WO2001084133A1 - Biosensor - Google Patents

Biosensor Download PDF

Info

Publication number
WO2001084133A1
WO2001084133A1 PCT/JP2001/003685 JP0103685W WO0184133A1 WO 2001084133 A1 WO2001084133 A1 WO 2001084133A1 JP 0103685 W JP0103685 W JP 0103685W WO 0184133 A1 WO0184133 A1 WO 0184133A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
biosensor
electrode
sample liquid
entrance
Prior art date
Application number
PCT/JP2001/003685
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Miyazaki
Hiroyuki Tokunaga
Masaki Fujiwara
Eriko Yamanishi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2001084133A1 publication Critical patent/WO2001084133A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes

Definitions

  • the present invention relates to a biosensor for analyzing a specific component in a liquid sample, and more particularly to a biosensor having a cavity for introducing a liquid sample by capillary action.
  • biosensors have been proposed as a method for simply quantifying a specific component in a sample solution without diluting or stirring the sample solution.
  • a measurement electrode, a counter electrode, and a detection electrode made of an electrically conductive substance are formed on an insulating substrate such as polyethylene terephthalate.
  • Some have a reagent layer containing an enzyme or the like that specifically reacts with a component.
  • the sample liquid is supplied into the cavity from the entrance of the cavity, which is the sample liquid suction port, by capillary action, and is guided to a position where the electrode and the reagent layer are present.
  • a current value generated by a reaction between a specific component in the sample solution and a reagent contained in the reagent layer is read by connecting to an external measurement device through a lead, not shown here. .
  • the site for supplying the sample liquid (the entrance of the cavity) is unclear, so that it is difficult for the user to recognize, and especially, the inexperienced user ( (For example, this sensor is used for the first time.)
  • the present invention has been made to solve such a problem, and makes it easy for a user to recognize a portion to which a sample solution is to be supplied, and measures a measurement caused by a user spotting a sample solution on an incorrect portion. It aims to provide an excellent biosensor with few errors and measurement errors. Disclosure of the invention
  • the biosensor according to claim 1 of the present invention wherein at least a measurement electrode formed on an insulating substrate, an electrode portion including a counter electrode, and a cavity to which a sample solution is supplied by a capillary phenomenon,
  • a biosensor comprising: a reagent layer formed in a cavity; and a convex region or a concave region provided on a side surface of the biosensor.
  • the sample liquid supply portion is provided in the convex region or the concave region.
  • the entrance of the cavity is formed.
  • the biosensor according to claim 2 of the present invention is the biosensor according to claim 1, wherein the biosensor has a vertically long shape, The entrance of the cavity is formed.
  • the biosensor has a vertically long shape, The entrance of the cavity is formed.
  • the biosensor according to claim 3 of the present invention is the biosensor according to claim 1, wherein the cavities are formed on the reagent layer disposed on the electrode unit. A spacer having a notch is attached thereto, and a cover is attached thereon.
  • the biosensor according to claim 4 of the present invention is the biosensor according to claim 3, wherein the spacer is made of an opaque or translucent material.
  • the force par is made of a transparent material.
  • the portion of the cavity to which the sample liquid is supplied is clarified, the user can easily recognize the sample liquid supply site, and there are few measurement errors and measurement errors, and an excellent pyrosensor can be provided. .
  • the biosensor according to claim 5 of the present invention is the biosensor according to claim 1, wherein the cavity is a sample solution which is added to an inlet of the cavity. An air hole is provided to be supplied into the cavity by a phenomenon. Thus, the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the cavity by capillary action.
  • the cavity is formed on the reagent layer disposed on the electrode unit.
  • a spacer having a notch is attached thereto, and a force par is attached thereon, and the air hole is provided on a cover in contact with the cavity.
  • the air holes can be made concrete, and the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the T cavity by capillary action. .
  • the biosensor according to claim 7 of the present invention is the biosensor according to claim 5 or claim 6, wherein the shape of the air hole is a circle, an ellipse, or a triangle. , Square, rectangle, or polygon.
  • the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the cavity by a capillary phenomenon.
  • the air hole is formed at a position closest to an entrance of the cavity. It is formed at a position facing an end of the reagent layer at a remote position.
  • the biosensor according to claim 9 of the present invention is the biosensor according to claim 8, wherein the shape of the air hole is rectangular or square.
  • FIG. 1 is an exploded perspective view showing a biosensor having a convex region according to the first embodiment of the present invention. .
  • FIG. 2 is an exploded perspective view showing the biosensor having a concave region according to the first embodiment of the present invention.
  • Embodiment 1 of the present invention specifically describes an enzyme sensor using an enzyme as a molecular identification element that specifically reacts with a specific substance in a sample solution.
  • FIG. 1 is an exploded perspective view of a biosensor according to Embodiment 1 of the present invention.
  • a measurement electrode 2, a counter electrode 3, and a detection electrode 4 made of an electrically conductive substance are formed on an insulating substrate 1.
  • the detection electrode 4 can be used not only as an electrode for detecting a shortage of a sample amount but also as a reference electrode or a part of the counter electrode 3.
  • preferred materials for the insulating substrate 1 include polyethylene terephthalate, polycarbonate, polyimide, and the like.
  • Preferred examples of the electrically conductive substance for forming the electrodes include noble metals such as gold, platinum, and palladium, and carbon. Simple materials, or composite materials such as carbon paste and noble metal paste.
  • the electric conductive layer can be easily formed by a sputtering deposition method or the like, and in the case of the latter, the electric conductive layer can be easily formed by a screen printing method or the like. :
  • the electrodes 2, 3, and 4 may be formed by forming the electrically conductive material on the entire surface or a part of the insulating substrate 1 by a sputtering method or a screen printing method, and then performing laser trimming or the like.
