T9 gibt die Zusammensetzung des Endes des letzten Strangstückes wieder.
Zu Beginn der zweiten Extrusion schwanken die Anteile an PPDO und PCL. Der Anteil an PCL liegt zunächst hoch (45 Gew.-%) und sinkt auf 39 Gew.-% ab. Der Anteil an PPDO steigt von 21 Gew.-% auf 25 Gew.-%. Der Anteil an PADOH ändert sich von Beginn an nicht, nach dem Teilstück T4 nehmen auch die Anteile an PPDO und PCL konstante Werte an. Für die weitergehenden thermischen und mechanischen Charakterisierungen der Polymermischungen werden daher Teilstücke aus der Mitte des extrudierten Stranges gewählt.
Als Grundlage für die Auswahl der Zusammensetzungen der möglichen Polymermischungen dienen die Ergebnisse der binären Polymermischungen, die aus Lösung erhalten wurden. Aus der Vielzahl der möglichen Polymermischungen werden diejenigen ausgewählt, die eine Quantifizierung der Formgedächtniseigenschaften zulassen. Zusätzlich werden drei Mischungen aus dem Polymer PDA(64) in Kombination mit PCA(68) hergestellt. Die hergestellten Kombinationen sind in Tab. aufgeführt.
Tab. 9: Übersicht über die extrudierten binären Polymermischungen. Die einzelnen Mischungssysteme werden entsprechend der eingesetzten Multiblockcopolymere benannt, mit PME: „Polymermischung mittels Extrusion".
PCA(47,2,1 ) PCA(68,2,1 )
PDA(42,1) PME42/47 PME42/68
PDA(50,1) PME50/ 7 PME50/68
PDA(64,1) - PME64/68 Die eingewogenen Verhältnisse der Polymergranulate variieren von 4:1 über 2:1 , 1 :1 und 1 :2 Einwaage PDA-Polymer : Einwaage PCA-Polymer.
Formgedächtniseigenschaften der extrudierten Polymermischungen
In diesem Abschnitt werden die Formgedächtniseigenschaften der extrudierten Polymermischungen untersucht. Dabei werden zunächst die Ergebnisse der schon beschriebenen dehnungsgeregelten Standardzyklen diskutiert. Anschließend wird ein weiteres zyklisches, thermomechanisches Experiment vorgestellt, das es erlaubt, die Übergangstemperatur des Formgedächtniseffekts zu ermitteln. Der Mechanismus des Formgedächtniseffekts in diesem Polymersystem entspricht dem in Kap. erläuterten Mechanismus.
Einfluss der Zusammensetzung der extrudierten Polymermischungen auf die Formgedächtniseigenschaften
Die dehnungsgeregelten Standardzyklen werden mit den in oben angegebenen Parametern durchgeführt. Abb. gibt den typischen Verlauf eines dehnungsgeregelten, zyklischen, thermomechanischen Experiments für die extrudierte Polymermischung PDA(50)/PCA(68)[30/27] wieder.
Figure imgf000035_0001
/ %
Abb. 6: Darstellung eines dehnungsgeregelten, zyklischen, thermomechanischen Zug-Dehnungsexperimentes am Beispiel der extrudierten Polymermischung PDA(50)/PCA(68)[30/27] mit Th = 50 °C, T, = 0 °C und εm = 100 %.
