WO2002093674A1 - Fine pore enthalpy exchange barrier for a fuel cell power plant - Google Patents

Fine pore enthalpy exchange barrier for a fuel cell power plant Download PDF

Info

Publication number
WO2002093674A1
WO2002093674A1 PCT/US2001/051640 US0151640W WO02093674A1 WO 2002093674 A1 WO2002093674 A1 WO 2002093674A1 US 0151640 W US0151640 W US 0151640W WO 02093674 A1 WO02093674 A1 WO 02093674A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier
fuel cell
exhaust
transfer medium
plant
Prior art date
Application number
PCT/US2001/051640
Other languages
French (fr)
Inventor
Albert P. Grasso
Kazuo Saito
Original Assignee
International Fuel Cells, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Fuel Cells, Llc filed Critical International Fuel Cells, Llc
Priority to EP01273895A priority Critical patent/EP1352438A4/en
Publication of WO2002093674A1 publication Critical patent/WO2002093674A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • A61L2300/604Biodegradation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/622Microcapsules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to fuel cell power plants that are suited for usage in transportation vehicles, portable power plants, or as stationary power plants, and the invention especially relates to a fine pore enthalpy exchange barrier for a fuel cell power plant that exchanges heat and water exiting the plant back into the plant to enhance water balance and energy efficiency of the plant.
  • Fuel cell power plants are well-known and are commonly used to produce electrical energy from reducing and oxidizing fluids to power electrical apparatus such as apparatus on-board space vehicles, or on-site generators for buildings.
  • a plurality of planar fuel cells are typically arranged in a stack surrounded by an electrically insulating frame structure that defines manifolds for directing flow of reducing, oxidant, coolant and product fluids.
  • Each individual cell generally includes an anode electrode and a cathode electrode separated by an electrolyte.
  • a reducing fluid such as hydrogen is supplied to the anode electrode, and an oxidant such as oxygen or air is supplied to the cathode electrode.
  • the electrons are conducted to an external load circuit and then returned to the cathode electrode, while the hydrogen ions transfer through the electrolyte to the cathode electrode, where they react with the oxidant and electrons to produce water and release thermal energy.
  • the anode and cathode electrodes of such fuel cells are separated by different types of electrolytes depending on operating requirements and limitations of the working environment of the fuel cell.
  • One such electrolyte is a proton exchange membrane (“PEM”) electrolyte, which consists of a solid polymer well-known in the art.
  • PEM cells have substantial advantages over cells with liquid acid or alkaline electrolytes in satisfying specific operating parameters because the membrane of the PEM provides a barrier between the reducing fluid and oxidant that is more tolerant to pressure differentials than a liquid electrolyte held by capillary forces within a porous matrix. Additionally, the PEM electrolyte is fixed, and cannot be leached from the cell, and the membrane has a relatively stable capacity for water retention.
  • An operational limit on performance of a fuel cell is defined by an ability of the cell to maintain the water balance as electrical current drawn from the cell into the external load circuit varies and as an operating environment of the cell varies.
  • any water exiting the plant through a cathode exhaust stream of gaseous oxidant or through an anode exhaust stream of gaseous reducing fluid must be balanced by water produced electrochemically at the cathode and retained within the plant.
  • An additional requirement for maintaining water self-sufficiency in fuel cell power plants is associated with components necessary to process hydrocarbon fuels, such as methane, natural gas, gasoline, methanol, diesel fuel, etc., into an appropriate reducing fluid that provides a hydrogen rich fluid to the anode electrode.
  • Such fuel processing components of a fuel cell power plant typically include a boiler that generates steam; a steam duct into which the hydrocarbon fuel is injected; and an autothermal reformer that receives the steam and fuel mixture along with a small amount of a process oxidant such as air and transforms the mixture into a hydrogen- enriched reducing fluid appropriate for delivery to the anode electrode of the fuel cell.
  • the fuel processing components or system water and energy requirements are part of an overall water balance and energy requirement of the fuel cell power plant. Water made into steam in the boiler must be replaced by water recovered from the plant such as by condensing heat exchangers in the cathode exhaust stream and associated piping.
  • a common approach to enhancing water recovery and retention is use of condensing heat exchangers in exhaust streams of the power plant wherein the exhaust streams are cooled to a temperature at or below their dew points to precipitate liquid water from the exhaust streams so that the liquid may be returned to the power plant.
  • An example of a PEM fuel cell power plant using a condensing heat exchanger is shown in U.S. Patent No. 5,573,866 that issued on November 12, 1996 to Van Dine et al.
  • Many other fuel cell power plants that use one or more condensing heat exchangers are well-known in the art, and they typically use ambient air streams as a cooling fluid passing through the exchanger to cool the plant exhaust streams.
  • the heat exchanger is used to cool a cathode exhaust stream, which upon leaving a cathode chamber includes evaporated product water and some portion of methanol, the reducing fluid, that has passed through the PEM.
  • the condensing heat exchanger passes the cathode exhaust stream in heat exchange relationship with a stream of cooling ambient air, and then directs condensed methanol and water indirectly through a piping system back to an anode side of the cell.
  • a fine pore enthalpy exchange barrier for use with a fuel cell power plant.
  • the barrier includes a support matrix that defines pores and a liquid transfer medium that fills the pores creating a gas barrier.
  • An inlet surface of the fine pore enthalpy exchange barrier is positioned in contact with a process oxidant inlet stream entering a fuel cell power plant, and an opposed exhaust surface of the barrier is positioned in contact with an exhaust stream exiting the plant so that water and heat exchange from the exhaust stream directly into the process oxidant inlet stream.
  • the support matrix defines pores having a pore-size range of about 0.1 - 100 microns; the matrix is hydrophilic so that it is capable of being wetted by the liquid transfer medium resulting in a bubble pressure that is greater than 0.2 pounds per square inch (“p.s.i.”) (1.4 Kpa); and, the matrix is chemically stable in the presence of the liquid transfer medium.
  • p.s.i. pounds per square inch
  • a first exemplary group of support matrixes includes rigid support matrixes, such as: rigid, porous, graphite layers; rigid, porous, graphite-polymer layers; rigid, inorganic-fiber thermoset polymer layers; glass fiber layers; synthetic-fiber filter papers treated to be wettable; porous metal layers; perforated metal layers wherein such perforations may include particulate matter secured within the perforations defining an acceptable fine pore-size range; and a plurality of differing layers of those support matrixes.
  • rigid support matrixes such as: rigid, porous, graphite layers; rigid, porous, graphite-polymer layers; rigid, inorganic-fiber thermoset polymer layers; glass fiber layers; synthetic-fiber filter papers treated to be wettable; porous metal layers; perforated metal layers wherein such perforations may include particulate matter secured within the perforations defining an acceptable fine pore-size range; and a plurality of differing layers of those support matrixes.
  • a second exemplary group of support matrixes includes flexible support matrixes, such as: inorganic fiber layers, papers or felts with or without compatible polymer binders; natural fiber layers, papers or felts with or without compatible polymer binders; organic fiber layers, papers or felts with or without compatible polymer binders; porous compatible plastics with or without wettability treatments; mixtures of carbon blacks and compatible polymer binders with or without reinforcing glass fibers; and, a plurality of differing layers of these flexible support matrixes with or without compatible binders.
  • compatible it is meant that the above listed materials are chemically compatible with the liquid transfer medium.
  • mesh layers may be positioned adjacent the opposed inlet and exhaust surfaces of the fine pore enthalpy exchange barrier, along with plastic flow guides adjacent the mesh layers to support the mesh layers and to facilitate flow of the oxidant inlet stream and plant exhaust stream into contact respectively with the inlet and exhaust surfaces of the enthalpy exchange barrier.
  • Some of the flexible support matrixes may include only the plastic flow guides positioned adjacent the inlet and exhaust surfaces of the enthalpy exchanger barriers.
  • the support matrix has a high thermal conductivity. This helps transfer heat axially from the exhaust stream to the process oxidant inlet stream of ambient air to thereby minimize freezing of an oxidant inlet when operating at very low ambient temperatures.
  • the liquid transfer medium may include water, aqueous salt solutions, aqueous acid solutions, and organic antifreeze water solutions, wherein the transfer medium is capable of sorbing a fluid substance consisting of polar molecules such as water from a fluid stream consisting of polar and non-polar molecules.
  • the fine pore enthalpy exchange barrier may be disposed within a structure of a direct mass and heat transfer device in fluid communication with process oxidant inlet and plant exhaust streams so that the structure and barrier cooperate to restrict bulk mixing of the inlet and exhaust streams.
  • the structure may define manifolds, passageways, and seals to direct the inlet and exhaust streams through the device and into contact with the opposed inlet and exhaust surfaces of the fine pore enthalpy exchange barrier.
  • the fine pore enthalpy exchange barrier includes a support matrix having a multi-layer, dual pore-size configuration, wherein a central layer is surrounded by opposed exterior layers and the exterior layers define pores having a larger pore-size range than pores defined by the central layer; the central layer defines less than 25 per cent (hereafter "%") of the total void volume of the support matrix; and the matrix is filled to greater than 35% of its total void volume with a liquid transfer medium so that the central layer is saturated with the transfer medium.
  • the central layer thereby provides a gas barrier between the inlet and opposed exhaust surfaces of the support matrix.
  • the liquid transfer medium may therefore move between the central layer and the exterior layers without having to move out of the fine pore enthalpy exchange barrier into the inlet oxidant stream or exhaust stream.
  • a transfer medium that is a mixture of a non- volatile compound and water at operating conditions of the mass and heat transfer device in that embodiment, heated water within the exhaust stream may transfer directly into the inlet stream without loss of the liquid transfer medium from the support matrix as operating conditions change.
  • An additional embodiment may include a transfer medium circulating loop, wherein the transfer medium is circulated through the support matrix, and replenished when necessary, to further support maintenance of a gas barrier by the liquid transfer medium within the support matrix so that the exhaust stream does not mix directly with the inlet stream.
  • a dry oxidant inlet stream resulting for example from operation of the fuel cell power plant in a dry climate, will thus result in more rapid evaporation of water from the barrier into the oxidant inlet stream. Therefore the fine pore enthalpy exchange barrier automatically increases humidification and heating of the oxidant inlet stream as the stream becomes drier.
  • the fine pore enthalpy exchange barrier facilitates efficient transfer of water and heat from the plant exhaust stream into the oxidant inlet stream at a wide range of temperatures, without need for pre-heating the mass and heat transfer device housing the barrier; and also protects the enthalpy exchange device from mechanical damage due to freezing of water.
  • Figure 1 is a schematic representation of a fuel cell power plant utilizing a fine pore enthalpy exchange barrier within a mass and heat transfer device of the plant.
  • Figure 2 is a fragmentary, cross-sectional representation of a first embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant.
  • Figure 3 is a fragmentary, cross-sectional representation of a second embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant.
  • Figure 4 is a fragmentary, cross-sectional representation of a third embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant.
  • Figure 5 is a fragmentary, cross-sectional representation of a fourth embodiment of a fine pore enthalpy exchanger barrier for a fuel cell power plant.
  • Figure 6 is a fragmentary, cross-sectional representation of a fifth embodiment of a fine pore enthalpy exchanger barrier for a fuel cell power plant.
  • a fuel cell power plant is shown schematically in FIG. 1 and generally designated by reference numeral 10 as an appropriate working environment for a fine pore enthalpy exchange barrier 12 of the present invention.
  • the fuel cell power plant 10 includes at least one fuel cell means for producing electrical energy from a reducing fluid and an oxidant stream, such as fuel cell 14.
  • the fuel cell 14 has an electrolyte 16 such as a proton exchange membrane (“PEM”), an anode electrode 18 and a cathode electrode 20 on opposed sides of the electrolyte 16.