  • the electrode can be divided and formed by providing a slit by using.
  • the electrodes can be formed in the same manner by a screen printing method using a printing plate on which an electrode pattern is formed in advance, a mask plate, a sputtering evaporation method, or the like.
  • a reagent layer 5 containing an enzyme, an electron carrier and a hydrophilic polymer is formed as shown in FIG. 2, 3, 4 and on the reagent layer 5, laminating a spacer 6 having a notch, bonding the force per 7 having an air hole 1 1 thereon this: etc. Accordingly, the electrode ⁇ Pi reagent A cavity 8 for supplying the sample liquid to the layer 5 is formed.
  • the reagent layer 5 may be placed on the entire surface of the electrodes 2, 3, and 4 or on a part thereof. In addition, any portion in contact with the cavity 8 may be used.
  • the enzymes contained in the reagent layer 5 include glucose oxidase, lactate oxidase, cholesterol reoxidase, cholesterol monoolesterase, pericase, ascorbic acid oxidase, bilirubin oxidase, glucose dehydrogenase, Lactate todehydrogenase, etc.
  • hydrophilic polymers examples include carboxymethylcellulose, hydroxyxetinoresenorelose, hydroxypropinoresenorelose, methinoresenorelose, technoresenorelose, and etinoleshydroxenolose.
  • Polyamino acids such as rerose, canoleboxymethylinoethyl cellulose, polybutyl alcohol, polybutylpyrrolidone, polylysine, polystyrene sulfonic acid, gelatin and its derivatives, acrylic acid and its salts, methacrylic acid and its salts, starch and Its derivatives, Maleic anhydride and its salts, agarose gel and its derivatives and the like can be used.
  • Suitable materials for the spacer 6 and the copper 7 include polyethylene terephthalate, polycarbonate, polyimide, polybutylene terephthalate, polyamide, polychlorinated vinyl, polychlorinated vinylidene, polyimide, and nylon. Can be
  • the biosensor of the present invention having the above configuration is significantly different from a conventional biosensor, in that a convex region 10 is provided on a part of the side surface of the biosensor, and the convex region 10 is provided in the convex region 10. This is because the entrance 9 of the cavity, which is the site for supplying the sample liquid, is made to come, which makes it easy for the user to recognize the location for supplying the sample liquid.
  • the shape of the region where the entrance 9 of the cavity is provided may be a shape other than a convex shape, for example, a concave shape as shown in FIG. 2, and in FIG.
  • Reference numeral 5 denotes a recessed region in which the entrance 9 of the cavity is provided, and the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the convex region 10 or the concave region 15 which is the region where the cavity entrance 9 is provided, reacts with the specific component in the sample solution added by the user and the reagent of the reagent layer 5.
  • the sensor may be provided anywhere on the side surface of the biosensor as long as the current value as the measurement result can be obtained. As shown in the figure, the tip side surface in the longitudinal direction of the sensor is most preferable.
  • the cavity 8 of the pyrosensor becomes transparent, Provide an excellent biosensor with few measurement errors, since the inlet 9 of the cavity, which is the sample liquid supply part, is more clear, so that the user does not mistake the part that supplies the sample liquid (for example, whole blood). Can be done.
  • the cavity 8 is transparent, it is possible for the user to visually check the supply state of the sample liquid, and the measurement error of the Pyo sensor due to insufficient addition of the liquid to the sample liquid supply site Errors can be reduced.
  • the opaque or translucent material of the spacer 6 is, for example, a colored resin film in which the material itself contains a pigment as a coloring agent, or a rubber film printed or dyed on the surface of the transparent resin film. It is possible to use a material that has been colored by the method described above.
  • the sample liquid When a sample liquid is supplied to the biosensor according to the first embodiment having such a configuration from the inlet 9 of the cavity, the sample liquid penetrates into the cavity 8 by capillary action, and is supplied to the electrode or the reagent layer 5. In order to allow the sample liquid to smoothly penetrate into the cavity 8, an air hole 11 for releasing air to the outside of the biosensor is required on the force par 7 facing the cavity 8.
  • the position of the air hole 11 may be any position in contact with the cavity 8 as long as the supply of the sample solution is not hindered. If the air hole 11 is too far from the reagent layer 5, The reagent diffuses in the vicinity of the electrode without the reagent layer 5, and the concentration of the required reagent on the electrodes 2, 3, and 4 becomes low, and the response value of the sensor tends to fluctuate. More preferably, 1 is at the same position as the rear part of the reagent layer 5 (the reagent layer 5 located farthest from the cavity entrance 9).
  • the shape of the air hole 11 can be a circle, an ellipse, a triangle, a square, a rectangle, a polygon, or the like. Even if any of the above-mentioned shapes is used, a smooth supply of the sample liquid is realized. However, if the shape of the air holes 11 is square or rectangular, the amount of the sample liquid required to fill the cavity 8 can be reduced, and the vicinity of the electrodes can be reduced. Thus, the diffusion of the reagent can be minimized.
  • the current value obtained by the reaction between the specific component in the sample solution and the reagent layer 5 containing the enzyme and the like is represented by the leads 12, 13, and 13 of the measurement electrode 2, counter electrode 3, and detection electrode 4. Through 14 it is connected to an external measuring device (not shown) and read.
  • the current measurement in addition to the three-electrode system consisting of the measuring electrode 2, the counter electrode 3 and the detection electrode 4 described in the first embodiment, there is a two-electrode system comprising only the measuring electrode and the counter electrode. Any method may be used to realize the effect obtained by the present invention.
  • the three-electrode method can perform more accurate measurement.
  • the cavity inlet 9 that supplies the sample liquid is provided with a convex area 10 that protrudes partially from the side of the sensor or a concave area 15 that depresses to make it easier for the user to recognize the sample supply area. It is easy for the user to operate, and measurement errors and measurement errors can be reduced.
  • the sample liquid supply site can be clarified for the user by arranging the entrance of the cavity to which the sample liquid is supplied in the convex or concave area provided on the side surface of the biosensor. Useful for reducing errors and measurement errors.