Das Dehnungsrückstellungsverhältnis Rr des ersten Zyklus beträgt etwa 60 %. Erst danach beträgt der Wert für Rr 90 %. Analog zu dem in Kap. gezeigten Versuch, befindet sich die Probe erst nach dem ersten Verstrecken im Gleichgewicht, was durch eine plastische Verformung des Hartsegments verursacht wird. Die physikalischen Vernetzungsstellen werden durch Relaxationsprozesse gelöst und die Kristallite der Hartsegment bildenden Phase orientieren sich in Richtung der auf sie einwirkenden Kraft. Das Dehnungsfixierungsverhältnis Rf liegt ab dem ersten Zyklus bei etwa 90 %. In Tab. sind die experimentell erhaltenen Resultate aus den dehnungsgeregelten, zyklischen, thermomechanischen Zyklen der extrudierten Polymermischungen zu finden. Rf(1 -5) gibt den Mittelwert aus allen Zyklen (N = 1 -5), und Rr(2-4) den Mittelwert aus den Zyklen N = 2 bis N = 4 an. Alle Zyklen werden mit einer maximalen Dehnung εm von 100 % durchgeführt. Tab. 10: Formgedächtniseigenschaften der binären, extrudierten Polymermischungen im dehnungsgeregelten thermomechanischen Standardexperiment (vgl. Kap.). Rf(1-5) ist das durchschnittliche Dehnungsfixierungsverhältnis aus den Zyklen 1 bis 5, Rr(1), bzw. Rr(2) ist das Deh- nungsrückstellungsverhältnis im 1. bzw. 2. Zyklus, Rr(2-4) ist das ge- mittelte Dehnungsrückstellungsverhältnis aus den Zyklen N = 2 bis N = 4.
Rf (l- 5)
Polymermischung RrO) Rr(2) Rr(2-4)
% % % % %
PDA(42)/PCA(47)[17/27] 100 86,6 + 0,5 63,8 91 ,7 95,2 + 2,8
PDA(42)/PCA(47)[24/18] 100 75,8 + 3,1 67,7 93,9 95,1 + 1 ,3
PDA(42)/PCA(47)[26/16] 100 73,2 + 2,7 70,1 92,8 95,2 + 2,1
PDA(42)/PCA(68)[13/46] 100 98,4 + 0,4 59,5 82,2 84,0 + 3,1
PDA(42)/PCA(68)[17/42] 100 95,7 + 0,3 58,9 90,1 92,4 ±2,0
PDA(42)/PCA(68)[23/29] 100 89,8 + 1 ,2 68,2 92,2 96,1 + 3,5
PDA(42)/PCA(68)[29/19] 100 87,4 + 0,3 63,9 94,5 96,6 + 3,0
PDA(50)/PCA(47)[28/23] 100 86,3 + 5,1 62,5 96,2 96,6 ± 0,9
PDA(50)/PCA(47)[29/21] 100 79,6 + 0,6 71 ,5 97,3 98,7 + 3,6
PDA(50)/PCA(47)[37/14] 100 73,8 + 5,4 67,7 93,9 95,8 + 3,5
PDA(50)/PCA(68)[10/49] 100 99,1 + 1,2 58,6 83,4 88,9 ±4,8
PDA(50)/PCA(68)[23/40] 100 92,9 + 0,1 61,6 93,6 95,0 ± 1,7
PDA(50)/PCA(68)[30/27] 100 89,7 + 1 ,8 60,0 94,2 96,0 + 2,3
PDA(50)/PCA(68)[37/ 7] 100 78,4 + 2,8 64,4 94,1 97,6 + 2,5 Rr des ersten Zyklus Rr(1 ) liegt für alle Polymermischungen unterhalb des Deh- nungsrückstellungsverhältnisses des zweiten Zyklus Rr(2). Rr für den ersten Zyklus liegt zwischen 59 % und 70 %, das für den zweiten zwischen 82 % und 95 %. Die Werte von Rr steigen innerhalb einer Mischungsreihe mit steigendem Hartsegmentanteil an.
Die leichte Zunahme von Rr innerhalb der einzelnen Mischungsreihen bestätigt, dass das Hartsegment die permanente Form des Materials bestimmt. Je größer der Anteil an Hartsegment ist, desto höher ist der Anteil an physikalischen Vernetzungsstellen und damit die Wiederherstellung des Materials.
Das Dehnungsfixierungsverhältnis der Materialien sollte vom Anteil an Schaltsegment abhängen; je höher dieser Anteil ist, desto besser sollte die Fixierung der temporären Form möglich sein.
Erwartungsgemäß nimmt Rf mit steigendem Anteil an Schaltsegment bildenden Blöcken von 73 % auf 99 % zu. Die Fixierung der temporären Form findet durch die Kristallisation des Schaltsegments während des Abkühlvorgangs statt. Je größer der Schaltsegmentgehalt ist, desto höher ist die zu erwartende Kristallinität, die eine physikalische Vernetzung des Materials bewirkt. So wird die Fixierung der temporären Form verbessert.

Claims

Patentansprüche
1. Polymermischung mit Form-Gedächtnis-Eigenschaft umfassend zwei unterschiedliche Blockcopolymere jeweils enthaltend mindestens ein Hartsegment und mindestens ein Weichsegment, wobei die beiden unterschiedlichen Blockcopolymere das gleiche Weichsegment umfassen und sich lediglich im Hinblick auf das Hartsegment unterscheiden.
2. Polymermischung nach Anspruch 1 , wobei die Hart- und Weichsegmente ausgewählt sind unter Poiyestersegmenten und Polyetherestersegmenten.
3. Polymermischung nach Anspruch 1 oder' 2, wobei die Hart- und Weichsegmente durch Urethanbindungen miteinander verknüpft sind.
4. Polymermischung nach einem der Ansprüche 1 bis 3, wobei die Hart- und Weichsegmente nicht aromatisch sind.
5. Polymermischung nach einem der Ansprüche 1 bis 4, wobei das Weichsegment ausgewählt ist aus der Gruppe bestehend aus Copoly-epsilon-caprolacton-glykolid und Polyalkylenadipinat.
6. Polymermischung nach einem der Ansprüche 1 bis 5, wobei das Hartsegment ausgewählt ist unter Poly-p-dioxanon und Poly-epsilon-caprolacton.
7. Polymermischung nach einem der Ansprüche 1 bis 6, wobei die beiden Blockcopolymere selbst keine Form-Gedächtnis-Eigenschaften aufweisen.
8. Verfahren zur Herstellung einer Polymermischung nach einem der Ansprüche 1 bis 7, wobei die beiden Blockcopolymere entweder in Lösung miteinander vermischt werden, worauf die Mischung entweder durch Lösungsmittelverdampfung oder durch Ausfällung erhalten wird, oder wobei die beiden Blockcopolymere in der Schmelze gemischt werden, bevorzugt unter Einsatz eines Extruders.
9. Blockcopolymer, umfassend mindestens ein Hartsegment und mindestens ein Weichsegment, wobei das Hartsegment ausgewählt ist unter Poly-bpdioxanon und Poly-epsilon-caprolacton und wobei das Weichsegment ausgewählt ist unter Copoly- epsilon-caprolacton-glykolid und Polyalkylenadipinat.
10. Verfahren zur Herstellung eines Blockcopolymer nach Anspruch 9, umfassend das Bereitstellen von Vorläufersubstanzen für das Hartsegment bzw. das Weichsegment, bevorzugt in der Form von Diolen, und Umsetzen der Vorläufersubstanzen unter Bildung eines Polymeren, bevorzugt unter Einsatz eines Diisocyanats zur Verbindung der einzelnen Segmente durch Urethanbindungen.
11. Verwendung von zwei unterschiedlichen Copolymeren nach Anspruch 9 zur Herstellung von Polymermischungen nach einem der Ansprüche 1 bis 7.
12. Polymermischung mit Form-Gedächtnis-Eigenschaft, umfassend zwei unterschiedliche Blockcopolymere, jeweils enthaltend mindestens ein Hartsegment und mindestens ein Weichsegment, wobei die Segmente der jeweiligen Blockcopolymere durch Urethansegmente miteinander verbunden sind.
PCT/EP2004/003066 2003-04-10 2004-03-23 Blends mit form-gedächtnis-eigenschaften WO2004090042A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006504820A JP2006523246A (ja) 2003-04-10 2004-03-23 形状記憶特性を有するブレンド
CA2521721A CA2521721C (en) 2003-04-10 2004-03-23 Blends with shape memory characteristics
EP04722543A EP1611205B1 (de) 2003-04-10 2004-03-23 Blends mit form-gedächtnis-eigenschaften
US10/552,654 US20070088135A1 (en) 2003-04-10 2004-03-23 Blends with shape memory characteristics
DE502004008484T DE502004008484D1 (de) 2003-04-10 2004-03-23 Blends mit form-gedächtnis-eigenschaften
BRPI0409361-5A BRPI0409361A (pt) 2003-04-10 2004-03-23 combinações com caracterìsticas de memória de forma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316573A DE10316573A1 (de) 2003-04-10 2003-04-10 Blends mit Form-Gedächtnis-Eigenschaften
DE10316573.8 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004090042A1 true WO2004090042A1 (de) 2004-10-21

Family

ID=33103316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003066 WO2004090042A1 (de) 2003-04-10 2004-03-23 Blends mit form-gedächtnis-eigenschaften

Country Status (9)

Country Link
US (1) US20070088135A1 (de)
EP (1) EP1611205B1 (de)
JP (1) JP2006523246A (de)
CN (1) CN100447202C (de)
AT (1) ATE414742T1 (de)
BR (1) BRPI0409361A (de)
CA (1) CA2521721C (de)
DE (2) DE10316573A1 (de)
WO (1) WO2004090042A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1790694A1 (de) * 2005-11-28 2007-05-30 Mnemoscience GmbH Mischungen von Form-Gedächtnis-Polymeren mit thermoplastischen Polymeren
EP1818348A1 (de) * 2006-02-10 2007-08-15 Mnemoscience GmbH Polymermaterialien für nützliche medizinische Anwendungen
WO2007104757A1 (de) 2006-03-14 2007-09-20 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit polyester- und polyethersegementen und verfahren zu seiner herstellung und programmierung
WO2007131893A1 (de) * 2006-05-15 2007-11-22 Gkss- Forschungszentrum Geesthacht Gmbh Multiblockcopolymere mit formgedächtniseigenschaften
WO2008101760A1 (de) 2007-02-22 2008-08-28 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur einschritt-programmierung von dreiformenkunststoffen
EP2075279A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Herstellung von Formspeicherpolymerartikeln mittels Formvorgängen
EP2075272A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Formspeicherpolymernetzwerke aus vernetzbaren Thermoplasten
EP2075273A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Mehrfach-Formspeicherpolymernetzwerke
DE102008004574A1 (de) * 2008-01-09 2009-07-16 Aesculap Ag Chirurgisches Nahtmaterial mit Verankerungselementen
US7794494B2 (en) 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
US7858891B2 (en) 2006-04-24 2010-12-28 Volkswagen Group Of America, Inc. Shape-changing control panel button based on activation/deactivation
WO2011060970A1 (de) * 2009-11-18 2011-05-26 Bundesanstalt für Materialforschung und -Prüfung (BAM) Sicherheitsetikett zur kennzeichnung von waren
US7976936B2 (en) 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
DE102011050569A1 (de) * 2011-05-23 2012-11-29 BAM Bundesanstalt für Materialforschung und -prüfung Funktionaler Flüssigkeitsbehälter

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US5931855A (en) 1997-05-21 1999-08-03 Frank Hoffman Surgical methods using one-way suture
US7056331B2 (en) * 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6773450B2 (en) * 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
DE102004016317B4 (de) * 2004-03-30 2007-09-06 Bernhard Förster Gmbh Kieferorthopädische Vorrichtung
SG164370A1 (en) 2004-05-14 2010-09-29 Quill Medical Inc Suture methods and devices
US20080085946A1 (en) * 2006-08-14 2008-04-10 Mather Patrick T Photo-tailored shape memory article, method, and composition
US20080255612A1 (en) * 2007-04-13 2008-10-16 Angiotech Pharmaceuticals, Inc. Self-retaining systems for surgical procedures
DE102007022362A1 (de) 2007-05-04 2008-11-06 Gkss-Forschungszentrum Geesthacht Gmbh Biologisch abbaubarer Polymerblend sowie aus dem Polymerblend hergestellter Artikel
DE102007037063B4 (de) 2007-08-03 2012-12-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Verfahren zur Herstellung eines Multiblockcopolymers
US20090035350A1 (en) * 2007-08-03 2009-02-05 John Stankus Polymers for implantable devices exhibiting shape-memory effects
US8318889B2 (en) * 2007-08-17 2012-11-27 Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. Organic polyurethane shape memory material and a preparation method thereof
WO2009042841A2 (en) * 2007-09-27 2009-04-02 Angiotech Pharmaceuticals, Inc. Self-retaining sutures including tissue retainers having improved strength
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
EP2222233B1 (de) 2007-12-19 2020-03-25 Ethicon, LLC Selbsthaltendes chirurgisches nahtmaterial mit wärmekontaktvermittelten halterungen
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
ES2602570T3 (es) 2008-01-30 2017-02-21 Ethicon Llc Aparato y método para formar suturas de auto-retención
EP2249712B8 (de) 2008-02-21 2018-12-26 Ethicon LLC Verfahren und gerät zur anhebung von halteelementen an selbsttragenden nähten
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
US9259515B2 (en) 2008-04-10 2016-02-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polyurethanes with grafted radiopaque groups
CN102056552B (zh) 2008-04-15 2013-07-03 伊西康有限责任公司 具有双向保持器或单向保持器的自保持缝合线
CN101643573B (zh) * 2008-08-07 2011-12-07 财团法人工业技术研究院 具有形状记忆特性材料及其制备方法
MX339174B (es) 2008-11-03 2016-05-12 Ethicon Llc Longitud de sutura autorretenible y metodo y dispositivo para su uso.
WO2011090628A2 (en) 2009-12-29 2011-07-28 Angiotech Pharmaceuticals, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
CA2798373C (en) 2010-05-04 2018-10-23 Ethicon, Llc Self-retaining systems having laser-cut retainers
EP3155978B1 (de) 2010-06-11 2022-04-13 Cilag GmbH International Nahtausgabewerkzeug für endoskopische und robotergestützte chirurgie
WO2012061658A2 (en) 2010-11-03 2012-05-10 Angiotech Pharmaceuticals, Inc. Drug-eluting self-retaining sutures and methods relating thereto
US9675341B2 (en) 2010-11-09 2017-06-13 Ethicon Inc. Emergency self-retaining sutures and packaging
US8734703B2 (en) 2010-11-11 2014-05-27 Spirit Aerosystems, Inc. Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
US8815145B2 (en) 2010-11-11 2014-08-26 Spirit Aerosystems, Inc. Methods and systems for fabricating composite stiffeners with a rigid/malleable SMP apparatus
US9073240B2 (en) 2010-11-11 2015-07-07 Spirit Aerosystems, Inc. Reconfigurable shape memory polymer tooling supports
US8951375B2 (en) 2010-11-11 2015-02-10 Spirit Aerosystems, Inc. Methods and systems for co-bonding or co-curing composite parts using a rigid/malleable SMP apparatus
US20120135190A1 (en) * 2010-11-30 2012-05-31 Gm Global Technology Operations, Inc. Article Having a Selectively Texturable Surface and Method of Using
JP6125488B2 (ja) 2011-03-23 2017-05-10 エシコン・エルエルシーEthicon LLC 自己保持可変ループ縫合材
US20130172931A1 (en) 2011-06-06 2013-07-04 Jeffrey M. Gross Methods and devices for soft palate tissue elevation procedures
WO2014206812A1 (en) * 2013-06-28 2014-12-31 Helmholtz-Zentrum Geesthacht Zentrum Für Material- Und Küstenforschung Method of preparing a bidirectional shape-memory actuator and method of its use
CN104592453B (zh) * 2015-01-13 2017-04-12 浙江大学 具有双向可逆形状记忆效应的聚合物及其制备方法
JP6759415B1 (ja) * 2019-05-23 2020-09-23 大日精化工業株式会社 ポリウレタン樹脂及び物品
CN110444664A (zh) * 2019-08-13 2019-11-12 昆山维信诺科技有限公司 一种柔性衬底、显示面板及其显示装置
CN113307968B (zh) * 2021-07-01 2023-03-14 郑州大学 一种具有形状记忆性的聚酰胺弹性体及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179956A (ja) * 1987-01-22 1988-07-23 Asahi Chem Ind Co Ltd 形状記憶性樹脂組成物
EP0344912A2 (de) * 1988-06-02 1989-12-06 Minnesota Mining And Manufacturing Company Keine Fäden ziehende, feuchtigkeitshärtende Zusammensetzungen
JPH02239930A (ja) * 1989-03-14 1990-09-21 Toray Ind Inc 自己発熱性を有する形状記憶性樹脂成形体
JPH02240135A (ja) * 1989-03-14 1990-09-25 Toray Ind Inc 形状記憶性樹脂
JPH04185772A (ja) * 1990-11-17 1992-07-02 Toray Ind Inc 樹脂加工布帛
US5446109A (en) * 1993-02-23 1995-08-29 Teijin Limited Polyamide/aliphatic polyester block copolymer, process for the production thereof, and blend containing the same
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US5665831A (en) * 1994-08-10 1997-09-09 Peter Neuenschwander Biocompatible block copolymer
KR20020014054A (ko) * 2000-08-16 2002-02-25 정몽준 형상기억 수지조성물과 이의 사용방법
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645942B2 (de) * 1973-01-18 1981-10-29
US4788979A (en) * 1986-09-23 1988-12-06 American Cyanamid Company Bioabsorbable coating for a surgical article
US5594076A (en) * 1991-09-24 1997-01-14 The Pennsylvania Research Foundation Hydrodegradable polyesters
JP2972913B2 (ja) * 1998-01-20 1999-11-08 工業技術院長 生分解性形状記憶高分子成形体の形状記憶方法と形状復元方法
HU222543B1 (hu) * 1998-02-23 2003-08-28 Massachusetts Institute Of Technology Biológiai úton lebomlani képes emlékező polimerek
IL137090A (en) * 2000-06-29 2010-04-15 Pentech Medical Devices Ltd Polymeric stent
US7377939B2 (en) * 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
JPS63179956A (ja) * 1987-01-22 1988-07-23 Asahi Chem Ind Co Ltd 形状記憶性樹脂組成物
EP0344912A2 (de) * 1988-06-02 1989-12-06 Minnesota Mining And Manufacturing Company Keine Fäden ziehende, feuchtigkeitshärtende Zusammensetzungen
JPH02239930A (ja) * 1989-03-14 1990-09-21 Toray Ind Inc 自己発熱性を有する形状記憶性樹脂成形体
JPH02240135A (ja) * 1989-03-14 1990-09-25 Toray Ind Inc 形状記憶性樹脂
JPH04185772A (ja) * 1990-11-17 1992-07-02 Toray Ind Inc 樹脂加工布帛
US5446109A (en) * 1993-02-23 1995-08-29 Teijin Limited Polyamide/aliphatic polyester block copolymer, process for the production thereof, and blend containing the same
US5665831A (en) * 1994-08-10 1997-09-09 Peter Neuenschwander Biocompatible block copolymer
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
KR20020014054A (ko) * 2000-08-16 2002-02-25 정몽준 형상기억 수지조성물과 이의 사용방법

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; May 1996 (1996-05-01), NEUENSCHWANDER P ET AL: "Cell- and tissue-compatible implant materials/synthesis", XP002288361, Database accession no. EIX97043434106 *
DATABASE WPI Section Ch Week 198835, Derwent World Patents Index; Class A12, AN 1988-246781, XP002288365 *
DATABASE WPI Section Ch Week 199044, Derwent World Patents Index; Class A23, AN 1990-332399, XP002288366 *
DATABASE WPI Section Ch Week 199044, Derwent World Patents Index; Class A28, AN 1990-332285, XP002288364 *
DATABASE WPI Section Ch Week 199233, Derwent World Patents Index; Class A23, AN 1992-273010, XP002288363 *
DATABASE WPI Section Ch Week 200268, Derwent World Patents Index; Class A23, AN 2002-633362, XP002288362 *
OHKI T ET AL: "Mechanical and shape memory behavior of composites with shape memory polymer", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, vol. 35, no. 9, September 2004 (2004-09-01), pages 1065 - 1073, XP004515337, ISSN: 1359-835X *
TRANS ANNU MEET SOC BIOMATER INT BIOMATER SYMP; TRANSACTIONS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOMATERIALS IN CONJUNCTION WITH THE INTERNATIONAL BIOMATERIALS SYMPOSIUM 1996 SOC FOR BIOMATERIALS, ST. LOUIS PARK, MN, USA, vol. 2, 1996, pages 403 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976936B2 (en) 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US7794494B2 (en) 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
US8784465B2 (en) 2002-10-11 2014-07-22 Boston Scientific Scimed, Inc. Implantable medical devices
US9115245B2 (en) 2002-10-11 2015-08-25 Boston Scientific Scimed, Inc. Implantable medical devices
WO2007060019A3 (en) * 2005-11-28 2007-08-23 Minemoscience Gmbh Blends of shape memory polymers with thermoplastic polymers
EP1790694A1 (de) * 2005-11-28 2007-05-30 Mnemoscience GmbH Mischungen von Form-Gedächtnis-Polymeren mit thermoplastischen Polymeren
WO2007060019A2 (en) * 2005-11-28 2007-05-31 Minemoscience Gmbh Blends of shape memory polymers with thermoplastic polymers
WO2007090686A1 (en) * 2006-02-10 2007-08-16 Mnemoscience Gmbh Polymer material useful for medical devices
EP1818348A1 (de) * 2006-02-10 2007-08-15 Mnemoscience GmbH Polymermaterialien für nützliche medizinische Anwendungen
JP2009526108A (ja) * 2006-02-10 2009-07-16 ネモサイエンス、ゲーエムベーハー 医療機器に有用なポリマー材料
US8080629B2 (en) 2006-02-10 2011-12-20 Gkss-Forschungszentrum Geesthacht Gmbh Polymer material useful for medical devices
WO2007104757A1 (de) 2006-03-14 2007-09-20 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit polyester- und polyethersegementen und verfahren zu seiner herstellung und programmierung
US7858891B2 (en) 2006-04-24 2010-12-28 Volkswagen Group Of America, Inc. Shape-changing control panel button based on activation/deactivation
WO2007131893A1 (de) * 2006-05-15 2007-11-22 Gkss- Forschungszentrum Geesthacht Gmbh Multiblockcopolymere mit formgedächtniseigenschaften
WO2008101760A1 (de) 2007-02-22 2008-08-28 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur einschritt-programmierung von dreiformenkunststoffen
US8641951B2 (en) 2007-02-22 2014-02-04 Gkss-Forschungszentrum Geesthact Gmbh Method for the one-step programming of the three-shape plastics
EP2075273A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Mehrfach-Formspeicherpolymernetzwerke
EP2075272A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Formspeicherpolymernetzwerke aus vernetzbaren Thermoplasten
EP2075279A1 (de) 2007-12-28 2009-07-01 Mnemoscience GmbH Herstellung von Formspeicherpolymerartikeln mittels Formvorgängen
DE102008004574A1 (de) * 2008-01-09 2009-07-16 Aesculap Ag Chirurgisches Nahtmaterial mit Verankerungselementen
WO2011060970A1 (de) * 2009-11-18 2011-05-26 Bundesanstalt für Materialforschung und -Prüfung (BAM) Sicherheitsetikett zur kennzeichnung von waren
DE102011050569A1 (de) * 2011-05-23 2012-11-29 BAM Bundesanstalt für Materialforschung und -prüfung Funktionaler Flüssigkeitsbehälter
DE102011050569B4 (de) * 2011-05-23 2013-04-18 BAM Bundesanstalt für Materialforschung und -prüfung Funktionaler Flüssigkeitsbehälter

Also Published As

Publication number Publication date
CN1771294A (zh) 2006-05-10
EP1611205A1 (de) 2006-01-04
CA2521721C (en) 2010-05-18
DE502004008484D1 (de) 2009-01-02
ATE414742T1 (de) 2008-12-15
CN100447202C (zh) 2008-12-31
EP1611205B1 (de) 2008-11-19
CA2521721A1 (en) 2004-10-21
BRPI0409361A (pt) 2006-04-25
US20070088135A1 (en) 2007-04-19
JP2006523246A (ja) 2006-10-12
DE10316573A1 (de) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1611205B1 (de) Blends mit form-gedächtnis-eigenschaften
DE69912956T2 (de) Biomedizinisches polyurethan, seine herstellung und verwendung
EP1362879B1 (de) Interpenetrierende Netzwerke
EP2342066B1 (de) Polymernetzwerk mit drei-formengedächtnis-effekt und dazugehörige programmierverfahren
DE102006012169B4 (de) Formgedächtnispolymer mit Polyester- und Polyethersegmenten, Verfahren zu seiner Herstellung und Formprogrammierung und Verwendung
DE10217350C1 (de) Polyesterurethane
DE60102209T2 (de) Thermoplastische Polyurethane
EP1660552B1 (de) Amorphe polyesterurethan-netzwerke mit form-gedächtnis-eigenschaften
EP2238190B1 (de) Verfahren zur programmierung eines formgedächtnispolymers unter festlegung der schalttemperatur durch wahl der programmierungstemperatur
WO2017108920A1 (de) Tpu schrumpfmaterial
EP4010390A1 (de) Verfahren zur herstellung von thermoplastisch verarbeitbaren polyurethanpolymeren
EP2726549B1 (de) Durch spritzguss hergestellter artikel
DE4444948C2 (de) Teilkristalline Block-Copolyesterpolyamide und Verwendung
DE3127464A1 (de) Linear segmentierte polyurethane
DE4428458A1 (de) Cycloaliphatische thermoplastische Polyurethanelastomere
DE2432090C2 (de) Elastische Formmasse auf Polyurethanbasis
EP2247637B1 (de) Thermoplastisches polyurethan mit verminderter belagsbildung
EP3360913A1 (de) Teilkristalline isocyanatfreie polyhydroxyurethane mit thermomechanisch programmier- und schaltbaren eigenschaften
WO2008068072A1 (de) Verfahren zur herstellung eines alternierenden multiblockcopolymers mit formgedächtnis
EP2024418B1 (de) Multiblockcopolymere mit formgedächtniseigenschaften
DE202021106472U1 (de) Hochschlagfeste Polylactid-Blends
EP3812410A1 (de) Polyurethanpolymer mit einer härte von &#34;kleiner oder gleich als&#34; 60 shore a und guter abriebfestigkeit
DE2850608A1 (de) Hydrolyse- und mikrobenbestaendige, thermoplastisch verarbeitbare polyurethan- elastomere, deren herstellung und verwendung als beschichtungsmassen und zur herstellung von formkoerpern
EP3812409A1 (de) Polyurethanpolymer mit einer härte von kleiner oder gleich 60 shore a
DE1595594A1 (de) Verfahren zur Herstellung von insbesondere zur Schmelzextrusion von Faeden geeigneten Urethan-Polymeren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2521721

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2580/CHENP/2005

Country of ref document: IN

Ref document number: 20048095720

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006504820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004722543

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004722543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007088135

Country of ref document: US

Ref document number: 10552654

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0409361

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10552654

Country of ref document: US