  • PEM proton exchange membrane
  • the fuel cell 14 may be combined with other virtually identical fuel cells (not shown) in a well-known manner to form a cell stack assembly enclosed within a frame (not shown) that defines manifolds for directing a reducing fluid stream and process oxidant stream into and out of the fuel cell 14 in a manner well-known in the art.
  • a reducing fluid inlet 22 directs a hydrogen rich reducing fluid stored in a fuel supply 24 (labeled "FUEL" in FIG. 1 to facilitate understanding) into the cell 14 so that the reducing fluid passes through an anode flow field 26 defined adjacent the anode electrode 18.
  • an oxidant inlet line 28 directs an oxidant stream such as air from an oxidant supply 30 (labeled "OXIDANT" in FIGS. 1 and 2) into the cell 14 through oxidant manifolding (not shown, but well-known in the art) so that the oxidant passes through a cathode flow field 32 defined adjacent the cathode electrode 20.
  • the fuel cell 14 may also include a coolant plate means for removing heat from the fuel cell 12, wherein the coolant plate means may be a porous or sealed coolant plate 34 adjacent the cathode flow field 32.
  • the coolant plate is described as sealed, it is meant that a coolant fluid in, or passing through the sealed coolant plate 34 cannot pass into the cathode flow field 32, or an anode flow field of an adjacent second fuel cell (not shown).
  • the coolant plate 34 as porous, in contrast, it is meant that a coolant fluid in, or passing through the coolant plate may pass into the cathode flow field 32 and/or anode flow field 26, and that water within the anode or cathode flow fields 26, 32 may move into the porous coolant plate 34.
  • the anode and cathode flow fields 26, 32 may be cavities defined adjacent the anode and cathode electrodes 18, 20 by a frame, or they may consist of a plurality of small passages, channels, or pores defined within porous or channeled graphite, carbon or metal sheets, as is common in the art.
  • the fuel cell 14 also includes common electrical conduction means for directing an electrical current generated by the fuel cell out of the cell 14 to an electricity using device 36, such as through a standard external load circuit 38.
  • the fuel cell power plant 10 also includes fuel processing component means for processing hydrocarbon fuels into reducing fluids appropriate for providing fuel to an anode electrode of a fuel cell.
  • fuel processing component means may include: a burner 40 that may be a conventional or preferably a catalytic burner (labeled "BURNER" in FIG.
  • anode exhaust heat exchanger 44 that receives the anode exhaust stream from the anode exhaust passage 42 and passes it in heat exchange relationship with an oxidized anode exhaust stream having passed through the burner 40 and passing within a third extension 46 of the anode exhaust passage 42, wherein the heated anode exhaust stream passes from the heat exchanger in a first extension 48 of the anode exhaust passage 42; a steam generator 50 (labeled "STEAM" in FIG.
  • the fuel processing component means may include components that are well-known in conventional steam reforming, autothermal reforming, and partial oxidation processing of various hydrocarbon fuels.
  • the fuel processing components are of relatively conventional design that are generally well-known in the chemical processing arts wherein there is a need to generate hydrogen enriched fluid from common hydrocarbon sources.
  • autothermal reformers in such processes typically burn a portion of the fuel received to reach temperatures approximating 1,700 degrees Fahrenheit (hereafter "°F").
  • Additional fuel processing component means may include a de-sulfizer 62 secured along the fuel delivery line 56 to remove any sulfur from the hydrocarbon fuel; a water shift reactor 64 and a selective oxidizer 66, which are secured in series in fluid communication with and along the reformed fuel discharge line 60 and that direct the reformed fuel into the reducing fluid inlet 22 in order to minimize carbon monoxide levels in the reducing fluid stream entering the anode flow field 26, as is well-known in the art. As shown in FIG.
  • the oxidant inlet line may include a first oxidant branch line 68 secured to the selective oxidizer 66 for directing a portion of the process oxidant stream into the selective oxidizer 66, and may also include a second oxidant branch line 69 for directing a portion of the process oxidant stream into the reformer 58.
  • the fuel cell 14 may include coolant means for cooling the cell during operation, and for supplying a coolant liquid to the cell and/or for removing product water from the cell, such as a coolant loop 70.
  • the coolant loop 70 includes the coolant plate means 34 secured adjacent the cathode flow field 32 for passing a coolant fluid through the cell 14; a coolant exit line 72 that directs the coolant fluid from the coolant plate 34 to a coolant pump 74, which pumps the coolant fluid through the coolant loop 70; a coolant heat exchanger 76 that receives the coolant fluid from the coolant pump in a first extension 78 of the coolant exit line 72, and cools the coolant fluid by passage of a cooling fluid such as air forced through the coolant heat exchanger by a motorized fan 80, much like an automotive radiator; and, a coolant feed line 82 that directs the coolant fluid from the coolant heat exchanger 76 back into the coolant plate 34 within the fuel cell 14.
  • a cooling fluid such as air forced through the coolant
  • product water is generated at the cathode electrode, and may be removed from the cell within the coolant exit line 72.
  • a water feed line 84 may be secured between the coolant exit line 72 and the fuel processing component means, such as the steam generator 50, as shown in FIG. 1, to supply additional water to the fuel processing components.
  • the water feed line may direct the additional water directly to the burner 40 or reformer 58.
  • the oxidant is supplied from the oxidant supply 30 to the cathode flow field 32 within the oxidant inlet line 28.
  • the oxidant and product water formed at the cathode electrode in the form of water vapor and entrained liquid droplets all move out of the fuel cell 14 as a cathode exhaust stream within a cathode exhaust passage 86, and the cathode exhaust passage directs the cathode exhaust stream into a plant exhaust passage 88.
  • the oxidized anode exhaust stream passes into the plant exhaust passage 88 through a fourth extension 90 of the anode exhaust passage 42.
  • the plant exhaust passage 88 directs the mixed cathode stream and anode exhaust sfream as a plant exhaust stream into a direct mass and heat transfer device means for directly transferring mass from a first fluid stream passing through the device to a second fluid stream passing through the device, such as a direct mass and heat transfer device 92.
  • the direct mass and heat fransfer device 92 is secured in fluid communication with both the plant exhaust passage 88, and the oxidant inlet line 28.
  • the plant exhaust passage 88 directs the plant exhaust stream into the mass and heat transfer device 92, and a plant exhaust vent 94 directs the plant exhaust stream out of the device 92 and out of the fuel cell power plant 10.
  • a primary oxidant inlet 96 directs the oxidant from the oxidant supply 30 into the mass and heat transfer device 92, and the oxidant inlet line 28 directs the oxidant from the device 92 to cathode flow field 32 of the fuel cell 14.
  • An oxidant blower 98 may also be positioned on the primary oxidant inlet 96 to variably accelerate flow of gaseous oxidant into the fuel cell 14, as shown in FIG. 1.
  • the oxidant blower 98 may be positioned along the oxidant inlet line 28 for the same purposes.
  • the mass and heat transfer device 92 includes a housing or structure 100 that defines an oxidant chamber 102 through which the process oxidant stream passes, and an exhaust chamber 104 through which the exhaust stream passes.
  • the structure 100 also secures the fine pore enthalpy exchange barrier 12 in mass transfer relationship between the oxidant and exhaust chambers 102, 104 so that the process oxidant stream within the oxidant chamber 102 passes adjacent an inlet surface 106 of the barrier and the plant exhaust stream within the exhaust chamber 104 passes adjacent an exhaust surface 108, and the structure 100 secures the fine pore enthalpy exchange barrier 12 as a barrier between the inlet and exhaust streams (shown schematically in FIG. 1) to prevent bulk mixing of the streams.
  • the mass and heat transfer device means may also include a liquid transfer medium supply means for supplying a liquid transfer medium to the fine pore enthalpy exchange barrier, such as a transfer medium circulating loop 110.
  • the transfer medium loop 110 may include a transfer medium reservoir 112 holding a liquid transfer medium 113, a transfer medium pump 114 secured on a transfer medium feed line 116 in fluid communication between the reservoir 112 and the barrier 12, and a transfer medium return line 118 secured in fluid communication between the barrier 12 and the transfer medium reservoir 112.
  • the liquid transfer medium supply means may also simply include the reservoir 112, feed line 116 and the pump 114 (or without the pump in a gravity supply means) in order to simply replace the liquid transfer medium 113, rather than to recirculate the medium.
  • the liquid transfer medium 113 may simply be trapped in the fine pore enthalpy exchange barrier 12, with no re-supply available or needed.
  • the fine pore enthalpy exchange barrier 12 includes a support matrix means for defining hydrophilic pores having a pore-size range of between 0.1 - 100 microns that results in the barrier having a bubble pressure of greater than 0.2 pounds per square inch (“p.s.i.") (1.4 Kpa) when the hydrophilic pores are wetted by a liquid transfer medium, and for being chemically stable in the presence of the liquid transfer medium.
  • the bubble pressure requirement of the support matrix is dictated by the specific design of the fuel cell 14 and the mass and heat transfer device 92 which set a maximum pressure differential between the exhaust stream within the exhaust passage 88 and the process oxidant stream within the oxidant inlet line 28.
  • FIG. 2 shows a first embodiment of the fine pore enthalpy exchange barrier 12 wherein a support matrix 120 is shown schematically defining a plurality of pores 122 between the inlet surface 106 and exhaust surface 108.
  • a support matrix 120 is shown schematically defining a plurality of pores 122 between the inlet surface 106 and exhaust surface 108.
  • an arrow labeled "A” represents a possible direction of flow of the process oxidant inlet stream adjacent the inlet surface 106 (106' in FIG. 3, and 106" in FIG. 4);
  • an arrow labeled "B” represents a possible direction of flow of the exhaust stream adjacent the exhaust surface 108 (108' in FIG. 3, and 108" in FIG.
  • FIGS. 2 - 4 an arrow labeled "C" represents a direction of travel of water and heat from the exhaust surface 108, 108', 108" to the inlet surface 106, 106', 106" in the three embodiments shown in FIGS. 2 - 4.
  • the arrows A, B, C in FIGS. 2 - 4 represent movement of heat and water adjacent and through the fine pore enthalpy exchange barrier 12 (12' in FIG. 3, and 12" in FIG.
  • a first exemplary group of support mafrix means includes rigid support matrixes (shown at reference no. 120 in FIG. 2, 120' in FIG. 3, and 120" in FIG. 4), such as: porous graphite layers; porous, graphite-polymer layers; inorganic-fiber thermoset polymer layers; glass fiber layers; synthetic-fiber filter papers treated to be wettable; porous metal layers; perforated metal layers wherein such perforations include particulate matter secured within the perforations and defining an acceptable fine pore-size range; and a plurality of, differing layers of those support matrixes.
  • the materials that may form support matrixes of this invention may be made hydrophilic by standard treatments well-known in the art with hydrophilic compounds, such as disclosed and described in U.S.
  • Other materials capable of forming porous gas seals known in the art may also serve as a support matrix means, provided the materials can define hydrophilic pores having a pore-size range of between 0.1 - 100 microns that results in a gas barrier having a bubble pressure of greater than 0.2 p.s.i. (1.4 Kpa) when the hydrophilic pores are wetted by the liquid transfer medium, and the materials are chemically stable in the presence of the liquid fransfer medium 113.
  • a second exemplary group of support matrix means includes flexible support matrixes (shown at reference no. 134 in FIG. 5, and 134' in FIG.
  • inorganic fiber layers, papers or felts with or without compatible polymer binders including for example asbestos
  • natural fiber layers, papers or felts with or without compatible polymer binders including for example cellulose fibers derived from cotton, hemp or wood
  • organic fiber layers, papers or felts with or without compatible polymer binders including for example polyolefin fiber
  • porous compatible plastics with or without wettability treatments including for example a polyethersulfone membrane filter media, as sold under the brand name "SUPOR” by the PALL Speciality Materials company, of Port Washington, New York, NY 11050, U.S.A.
  • mixtures of carbon blacks and compatible polymer binders with or without reinforcing glass fibers and, a plurality of differing layers of these flexible support matrixes with or without compatible binders.
  • compatible it is meant that the above listed materials are chemically compatible with the liquid transfer medium.
  • These flexible support matrixes may be made hydrophilic by the same process described above.
  • the liquid transfer medium 113 may include water, aqueous salt solutions, aqueous acid solutions, and organic antifreeze-water solutions, wherein the fransfer medium is capable of sorbing a fluid substance consisting of polar molecules such as water from a fluid sfream consisting of polar and non-polar molecules.