Abstract

A biosensor includes a cavity (8), through which liquid reagent is supplied by capillary action to an electrode part consisting of a measuring electrode (2) and an opposite electrode (3) on an insulating substrate and to a reagent layer (5) on the electrode part. The biosensor has a projection (10) on its side where an entrance (9) to the cavity is formed. The biosensor defines where to supply liquid sample and improves manipulability.

Description

明 細 書 バイオセンサ 技術分野  Description Biosensor Technical Field
本発明は、 液体試料中の特定の成分を分析するバイオセンサに関し、 特に液体 試料を毛細管現象にて導入するキヤビティを備えたバイオセンサに関する。 背景技術 .  The present invention relates to a biosensor for analyzing a specific component in a liquid sample, and more particularly to a biosensor having a cavity for introducing a liquid sample by capillary action. Background art.
従来から試料液の希釈や撹拌などを行うことなく試料液中の特定成分を簡易に 定量する方式として様々なバイオセンサが提案されている。 このようなバイオセ ンサの一例として、 ポリエチレンテレフタレートのような絶縁性基板上に電気伝 導性物質からなる測定電極、 対電極ならびに検知電極が形成され、 これらの電極 部上に、 試料液中の特定成分と特異的に反応する酵素などを含む試薬層が形成さ れたものがある。  Conventionally, various biosensors have been proposed as a method for simply quantifying a specific component in a sample solution without diluting or stirring the sample solution. As an example of such a biosensor, a measurement electrode, a counter electrode, and a detection electrode made of an electrically conductive substance are formed on an insulating substrate such as polyethylene terephthalate. Some have a reagent layer containing an enzyme or the like that specifically reacts with a component.
そして、 前記バイオンサ上には、 適量採取された試料液中の特定成分と試薬層 との反応により生じる電流値を前記電極で検出するキヤビティを形成するため、 該電極および試薬層の上部分にあたる部位を細長く切り欠いたスぺーサと、 空気 孔を有するカバーとを、 前記絶縁基板上に貼りあわせている。  In order to form a cavity in which the electrode detects a current value generated by a reaction between the reagent layer and the specific component in the sample liquid collected in an appropriate amount, a portion corresponding to the upper part of the electrode and the reagent layer And a cover having an air hole are stuck on the insulating substrate.
このような構成のバイオセンサにおいて、 試料液は、 該試料液吸引口であるキ ャビティの入り口から毛細管現象によりキヤビティ内に供給され、 前記電極と試 薬層のある位置まで導かれる。 そして前記電極上で、 試料液中の特定成分と試薬 層に含まれる試薬との反応により生じる電流値は、 ここでは図示していないが、 リ一ドを通じて外部の測定装置に接続して読み取られる。  In the biosensor having such a configuration, the sample liquid is supplied into the cavity from the entrance of the cavity, which is the sample liquid suction port, by capillary action, and is guided to a position where the electrode and the reagent layer are present. On the electrode, a current value generated by a reaction between a specific component in the sample solution and a reagent contained in the reagent layer is read by connecting to an external measurement device through a lead, not shown here. .
し力 し、 前述のような構成の従来のバイオセンサにおいては、 試料液を供給す る部位 (キヤビティの入り口) が不明確であるため、 ユーザが認識しにくく、 特 に、 使い方の未熟な (例えば本センサを初めて使用する) ユーザが誤って空気孔 に血液を点着するなど、 ユーザがパイォセンサの誤つた部位へ試料液を点着する ことによる測定ミスや測定誤差を誘発しやすいという問題があった。 本発明は、 このような問題を解決するためになされたものであり、 ユーザが試 料液を供給する部位を認識しやすくし、 ユーザが誤った部位へ試料液を点着する ことにより生じる測定ミス、 測定誤差の少ない優れたバイオセンサを提供するこ とを目的とする。 発明の開示 However, in the conventional biosensor having the above-described configuration, the site for supplying the sample liquid (the entrance of the cavity) is unclear, so that it is difficult for the user to recognize, and especially, the inexperienced user ( (For example, this sensor is used for the first time.) There is a problem that a user mistakenly spots blood on the air hole, and the user tends to apply a sample liquid to the wrong part of the PY sensor, thereby causing measurement errors and measurement errors. there were. The present invention has been made to solve such a problem, and makes it easy for a user to recognize a portion to which a sample solution is to be supplied, and measures a measurement caused by a user spotting a sample solution on an incorrect portion. It aims to provide an excellent biosensor with few errors and measurement errors. Disclosure of the invention
本発明の請求の範囲第 1項に記載のバイオセンサは、 絶縁性基板上に形成され た少なくとも測定電極、 対電極からなる電極部と、 試料液が毛細管現象にて供給 されるキヤビティと、 前記キヤビティ内に形成された試薬層と、 を備えたバイオ センサにおいて、 前記バイオセンサの側面に、 凸領域あるいは、 凹領域が設けら れ、 該凸領域あるいは、 凹領域に、 前記試料液の供給部位であるキヤビティの入 り口が形成されているものである。 '  The biosensor according to claim 1 of the present invention, wherein at least a measurement electrode formed on an insulating substrate, an electrode portion including a counter electrode, and a cavity to which a sample solution is supplied by a capillary phenomenon, A biosensor comprising: a reagent layer formed in a cavity; and a convex region or a concave region provided on a side surface of the biosensor. The sample liquid supply portion is provided in the convex region or the concave region. The entrance of the cavity is formed. '
このことにより、 試料液の供給部位を明確にし、 ユーザが容易に試料液供給部 位を認識することが可能な、 測定ミスや測定誤差の少ない優れたバイオセンサを 提供することができる。  As a result, it is possible to provide an excellent biosensor with few measurement errors and measurement errors, which makes it possible to clarify the sample liquid supply part and to easily recognize the sample liquid supply part.
また、 本発明の請求の範囲第 2項に記載のバイオセンサは、 請求の範囲第 1項 に記載のバイオセンサにおいて、 当該バイオセンサが縦長形状を有し、 その長手 方向先端の側面に、 前記キヤビティの入り口が形成されているものである。 このことにより、 ユーザが試料液を供給しやすい側面にキヤビティの入り口を 設け、 ユーザ操作性の優れた、 測定ミスや測定誤差の少ないバイオセンサを提供 することができる。 ::.  Further, the biosensor according to claim 2 of the present invention is the biosensor according to claim 1, wherein the biosensor has a vertically long shape, The entrance of the cavity is formed. As a result, it is possible to provide a cavity entrance on the side surface where the user can easily supply the sample liquid, and to provide a biosensor excellent in user operability and having few measurement errors and measurement errors. ::.
また、 本発明の請求の範囲第 3項に記載のバイオセンサは、 請求の範囲第 1項 に記載のバイオセンサにおいて、 前記キヤビティは、 前記電極部上に配置された 前記試薬層の上に、 切欠部を有するスぺーサを貼り合わせ、 その上にカバーを貼 り合わせてなるものであるものである。  Further, the biosensor according to claim 3 of the present invention is the biosensor according to claim 1, wherein the cavities are formed on the reagent layer disposed on the electrode unit. A spacer having a notch is attached thereto, and a cover is attached thereon.
このことにより、 試料液が供給されるキヤビティ構造を具体化させることがで きる。  This makes it possible to embody a cavity structure to which the sample liquid is supplied.
また、 本発明の請求の範囲第 4項に記載のバイオセンサは、 請求の範囲第 3項 に記載のバイオセンサにおいて、 前記スぺーサが不透明あるいは半透明材料より なり、 前記力パーが透明材料よりなるものである。 The biosensor according to claim 4 of the present invention is the biosensor according to claim 3, wherein the spacer is made of an opaque or translucent material. The force par is made of a transparent material.
このことにより、 試料液が供給されるキヤビティの部分を明確にし、 ユーザが 容易に試料液供給部位を認識することができ、 測定ミスや測定誤差の少なレ、優れ たパイォセンサを提供することができる。  As a result, the portion of the cavity to which the sample liquid is supplied is clarified, the user can easily recognize the sample liquid supply site, and there are few measurement errors and measurement errors, and an excellent pyrosensor can be provided. .
さらには、 試料液の供給状態を目視にて確認できることにより、 試料液不足に よる測定ミスや測定誤差の少ない優れたパイォセンサを提供することができる。 また、 本発明の請求の範囲第 5項に記載のバイオセンサは、 請求の範囲第 1項 に記載のバイオセンサにおいて、 前記キヤビティは、 前記キヤビティの入り口に 添カ卩される試料液が、 毛細管現象により前記キヤビティ内部に供給されるように する空気孔を備えるものである。 ' このことにより、 前記キヤビティの入り口に供給された試料液を、 毛細管現象 によってキヤビティ内へスムーズに供給していくことができる。  Further, since the supply state of the sample liquid can be visually checked, it is possible to provide an excellent pyrosensor with few measurement errors and measurement errors due to a shortage of the sample liquid. Further, the biosensor according to claim 5 of the present invention is the biosensor according to claim 1, wherein the cavity is a sample solution which is added to an inlet of the cavity. An air hole is provided to be supplied into the cavity by a phenomenon. Thus, the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the cavity by capillary action.
また、 本発明の請求の範囲第 6項に記載のバイオセンサは、 請求項の範囲第 5 項に記載のバイオセンサにおいて、 前記キヤビティは、 前記電極部上に配置され た前記試薬層の上に、 切欠部を有するスぺーサを貼り合わせ、 その上に力パーを 貼り合わせてなるものであり、 前記空気孔は、 前記キヤビティに接するカバー上 に設けられているものである。  Further, in the biosensor according to claim 6 of the present invention, in the biosensor according to claim 5, wherein the cavity is formed on the reagent layer disposed on the electrode unit. A spacer having a notch is attached thereto, and a force par is attached thereon, and the air hole is provided on a cover in contact with the cavity.
このことにより、 前記空気孔を具体的化させることができ、 また、 前記キヤビ ティの入り口に供給された試料液を、 毛細管現象によつ Tキヤビティ内へスムー ズに供給していくことができる。  Thereby, the air holes can be made concrete, and the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the T cavity by capillary action. .
また、 本発明の請求の範囲第 7項に記載のバイオセンサは、 請求の範囲第 5項 または請求の範囲第 6項に記載のバイオセンサにおいて、 前記空気孔の形状が、 円、 楕円、 三角形、 正方形、 長方形、 多角形のいずれかである。  The biosensor according to claim 7 of the present invention is the biosensor according to claim 5 or claim 6, wherein the shape of the air hole is a circle, an ellipse, or a triangle. , Square, rectangle, or polygon.
このことにより、 前記キヤビティの入り口に供給された試料液を、 毛細管現象 によってキヤビティ内へスムーズに供給していくことができる。  Thus, the sample liquid supplied to the entrance of the cavity can be smoothly supplied into the cavity by a capillary phenomenon.
また、 本発明の請求の範囲第 8項に記載のバイオセンサは、 請求の範囲第 5項 または請求の範囲第 6項に記載のバイオセンサにおいて、 前記空気孔を、 前記キ ャビティの入り口から最も離れた位置にある前記試薬層の端部に面するィ i置に形 成するものである。 このことにより、 試料液吸引後の電極近傍からの試薬の拡散を必要最小限に抑 え、 測定バラツキの少ない高精度なバイオセンサを提供することができる。 また、 本発明の請求の範囲第 9項に記載のバイオセンサは、 請求の範囲第 8項 に記載のバイオセンサにおいて、 前記空気孔の形状が、 長方形もしくは正方形で あるものである。 Further, in the biosensor according to claim 8 of the present invention, in the biosensor according to claim 5 or claim 6, the air hole is formed at a position closest to an entrance of the cavity. It is formed at a position facing an end of the reagent layer at a remote position. As a result, diffusion of the reagent from the vicinity of the electrode after aspirating the sample liquid can be suppressed to a necessary minimum, and a highly accurate biosensor with less measurement variation can be provided. The biosensor according to claim 9 of the present invention is the biosensor according to claim 8, wherein the shape of the air hole is rectangular or square.
このことにより、 キヤビティ内を充填するのに必要な試料液量をより少なくで き、 さらに電極近傍からの試薬の拡散を必要最小限に押さえ、 測定のばらつきの 少ない高性能なパイォセンサを提供することができる。 図面の簡単な説明  As a result, the amount of sample solution required to fill the cavity can be reduced, the diffusion of the reagent from the vicinity of the electrode is minimized, and a high-performance pyrosensor with little measurement variation is provided. Can be. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態 1における、 凸状領域を有するバイオセンサを 示す分解斜視図である。 .  FIG. 1 is an exploded perspective view showing a biosensor having a convex region according to the first embodiment of the present invention. .
第 2図は、 本発明の実施の形態 1における、 凹状領域を有するバイオセンサを 示す分解斜視図である。 発明を実施するための最良の形態  FIG. 2 is an exploded perspective view showing the biosensor having a concave region according to the first embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 .  Embodiment 1
以下に本発明の実施の形態 1について、 第 1図を用いて説明する。 なお、 本実 施の形態 1では、 試料液中の特定物質と特異的に反応する分子識別素子として酵 素を用いた酵素センサに関し具体的に示す。  Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. Embodiment 1 specifically describes an enzyme sensor using an enzyme as a molecular identification element that specifically reacts with a specific substance in a sample solution.
第 1図は、 本発明の実施の形態 1におけるバイオセンサの分解斜視図である。 第 1図において、 絶縁性の基板 1上には、 電気伝導性物質からなる測定電極 2、 対電極 3、 ならびに検知電極 4が形成されている。  FIG. 1 is an exploded perspective view of a biosensor according to Embodiment 1 of the present invention. In FIG. 1, a measurement electrode 2, a counter electrode 3, and a detection electrode 4 made of an electrically conductive substance are formed on an insulating substrate 1.
なお、 前記検知電極 4は検体量の不足を検知するための電極として機能するだ けでなく参照極あるいは対電極 3の一部として用いることも可能である。  The detection electrode 4 can be used not only as an electrode for detecting a shortage of a sample amount but also as a reference electrode or a part of the counter electrode 3.
まず、 前記絶縁性基板 1の好適な材料としてはポリエチレンテレフタレート、 ポリカーボネート、 ポリイミドなどが、 また、 前記電極を形成する好適な電気伝 導性物質としては、 金、 白金、 パラジウムなどの貴金属やカーボンなどの単体材 料、 あるいはカーボンペーストゃ貴金属ペーストなどの複合材料があげられる。 そして、 電気伝導性物質が前者の場合はスパッタリング蒸着法などで、 また後者 の場合はスクリーン印刷法などを用いて容易に電気伝導性層を形成することがで きる。 :: First, preferred materials for the insulating substrate 1 include polyethylene terephthalate, polycarbonate, polyimide, and the like. Preferred examples of the electrically conductive substance for forming the electrodes include noble metals such as gold, platinum, and palladium, and carbon. Simple materials, or composite materials such as carbon paste and noble metal paste. In the case of the former, the electric conductive layer can be easily formed by a sputtering deposition method or the like, and in the case of the latter, the electric conductive layer can be easily formed by a screen printing method or the like. ::
また、 前記電極 2, 3, 4の形成方法としては、 スパクタリング蒸着法ゃスク リーン印刷法などにより、 絶縁性基板 1の全面もしくは一部に前記電気伝導性物 質を形成した後、 レーザトリミングなどを用いてスリットを設けることにより該 電極を分割形成することができる。 また、 あらかじめ電極パターンの形成された 印刷版や、 マスク版を用いたスクリーン印刷法や、 スパグタリング蒸着法などで も同様に、 前記電極を形成することが可能である。  The electrodes 2, 3, and 4 may be formed by forming the electrically conductive material on the entire surface or a part of the insulating substrate 1 by a sputtering method or a screen printing method, and then performing laser trimming or the like. The electrode can be divided and formed by providing a slit by using. Also, the electrodes can be formed in the same manner by a screen printing method using a printing plate on which an electrode pattern is formed in advance, a mask plate, a sputtering evaporation method, or the like.
このようにして形成された前記電極 2, 3 , 4上には、 第 1図に示すように酵 素、 電子伝達体および親水性高分子などを含む試薬層 5が形成され、 また前記電 極 2, 3, 4ならびに試薬層 5上に、 切欠部を有するスぺーサ 6を貼り合わせ、 その上に空気孔 1 1を有する力パー 7を貼り合わせるこ :どにより、 該電極及ぴ試 薬層 5まで試料液を供給するキヤビティ 8が形成されることになる。 そして、 前 記試薬層 5を配置する場所としては、 前記電極 2, 3 , 4上の全面、 あるいはそ の一部でもよく、一部である場合は、バイオセンサの性能を悪化させない位置で、 且つ前記キヤビティ 8に接する部分であればどこでも構わない。 - ここで、 前記試薬層 5に含まれる酵素としては、 グルコースォキシダーゼ、 ラ クテートォキシダーゼ、 コレステローノレオキシダーゼ、 コレステロ一ノレエステラ —ゼ、 ゥリカーゼ、 ァスコルビン酸ォキシダーゼ、 ビリルビンォキシダーゼ、 グ ルコースデヒドロゲナーゼ、 ラクテ^"トデヒドロゲナーゼなどを、 電子伝達体と してはフェリシアン化カリゥム以外にも p—べンゾキノ;及びその誘導体、 フエ ナジンメトサルフェート、 メチレンブルー、 フエ口セン及びその誘導体などを用 いることができる。 また、親水性高分子としては、カルボキシメチルセルロース、 ヒ ドロキシェチノレセノレロース、 ヒ ドロキシプロピノレセノレロース、 メチノレセノレロー ス、 工チノレセノレロース、 ェチノレヒ ドロキシェチノレセノレロース、 カノレボキシメチノレ ェチルセルロール、 ポリビュルアルコール、 ポリビュルピロリ ドン、 ポリ リジン 等のポリアミノ酸、 ポリスチレンスルホン酸、 ゼラチンおよびその誘導体、 ァク リル酸およびその塩、 メタクリル酸およびその塩、 スターチおよびその誘導体、 無水マレイン酸およびその塩、 ァガロースゲルおよびその誘導体などを用いるこ とができる。 On the electrodes 2, 3 and 4 thus formed, a reagent layer 5 containing an enzyme, an electron carrier and a hydrophilic polymer is formed as shown in FIG. 2, 3, 4 and on the reagent layer 5, laminating a spacer 6 having a notch, bonding the force per 7 having an air hole 1 1 thereon this: etc. Accordingly, the electrode及Pi reagent A cavity 8 for supplying the sample liquid to the layer 5 is formed. The reagent layer 5 may be placed on the entire surface of the electrodes 2, 3, and 4 or on a part thereof. In addition, any portion in contact with the cavity 8 may be used. -Here, the enzymes contained in the reagent layer 5 include glucose oxidase, lactate oxidase, cholesterol reoxidase, cholesterol monoolesterase, pericase, ascorbic acid oxidase, bilirubin oxidase, glucose dehydrogenase, Lactate todehydrogenase, etc. Use p-benzoquino other than potassium ferricyanide and its derivatives, phenazine methosulphate, methylene blue, phlegene and its derivatives as electron carriers in addition to potassium ferricyanide. Examples of hydrophilic polymers include carboxymethylcellulose, hydroxyxetinoresenorelose, hydroxypropinoresenorelose, methinoresenorelose, technoresenorelose, and etinoleshydroxenolose. Polyamino acids such as rerose, canoleboxymethylinoethyl cellulose, polybutyl alcohol, polybutylpyrrolidone, polylysine, polystyrene sulfonic acid, gelatin and its derivatives, acrylic acid and its salts, methacrylic acid and its salts, starch and Its derivatives, Maleic anhydride and its salts, agarose gel and its derivatives and the like can be used.
また、 前記スぺーサ 6、 およぴカパー 7の好適な材料としては、 ポリエチレン テレフタレート、 ポリカーボネート、 ポリイミ ド、 ポリプチレンテレフタレート, ポリアミド, ポリ塩化ビュル, ポリ塩ィ匕ビニリデン、 ポリイミド、 ナイロンなど があげられる。  Suitable materials for the spacer 6 and the copper 7 include polyethylene terephthalate, polycarbonate, polyimide, polybutylene terephthalate, polyamide, polychlorinated vinyl, polychlorinated vinylidene, polyimide, and nylon. Can be
以上のような構成を有する本発明のバイオセンサが、 従来のバイオセンサと大 きく異なる点は、 該バイオセンサの側面の一部に凸部領域 1 0が設けられ、 その 凸部領域 1 0に、 試料液を供給する部位であるキヤビテ の入り口 9がくるよう にした点であり、 このことによりユーザが試料液をを供給する場所を認識しやす くする。  The biosensor of the present invention having the above configuration is significantly different from a conventional biosensor, in that a convex region 10 is provided on a part of the side surface of the biosensor, and the convex region 10 is provided in the convex region 10. This is because the entrance 9 of the cavity, which is the site for supplying the sample liquid, is made to come, which makes it easy for the user to recognize the location for supplying the sample liquid.
なお、 前記キヤビティの入り口 9が設けられる領域の形状は、 凸形状以外の形 状、 例えば、 第 2図に示されるように、 凹部形状などであってもよく、 第 2図に おいて、 1 5は、 前記キヤビティの入り口 9が設けられる凹部領域を示すもので あり、 その他の第 1図と同一符号は、 同一または相当する部分を示す。  The shape of the region where the entrance 9 of the cavity is provided may be a shape other than a convex shape, for example, a concave shape as shown in FIG. 2, and in FIG. Reference numeral 5 denotes a recessed region in which the entrance 9 of the cavity is provided, and the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
また、 前記キヤビティの入り口 9が設けられる領域である凸部領域 1 0、 ある いは凹部領域 1 5は、 ユーザが添カ卩した試料液中の特定成分と、 試薬層 5の試薬 とが反応し、 測定結果である電流値が得られる位置であれば、 バイオセンサの側 面のどこに設けてもよいが、 ユーザの試料液供給の容易さを考慮した場合には、 第 1図、 第 2図に示すように、 センサの長手方向の先端部側面がもっとも好適で ある。  Further, the convex region 10 or the concave region 15 which is the region where the cavity entrance 9 is provided, reacts with the specific component in the sample solution added by the user and the reagent of the reagent layer 5. The sensor may be provided anywhere on the side surface of the biosensor as long as the current value as the measurement result can be obtained. As shown in the figure, the tip side surface in the longitudinal direction of the sensor is most preferable.
さらに、 前記スぺーサ 6の材料に不透明材料もしくは半透明材料を用い、 前記 力パー 7の材料に透明材料を用いて両者を貼り合わせた場合には、 パイォセンサ のキヤビティ 8部分のみが透明となり、 試料液供給部位であるキヤビティの入り 口 9がより明確になるため、 ユーザが試料液 (例えば全血) を供給する部位を間 違えることがない、 測定ミスの少ない優れたバイオセンサを提供することができ る。 また、 キヤビティ 8部分が透明であるため、 ユーザが試料液の供給状態を目 視にて把握することも可能となり、 試料液供給部位への^;料液添加不足による、 パイォセンサの測定ミスゃ測定誤差を少なくすることができる。 そして、 前記スぺーサ 6の不透明、 あるいは半透明材料としては、 材料自体に に着色剤である顔料が含まれている着色樹脂フィルムや、 透明樹脂フィルムの表 面にグ.ラビァ印刷や染色などにより着色加ェを施したものなどを用いることがで さる。 Further, when an opaque material or a translucent material is used for the material of the spacer 6 and a transparent material is used for the material of the force par 7 and the two are bonded together, only the cavity 8 of the pyrosensor becomes transparent, Provide an excellent biosensor with few measurement errors, since the inlet 9 of the cavity, which is the sample liquid supply part, is more clear, so that the user does not mistake the part that supplies the sample liquid (for example, whole blood). Can be done. In addition, since the cavity 8 is transparent, it is possible for the user to visually check the supply state of the sample liquid, and the measurement error of the Pyo sensor due to insufficient addition of the liquid to the sample liquid supply site Errors can be reduced. The opaque or translucent material of the spacer 6 is, for example, a colored resin film in which the material itself contains a pigment as a coloring agent, or a rubber film printed or dyed on the surface of the transparent resin film. It is possible to use a material that has been colored by the method described above.
このような構成を有する本実施の形態 1におけるバイオセンサに、 キヤビティ の入り口 9から試料液を供給すると、毛細管現象によりキヤビティ 8内に浸透し、 : 前記電極あるいは試薬層 5に供給されていくが、 この試料液を前記キヤビティ 8 内にスムーズに浸透させていくためには、該キヤビティ 8に面する力パー 7上に、 バイオセンサ外部へ空気を逃がすための空気孔 1 1が必要である。  When a sample liquid is supplied to the biosensor according to the first embodiment having such a configuration from the inlet 9 of the cavity, the sample liquid penetrates into the cavity 8 by capillary action, and is supplied to the electrode or the reagent layer 5. In order to allow the sample liquid to smoothly penetrate into the cavity 8, an air hole 11 for releasing air to the outside of the biosensor is required on the force par 7 facing the cavity 8.
前記空気孔 1 1の位置は、 試料液の供給を妨げない範囲であれば、 前記キヤビ ティ 8に接するいかなる位置でもよいが、 該空気孔 1 1が試薬層 5から離れすぎ た場合には、 試薬層 5のない電極近傍で試薬が拡散してしまい、 電極 2, 3, 4 上で必要な試薬の濃度が希薄になり、 センサの応答値にパラツキが生じやすくな ることから、 空気孔 1 1は試薬層 5の後部 (キヤビティ入り口 9からもっとも遠 い位置に存在する試薬層 5 ) と同等の位置にあることがより好適である。  The position of the air hole 11 may be any position in contact with the cavity 8 as long as the supply of the sample solution is not hindered.If the air hole 11 is too far from the reagent layer 5, The reagent diffuses in the vicinity of the electrode without the reagent layer 5, and the concentration of the required reagent on the electrodes 2, 3, and 4 becomes low, and the response value of the sensor tends to fluctuate. More preferably, 1 is at the same position as the rear part of the reagent layer 5 (the reagent layer 5 located farthest from the cavity entrance 9).
また、 前記空気孔 1 1の形状は円、 楕円、 三角形、 正方形、 長方形、 多角形な どを用いることができ、 前述したいずれの形状を用いても、 試料液のスムーズな 供給を実現するうえでは同様の効果が得られるが、 特に、 前記空気孔 1 1の形状 を正方形もしくは長方形にすると、 前記キヤビティ 8内を充填するのに必要な試 料液量をより少なくでき、 また前記電極近傍からの試薬の拡散をより最小限に抑 えることとができる。  In addition, the shape of the air hole 11 can be a circle, an ellipse, a triangle, a square, a rectangle, a polygon, or the like. Even if any of the above-mentioned shapes is used, a smooth supply of the sample liquid is realized. However, if the shape of the air holes 11 is square or rectangular, the amount of the sample liquid required to fill the cavity 8 can be reduced, and the vicinity of the electrodes can be reduced. Thus, the diffusion of the reagent can be minimized.
また、 試料液中の特定成分と酵素などを含む試薬層 5とが反応して得られた電 流値は、 測定電極 2、 対電極 3、 検知電極 4それぞれのリード部 1 2、 1 3、 1 4を通じて、 図示しない外部の測定装置に接続して読み取られる。  In addition, the current value obtained by the reaction between the specific component in the sample solution and the reagent layer 5 containing the enzyme and the like is represented by the leads 12, 13, and 13 of the measurement electrode 2, counter electrode 3, and detection electrode 4. Through 14 it is connected to an external measuring device (not shown) and read.
電流測定においては、 本実施の形態 1で述べた測定電極 2、 対電極 3、 検知電 極 4からなる三電極方式のほかにも測定電極、 対電極のみからなる二電極方式な どがあり、 本発明で得られた効果を実現するためには何れの方式を用いてもよい 力 三電極方式のほうがより正確な測定を行うことができる。  In the current measurement, in addition to the three-electrode system consisting of the measuring electrode 2, the counter electrode 3 and the detection electrode 4 described in the first embodiment, there is a two-electrode system comprising only the measuring electrode and the counter electrode. Any method may be used to realize the effect obtained by the present invention. The three-electrode method can perform more accurate measurement.
以上のことにより、 本実施の形態 1におけるバイオセンサによれば、 ユーザが 試料液を供給する部位であるキヤビティの入り口 9を、 センサ側面より部分的に 突出した凸部領域 1 0、 あるいは陥没した凹部領域 1 5 設けて、 ユーザが試料 供給部位を認識しやすくしたので、 ユーザが操作しやす なり、 測定ミスや測定 誤差を少なくすることができる。 As described above, according to the biosensor of the first embodiment, the user The cavity inlet 9 that supplies the sample liquid is provided with a convex area 10 that protrudes partially from the side of the sensor or a concave area 15 that depresses to make it easier for the user to recognize the sample supply area. It is easy for the user to operate, and measurement errors and measurement errors can be reduced.
さらに、 前記スぺーサ 6に不透明材料あるいは半透明材料を使用し、 前記カバ 一 7に透明材料を使用することにより、 前記キヤビティ 8部分のみが透明になる ようにしたので、 試料液供給部位であるキヤビティの入り口 9、 あるいはキヤビ ティ 8自体をユーザが視覚的に認識可能になり、 ユーザが試料を添加する部位を より認識しゃすく、 測定ミスや測定誤差を少なくすることができるパイォセンサ を提供することができる。 さらに、 ユーザがキヤビティ 8内の試料供給状態も確 認可能となるので、 添加する試料液量が少なすぎることにより生じる、 測定ミス や測定誤差を少なくすることができるパイォセンサを提供することができる。 なお、 以上の説明では酵素センサの例で説明をしたが 試料液中の特定物質と 特異的に反応する分子識別素子として酵素以外にも抗体、. '微生物、 D NA、 R N Aなどを利用するバイオセンサにも同様に構成できる。 産業上の利用可能性  Furthermore, by using an opaque material or a translucent material for the spacer 6 and using a transparent material for the cover 7, only the cavity 8 is made transparent, so that the sample liquid supply portion To provide a pyro sensor that allows the user to visually recognize the entrance 9 of a certain cavity or the cavity 8 itself, thereby making the user more aware of the site to which the sample is to be added and reducing measurement errors and measurement errors. be able to. Further, since the user can also check the sample supply state in the cavity 8, it is possible to provide a pyrosensor that can reduce measurement errors and measurement errors caused by an excessively small amount of the sample liquid to be added. In the above description, an example of an enzyme sensor was used. However, in addition to enzymes, biomolecules that use antibodies, microorganisms, DNA, RNA, etc. as molecular identification elements that specifically react with specific substances in the sample solution The sensor can be similarly configured. Industrial applicability
本発明のバイオセンサは、 試料液が供給されるキヤビティの入り口をバイオセ ンサの側面に設けられた凸部あるいは凹部領域に配置することにより、 ユーザに 対して試料液供給部位を明確にでき、 測定ミス、 測定誤差を少なくするのに有用 である。  In the biosensor of the present invention, the sample liquid supply site can be clarified for the user by arranging the entrance of the cavity to which the sample liquid is supplied in the convex or concave area provided on the side surface of the biosensor. Useful for reducing errors and measurement errors.

Claims

請求 の 範 囲 The scope of the claims
1 . 絶縁性基板上に形成された少なくとも測定電極、 対電極からなる電極部 と、 1. At least a measurement electrode formed on an insulating substrate, and an electrode portion including a counter electrode;
試料液が毛細管現象にて供給されるキヤビティと、  A cavity in which the sample liquid is supplied by capillary action,
前記キヤビティに面した位置に配置された試薬層と、 を備えたバイオセンサに おいて、  And a reagent layer disposed at a position facing the cavity.
前記バイオセンサの側面に、 凸領域あるいは、 凹領域が設けられ、  A convex region or a concave region is provided on a side surface of the biosensor,
該凸領域あるいは、 凹領域に、 前記試料液の供給部位であるキヤビティの入り 口が形成されている、  In the convex region or the concave region, an entrance of the cavity which is a supply portion of the sample liquid is formed.
ことを特徴とするバイオセンサ。  A biosensor characterized in that:
2 . 請求の範囲第 1項に記載のバイオセンサにおいて、  2. In the biosensor according to claim 1,
当該バイオセンサが縦長形状を有し、 その長手方向先端の側面に、 前記キヤビ ティの入り口が形成されている、 ことを特徴とするバイオセンサ。  The biosensor has a vertically long shape, and an entrance of the cavity is formed on a side surface of a longitudinal end thereof.
3 . 請求の範囲第 1項に記載のバイオセンサにおいて、  3. In the biosensor according to claim 1,
前記キヤビティは、 前記電極部上に配置された前記試薬層の上に、 切欠部を有 するスぺーサを貼り合わせ、 その上に力パーを貼り合わせてなるものである、 こ とを特徴とするパイォセンサ。  The cavity is formed by bonding a spacer having a notch on the reagent layer disposed on the electrode portion, and bonding a force bar on the spacer. Pyo sensor.
4 . 請求の範囲第 3項に記載のバイオセンサにおいて、  4. In the biosensor according to claim 3,
前記スぺーサが不透明あるいは半透明材料よりなり、 前記力パーが透明材料よ りなる、 ことを特徴とするバイオセンサ。  A biosensor, wherein the spacer is made of an opaque or translucent material, and the force par is made of a transparent material.
5 . 請求の範囲第 1項に記載のパイォセンサにおいて、  5. In the pyrosensor according to claim 1,
前記キヤビティは、 前記キヤビティの入り口に添カ卩される試料液が、 毛細管現 象により前記キヤビティ内部に供給されるようにする空気孔を備える、 ことを特 徴とするバイオセンサ。 "  The biosensor according to claim 1, wherein the cavity has an air hole through which a sample liquid added to an entrance of the cavity is supplied into the cavity by a capillary phenomenon. "
6 . 請求項の範囲第 5項に記載のパイォセンサにおいて、  6. In the pyrosensor according to claim 5,
前記キヤビティは、 前記電極部上に配置された前記試薬層の上に、 切欠部を有 するスぺーサを貼り合わせ、 その上に力パーを貼り合わせてなるものであり、 前記空気孔は、 前記キヤビティに接する力パー上に設けられている、 ことを特徴とするバイオセンサ。 The cavity is formed by bonding a spacer having a notch on the reagent layer disposed on the electrode portion, and bonding a force bar on the spacer, and the air hole includes: Being provided on a force par contacting the cavity, A biosensor characterized in that:
7 . 請求の範囲第 5項または請求の範囲第 6項に記載のパイォセンサにおい て、  7. In the pyrosensor according to claim 5 or claim 6,
前記空気孔の形状が、 円、 楕円、 三角形、 正方形、 長方形、 多角形のいずれか である、 ことを特^:とするバイオセンサ。  A biosensor, wherein the shape of the air hole is any one of a circle, an ellipse, a triangle, a square, a rectangle, and a polygon.
8 . 請求の範囲第 5項または請求の範囲第 6項に記載のバイオセンサにおい て、  8. In the biosensor according to claim 5 or claim 6,
前記空気孔を、 前記キヤビティの入り口から最も離れた位置にある前記試薬層 の端部に面する位置に形成する、 ことを特徴とするバイオセンサ。  A biosensor, wherein the air hole is formed at a position facing an end of the reagent layer located farthest from an entrance of the cavity.
9 . 請求の範囲第 8項に記載のバイオセンサにおいて、  9. The biosensor according to claim 8, wherein
前記空気孔の形状が、 長方形もしくは正方形である、 ことを特徴とするバイオ センサ。  The shape of the said air hole is a rectangle or a square, The biosensor characterized by the above-mentioned.
PCT/JP2001/003685 2000-04-27 2001-04-27 Biosensor WO2001084133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000127469A JP4061816B2 (en) 2000-04-27 2000-04-27 Biosensor
JP2000-127469 2000-04-27

Publications (1)

Publication Number Publication Date
WO2001084133A1 true WO2001084133A1 (en) 2001-11-08

Family

ID=18637060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003685 WO2001084133A1 (en) 2000-04-27 2001-04-27 Biosensor

Country Status (2)

Country Link
JP (1) JP4061816B2 (en)
WO (1) WO2001084133A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550290B2 (en) 2003-05-15 2009-06-23 Panasonic Corporation Sensor
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096437B1 (en) 2000-11-30 2014-11-19 Panasonic Healthcare Co., Ltd. Biosensor for quantifying substrate
JP4120400B2 (en) 2001-04-16 2008-07-16 松下電器産業株式会社 Biosensor
GB0211449D0 (en) * 2002-05-17 2002-06-26 Oxford Biosensors Ltd Analyte measurement
US7501053B2 (en) * 2002-10-23 2009-03-10 Abbott Laboratories Biosensor having improved hematocrit and oxygen biases
JP3878993B2 (en) * 2002-10-31 2007-02-07 アークレイ株式会社 Analysis tool
JP3910148B2 (en) * 2003-03-14 2007-04-25 アークレイ株式会社 Analysis tool with exhaust port
JP4840520B2 (en) * 2010-04-27 2011-12-21 パナソニック株式会社 Biosensor, biosensor measuring apparatus, and substrate quantification method
JP4840521B2 (en) * 2010-04-27 2011-12-21 パナソニック株式会社 Biosensor, biosensor measuring apparatus, and substrate quantification method
JP5381936B2 (en) * 2010-09-03 2014-01-08 ニプロ株式会社 Biosensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197473A (en) * 1996-12-27 1998-07-31 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH11125618A (en) * 1997-08-22 1999-05-11 Nok Corp Biosensor
WO1999030152A1 (en) * 1997-12-05 1999-06-17 Roche Diagnostics Corporation Improved electrochemical biosensor test strip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197473A (en) * 1996-12-27 1998-07-31 Matsushita Electric Ind Co Ltd Biosensor and manufacture thereof
JPH11125618A (en) * 1997-08-22 1999-05-11 Nok Corp Biosensor
WO1999030152A1 (en) * 1997-12-05 1999-06-17 Roche Diagnostics Corporation Improved electrochemical biosensor test strip

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551308B2 (en) 1999-10-04 2013-10-08 Roche Diagnostics Operations, Inc. Biosensor and method of making
US8287703B2 (en) 1999-10-04 2012-10-16 Roche Diagnostics Operations, Inc. Biosensor and method of making
US7550290B2 (en) 2003-05-15 2009-06-23 Panasonic Corporation Sensor
US7749437B2 (en) 2003-06-20 2010-07-06 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent stripes
US8206565B2 (en) 2003-06-20 2012-06-26 Roche Diagnostics Operation, Inc. System and method for coding information on a biosensor test strip
US7718439B2 (en) 2003-06-20 2010-05-18 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7829023B2 (en) 2003-06-20 2010-11-09 Roche Diagnostics Operations, Inc. Test strip with vent opening
US7879618B2 (en) 2003-06-20 2011-02-01 Roche Diagnostics Operations, Inc. Method and reagent for producing narrow, homogenous reagent strips
US8058077B2 (en) 2003-06-20 2011-11-15 Roche Diagnostics Operations, Inc. Method for coding information on a biosensor test strip
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8119414B2 (en) 2003-06-20 2012-02-21 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8142721B2 (en) 2003-06-20 2012-03-27 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US7727467B2 (en) 2003-06-20 2010-06-01 Roche Diagnostics Operations, Inc. Reagent stripe for test strip
US8211379B2 (en) 2003-06-20 2012-07-03 Roche Diagnostics Operations, Inc. Test strip with slot vent opening
US8222044B2 (en) 2003-06-20 2012-07-17 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US7645421B2 (en) 2003-06-20 2010-01-12 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US8298828B2 (en) 2003-06-20 2012-10-30 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8507289B1 (en) 2003-06-20 2013-08-13 Roche Diagnostics Operations, Inc. System and method for coding information on a biosensor test strip
US7645373B2 (en) 2003-06-20 2010-01-12 Roche Diagnostic Operations, Inc. System and method for coding information on a biosensor test strip
US8586373B2 (en) 2003-06-20 2013-11-19 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8663442B2 (en) 2003-06-20 2014-03-04 Roche Diagnostics Operations, Inc. System and method for analyte measurement using dose sufficiency electrodes
US9410915B2 (en) 2004-06-18 2016-08-09 Roche Operations Ltd. System and method for quality assurance of a biosensor test strip

Also Published As

Publication number Publication date
JP2001305093A (en) 2001-10-31
JP4061816B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
WO2001084133A1 (en) Biosensor
EP1262768B1 (en) Substrate determining method
US5520787A (en) Diagnostic flow cell device
US9465005B2 (en) Analyte sensors and methods of use
EP1747450B1 (en) Connector configuration for electrochemical cells and meters for use in combination therewith
US8007645B2 (en) Biosensor
JP6030121B2 (en) Electrochemical sensor with support area
EP1288654A1 (en) Biosensor
JPH11352094A (en) Electrochemical analysis element
JP4612192B2 (en) Multi-chemical measuring device and test piece
JP2003149192A (en) Biosensor
WO2005119238A1 (en) Biosensors having improved sample application and users thereof
CN216978925U (en) Biosensor for detection
JP4639465B2 (en) Biosensor
US8999124B2 (en) Detection device
US20040020771A1 (en) Biosensor, adapter used therefor, and measuring device
JP2004004057A (en) Biosensor, adapter used for the same and measuring apparatus
JP4635258B2 (en) Biosensor
Taniike et al. Biosensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase