WO2001059191A1 - High-strength polyester-amide fiber and process for producing the same - Google Patents

High-strength polyester-amide fiber and process for producing the same Download PDF

Info

Publication number
WO2001059191A1
WO2001059191A1 PCT/JP2001/000792 JP0100792W WO0159191A1 WO 2001059191 A1 WO2001059191 A1 WO 2001059191A1 JP 0100792 W JP0100792 W JP 0100792W WO 0159191 A1 WO0159191 A1 WO 0159191A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
fiber
polyesteramide
temperature
strength
Prior art date
Application number
PCT/JP2001/000792
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Tada
Masayuki Hino
Toshiya Mizuno
Original Assignee
Kureha Kagaku Kogyo K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Kagaku Kogyo K.K. filed Critical Kureha Kagaku Kogyo K.K.
Priority to KR1020027010187A priority Critical patent/KR20020074506A/en
Priority to US10/203,140 priority patent/US20030032767A1/en
Priority to EP01902765A priority patent/EP1270775A1/en
Publication of WO2001059191A1 publication Critical patent/WO2001059191A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/82Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from polyester amides or polyether amides

Definitions

  • the present invention relates to a high-strength polyesteramide fiber, and more particularly, to a high-strength polyesteramide fiber having high linear tensile strength, appropriate elongation, and showing biodegradability, and a method for producing the same.
  • the high-strength polyesteramide fibers of the present invention are suitable for use as industrial materials such as fishing lines, fishing nets, and agricultural nets. Background art
  • fishing lines, fishing nets, agricultural nets, and the like are formed from synthetic fibers such as polyamide monofilament, which have excellent workability, strength, durability, and heat resistance. Since such conventional synthetic fibers do not have degradability in the natural environment, for example, if fishing lines or fishing nets flow out or are left alone, they cause serious pollution problems such as marine pollution.
  • Natural fibers have biodegradability, but cannot provide high performance such as high strength required for industrial materials such as fishing line, fishing net, and agricultural net. Natural fibers also lack the processability required for mass production. In contrast, certain aliphatic polyesters are known to undergo microbial degradation by adherent bacteria distributed in the oceans and rivers, and spinning technologies and equipment that have been developed for conventional synthetic resins. Since it can be processed into fibers using, it is being studied for application to biodegradable fibers.
  • Japanese Patent Application Laid-Open No. H5-596111 proposes a monofilament made of polyprolactone.
  • the first-stage stretching is performed at a stretching ratio of more than 5 times and less than 7 times, and then the second-stage stretching is performed in an oven at 100 ° C so that the total stretching ratio is 8 times or more.
  • a high-strength polyforced prolactone monofilament was obtained by relaxation heat treatment.
  • this polyforce prolactone monofilament has insufficient heat resistance, and its strength is significantly reduced under high temperature conditions.
  • the fiber made of the aliphatic polyester has biodegradability, but has drawbacks such as insufficient mechanical strength and poor heat resistance.
  • polyamide fibers are excellent in mechanical strength, heat resistance, workability, etc., but do not have biodegradability. Therefore, in order to improve the physical properties of the aliphatic polyester and to impart biodegradability to the polyamide, a polyester amide copolymer has been developed, and its application as a biodegradable fiber is being studied. 'For example, Japanese Patent Application Laid-Open No.
  • 54-127727 discloses that a high-molecular-weight aliphatic polyester and an aliphatic polyamide are produced in an inert gas in the presence of a catalyst such as anhydrous zinc acetate. By heating to a temperature higher than their melting point, an ester-amide transesterification reaction is carried out, and a polyester resin in which a large number of low molecular weight polyester blocks and low molecular weight polyamide blocks are alternately bonded. It is disclosed that a mid copolymer is produced and melt spun to produce a biodegradable fiber. However, the publication does not show a specific example in which the polyester amide copolymer is spun into fibers.
  • Japanese Patent Application Laid-Open No. 7-173713 discloses a monofilament comprising a polylactone amide copolymer comprising a polyamide unit and a polylactone unit, and a method for producing the same.
  • a polylactone amide copolymer is melt-spun, solidified by cooling in an inert liquid at 60 ° C or less (preferably 26 to 60 ° C), and stretched by more than 4 times and less than 7 times. It describes a method for producing a monofilament in which a first-stage stretching is carried out at a draw ratio, and then a draw ratio at which a total draw ratio is 7 times or more is obtained.
  • the polylactone amide copolymer is melt-spun at 200 ° C., cooled in 35 ° C. hot water, and immediately placed in a 80 ° C. hot water bath. After stretching the first stage at 4.5 times the stretching magnification, performing a relaxing heat treatment in warm water at 90 ° C, and then stretching the whole stretching magnification to 9.0 in a dry heat bath at 120 ° C. It is shown that a second-stage stretching was performed so as to increase the size by a factor of two, and a relaxation heat treatment was performed in a dry heat bath at 100 ° C. to produce a high-strength monofilament.
  • the polyamide is melt-spun and rapidly cooled to form an undrawn yarn, and this undrawn yarn is rapidly drawn.
  • the molecular chains stretched at the time of stretching cause orientational crystallization, and the orientation is fixed in both the crystalline part and the amorphous part, thereby exhibiting excellent mechanical strength.
  • polyesteramide copolymer when such a spinning / drawing method is applied to a polyesteramide copolymer, it is difficult to obtain a fiber having sufficiently improved mechanical strength. That is, the polyamide segment of the polyesteramide copolymer is designed to have a short chain length so as not to impair the biodegradability of the copolymer. For this reason, polyester amide copolymer Has low crystallinity and is less likely to be oriented and crystallized than a polyamide homopolymer, or has a low crystallization rate. Therefore, if the amorphous undrawn yarn obtained by quenching is drawn, the orientation of the amorphous part cannot be fixed sufficiently, and the mechanical strength cannot be sufficiently improved.
  • a polyesteramide copolymer designed to have a short chain length of polyamide segment is used as an amorphous undrawn yarn. If stretching is performed under relatively high temperature conditions exceeding C, fusing tends to occur and it is difficult to stretch satisfactorily.
  • Adjusting the cooling and solidification conditions such as the cooling temperature of the undrawn yarn, and crystallizing a part of it does not provide sufficient crystallinity, or it is difficult to precisely control the crystallinity.
  • a polyester amide copolymer designed with a short polyamide segment chain length is melt-spun and cooled and solidified in a cooling medium adjusted to a relatively high temperature.
  • the spun yarn is still in a molten state, so it may be stretched or meandered and deformed due to the resistance of the cooling medium or the resistance of the roll.
  • a polyesteramide copolymer obtained by copolymerizing an aliphatic polyester and a polyamide is expected to be a resin having both the biodegradability of an aliphatic polyester and the toughness of a polyamide. It was difficult to produce polyesteramide fibers with an excellent balance between biodegradability and mechanical strength and sufficiently high strength. Disclosure of the invention
  • An object of the present invention is to provide a high-strength polyester amide fiber having remarkably high linear tensile strength, moderate elongation, and showing biodegradability, and a method for producing the same.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, found that the linear tensile strength can be significantly improved by adjusting the main dispersion peak temperature in the dynamic viscoelasticity measurement of polyesteramide fibers.
  • the high-strength polyester amide fiber of the present invention is obtained by melt spinning a polyester amide copolymer, and immediately, an inert cooling medium having a temperature of 20 ° C or less, preferably 15 ° C or less, more preferably 10 ° C or less. After cooling and solidifying in a non-drawn yarn, a substantially amorphous undrawn yarn is obtained. After increasing the crystallinity of the undrawn yarn to 10 to 30% by weight, the total drawing ratio is 4.5 times or more.
  • it can be produced by stretching in one step or multiple steps so that the ratio becomes 5 times or more.
  • the undrawn yarn is allowed to stand at room temperature for 24 hours, for example, to sufficiently promote crystallization.
  • an undrawn yarn having a crystallinity of 10 to 30% by weight is stretched in one or multiple stages at a temperature of 20 to 12 Ots so that the total draw ratio becomes 4.5 times or more.
  • at least one stretching step of stretching at a stretching ratio of 1.3 times or more at 50 to 120 ° C., more preferably at 70 to 110 ° C. is particularly preferable.
  • the result can be obtained.
  • a substantially amorphous undrawn yarn may be drawn into a drawn yarn, and the crystallinity of the drawn yarn may be increased to 10 to 30% by weight.
  • a strong polyesteramide fiber can be obtained. The present invention has been completed based on these findings.
  • a fiber comprising a polyesteramide copolymer, wherein the main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber is larger than the main dispersion peak temperature of an unoriented material comprising the polyesteramide copolymer. Higher than 10 ° C A high-strength polyesteramide fiber is provided.
  • (IV) A step of drawing one or more stages of a drawn yarn having a crystallinity of 10 to 30% by weight so that the total draw ratio becomes 4.5 times or more.
  • the polyester amide copolymer used in the present invention has a polymer in the molecular chain. It is a polymer having a mid unit and a polyester unit.
  • the proportion of each unit is preferably from 5 to 80 mol%, more preferably from 20 to 70 mol%, particularly preferably from 30 to 60 mol%, of the polyamide unit. Is preferably 20 to 95 mol%, more preferably 30 to 80 mol%, and particularly preferably 40 to 70 mol%. If the proportion of the polyamide unit is too small, the mechanical strength is poor. If the proportion is too large, biodegradability is impaired.
  • the polyester unit various known polyamides are used. If a polyamide having an excessively high melting point is used, the polyester segment may be thermally decomposed during melt molding, so that polyamide 6 (nylon 6), polyamide 66 (nylon 66), or a copolymer thereof is used.
  • an aliphatic polyester is preferably used from the viewpoint of biodegradability. However, as long as it shows biodegradability, an alicyclic polyester such as polycyclohexylenedimethyl adipate or an aromatic polyester is preferred. May be used alone or in combination with the aliphatic polyester.
  • polybutylene adipate, polyethylene adipate, polylactone and the like are preferable.
  • the method for synthesizing the polyesteramide copolymer is not particularly limited.
  • a method in which a polyamide is introduced into an aliphatic polyester alternately by an amide transesterification reaction to form a polyester-amide copolymer JP-A-54-120727
  • polyamide-forming compound for example, ⁇ -force prolactam
  • dicarboxylic acid and polyester diol for example, polylactone diol
  • Polyamide-forming compounds for example, ⁇ -force prolactam
  • polyester-forming compounds for example, dibasic acid and diol; lactone
  • the polyester may be Polyamide, polyethylene adipate, polybutylene adipate, etc., and polyamides include nylon 6, nylon, 66, nylon 69, nylon 61, nylon 61, 12, nylon 11, nylon 12, etc. I can do it.
  • polyamide-forming compound examples include ⁇ -aminobutyric acid, ⁇ -aminovaleric acid, ⁇ -aminocaproic acid, ⁇ -aminoenanthic acid, ⁇ -aminopurilic acid, ⁇ -aminoberalgonic acid, and ⁇ -aminoundecane Acids, ⁇ —Amino carboxylic acids having 4 to 12 carbon atoms such as amino dodecanoic acid; lactams having 4 to 12 carbon atoms such as aptyrolactam, ⁇ -caprolactam, enantholactam, capryloractam, laurolactam; Is mentioned.
  • polyamide-forming compound examples include a nylon salt composed of a dicarboxylic acid and a diamine.
  • dicarboxylic acid include succinic acid, dataltalic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and the like.
  • Aliphatic dicarboxylic acids having 4 to 12 carbon atoms such as azelaic acid and dodecanedioic acid; alicyclic dicarboxylic acids such as hydrogenated terephthalic acid and hydrogenated isophthalic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid Acid; and the diamines include tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, and the like.
  • dicarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid and dodecandioic acid; hydrogenated terephthalic acid, Alicyclic dicarboxylic acids such as hydrogenated isophthalic acid; terephthalic acid, isophthalic acid Aromatic dicarboxylic acids such asucic acid and fluoric acid; and the like.
  • aliphatic dicarboxylic acids such as succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid and dodecandioic acid
  • hydrogenated terephthalic acid Alicyclic dicarboxylic acids such as hydrogenated isophthalic acid
  • terephthalic acid isophthalic acid
  • Aromatic dicarboxylic acids such asucic acid and fluoric acid; and the like
  • examples of the polyester diol include a polylactone diol having an average molecular weight of 500 to 400, and using a dalicol compound as a reaction initiator, Synthesized from 2 lactones.
  • examples of the lactone include 3-propiolactone, / 3-butyl lactone, ⁇ -valerolactone, ⁇ -force prolactone, enanthlactone, caprylolactone, laurolactone and the like.
  • examples of the dibasic acid include adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid, and dodecandionic acid
  • examples of the diol include ethylene glycol and 1,3-propane diol.
  • 1,4-butanediol 1,5-pentanediol, 1,6-hexanediol, 2,3-butanediol, 2,5-hexanediol, 2-methyl-1,4-butanediol, 3-Methyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,3-dimethyl-2,3-butanediol, etc. No.
  • examples of the lactone include / 3-propiolactone, i3-butyrolactone, ⁇ 5-valerolactone, ⁇ -force prolactone, enanthlactone, caprylolactone, laurolactone, and the like.
  • glycolic acid, glycolide, lactic acid,] 3-hydroxybutyric acid, ⁇ -hydroxyvaleric acid and the like can also be mentioned as polyester-forming compounds.
  • Polyester amide copolymers include nylon 6 ⁇ polybutylene adipate copolymer, nylon 6.6 ⁇ polybutylene adipate copolymer, and nylon 6 from the viewpoint of balance between mechanical strength and biodegradability.
  • ⁇ Polyethylene copolymer, Nylon 66 / polyethylene adipate copolymer, Nylon 6 / Polycaprolactone copolymer, Nylon 66 ⁇ Poly A force prolactone copolymer is preferred.
  • the melting point (Tm) of the polyesteramide copolymer is preferably at least 90 ° C, more preferably at least 100 ° C, and in many cases, about 90 to 180 ° C.
  • the melting point (T m) of the polyester amide copolymer is the crystal melting peak temperature measured with a differential scanning calorimeter at a heating rate of 10 ° CZ. When multiple melting peaks appear Means the peak temperature with the largest calorific value. If the melting point is too low, the heat resistance of the polyesteramide fiber is not sufficient, and problems such as a decrease in strength in a high-temperature environment and fusing due to frictional heat during use are likely to occur. On the other hand, if the melting point is too high, the melt spinning temperature will be high, and the polyester segment will be easily decomposed.
  • the relative viscosity of the polyesteramide copolymer is preferably at least 1.0, more preferably at least 1.3, and often from 1.0 to 3.0.
  • the relative viscosity of the polyesteramide copolymer was determined by using hexafluoroisopropanol (HFIP) as the solvent at a concentration of 0.4 g / d1 (0.4 g of polymer per 100 m1 of solvent). Is a value measured using an Ubbelohde viscometer in an atmosphere at a temperature of 10 ° C. If the relative viscosity is too low, the degree of polymerization (or molecular weight) is too low, and it is difficult to obtain a fiber with excellent mechanical strength. If the relative viscosity is too high, unevenness in the diameter and strength of the fiber tends to occur, resulting in a uniform It becomes difficult to obtain fibers having physical properties.
  • a polyesteramide fiber is produced by the following production process using a polyesteramide copolymer.
  • the polyesteramide fiber is usually a monofilament, but may be a multifilament if desired.
  • the method for producing a polyesteramide fiber of the present invention comprises the steps of: melt-spinning a polyesteramide copolymer; and stretching the obtained undrawn yarn.
  • the polyesteramide copolymer is melt-spun and immediately cooled in an inert cooling medium at 20 ° C or lower, preferably 15 ° C or lower, more preferably 10 ° C or lower. Solidifies to obtain a substantially amorphous undrawn yarn.
  • the spinning temperature during melt spinning is usually about 100 to 200 ° C.
  • the spinning take-off speed is usually about 1 to 50 m / min for monofilament, and for multifilament. Usually, it is 20 to 1, 000 m / min.
  • the lower limit temperature of the cooling medium depends on the type of the cooling medium, but is preferably about 0 ° C.
  • the cooling medium include a liquid compound inert to a polyester amide copolymer such as water, glycerin, and ethylene glycol, and a mixture thereof. Of these, water is preferred.
  • a substantially amorphous undrawn yarn having a crystallinity of preferably 5% or less, more preferably 3% or less, and often 0% is obtained.
  • the crystallinity of the substantially amorphous undrawn yarn is increased to 10 to 30% by weight, preferably 12 to 28% by weight.
  • Unstretched In order to increase the crystallinity of the yarn, there is a method in which the undrawn yarn obtained in the step (1) is placed in an atmosphere at 10 to 80 ° C for 10 minutes to 72 hours. Generally, it is preferable to adjust the crystallinity to a desired range by lowering the processing time as the ambient temperature is lower and shortening the processing time as the temperature is higher.
  • the substantially amorphous undrawn yarn obtained in the step (1) is wound, for example, on a roll, and then wound in an atmosphere adjusted to a predetermined temperature condition.
  • the wound undrawn yarn is usually placed in an atmosphere adjusted to a predetermined temperature in the range of 10 to 35 ° C for 5 to 72 hours. It is desirable to leave it still for about 10 to 30 hours.
  • an undrawn yarn having a crystallinity of 10 to 30% by weight is subjected to single-stage or multi-stage drawing so that the total drawing ratio becomes 4.5 times or more.
  • this step may be referred to as a crystal stretching step.
  • the stretching temperature is preferably from 20 to 120 ° C., and the upper limit is adjusted so as not to exceed the melting point (Tm) of the polyester amide copolymer used.
  • the stretching temperature is adjusted using a dry heat gas or a liquid heating medium adjusted to a predetermined temperature.
  • the stretching is performed in one stage or in multiple stages of two or more stages.
  • the stretching temperature is preferably adjusted to 50 to 120 ° C., more preferably to 70 to 110 ° C. It is particularly desirable to arrange a stretching step of stretching at a stretching temperature of 1.3 times or more at a stretching temperature in order to obtain a high-strength fiber.
  • the stretching is preferably performed in a dry hot gas.
  • the stretching in this stretching step can be carried out in the case of single-stage stretching, for example, by a method of performing single-stage stretching at a stretching temperature of 70 to 110 ° C. and a stretching ratio of 5 to 7 times.
  • a stretching step with a stretching ratio of 1.3 times or more in the above temperature range is arranged, other stretching is, for example, less than 50 ° C such as 25 ° C. It may be performed at a temperature.
  • the stretching in this stretching step can be performed in one stage or in multiple stages, and the stretching ratio is preferably 1.3 times or more and 12 times or less.
  • the total stretching ratio is 4.5 times or more, preferably 5 times or more, and the upper limit is about 15 times. If the total draw ratio is too low, sufficient mechanical strength cannot be obtained.
  • heat treatment may be performed at a temperature equal to or lower than the melting point (T m) in a fixed or relaxed state.
  • a high-strength polyesteramide fiber having an excellent balance between biodegradability and mechanical strength can be produced by the following steps. (I) a step of melt-spinning the polyesteramide copolymer and immediately cooling and solidifying in an inert cooling medium at a temperature of 20 ° C. or lower to obtain an amorphous undrawn yarn;
  • the spinning temperature during melt spinning is usually about 100 to 200 ° C., and the spinning take-off speed is usually about 1 to 50 m / min.
  • the temperature of the medium is preferably 15 ° C. or less, more preferably 10 ° C.
  • the stretching temperature is preferably from 0 to 40 ° C, more preferably from 10 to 35 ° C, and the stretching ratio is preferably at least 2 times, more preferably at least 3 times. Yes, in many cases, good results can be obtained with a factor of 4 to 10 times.
  • this step (II) when the stretching ratio is to be increased, it is desirable to carry out multistage stretching at a stretching temperature of about 10 to 35 ° C. for about 2 to 5 times.
  • the step (II) is an amorphous drawing step of drawing a substantially amorphous undrawn yarn.
  • the drawn yarn obtained in the step (II) increases the degree of crystallinity to 10 to 30% by weight, preferably 12 to 28% by weight.
  • the drawn yarn is preferably wound for 5 to 72 hours in an atmosphere adjusted to a predetermined temperature in the range of 10 to 35 ° C. It is preferable to leave it still for about 10 to 30 hours.
  • the crystallinity of the drawn yarn is increased to the range of 10 to 30% by weight, and then the drawing step (IV) is arranged to sufficiently increase the mechanical strength. Can be enhanced.
  • a drawn yarn having a crystallinity of 10 to 30% by weight is subjected to single-stage or multi-stage drawing so that the total drawing ratio becomes 4.5 times or more.
  • the stretching temperature is preferably 20 to 120 ° C.
  • the adjustment of the stretching temperature is performed using a dry heat gas or a liquid heating medium adjusted to a predetermined temperature.
  • the stretching temperature is adjusted to preferably 50 to 120 ° C, more preferably 70 to 110 ° C, and at the stretching temperature, a stretching ratio of 1.3 times or more. It is particularly desirable to arrange a drawing step for drawing at a high temperature in order to obtain a high-strength fiber. Other stretching conditions are the same as in the above-described method.
  • the main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber is at least 10 ° C higher than the main dispersion peak temperature of the non-oriented material composed of the polyesteramide copolymer, preferably Higher than 12 ° C.
  • the fact that the main dispersion peak temperature of the drawn fiber is higher than that of the non-oriented one by 10 ° C or more indicates that the amorphous molecular chains are highly restricted in tension. In other words, the elongation was performed effectively, and as a result, not only the molecular chains in the crystal part of the fiber but also the molecular chains in the amorphous part were highly oriented.
  • the upper limit of the temperature difference between the main dispersion peak temperatures is about 17 ° C, and often about 15 ° C.
  • the crystallinity (% by weight) A of the fiber and the long period (A) B measured by small-angle X-ray scattering are represented by the following formula (I).
  • the crystallinity A and the long period B measured by small angle X-ray scattering are more preferably expressed by the formula (II)
  • the product of the crystallinity A and the long period B measured by small-angle X-ray scattering corresponds to the thickness of the crystal formed by crystallization of the polyamide segment.
  • Fibers whose (AX B) / 100 is less than 5 have low crystallinity due to the short chain length of the polyamide segment, and the polyamide units introduced into the molecular chain are sufficient for improving mechanical strength. May not contribute.
  • the biodegradability may be impaired because the chain length of the polyamide segment is too long.
  • the degree of crystal orientation of the polyesteramide fiber of the present invention is preferably 90% or more, more preferably 93% or more.
  • the upper limit of crystal orientation is 98% It is about. Due to the high degree of fiber crystal orientation, it has excellent mechanical strength.
  • Such a polyester amide fiber can be obtained by the above-mentioned production method, and has excellent linear tensile strength and moderate elongation.
  • the polyesteramide fiber of the present invention can be obtained by increasing the crystallinity of an amorphous undrawn yarn made of a polyesteramide copolymer to 10 to 30% by weight and then drawing. Further, the polyesteramide fiber of the present invention stretches an amorphous undrawn yarn made of a polyesteramide copolymer, and then increases the crystallinity of the obtained drawn yarn to 10 to 30% by weight. Thereafter, it can be obtained by further stretching.
  • the linear tensile strength of the polyesteramide fiber of the present invention is usually at least 300 MPa, preferably at least 35 OMPa, more preferably at least 380 MPa, particularly preferably at least 40 OMPa.
  • the linear tensile strength is often around 380 to 700 MPa.
  • the elongation of the polyester amide fiber of the present invention is usually at least 10%, preferably at least 15%, and in many cases about 10 to 50%.
  • the polyesteramide fiber of the present invention has good biodegradability.
  • the polyesteramide fiber of the present invention When the polyesteramide fiber of the present invention is buried in soil for 6 months and then taken out, the fiber loses its shape or its linear tensile strength decreases to 50% or less of the value before the burying. Therefore, it can be evaluated that microbial degradability is good.
  • the diameter of the polyester amide fiber of the present invention is usually about 50 to 400 Om in the case of a monofilament, and usually 1 to 50 mm in the case of a multifilament.
  • the polyesteramide fiber of the present invention can contain various additives such as a pigment, a dye, an antioxidant, an ultraviolet absorber, and a plasticizer, if necessary.
  • the sample was allowed to stand for 24 hours in an atmosphere of 23 ° C and 50% RH (relative humidity), and the distance between chucks was 20 mm using a dynamic viscoelasticity measuring device RSA manufactured by Rheometrics.
  • RSA dynamic viscoelasticity measuring device manufactured by Rheometrics.
  • the temperature was raised from 100 ° C to 120 ° C at a rate of 2 ° CZ, and a temperature dispersion curve with a loss tangent tan ⁇ 5 was measured.
  • the temperature at which this temperature dispersion curve shows a maximum was defined as the main dispersion peak temperature (° C).
  • the drawing directions of the fibers were aligned, arranged in a strip shape having a length of 20 mm and a width of 4 mm, and this was fixed with a cyanoacrylate adhesive to prepare a sample.
  • X-rays were incident in a direction perpendicular to the drawing direction of the fiber of this sample.
  • Ryukyu Flex RU-200B manufactured by Rigaku Denki Co., Ltd. was used as the X-ray generator, and the CuK line passed through a Ni filter at 40 kV-200 OmA was used as the X-ray source.
  • the sample was exposed at a distance of 50 Omm between the imaging plate and an exposure time of 24 hours, and R-AX ISDS3 manufactured by Rigaku Denki was used. hand, A scattering angle intensity distribution curve on the meridian was created. The long period (A) was determined from the peak angle of the scattering angle intensity distribution curve.
  • the fibers were oriented in the drawing direction, aligned in a strip shape with a length of 20 mm and a width of 4 mm, and fixed with a cyanoacrylate adhesive to prepare a sample.
  • X-rays were incident in a direction perpendicular to the drawing direction of the fiber of this sample.
  • Rotorflex RU-200B manufactured by Rigaku Corporation was used as an X-ray generator, and a Cu K wire passed through a Ni filter at 30 kV-100 mA was used as an X-ray source.
  • the orientation degree (%) is calculated from the sum of the half-widths W i (degrees) ⁇ W i (degrees) at two points on the equator line ( ⁇ angles of 90 ° and 270 °) by ).
  • the sample was left for 24 hours in a temperature and humidity controlled room at 23 ° C and 50% RH, and the initial sample length (distance between chucks) was set in the same room using Tensilon UTM-3 manufactured by Toyo Paul Douin.
  • a tensile test was performed at 300 mm and a crosshead speed of 300 mm, the breaking stress (MPa) was determined, and the measured value was defined as the linear tensile strength (MPa).
  • the sample is buried in the soil for 6 months and then removed, and the fiber of the sample has lost its shape or its linear tensile strength is 50% of the value before the burying. The case where it decreased below was evaluated as having good biodegradability.
  • Tm melting point
  • the undrawn yarn was wound up on a roll and allowed to stand at room temperature (25 ° C.) for 24 hours.
  • the crystallinity of the undrawn yarn after standing was 14.7% by weight.
  • the undrawn yarn having the increased crystallinity is drawn at a draw ratio of 5 in a dry heat path adjusted to a temperature of 80 ° C. to obtain a drawn fiber (monofilament: diameter of 16.5 zxm). .
  • this fiber was heated and pressed at 140 ° C. for 5 minutes to form a pressed sheet having a thickness of 250 m, which was used as a non-oriented sample of the polyesteramide copolymer.
  • the main dispersion peak temperature of this non-oriented sample was -11 ° C.
  • Example 1 a drawn fiber was obtained in the same manner as in Example 1 except that the draw ratio of the undrawn yarn was changed from 5 times to 6 times (Example 2) or 7 times (Example 3).
  • Example 2 a drawn fiber was obtained in the same manner as in Example 1 except that the draw ratio of the undrawn yarn was changed from 5 times to 6 times (Example 2) or 7 times (Example 3).
  • Example 1 the stretching process was divided into two stages, the first stage was stretched 4.5 times at 45 ° C, and then the second stage was stretched 1.3 times at 75 ° C.
  • a drawn fiber was produced in the same manner as in Example 1 except that the draw ratio was 6 times.
  • Example 1 except that the stretching ratio of the undrawn yarn was changed from 5 times to 2 times (Comparative Example 1) or 3 times (Comparative Example 2) or 4 times (Comparative Example 3), In the same manner as in Example 1, drawn fibers were obtained.
  • Polyester amide copolymer (Bayer BAK1095) was supplied to a 30 mm ⁇ single screw extruder, melted at an extruder tip temperature of 140 C, and adjusted to a temperature of 140 ° C. It was extruded from a spinning nozzle having a diameter of 1.5 mm, immediately cooled in a water bath adjusted to a temperature of 5 ° C, and pulled at a take-up speed of 1 OmZ to obtain an undrawn yarn having a diameter of 740 m. Without winding the undrawn yarn, the drawn fiber (monofilament: diameter: 197 ⁇ m) is drawn immediately to a draw ratio of 3.5 in a dry heat bath adjusted to a temperature of 25 ° C. Obtained.
  • Comparative Example 4 the stretching process was divided into three stages, the first stage was stretched 4.5 times at 25 ° C, and the second stage was stretched 1.44 times at 25 ° C. Then, a drawn fiber was produced in the same manner as in Comparative Example 4 except that the third stage was stretched to 1.15 times at 25 ° C. and the total draw ratio was increased to 7.5 times.
  • the crystallinity of the drawn fiber after standing was 26.2% by weight.
  • the drawn fiber having the increased crystallinity was drawn 1.6 times at a temperature of 80 ° C., and the total drawing ratio was set to 12 times.
  • Nylon 6 (homopolymer) is fed to a 3 Ommc /) single-screw extruder, and extruder is melted at a tip temperature of 260 ° C and is adjusted to a temperature of 260 ° C with a diameter of 1.5 It was extruded from a spinning nozzle having a diameter of 5 mm and immediately cooled in a water bath adjusted to a temperature of 5 ° C., and was taken out at a take-up speed of 10 mZ to obtain an undrawn yarn having a diameter of 740 m.
  • Table 1 shows the stretching conditions employed in these Examples and Comparative Examples
  • Table 2 shows the measurement results of physical properties.
  • Example 3 94.1 2.0 13.0 23.3 82.9 19.3 Good 520.4 24
  • Example 4 94.4 3.0 14.0 20.1 83.3 16.7 Good 502.7 21
  • Example 5 95.0 3.0 14.0 22.1 83.0 18.3 Good 614.5 19
  • a high-strength polyesteramide fiber having high linear tensile strength, moderate elongation, and biodegradability, and a method for producing the same.
  • the high-strength polyesteramide fiber of the present invention can be suitably applied to uses as industrial materials such as fishing lines, fishing nets, and agricultural nets.

Abstract

A high-strength polyester-amide fiber made of a polyester-amide copolymer, characterized in that in dynamic viscoelastometry the fiber has a main dispersion peak at a temperature higher by at least 10°C than the temperature of the main dispersion peak of a nonoriented object made of the polyester-amide copolymer; and a process for producing high-strength polyester-amide fibers which comprises a series of steps of spinning a melt of a polyester-amide copolymer and immediately solidifying the resultant filament by cooling in an inert cooling medium having a temperature of 20°C or lower to thereby obtain a noncrystalline unstretched yarn, heightening the crystallinity of the unstretched yarn to 10 to 30 wt.%, and stretching the resultant unstretched yarn having a crystallinity of 10 to 30 wt.% in one or more steps so as to result in an overall stretch ratio of 4.5 or higher.

Description

明細書 高強度ポリエステルアミド繊維及びその製造方法 技術分野  Description High strength polyesteramide fiber and method for producing the same
本発明は、 高強度ポリエステルアミド繊維に関し、 さらに詳しくは、 直線引張強度が高く、 適度の伸度を有し、 生分解性を示す高強度ポリェ ステルアミド繊維とその製造方法に関する。 本発明の高強度ポリエステ ルアミド繊維は、 釣り糸や漁網、 農業用ネットなどの産業資材としての 用途に好適である。 背景技術  The present invention relates to a high-strength polyesteramide fiber, and more particularly, to a high-strength polyesteramide fiber having high linear tensile strength, appropriate elongation, and showing biodegradability, and a method for producing the same. The high-strength polyesteramide fibers of the present invention are suitable for use as industrial materials such as fishing lines, fishing nets, and agricultural nets. Background art
近年、 生分解性や光分解性などの分解性を有する地球環境に優しい繊 維の開発が強く望まれている。 一般に、 釣り糸、 漁網、 農業用ネットな どは、 加工性、 強度、 耐久性、 耐熱性などに優れたポリアミドモノフィ ラメントなどの合成繊維から形成されている。 このような従来の合成繊 維は、 自然環境下で分解性をもたないため、 例えば、 釣り糸や漁網が流 出したり、 放置されたりすると、 深刻な海洋汚染等の公害問題を引き起 こす。  In recent years, there has been a strong demand for the development of environmentally friendly fibers having biodegradability and photodegradability. Generally, fishing lines, fishing nets, agricultural nets, and the like are formed from synthetic fibers such as polyamide monofilament, which have excellent workability, strength, durability, and heat resistance. Since such conventional synthetic fibers do not have degradability in the natural environment, for example, if fishing lines or fishing nets flow out or are left alone, they cause serious pollution problems such as marine pollution.
天然繊維の多くは、 生分解性を有するが、 釣り糸、 漁網、 農業用ネッ 卜などの産業用資材に要求される高強度などの高い性能を出すことがで きない。 また、 天然繊維は、 大量生産に必要な加工性に欠ける。 これに 対して、 ある種の脂肪族ポリエステルは、 海洋や河川に分布する付着性 細菌によって微生物分解を受けることが知られており、 しかも従来の合 成樹脂用に開発されてきた紡糸技術や設備を利用して繊維に加工するこ とができるため、 生分解性繊維への応用が検討されている。  Most natural fibers have biodegradability, but cannot provide high performance such as high strength required for industrial materials such as fishing line, fishing net, and agricultural net. Natural fibers also lack the processability required for mass production. In contrast, certain aliphatic polyesters are known to undergo microbial degradation by adherent bacteria distributed in the oceans and rivers, and spinning technologies and equipment that have been developed for conventional synthetic resins. Since it can be processed into fibers using, it is being studied for application to biodegradable fibers.
例えば、 特開平 2— 2 0 3 7 2 9号公報には、 自然環境中で徐々に分 解される性質を有する脂肪族ポリエステルから形成された釣り糸が提案 されている。 しかし、 該公報には、 紡糸技術に関する具体的な記載がな く、 実施例も示されていない。 しかも、 該公報には、 脂肪族ポリエステ ルから形成された釣り糸は、 空気中の水分によって加水分解を受ける場 合があり、 また、 使用後は徐々に強度が低下するので、 使い捨てにすべ きであると記載されている。 For example, Japanese Unexamined Patent Publication No. Hei. Fishing lines formed from aliphatic polyesters having unraveled properties have been proposed. However, the publication does not specifically describe spinning technology and does not show any examples. Moreover, according to the publication, fishing lines formed from aliphatic polyesters may be hydrolyzed by moisture in the air, and their strength gradually decreases after use, so they should be disposable. It is stated that there is.
特開平 5 - 5 9 6 1 1号公報には、 ポリ力プロラクトンからなるモノ フィラメントが提案されている。 該公報の実施例には、 ポリ力プロラク トン (融点 = 6 0 ) を 2 1 0 °Cで溶融紡出し、 1 5 °Cの水溶液中で冷 却した後、 直ちに 4 5 Cの温水中で延伸倍率 5倍超過 7倍未満で第 1段 目の延伸を行い、 次いで、 1 0 0 °Cのオーブン中で全延伸倍率が 8倍以 上となるように第 2段目の延伸を行い、 さらに、 弛緩熱処理することに より、 高強度ポリ力プロラクトンモノフィラメントを得たことが記載さ れている。 しかし、 このポリ力プロラクトンモノフィラメントは、 耐熱 性が不十分であり、 かつ、 高温条件下で強度が著しく低下する。  Japanese Patent Application Laid-Open No. H5-596111 proposes a monofilament made of polyprolactone. Examples in the publication include melt spinning of polyprolactone (melting point = 60) at 210 ° C, cooling in an aqueous solution at 15 ° C, and immediately in hot water at 45 ° C. The first-stage stretching is performed at a stretching ratio of more than 5 times and less than 7 times, and then the second-stage stretching is performed in an oven at 100 ° C so that the total stretching ratio is 8 times or more. Furthermore, it is described that a high-strength polyforced prolactone monofilament was obtained by relaxation heat treatment. However, this polyforce prolactone monofilament has insufficient heat resistance, and its strength is significantly reduced under high temperature conditions.
このように、 脂肪族ポリエステルからなる繊維は、 生分解性を有する ものの、 機械的強度が不十分であったり、 耐熱性に劣るなどの欠点を有 している。 一方、 ポリアミド繊維は、 機械的強度、 耐熱性、 加工性など に優れるが、 生分解性を有していない。 そこで、 脂肪族ポリエステルの 物性を改善すると共に、 ポリアミドに生分解性を付与するために、 ポリ エステルアミド共重合体が開発されており、 その生分解性繊維としての 応用も検討されている。 ' 例えば、 特開昭 5 4 - 1 2 0 7 2 7号公報には、 高分子量の脂肪族ポ リエステルと脂肪族ポリアミドを、 不活性ガス中において、 無水酢酸亜 鉛などの触媒の存在下、 それらの融点以上の温度に加熱することにより、 エステル一アミド交換反応を行わせて、 低分子量ポリエステルブロック と低分子量ポリアミドブロックとが多数交互に結合したポリエステルァ ミド共重合体を製造し、 これを溶融紡糸して生分解性繊維とすることが 開示されている。 しかし、 該公報には、 該ポリエステルアミド共重合体 を用いて紡糸し、 繊維とした具体例が示されていない。 As described above, the fiber made of the aliphatic polyester has biodegradability, but has drawbacks such as insufficient mechanical strength and poor heat resistance. On the other hand, polyamide fibers are excellent in mechanical strength, heat resistance, workability, etc., but do not have biodegradability. Therefore, in order to improve the physical properties of the aliphatic polyester and to impart biodegradability to the polyamide, a polyester amide copolymer has been developed, and its application as a biodegradable fiber is being studied. 'For example, Japanese Patent Application Laid-Open No. 54-127727 discloses that a high-molecular-weight aliphatic polyester and an aliphatic polyamide are produced in an inert gas in the presence of a catalyst such as anhydrous zinc acetate. By heating to a temperature higher than their melting point, an ester-amide transesterification reaction is carried out, and a polyester resin in which a large number of low molecular weight polyester blocks and low molecular weight polyamide blocks are alternately bonded. It is disclosed that a mid copolymer is produced and melt spun to produce a biodegradable fiber. However, the publication does not show a specific example in which the polyester amide copolymer is spun into fibers.
特開平 7 - 1 7 3 7 1 6号公報には、 ポリアミド単位とポリラクトン 単位とからなるポリラクトンアミド共重合体からなるモノフィラメント とその製造方法が開示されている。 該公報には、 ポリラクトンアミド共 重合体を溶融紡出し、 6 0 °C以下 (好ましくは 2 6〜6 0 °C ) の不活性 液体中で冷却固化し、 4倍超過 7倍未満の延伸倍率で 1段目延伸を行い、 その後、 全延伸倍率が 7倍以上となる延伸倍率で延伸するモノフィラメ ントの製造方法が記載されている。 具体的に、 該公報の実施例には、 ポ リラクトンアミ ド共重合体を 2 0 0 °Cで溶融紡出し、 3 5 °Cの温水中で 冷却した後、 直ちに 8 0 °Cの温水浴中で延伸倍率 4 . 5倍で 1段目の延 伸を行い、 9 0 °Cの温水中でリラックス熱処理を行った後、 1 2 0 °Cの 乾熱浴中で全延伸倍率が 9 . 0倍となるように 2段目の延伸を行い、 さ らに、 1 0 0 °Cの乾熱浴中で弛緩熱処理を行って、 高強度のモノフイラ メントを製造したことが示されている。  Japanese Patent Application Laid-Open No. 7-173713 discloses a monofilament comprising a polylactone amide copolymer comprising a polyamide unit and a polylactone unit, and a method for producing the same. According to the publication, a polylactone amide copolymer is melt-spun, solidified by cooling in an inert liquid at 60 ° C or less (preferably 26 to 60 ° C), and stretched by more than 4 times and less than 7 times. It describes a method for producing a monofilament in which a first-stage stretching is carried out at a draw ratio, and then a draw ratio at which a total draw ratio is 7 times or more is obtained. Specifically, in the examples of the publication, the polylactone amide copolymer is melt-spun at 200 ° C., cooled in 35 ° C. hot water, and immediately placed in a 80 ° C. hot water bath. After stretching the first stage at 4.5 times the stretching magnification, performing a relaxing heat treatment in warm water at 90 ° C, and then stretching the whole stretching magnification to 9.0 in a dry heat bath at 120 ° C. It is shown that a second-stage stretching was performed so as to increase the size by a factor of two, and a relaxation heat treatment was performed in a dry heat bath at 100 ° C. to produce a high-strength monofilament.
ところで、 ナイロンなどのポリアミドからモノフィラメントの如き繊 維を製造するには、 ポリアミドを溶融紡出し、 急冷して未延伸糸とし、 この未延伸糸を速やかに延伸させている。 これは、 急冷することにより 未延伸糸の結晶化を抑制して、 延伸時に分子鎖を無理なく配向させるた めである。 延伸時に引き延ばされた分子鎖は、 配向結晶化を生じ、 結晶 部と非晶部ともに配向が固定され、 優れた機械的強度を発現する。  By the way, to produce a fiber such as a monofilament from a polyamide such as nylon, the polyamide is melt-spun and rapidly cooled to form an undrawn yarn, and this undrawn yarn is rapidly drawn. This is because the quenching suppresses the crystallization of the undrawn yarn, and the molecular chains are easily oriented during the drawing. The molecular chains stretched at the time of stretching cause orientational crystallization, and the orientation is fixed in both the crystalline part and the amorphous part, thereby exhibiting excellent mechanical strength.
しかしながら、 ポリエステルアミド共重合体に、 このような紡糸 ·延 伸法を適用すると、 機械的強度が十分に改善された繊維を得ることが困 難である。 すなわち、 ポリエステルアミド共重合体のポリアミドセグメ ントは、 該共重合体の生分解性を損なわないようにするため連鎖長が短 くなるように設計されている。 このため、 ポリエステルアミド共重合体 は、 結晶性が低く、 配向結晶化もポリアミド単独重合体に比べて生じ難 かったり、 あるいは結晶化速度が遅い。 したがって、 急冷により得られ た非晶性の未延伸糸を延伸したのでは、 非晶部の配向を十分に固定する ことができず、 機械的強度が十分に向上しない。 However, when such a spinning / drawing method is applied to a polyesteramide copolymer, it is difficult to obtain a fiber having sufficiently improved mechanical strength. That is, the polyamide segment of the polyesteramide copolymer is designed to have a short chain length so as not to impair the biodegradability of the copolymer. For this reason, polyester amide copolymer Has low crystallinity and is less likely to be oriented and crystallized than a polyamide homopolymer, or has a low crystallization rate. Therefore, if the amorphous undrawn yarn obtained by quenching is drawn, the orientation of the amorphous part cannot be fixed sufficiently, and the mechanical strength cannot be sufficiently improved.
また、 生分解性と機械的強度を両立させるために、 ポリアミドセグメ ントの連鎖長を短く設計したポリエステルアミド共重合体を非晶性の未 延伸糸とし、 引き続き、 該未延伸糸を 5 0 °Cを越えるような比較的高温 条件下で延伸しょうとすると、 溶断が起こりやすく、 満足に延伸するこ とが困難である。  Further, in order to achieve both biodegradability and mechanical strength, a polyesteramide copolymer designed to have a short chain length of polyamide segment is used as an amorphous undrawn yarn. If stretching is performed under relatively high temperature conditions exceeding C, fusing tends to occur and it is difficult to stretch satisfactorily.
未延伸糸の冷却温度などの冷却固化条件を調整して、 その一部を結晶 化させる方法では、 十分な結晶化度を得ることができなかったり、 結晶 化度の精密な制御が困難である。 また、 生分解性と機械的強度を両立さ せるために、 ポリアミドセグメントの連鎖長を短く設計したポリエステ ルアミド共重合体を溶融紡出し、 比較的高温に調整した冷却媒体中で冷 却固化と結晶化とを行わせようとしても、 紡出糸が未だ溶融状態に近い ため、 冷却媒体の抵抗やロールの抵抗などにより、 伸びたり蛇行したり して変形してしまう。 溶融紡出した糸を一定時間空気中に滞在させて結 晶化させようとしても、 糸径が比較的大きなモノフィラメントの場合、 冷却効率が極めて悪く、 非現実的である。 しかも、 溶融状態に近い糸が 滞空中に変形して糸径が均一にならない。  Adjusting the cooling and solidification conditions, such as the cooling temperature of the undrawn yarn, and crystallizing a part of it does not provide sufficient crystallinity, or it is difficult to precisely control the crystallinity. . In addition, in order to achieve both biodegradability and mechanical strength, a polyester amide copolymer designed with a short polyamide segment chain length is melt-spun and cooled and solidified in a cooling medium adjusted to a relatively high temperature. However, the spun yarn is still in a molten state, so it may be stretched or meandered and deformed due to the resistance of the cooling medium or the resistance of the roll. Even if the melt spun yarn is allowed to stay in the air for a certain period of time to crystallize, the cooling efficiency is extremely poor and impractical for a monofilament having a relatively large yarn diameter. In addition, the yarn near the molten state is deformed in the air and the yarn diameter is not uniform.
このように、 脂肪族ポリエステルとポリアミドとを共重合したポリエ ステルアミド共重合体は、 脂肪族ポリエステルの生分解性とポリアミド の強靱性を併せもつ樹脂として期待されているが、 従来の製造方法では、 生分解性と機械的強度のバランスに優れ、 十分に高強度のポリエステル アミド繊維を製造することは困難であった。 発明の開示 As described above, a polyesteramide copolymer obtained by copolymerizing an aliphatic polyester and a polyamide is expected to be a resin having both the biodegradability of an aliphatic polyester and the toughness of a polyamide. It was difficult to produce polyesteramide fibers with an excellent balance between biodegradability and mechanical strength and sufficiently high strength. Disclosure of the invention
本発明の目的は、 直線引張強度が顕著に高く、 適度の伸度を有し、 生 分解性を示す高強度ポリエステルアミ ド繊維とその製造方法を提供する ことにある。  An object of the present invention is to provide a high-strength polyester amide fiber having remarkably high linear tensile strength, moderate elongation, and showing biodegradability, and a method for producing the same.
本発明者らは、 前記目的を達成するために鋭意研究した結果、 ポリエ ステルアミ ド繊維の動的粘弾性測定における主分散ピーク温度を調整す ることにより、 直線引張強度を顕著に改善できることを見いだした。 本 発明の高強度ポリエステルアミド繊維は、 ポリエステルアミド共重合体 を溶融紡出し、 直ちに 2 0 °C以下、 好ましくは 1 5 °C以下、 より好まし くは 1 0 °C以下の不活性冷却媒体中で冷却固化して実質的に非晶性の未 延伸糸を得、 この未延伸糸の結晶化度を 1 0〜 3 0重量%に高めた後、 全延伸倍率が 4 . 5倍以上、 好ましくは 5倍以上になるように 1段また は多段延伸することにより製造することができる。 未延伸糸の結晶化度 を 1 0〜 3 0重量%に高めるには、 該未延伸糸を例えば室温で 2 4時間 放置するなどして十分に結晶化を進行させる方法がある。  The present inventors have conducted intensive studies to achieve the above object, and as a result, found that the linear tensile strength can be significantly improved by adjusting the main dispersion peak temperature in the dynamic viscoelasticity measurement of polyesteramide fibers. Was. The high-strength polyester amide fiber of the present invention is obtained by melt spinning a polyester amide copolymer, and immediately, an inert cooling medium having a temperature of 20 ° C or less, preferably 15 ° C or less, more preferably 10 ° C or less. After cooling and solidifying in a non-drawn yarn, a substantially amorphous undrawn yarn is obtained. After increasing the crystallinity of the undrawn yarn to 10 to 30% by weight, the total drawing ratio is 4.5 times or more. Preferably, it can be produced by stretching in one step or multiple steps so that the ratio becomes 5 times or more. In order to increase the crystallinity of the undrawn yarn to 10 to 30% by weight, there is a method in which the undrawn yarn is allowed to stand at room temperature for 24 hours, for example, to sufficiently promote crystallization.
延伸工程において、 結晶化度 1 0〜 3 0重量%の未延伸糸を温度 2 0 〜 1 2 O tで全延伸倍率が 4 . 5倍以上となるように 1段または多段延 伸し、 その際、 好ましくは 5 0〜 1 2 0 °C、 より好ましくは 7 0〜 1 1 0 °Cで延伸倍率 1 . 3倍以上に延伸する少なくとも 1つの延伸段階を配 置することにより、 特に良好な結果を得ることができる。 また、 実質的 に非晶性の未延伸糸を延伸して延伸糸とし、 該延伸糸の結晶化度を 1 0 〜 3 0重量%に高めた 、 1段または多段延伸する方法によっても、 高 強度ポリエステルアミド繊維を得ることができる。 本発明は、 これらの 知見に基づいて完成するに至ったものである。  In the stretching step, an undrawn yarn having a crystallinity of 10 to 30% by weight is stretched in one or multiple stages at a temperature of 20 to 12 Ots so that the total draw ratio becomes 4.5 times or more. In this case, at least one stretching step of stretching at a stretching ratio of 1.3 times or more at 50 to 120 ° C., more preferably at 70 to 110 ° C. is particularly preferable. The result can be obtained. Alternatively, a substantially amorphous undrawn yarn may be drawn into a drawn yarn, and the crystallinity of the drawn yarn may be increased to 10 to 30% by weight. A strong polyesteramide fiber can be obtained. The present invention has been completed based on these findings.
本発明によれば、 ポリエステルアミド共重合体からなる繊維であって、 該繊維の動的粘弾性測定における主分散ピーク温度が、 該ポリエステル アミド共重合体からなる無配向物の主分散ピーク温度より 1 0 °C以上高 いことを特徴とする高強度ポリエステルアミド繊維が提供される。 According to the present invention, there is provided a fiber comprising a polyesteramide copolymer, wherein the main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber is larger than the main dispersion peak temperature of an unoriented material comprising the polyesteramide copolymer. Higher than 10 ° C A high-strength polyesteramide fiber is provided.
また、 本発明によれば、 ポリエステルアミド共重合体を溶融紡出し、 得られた未延伸糸を延伸するポリエステルアミ ド繊維の製造方法におい て、  Further, according to the present invention, in a method for producing a polyester amide fiber, in which a polyester amide copolymer is melt-spun and the obtained undrawn yarn is drawn,
( 1 ) ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 2 0 以 下の不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、  (1) a step of melt-spinning a polyesteramide copolymer and immediately cooling and solidifying it in an inert cooling medium at a temperature of 20 or lower to obtain an amorphous undrawn yarn;
(2) 該未延伸糸の結晶化度を 1 0〜 30重量%に高める工程、 及び (2) increasing the crystallinity of the undrawn yarn to 10 to 30% by weight, and
(3) 結晶化度 1 0〜 3 0重量%の未延伸糸を全延伸倍率が 4. 5倍以 上となるように 1段または多段延伸する工程 (3) A step of single or multi-stage drawing of an undrawn yarn having a crystallinity of 10 to 30% by weight so that the total draw ratio becomes 4.5 times or more.
からなる一連の工程を含むことを特徴とする高強度ポリエステルアミド 繊維の製造方法が提供される。 And a method for producing a high-strength polyesteramide fiber, comprising a series of steps comprising:
さらに、 本発明によれば、 ポリエステルアミド共重合体を溶融紡出し、 得られた未延伸糸を延伸するポリエステルアミ ド繊維の製造方法におい て、  Further, according to the present invention, in a method for producing a polyester amide fiber, in which a polyester amide copolymer is melt-spun and the obtained undrawn yarn is drawn,
(I)ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 2 以下の 不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、 (I) a step of melt-spinning the polyesteramide copolymer and immediately cooling and solidifying it in an inert cooling medium having a temperature of 2 or less to obtain an amorphous undrawn yarn;
(II)該未延伸糸を温度一 1 0°C〜 5 0°Cで延伸倍率 1. 3倍以上に延伸 して延伸糸とする工程、  (II) a step of drawing the undrawn yarn at a temperature of 10 ° C to 50 ° C to a draw ratio of 1.3 or more to form a drawn yarn,
(III)該延伸糸の結晶化度を 1 0〜30重量%に高める工程、 及び  (III) increasing the crystallinity of the drawn yarn to 10 to 30% by weight, and
(IV)結晶化度 1 0〜 3 0重量%の延伸糸を全延伸倍率が 4. 5倍以上と なるようにさらに 1段または多段延伸する工程  (IV) A step of drawing one or more stages of a drawn yarn having a crystallinity of 10 to 30% by weight so that the total draw ratio becomes 4.5 times or more.
からなる一連の工程を含むことを特徴とする高強度ポリエステルアミド 繊維の製造方法が提供される。 発明を実施するための最良の形態 And a method for producing a high-strength polyesteramide fiber, comprising a series of steps comprising: BEST MODE FOR CARRYING OUT THE INVENTION
1. ポリエステルアミド共重合体  1. Polyesteramide copolymer
本発明で使用するポリエステルアミ ド共重合体は、 分子鎖中にポリア ミド単位とポリエステル単位とを有するポリマーである。 各単位の割合 は、 ポリアミド単位が好ましくは 5〜 8 0モル%、 より好ましくは 2 0 〜 7 0モル%、 特に好ましくは 3 0〜 6 0モル%であり、 これらに対応 して、 ポリエステル単位が好ましくは 2 0〜 9 5モル%、 より好ましく は 3 0〜 8 0モル%、 特に好ましくは 4 0〜 7 0モル%である。 ポリア ミ ド単位の割合が小さすぎると 機械的強度に劣り、 過大であると、 生 分解性が損なわれる。 The polyester amide copolymer used in the present invention has a polymer in the molecular chain. It is a polymer having a mid unit and a polyester unit. The proportion of each unit is preferably from 5 to 80 mol%, more preferably from 20 to 70 mol%, particularly preferably from 30 to 60 mol%, of the polyamide unit. Is preferably 20 to 95 mol%, more preferably 30 to 80 mol%, and particularly preferably 40 to 70 mol%. If the proportion of the polyamide unit is too small, the mechanical strength is poor. If the proportion is too large, biodegradability is impaired.
ポリアミド単位としては、 公知の各種ポリアミドが用いられる。 融点 が過度に高いポリアミドを用いると、 溶融成形の際にポリエステルセグ メントの熱分解を生じる恐れがあるため、 ポリアミド 6 (ナイロン 6 ) 、 ポリアミ ド 6 6 (ナイロン 6 6 ) 、 あるいはこれらの共重合体が好まし レ ポリエステル単位としては、 生分解性の観点から、 脂肪族ポリエス テルが好ましく用いられるが、 生分解性を示す限り、 ポリシクロへキシ レンジメチルアジペートなどの脂環族ポリエステルや芳香族ポリエステ ルなどを、 単独であるいは脂肪族ポリエステルと併用してもよい。 脂肪 族ポリエステルとしては、 ポリブチレンアジペート、 ポリエチレンアジ ペート、 ポリラクトンなどが好ましい。  As the polyamide unit, various known polyamides are used. If a polyamide having an excessively high melting point is used, the polyester segment may be thermally decomposed during melt molding, so that polyamide 6 (nylon 6), polyamide 66 (nylon 66), or a copolymer thereof is used. As the polyester unit, an aliphatic polyester is preferably used from the viewpoint of biodegradability. However, as long as it shows biodegradability, an alicyclic polyester such as polycyclohexylenedimethyl adipate or an aromatic polyester is preferred. May be used alone or in combination with the aliphatic polyester. As the aliphatic polyester, polybutylene adipate, polyethylene adipate, polylactone and the like are preferable.
ポリエステルアミド共重合体の合成方法は、 特に限定されず、 例えば、 (1 ) 脂肪族ポリエステルにポリアミドをアミ ドーエステル交換反応によ り多数交互に導入してポリエステル—アミド共重合体とする方法 (特開 昭 5 4— 1 2 0 7 2 7号公報) 、 (2) ポリアミド形成性化合物 (例えば、 ε—力プロラクタムなど) と、 ジカルボン酸及びポリエステルジオール (例えば、 ポリラクトンジオール) とを反応させる方法 (特開平 7— 1 7 3 7 1 6号公報) 、 (3) ポリアミド形成性化合物 (例えば、 ε —力プ ロラクタムなど) とポリエステル形成性化合物 (二塩基酸とジオール; ラクトンなど) とを反応させる方法などが挙げられる。  The method for synthesizing the polyesteramide copolymer is not particularly limited. For example, (1) a method in which a polyamide is introduced into an aliphatic polyester alternately by an amide transesterification reaction to form a polyester-amide copolymer ( JP-A-54-120727), (2) Reaction of polyamide-forming compound (for example, ε-force prolactam) with dicarboxylic acid and polyester diol (for example, polylactone diol) (3) Polyamide-forming compounds (for example, ε-force prolactam) and polyester-forming compounds (for example, dibasic acid and diol; lactone). And the like.
前記(1 ) の方法において、 ポリエステルとしては、 ポリ力プロラクト ン、 ポリエチレンアジペート、 ポリブチレンアジペートなどが挙げられ、 ポリアミドとしては、 ナイロン 6、 ナイロン、 6 6、 ナイロン 6 9、 ナ ィロン 6 1 0、 ナイロン 6 1 2、 ナイロン 1 1、 ナイロン 1 2などが挙 げられる。 In the above method (1), the polyester may be Polyamide, polyethylene adipate, polybutylene adipate, etc., and polyamides include nylon 6, nylon, 66, nylon 69, nylon 61, nylon 61, 12, nylon 11, nylon 12, etc. I can do it.
ポリアミド形成性化合物としては、 例えば、 ω—ァミノ酪酸、 ω —ァ ミノバレリアン酸、 ω—アミノカプロン酸、 ω—アミノエナント酸、 ω —ァミノ力プリル酸、 ω—ァミノべラルゴン酸、 ω —アミノウンデカン 酸、 ω —ァミノ ドデカン酸などの炭素数 4〜 1 2のァミノカルボン酸; ァ一プチロラクタム、 ε—力プロラクタム、 ェナントラクタム、 カプリ ロラクタム、 ラウロラクタムなどの炭素数 4〜 1 2のラクタム ;などが 挙げられる。 また、 ポリアミド形成性化合物として、 ジカルボン酸とジ ァミンとからなるナイロン塩を挙げることができ、 該ジカルボン酸とし ては、 コハク酸、 ダルタル'酸、 アジピン酸、 ピメリン酸、 スベリン酸、 セバシン酸、 ァゼライン酸、 ドデカンジオン酸などの炭素数 4〜 1 2の 脂肪族ジカルボン酸;水添テレフタル酸、 水添イソフタル酸などの脂環 族ジカルボン酸;テレフタル酸、 イソフタル酸、 フタル酸などの芳香族 ジカルボン酸; などが挙げられ、 また、 該ジァミンとしては、 テトラメ チレンジァミン、 ペンタメチレンジァミン、 へキサメチレンジアミン、 ヘプタメチレンジァミン、 ォクタメチレンアジアミン、 ノナメチレンジ ァミン、 デカメチレンジァミン、 ゥンデカメチレンジァミン、 ドデカメ チレンジァミンなどの炭素数 4〜 1 2の脂肪族ジァミン ; シクロへキサ ンジァミン、 メチルシクロへキサンジァミンなどの脂環族ジァミン ; キ シレンジァミンなどの芳香族ジァミン;などが挙げられる。  Examples of the polyamide-forming compound include ω-aminobutyric acid, ω-aminovaleric acid, ω-aminocaproic acid, ω-aminoenanthic acid, ω-aminopurilic acid, ω-aminoberalgonic acid, and ω-aminoundecane Acids, ω—Amino carboxylic acids having 4 to 12 carbon atoms such as amino dodecanoic acid; lactams having 4 to 12 carbon atoms such as aptyrolactam, ε-caprolactam, enantholactam, capryloractam, laurolactam; Is mentioned. Examples of the polyamide-forming compound include a nylon salt composed of a dicarboxylic acid and a diamine. Examples of the dicarboxylic acid include succinic acid, dataltalic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and the like. Aliphatic dicarboxylic acids having 4 to 12 carbon atoms, such as azelaic acid and dodecanedioic acid; alicyclic dicarboxylic acids such as hydrogenated terephthalic acid and hydrogenated isophthalic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and phthalic acid Acid; and the diamines include tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, and the like. Ndecamethylenediamine, dodecameethylenediamine Carbon number 4-1 2 aliphatic Jiamin of; cycloheteroalkyl hexa Njiamin, Kisanjiamin alicyclic Jiamin such methylcyclohexane; aromatic, such as key Shirenjiamin Jiamin; and the like.
前記(2) の方法において、 ジカルボン酸としては、 コハク酸、 グルタ ル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 セバシン酸、 ァゼライン 酸、 ドデカンジオン酸などの脂肪族ジカルボン酸;水添テレフタル酸、 水添イソフタル酸などの脂環族ジカルボン酸;テレフタル酸、 イソフタ ル酸、 フ夕ル酸などの芳香族ジカルボン酸;などが挙げられる。 In the above method (2), dicarboxylic acids include aliphatic dicarboxylic acids such as succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid and dodecandioic acid; hydrogenated terephthalic acid, Alicyclic dicarboxylic acids such as hydrogenated isophthalic acid; terephthalic acid, isophthalic acid Aromatic dicarboxylic acids such as luic acid and fluoric acid; and the like.
前記(2) の方法において、 ポリエステルジオールとしては、 平均分子 量 5 0 0〜 4 0 0 0のポリラクトンジォ一ルを挙げることができ、 ダリ コール化合物を反応開始剤として用いて、 炭素数 3〜1 2のラクトンか ら合成される。 ラクトンとしては、 3—プロピオラクトン、 /3—プチ口 ラクトン、 δ—バレロラクトン、 ε —力プロラクトン、 ェナントラクト ン、 カプリロラクトン、 ラウロラクトンなどを挙げることができる。  In the above method (2), examples of the polyester diol include a polylactone diol having an average molecular weight of 500 to 400, and using a dalicol compound as a reaction initiator, Synthesized from 2 lactones. Examples of the lactone include 3-propiolactone, / 3-butyl lactone, δ-valerolactone, ε-force prolactone, enanthlactone, caprylolactone, laurolactone and the like.
前記(3) の方法において、 二塩基酸としては、 アジピン酸、 ピメリン 酸、 スベリン酸、 セバシン酸、 ァゼライン酸、 ドデカンジオン酸などが 挙げられ、 ジオールとしては、 エチレングリコール、 1, 3—プロパン ジオール、 1, 4—ブタンジオール、 1, 5—ペン夕ンジオール、 1, 6—へキサンジオール、 2, 3 _ブタンジオール、 2, 5—へキサンジ オール、 2 —メチル— 1, 4 _ブタンジオール、 3—メチル— 2, 4 一 ペンタンジオール、 2—メチルー 2, 4 一ペンタンジオール、 2—ェチ ルー 2—メチル一 1, 3 —プロパンジオール、 2 , 3 —ジメチルー 2, 3—ブタンジオールなどが挙げられる。  In the above method (3), examples of the dibasic acid include adipic acid, pimelic acid, suberic acid, sebacic acid, azelaic acid, and dodecandionic acid, and examples of the diol include ethylene glycol and 1,3-propane diol. , 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,3-butanediol, 2,5-hexanediol, 2-methyl-1,4-butanediol, 3-Methyl-2,4-pentanediol, 2-methyl-2,4-pentanediol, 2-ethyl-2-methyl-1,3-propanediol, 2,3-dimethyl-2,3-butanediol, etc. No.
前記(3) の方法において、 ラクトンとしては、 /3—プロピオラクトン、 i3—ブチロラクトン、 <5—バレロラクトン、 ε —力プロラクトン、 ェナ ントラクトン、 カプリロラクトン、 ラウロラクトンなどが挙げられる。 その他、 グリコール酸、 グリコリ ド、 乳酸、 ]3—ヒドロキシ酪酸、 β — ヒドロキシ吉草酸などもポリエステル形成性化合物として挙げることが できる。  In the method (3), examples of the lactone include / 3-propiolactone, i3-butyrolactone, <5-valerolactone, ε-force prolactone, enanthlactone, caprylolactone, laurolactone, and the like. In addition, glycolic acid, glycolide, lactic acid,] 3-hydroxybutyric acid, β-hydroxyvaleric acid and the like can also be mentioned as polyester-forming compounds.
ポリエステルアミド共重合体としては、 機械的強度と生分解性とのパ ランスの観点から、 ナイロン 6 Ζポリブチレンアジべ一ト共重合体、 ナ ィロン 6 6 Ζポリブチレンアジペート共重合体、 ナイロン 6 Ζポリェチ レンアジぺート共重合体、 ナイロン 6 6 /ポリエチレンアジぺート共重 合体、 ナイロン 6 /ポリ力プロラクトン共重合体、 ナイロン 6 6 Ζポリ 力プロラクトン共重合体などが好ましい。 Polyester amide copolymers include nylon 6 Ζpolybutylene adipate copolymer, nylon 6.6 Ζpolybutylene adipate copolymer, and nylon 6 from the viewpoint of balance between mechanical strength and biodegradability. ΖPolyethylene copolymer, Nylon 66 / polyethylene adipate copolymer, Nylon 6 / Polycaprolactone copolymer, Nylon 66 ΖPoly A force prolactone copolymer is preferred.
ポリエステルアミド共重合体の融点 (T m) は、 好ましくは 9 0 °C以 上、 より好ましくは 1 0 0 °C以上であり、 多くの場合、 9 0〜 1 8 0 °C 程度である。 ポリエステルアミ ド共重合体の融点 (T m) は、 示差走査 熱量計を用いて、 1 0 °C Z分の昇温速度で測定した際の結晶融解ピーク 温度であり、 複数の融解ピークが現れる場合には、 最も発熱量の大きい ピーク温度を意味する。 この融点が低すぎると、 ポリエステルアミド繊 維の耐熱性が十分ではなく、 高温環境下での強度の低下や、 使用時の摩 擦熱による溶断などの問題が生じやすくなる。 一方、 この融点が高すぎ ると、 溶融紡糸温度が高くなり、 ポリエステルセグメントが分解しやす くなる。  The melting point (Tm) of the polyesteramide copolymer is preferably at least 90 ° C, more preferably at least 100 ° C, and in many cases, about 90 to 180 ° C. The melting point (T m) of the polyester amide copolymer is the crystal melting peak temperature measured with a differential scanning calorimeter at a heating rate of 10 ° CZ. When multiple melting peaks appear Means the peak temperature with the largest calorific value. If the melting point is too low, the heat resistance of the polyesteramide fiber is not sufficient, and problems such as a decrease in strength in a high-temperature environment and fusing due to frictional heat during use are likely to occur. On the other hand, if the melting point is too high, the melt spinning temperature will be high, and the polyester segment will be easily decomposed.
ポリエステルアミド共重合体の相対粘度は、 好ましくは 1 . 0以上、 より好ましくは 1 . 3以上であり、 多くの場合、 1 . 0〜3 . 0である。 ポリエステルアミド共重合体の相対粘度は、 へキサフルォロイソプロパ ノール (H F I P ) を溶媒として、 濃度 0 . 4 g / d 1 (溶媒 1 0 0 m 1に対してポリマー 0 . 4 gの割合で溶解) のポリマー溶液を、 温度 1 0 °Cの雰囲気中で、 ウベローデ粘度計を用いて測定した値である。 相対 粘度が低すぎると、 重合度 (または分子量) が低すぎて、 機械的強度に 優れた繊維を得ることが難しくなり、 高すぎると、 繊維の直径斑や強度 斑が生じやすくなり、 均一な物性の繊維を得ることが困難になる。  The relative viscosity of the polyesteramide copolymer is preferably at least 1.0, more preferably at least 1.3, and often from 1.0 to 3.0. The relative viscosity of the polyesteramide copolymer was determined by using hexafluoroisopropanol (HFIP) as the solvent at a concentration of 0.4 g / d1 (0.4 g of polymer per 100 m1 of solvent). Is a value measured using an Ubbelohde viscometer in an atmosphere at a temperature of 10 ° C. If the relative viscosity is too low, the degree of polymerization (or molecular weight) is too low, and it is difficult to obtain a fiber with excellent mechanical strength. If the relative viscosity is too high, unevenness in the diameter and strength of the fiber tends to occur, resulting in a uniform It becomes difficult to obtain fibers having physical properties.
2 . ポリエステルアミド繊維の製造方法  2. Method for producing polyester amide fiber
本発明においては、 ポリエステルアミド共重合体を用いて、 次の製造 工程によりポリエステルアミド繊維を製造する。 ポリエステルアミド繊 維は、 通常、 モノフィラメントであるが、 所望により、 マルチフィラメ ントとしてもよい。  In the present invention, a polyesteramide fiber is produced by the following production process using a polyesteramide copolymer. The polyesteramide fiber is usually a monofilament, but may be a multifilament if desired.
すなわち、 本発明のポリエステルアミド繊維の製造方法は、 ポリエス テルアミド共重合体を溶融紡出し、 得られた未延伸糸を延伸するポリエ ステルアミド繊維の製造方法であるが、 これを下記の一連の工程により 行 。 That is, the method for producing a polyesteramide fiber of the present invention comprises the steps of: melt-spinning a polyesteramide copolymer; and stretching the obtained undrawn yarn. This is a method for producing a steramide fiber, which is performed by the following series of steps.
( 1) ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 2 0°C以 下の不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、  (1) a step of melt-spinning the polyesteramide copolymer and immediately cooling and solidifying it in an inert cooling medium at a temperature of 20 ° C. or lower to obtain an amorphous undrawn yarn;
(2) 該未延伸糸の結晶化度を 1 0〜 30重量%に高める工程、 及び (2) increasing the crystallinity of the undrawn yarn to 10 to 30% by weight, and
(3) 結晶化度 1 0〜 3 0重量%の未延伸糸を全延伸倍率が 4. 5倍以 上となるように 1段または多段延伸する工程。 (3) A step in which an undrawn yarn having a crystallinity of 10 to 30% by weight is drawn in one step or in multiple steps so that the total draw ratio becomes 4.5 times or more.
前記工程 ( 1) においては、 ポリエステルアミド共重合体を溶融紡出 し、 直ちに 2 0°C以下、 好ましくは 1 5°C以下、 より好ましくは 1 0°C 以下の不活性冷却媒体中で冷却固化して実質的に非晶性の未延伸糸を得 る。 溶融紡出する際の紡糸温度は、 通常、 1 00〜200°C程度であり、 紡糸引取速度は、 モノフィラメントの場合は、 通常、 l〜 50m/分程 度であり、 マルチフィラメントの場合は、 通常、 20〜 1 , 0 0 0 m/ 分である。  In the step (1), the polyesteramide copolymer is melt-spun and immediately cooled in an inert cooling medium at 20 ° C or lower, preferably 15 ° C or lower, more preferably 10 ° C or lower. Solidifies to obtain a substantially amorphous undrawn yarn. The spinning temperature during melt spinning is usually about 100 to 200 ° C. The spinning take-off speed is usually about 1 to 50 m / min for monofilament, and for multifilament. Usually, it is 20 to 1, 000 m / min.
冷却媒体の温度が高すぎると、 未延伸糸に部分的な結晶化が生じるこ とがあるが、 結晶化度を均一かつ精密に制御することが困難となり、 ひ いては、 十分な機械的強度を有するポリエステルアミド繊維を得ること が難しくなる。 また、 冷却媒体の温度が高すぎると、 未延伸糸が変形し て、 均一な繊維を成形することが困難になる。 冷却媒体の下限温度は、 冷却媒体の種類にもよるが、 0°C程度が好ましい。 冷却媒体としては、 例えば、 水、 グリセリン、 エチレングリコールなどのポリエステルアミ ド共重合体に不活性な液体化合物とそれらの混合物が挙げられる。 これ らの中でも、 水が好ましい。 この工程 ( 1) では、 結晶化度が好ましく は 5 %以下、 より好ましくは 3 %以下、 多くの場合 0 %の実質的に非晶 性の未延伸糸を得る。  If the temperature of the cooling medium is too high, partial crystallization may occur in the undrawn yarn, but it is difficult to control the crystallinity uniformly and precisely, and, as a result, sufficient mechanical strength It is difficult to obtain a polyesteramide fiber having On the other hand, if the temperature of the cooling medium is too high, the undrawn yarn is deformed and it becomes difficult to form uniform fibers. The lower limit temperature of the cooling medium depends on the type of the cooling medium, but is preferably about 0 ° C. Examples of the cooling medium include a liquid compound inert to a polyester amide copolymer such as water, glycerin, and ethylene glycol, and a mixture thereof. Of these, water is preferred. In this step (1), a substantially amorphous undrawn yarn having a crystallinity of preferably 5% or less, more preferably 3% or less, and often 0% is obtained.
前記工程 (2) において、 実質的に非晶性の未延伸糸の結晶化度を 1 0〜3 0重量%、 好ましくは 1 2〜2 8重量%の範囲に高める。 未延伸 糸の結晶化度を高めるには、 工程 ( 1) で得られた未延伸糸を 1 0〜 8 0°Cの雰囲気中に 1 0分間から 72時間置く方法が挙げられる。 一般に、 雰囲気温度が低いほど処理時間を長くし、 高いほど処理時間を短くする ことにより、 結晶化度を所望の範囲に調整することが好ましい。 この結 晶化処理を行うには、 工程 (1) で得られた実質的に非晶性の未延伸糸 を例えばロールに巻き取り、 巻き取った状態で、 所定の温度条件に調整 した雰囲気中に所定の時間静置する方法が好ましい。 未延伸糸の結晶化 度を精密に制御するには、 巻き取った未延伸糸を、 1 0〜3 5°Cの範囲 内の所定温度に調整した雰囲気中に、 通常、 5〜7 2時間、 好ましくは 1 0〜30時間程度、 静置する方法が望ましい。 In the step (2), the crystallinity of the substantially amorphous undrawn yarn is increased to 10 to 30% by weight, preferably 12 to 28% by weight. Unstretched In order to increase the crystallinity of the yarn, there is a method in which the undrawn yarn obtained in the step (1) is placed in an atmosphere at 10 to 80 ° C for 10 minutes to 72 hours. Generally, it is preferable to adjust the crystallinity to a desired range by lowering the processing time as the ambient temperature is lower and shortening the processing time as the temperature is higher. In order to carry out the crystallization treatment, the substantially amorphous undrawn yarn obtained in the step (1) is wound, for example, on a roll, and then wound in an atmosphere adjusted to a predetermined temperature condition. Is preferable to be left still for a predetermined time. To precisely control the crystallinity of the undrawn yarn, the wound undrawn yarn is usually placed in an atmosphere adjusted to a predetermined temperature in the range of 10 to 35 ° C for 5 to 72 hours. It is desirable to leave it still for about 10 to 30 hours.
このような方法を採用することにより、 一般に結晶性が低く、 結晶化 速度が遅いポリエステルアミド共重合体からなる未延伸糸の結晶化度が 所望の範囲となるように厳密に制御することができる。 未延伸糸の結晶 化度が低すぎると、 延伸の際に非晶部の配向を十分に固定することがで きず、 強度に優れた繊維を得ることが困難になる。 一方、 未延伸糸の結 晶化度が高すぎると、 延伸の際にボイドが発生して強度が低下したり、 場合によっては、 延伸途中で切断することもある。  By adopting such a method, it is possible to strictly control the crystallinity of an undrawn yarn made of a polyesteramide copolymer, which generally has low crystallinity and a low crystallization rate, within a desired range. . If the crystallinity of the undrawn yarn is too low, the orientation of the amorphous portion cannot be sufficiently fixed during drawing, and it becomes difficult to obtain a fiber having excellent strength. On the other hand, if the degree of crystallinity of the undrawn yarn is too high, voids are generated during drawing and the strength is reduced, and in some cases, the yarn is cut during drawing.
前記工程 (3) において、 結晶化度 1 0〜 3 0重量%の未延伸糸を全 延伸倍率が 4. 5倍以上となるように 1段または多段延伸を行う。 以下、 この工程を結晶延伸工程と呼ぶことがある。 延伸温度は、 好ましくは 2 0〜 1 2 0°Cであり、 その上限は、 使用するポリエステルアミ ド共重合 体の融点 (Tm) を越えないように調整する。 延伸温度の調整は、 所定 温度に調整した乾熱気体や液体熱媒を用いて行う。  In the step (3), an undrawn yarn having a crystallinity of 10 to 30% by weight is subjected to single-stage or multi-stage drawing so that the total drawing ratio becomes 4.5 times or more. Hereinafter, this step may be referred to as a crystal stretching step. The stretching temperature is preferably from 20 to 120 ° C., and the upper limit is adjusted so as not to exceed the melting point (Tm) of the polyester amide copolymer used. The stretching temperature is adjusted using a dry heat gas or a liquid heating medium adjusted to a predetermined temperature.
本発明では、 延伸を 1段または 2段以上の多段で行うが、 その際、 延 伸温度を好ましくは 5 0〜 1 2 0°C、 より好ましくは 7 0〜 1 1 0 に 調整し、 当該延伸温度で 1. 3倍以上の延伸倍率で延伸する延伸段階を 配置することが、 高強度の繊維を得る上で特に望ましい。 この温度での 延伸は、 乾熱気体中で行うことが好ましい。 この延伸段階を配置するこ とにより、 延伸繊維の結晶化度を適度の範囲に高め、 同時に、 結晶部と 非晶部の配向 (結晶配向度) を十分に高めることができ、 その結果、 機 械的強度に優れた繊維を得ることができる。 In the present invention, the stretching is performed in one stage or in multiple stages of two or more stages. At that time, the stretching temperature is preferably adjusted to 50 to 120 ° C., more preferably to 70 to 110 ° C. It is particularly desirable to arrange a stretching step of stretching at a stretching temperature of 1.3 times or more at a stretching temperature in order to obtain a high-strength fiber. At this temperature The stretching is preferably performed in a dry hot gas. By arranging this drawing step, the crystallinity of the drawn fiber can be increased to an appropriate range, and at the same time, the orientation (crystal orientation) of the crystalline part and the amorphous part can be sufficiently increased. Fibers with excellent mechanical strength can be obtained.
この延伸段階での延伸は、 1段延伸の場合、 例えば、 延伸温度 7 0〜 1 1 0 °Cで延伸倍率 5〜 7倍に 1段延伸する方法により行うことができ る。 多段延伸の場合には、 前記の温度範囲で 1. 3倍以上の延伸倍率で の延伸段階が配置されておれば、 他の延伸は、 例えば、 2 5 °Cなどの 5 0°C未満の温度で行ってもよい。 この延伸段階での延伸は、 1段または 多段で行うことができ、 延伸倍率は、 1. 3倍以上、 1 2倍以下とする ことが好ましい。  The stretching in this stretching step can be carried out in the case of single-stage stretching, for example, by a method of performing single-stage stretching at a stretching temperature of 70 to 110 ° C. and a stretching ratio of 5 to 7 times. In the case of multi-stage stretching, if a stretching step with a stretching ratio of 1.3 times or more in the above temperature range is arranged, other stretching is, for example, less than 50 ° C such as 25 ° C. It may be performed at a temperature. The stretching in this stretching step can be performed in one stage or in multiple stages, and the stretching ratio is preferably 1.3 times or more and 12 times or less.
全延伸倍率は、 4. 5倍以上、 好ましくは 5倍以上であり、 その上限 は、 1 5倍程度である。 全延伸倍率が低すぎると、 十分な機械的強度を 得ることができない。 延伸工程後、 定長または弛緩状態で、 融点 (T m) 以下の温度で熱処理をしてもよい。  The total stretching ratio is 4.5 times or more, preferably 5 times or more, and the upper limit is about 15 times. If the total draw ratio is too low, sufficient mechanical strength cannot be obtained. After the stretching step, heat treatment may be performed at a temperature equal to or lower than the melting point (T m) in a fixed or relaxed state.
また、 本発明では、 以下の工程により、 生分解性と機械的強度のバラ ンスに優れた高強度ポリエステルアミド繊維を製造することができる。 (I)ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 2 0°C以下の 不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、  Further, in the present invention, a high-strength polyesteramide fiber having an excellent balance between biodegradability and mechanical strength can be produced by the following steps. (I) a step of melt-spinning the polyesteramide copolymer and immediately cooling and solidifying in an inert cooling medium at a temperature of 20 ° C. or lower to obtain an amorphous undrawn yarn;
(II)該未延伸糸を温度一 1 0°C〜5 0°Cで延伸倍率 1. 3倍以上に延伸 して延伸糸とする工程、  (II) a step of drawing the undrawn yarn at a temperature of 10 ° C to 50 ° C to a draw ratio of 1.3 or more to form a drawn yarn,
(III)該延伸糸の結晶化度を 1 0〜30重量%に高める工程、 及び  (III) increasing the crystallinity of the drawn yarn to 10 to 30% by weight, and
(IV)結晶化度 1 0〜 30重量%の延伸糸を全延伸倍率が 4. 5倍以上と なるようにさらに 1段または多段延伸する工程。  (IV) A step of stretching the stretched yarn having a crystallinity of 10 to 30% by weight in one or more stages so that the total draw ratio becomes 4.5 times or more.
前記工程(I)において、 溶融紡出する際の紡糸温度は、 通常、 1 00〜 2 0 0 °C程度であり、 紡糸引取速度は、 通常、 l〜 5 0m/分程度であ り、 冷却媒体の温度は、 好ましくは 1 5°C以下、 より好ましくは 1 0°C 以下である。 前記工程(Π)において、 延伸温度は、 好ましくは 0〜4 0°C、 より好ましくは 1 0〜 3 5°Cであり、 延伸倍率は、 好ましくは 2 倍以上、 より好ましくは 3倍以上であり、 多くの場合、 4〜 1 0倍程度 で良好な結果を得ることができる。 この工程(II)において、 延伸倍率を 高める場合は、 1 0〜3 5°C程度の延伸温度で、 2〜 5回程度の多段延 伸を行うことが望ましい。 In the step (I), the spinning temperature during melt spinning is usually about 100 to 200 ° C., and the spinning take-off speed is usually about 1 to 50 m / min. The temperature of the medium is preferably 15 ° C. or less, more preferably 10 ° C. It is as follows. In the step (Π), the stretching temperature is preferably from 0 to 40 ° C, more preferably from 10 to 35 ° C, and the stretching ratio is preferably at least 2 times, more preferably at least 3 times. Yes, in many cases, good results can be obtained with a factor of 4 to 10 times. In this step (II), when the stretching ratio is to be increased, it is desirable to carry out multistage stretching at a stretching temperature of about 10 to 35 ° C. for about 2 to 5 times.
前記工程(II)は、 実質的に非晶性の未延伸糸を延伸する非晶延伸工程 である。 工程(II)で得られた延伸糸は、 その結晶化度を 1 0〜 3 0重 量%、 好ましくは 1 2〜28重量%の範囲に高める。 延伸糸の結晶化度 を高めるには、 該延伸糸を 1 0〜 80 °Cの雰囲気中に 1 0分間から 7 2 時間置く方法が挙げられる。 この結晶化処理を行うには、 工程②で得ら れた延伸糸を例えばロールに巻き取り、 巻き取った状態で、 所定の温度 条件に調整した雰囲気中に所定の時間静置する方法が好ましい。 延伸糸 の結晶化度を精密に制御するには、 巻き取った延伸糸を、 1 0〜 3 5°C の範囲内の所定温度に調整した雰囲気中に、 通常、 5〜 7 2時間、 好ま しくは 1 0〜 30時間程度、 静置する方法が望ましい。  The step (II) is an amorphous drawing step of drawing a substantially amorphous undrawn yarn. The drawn yarn obtained in the step (II) increases the degree of crystallinity to 10 to 30% by weight, preferably 12 to 28% by weight. In order to increase the crystallinity of the drawn yarn, there is a method of placing the drawn yarn in an atmosphere at 10 to 80 ° C for 10 minutes to 72 hours. In order to carry out this crystallization treatment, it is preferable to wind the drawn yarn obtained in the step (1) into, for example, a roll, and leave the wound state in an atmosphere adjusted to a predetermined temperature condition for a predetermined time. . To precisely control the crystallinity of the drawn yarn, the drawn yarn is preferably wound for 5 to 72 hours in an atmosphere adjusted to a predetermined temperature in the range of 10 to 35 ° C. It is preferable to leave it still for about 10 to 30 hours.
非晶状態で延伸糸とした後、 該延伸糸の結晶化度を 1 0〜3 0重量% の範囲に高め、 次いで、 延伸工程(IV)を配置することにより、 機械的強 度を十分に高めることができる。 工程(IV)において、 結晶化度 1 0〜 3 0重量%の延伸糸を全延伸倍率が 4. 5倍以上となるように 1段または 多段延伸を行う。 延伸温度は、 好ましくは 2 0〜 1 20°Cであり、 延伸 温度の調整は、 所定温度に調整した乾熱気体や液体熱媒を用いて行う。 延伸工程(IV)では、 延伸温度を好ましくは 5 0〜 1 2 0°C、 より好まし くは 7 0〜 1 1 0°Cに調整し、 該延伸温度で 1. 3倍以上の延伸倍率で 延伸する延伸段階を配置することが、 高強度の繊維を得る上で特に望ま しい。 その他の延伸条件は、 前述の方法の場合と同様である。  After forming the drawn yarn in the amorphous state, the crystallinity of the drawn yarn is increased to the range of 10 to 30% by weight, and then the drawing step (IV) is arranged to sufficiently increase the mechanical strength. Can be enhanced. In the step (IV), a drawn yarn having a crystallinity of 10 to 30% by weight is subjected to single-stage or multi-stage drawing so that the total drawing ratio becomes 4.5 times or more. The stretching temperature is preferably 20 to 120 ° C. The adjustment of the stretching temperature is performed using a dry heat gas or a liquid heating medium adjusted to a predetermined temperature. In the stretching step (IV), the stretching temperature is adjusted to preferably 50 to 120 ° C, more preferably 70 to 110 ° C, and at the stretching temperature, a stretching ratio of 1.3 times or more. It is particularly desirable to arrange a drawing step for drawing at a high temperature in order to obtain a high-strength fiber. Other stretching conditions are the same as in the above-described method.
3. ポリエステルアミド繊維 本発明のポリエステルアミド繊維は、 該繊維の動的粘弾性測定におけ る主分散ピーク温度が、 該ポリエステルアミド共重合体からなる無配向 物の主分散ピーク温度より 10°C以上高く、 好ましくは 1 2°C以上高い。 延伸繊維の主分散ピーク温度が無配向物に比べて 1 0°C以上高いことは、 非晶分子鎖が高度に緊張拘束されていることを示している。 つまり、 延 伸が効果的に行われ、 その結果、 繊維の結晶部の分子鎖のみならず、 非 晶部の分子鎖も高度に配向していることを示している。 主分散ピーク温 度の温度差の上限は、 1 7°C程度であり、 多くの場合 1 5°C程度である。 本発明のポリエステルアミド繊維は、 該繊維の結晶化度 (重量%) A と小角 X線散乱により測定される長周期 (A) Bとが、 式 ( I) 3. Polyesteramide fiber In the polyesteramide fiber of the present invention, the main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber is at least 10 ° C higher than the main dispersion peak temperature of the non-oriented material composed of the polyesteramide copolymer, preferably Higher than 12 ° C. The fact that the main dispersion peak temperature of the drawn fiber is higher than that of the non-oriented one by 10 ° C or more indicates that the amorphous molecular chains are highly restricted in tension. In other words, the elongation was performed effectively, and as a result, not only the molecular chains in the crystal part of the fiber but also the molecular chains in the amorphous part were highly oriented. The upper limit of the temperature difference between the main dispersion peak temperatures is about 17 ° C, and often about 15 ° C. In the polyesteramide fiber of the present invention, the crystallinity (% by weight) A of the fiber and the long period (A) B measured by small-angle X-ray scattering are represented by the following formula (I).
5≤ (AXB) / 100≤ 30 (I)  5≤ (AXB) / 100≤ 30 (I)
の関係を満足するものであることが好ましい。 Is preferably satisfied.
結晶化度 Aと小角 X線散乱により測定される長周期 Bとは、 より好ま しくは、 式(II)  The crystallinity A and the long period B measured by small angle X-ray scattering are more preferably expressed by the formula (II)
1 0≤ (AXB) / 100≤ 25 (II)  1 0≤ (AXB) / 100≤ 25 (II)
の関係を満足し、 特に好ましくは、 式(III) And particularly preferably, the formula (III)
1 5≤ (AXB) / 1 00≤ 20 (III)  1 5≤ (AXB) / 1 00≤ 20 (III)
の関係を満足する。 Satisfy the relationship.
結晶化度 Aと小角 X線散乱により測定される長周期 Bの積は、 ポリア ミ ドセグメントの結晶化により生成する結晶の厚みに対応する。 (AX B) / 1 0 0が 5未満であるような繊維は、 ポリアミドセグメントの連 鎖長が短いため、 結晶性が低く、 分子鎖に導入したポリアミド単位が機 械的強度の向上に十分に寄与しない恐れがある。 一方、 (AXB) / 1 0 0が 2 5超過であるような繊維は、 ポリアミドセグメントの連鎖長が 長すぎるため、 生分解性が損なわれる恐れがある。  The product of the crystallinity A and the long period B measured by small-angle X-ray scattering corresponds to the thickness of the crystal formed by crystallization of the polyamide segment. Fibers whose (AX B) / 100 is less than 5 have low crystallinity due to the short chain length of the polyamide segment, and the polyamide units introduced into the molecular chain are sufficient for improving mechanical strength. May not contribute. On the other hand, in a fiber in which (AXB) / 100 is more than 25, the biodegradability may be impaired because the chain length of the polyamide segment is too long.
本発明のポリエステルアミド繊維の結晶配向度は、 好ましくは 9 0 % 以上、 より好ましくは 9 3 %以上である。 結晶配向度の上限は、 9 8 % 程度である。 繊維の結晶配向度が高いことによって、 機械的強度に優れ ている。 The degree of crystal orientation of the polyesteramide fiber of the present invention is preferably 90% or more, more preferably 93% or more. The upper limit of crystal orientation is 98% It is about. Due to the high degree of fiber crystal orientation, it has excellent mechanical strength.
このようなポリエステルアミ ド繊維は、 前記製造方法により得ること ができ、 優れた直線引張強度と適度の伸度を有するものである。  Such a polyester amide fiber can be obtained by the above-mentioned production method, and has excellent linear tensile strength and moderate elongation.
すなわち、 本発明のポリエステルアミド繊維は、 ポリエステルアミド 共重合体からなる非晶性未延伸糸の結晶化度を 1 0〜3 0重量%に高め た後、 延伸して得ることができる。 また、本発明のポリエステルアミド繊 維は、 ポリエステルアミド共重合体からなる非晶性未延伸糸を延伸し、 次いで、 得られた延伸糸の結晶化度を 1 0〜3 0重量%に高めた後、 さ らに延伸して得らることができる。  That is, the polyesteramide fiber of the present invention can be obtained by increasing the crystallinity of an amorphous undrawn yarn made of a polyesteramide copolymer to 10 to 30% by weight and then drawing. Further, the polyesteramide fiber of the present invention stretches an amorphous undrawn yarn made of a polyesteramide copolymer, and then increases the crystallinity of the obtained drawn yarn to 10 to 30% by weight. Thereafter, it can be obtained by further stretching.
本発明のポリエステルアミド繊維の直線引張強度は、 通常、 3 0 0 M P a以上、 好ましくは 3 5 OMP a以上、 より好ましくは 3 8 0 M P a 以上、 特に好ましくは 40 OMP a以上である。 直線引張強度は、 多く の場合、 3 8 0〜70 0MP a程度である。 本発明のポリエステルアミ ド繊維の伸度は、 通常、 1 0 %以上、 好ましくは 1 5 %以上であり、 多 くの場合、 1 0〜50 %程度である。  The linear tensile strength of the polyesteramide fiber of the present invention is usually at least 300 MPa, preferably at least 35 OMPa, more preferably at least 380 MPa, particularly preferably at least 40 OMPa. The linear tensile strength is often around 380 to 700 MPa. The elongation of the polyester amide fiber of the present invention is usually at least 10%, preferably at least 15%, and in many cases about 10 to 50%.
本発明のポリエステルアミド繊維は、 生分解性が良好であることが望 ましい。 本発明のポリエステルアミド繊維は、 土壌中に 6ヶ月間埋めて から取り出すと、 繊維がその形状を失っているか、 あるいは直線引張強 度が埋める前の値に比べて 5 0 %以下に低下していることから、 微生物 分解性が良好であると評価することができる。 本発明のポリエステルァ ミド繊維の直径は、 モノフィラメントの場合は、 通常、 5 0〜4, 0 0 O m程度であり、 マルチフィラメントの場合は、 通常 1〜 5 0 ΠΙで ある。 本発明のポリエステルアミド繊維は、 必要に応じて、 顔料、 染料、 酸化防止剤、 紫外線吸収剤、 可塑剤などの各種添加剤を含有させること ができる。 実施例 It is desirable that the polyesteramide fiber of the present invention has good biodegradability. When the polyesteramide fiber of the present invention is buried in soil for 6 months and then taken out, the fiber loses its shape or its linear tensile strength decreases to 50% or less of the value before the burying. Therefore, it can be evaluated that microbial degradability is good. The diameter of the polyester amide fiber of the present invention is usually about 50 to 400 Om in the case of a monofilament, and usually 1 to 50 mm in the case of a multifilament. The polyesteramide fiber of the present invention can contain various additives such as a pigment, a dye, an antioxidant, an ultraviolet absorber, and a plasticizer, if necessary. Example
以下に実施例及び比較例を挙げて、 本発明についてより具体的に説明 する。 物性等の測定法は、 次のとおりである。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The measurement methods for physical properties are as follows.
(1) 主分散ピーク温度  (1) Main dispersion peak temperature
試料を 2 3°C、 5 0 % R H (相対湿度) の雰囲気中で 24時間放置し た後、 レオメトリックス社製の動的粘弾性測定装置 RS Aを用いて、 チ ャック間距離 2 0 mm、 測定周波数 1 0 Hzで、 — 1 0 0°Cから 2°CZ 分の昇温速度で 1 2 0°Cまで昇温して、 損失正接 t a n <5の温度分散曲 線を測定した。 この温度分散曲線が極大を示す温度を主分散ピーク温度 (°C) とした。  The sample was allowed to stand for 24 hours in an atmosphere of 23 ° C and 50% RH (relative humidity), and the distance between chucks was 20 mm using a dynamic viscoelasticity measuring device RSA manufactured by Rheometrics. At a measurement frequency of 10 Hz, the temperature was raised from 100 ° C to 120 ° C at a rate of 2 ° CZ, and a temperature dispersion curve with a loss tangent tan <5 was measured. The temperature at which this temperature dispersion curve shows a maximum was defined as the main dispersion peak temperature (° C).
(2) 結晶化度  (2) Crystallinity
パーキンエルマ一社製の示差走査熱量計 D S C 7を用いて、 試料約 1 Omgを測定セルにセットし、 窒素ガス雰囲気中で、 3 0°Cから 1 0°C /分の昇温速度で 2 0 0 °Cまで昇温して D S C曲線を測定した。 この D S C曲線から結晶の融解ェンタルピー ΔΗ ( J /g) を求め、 次式から 結晶化度 (重量%) を算出した。  Using a differential scanning calorimeter DSC 7 manufactured by PerkinElmer Co., Ltd., set about 1 Omg of the sample in the measurement cell, and in a nitrogen gas atmosphere at a heating rate of 30 ° C / min to 10 ° C / min. The temperature was raised to 00 ° C, and the DSC curve was measured. The melting enthalpy ΔΗ (J / g) of the crystal was determined from the DSC curve, and the crystallinity (% by weight) was calculated from the following equation.
結晶化度 = (ΔΗΖΔΗ。) X I 00  Crystallinity = (ΔΗΖΔΗ.) X I 00
ここで、 ΔΗ。= 1 90. 88 (J/g)  Where ΔΗ. = 1 90.88 (J / g)
(3) 小角 X線散乱により測定される長周期  (3) Long period measured by small-angle X-ray scattering
繊維の延伸方向を揃えて、 長さ 2 0mm、 幅 4mmの短冊状に整列さ せ、 これをシァノアクリレート系接着剤で固定して試料を作成した。 こ の試料の繊維の延伸方向に対して垂直方向に X線を入射した。 X線発生 装置として理学電機社製のロー夕フレックス RU— 2 0 0 Bを用い、 4 0 k V- 2 0 OmAでN iフィルタ一を通した C u K 線を X線源とし た。 イメージングプレート (富士写真フィルム社製 B A S— S R 1 2 7) を用いて、 試料一イメージングプレート間距離 5 0 Omm、 露出時 間 24時間で露出し、 理学電機社製の R— AX I S D S 3を用いて、 子午線上の散乱角強度分布曲線を作成した。 この散乱角強度分布曲線の ピーク角度から長周期 (A) を求めた。 The drawing directions of the fibers were aligned, arranged in a strip shape having a length of 20 mm and a width of 4 mm, and this was fixed with a cyanoacrylate adhesive to prepare a sample. X-rays were incident in a direction perpendicular to the drawing direction of the fiber of this sample. Ryukyu Flex RU-200B manufactured by Rigaku Denki Co., Ltd. was used as the X-ray generator, and the CuK line passed through a Ni filter at 40 kV-200 OmA was used as the X-ray source. Using an imaging plate (BAS-SR127, manufactured by Fuji Photo Film Co., Ltd.), the sample was exposed at a distance of 50 Omm between the imaging plate and an exposure time of 24 hours, and R-AX ISDS3 manufactured by Rigaku Denki was used. hand, A scattering angle intensity distribution curve on the meridian was created. The long period (A) was determined from the peak angle of the scattering angle intensity distribution curve.
(4) 広角 X線散乱により測定される配向度  (4) Degree of orientation measured by wide-angle X-ray scattering
繊維の延伸方向を揃えて、 長さ 20mm、 幅 4mmの短冊状に整列さ せ、 これをシァノアクリレート系接着剤で固定して試料を作成した。 こ の試料の繊維の延伸方向に対して垂直方向に X線を入射した。 X線発生 装置として理学電機社製のロータフレックス RU— 20 0 Bを用い、 3 0 k V- 1 0 0mAでN iフィルタ一を通した C u Kひ線を X線源とし た。 イメージングプレート (富士写真フィルム社製 B A S— S R 1 2 7) を用いて、 試料—イメージングプレート間距離 6 Omm、 露出時間 2 0分間で露出し、 理学電機社製 R— AX I S D S 3を用いて、 ポリ アミド 6 α型結晶 (20 0) 面からの回折の方位角 (0角) 強度分布曲 線を作成した。 この ]3角強度分布曲線から、 理学電機株式会社発行の X 線回折の手引き改訂第三版 ( 1 98 5年 6月 3 0日発行) の第 8 1ぺ一 ジに記載の繊維試料の配向度の測定方法に従って、 赤道線上の 2点 ( β 角が 9 0 ° 及び 2 7 0 ° ) についての半値幅 W i (度) の合計値∑W i (度) から次式により配向度 (%) を求めた。  The fibers were oriented in the drawing direction, aligned in a strip shape with a length of 20 mm and a width of 4 mm, and fixed with a cyanoacrylate adhesive to prepare a sample. X-rays were incident in a direction perpendicular to the drawing direction of the fiber of this sample. Rotorflex RU-200B manufactured by Rigaku Corporation was used as an X-ray generator, and a Cu K wire passed through a Ni filter at 30 kV-100 mA was used as an X-ray source. Using an imaging plate (BAS-SR127, manufactured by Fuji Photo Film Co., Ltd.), the sample was exposed at a distance of 6 Omm between the imaging plate and an exposure time of 20 minutes, and R-AX ISDS3 manufactured by Rigaku Denki was used. An azimuthal (zero angle) intensity distribution curve of diffraction from the (6200) plane of the polyamide 6 α-type crystal was created. From this] triangular intensity distribution curve, the orientation of the fiber sample described in page 81 of the X-ray Diffraction Guide Revised Third Edition (issued June 30, 1998) issued by Rigaku Denki Co., Ltd. According to the measurement method of the degree, the orientation degree (%) is calculated from the sum of the half-widths W i (degrees) ∑W i (degrees) at two points on the equator line (β angles of 90 ° and 270 °) by ).
配向度 = 〔 ( 36 0 -∑W i ) / 360〕 X 100  Orientation = ((36 0 -∑W i) / 360) X 100
(5) 直線引張強度  (5) Linear tensile strength
試料を 2 3°C、 5 0 % RHの温湿度調節室内で 24時間放置した後、 同室内で東洋ポールドウイン社製のテンシロン UTM— 3を用いて、 初 期試料長 (チャック間距離) 3 00mm、 クロスヘッド速度 30 0 mm 分で引張試験を行い、 破断応力 (MP a) を求めて、 その測定値を直 線引張強度 (MP a) とした。  The sample was left for 24 hours in a temperature and humidity controlled room at 23 ° C and 50% RH, and the initial sample length (distance between chucks) was set in the same room using Tensilon UTM-3 manufactured by Toyo Paul Douin. A tensile test was performed at 300 mm and a crosshead speed of 300 mm, the breaking stress (MPa) was determined, and the measured value was defined as the linear tensile strength (MPa).
(6) 生分解生 (微生物分解性)  (6) Biodegradable (microbial degradability)
試料を土壌中に 6ヶ月間埋めてから取り出し、 試料の繊維がその形状 を失っているか、 あるいは直線引張強度が埋める前の値に比べて 5 0 % 以下に低下している場合を、 微生物分解性が良好と評価した。 The sample is buried in the soil for 6 months and then removed, and the fiber of the sample has lost its shape or its linear tensile strength is 50% of the value before the burying. The case where it decreased below was evaluated as having good biodegradability.
[実施例 1 ]  [Example 1]
ポリエステルアミド共重合体 〔B a y e r社製 B AK 1 0 9 5 : ナイ ロン 6 /ポリプチレンアジペート = 5 0 5 0 (モル%) ; 融点 (T m) 1 2 5°C、 相対粘度 1. 47〕 を 3 0 mm φの単軸押出機に供給し て、 押出機先端温度 140°Cで溶融させ、 温度 140°Cに調節された直 径 1. 5 mmの紡糸ノズルから押し出して、 直ちに温度 5°Cに調節され た水浴中で冷却し、 3mZ分の引取速度で引き取って、 直径 740 m の未延伸糸を得た。 この未延伸糸をロールに巻き取り、 室温 (2 5°C) で一昼夜放置した。 放置後の未延伸糸の結晶化度は、 1 4. 7重量%で あった。 この結晶化度を高めた未延伸糸を、 温度 8 0 °Cに調節された乾 熱パス内で延伸倍率 5倍に延伸して、 延伸繊維 (モノフィラメント :直 径 1 6 5 zxm) を得た。  Polyester amide copolymer [BAK1095: Nylon 6 / polybutylene adipate = 550 (mol%); manufactured by Bayer; melting point (Tm) 125 ° C, relative viscosity 1.47 ) To a single-screw extruder with a diameter of 30 mm, melted at the extruder tip temperature of 140 ° C, extruded from a spinning nozzle with a diameter of 1.5 mm adjusted to a temperature of 140 ° C, and immediately heated. It was cooled in a water bath adjusted to 5 ° C. and taken off at a take-up speed of 3 mZ to obtain an undrawn yarn having a diameter of 740 m. The undrawn yarn was wound up on a roll and allowed to stand at room temperature (25 ° C.) for 24 hours. The crystallinity of the undrawn yarn after standing was 14.7% by weight. The undrawn yarn having the increased crystallinity is drawn at a draw ratio of 5 in a dry heat path adjusted to a temperature of 80 ° C. to obtain a drawn fiber (monofilament: diameter of 16.5 zxm). .
一方、 この繊維を 1 40°Cで 5分間加熱プレスして、 厚み 2 50 m のプレスシートに成形し、 該ポリエステルアミド共重合体の無配向物試 料とした。 この無配向物試料の主分散ピーク温度は、 — 1 1°Cであった。  On the other hand, this fiber was heated and pressed at 140 ° C. for 5 minutes to form a pressed sheet having a thickness of 250 m, which was used as a non-oriented sample of the polyesteramide copolymer. The main dispersion peak temperature of this non-oriented sample was -11 ° C.
[実施例 2〜 3 ]  [Examples 2 and 3]
実施例 1において、 未延伸糸の延伸倍率を 5倍から 6倍 (実施例 2) または 7倍 (実施例 3) に変更したこと以外は、 それぞれ実施例 1と同 様にして延伸繊維を得た。  In Example 1, a drawn fiber was obtained in the same manner as in Example 1 except that the draw ratio of the undrawn yarn was changed from 5 times to 6 times (Example 2) or 7 times (Example 3). Was.
[実施例 4]  [Example 4]
実施例 1において、 延伸工程を 2段階に分けて、 1段目を 45°Cで 4. 5倍に延伸し、 次いで 2段目を 7 5°Cで 1. 3 3倍に延伸し、 全延伸倍 率を 6倍としたこと以外は、 実施例 1と同様にして延伸繊維を製造した。  In Example 1, the stretching process was divided into two stages, the first stage was stretched 4.5 times at 45 ° C, and then the second stage was stretched 1.3 times at 75 ° C. A drawn fiber was produced in the same manner as in Example 1 except that the draw ratio was 6 times.
[比較例 1〜3]  [Comparative Examples 1-3]
実施例 1において、 未延伸糸の延伸倍率を 5倍から 2倍 (比較例 1) または 3倍 (比較例 2) または 4倍 (比較例 3) に変更したこと以外は、 それぞれ実施例 1と同様にして延伸繊維を得た。 In Example 1, except that the stretching ratio of the undrawn yarn was changed from 5 times to 2 times (Comparative Example 1) or 3 times (Comparative Example 2) or 4 times (Comparative Example 3), In the same manner as in Example 1, drawn fibers were obtained.
[比較例 4]  [Comparative Example 4]
ポリエステルアミド共重合体 (B a y e r社製 B AK 1 0 9 5 ) を 3 0 mm φ単軸押出機に供給し、 押出機先端温度 1 40 Cで溶融させて、 温度 140°Cに調節された直径 1. 5 mmの紡糸ノズルから押し出し、 直ちに温度 5 °Cに調節された水浴中で冷却し、 引取速度 1 OmZ分で引 き取って、 直径 740 mの未延伸糸を得た。 この未延伸糸を巻き取る ことなく、 直ちに温度 2 5°Cに調節された乾熱バス内で、 延伸倍率 3. 5倍に延伸して、 延伸繊維 (モノフィラメント :直径 1 9 7 ^m) を得 た。  Polyester amide copolymer (Bayer BAK1095) was supplied to a 30 mm φ single screw extruder, melted at an extruder tip temperature of 140 C, and adjusted to a temperature of 140 ° C. It was extruded from a spinning nozzle having a diameter of 1.5 mm, immediately cooled in a water bath adjusted to a temperature of 5 ° C, and pulled at a take-up speed of 1 OmZ to obtain an undrawn yarn having a diameter of 740 m. Without winding the undrawn yarn, the drawn fiber (monofilament: diameter: 197 ^ m) is drawn immediately to a draw ratio of 3.5 in a dry heat bath adjusted to a temperature of 25 ° C. Obtained.
[比較例 5 ~ 6]  [Comparative Examples 5 to 6]
比較例 4において、 未延伸糸の延伸倍率を 3. 5倍から 4. 5倍 (比 較例 5) または 5. 5倍 (比較例 6) に変更したこと以外は、 それぞれ 比較例 4と同様にして延伸繊維を得た。  Same as Comparative Example 4 except that the draw ratio of the undrawn yarn was changed from 3.5 times to 4.5 times (Comparative Example 5) or 5.5 times (Comparative Example 6) in Comparative Example 4. To obtain a drawn fiber.
[比較例 7]  [Comparative Example 7]
比較例 4において、 延伸工程を 3段階に分け、 1段目を 2 5°Cで 4. 5倍に延伸し、 次いで 2段目を 2 5°Cで 1. 44倍に延伸し、 さらに続 いて 3段目を 2 5°Cで 1. 1 5倍に延伸し、 全延伸倍率 7. 5倍に延伸 したこと以外は、 比較例 4と同様にして延伸繊維を製造した。  In Comparative Example 4, the stretching process was divided into three stages, the first stage was stretched 4.5 times at 25 ° C, and the second stage was stretched 1.44 times at 25 ° C. Then, a drawn fiber was produced in the same manner as in Comparative Example 4 except that the third stage was stretched to 1.15 times at 25 ° C. and the total draw ratio was increased to 7.5 times.
[実施例 5]  [Example 5]
比較例 7で得られた延伸繊維 (モノフィラメント :全延伸倍率 = 7. 5倍) を室温で一昼夜放置した。 放置後の延伸繊維の結晶化度は、 26. 2重量%であった。 この結晶化度を高めた延伸繊維を温度 8 0°Cで 1. 6倍に延伸し、 全延伸倍率を 12倍とした。  The drawn fiber obtained in Comparative Example 7 (monofilament: total drawing ratio = 7.5 times) was left at room temperature for 24 hours. The crystallinity of the drawn fiber after standing was 26.2% by weight. The drawn fiber having the increased crystallinity was drawn 1.6 times at a temperature of 80 ° C., and the total drawing ratio was set to 12 times.
[比較例 8]  [Comparative Example 8]
ナイロン 6 (単独重合体) を 3 Ommc/)単軸押出機に供給し、 押出機 先端温度 2 6 0 °Cで溶融させて、 温度 2 60 °Cに調節された直径 1. 5 mmの紡糸ノズルから押し出して、 直ちに温度 5 °Cに調節された水浴中 で冷却し、 引取速度 1 0 mZ分で引き取って、 直径 7 4 0 mの未延伸 糸を得た。 この未延伸糸を巻き取ることなく、 直ちに温度 8 5 °Cに調節 された乾熱パス内で、 延伸倍率 3 . 8倍に延伸し、 次いで温度 9 5 °Cに 調節された乾熱バス内で 1 . 4 7倍に延伸し、 全延伸倍率 5 . 6倍の延 伸繊維 (モノフィラメント :直径 1 5 6 u rn) を得た。 Nylon 6 (homopolymer) is fed to a 3 Ommc /) single-screw extruder, and extruder is melted at a tip temperature of 260 ° C and is adjusted to a temperature of 260 ° C with a diameter of 1.5 It was extruded from a spinning nozzle having a diameter of 5 mm and immediately cooled in a water bath adjusted to a temperature of 5 ° C., and was taken out at a take-up speed of 10 mZ to obtain an undrawn yarn having a diameter of 740 m. Without winding the undrawn yarn, it is immediately stretched to a draw ratio of 3.8 in a dry heat path adjusted to a temperature of 85 ° C, and then in a dry heat bath adjusted to a temperature of 95 ° C. Thus, a drawn fiber (monofilament: diameter: 156 urn) having a total draw ratio of 5.6 times was obtained.
これらの実施例及び比較例で採用した延伸条件を表 1に示し、 物性の 測定結果を表 2に示す。 Table 1 shows the stretching conditions employed in these Examples and Comparative Examples, and Table 2 shows the measurement results of physical properties.
表 1 table 1
(脚注) 実施例 5 : 比較例 7で得た延伸繊維 (全延伸倍率 = 7. 5倍) を結晶化処理後、 延伸した (Footnote) Example 5: The drawn fiber obtained in Comparative Example 7 (total draw ratio = 7.5 times) was crystallized and then drawn.
表 2 延伸繊維の構造パラメータ 機械的強度 ± 曰 Table 2 Structural parameters of drawn fiber Mechanical strength ±
曰曰 主分散ピーク温度 結晶化度 長周期 A X B 王 77 直線引張強度 伸 度 配向度 A B /100  Says Main dispersion peak temperature Crystallinity Long period A X B King 77 Linear tensile strength Elongation Orientation A B / 100
無配向物と 解性  Non-oriented objects and resolvability
(%) (°C) の差 (で) (wt.%) (A ) (MPa) (96) 比較例 1 85.9 -10.1 0.9 17.3 80.2 13.9 良好 168.6 266 比較例 2 90.3 -4.0 7.0 15.7 80.6 12.7 251.9 120 比較例 3 92.9 -1.8 9.2 21.2 82.9 17.6 良好 290.1 58 実施例 1 93.4 0.1 11.1 22.2 84.1 18.7 良好 392.0 47 実施例 2 93.9 1.1 12.1 L .上 . 0 io. L 良好 (%) (° C) difference (in) (wt.%) (A) (MPa) (96) Comparative 1 85.9 -10.1 0.9 17.3 80.2 13.9 Good 168.6 266 Comparative 2 90.3 -4.0 7.0 15.7 80.6 12.7 251.9 120 Comparative Example 3 92.9 -1.8 9.2 21.2 82.9 17.6 Good 290.1 58 Example 1 93.4 0.1 11.1 22.2 84.1 18.7 Good 392.0 47 Example 2 93.9 1.1 12.1 L. Above.0 io.L Good
実施例 3 94.1 2.0 13.0 23.3 82.9 19.3 良好 520.4 24 実施例 4 94.4 3.0 14.0 20.1 83.3 16.7 好 502.7 21 実施例 5 95.0 3.0 14.0 22.1 83.0 18.3 良好 614.5 19 Example 3 94.1 2.0 13.0 23.3 82.9 19.3 Good 520.4 24 Example 4 94.4 3.0 14.0 20.1 83.3 16.7 Good 502.7 21 Example 5 95.0 3.0 14.0 22.1 83.0 18.3 Good 614.5 19
88.8 -9.8 1.2 27.9 74.5 20.8 良好 145.0 163 91.3 -9.8 1.2 13.7 73.9 10.1 良好 199.9 81 91.5 -9.7 1.3 23.0 73.3 16.9 良好 253.8 66 93.9 -8.7 2.3 26.2 79.9 20.9 良好 369.5 49 88.8 -9.8 1.2 27.9 74.5 20.8 Good 145.0 163 91.3 -9.8 1.2 13.7 73.9 10.1 Good 199.9 81 91.5 -9.7 1.3 23.0 73.3 16.9 Good 253.8 66 93.9 -8.7 2.3 26.2 79.9 20.9 Good 369.5 49
94.3 34.0 103.0 35.0 不良 94.3 34.0 103.0 35.0 Bad
産業上の利用可能性 Industrial applicability
本発明によれば、 直線引張強度が高く、 適度の伸度を有し、 生分解性 を示す高強度ポリエステルアミド繊維とその製造方法が提供される。 本 発明の高強度ポリエステルアミド繊維は、 釣り糸や漁網、 農業用ネット などの産業資材としての用途に好適に適用することができる。  According to the present invention, there is provided a high-strength polyesteramide fiber having high linear tensile strength, moderate elongation, and biodegradability, and a method for producing the same. The high-strength polyesteramide fiber of the present invention can be suitably applied to uses as industrial materials such as fishing lines, fishing nets, and agricultural nets.

Claims

請求の範囲 The scope of the claims
1. ポリエステルアミド共重合体からなる繊維であって、 該繊維の動 的粘弾性測定における主分散ピーク温度が、 該ポリエステルアミド共重 合体からなる無配向物の主分散ピーク温度より 1 0°C以上高いことを特 徴とする高強度ポリエステルアミド繊維。 1. A fiber made of a polyesteramide copolymer, wherein the main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber is 10 ° C. lower than the main dispersion peak temperature of the non-oriented material made of the polyesteramide copolymer. High-strength polyesteramide fiber characterized by the above high properties.
2. 該繊維の結晶化度 (重量%) Aと小角 X線散乱により測定される 長周期 (A) Bとが、 式 ( I ) 2. The crystallinity (% by weight) A of the fiber and the long period (A) B measured by small angle X-ray scattering are represented by the formula (I)
5≤ (AXB) / 100≤ 30 (I)  5≤ (AXB) / 100≤ 30 (I)
の関係を満足する請求項 1記載の高強度ポリエステルアミド繊維。 2. The high-strength polyesteramide fiber according to claim 1, which satisfies the following relationship:
3. ポリエステルアミ ド共重合体が、 ポリアミド単位 5〜 8 0モル% とポリエステル単位 2 0〜 9 5モル%とからなるポリエステルアミド共 重合体である請求項 1記載の高強度ポリエステルアミド繊維。 3. The high-strength polyester amide fiber according to claim 1, wherein the polyester amide copolymer is a polyester amide copolymer comprising 5 to 80 mol% of a polyamide unit and 20 to 95 mol% of a polyester unit.
4. ポリエステルアミド共重合体が、 9 0〜 1 8 0°Cの融点を有する ポリエステルアミド共重合体である請求項 1記載の高強度ポリエステル アミド繊維。 4. The high-strength polyester amide fiber according to claim 1, wherein the polyester amide copolymer is a polyester amide copolymer having a melting point of 90 to 180 ° C.
5. ポリエステルアミド共重合体が、 1. 0〜3. 0の相対粘度を有 するポリエステルアミ ド共重合体である請求項 1記載の高強度ポリエス テルアミド繊維。 5. The high-strength polyester amide fiber according to claim 1, wherein the polyester amide copolymer is a polyester amide copolymer having a relative viscosity of 1.0 to 3.0.
6. ポリエステルアミド共重合体が、 ナイロン 6/ポリブチレンアジ ペート共重合体、 ナイロン 66 Zポリブチレンアジペート共重合体、 ナ ィロン 6 Zポリエチレンアジペート共重合体、 ナイロン 6 6/ポリェチ レンアジペート共重合体、 ナイロン 6/ポリ力プロラクトン共重合体、 またはナイロン 6 6ノポリカプロラクトン共重合体である請求項 1記載 の高強度ポリエステルアミド繊維。 6. Polyester amide copolymer is nylon 6 / polybutylene adipate copolymer, nylon 66 Z polybutylene adipate copolymer, nylon 6 Z polyethylene adipate copolymer, nylon 66 / polyethylene 2. The high-strength polyesteramide fiber according to claim 1, which is a renadipate copolymer, a nylon 6 / polycaprolactone copolymer, or a nylon 66 nopolycaprolactone copolymer.
7. ポリエステルアミ ド共重合体からなる繊維の動的粘弾性測定にお ける主分散ピーク温度が、 該ポリエステルアミド共重合体からなる無配 向物の主分散ピーク温度より 1 0〜 1 7 °C高い請求項 1記載の高強度ポ リエステルアミド繊維。 7. The main dispersion peak temperature in the dynamic viscoelasticity measurement of the fiber made of the polyesteramide copolymer is 10 to 17 ° C higher than the main dispersion peak temperature of the non-oriented material made of the polyesteramide copolymer. The high-strength polyester amide fiber according to claim 1, which is high.
8. 直線引張り強度が 3 80〜 7 0 0 MP aである請求項 1記載の高 強度ポリエステルアミド繊維。 8. The high-strength polyesteramide fiber according to claim 1, having a linear tensile strength of 380 to 700 MPa.
9. 伸びが 1 0〜 5 0 %である請求項 1記載の高強度ポリエステルァ ¾卜繊 。 9. The high-strength polyester fiber according to claim 1, having an elongation of 10 to 50%.
1 0. ポリエステルアミド共重合体からなる非晶性未延伸糸の結晶化 度を 1 0〜 3 0重量%に高めた後、 延伸して得られた延伸糸である請求 項 1記載の高強度ポリエステルアミド繊維。 10. The high-strength yarn according to claim 1, which is a drawn yarn obtained by increasing the crystallinity of an amorphous undrawn yarn made of a polyesteramide copolymer to 10 to 30% by weight and then drawing. Polyester amide fiber.
1 1. ポリエステルアミド共重合体からなる非晶性未延伸糸を延伸し、 次いで、 得られた延伸糸の結晶化度を 1 0〜3 0重量%に高めた後、 さ らに延伸して得られた延伸糸である請求項 1記載の高強度ポリエステル アミド繊維。 1 1. Amorphous undrawn yarn made of a polyesteramide copolymer is drawn, and then the obtained drawn yarn is increased in crystallinity to 10 to 30% by weight, and further drawn. 2. The high-strength polyester amide fiber according to claim 1, which is the obtained drawn yarn.
1 2. 生分解性である請求項 1記載の高強度ポリエステルアミド繊維。 1 2. The high-strength polyesteramide fiber according to claim 1, which is biodegradable.
1 3. ポリエステルアミド共重合体を溶融紡出し、 得られた未延伸糸 を延伸するポリエステルアミド繊維の製造方法において、 1 3. Unstretched yarn obtained by melt spinning of polyester amide copolymer In the method for producing a polyester amide fiber to stretch
(1) ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 20°C以 下の不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、  (1) a step of melt-spinning a polyesteramide copolymer and immediately cooling and solidifying it in an inert cooling medium at a temperature of 20 ° C. or lower to obtain an amorphous undrawn yarn;
(2) 該未延伸糸の結晶化度を 1 0〜30重量%に高める工程、 '及び  (2) a step of increasing the crystallinity of the undrawn yarn to 10 to 30% by weight, and
(3) 結晶化度 1 0〜 3 0重 ,量%の未延伸糸を全延伸倍率が 4. 5倍以 上となるように 1段または多段延伸する工程  (3) A step of single or multi-stage drawing of an undrawn yarn having a crystallinity of 10 to 30 weight /% by volume so that the total drawing ratio is 4.5 times or more.
からなる一連の工程を含むことを特徴とする高強度ポリエステルアミド 繊維の製造方法。 A method for producing a high-strength polyesteramide fiber, comprising a series of steps comprising:
14. 工程 (2) において、 該未延伸糸を 1 0〜 8 0 °Cの雰囲気中に 1 0分間から 7 2時間置くことにより、 該未延伸糸の結晶化度を 1 0〜 30重量%に高める請求項 1 3記載の製造方法。 14. In step (2), the undrawn yarn is placed in an atmosphere of 10 to 80 ° C. for 10 minutes to 72 hours to reduce the crystallinity of the undrawn yarn to 10 to 30% by weight. 14. The method according to claim 13, wherein the temperature is increased.
1 5. 工程 (3) において、 結晶化度 1 0〜3 0重量%の未延伸糸を 温度 2 0〜 1 2 0°Cで全延伸倍率が 4. 5倍以上となるように 1段また は多段延伸し、 その際、 温度 5 0〜 1 2 0°Cで延伸倍率 1. 3倍以上に 延伸する少なくとも 1つの延伸段階を配置する請求項 1 3記載の製造方 法。 1 5. In step (3), unstretched yarn having a degree of crystallinity of 10 to 30% by weight is subjected to a single step so that the total draw ratio becomes 4.5 times or more at a temperature of 20 to 120 ° C. 14. The method according to claim 13, wherein at least one stretching step for stretching at a temperature of 50 to 120 ° C. and a stretching ratio of 1.3 or more is arranged.
1 6. ポリエステルアミド共重合体を溶融紡出し、 得られた未延伸糸 を延伸するポリエステルアミド繊維の製造方法において、 1 6. A method for producing a polyesteramide fiber, in which a polyesteramide copolymer is melt-spun and the obtained undrawn yarn is drawn.
(I)ポリエステルアミド共重合体を溶融紡出し、 直ちに温度 20°C以下の 不活性冷却媒体中で冷却固化して非晶性の未延伸糸を得る工程、  (I) a step of melt-spinning the polyesteramide copolymer and immediately cooling and solidifying it in an inert cooling medium at a temperature of 20 ° C. or lower to obtain an amorphous undrawn yarn;
(II)該未延伸糸を温度— 1 0°C〜5 0°Cで延伸倍率 1. 3倍以上に延伸 して延伸糸とする工程、  (II) a step of drawing the undrawn yarn at a temperature of 10 to 50 ° C to a draw ratio of 1.3 or more to obtain a drawn yarn,
(ΙΠ)該延伸糸の結晶化度を 10〜30重量%に高める工程、 及び  (Ii) increasing the crystallinity of the drawn yarn to 10 to 30% by weight, and
(IV)結晶化度 1 0〜3 0重量%の延伸糸を全延伸倍率が 4. 5倍以上と なるようにさらに 1段または多段延伸する工程 (IV) A drawn yarn having a crystallinity of 10 to 30% by weight has a total draw ratio of 4.5 times or more. Step of stretching one or more stages so that
からなる一連の工程を含むことを特徴とする高強度ポリエステルアミ ド 繊維の製造方法。 A method for producing a high-strength polyester amide fiber, comprising a series of steps consisting of:
1 7. 工程(II)において、 該未延伸糸を温度 2 0°C以上 5 0°C未満で 延伸倍率 1. 3〜 10倍に延伸する請求項 1 6記載の製造方法。 17. The production method according to claim 16, wherein in the step (II), the undrawn yarn is drawn at a temperature of 20 ° C or higher and lower than 50 ° C to a draw ratio of 1.3 to 10 times.
1 8. 工程(III)において、 該延伸糸を 1· 0〜 80 °Cの雰囲気中に 1 0 分間から 7 2時間置くことにより、 該延伸糸の結晶化度を 1 0〜 3 0重 量%に高める請求項 1 6記載の製造方法。 1 8. In the step (III), the drawn yarn is placed in an atmosphere of 1.0 to 80 ° C for 10 minutes to 72 hours to reduce the crystallinity of the drawn yarn to 10 to 30 weight. %.
1 9. 工程(IV)において、 結晶化度 1 0〜 3 0重量%の延伸糸を温度 2 0〜 1 2 0°Cで全延伸倍率が 4. 5倍以上となるようにさらに 1段ま たは多段延伸し、 その際、 温度 5 0〜 1 2 0°Cで延伸倍率 1. 3倍以上 に延伸する少なくとも 1つの延伸段階を配置する請求項 1 6記載の製造 方法。 1 9. In step (IV), the drawn yarn having a crystallinity of 10 to 30% by weight is further cooled to a further stage so that the total draw ratio becomes 4.5 times or more at a temperature of 20 to 120 ° C. 17. The production method according to claim 16, wherein at least one stretching step of stretching at a temperature of 50 to 120 ° C and a stretching ratio of 1.3 or more is arranged.
PCT/JP2001/000792 2000-02-10 2001-02-05 High-strength polyester-amide fiber and process for producing the same WO2001059191A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020027010187A KR20020074506A (en) 2000-02-10 2001-02-05 High-strength polyester-amide fiber and process for producing the same
US10/203,140 US20030032767A1 (en) 2001-02-05 2001-02-05 High-strength polyester-amide fiber and process for producing the same
EP01902765A EP1270775A1 (en) 2000-02-10 2001-02-05 High-strength polyester-amide fiber and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-33775 2000-02-10
JP2000033775A JP4475481B2 (en) 2000-02-10 2000-02-10 Method for producing high-strength polyesteramide fiber

Publications (1)

Publication Number Publication Date
WO2001059191A1 true WO2001059191A1 (en) 2001-08-16

Family

ID=18558207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000792 WO2001059191A1 (en) 2000-02-10 2001-02-05 High-strength polyester-amide fiber and process for producing the same

Country Status (6)

Country Link
EP (1) EP1270775A1 (en)
JP (1) JP4475481B2 (en)
KR (1) KR20020074506A (en)
CN (1) CN1401021A (en)
TW (1) TW503269B (en)
WO (1) WO2001059191A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103757739A (en) * 2013-12-31 2014-04-30 马海燕 Biodegradable polymer monofilament and production method thereof
CN103911002A (en) * 2014-03-14 2014-07-09 江苏华洋尼龙有限公司 Novel nanometer polyamide 66 resin
CN103952794B (en) * 2014-04-10 2016-07-06 中国石油化工股份有限公司 A kind of polyesteramide parallel type conjugate complex condensating fiber
CN106633044A (en) * 2016-11-30 2017-05-10 彭州市运达知识产权服务有限公司 Liquid crystal polyarylester and preparation method thereof
JPWO2020230807A1 (en) * 2019-05-13 2020-11-19

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120727A (en) * 1978-03-09 1979-09-19 Agency Of Ind Science & Technol Biodegradable fiber
JPH07173716A (en) * 1993-10-28 1995-07-11 Toray Ind Inc High-strength biodegradable polylactoneamide monofilament and production thereof
US5446109A (en) * 1993-02-23 1995-08-29 Teijin Limited Polyamide/aliphatic polyester block copolymer, process for the production thereof, and blend containing the same
US5644020A (en) * 1993-08-12 1997-07-01 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120727A (en) * 1978-03-09 1979-09-19 Agency Of Ind Science & Technol Biodegradable fiber
US5446109A (en) * 1993-02-23 1995-08-29 Teijin Limited Polyamide/aliphatic polyester block copolymer, process for the production thereof, and blend containing the same
US5644020A (en) * 1993-08-12 1997-07-01 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides
JPH07173716A (en) * 1993-10-28 1995-07-11 Toray Ind Inc High-strength biodegradable polylactoneamide monofilament and production thereof

Also Published As

Publication number Publication date
TW503269B (en) 2002-09-21
EP1270775A1 (en) 2003-01-02
KR20020074506A (en) 2002-09-30
JP4475481B2 (en) 2010-06-09
JP2001226824A (en) 2001-08-21
CN1401021A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US20030032767A1 (en) High-strength polyester-amide fiber and process for producing the same
JP2004002683A (en) Biodegradable resin composition and molded product thereof
FR2477556A1 (en) TOTALLY AROMATIC POLYESTER THAT CAN BE PROCESSED BY FUSION AND FIBER, FILM, MOLDED ARTICLE AND MOLDING COMPOUND OBTAINED
WO2005090657A1 (en) Filament of polyglycolic acid resin and process for producing the same
JPH0286623A (en) Manufacture of thermotropic aromatic copolyester-amide
WO2001059191A1 (en) High-strength polyester-amide fiber and process for producing the same
US5349044A (en) Polyamide monofilament suture manufactured from higher order polyamide
JPH08218216A (en) Production of biodegradable monofilament
JP2011168920A (en) Chopped fiber
JPH09241924A (en) Drawn polyamide fiber and its production
JP3585663B2 (en) Method for producing biodegradable monofilament
JP3864187B2 (en) High strength fiber of polyhydroxyalkanoic acid and process for producing the same
JP3864188B2 (en) High strength and high modulus fiber of polyhydroxyalkanoic acid and method for producing the same
US5906891A (en) Oriented polyamide fiber and process for producing same
JP3906349B2 (en) Biodegradable composite monofilament and its use
JP2000154425A (en) Production of biodegradable monofilament
JPS6144966B2 (en)
JPH042814A (en) Polyamide multifilament yarn having high shrinkage and production thereof
JP3615841B2 (en) Biodegradable fishing line and method for producing the same
JP3599310B2 (en) Polylactic acid monofilament and method for producing the same
JP2004175996A (en) Polyamide and polyamide molding using the same
JP3121968B2 (en) Polyamide monofilament and method for producing the same
JP4100162B2 (en) Core-sheath composite fiber
JP2001200425A (en) Vinylidene fluoride-based resin monofilament and method for producing the same
WO2001079334A1 (en) Stretched polyester-amide film and process for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10203140

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027010187

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018047823

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001902765

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027010187

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001902765

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001902765

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020027010187

Country of ref document: KR