  • Preferred liquid transfer media include: a. a 20 to 35 weight per cent calcium chloride solution; b. a 25 to 35 weight per cent sulfuric acid solution; c. a 45 to 85 weight per cent ethylene glycol water solution; c. a 45 to 85 weight per cent propylene glycol solution; d.
  • glycerol is especially preferred as the liquid transfer medium because it has both satisfactory freezing point depression and low vapor pressure characteristics at a working concentration. That results in low loss rates of the liquid fransfer medium out of the fine pore enthalpy exchange barrier 12 during operation of the fuel cell power plant 10, and hence low amounts of the transfer medium in any plant emissions. Additionally, the quantity of antifreeze that is carried into the fuel cell with the process air is very low which mitigates poisoning of the cell.
  • the support matrix 120 as chemically stable in the presence of the liquid transfer medium 113, it is meant that intimate, prolonged contact between the aforesaid concentrations of the varying liquid fransfer media will not degrade the support mafrix so that it cannot perform its role of supporting the liquid transfer to form a gas barrier between the inlet and exhaust surfaces 106, 108 of the fine pore enthalpy exchange barrier 12.
  • the support matrix 120 By characterizing the support matrix 120 as having a pore-size range of between 0.1 - 100 microns that results in the barrier 12 having a bubble pressure of greater than 0.2 pounds per square inch (“p.s.i.") (1.4 Kpa) when the hydrophilic pores are wetted by the liquid fransfer medium 113, it is meant that the pores defined by the support matrix have diameters that range from between about 0.1 to about 100 microns and that whenever the pores are wetted by the liquid transfer medium a pressure differential between the opposed inlet 106 and exhaust surfaces 108 of 0.2 p.s.i. (1.4 Kpa) or less will not result in gas movement through the fine pore enthalpy exchange barrier 12.
  • p.s.i. pounds per square inch
  • the first embodiment of the fine pore enthalpy exchange barrier 12 shown in fragmentary cross-section in FIG. 2 represents a single monolytic layer embodiment of the barrier 12, adequate to effect efficient fransfer of water and heat from the exhaust sfream to the process oxidant inlet sfream.
  • the fine pore enthalpy exchange barrier 12 may have an optimal thickness range, being a shortest distance between the inlet and exhaust surfaces 106, 108 of between about 0.001 (.025 mm) to about 0.100 inches (2.54 mm).
  • the structure 100 of the mass and heat transfer device 92 may be structured to include manifolds and passageways (not shown) to distribute the process oxidant inlet sfream and plant exhaust sfream through multiple inlet and exhaust chambers (not shown) adjacent a plurality of stacked fine pore enthalpy exchange barriers 12, as is common in heat exchanger art, in order to enhance the efficiency of the device 92 depending upon performance characteristics and water recovery requirements of the plant 10.
  • FIG. 3 A second embodiment of the fine pore enthalpy exchange barrier 12' is shown in FIG. 3, wherein the support matrix means includes a multi-layer support matrix 120' having a dual pore-size configuration, comprising a central layer 124, a first exterior layer 126 between the central layer and the inlet surface 106', and a second exterior layer 128 between the central layer and the exhaust surface 108'.
  • the central layer 124 defines pores having a pore-size range of between 0.1 to 20 microns and the exterior layers 126, 128 define a pore size range of between 10 to 50 microns.
  • the central layer 124 defines less than 25% of a total void volume of the multi-layer, dual pore size support matrix 120', and the multi-layer support matrix 120' is filled to greater than 35% of its total void volume with the liquid transfer medium 113 so that the pores defined within the central layer 124 are saturated to create a gas barrier between the inlet and exhaust surfaces 106', 108' of the multi-layer support matrix 120'.
  • the liquid transfer medium may move into or out of the central layer 124 into either the first exterior layer 126, the second exterior layer 128, or both, and thereby minimize a possibility of the liquid fransfer medium moving out of the fine pore enthalpy exchange barrier 12' into the process oxidant inlet or exhaust streams, and to also minimize a possibility of gas transferring across the barrier 12'.
  • the central layer 124 and exterior layers 126, 128 of the multi-layer support matrix may be the same or dissimilar support mafrix materials.
  • a third embodiment of the fine pore enthalpy exchange barrier 12" is shown in
  • the support matrix means is a perforated metal, plastic or fiber reinforced plastic layer support matrix 120" defining a plurality of perforations 130A, 130B wherein a particulate matter 132A, 132B is secured within the perforations, such as by standard chemical bonding, well-known in the art.
  • the perforated metal, plastic or fiber reinforced plastic layer support mafrix 120" will be referred to as a "perforated layer support matrix”.
  • the particulate matter defines hydrophilic pores between 0.1 to about 100 microns so that the pores result in a gas barrier when wetted with the liquid transfer medium exhibiting a gas bubble pressure of greater than 0.2 p.s.i. (1.4 Kpa).
  • the plurality of perforations 130A, 130B and particulate matter 132 A, 132B define pores passing through the perforated layer support mafrix 120"
  • polar molecules such as water in the exhaust stream passing adjacent the exhaust surface 108" of the support matrix 120" will pass through the support matrix 120" to the process oxidant inlet stream passing adjacent the inlet surface 106".
  • Exemplary materials to form the perforated layer support matrix 120" include stainless steel, and other metals well-known as structural components in the heat exchanger art, as well as a fiberglass-epoxy composite.
  • the inlet and exhaust surfaces 106", 108" of the perforated layer support matrix 120" may also be coated with a porous, wetted material, such as carbon black, silicon carbide, metals, oxides, hydroxides, silicates, or wettable polymers, in order to aid in condensation of water on the exhaust surface 108" and movement of the condensed water to the plurality of perforations 130A, 130B, and to aid in more rapid distribution and evaporation of water on the inlet surface 106".
  • a porous, wetted material such as carbon black, silicon carbide, metals, oxides, hydroxides, silicates, or wettable polymers
  • a fourth embodiment of the fine pore enthalpy exchange barrier 136 is shown in FIG. 5, wherein the flexible support matrix 134 of the barrier 136 is shown having an inlet surface 138 and an opposed exhaust surface 140.
  • a first mesh layer 142 is secured adjacent the inlet surface 138 of the barrier 136
  • a second mesh layer 144 is secured adjacent the opposed exhaust surface 140 of the barrier 136 to provide support for the barrier 136.
  • the first and second mesh layers 142, 144 may be a compatible metal mesh, an extruded metal, a compatible plastic screen, an extruded plastic screen, or any material that provides mechanical support for the enthalpy exchange barrier 136 that is chemically compatible with the liquid transfer medium.
  • An example of a suitable metal mesh layer is stainless steel, and a suitable plastic mesh layer is polyvinyl chloride.
  • the fourth embodiment of the fine pore enthalpy exchange barrier 136 also includes a first flow guide means for guiding flow of the process oxidant stream adjacent the inlet surface 138 of the barrier 136, such as a first plastic flow guide 146 adjacent the first mesh layer 142, and a second flow guide means for guiding flow of the plant exhaust stream adjacent the exhaust surface 140 of the barrier 136 such as a second plastic flow guide 148 adjacent the second mesh layer 144.
  • the first and second plastic flow guides 146, 148 may serve as the structure 100 (shown in FIG. 1) supporting the enthalpy exchange barrier 136 in mass fransfer relationship between the process oxidant passing adjacent the inlet surface 138 and the plant exhaust stream passing adjacent the exhaust surface 140 of the barrier 136.
  • the first plastic flow guide 146 is dimensioned to define a plurality of oxidant chambers 150A, 150B, 150C that guide the process oxidant sfream to pass adjacent the first mesh layer 142 and the inlet surface 138 of the barrier 136
  • the second plastic flow guide 148 is dimensioned to define a plurality of exhaust chambers 152A, 152B, 152C that guide the plant exhaust stream to pass adjacent the exhaust surface 140 of the enthalpy exchange barrier 136.
  • the first and second flow guide means 146, 148 may be formed of known compatible materials including plastics such as polycarbonate as a suitable material, and also including plastics filled with carbon reinforcing fibers or wood filler as additional suitable materials.
  • a fifth embodiment of a fine pore enthalpy exchange barrier 154 is shown in FIG. 6 wherein the flexible support matrix 134' of the barrier 154 has adequate mechanical strength to be free standing or self-supporting so that no mesh layers are required.
  • a self-supporting flexible support matrix 134' may be a mixture of the above described flexible support matrixes, including for example a mixture of natural fibers with carbon fibers, or a mixture of glass fibers and natural fibers both with and without compatible binders.
  • the self-supporting flexible support mafrix 134' may also be mixture of carbon blacks and compatible polymer binders with or without reinforcing glass or carbon fibers.
  • the fifth embodiment of the fine pore enthalpy exchange barrier 154 including the self-supporting flexible support matrix 134' also includes a first plastic flow guide 146' secured adjacent an inlet surface 138' of the barrier 154, and a second plastic flow guide 148' secured adjacent the opposed exhaust surface 140' of the barrier 154.
  • the first plastic flow guide 146' of the fifth embodiment of the barrier 154 is dimensioned to define a plurality of oxidant chambers 150'A, 150'B, 150'C that guide the process oxidant stream to pass adjacent the inlet surface 138' of the barrier 154.
  • the second plastic flow guide 148' of the fifth embodiment of the barrier 154 is dimensioned to define a plurality of exhaust chambers 152'A, 152'B, 152'C that guide the process exhaust stream to pass adjacent the exhaust surface 140' of the barrier 154.
  • Use of the flexible support matrixes 134, 134' as described within the fourth and fifth embodiments of the fine pore enthalpy exchange barrier 136, 154 provides substantial cost and weight savings compared to rigid support matrixes.
  • the flexible support matrixes also allow an overall reduction in water inventory of the fuel cell power plant 10 because of their reduced thicknesses, resulting in reduced start-up time when operating the fuel cell power plant 10 in sub-freezing conditions.
  • porous gas seal structures such as ionomer or polymer films could also transport water and heat, they are known to be quite expensive, and are not chemically stable in the presence of a wide variety of liquid transfer media necessary to facilitate efficient operation of fuel cell power plants in climates varying from sub-freezing to hot, dry ambient conditions, such as experienced by modern transportation vehicles.
  • water vapor generated within the fuel cell 14 passes from the plant exhaust stream through the barrier 12 to humidify the process oxidant inlet sfream, and latent and sensible heat also exchange between the inlet and exhaust streams, cooling the exhaust sfream by movement of the water vapor out of the stream, and heating the inlet sfream directly with the water vapor.
  • Evaporation of the exchanging water at the inlet surface 106 of the fine pore enthalpy exchange barrier 12 into the oxidant inlet sfream also results in cooling of the inlet surface 106 which increases a temperature differential between inlet and exhaust surfaces 106, 108.
  • That increased temperature differential results in an increased rate of heat and water transfer into the inlet stream.
  • a rate of evaporation of the heated water into the inlet sfream is also a function of humidity of ambient air, where ambient air is the oxidant for the plant 10. Consequently, as the fuel cell power plant 10 is operated in drier air, such as with a transportation vehicle moving into a dry climate, a rate of water movement from the exhaust to the inlet stream to humidify the inlet stream will automatically increase.
  • the support matrix 120, 134, 134' being chemically stable in the presence of a low volatility liquid fransfer medium 113 having a substantial freezing point depression characteristic also enables the fuel cell power plant 10 to be operated through a wide temperature range without need for preheating the mass and heat transfer device 92, while minimizing chances of the liquid transfer medium 113 leaving the fine pore enthalpy exchange barrier 12.
  • anode exhaust heat exchanger 44 and coolant heat exchanger 76 have been shown schematically as separated from each other for ease of understanding. For purposes of efficiency however, those components may be stacked together to take advantage of common ducting, or for efficiency in fluid flow and heat exchange.
  • FIG. 1 shows schematically a direct mass and heat transfer device 92 securing one fine pore enthalpy exchange barrier 12 secured between process oxidant inlet and plant exhaust streams.
  • the invention also includes a plurality of the barriers 12 secured in a manner appropriate to efficiently fransfer necessary water and heat from the exhaust to the inlet sfream, depending upon operational requirements of the plant 10. Accordingly, reference should be made primarily to the following claims rather than the foregoing description to determine the scope of the invention.

Abstract

A fine pore enthalpy exchange barrier (12) is disclosed for use with a fuel cell power plant (10). The barrier includes a flexible support matrix that defines pores and a liquid transfer medium that fills the pores creating a gas barrier. An inlet surface (106) of the fine pore enthalpy exchange barrier is positioned in contact with a process oxidant inlet stream entering a fuel cell power plant, and an opposed exhaust surface (108) of the barrier is positioned in contact with an exhaust stream exiting the plant so that water and heat exchange from the exhaust stream directly into the process oxidant inlet stream to heat and humidify the stream as it enters the plant. The flexible support matrix (120) defines hydrophilic pores having a pore-size range of about 0.1 - 100 microns and results in a bubble pressure that is greater than 0.2 pounds per square inch. The liquid transfer medium (113) may include water, aqueous salt solutions, aqueous acid solutions, or organic antifreeze water solutions. The enthalpy exchange barrier may be disposed within a structure of a direct mass and heat transfer device (92) of the plant, so that the structure and barrier cooperate to restrict bulk mixing of the inlet and exhaust streams, while water and heat transfer through the transfer medium.

Description

FINE PORE ENTHALPY EXCHANGE BARRIER FOR A FUEL CELL POWER PLANT
Technical Field
The present invention relates to fuel cell power plants that are suited for usage in transportation vehicles, portable power plants, or as stationary power plants, and the invention especially relates to a fine pore enthalpy exchange barrier for a fuel cell power plant that exchanges heat and water exiting the plant back into the plant to enhance water balance and energy efficiency of the plant.
Background Art Fuel cell power plants are well-known and are commonly used to produce electrical energy from reducing and oxidizing fluids to power electrical apparatus such as apparatus on-board space vehicles, or on-site generators for buildings. In such power plants, a plurality of planar fuel cells are typically arranged in a stack surrounded by an electrically insulating frame structure that defines manifolds for directing flow of reducing, oxidant, coolant and product fluids. Each individual cell generally includes an anode electrode and a cathode electrode separated by an electrolyte. A reducing fluid such as hydrogen is supplied to the anode electrode, and an oxidant such as oxygen or air is supplied to the cathode electrode. In a cell utilizing a proton exchange membrane ("PEM") as the electrolyte, the hydrogen electrochemically reacts at a catalyst surface of the anode electrode to produce hydrogen ions and electrons. The electrons are conducted to an external load circuit and then returned to the cathode electrode, while the hydrogen ions transfer through the electrolyte to the cathode electrode, where they react with the oxidant and electrons to produce water and release thermal energy. The anode and cathode electrodes of such fuel cells are separated by different types of electrolytes depending on operating requirements and limitations of the working environment of the fuel cell. One such electrolyte is a proton exchange membrane ("PEM") electrolyte, which consists of a solid polymer well-known in the art. Other common electrolytes used in fuel cells include phosphoric acid or potassium hydroxide held within a porous, non-conductive matrix between the anode and cathode electrodes. It has been found that PEM cells have substantial advantages over cells with liquid acid or alkaline electrolytes in satisfying specific operating parameters because the membrane of the PEM provides a barrier between the reducing fluid and oxidant that is more tolerant to pressure differentials than a liquid electrolyte held by capillary forces within a porous matrix. Additionally, the PEM electrolyte is fixed, and cannot be leached from the cell, and the membrane has a relatively stable capacity for water retention. In operation of PEM fuel cells, it is critical that a proper water balance be maintained between a rate at which water is produced at the cathode electrode including water resulting from proton drag through the PEM electrolyte and rates at which water is removed from the cathode and at which water is supplied to the anode electrode. An operational limit on performance of a fuel cell is defined by an ability of the cell to maintain the water balance as electrical current drawn from the cell into the external load circuit varies and as an operating environment of the cell varies. For PEM fuel cells, if insufficient water is returned to the anode electrode, adjacent portions of the PEM electrolyte dry out thereby decreasing the rate at which hydrogen ions may be transferred through the PEM and also resulting in cross-over of the reducing fluid leading to local over heating. Similarly, if insufficient water is removed from the cathode, the cathode electrode may become flooded effectively limiting oxidant supply to the cathode and hence decreasing current flow. Additionally, if too much water is removed from the cathode, the PEM may dry out limiting ability of hydrogen ions to pass through the PEM, thus decreasing cell performance.
As fuel cells have been integrated into power plants developed to power transportation vehicles such as automobiles, trucks, buses, etc., maintaining a water balance within the power plant has become a greater challenge because of a variety of factors. For example, with a stationary fuel cell power plant, water lost from the plant may be replaced by water supplied to the plant from off-plant sources. With a transportation vehicle, however, to minimize fuel cell power plant weight and space requirements, the plant must be self-sufficient in water to be viable. Self-sufficiency in water means that enough water must be retained within the plant to offset water losses from gaseous streams of reactant fluids passing through the plant. For example, any water exiting the plant through a cathode exhaust stream of gaseous oxidant or through an anode exhaust stream of gaseous reducing fluid must be balanced by water produced electrochemically at the cathode and retained within the plant. An additional requirement for maintaining water self-sufficiency in fuel cell power plants is associated with components necessary to process hydrocarbon fuels, such as methane, natural gas, gasoline, methanol, diesel fuel, etc., into an appropriate reducing fluid that provides a hydrogen rich fluid to the anode electrode. Such fuel processing components of a fuel cell power plant typically include a boiler that generates steam; a steam duct into which the hydrocarbon fuel is injected; and an autothermal reformer that receives the steam and fuel mixture along with a small amount of a process oxidant such as air and transforms the mixture into a hydrogen- enriched reducing fluid appropriate for delivery to the anode electrode of the fuel cell. The fuel processing components or system water and energy requirements are part of an overall water balance and energy requirement of the fuel cell power plant. Water made into steam in the boiler must be replaced by water recovered from the plant such as by condensing heat exchangers in the cathode exhaust stream and associated piping.
A common approach to enhancing water recovery and retention is use of condensing heat exchangers in exhaust streams of the power plant wherein the exhaust streams are cooled to a temperature at or below their dew points to precipitate liquid water from the exhaust streams so that the liquid may be returned to the power plant. An example of a PEM fuel cell power plant using a condensing heat exchanger is shown in U.S. Patent No. 5,573,866 that issued on November 12, 1996 to Van Dine et al. Many other fuel cell power plants that use one or more condensing heat exchangers are well-known in the art, and they typically use ambient air streams as a cooling fluid passing through the exchanger to cool the plant exhaust streams. In Van Dine et al., the heat exchanger is used to cool a cathode exhaust stream, which upon leaving a cathode chamber includes evaporated product water and some portion of methanol, the reducing fluid, that has passed through the PEM. The condensing heat exchanger passes the cathode exhaust stream in heat exchange relationship with a stream of cooling ambient air, and then directs condensed methanol and water indirectly through a piping system back to an anode side of the cell.
While condensing heat exchangers have enhanced the water recovery and energy efficiency of fuel cell power plants, the heat exchangers encounter decreasing water recovery efficiency as ambient temperatures increase. Where the power plant is to power a transportation vehicle such as an automobile, the plant will be exposed to an extremely wide range of ambient temperatures. For example where an ambient air coolant stream passes through a heat exchanger, performance of the exchanger will vary as a direct function of the temperature of the ambient air because decreasing amounts of liquid precipitate out of power plant exhaust streams as the ambient air temperature increases.
An additional requirement of using such condensing heat exchangers in fuel cell power plants powering transportation vehicles is related to operation of the vehicles in temperatures below the freezing temperature of water. Because water from such exchangers is often re-introduced into the PEM fuel cells of the plant, the water may not be mixed with conventional antifreeze to lower its freezing temperature. Propylene glycol and similar antifreezes would be adsorbed by the catalysts in the cells decreasing cell efficiency, as is well known. Accordingly, known fuel cell power plants that employ ambient air as the cathode oxidant and/or that use condensing heat exchangers are incapable of efficiently maintaining a self-sufficient water balance when operating at high ambient temperatures because of their above described characteristics. It is therefore highly desirable to produce a fuel cell power plant that can achieve a self-sufficient water balance without a condensing heat exchanger while minimizing plant operating energy requirements.
Disclosure of the Invention
A fine pore enthalpy exchange barrier is disclosed for use with a fuel cell power plant. The barrier includes a support matrix that defines pores and a liquid transfer medium that fills the pores creating a gas barrier. An inlet surface of the fine pore enthalpy exchange barrier is positioned in contact with a process oxidant inlet stream entering a fuel cell power plant, and an opposed exhaust surface of the barrier is positioned in contact with an exhaust stream exiting the plant so that water and heat exchange from the exhaust stream directly into the process oxidant inlet stream. The support matrix defines pores having a pore-size range of about 0.1 - 100 microns; the matrix is hydrophilic so that it is capable of being wetted by the liquid transfer medium resulting in a bubble pressure that is greater than 0.2 pounds per square inch ("p.s.i.") (1.4 Kpa); and, the matrix is chemically stable in the presence of the liquid transfer medium.
A first exemplary group of support matrixes includes rigid support matrixes, such as: rigid, porous, graphite layers; rigid, porous, graphite-polymer layers; rigid, inorganic-fiber thermoset polymer layers; glass fiber layers; synthetic-fiber filter papers treated to be wettable; porous metal layers; perforated metal layers wherein such perforations may include particulate matter secured within the perforations defining an acceptable fine pore-size range; and a plurality of differing layers of those support matrixes. A second exemplary group of support matrixes includes flexible support matrixes, such as: inorganic fiber layers, papers or felts with or without compatible polymer binders; natural fiber layers, papers or felts with or without compatible polymer binders; organic fiber layers, papers or felts with or without compatible polymer binders; porous compatible plastics with or without wettability treatments; mixtures of carbon blacks and compatible polymer binders with or without reinforcing glass fibers; and, a plurality of differing layers of these flexible support matrixes with or without compatible binders. By use of the word "compatible", it is meant that the above listed materials are chemically compatible with the liquid transfer medium.
To provide support for the flexible support matrixes, mesh layers may be positioned adjacent the opposed inlet and exhaust surfaces of the fine pore enthalpy exchange barrier, along with plastic flow guides adjacent the mesh layers to support the mesh layers and to facilitate flow of the oxidant inlet stream and plant exhaust stream into contact respectively with the inlet and exhaust surfaces of the enthalpy exchange barrier. Some of the flexible support matrixes may include only the plastic flow guides positioned adjacent the inlet and exhaust surfaces of the enthalpy exchanger barriers. Preferably the support matrix has a high thermal conductivity. This helps transfer heat axially from the exhaust stream to the process oxidant inlet stream of ambient air to thereby minimize freezing of an oxidant inlet when operating at very low ambient temperatures. The liquid transfer medium may include water, aqueous salt solutions, aqueous acid solutions, and organic antifreeze water solutions, wherein the transfer medium is capable of sorbing a fluid substance consisting of polar molecules such as water from a fluid stream consisting of polar and non-polar molecules. The fine pore enthalpy exchange barrier may be disposed within a structure of a direct mass and heat transfer device in fluid communication with process oxidant inlet and plant exhaust streams so that the structure and barrier cooperate to restrict bulk mixing of the inlet and exhaust streams. The structure may define manifolds, passageways, and seals to direct the inlet and exhaust streams through the device and into contact with the opposed inlet and exhaust surfaces of the fine pore enthalpy exchange barrier. In another embodiment, the fine pore enthalpy exchange barrier includes a support matrix having a multi-layer, dual pore-size configuration, wherein a central layer is surrounded by opposed exterior layers and the exterior layers define pores having a larger pore-size range than pores defined by the central layer; the central layer defines less than 25 per cent (hereafter "%") of the total void volume of the support matrix; and the matrix is filled to greater than 35% of its total void volume with a liquid transfer medium so that the central layer is saturated with the transfer medium. The central layer thereby provides a gas barrier between the inlet and opposed exhaust surfaces of the support matrix. In the event of changed operating conditions, the liquid transfer medium may therefore move between the central layer and the exterior layers without having to move out of the fine pore enthalpy exchange barrier into the inlet oxidant stream or exhaust stream. By using a transfer medium that is a mixture of a non- volatile compound and water at operating conditions of the mass and heat transfer device in that embodiment, heated water within the exhaust stream may transfer directly into the inlet stream without loss of the liquid transfer medium from the support matrix as operating conditions change.
An additional embodiment may include a transfer medium circulating loop, wherein the transfer medium is circulated through the support matrix, and replenished when necessary, to further support maintenance of a gas barrier by the liquid transfer medium within the support matrix so that the exhaust stream does not mix directly with the inlet stream.
In operation of a fuel cell power plant using a fine pore enthalpy exchange barrier, as heated water vapor generated within the fuel cell moves from the plant exhaust stream directly through the fine pore enthalpy exchange barrier to humidify the inlet stream, sensible and latent heat also exchange between the inlet and exhaust streams, cooling the exhaust stream and heating the inlet oxidant stream directly with heat from the water within the exhaust stream. Evaporation of the exchanging water at the inlet surface of the fine pore enthalpy exchange barrier into the oxidant inlet stream also results in cooling of the inlet surface of the barrier, thereby increasing a temperature differential between the inlet and exhaust surface. That in turn results in increased rates of heat and mass transfer from the exhaust stream into the inlet stream. A dry oxidant inlet stream, resulting for example from operation of the fuel cell power plant in a dry climate, will thus result in more rapid evaporation of water from the barrier into the oxidant inlet stream. Therefore the fine pore enthalpy exchange barrier automatically increases humidification and heating of the oxidant inlet stream as the stream becomes drier. Additionally, by using a low volatility liquid transfer medium such as a salt solution having a substantial freezing point depression or by use of an antifreeze water solution, the fine pore enthalpy exchange barrier facilitates efficient transfer of water and heat from the plant exhaust stream into the oxidant inlet stream at a wide range of temperatures, without need for pre-heating the mass and heat transfer device housing the barrier; and also protects the enthalpy exchange device from mechanical damage due to freezing of water.
Brief Description of the Drawing
Figure 1 is a schematic representation of a fuel cell power plant utilizing a fine pore enthalpy exchange barrier within a mass and heat transfer device of the plant. Figure 2 is a fragmentary, cross-sectional representation of a first embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant.
Figure 3 is a fragmentary, cross-sectional representation of a second embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant. Figure 4 is a fragmentary, cross-sectional representation of a third embodiment of a fine pore enthalpy exchange barrier for a fuel cell power plant. Figure 5 is a fragmentary, cross-sectional representation of a fourth embodiment of a fine pore enthalpy exchanger barrier for a fuel cell power plant.
Figure 6 is a fragmentary, cross-sectional representation of a fifth embodiment of a fine pore enthalpy exchanger barrier for a fuel cell power plant.
Best Mode for Carrying out the Invention Referring to the drawings in detail, a fuel cell power plant is shown schematically in FIG. 1 and generally designated by reference numeral 10 as an appropriate working environment for a fine pore enthalpy exchange barrier 12 of the present invention. The fuel cell power plant 10 includes at least one fuel cell means for producing electrical energy from a reducing fluid and an oxidant stream, such as fuel cell 14. The fuel cell 14 has an electrolyte 16 such as a proton exchange membrane ("PEM"), an anode electrode 18 and a cathode electrode 20 on opposed sides of the electrolyte 16. The fuel cell 14 may be combined with other virtually identical fuel cells (not shown) in a well-known manner to form a cell stack assembly enclosed within a frame (not shown) that defines manifolds for directing a reducing fluid stream and process oxidant stream into and out of the fuel cell 14 in a manner well-known in the art. A reducing fluid inlet 22 directs a hydrogen rich reducing fluid stored in a fuel supply 24 (labeled "FUEL" in FIG. 1 to facilitate understanding) into the cell 14 so that the reducing fluid passes through an anode flow field 26 defined adjacent the anode electrode 18. Similarly, an oxidant inlet line 28 directs an oxidant stream such as air from an oxidant supply 30 (labeled "OXIDANT" in FIGS. 1 and 2) into the cell 14 through oxidant manifolding (not shown, but well-known in the art) so that the oxidant passes through a cathode flow field 32 defined adjacent the cathode electrode 20.
The fuel cell 14 may also include a coolant plate means for removing heat from the fuel cell 12, wherein the coolant plate means may be a porous or sealed coolant plate 34 adjacent the cathode flow field 32. Whenever the coolant plate is described as sealed, it is meant that a coolant fluid in, or passing through the sealed coolant plate 34 cannot pass into the cathode flow field 32, or an anode flow field of an adjacent second fuel cell (not shown). By describing the coolant plate 34 as porous, in contrast, it is meant that a coolant fluid in, or passing through the coolant plate may pass into the cathode flow field 32 and/or anode flow field 26, and that water within the anode or cathode flow fields 26, 32 may move into the porous coolant plate 34. The anode and cathode flow fields 26, 32 may be cavities defined adjacent the anode and cathode electrodes 18, 20 by a frame, or they may consist of a plurality of small passages, channels, or pores defined within porous or channeled graphite, carbon or metal sheets, as is common in the art. The fuel cell 14 also includes common electrical conduction means for directing an electrical current generated by the fuel cell out of the cell 14 to an electricity using device 36, such as through a standard external load circuit 38.
The fuel cell power plant 10 also includes fuel processing component means for processing hydrocarbon fuels into reducing fluids appropriate for providing fuel to an anode electrode of a fuel cell. Exemplary hydrocarbon fuels for powering such a plant 10 include gasoline, diesel fuel, butane, propane, natural gas, methanol, ethanol, etc. The fuel processing component means may include: a burner 40 that may be a conventional or preferably a catalytic burner (labeled "BURNER" in FIG. 1 for convenience) that oxidizes any excess reducing fluid such as hydrogen fed to the burner 40 as an anode exhaust stream through an anode exhaust passage 42 in fluid communication with, and after passing through, the anode flow field 26; an anode exhaust heat exchanger 44 that receives the anode exhaust stream from the anode exhaust passage 42 and passes it in heat exchange relationship with an oxidized anode exhaust stream having passed through the burner 40 and passing within a third extension 46 of the anode exhaust passage 42, wherein the heated anode exhaust stream passes from the heat exchanger in a first extension 48 of the anode exhaust passage 42; a steam generator 50 (labeled "STEAM" in FIG. 1) that receives the oxidized anode exhaust stream from the burner 40 within a second extension 52 of the anode exhaust passage 42 and uses the heated, oxidized anode exhaust stream to generate steam, and wherein the oxidized anode exhaust stream leaves the steam generator 50 within the third extension 46 of the anode exhaust passage 42 to pass into the anode exhaust heat exchanger 44; a steam delivery line 54, that directs steam out of the steam generator 50; a fuel delivery line 56 that feeds the stored hydrocarbon fuel out of the fuel supply 24 and into the steam delivery line 54; a reformer 58 that may be an autothermal reformer (labeled "A.T.R." in FIG. 1) that receives the fuel and steam from the steam delivery line 56; and, a reformed fuel discharge line 60 that directs the reformed fuel from the reformer 58 into the reducing fluid inlet 22. In certain circumstances, the steam generator 50 is not necessary, and adequate water is supplied to the reformer 58 from the fuel cell means. Any unused hydrogen in the anode exhaust stream is oxidized in the burner 40 to thereby heat the anode exhaust stream leaving the burner 40 within the second extension 52 of the anode exhaust passage 42 and to render the anode exhaust stream leaving the burner 40 non-flammable. The fuel processing component means may include components that are well-known in conventional steam reforming, autothermal reforming, and partial oxidation processing of various hydrocarbon fuels. The fuel processing components are of relatively conventional design that are generally well-known in the chemical processing arts wherein there is a need to generate hydrogen enriched fluid from common hydrocarbon sources. For example, autothermal reformers in such processes typically burn a portion of the fuel received to reach temperatures approximating 1,700 degrees Fahrenheit (hereafter "°F"). Additional fuel processing component means may include a de-sulfizer 62 secured along the fuel delivery line 56 to remove any sulfur from the hydrocarbon fuel; a water shift reactor 64 and a selective oxidizer 66, which are secured in series in fluid communication with and along the reformed fuel discharge line 60 and that direct the reformed fuel into the reducing fluid inlet 22 in order to minimize carbon monoxide levels in the reducing fluid stream entering the anode flow field 26, as is well-known in the art. As shown in FIG. 1, the oxidant inlet line may include a first oxidant branch line 68 secured to the selective oxidizer 66 for directing a portion of the process oxidant stream into the selective oxidizer 66, and may also include a second oxidant branch line 69 for directing a portion of the process oxidant stream into the reformer 58.
The fuel cell 14 may include coolant means for cooling the cell during operation, and for supplying a coolant liquid to the cell and/or for removing product water from the cell, such as a coolant loop 70. The coolant loop 70 includes the coolant plate means 34 secured adjacent the cathode flow field 32 for passing a coolant fluid through the cell 14; a coolant exit line 72 that directs the coolant fluid from the coolant plate 34 to a coolant pump 74, which pumps the coolant fluid through the coolant loop 70; a coolant heat exchanger 76 that receives the coolant fluid from the coolant pump in a first extension 78 of the coolant exit line 72, and cools the coolant fluid by passage of a cooling fluid such as air forced through the coolant heat exchanger by a motorized fan 80, much like an automotive radiator; and, a coolant feed line 82 that directs the coolant fluid from the coolant heat exchanger 76 back into the coolant plate 34 within the fuel cell 14. In ordinary operation of the fuel cell 14 utilizing a porous coolant plate means 34, product water is generated at the cathode electrode, and may be removed from the cell within the coolant exit line 72. A water feed line 84 may be secured between the coolant exit line 72 and the fuel processing component means, such as the steam generator 50, as shown in FIG. 1, to supply additional water to the fuel processing components. Optionally, for example, the water feed line may direct the additional water directly to the burner 40 or reformer 58.
As shown in FIG. 1, the oxidant is supplied from the oxidant supply 30 to the cathode flow field 32 within the oxidant inlet line 28. After passing through the cathode flow field 32, the oxidant and product water formed at the cathode electrode in the form of water vapor and entrained liquid droplets all move out of the fuel cell 14 as a cathode exhaust stream within a cathode exhaust passage 86, and the cathode exhaust passage directs the cathode exhaust stream into a plant exhaust passage 88. Additionally, after passing through the anode exhaust heat exchanger 44, the oxidized anode exhaust stream passes into the plant exhaust passage 88 through a fourth extension 90 of the anode exhaust passage 42. The plant exhaust passage 88 directs the mixed cathode stream and anode exhaust sfream as a plant exhaust stream into a direct mass and heat transfer device means for directly transferring mass from a first fluid stream passing through the device to a second fluid stream passing through the device, such as a direct mass and heat transfer device 92. The direct mass and heat fransfer device 92 is secured in fluid communication with both the plant exhaust passage 88, and the oxidant inlet line 28. The plant exhaust passage 88 directs the plant exhaust stream into the mass and heat transfer device 92, and a plant exhaust vent 94 directs the plant exhaust stream out of the device 92 and out of the fuel cell power plant 10. A primary oxidant inlet 96 directs the oxidant from the oxidant supply 30 into the mass and heat transfer device 92, and the oxidant inlet line 28 directs the oxidant from the device 92 to cathode flow field 32 of the fuel cell 14. An oxidant blower 98 may also be positioned on the primary oxidant inlet 96 to variably accelerate flow of gaseous oxidant into the fuel cell 14, as shown in FIG. 1. Optionally, the oxidant blower 98 may be positioned along the oxidant inlet line 28 for the same purposes. The mass and heat transfer device 92 includes a housing or structure 100 that defines an oxidant chamber 102 through which the process oxidant stream passes, and an exhaust chamber 104 through which the exhaust stream passes. The structure 100 also secures the fine pore enthalpy exchange barrier 12 in mass transfer relationship between the oxidant and exhaust chambers 102, 104 so that the process oxidant stream within the oxidant chamber 102 passes adjacent an inlet surface 106 of the barrier and the plant exhaust stream within the exhaust chamber 104 passes adjacent an exhaust surface 108, and the structure 100 secures the fine pore enthalpy exchange barrier 12 as a barrier between the inlet and exhaust streams (shown schematically in FIG. 1) to prevent bulk mixing of the streams. The mass and heat transfer device means may also include a liquid transfer medium supply means for supplying a liquid transfer medium to the fine pore enthalpy exchange barrier, such as a transfer medium circulating loop 110. The transfer medium loop 110 may include a transfer medium reservoir 112 holding a liquid transfer medium 113, a transfer medium pump 114 secured on a transfer medium feed line 116 in fluid communication between the reservoir 112 and the barrier 12, and a transfer medium return line 118 secured in fluid communication between the barrier 12 and the transfer medium reservoir 112. The liquid transfer medium supply means may also simply include the reservoir 112, feed line 116 and the pump 114 (or without the pump in a gravity supply means) in order to simply replace the liquid transfer medium 113, rather than to recirculate the medium. Preferably, the liquid transfer medium 113 may simply be trapped in the fine pore enthalpy exchange barrier 12, with no re-supply available or needed.
The fine pore enthalpy exchange barrier 12 includes a support matrix means for defining hydrophilic pores having a pore-size range of between 0.1 - 100 microns that results in the barrier having a bubble pressure of greater than 0.2 pounds per square inch ("p.s.i.") (1.4 Kpa) when the hydrophilic pores are wetted by a liquid transfer medium, and for being chemically stable in the presence of the liquid transfer medium. The bubble pressure requirement of the support matrix is dictated by the specific design of the fuel cell 14 and the mass and heat transfer device 92 which set a maximum pressure differential between the exhaust stream within the exhaust passage 88 and the process oxidant stream within the oxidant inlet line 28. There is a tradeoff between bubble pressure and liquid permeability, and the minimum bubble pressure necessary to allow maximum liquid permeability is utilized. FIG. 2 shows a first embodiment of the fine pore enthalpy exchange barrier 12 wherein a support matrix 120 is shown schematically defining a plurality of pores 122 between the inlet surface 106 and exhaust surface 108. To facilitate understanding in FIG. 2 - 4, an arrow labeled "A" represents a possible direction of flow of the process oxidant inlet stream adjacent the inlet surface 106 (106' in FIG. 3, and 106" in FIG. 4); an arrow labeled "B" represents a possible direction of flow of the exhaust stream adjacent the exhaust surface 108 (108' in FIG. 3, and 108" in FIG. 4); and an arrow labeled "C" represents a direction of travel of water and heat from the exhaust surface 108, 108', 108" to the inlet surface 106, 106', 106" in the three embodiments shown in FIGS. 2 - 4. The arrows A, B, C in FIGS. 2 - 4 represent movement of heat and water adjacent and through the fine pore enthalpy exchange barrier 12 (12' in FIG. 3, and 12" in FIG. 4) when the fuel cell power plant is being operated so that product water formed at the cathode electrode 20 moves into the cathode exhaust stream, and water from the fuel processing component means within the oxidized anode exhaust stream pass as the plant exhaust sfream into the exhaust chamber 104 of the mass and heat fransfer device 92. Movement of the water and heat from the plant exhaust sfream into the process oxidant inlet stream is driven by a difference in a partial pressure of the water molecules within the plant exhaust stream and a partial pressure of water molecules within the process oxidant inlet stream, and by a difference in temperatures between the two streams within the transfer device 92.
A first exemplary group of support mafrix means includes rigid support matrixes (shown at reference no. 120 in FIG. 2, 120' in FIG. 3, and 120" in FIG. 4), such as: porous graphite layers; porous, graphite-polymer layers; inorganic-fiber thermoset polymer layers; glass fiber layers; synthetic-fiber filter papers treated to be wettable; porous metal layers; perforated metal layers wherein such perforations include particulate matter secured within the perforations and defining an acceptable fine pore-size range; and a plurality of, differing layers of those support matrixes. The materials that may form support matrixes of this invention may be made hydrophilic by standard treatments well-known in the art with hydrophilic compounds, such as disclosed and described in U.S. Patent 5,840,414. Other materials capable of forming porous gas seals known in the art may also serve as a support matrix means, provided the materials can define hydrophilic pores having a pore-size range of between 0.1 - 100 microns that results in a gas barrier having a bubble pressure of greater than 0.2 p.s.i. (1.4 Kpa) when the hydrophilic pores are wetted by the liquid transfer medium, and the materials are chemically stable in the presence of the liquid fransfer medium 113. A second exemplary group of support matrix means includes flexible support matrixes (shown at reference no. 134 in FIG. 5, and 134' in FIG. 6) such as: inorganic fiber layers, papers or felts with or without compatible polymer binders, including for example asbestos; natural fiber layers, papers or felts with or without compatible polymer binders, including for example cellulose fibers derived from cotton, hemp or wood; organic fiber layers, papers or felts with or without compatible polymer binders, including for example polyolefin fiber; porous compatible plastics with or without wettability treatments, including for example a polyethersulfone membrane filter media, as sold under the brand name "SUPOR" by the PALL Speciality Materials company, of Port Washington, New York, NY 11050, U.S.A.; mixtures of carbon blacks and compatible polymer binders with or without reinforcing glass fibers; and, a plurality of differing layers of these flexible support matrixes with or without compatible binders. By use of the word "compatible", it is meant that the above listed materials are chemically compatible with the liquid transfer medium. These flexible support matrixes may be made hydrophilic by the same process described above.
The liquid transfer medium 113 may include water, aqueous salt solutions, aqueous acid solutions, and organic antifreeze-water solutions, wherein the fransfer medium is capable of sorbing a fluid substance consisting of polar molecules such as water from a fluid sfream consisting of polar and non-polar molecules. Preferred liquid transfer media include: a. a 20 to 35 weight per cent calcium chloride solution; b. a 25 to 35 weight per cent sulfuric acid solution; c. a 45 to 85 weight per cent ethylene glycol water solution; c. a 45 to 85 weight per cent propylene glycol solution; d. a 45 to 80 weight per cent glycerol water solution, so that the liquid transfer media have a freezing point less than 0 degrees Fahrenheit (hereafter "°F") (-18°C). Glycerol is especially preferred as the liquid transfer medium because it has both satisfactory freezing point depression and low vapor pressure characteristics at a working concentration. That results in low loss rates of the liquid fransfer medium out of the fine pore enthalpy exchange barrier 12 during operation of the fuel cell power plant 10, and hence low amounts of the transfer medium in any plant emissions. Additionally, the quantity of antifreeze that is carried into the fuel cell with the process air is very low which mitigates poisoning of the cell.
By characterizing the support matrix 120 as chemically stable in the presence of the liquid transfer medium 113, it is meant that intimate, prolonged contact between the aforesaid concentrations of the varying liquid fransfer media will not degrade the support mafrix so that it cannot perform its role of supporting the liquid transfer to form a gas barrier between the inlet and exhaust surfaces 106, 108 of the fine pore enthalpy exchange barrier 12. By characterizing the support matrix 120 as having a pore-size range of between 0.1 - 100 microns that results in the barrier 12 having a bubble pressure of greater than 0.2 pounds per square inch ("p.s.i.") (1.4 Kpa) when the hydrophilic pores are wetted by the liquid fransfer medium 113, it is meant that the pores defined by the support matrix have diameters that range from between about 0.1 to about 100 microns and that whenever the pores are wetted by the liquid transfer medium a pressure differential between the opposed inlet 106 and exhaust surfaces 108 of 0.2 p.s.i. (1.4 Kpa) or less will not result in gas movement through the fine pore enthalpy exchange barrier 12.
The first embodiment of the fine pore enthalpy exchange barrier 12 shown in fragmentary cross-section in FIG. 2 represents a single monolytic layer embodiment of the barrier 12, adequate to effect efficient fransfer of water and heat from the exhaust sfream to the process oxidant inlet sfream. The fine pore enthalpy exchange barrier 12 may have an optimal thickness range, being a shortest distance between the inlet and exhaust surfaces 106, 108 of between about 0.001 (.025 mm) to about 0.100 inches (2.54 mm). Additionally, the structure 100 of the mass and heat transfer device 92 may be structured to include manifolds and passageways (not shown) to distribute the process oxidant inlet sfream and plant exhaust sfream through multiple inlet and exhaust chambers (not shown) adjacent a plurality of stacked fine pore enthalpy exchange barriers 12, as is common in heat exchanger art, in order to enhance the efficiency of the device 92 depending upon performance characteristics and water recovery requirements of the plant 10.
A second embodiment of the fine pore enthalpy exchange barrier 12' is shown in FIG. 3, wherein the support matrix means includes a multi-layer support matrix 120' having a dual pore-size configuration, comprising a central layer 124, a first exterior layer 126 between the central layer and the inlet surface 106', and a second exterior layer 128 between the central layer and the exhaust surface 108'. The central layer 124 defines pores having a pore-size range of between 0.1 to 20 microns and the exterior layers 126, 128 define a pore size range of between 10 to 50 microns.
Additionally, the central layer 124 defines less than 25% of a total void volume of the multi-layer, dual pore size support matrix 120', and the multi-layer support matrix 120' is filled to greater than 35% of its total void volume with the liquid transfer medium 113 so that the pores defined within the central layer 124 are saturated to create a gas barrier between the inlet and exhaust surfaces 106', 108' of the multi-layer support matrix 120'. In use of the fine pore enthalpy exchange barrier 12' having the multi-layer support matrix 120', in the event of changed operating conditions of the fuel cell power plant 10, the liquid transfer medium may move into or out of the central layer 124 into either the first exterior layer 126, the second exterior layer 128, or both, and thereby minimize a possibility of the liquid fransfer medium moving out of the fine pore enthalpy exchange barrier 12' into the process oxidant inlet or exhaust streams, and to also minimize a possibility of gas transferring across the barrier 12'. The central layer 124 and exterior layers 126, 128 of the multi-layer support matrix may be the same or dissimilar support mafrix materials. A third embodiment of the fine pore enthalpy exchange barrier 12" is shown in
FIG. 4, wherein the support matrix means is a perforated metal, plastic or fiber reinforced plastic layer support matrix 120" defining a plurality of perforations 130A, 130B wherein a particulate matter 132A, 132B is secured within the perforations, such as by standard chemical bonding, well-known in the art. For convenience, the perforated metal, plastic or fiber reinforced plastic layer support mafrix 120" will be referred to as a "perforated layer support matrix". The particulate matter defines hydrophilic pores between 0.1 to about 100 microns so that the pores result in a gas barrier when wetted with the liquid transfer medium exhibiting a gas bubble pressure of greater than 0.2 p.s.i. (1.4 Kpa). Because the plurality of perforations 130A, 130B and particulate matter 132 A, 132B define pores passing through the perforated layer support mafrix 120", polar molecules such as water in the exhaust stream passing adjacent the exhaust surface 108" of the support matrix 120" will pass through the support matrix 120" to the process oxidant inlet stream passing adjacent the inlet surface 106". Exemplary materials to form the perforated layer support matrix 120" include stainless steel, and other metals well-known as structural components in the heat exchanger art, as well as a fiberglass-epoxy composite. The inlet and exhaust surfaces 106", 108" of the perforated layer support matrix 120" may also be coated with a porous, wetted material, such as carbon black, silicon carbide, metals, oxides, hydroxides, silicates, or wettable polymers, in order to aid in condensation of water on the exhaust surface 108" and movement of the condensed water to the plurality of perforations 130A, 130B, and to aid in more rapid distribution and evaporation of water on the inlet surface 106".
A fourth embodiment of the fine pore enthalpy exchange barrier 136 is shown in FIG. 5, wherein the flexible support matrix 134 of the barrier 136 is shown having an inlet surface 138 and an opposed exhaust surface 140. A first mesh layer 142 is secured adjacent the inlet surface 138 of the barrier 136, and a second mesh layer 144 is secured adjacent the opposed exhaust surface 140 of the barrier 136 to provide support for the barrier 136. The first and second mesh layers 142, 144 may be a compatible metal mesh, an extruded metal, a compatible plastic screen, an extruded plastic screen, or any material that provides mechanical support for the enthalpy exchange barrier 136 that is chemically compatible with the liquid transfer medium. An example of a suitable metal mesh layer is stainless steel, and a suitable plastic mesh layer is polyvinyl chloride.
As shown in FIG. 5, the fourth embodiment of the fine pore enthalpy exchange barrier 136 also includes a first flow guide means for guiding flow of the process oxidant stream adjacent the inlet surface 138 of the barrier 136, such as a first plastic flow guide 146 adjacent the first mesh layer 142, and a second flow guide means for guiding flow of the plant exhaust stream adjacent the exhaust surface 140 of the barrier 136 such as a second plastic flow guide 148 adjacent the second mesh layer 144. The first and second plastic flow guides 146, 148 may serve as the structure 100 (shown in FIG. 1) supporting the enthalpy exchange barrier 136 in mass fransfer relationship between the process oxidant passing adjacent the inlet surface 138 and the plant exhaust stream passing adjacent the exhaust surface 140 of the barrier 136. The first plastic flow guide 146 is dimensioned to define a plurality of oxidant chambers 150A, 150B, 150C that guide the process oxidant sfream to pass adjacent the first mesh layer 142 and the inlet surface 138 of the barrier 136, and the second plastic flow guide 148 is dimensioned to define a plurality of exhaust chambers 152A, 152B, 152C that guide the plant exhaust stream to pass adjacent the exhaust surface 140 of the enthalpy exchange barrier 136. The first and second flow guide means 146, 148 may be formed of known compatible materials including plastics such as polycarbonate as a suitable material, and also including plastics filled with carbon reinforcing fibers or wood filler as additional suitable materials.
A fifth embodiment of a fine pore enthalpy exchange barrier 154 is shown in FIG. 6 wherein the flexible support matrix 134' of the barrier 154 has adequate mechanical strength to be free standing or self-supporting so that no mesh layers are required. Such a self-supporting flexible support matrix 134' may be a mixture of the above described flexible support matrixes, including for example a mixture of natural fibers with carbon fibers, or a mixture of glass fibers and natural fibers both with and without compatible binders. The self-supporting flexible support mafrix 134' may also be mixture of carbon blacks and compatible polymer binders with or without reinforcing glass or carbon fibers. The fibers provide stiffness to the flexible support matrixes to make the barriers self-supporting and thereby eliminate any need for supporting mesh layers. As shown in FIG. 6, the fifth embodiment of the fine pore enthalpy exchange barrier 154 including the self-supporting flexible support matrix 134' also includes a first plastic flow guide 146' secured adjacent an inlet surface 138' of the barrier 154, and a second plastic flow guide 148' secured adjacent the opposed exhaust surface 140' of the barrier 154. As with the fourth embodiment, the first plastic flow guide 146' of the fifth embodiment of the barrier 154 is dimensioned to define a plurality of oxidant chambers 150'A, 150'B, 150'C that guide the process oxidant stream to pass adjacent the inlet surface 138' of the barrier 154. Similarly, the second plastic flow guide 148' of the fifth embodiment of the barrier 154 is dimensioned to define a plurality of exhaust chambers 152'A, 152'B, 152'C that guide the process exhaust stream to pass adjacent the exhaust surface 140' of the barrier 154. Use of the flexible support matrixes 134, 134' as described within the fourth and fifth embodiments of the fine pore enthalpy exchange barrier 136, 154 provides substantial cost and weight savings compared to rigid support matrixes. The flexible support matrixes also allow an overall reduction in water inventory of the fuel cell power plant 10 because of their reduced thicknesses, resulting in reduced start-up time when operating the fuel cell power plant 10 in sub-freezing conditions.
It is pointed out that while potential alternative porous gas seal structures such as ionomer or polymer films could also transport water and heat, they are known to be quite expensive, and are not chemically stable in the presence of a wide variety of liquid transfer media necessary to facilitate efficient operation of fuel cell power plants in climates varying from sub-freezing to hot, dry ambient conditions, such as experienced by modern transportation vehicles.
In operation of the fuel cell power plant 10 using the fine pore enthalpy exchange barrier 12, 136, 154, water vapor generated within the fuel cell 14 passes from the plant exhaust stream through the barrier 12 to humidify the process oxidant inlet sfream, and latent and sensible heat also exchange between the inlet and exhaust streams, cooling the exhaust sfream by movement of the water vapor out of the stream, and heating the inlet sfream directly with the water vapor. Evaporation of the exchanging water at the inlet surface 106 of the fine pore enthalpy exchange barrier 12 into the oxidant inlet sfream also results in cooling of the inlet surface 106 which increases a temperature differential between inlet and exhaust surfaces 106, 108. That increased temperature differential results in an increased rate of heat and water transfer into the inlet stream. A rate of evaporation of the heated water into the inlet sfream is also a function of humidity of ambient air, where ambient air is the oxidant for the plant 10. Consequently, as the fuel cell power plant 10 is operated in drier air, such as with a transportation vehicle moving into a dry climate, a rate of water movement from the exhaust to the inlet stream to humidify the inlet stream will automatically increase. Use of the support matrix 120, 134, 134' being chemically stable in the presence of a low volatility liquid fransfer medium 113 having a substantial freezing point depression characteristic also enables the fuel cell power plant 10 to be operated through a wide temperature range without need for preheating the mass and heat transfer device 92, while minimizing chances of the liquid transfer medium 113 leaving the fine pore enthalpy exchange barrier 12.
While the present invention has been described and illustrated with respect to particular embodiments and methods of use of a fine pore enthalpy exchange barrier for a fuel cell power plant, it is to be understood that the present invention is not to be limited to the described and illustrated embodiments. For example, the anode exhaust heat exchanger 44 and coolant heat exchanger 76 have been shown schematically as separated from each other for ease of understanding. For purposes of efficiency however, those components may be stacked together to take advantage of common ducting, or for efficiency in fluid flow and heat exchange. Additionally, although the fine pore enthalpy exchange barrier 12, 136, 154 for a fuel cell power plant 10 of the present invention has been primarily described in the context of a "PEM" fuel cell, the barrier 12, 136, 154 is applicable to other fuel cells utilizing other solid polymer or aqueous electrolytes. Further, FIG. 1 shows schematically a direct mass and heat transfer device 92 securing one fine pore enthalpy exchange barrier 12 secured between process oxidant inlet and plant exhaust streams. The invention, however, also includes a plurality of the barriers 12 secured in a manner appropriate to efficiently fransfer necessary water and heat from the exhaust to the inlet sfream, depending upon operational requirements of the plant 10. Accordingly, reference should be made primarily to the following claims rather than the foregoing description to determine the scope of the invention.

Claims

Claims
1. A fuel cell power plant for generating electrical energy from a process oxidant stream and a reducing fluid stream, the plant comprising: a. at least one fuel cell means for producing the electrical energy from the oxidant stream and reducing fluid stream; and, b. a direct mass and heat fransfer device secured in fluid communication with both a primary oxidant inlet line that directs the process oxidant stream into the fuel cell means and also with a plant exhaust passage that directs a plant exhaust stream out of the fuel cell means, the device including a structure that secures a fine pore enthalpy exchange barrier in mass transfer relationship between the oxidant and exhaust streams passing through the device so that the process oxidant stream passes adjacent an inlet surface of the barrier, and the plant exhaust stream passes adjacent an opposed exhaust surface of the barrier and the structure secures the barrier between the oxidant and exhaust streams to prevent bulk mixing of the streams within the device, wherein the barrier includes a flexible support matrix means for defining hydrophilic pores having a pore-size range of between about 0.1 to about 100 microns and for being chemically stable in the presence of a liquid fransfer medium so that whenever the liquid transfer medium fills the pores the barrier has a bubble pressure greater than 0.2 pounds per square inch (1.4 Kpa), a first mesh layer secured adjacent the inlet surface of the barrier to support the barrier, a second mesh layer secured adjacent the exhaust surface of the barrier to support the barrier, and wherein the structure includes a first flow guide means secured adjacent the first mesh layer for guiding the process oxidant stream to flow adjacent the first mesh layer, and a second flow guide means secured adjacent the second mesh layer for guiding the plant exhaust sfream to flow adjacent the second mesh layer.
2. The fuel cell power plant of Claim 1 , wherein the liquid transfer medium is selected from the group consisting of: a. an aqueous salt solution having a freezing point of less than 0 °F (-18°C); b. an aqueous acid solution having a freezing point of less than 0°F (-18°C); c. an organic antifreeze-water solution; and, d. a 45 to 80 weight per cent glycerol water solution.
3. The fuel cell power plant of Claim 1, wherein the flexible support matrix means comprises a flexible support mafrix selected from the group consisting of: a. an inorganic fiber layer with a compatible polymer binder; b. an inorganic fiber layer; c. a natural fiber layer with a compatible polymer binder; d. a natural fiber layer; e. an organic fiber layer with a compatible polymer binder; f. an organic fiber layer; g. a porous plastic layer compatible with the liquid transfer medium with a wettability treatment; h. a porous plastic layer compatible with the liquid fransfer medium; i. a layer of mixtures of carbon blacks and a compatible polymer binder with reinforcing glass fibers; j. a layer of mixtures of carbon blacks and a compatible polymer binder; and, k. a plurality of differing layers of this group.
4. The fuel cell power plant of Claim 1 wherein the first flow guide means is a first plastic flow guide, and the second flow guide means is a second plastic flow guide.
5. The fuel cell power plant of Claim 1 , further comprising a liquid transfer medium supply means for supplying the liquid fransfer medium to the fine pore enthalpy exchange barrier.
6. The a fuel cell power plant of Claim 5, wherein the liquid transfer medium supply means includes a transfer medium reservoir for holding the liquid transfer medium, and a transfer medium feed line secured in fluid communication between the transfer medium reservoir and the enthalpy exchange barrier for directing the liquid transfer medium to flow between the reservoir and the enthalpy exchange barrier.
7 . The fuel cell power plant of Claim 6, wherein the liquid transfer medium supply means further comprises a transfer medium pump secured in fluid communication with the liquid transfer reservoir for pumping the liquid transfer medium from the reservoir into the enthalpy exchange barrier.
8. The fuel cell power plant of Claim 7, wherein the liquid transfer medium supply means comprises a transfer medium circulating loop including a fransfer medium return line secured between the enthalpy exchange barrier and the liquid transfer reservoir so that the liquid fransfer medium may be pumped by the transfer medium pump to flow from the reservoir through the fransfer medium feed line, through the enthalpy exchange barrier, and through the transfer medium return line back to the fransfer medium reservoir.
9. A fuel cell power plant that generates electrical energy from a process oxidant sfream and a reducing fluid stream, the plant comprising: a. at least one fuel cell means for producing the electrical energy from the oxidant stream and reducing fluid sfream; and, b. a direct mass and heat fransfer device secured in fluid communication with both a primary oxidant inlet line that directs the process oxidant stream into the fuel cell means and also with the plant exhaust passage that directs the plant exhaust sfream out of the fuel cell means, the device including a structure that secures a fine pore enthalpy exchange barrier in mass fransfer relationship between the oxidant and exhaust streams passing through the device so that the process oxidant stream passes adjacent an inlet surface of the barrier, and the plant exhaust stream passes adjacent an opposed exhaust surface of the barrier and the structure secures the barrier between the oxidant and exhaust streams to prevent bulk mixing of the streams within the device, wherein the barrier includes a self-supporting flexible support matrix means for defining hydrophilic pores having a pore-size range of between about 0.1 to about 100 microns and for being chemically stable in the presence of a liquid transfer medium so that whenever the liquid fransfer medium fills the pores the barrier has a bubble pressure greater than 0.2 pounds per square inch (1.4 Kpa), and wherein the structure includes a first flow guide means secured adjacent the first mesh layer for guiding the process oxidant stream to flow adjacent the first mesh layer, and a second flow guide means secured adjacent the second mesh layer for guiding the plant exhaust stream to flow adjacent the second mesh layer.
10. The fuel cell power plant of Claim 9, wherein the liquid transfer medium is selected from the group consisting of: a, an aqueous salt solution having a freezing point of less than 0 °F (-18°C); b, an aqueous acid solution having a freezing point of less than 0 °F (-18°C); c. an organic antifreeze solution having a freezing point of less than 0 °F (-18°C); and, d. a 45 to 80 weight per cent glycerol water solution.
11. The fuel cell power plant of Claim 9, wherein the self-supporting flexible support matrix means comprises a flexible support matrix selected from the group consisting of: a. a layer of a mixture of natural fibers mixed with carbon fibers with a compatible polymer binder; b. a layer of a mixture of natural fibers mixed with carbon fibers; c. a layer of a mixture of glass fibers mixed with natural fibers with a compatible polymer binder; d. a layer of a mixture of glass fibers and natural fibers; e. a layer of a mixture of carbon blacks, a compatible polymer binder and glass fibers; e. a layer of a mixture of carbon blacks, a compatible polymer binder and carbon fibers; and f. a plurality of differing layers of this group.
12. The fuel cell power plant of Claim 9 wherein the first flow guide means is a first plastic flow guide, and the second flow guide means is a second plastic flow guide.
13. The fuel cell power plant of Claim 9, further comprising a liquid fransfer medium supply means for supplying the liquid fransfer medium to the fine pore enthalpy exchange barrier.
14. The a fuel cell power plant of Claim 13, wherein the liquid fransfer medium supply means includes a transfer medium reservoir for holding the liquid transfer medium, and a fransfer medium feed line secured in fluid communication between the fransfer medium reservoir and the enthalpy exchange barrier for directing the liquid transfer medium to flow between the reservoir and the enthalpy exchange barrier.
15. The fuel cell power plant of Claim 14, wherein the liquid transfer medium supply means further comprises a fransfer medium pump secured in fluid communication with the liquid transfer reservoir for pumping the liquid fransfer medium from the reservoir into the enthalpy exchange barrier.
16. The fuel cell power plant of Claim 15, wherein the liquid fransfer medium supply means comprises a transfer medium circulating loop including a transfer medium return line secured between the enthalpy exchange barrier and the liquid transfer reservoir so that the liquid fransfer medium may be pumped by the transfer medium pump to flow from the reservoir through the transfer medium feed line, through the enthalpy exchange barrier, and through the transfer medium return line back to the transfer medium reservoir.
17. The fuel cell power plant of Claim 9, wherein the plant further comprises fuel processing component means for processing a hydrocarbon fuel into the reducing fluid, including a burner and a reformer, wherein the burner receives an anode exhaust sfream from the fuel cell means and directs an oxidized anode exhaust stream from the burner into a plant exhaust passage to mix with a cathode exhaust sfream from the fuel cell means to become the plant exhaust sfream.
18. A method of exchanging water and heat from a plant exhaust stream leaving a fuel cell power plant into a process oxidant stream entering a fuel cell of the fuel cell power plant, comprising the steps of: a. securing a fine pore enthalpy exchange barrier between an exhaust chamber and an oxidant chamber of a direct mass and heat fransfer device, wherein a flexible support matrix of the barrier defines hydrophilic pores having a pore-size range of between about 0.1 to about 100 microns, so that whenever a liquid fransfer medium wets the pores defined within the support matrix of the barrier, the barrier restricts bulk mixing of fluids between the exhaust and oxidant chambers; b. passing the plant exhaust stream through the exhaust chamber adjacent an exhaust surface of the fine pore enthalpy exchange barrier, and passing the process oxidant stream through the oxidant chamber adjacent an inlet surface of the barrier opposed to the exhaust surface so that a pressure differential between the exhaust and oxidant fluids is less than 0.2 pounds per square inch (1.4 Kpa); and, c. then directing the process oxidant sfream from the direct mass and heat transfer device into the fuel cell.
19. The method of Claim 18, comprising the further steps of directing an anode exhaust stream from the fuel cell, through a burner of a fuel processing component means for processing hydrocarbon fuels into a reducing fluid for the fuel cell, directing an oxidized anode exhaust stream from the burner into the plant exhaust passage to mix with a cathode exhaust stream to become the plant exhaust sfream.
PCT/US2001/051640 1999-09-14 2001-12-13 Fine pore enthalpy exchange barrier for a fuel cell power plant WO2002093674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01273895A EP1352438A4 (en) 1999-09-14 2001-12-13 Fine pore enthalpy exchange barrier for a fuel cell power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/740,597 2000-12-19
US09/740,597 US20020077693A1 (en) 2000-12-19 2000-12-19 Covered, coiled drug delivery stent and method

Publications (1)

Publication Number Publication Date
WO2002093674A1 true WO2002093674A1 (en) 2002-11-21

Family

ID=24977229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/051640 WO2002093674A1 (en) 1999-09-14 2001-12-13 Fine pore enthalpy exchange barrier for a fuel cell power plant

Country Status (2)

Country Link
US (2) US20020077693A1 (en)
WO (1) WO2002093674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043894A1 (en) * 2007-09-14 2009-03-19 EVT Gesellschaft für Energieverfahrenstechnik mbH Liquid or gaseous hydrocarbons or alcohol reforming method for e.g. alkaline fuel cell system, involves allowing cathode exhaust gas to undergo reformation process, so that water vapor contained in gas undergoes water gas shift-process

Families Citing this family (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020042645A1 (en) * 1996-07-03 2002-04-11 Shannon Donald T. Drug eluting radially expandable tubular stented grafts
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US20030129215A1 (en) * 1998-09-24 2003-07-10 T-Ram, Inc. Medical devices containing rapamycin analogs
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US7637948B2 (en) 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US20040254635A1 (en) 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8382821B2 (en) * 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US20060178727A1 (en) * 1998-12-03 2006-08-10 Jacob Richter Hybrid amorphous metal alloy stent
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US20090030309A1 (en) 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US6790228B2 (en) 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US7682647B2 (en) * 1999-09-03 2010-03-23 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
AU9463401A (en) 2000-10-16 2002-04-29 Conor Medsystems Inc Expandable medical device for delivery of beneficial agent
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
CA2659518A1 (en) 2000-11-20 2002-05-30 Senorx, Inc. Tissue site markers for in vivo imaging
US6824559B2 (en) 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US6663662B2 (en) * 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US20040204756A1 (en) * 2004-02-11 2004-10-14 Diaz Stephen Hunter Absorbent article with improved liquid acquisition capacity
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
US6656506B1 (en) 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US20040249443A1 (en) * 2001-08-20 2004-12-09 Shanley John F. Expandable medical device for treating cardiac arrhythmias
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7223282B1 (en) * 2001-09-27 2007-05-29 Advanced Cardiovascular Systems, Inc. Remote activation of an implantable device
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
US6709514B1 (en) * 2001-12-28 2004-03-23 Advanced Cardiovascular Systems, Inc. Rotary coating apparatus for coating implantable medical devices
US7919075B1 (en) 2002-03-20 2011-04-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices
US7060083B2 (en) * 2002-05-20 2006-06-13 Boston Scientific Scimed, Inc. Foldable vaso-occlusive member
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US20050154449A1 (en) * 2002-07-31 2005-07-14 David Elmaleh Non-biodegradable drug-eluting sleeves for intravascular devices
JP2006500996A (en) * 2002-09-26 2006-01-12 エンドバスキュラー デバイセス インコーポレイテッド Apparatus and method for delivering mitomycin via an eluting biocompatible implantable medical device
US7087263B2 (en) * 2002-10-09 2006-08-08 Advanced Cardiovascular Systems, Inc. Rare limiting barriers for implantable medical devices
KR20130032407A (en) * 2002-11-08 2013-04-01 코너 메드시스템즈, 엘엘씨 Method and apparatus for reducing tissue damage after ischemic injury
JP2006505364A (en) * 2002-11-08 2006-02-16 コナー メドシステムズ, インコーポレイテッド Expandable medical device and method for treating chronic total infarction using a local supply of angiogenic factors
US7481821B2 (en) 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US20060121080A1 (en) * 2002-11-13 2006-06-08 Lye Whye K Medical devices having nanoporous layers and methods for making the same
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US20040260382A1 (en) * 2003-02-12 2004-12-23 Fogarty Thomas J. Intravascular implants and methods of using the same
US7563483B2 (en) * 2003-02-26 2009-07-21 Advanced Cardiovascular Systems Inc. Methods for fabricating a coating for implantable medical devices
US7544192B2 (en) 2003-03-14 2009-06-09 Sinexus, Inc. Sinus delivery of sustained release therapeutics
GB0306176D0 (en) * 2003-03-18 2003-04-23 Imp College Innovations Ltd Tubing
US7771463B2 (en) * 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
ES2346059T3 (en) * 2003-03-26 2010-10-08 Biosensors International Group Ltd. IMPLANT SUPPLY CATHETER WITH ELECTROLYTICALLY EROSIONABLE JOINTS.
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
AU2004226327A1 (en) 2003-03-28 2004-10-14 Innovational Holdings, Llc Implantable medical device with beneficial agent concentration gradient
US20050010170A1 (en) * 2004-02-11 2005-01-13 Shanley John F Implantable medical device with beneficial agent concentration gradient
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
CN100558321C (en) * 2003-06-16 2009-11-11 南洋理工大学 Polymer Scaffold And Its Manufacturing Methods
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
ATE536889T1 (en) 2003-07-08 2011-12-15 Accumetrics Inc CONTROLLED PLATEMBOCYTE ACTIVATION TO MONITOR TREATMENT OF ADP ANTAGONISTS
US20070243632A1 (en) * 2003-07-08 2007-10-18 Coller Barry S Methods for measuring platelet reactivity of patients that have received drug eluting stents
US7326571B2 (en) * 2003-07-17 2008-02-05 Boston Scientific Scimed, Inc. Decellularized bone marrow extracellular matrix
US20050015110A1 (en) 2003-07-18 2005-01-20 Fogarty Thomas J. Embolization device and a method of using the same
US7056591B1 (en) * 2003-07-30 2006-06-06 Advanced Cardiovascular Systems, Inc. Hydrophobic biologically absorbable coatings for drug delivery devices and methods for fabricating the same
US7431959B1 (en) * 2003-07-31 2008-10-07 Advanced Cardiovascular Systems Inc. Method and system for irradiation of a drug eluting implantable medical device
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7645474B1 (en) 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
US7744645B2 (en) * 2003-09-29 2010-06-29 Medtronic Vascular, Inc. Laminated drug-polymer coated stent with dipped and cured layers
US7318932B2 (en) * 2003-09-30 2008-01-15 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US7704544B2 (en) 2003-10-07 2010-04-27 Advanced Cardiovascular Systems, Inc. System and method for coating a tubular implantable medical device
US7329413B1 (en) * 2003-11-06 2008-02-12 Advanced Cardiovascular Systems, Inc. Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7560492B1 (en) * 2003-11-25 2009-07-14 Advanced Cardiovascular Systems, Inc. Polysulfone block copolymers as drug-eluting coating material
US7807722B2 (en) * 2003-11-26 2010-10-05 Advanced Cardiovascular Systems, Inc. Biobeneficial coating compositions and methods of making and using thereof
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
JP4391221B2 (en) * 2003-12-22 2009-12-24 有限会社日本エレクテル High frequency heating balloon catheter
US8309112B2 (en) * 2003-12-24 2012-11-13 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US20050177224A1 (en) * 2004-02-11 2005-08-11 Fogarty Thomas J. Vascular fixation device and method
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8551512B2 (en) 2004-03-22 2013-10-08 Advanced Cardiovascular Systems, Inc. Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US7018403B1 (en) * 2004-09-14 2006-03-28 Advanced Cardiovascular Systems, Inc. Inclined stent pattern for vulnerable plaque
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US7914570B2 (en) * 2004-10-07 2011-03-29 Boston Scientific Scimed, Inc. Non-shortening helical stent
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
US8419656B2 (en) 2004-11-22 2013-04-16 Bard Peripheral Vascular, Inc. Post decompression marker introducer system
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
DE102005011656A1 (en) * 2005-03-14 2006-09-21 Breeze Medical, Inc., Boca Raton System for delivering an agent into a blood vessel
JP5523700B2 (en) 2005-04-04 2014-06-18 フレキシブル ステンティング ソリューションズ,インク. Flexible stent
RU2007140909A (en) 2005-04-04 2009-05-20 Синексус, Инк. (Us) DEVICE AND METHODS FOR TREATING DISEASES OF THE NANOLAIN SINUS
DE102005016103B4 (en) * 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US20060246210A1 (en) * 2005-04-29 2006-11-02 Vascular Architects Inc., A Delaware Corporation Method for making a covered drug-eluting stent
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US8052658B2 (en) 2005-10-07 2011-11-08 Bard Peripheral Vascular, Inc. Drug-eluting tissue marker
US20070173787A1 (en) * 2005-11-01 2007-07-26 Huang Mark C T Thin-film nitinol based drug eluting stent
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US20070225799A1 (en) * 2006-03-24 2007-09-27 Medtronic Vascular, Inc. Stent, intraluminal stent delivery system, and method of treating a vascular condition
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
EP2018139B1 (en) * 2006-04-26 2017-03-01 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US8652201B2 (en) 2006-04-26 2014-02-18 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US9101505B2 (en) * 2006-04-27 2015-08-11 Brs Holdings, Llc Composite stent
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
EP2020956A2 (en) * 2006-05-26 2009-02-11 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) * 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US9259535B2 (en) 2006-06-22 2016-02-16 Excelsior Medical Corporation Antiseptic cap equipped syringe
US11229746B2 (en) 2006-06-22 2022-01-25 Excelsior Medical Corporation Antiseptic cap
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
CA2655793A1 (en) 2006-06-29 2008-01-03 Boston Scientific Limited Medical devices with selective coating
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8685430B1 (en) 2006-07-14 2014-04-01 Abbott Cardiovascular Systems Inc. Tailored aliphatic polyesters for stent coatings
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
US9173733B1 (en) * 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US20080051881A1 (en) * 2006-08-24 2008-02-28 Feng James Q Medical devices comprising porous layers for the release of therapeutic agents
JP2010503469A (en) 2006-09-14 2010-02-04 ボストン サイエンティフィック リミテッド Medical device having drug-eluting film
US8064987B2 (en) 2006-10-23 2011-11-22 C. R. Bard, Inc. Breast marker
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
EP3542748B1 (en) 2006-12-12 2023-08-16 C. R. Bard, Inc. Multiple imaging mode tissue marker
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
ES2432572T3 (en) 2006-12-18 2013-12-04 C.R. Bard, Inc. Biopsy marker with imaging properties generated in situ
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
WO2009012353A2 (en) 2007-07-19 2009-01-22 Boston Scientific Limited Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
WO2009018340A2 (en) 2007-07-31 2009-02-05 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
JP2010535541A (en) 2007-08-03 2010-11-25 ボストン サイエンティフィック リミテッド Coating for medical devices with large surface area
US20090048666A1 (en) * 2007-08-14 2009-02-19 Boston Scientific Scimed, Inc. Medical devices having porous carbon adhesion layers
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
CN101917929A (en) 2007-10-04 2010-12-15 特里瓦斯库拉尔公司 Modular vascular graft for low profile percutaneous delivery
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US7988721B2 (en) * 2007-11-30 2011-08-02 Reva Medical, Inc. Axially-radially nested expandable device
WO2009079418A2 (en) 2007-12-18 2009-06-25 Sinexus, Inc. Self-expanding devices and methods therefor
US8311610B2 (en) 2008-01-31 2012-11-13 C. R. Bard, Inc. Biopsy tissue marker
EP2271380B1 (en) 2008-04-22 2013-03-20 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
WO2009132176A2 (en) 2008-04-24 2009-10-29 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
EP2303350A2 (en) 2008-06-18 2011-04-06 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
CA2732355A1 (en) 2008-08-01 2010-02-04 Intersect Ent, Inc. Methods and devices for crimping self-expanding devices
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US9597214B2 (en) 2008-10-10 2017-03-21 Kevin Heraty Medical device
CA2737753C (en) 2008-10-10 2017-03-14 Reva Medical, Inc. Expandable slide and lock stent
US9078992B2 (en) 2008-10-27 2015-07-14 Pursuit Vascular, Inc. Medical device for applying antimicrobial to proximal end of catheter
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8670818B2 (en) 2008-12-30 2014-03-11 C. R. Bard, Inc. Marker delivery device for tissue marker placement
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US10357640B2 (en) 2009-05-15 2019-07-23 Intersect Ent, Inc. Expandable devices and methods for treating a nasal or sinus condition
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
EP2496189A4 (en) 2009-11-04 2016-05-11 Nitinol Devices And Components Inc Alternating circumferential bridge stent design and methods for use thereof
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
CA2795292A1 (en) 2010-04-10 2011-10-13 Reva Medical, Inc. Expandable slide and lock stent
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
WO2012031164A2 (en) * 2010-09-02 2012-03-08 California Institute Of Technology Drug delivery by carbon nanotube arrays
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
JP6203639B2 (en) * 2011-01-28 2017-09-27 メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. Electrospun PTFE coated stent and method of use
US8911468B2 (en) * 2011-01-31 2014-12-16 Vatrix Medical, Inc. Devices, therapeutic compositions and corresponding percutaneous treatment methods for aortic dissection
KR101091769B1 (en) 2011-03-02 2011-12-08 (주)키메드 Implant for induction of autologous tissue bearing the characteristic of biodegradable within the body
WO2015010116A2 (en) * 2013-07-19 2015-01-22 Aperiam Medical, Inc. Intraluminal implants and methods
CA2841832C (en) 2011-07-12 2019-06-04 Pursuit Vascular, Inc. Device for delivery of antimicrobial agent into a trans-dermal catheter
CN104114201A (en) 2012-01-16 2014-10-22 美国医疗设备有限公司 Rotational spun material covered medical appliances and methods of manufacture
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9901715B2 (en) * 2012-09-05 2018-02-27 W. L. Gore Associates, Inc. Retractable sheath devices, systems, and methods
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
EP3988278A1 (en) 2013-03-13 2022-04-27 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods
US10406332B2 (en) 2013-03-14 2019-09-10 Intersect Ent, Inc. Systems, devices, and method for treating a sinus condition
WO2014159337A1 (en) 2013-03-14 2014-10-02 Reva Medical, Inc. Reduced - profile slide and lock stent
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
CN106456949B (en) * 2014-03-14 2019-11-01 小利兰·斯坦福大学理事会 Indwelling body cavity expander
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
EP3294404A4 (en) 2015-05-08 2018-11-14 ICU Medical, Inc. Medical connectors configured to receive emitters of therapeutic agents
US10456283B2 (en) 2016-07-13 2019-10-29 Boston Scientific Scimed, Inc. Apparatus and method for maintaining patency in a vessel adjacent to nearby surgery
WO2018071717A1 (en) 2016-10-14 2018-04-19 Icu Medical, Inc. Sanitizing caps for medical connectors
CN110267627B (en) 2016-12-09 2023-07-11 真复灵公司 Systems, devices, and methods for accurately deploying implants in the prostatic urethra
WO2018204206A2 (en) 2017-05-01 2018-11-08 Icu Medical, Inc. Medical fluid connectors and methods for providing additives in medical fluid lines
WO2019003221A1 (en) * 2017-06-29 2019-01-03 Doron Carmi Intraluminal support structure and prosthetic valve from the same
CN110623779B (en) * 2018-06-21 2023-07-25 连新龙 Protective sleeve for intervention
US11534595B2 (en) 2018-11-07 2022-12-27 Icu Medical, Inc. Device for delivering an antimicrobial composition into an infusion device
US11541220B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Needleless connector with antimicrobial properties
US11400195B2 (en) 2018-11-07 2022-08-02 Icu Medical, Inc. Peritoneal dialysis transfer set with antimicrobial properties
US11517732B2 (en) 2018-11-07 2022-12-06 Icu Medical, Inc. Syringe with antimicrobial properties
US11541221B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Tubing set with antimicrobial properties
EP3883638A1 (en) 2018-11-21 2021-09-29 ICU Medical, Inc. Antimicrobial device comprising a cap with ring and insert
JP2023502997A (en) 2019-11-19 2023-01-26 ゼンフロー, インコーポレイテッド Systems, devices and methods for accurate deployment and imaging of implants within the prostatic urethra
EP4255552A1 (en) 2020-12-07 2023-10-11 ICU Medical, Inc. Peritoneal dialysis caps, systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449992A (en) * 1978-12-14 1984-05-22 Teijin Limited Heat-and-moisture exchanger
US4876162A (en) * 1988-04-01 1989-10-24 United Technologies Corporation Fuel cell with integral conduit means for statically removing liquid product water
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US6013385A (en) * 1997-07-25 2000-01-11 Emprise Corporation Fuel cell gas management system
US6274259B1 (en) * 1999-09-14 2001-08-14 International Fuel Cells Llc Fine pore enthalpy exchange barrier
US6316135B1 (en) * 1999-07-22 2001-11-13 International Fuel Cells Llc Direct antifreeze cooled fuel cell
US6331366B1 (en) * 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1204643A (en) * 1981-09-16 1986-05-20 Hans I. Wallsten Device for application in blood vessels or other difficulty accessible locations and its use
US4795458A (en) * 1987-07-02 1989-01-03 Regan Barrie F Stent for use following balloon angioplasty
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5419760A (en) * 1993-01-08 1995-05-30 Pdt Systems, Inc. Medicament dispensing stent for prevention of restenosis of a blood vessel
US5399352A (en) * 1993-04-14 1995-03-21 Emory University Device for local drug delivery and methods for using the same
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US5723004A (en) * 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US5855598A (en) * 1993-10-21 1999-01-05 Corvita Corporation Expandable supportive branched endoluminal grafts
ATE310839T1 (en) * 1994-04-29 2005-12-15 Scimed Life Systems Inc STENT WITH COLLAGEN
US5605696A (en) * 1995-03-30 1997-02-25 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
US6027516A (en) * 1995-05-04 2000-02-22 The United States Of America As Represented By The Department Of Health And Human Services Highly elastic, adjustable helical coil stent
US5797887A (en) * 1996-08-27 1998-08-25 Novovasc Llc Medical device with a surface adapted for exposure to a blood stream which is coated with a polymer containing a nitrosyl-containing organo-metallic compound which releases nitric oxide from the coating to mediate platelet aggregation
WO1998011847A1 (en) * 1996-09-20 1998-03-26 Houser Russell A Radially expanding prostheses and systems for their deployment
US5824054A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet graft stent and methods of making and use
US20010032010A1 (en) * 1998-08-26 2001-10-18 Thomas O. Hoover Medical prosthesis
US6299448B1 (en) * 1999-02-17 2001-10-09 Ivanka J. Zdrahala Surgical implant system for restoration and repair of body function
US6451050B1 (en) * 2000-04-28 2002-09-17 Cardiovasc, Inc. Stent graft and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449992A (en) * 1978-12-14 1984-05-22 Teijin Limited Heat-and-moisture exchanger
US4876162A (en) * 1988-04-01 1989-10-24 United Technologies Corporation Fuel cell with integral conduit means for statically removing liquid product water
US5503944A (en) * 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US6013385A (en) * 1997-07-25 2000-01-11 Emprise Corporation Fuel cell gas management system
US6331366B1 (en) * 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant
US6316135B1 (en) * 1999-07-22 2001-11-13 International Fuel Cells Llc Direct antifreeze cooled fuel cell
US6274259B1 (en) * 1999-09-14 2001-08-14 International Fuel Cells Llc Fine pore enthalpy exchange barrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043894A1 (en) * 2007-09-14 2009-03-19 EVT Gesellschaft für Energieverfahrenstechnik mbH Liquid or gaseous hydrocarbons or alcohol reforming method for e.g. alkaline fuel cell system, involves allowing cathode exhaust gas to undergo reformation process, so that water vapor contained in gas undergoes water gas shift-process

Also Published As

Publication number Publication date
US20020082682A1 (en) 2002-06-27
US20020077693A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
US6475652B2 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
US6274259B1 (en) Fine pore enthalpy exchange barrier
WO2002093674A1 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
US6451466B1 (en) Functional integration of multiple components for a fuel cell power plant
US6312842B1 (en) Water retention system for a fuel cell power plant
US6007931A (en) Mass and heat recovery system for a fuel cell power plant
US8304123B2 (en) Ambient pressure fuel cell system employing partial air humidification
US6331366B1 (en) Operating system for a fuel cell power plant
US6232006B1 (en) Dual coolant loop fuel cell power plant
US6361891B1 (en) Direct antifreeze cooled fuel cell power plant system
US6613467B1 (en) Polymer electrolyte fuel cells system
US6416891B1 (en) Operating system for a direct antifreeze cooled fuel cell power plant
US6416892B1 (en) Interdigitated enthally exchange device for a fuel cell power plant
US20070042247A1 (en) Fuel cell stacks and systems with fluid-responsive temperature regulation
KR20010075602A (en) Mass transfer composite membrane for a fuel cell power plant
US6605378B2 (en) Functional integration of multiple components for a fuel cell power plant
EP1099269B1 (en) Direct mass and heat transfer fuel cell power plant
US6277509B1 (en) Hydride bed water recovery system for a fuel cell power plant
US8168339B2 (en) Reducing loss of liquid electrolyte from a high temperature polymer-electrolyte membrane fuel cell
US20030148157A1 (en) Functional integration of multiple components for a fuel cell power plant
JP2008098181A (en) Solid polymer electrolyte fuel cell system
WO2010073699A1 (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001273895

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001273895

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP