WO1998004616A1 - Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers - Google Patents

Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers Download PDF

Info

Publication number
WO1998004616A1
WO1998004616A1 PCT/JP1997/002638 JP9702638W WO9804616A1 WO 1998004616 A1 WO1998004616 A1 WO 1998004616A1 JP 9702638 W JP9702638 W JP 9702638W WO 9804616 A1 WO9804616 A1 WO 9804616A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous spherical
spherical particles
particles
water
porous
Prior art date
Application number
PCT/JP1997/002638
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Inoue
Yasuoki Sasaki
Osamu Murayama
Tetsuo Sekigawa
Original Assignee
Kanebo Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Limited filed Critical Kanebo Limited
Publication of WO1998004616A1 publication Critical patent/WO1998004616A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to porous spherical particles and a method for producing the same. More specifically, a porous spherical particle having a skeleton of a polyvinyl acetal resin particularly preferably used as a fluidized bed type microorganism carrier, and a porous spherical particle thereof are preferably produced.
  • the present invention relates to a method for producing porous spherical particles. Background art
  • a method of filling a reactor with microorganisms and enzymes and using the reaction of the microorganisms and enzymes to obtain a product is a so-called bioreactor, which is used in the fields of food, pharmaceuticals, chemicals, and sewage. It has been used more industrially in the fields of wastewater and waste gas treatment. In recent years, in order to make the processing capacity more efficient, various researches have been conducted on means for filling the microbial biocatalyst with high density in the reaction tank.
  • the most typical one of the means is a method in which microorganisms are supported on a granular carrier, and more specifically, a biofilm method in which microorganisms are supported on a carrier surface and a biofilm is used, and a carrier.
  • the microbial immobilization method for immobilizing microorganisms inside a cell is divided into two methods.
  • the material of the carrier includes a polymer substance and an inorganic substance, and the form of use of the carrier is also fixed, and the carrier is immobilized inside the reaction tank, or a fixed bed type or a carrier is made to flow. A fluidized bed type is used while using.
  • the fluidity and specific gravity of a carrier used in a fluidized bed type are important.
  • a polymer-based granular carrier rather than an inorganic carrier.
  • the material of the carrier include gel-like granules such as polyvinyl alcohol gel (PVA gel), acrylonitrile midgel, and polyethylene glycol gel, and polyethylene, polyurethane, and polystyrene.
  • PVA gel polyvinyl alcohol gel
  • acrylonitrile midgel polyethylene glycol gel
  • polyethylene, polyurethane, and polystyrene Various methods using a porous granular material such as vinylidene dichloride and cellulose have been proposed.
  • these granular materials have been manufactured as follows. That is, a mixture obtained by kneading additives such as a pore-forming agent, a cross-linking agent, and a catalyst into an aqueous solution in which raw materials are dissolved is poured into a large-sized reaction type, and the mixture is reacted in a hot water bath or an air bath to be insolubilized. Further, by extracting and removing the pore-forming agent by washing with water, a block-like polymer porous body can be obtained. Next, this large block-shaped polymer porous body is formed into a sheet shape by slicing to a thickness of several millimeters.
  • kneading additives such as a pore-forming agent, a cross-linking agent, and a catalyst into an aqueous solution in which raw materials are dissolved is poured into a large-sized reaction type, and the mixture is reacted in a hot water bath or an air bath to be insolubilized. Further
  • properties desired for a microorganism carrier include not only affinity for microorganisms, but also flow performance, specific gravity, abrasion resistance, weather (light) resistance, and microbial resistance, and the like. These performances differ depending on the application.
  • the gel carrier has excellent affinity for microorganisms, but has low mechanical strength, and in particular, has a remarkably inferior abrasion resistance, and friction between carriers generated when the carrier flows.
  • the carrier is short due to friction with the inner wall of the reaction tank.
  • Polyethylene, polyurethane and other porous granular materials do not have very high weather resistance, and cellulose Is itself
  • the carrier is susceptible to biodegradation, the carrier is easily broken down over a long period of use, and the life is short.
  • the porosity of a uniform particle diameter as close as possible to a true sphere is possible. It is important to obtain granules, but this point was not always sufficient because conventional porous granules are cubic particles.
  • the reaction since the conventional porous granular material is manufactured by the above-described manufacturing method, the reaction requires at least several hours, and requires three stages of forming steps after the reaction. It took at least two days to produce uniform granules in millimeter units. In the case of punching with a punching die, particles of about a few millimeters are often clogged in the punching die, and a post-treatment for removing the particles is required. Furthermore, the yield was low because the block-shaped porous body was sliced, cut or punched by post-processing.
  • An object of the present invention is to provide a porous sphere that has high mechanical strength and abrasion resistance, and also has compatibility with microorganisms, and can be suitably used as a microorganism carrier, particularly a fluidized bed type microorganism carrier. That's where the particles come in.
  • An object of the present invention is to provide a method for producing porous spherical particles that enables simple and high-production of porous spherical particles having a uniform particle shape as close as possible to a true sphere. Disclosure of the invention
  • porous spherical particles having a skeleton of a polyvinyl acetal resin in particular, sponge-like porous spherical particles having a skeleton of a polyvinyl acetal resin.
  • porous spherical particles having a skeleton of polyvinyl formal resin when porous spherical particles having a skeleton of polyvinyl formal resin are used, a material having excellent wear resistance, weather (light) resistance, microbial decomposition resistance, fluidity and microbial affinity can be obtained. I got a knowledge.
  • the present invention is a porous spherical particle having a skeleton of a polyvinyl acetal resin. Further, it is a porous spherical particle made of a sponge-like polyvinyl acetal resin having communication holes as pores. Therefore, when polyvinyl acetal-based porous spherical particles, particularly polyvinyl formal (PVF) porous spherical particles are used as a carrier for microorganisms, wear resistance, weather resistance (light) resistance, and microbial degradation resistance A microorganism carrier having excellent properties, fluidity and microbial affinity can be obtained.
  • PVF polyvinyl formal
  • Such porous spherical particles are not a hydrogel structure but a sponge-like porous body having a skeleton structure of polyvinyl acetate, and therefore have excellent wear resistance and mechanical strength as compared with a gel-like body.
  • it is also used as a solution holding material for hydroponic cultivation of agricultural crops, plant support materials, animal and plant cell culture media, artificial moss, soil improvement materials, pipe cleaning materials, filtration materials, water absorbing materials It is suitably used for such purposes.
  • it can be used as an underwater flowing type cleaning member / underwater flowing type massaging member.
  • the fluid-in-water cleaning member is used to wash vegetables with delicate surfaces or vegetables with many irregularities.
  • the underwater-flowable massaging member is a member for obtaining a massage effect on the human body, and irritates the skin by contacting the particles with the human body while flowing the particles in a water tank such as a bathtub, thereby giving a massage.
  • a member for obtaining an effect Refers to a member for obtaining an effect.
  • porous spherical particles having a uniform particle size close to a true sphere and having a skeleton of a poly (vinyl acetal) resin are more excellent in mechanical strength and abrasion resistance, and can be used to fill a container with a microorganism carrier.
  • the present inventors have proposed a method for producing these porous spherical particles as a water-soluble polymer having a property of gelling in an acidic solution and a polyvinyl alcohol.
  • a solution containing alcohol and aldehydes is dropped into an acidic solution, the droplets are gelled, and the polyvinyl alcohol in the droplets is reacted with the aldehydes to form polyvinyl alcohol. It has been found that porous spherical particles having a skeleton of an acetal-based resin can be obtained.
  • the droplets of the stock solution forming the particles are brought into contact with the reaction solution and directly formed into particles, so that the acetalization treatment and the process of forming the spherical particles can be performed simultaneously. Also, since it contains a water-soluble polymer that gels when it comes into contact with an acid, which is a catalyst for acetylation, the shape of the droplet does not collapse. Therefore, it is possible to easily produce porous spherical particles having a uniform particle shape close to a true sphere, without requiring multiple steps as in the related art, with high productivity.
  • the present invention is a porous spherical particle having a skeleton of a polyvinyl acetal resin. Further, it is a porous spherical particle made of a sponge-like polyvinyl acetal resin having communication holes as pores.
  • the polyvinyl acetal porous spherical particles obtained in the present invention are obtained by reacting polyvinyl alcohol with aldehydes.
  • the raw material polyvinyl alcohol is not particularly limited, but a polyvinyl alcohol having an average degree of polymerization of 50,000 to 380,000 is desirable, and it must be completely genated. It is desirable that the mixture be a mixture of a partially genated product and a low-polymerized product.
  • the average degree of polymerization is less than 50,000, it is difficult to obtain a material having a high porosity, and when the average degree of polymerization exceeds 380, the viscosity increases when dissolved in water. Therefore, handling becomes difficult in a process such as kneading.
  • Polyvinyl alcohol raw materials having different degrees of polymerization can be blended and used, and those having a degree of polymerization of 300 instead of those in the above-mentioned range are also used. There is no problem with mixing.
  • a polyvinyl alcohol resin having a low degree of polymerization may be used to adjust elasticity, flexibility, texture, porosity, and improve water absorption.
  • the porosity of the polyvinyl acetal-based porous spherical particles may be set according to the intended use, and the force is not limited, and is preferably in the range of 50 to 98%.
  • the above porosity is less than 50%, it is difficult for the individual porosity to be adjacent to each other, and there is a tendency for closed cells to be present, whereby the water permeability is significantly impaired. Is done. If the above porosity exceeds 98%, mechanical strength such as abrasion resistance is reduced, so that there may be a disadvantage that the use is restricted depending on the use.
  • the degree of acetalization of the polyvinyl acetal-based porous material is not particularly limited, and the acetalization degree is preferably 30 to 85 mol%.
  • a polyvinyl acetate type porous material of 45 to 70 mol% is suitable.
  • polyvinyl formal having a degree of formalization of 30 to 85 mol%, preferably 45 to 70 mol% is preferred.
  • the degree of acetalization By adjusting the degree of acetalization in this way, it is possible to obtain a microorganism carrier having flexibility and abrasion resistance. If the degree of acetalization is less than 30 mol%, the degree of molecular crosslinking is low, the strength is poor, and the fastness to friction is low. Therefore, in particular, when used as a granular porous material in a fluidized bed type, the carrier tends to wear due to friction between the carriers generated during the flow of the carriers and friction with the inner wall of the reaction vessel, and the life of the carrier is shortened. descend. Also, it is not preferable in that the resistance to microbial erosion is reduced. Another problem is that it is difficult to handle in the manufacturing process.
  • the degree of acetalization exceeds 85 mol%, the porosity decreases, the apparent specific gravity increases, and the water content decreases.
  • it was used as a granular porous material in a fluidized bed type. In this case, sedimentation is easy, but it is difficult to float, and the flow performance in the treatment tank is reduced.
  • it is not preferable because hydrophilicity is reduced with a decrease in the amount of residual hydroxyl groups.
  • the rebound resilience when wet becomes low, which is not preferable in terms of water absorption and durability.
  • the polyvinyl acetal-based porous material having an acetalization degree of 30 to 85 mol%, preferably 45 to 70 mol%, particularly a formalization degree of 30 to 85 mol%.
  • Polyvinyl formal with a content of preferably 45 to 100 mol% is good in terms of resistance to microbial erosion, is excellent in strength, and has high friction fastness.
  • the life of the carrier is improved, particularly when used as a granular porous body in a fluidized bed type.
  • a suitable porosity that easily floats and sinks in the treatment tank and an apparent specific gravity of a water-containing state are obtained. It has excellent fluidity because of its good hydrophilicity.
  • the rebound resilience when wet becomes high, and even if it is subjected to dry compression processing, it is hard to receive permanent distortion even if it is a compressed press product. Even if it is wet in a processing tank or the like, it restores its original shape .
  • the porous spherical particles of the present invention can be made into a pressed product, and can be made into compressed porous spherical particles, which can significantly improve the transportability of the granular porous material, and When this is moistened in a processing tank, it becomes familiar with the processing solution, absorbs water and restores its original shape.
  • the compressed porous spherical particles mean particles obtained by compressing (pressing) the porous spherical particles according to the present invention in some form.
  • the specific gravity of the particles can be generally controlled by the porosity described above. ⁇ Depending on the application, the specific gravity of the particles may be further reduced, that is, may be further reduced. In particular, in the case of a microorganism carrier used in a fluidized bed or the like, since fluidity is an important factor, a wide range of specific gravity control is important. Therefore, if the inside of porous spherical particles having a skeleton of a polyvinyl acetal resin having excellent wear resistance and mechanical strength is made into hollow particles, the porous structure is combined with the porous structure according to the degree of the hollow. The specific gravity of the particles can be controlled over a wide range.
  • the hollow particles of the present invention can be easily produced by the method described below.
  • the apparent specific gravity of the microorganism carrier of the present invention in a water-containing state is preferably adjusted to 1.0 to 1.2. If the apparent specific gravity in a water-containing state is less than 1.0, it will be difficult to treat it simply because it floats even if it is put into the treatment tank. Lack of sex. Therefore, the apparent specific gravity of the water-containing state of the polyvinyl acetal-based porous
  • the microbial carrier of the present invention having a ratio of 1.0 to 1.2 can exhibit appropriate fluidity satisfactorily, particularly when used as a fluidized-bed granular porous material.
  • the microorganism carrier of the present invention has a specific gravity which is closer to the specific gravity of the liquid to be treated when the liquid to be treated is filled in the pores of the porous body.
  • the apparent specific gravity in a water-containing state is 1.
  • the optimum value is preferably at least 0 and still infinitely close to 1.0, and the apparent specific gravity in a practically water-containing state as a porous vinyl acetal-based porous material is 1.0 to 1.0 as described above. 1.2 is preferred, preferably 1.0 1-1.1.
  • the true specific gravity of the material itself is optimally in the range of 1.24 to 1.28, preferably in the range of 1.25 to 1.26.
  • the microorganism carrier of the present invention is a granular material having a size of 1 mm to 20 mm in a water-containing state.
  • the flow performance can be improved and the microorganisms can be treated, and even when used in a sewage treatment device equipped with a filter for collecting particulate microbial carriers.
  • the microorganism concentration can be maintained at a high level without passing through the recovery filter and flowing out of the processing liquid discharge port of the apparatus.
  • the size of the particles exceeds 20 mm, it may be disadvantageous when the porous spherical particles of the present invention are used as a microorganism carrier. That is, not only the flowability of the particles is reduced, but also the effective surface area for supporting the microorganisms is reduced, so that it is difficult to maintain a high concentration of the microorganisms, and the processing ability of the microorganisms is reduced.
  • the smaller the particle size the better the fluidity, and in a fluidized bed reactor, less energy is required to flow the carrier, and the processability is improved.
  • the particle size is too small, specifically, if the particle size is less than 1 mm, it can be used in a sewage treatment device equipped with a filter for collecting particulate microbial carriers. There is a risk that the wastewater will pass through the collection filter and flow out of the processing wastewater discharge port of the device, making it difficult to maintain a high concentration of microorganisms.
  • the collection filter for example, the slit opening of the 1.5 mm ⁇ edge wire screen installed at the processing solution outlet, should be made finer. You might also say that.
  • the optimal size of the polyvinyl acetal-based porous spherical particles is also determined from the relationship with the filter for collecting the biological support.
  • the size of the porous spherical particles of the present invention can be easily controlled by the size of the droplet to be dropped. Specifically, particles having an arbitrary particle size can be obtained by arbitrarily adjusting the ejection amount of the droplet and the diameter of the nozzle required for the droplet.
  • the porous spherical particles according to the present invention are provided with a large number of pores having a size such that water or air of 20 to 300 // m can freely flow as an average stoma, and at the molecular level. It is different from a mere gel having a network structure of When used as a microbial carrier in a fluidized tank, organic substances, phosphorus, or nitrogen compounds in water can freely flow through pores of this size and spread.
  • a microorganism carrier having a large number of pores having a pore diameter of 20 to 300 ⁇ m is easy to form a film with microorganisms, and the microorganism film formed on the surface of the carrier is separated. It is suitable because it is difficult. Further, the pore diameter can be controlled to some extent by using a manufacturing method described later.
  • the sponge made of porous spherical particles according to the present invention similarly has a large number of pores large enough to allow water and air to flow freely, and
  • porous spherical particles In order to improve the wear resistance and mechanical strength of the porous spherical particles, it is desirable to have a film having pores on the surface of the particles and to have a porous structure inside the particles.
  • the spherical particles produced by the production method of the present invention described later have a coating on the surface, and have excellent mechanical strength.
  • the porous spherical particles of the present invention can be satisfactorily floated and flowed by aeration or the like in the treatment tank as a water-containing porous body simply by being thrown into a fluidized bed treatment tank, and furthermore, the material is further reduced in material quality. Because of the good affinity with the microorganisms, the microorganisms can adhere and perform excellent biological treatment. In addition, since the abrasion resistance is good, the abrasion hardly occurs due to the friction between the supports and the friction with the inner wall of the reaction tank when the supports flow. Furthermore, the mechanical strength is high, the weather resistance (light) and the microbial resistance are excellent, and the life of the carrier is prolonged.
  • porous spherical particles of the present invention having a poly (vinyl acetal) resin as a skeleton are excellent as a microorganism carrier.
  • the microorganism carrier described above is suitable for attaching microorganisms to the surface of the carrier including the pores of the porous body, and has excellent fluidity even when granulated, and is a fluidized bed type. It is also ideal for applications.
  • the comprehensive immobilized microbial method can 1) maintain microorganisms at a high concentration and achieve high-speed treatment of wastewater. 2) Immobilize specific microorganisms to process specific substances or treat organic matter. 3) Since the amount of sludge generated can be reduced, it is desirable that the method can be applied not only to the above-mentioned microbial membrane method but also to the comprehensive immobilized microorganism method. Therefore, we have developed a microorganism carrier in which microorganisms are positively immobilized in the pores of the porous body with a microorganism immobilizing agent.
  • the microorganism immobilizing agent can be variously employed and is not particularly limited, but a microorganism immobilizing agent containing sodium alginate as a main component is preferable.
  • sodium alginate When sodium alginate is used as a main component, it is easily filled and fixed to polyvinyl acetal-based porous spherical particles, particularly, polyvinyl formal porous spherical particles, and has good compatibility. It is particularly good in terms of wear resistance.
  • porous spherical particles are impregnated with a mixed solution of a microorganism-immobilizing agent containing microorganisms, and the microorganism immobilizing agent is pored in the porous body. This can be achieved by insolubilization within.
  • the microorganism carrier of the present invention may be any of a fluidized bed and a fixed bed, irrespective of the above-mentioned inclusively immobilized type (inclusively immobilized method) and the above-mentioned non-inclusively immobilized type (microbial membrane method). It is applied as a body and is applied to various bioreactor applications, including sewage treatment equipment.
  • the microorganism carrier of the present invention can be suitably used as a fluidized bed type sewage treatment apparatus for treating the particulate microorganism carrier of the present invention by floating and convection in a treatment tank.
  • the fluidized bed type bioreactor is applicable, for example, as long as it carries out biological treatment and chemical treatment by bringing the carrier into contact with the liquid to be treated.
  • the present invention can be applied to an apparatus that performs not only decomposition of organic substances and the like, but also oxidation and reduction such as nitrification and denitrification and chemical reactions such as addition, substitution, conversion, and desorption.
  • the porous spherical particles of the present invention are desirably formed into a compression press molded product.
  • sponge granules with a water content of 10% or less which quickly expand to a volume of 2 to 10 times when poured into water, and have a size of 1 mm or more in a water-containing state.
  • Polyvinyl acetal-based porous spherical particles characterized by having a thickness of 20 mm are preferred.
  • the compressed porous spherical particles obtained by compressing and pressing the porous spherical particles having a skeleton of a polyvinyl acetal resin of the present invention can be produced by a compression step and a drying step.
  • compressed particles When the compressed particles are introduced into the treatment tank as a microbial carrier, they quickly absorb water to restore the original shape and size, and at the same time, get wet and adapt to the treatment liquid, and float and sink in a short time. You will be able to On the other hand, the porous spherical particles that are not subjected to the compression press are hard to separate the air taken in, take a long time to float on the water surface, and to be able to flow.
  • the compression press reduces the volume of the porous body, and as described above, can significantly reduce the transport cost.
  • the compression press step be performed after the drying step. It will soon return to its original state even if it is pressed with a wet press.
  • Polyvinyl acetal porous spherical particles manufactured under appropriate conditions can be stored for a long period of time in a compressed state by pressing under a condition where the moisture content of the particles is dried to 10% or less. When it is put into water, it quickly returns to its original shape and size.
  • the size of the porous spherical particles in a water-containing state is preferably 1 to 20 mm for the reasons described above. If it is desired to use the polymer immediately after being charged into the treatment tank, it is preferable to use polyvinyl acetal-based porous spherical particles in a water-containing state.
  • porous spherical particles are used not only as a microorganism carrier as described above, but also as an enzyme-immobilized carrier, a solution holding material for hydroponic cultivation of agricultural crops, a plant supporting material, a medium for animal and plant cells, and an artificial water. It is suitably used for moss, soil improvement materials, and the like. As a special use example, it can be used as a submersible fluid type cleaning member / submersible fluid type massaging member.
  • the porous spherical particles are put into a liquid in which activated sludge is dispersed, and are placed on the surface of the porous spherical particles and in the Z or pores.
  • Microorganisms can be attached and immobilized.
  • the fixing agent may be dispersed in active sludge, and porous spherical particles may be introduced into the dispersion to be fixed. In this case, it is preferable to use the compressed particles because the sludge quickly penetrates into the inside of the particles.
  • the above-described microporous spherical particle microbial support is impregnated with a mixed solution of sodium alginate containing microorganisms, and further mixed with the sodium alginate.
  • An aqueous solution of a polyvalent metal salt such as an aqueous solution of calcium chloride is added to the microorganism carrier obtained by impregnating the solution, and the sodium alginate is insolubilized on the surface of the porous body and in the Z or pores to cover the microorganisms. It is possible to obtain a fixed particulate porous microorganism carrier.
  • the microbial carrier of the porous spherical particles of the present invention can be used in any of known microbial treatment apparatuses, and can be used by filling a single or multi-tank type microbial treatment tank into a microorganism treatment tank. It works effectively in both anaerobic and aerobic treatments.
  • the microorganism carrier of the present invention may be a fluidized bed.
  • the present invention is also suitable for use as a so-called fixed-bed-type carrier in which the carrier is immobilized inside the reaction tank.
  • the above-mentioned porous spherical particles can be easily produced with high productivity by the following production method.
  • an aqueous solution obtained by mixing a water-soluble polymer having a property of gelling in an acidic solution, polyvinyl alcohol and aldehydes is dropped into the acidic solution,
  • the porosity is characterized in that the droplets are gelled and, at the same time, the polyvinyl alcohol and the aldehydes in the droplets are reacted with each other to obtain porous spherical particles having a skeleton of a polyvinyl acetal resin.
  • a method for producing spherical particles can be used.
  • the acetalization treatment and the molding process of the spherical particles can be performed simultaneously, so that a large number of steps are not required as in the conventional method, and the production is simple, high in production and spherical.
  • the production is simple, high in production and spherical.
  • porous spherical particles having a uniform particle diameter close to the above.
  • a film is provided on the surface of the particles, which results in excellent mechanical strength.
  • a solution containing polyvinyl alcohol is reacted with an acidic solution to form droplets, and at the same time, by the action of the acidic solution as a catalyst, the reaction between the polyvinyl alcohol and aldehydes contained in the droplets is performed. It is characterized by starting acetalization at the same time. In other words, while the polyvinyl alcohol and aldehydes in the solution do not react with the acidic solution as a catalyst, they do not react and maintain the solution state, but the acetalization reaction starts simultaneously with the contact with the acidic solution. And begin to solidify.
  • water-soluble polymers that gel in an acidic solution contained in a solution for example, water-soluble polymers that gel in an ion exchange reaction, are immediately ion-exchanged by the action of an acid. As a result, it becomes a gel-like substance and has viscosity, preventing the spherical form from being deformed until the reaction between the polyvinyl alcohol and the aldehydes is completed. Play a role.
  • the particles obtained by this method become porous because, by drying the spherical particles, a gel such as calcium alginate, which is present in the polyvinyl acetal skeleton particles, is dried and shrunk. This results in the formation of voids.
  • a gel such as calcium alginate, which is present in the polyvinyl acetal skeleton particles.
  • the reason that a film is formed on the particle surface is that a substance that functions as a pore-forming agent (both a water-soluble polymer gel and a pore-forming agent such as starch) cannot exist on the surface of the particle. This is probably because the same skeletal formation process as when reacting with aldehydes inside the particles rich in the forming agent cannot be taken.
  • the porous spherical particles become particles having a thin film having fine pores on the surface, while the inside of the particles is high.
  • the porous body has a spongy three-dimensional network structure with a porosity.
  • the water-soluble polymer having the property of gelling in an acidic solution, for example, by an ion exchange reaction is not particularly limited, and may be, for example, sodium alginate. , Carrageenan and sodium polyacrylate.
  • the concentration of the polyvinyl alcohol is not particularly limited, but generally, when the polyvinyl alcohol concentration is high, spherical particles are easily formed, and when the polyvinyl alcohol concentration is low, a hydrogel is formed. It will be easier. The difference in physical properties of these particles does not depend solely on the concentration of polyvinyl alcohol, but is also affected by other factors.
  • the concentration of polyvinyl alcohol is different for spherical particles than for hydrous gel particles. Of resin skeleton It is an important main component in forming particles. Therefore, in the present invention, the amount is important.
  • the concentration of polyvinyl alcohol exceeds 20% by weight, the viscosity of the solution becomes too high, and not only is it difficult to handle, but also it is difficult for the solution to be pulled during the dripping. Droplet-shaped particles are generated, and spherical particles having a uniform diameter or a nearly uniform diameter are hardly formed. If the polyvinyl alcohol concentration is less than 5% by weight, the strength of the spherical particles obtained by the acetalization reaction after dropping becomes low, which is not preferable. Therefore, it is desirable that the concentration of the polyvinyl alcohol be 5 to 20% by weight. In particular, 7 to 15% by weight is optimal.
  • the concentration of the particles it is preferable to lower the concentration of the particles to make it easier to produce clean particles, and it is preferable to set the concentration to about 1 to 7% by weight. is there.
  • the temperature of the mixed solution is not particularly limited as long as it can maintain fluidity without denaturing each other, and there is no problem at room temperature.
  • aldehydes examples include aliphatic and aromatic aldehydes such as formaldehyde, benzaldehyde, acetate aldehyde, butyl aldehyde, acryl aldehyde and glyoxal. .
  • An acetal that can be easily converted to an aldehyde by a coexisting acid may be used, but the reactivity with polyvinyl alcohol, water solubility, price, handleability, strength of the reaction product, and repulsion Considering the elasticity and ease of treatment after the reaction, formaldehyde is particularly excellent.
  • the concentration of the aldehydes is not particularly limited, but is important because it affects the degree of acetalization of the resin skeleton particles.
  • it is necessary to appropriately select an appropriate aldehyde concentration depending on the concentration of the coexisting acid catalyst and the reaction temperature.
  • the higher the aldehyde concentration the shorter the time to reach the desired degree of acetalization
  • the reaction rate will be high and it will be difficult to control the degree of acetalization.
  • the higher the acetalization degree the higher the strength, but if it is too high, when producing a porous body, the porosity decreases and the apparent specific gravity increases, and the water content decreases.
  • the hydrophilicity decreases as the residual hydroxyl groups decrease. Also, the rebound resilience of the particles decreases.
  • the acetalization degree is preferably in the range of 30 to 85 mol%.
  • the concentration of the aldehydes varies depending on the type, and when using formaldehyde, it is preferable to set the concentration to about 3 to 10% by weight.
  • the water-soluble polymer having a property of gelling in an acidic solution for example, the water-soluble polymer having a property of gelling by an ion exchange reaction is not particularly limited as described above.
  • sodium alginate, sodium carrageenan, sodium polyacrylate, and the like can be cited as examples. Considering the high gelation rate and gel state, sodium alginate can be used. The game is the best and it is preferable to use it.
  • the molecular weight of sodium alginate is not particularly limited, but the higher the molecular weight, the faster the gelation rate and the easier it is to produce clean particles.
  • the viscosity of the solution is too high, and thus it is not preferable because it tends to become droplet-shaped particles.
  • sodium alginate having a viscosity of about 30 dPa ⁇ sec at a concentration of 20 ° C. and 4% is suitably used. However, it is not limited to this.
  • the water-soluble polymer contained in the polyvinyl alcohol solution and having a property of gelling by, for example, an ion exchange reaction is capable of acting as a pore-forming agent and a shape maintaining agent.
  • this concentration is there is no particular limitation. In general, when these concentrations are high, the viscosity of the solution increases, which often hinders dripping. On the other hand, when the concentration is low, the reaction speed of gel formation becomes slow, and it is difficult to obtain spherical particles. In consideration of such handling, this concentration depends on the molecular weight of sodium alginate, but is preferably 0.5 to 5% by weight, particularly preferably 1 to 5% by weight in the above range of molecular weight. is there.
  • the concentration of sodium alginate when the concentration of sodium alginate is less than 0.5% by weight, the dispersing force becomes stronger than the surface tension of the water-soluble polymer itself on the water surface or in water, and water cannot be trapped. It spreads over the water surface.
  • the concentration of sodium alginate exceeds 5% by weight, it is difficult to obtain spherical particles having a uniform diameter as a result of injecting the yarn into the solution while pulling the yarn from the supply port.
  • an acidic solution during the production process in order to promote the reaction between the polyvinyl alcohol and the aldehyde.
  • these acids are not particularly limited, for example, any one of inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and maleic acid, and organic acids may be selected and used. Particularly strong acids are preferred.
  • sulfuric acid is optimal for handling, but it is necessary to appropriately select the type of acid to be used according to the type of polyvalent metal salt used in combination.
  • the aqueous solution of the polyvalent metal salt is not particularly limited, but mainly calcium chloride, zinc chloride, aluminum sulfate and the like are preferred.
  • the concentration varies somewhat depending on the type of metal salt selected and the temperature of the aqueous solution, but when calcium chloride is used, the optimal concentration is about 1 to 20% by weight.
  • the concentration is too high, the generated gel particles become large, and the phenomenon that the particles are fused to other adjacent particles tends to occur. Occurs.
  • a small amount of a polyvalent metal salt such as calcium chloride is added to an acidic aqueous solution to obtain a spherical shape. Spherical particles having a uniform diameter can be produced without collapsing the particles.
  • the polyvinyl acetal-based spherical particles produced by the production method according to claims 17 to 20 are characterized in that the polyvinyl acetal is contained in a hydrogel of a water-soluble polymer. Instead, it is obtained in a state in which a hydrogel of a water-soluble polymer such as sodium alginate is contained in the fatty bone of polyvinyl acetate. Then, as described above, the dried resin particles become porous with a fine pore diameter due to shrinkage of a gel of a water-soluble polymer such as sodium alginate. Thereby, rubbery elastic or relatively hard porous spherical resin particles can be obtained.
  • the gel of water-soluble polymer such as contracted sodium alginate is almost restored as a hydrous gel, and it can be used as a porous structure as a dwelling place for microorganisms.
  • porous spherical particles that open to the outside are obtained.
  • the particles can be produced by adding a pore-forming agent such as starch in advance to a polyvinyl alcohol solution as described later.
  • an aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by an ion exchange reaction and polyvinyl alcohol is used.
  • the gel-like particles are converted into aldehyde.
  • Polyacetal resin having a degree of acetalization of 30 to 85 mol% by reacting the polyvinyl alcohol contained in the gel-like particles with aldehydes by adding to the acidic solution containing the gel-like particles.
  • a hydrogel of a water-soluble polymer is not used as a main component of the spherical particles, but is used as a shape retaining means of the spherical particles.
  • polyvinyl acetal-based spherical particles having physical properties such as infinitely close to a uniform diameter. That is, each of polyvinyl alcohol, which is a main component of the skeleton particles to be polyvinyl acetal, and a water-soluble polymer such as sodium alginate, which has a shape-retaining action and a pore-forming action for spherical particles in the production process.
  • a polyvinyl acetal system having physical properties such as rubber elasticity and relatively hardness and having a uniform particle size close to a true sphere is obtained. This makes it possible to produce skeleton spherical particles easily and in large quantities.
  • the degree of acetalization can be easily adjusted as compared with the production method according to the above-described claim 17.
  • the degree of acetalization can be controlled by adjusting the amount of the aldehydes in the reaction solution, the temperature of the reaction solution, and the reaction time.
  • aqueous solution of a valent metal salt is dropped into an aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction and polyvinyl alcohol, and the droplet of the polyvalent metal salt is dissolved in water.
  • the polymer is solidified by the reaction of the polymer to form a gel-like spherical particle in which a gel of a water-soluble polymer reacted with a polyvalent metal salt and polyvinyl alcohol are mixed at the outer periphery of the droplet, and then the gel
  • the particles are obtained by adding the particles to an acidic aqueous solution containing aldehydes, and reacting the polyvinyl alcohol contained in the gel-like particles with the aldehydes.
  • the polyhydric metal salt aqueous solution is dropped into the polyvinyl alcohol solution, so that the outer periphery of the droplet gels, and the polyvinyl alcohol solution cannot enter the inside of the droplet.
  • the product is formed into hollow particles.
  • the spherical particles obtained by the above-described various production methods become porous because the gel existing in the polyvinyl acetate-based skeleton particles shrinks due to drying of the spherical particles. to cause.
  • the gel existing in the polyvinyl acetate-based skeleton particles shrinks due to drying of the spherical particles. to cause.
  • at least the property of gelling by ion exchange reaction with polyvinyl alcohol By adding a pore-forming agent to an aqueous solution obtained by mixing and dissolving a water-soluble polymer having the above, a porous body having a large pore diameter can be produced.
  • the pore-forming agent is not particularly limited, but the starch has a relatively uniform particle size, and the size of the particles is determined by the pore size required for the porous spherical particles of the present invention. Perfect to fit. Further, when the porous spherical particles are washed, they are relatively easily washed off with water, and handling after the particle molding is facilitated.
  • the porous spherical particles produced by adding this pore-forming agent such as starch can be suitably used particularly as a fluidized bed type microorganism carrier.
  • the gel can be positively removed from the porous spherical particles having the skeleton of the polyvinyl acetal resin as described above. That is, the above porous spherical particles shrink the gel by drying to form a porous body, but when in a wet state, the gel tends to recover while exhibiting a porous structure. Therefore, by actively removing such a gel, it can be used as a porous body that is opened externally in a wet state.
  • the main component of the gel is a water-soluble high molecular gel that has the property of gelling with an acidic solution. For example, remove this water-soluble polymer gel such as alginic acid.
  • a method for removing particles a method in which particles are added to a solution containing sodium ions and then ion-exchanged by stirring and washing, or a method such as ethylenediaminetetraacetic acid (EDTA) or a phosphate buffer is used. Examples of the method include a method using a chelating agent for calcium ions, and a method of centrifugation. Either method is a suitable gel removal method.
  • the pore diameter, porosity, and acetalization degree of the present invention including the examples described below are based on the following measurement methods.
  • the pore size was measured based on ASTM CDesignation: D4404-84). Specifically, the average pore diameter was determined by a mercury intrusion porosimetry using a porosimeter manufactured by PORUS MATERIALS, INC.
  • the acetalization degree F (%) was calculated from the proton NMR measurement in an aqueous solution of deuterium chloroform and trifluoroacetic acid by the following equation.
  • Polyvinyl alcohol resin having an average degree of polymerization of 1500 and completely saponified is dissolved in hot water, cooled, and a separately adjusted aqueous solution of sodium alginate is added thereto.
  • the aqueous solution of formaldehyde was added to the mixture, and mixed uniformly.
  • this mixture was dropped into a 10% aqueous sulfuric acid solution.
  • the liquid temperature of the aqueous sulfuric acid solution was 60 ° C.
  • the droplets formed in the aqueous sulfuric acid solution gelate in about 5 minutes, and after reacting in that state for about 5 minutes, the particles are separated.As a result, elastic particles having a resin skeleton of polyvinyl acetal are obtained.
  • a completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 was dissolved in hot water and then cooled, and a separately adjusted aqueous solution of sodium alginate was added thereto and mixed.
  • This mixture was dropped into a mixture of a separately prepared aqueous solution of formaldehyde and an aqueous solution of sulfuric acid.
  • the liquid temperature of this acidic formalin solution was 60 ° C.
  • the dropped droplets gelled in about 5 minutes, and were reacted for about 30 minutes in this state, thereby producing elastic particles having a poly (vinyl acetal) resin skeleton. This was almost the same as that obtained in Example 1.
  • a completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 was dissolved in hot water and then cooled. Next, this mixture was dropped into a mixture of a separately prepared aqueous solution of formaldehyde and an aqueous solution of sulfuric acid.
  • the liquid temperature of the acidic aqueous phormalin solution was 60 ° C. However, the same phenomenon as in Comparative Example 1 occurred, and spherical particles could not be obtained.
  • the translucent gel-like particles began to become cloudy and completely whitened after about 10 minutes, and spherical particles having rubber elasticity and having a resin skeleton of polyvinyl acetate resin were obtained. This was sufficiently washed with water to obtain polyvinyl acetal hollow particles having a uniform particle diameter close to a true sphere having a particle diameter of 3 to 4 mm.
  • Polyvinyl alcohol resin with an average degree of polymerization of 150 and completely saponified is dissolved in hot water, then cooled, and a separately prepared calcium chloride aqueous solution is added thereto to give a total of 2000 ml mixed solution. And When this solution is slowly dropped into an aqueous sodium alginate solution, the solution gels while settling and becomes semipermeable.
  • a completely saponified polyvinyl alcohol resin with an average degree of polymerization of 1500 is dissolved in hot water, then cooled, and a separately adjusted aqueous sodium alginate solution is added thereto to bring the total amount to 200,000. ml of the mixed solution.
  • a separately adjusted aqueous sodium alginate solution is added thereto to bring the total amount to 200,000. ml of the mixed solution.
  • the droplets begin to solidify and lose their fluidity, and after about 3 minutes are completely gelled to form translucent spherical particles. occured.
  • the gel particles were separated and collected, and further added to a mixed aqueous solution having a formaldehyde concentration of 4% and a sulfuric acid concentration of 5%.
  • the translucent gel-like particles began to become cloudy and completely whitened after about 3 minutes, and spherical particles having rubber elasticity were obtained.
  • the internal structure was observed with a scanning electron microscope.As a result, they had many pores of 2 to 4 m, all of which were interconnected.
  • the gel-like particles After obtaining the gel-like particles by the same operation as in Example 4, the gel-like particles were separated and collected, and then added to a mixed aqueous solution of 80% formaldehyde and 10% sulfuric acid at 80 ° C. did. After reacting for 5 minutes in this state, 3 to 4 mm spherical particles having no elasticity were obtained. The spherical particles had fine crater-like irregularities. This was thoroughly washed with water, dried, and the internal structure was observed with a scanning electron microscope.As a result, it had many pores of 24 am, all of which were communication holes.
  • Example 5 In the same manner as in Example 5, the gel-like particles were added to a mixed solution of 8% formaldehyde and 10% sulfuric acid at 20 ° C and reacted for 15 hours. Particles were obtained, and the particle surfaces were smoother than those obtained in Example 5.
  • Example 4 When the mixture prepared in the same manner as in Example 4 was dropped into 500 ml of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, completely gelled. Thus, translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 60 ° C. and reacted for about 60 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. The spherical particles obtained in this example The degree of tarification was about 67 mol%.
  • Example 4 When the mixed solution prepared in the same manner as in Example 4 was dropped into 500 ml of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, completely gelled. Translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 75 ° C. and reacted for about 15 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. The degree of acylation of the spherical particles obtained in this example was about 65 mol%.
  • a completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 is dissolved in hot water and then cooled, and a separately adjusted aqueous sodium alginate solution is added thereto to bring the total amount to 200,000. ml of the mixed solution. As soon as this was slowly dropped into 500 ml of 3% aqueous solution of calcium chloride, the solution began to solidify and lost its fluidity, and after about 3 minutes completely gelled, the shape of the particles was changed. It was drop-shaped and not a true sphere.
  • Example 4 When the mixture prepared in the same manner as in Example 4 was dropped into 500 m of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, it completely gelled. Thus, translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 60 ° C. and reacted for about 15 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. However, the degree of acetalization of the spherical particles obtained in this comparative example was about 30 mol%, and wear was confirmed in a durability test described later.
  • the spherical particles obtained in each of the examples were sponge-like open cells having a network structure, had good hydrophilicity, and were rich in flexibility and elasticity in a wet state.
  • the porosity was uniformly dispersed between 80% and 95%, and the average porosity was 9%. 0%.
  • the pore size was distributed between 30 and 100 / m, with an average of 60 ⁇ m. The pore diameter in this range was appropriate for maintaining microorganisms in the porous material, and was suitable for use as a carrier.
  • the apparent specific gravity of the porous spherical particles obtained in each example in a water-containing state was about 0.17 to 1.019 per 10 samples.
  • the specific gravity of the hollow particles of Example 3 was smaller than this and was about 1.008.
  • the water content after centrifugal dehydration was 50.4%, and the 50% compressive stress was 20 ⁇ 10 3 NZn.
  • the porous spherical particles obtained in each Example were dried at 60 ° C. for 1 hour.
  • the water content was 3.0%.
  • this was pressed at a pressure of 4.9 xi06 NZm 2 it was compressed to 0.75-1.5 mm in diameter.
  • 20 of these were placed in shaken water, they quickly absorbed and swollen, and sank below the surface in 8 seconds.
  • the settled grains were taken out and measured in a state of being moistened with water to a water content of 50%, they were all poured into water and restored to the original size. In other words, it was confirmed that when it was put into water, it immediately swelled to 2 to 4 times its volume.
  • porous spherical particles of No. 7 were filled so as to have a volume of 10% with respect to the amount of water, and were aerated and flown in water, whereby the particles were uniformly dispersed and flown. This flow
  • a water-resistant sandpaper 100 count was attached to the inner surface of the side wall of the test container as described above.
  • Various carriers were individually filled so as to have a volume of 10% with respect to the amount of water, and stirred and fluidized in water. The stirring was set so that the stirring blades, which had been introduced into the water tank, were rotated at a speed of 300 rpm to mechanically flow the carrier, thereby generating friction with the inner wall. This flow was carried out continuously for one week, and the state of the carrier was observed over time.
  • the porous spherical particles of the present invention did not show any abrasion due to friction, and showed that they were rich in abrasion resistance. And were confirmed.
  • As the calcium alginate gel a gel prepared by dropping and solidifying a 1% aqueous sodium alginate solution into a 2% aqueous calcium chloride solution was used.
  • the particles were filled in a polypropylene container having a large number of 2 mm mesh holes with about 10%, and the container was immersed in an activated sludge aeration tank. One year later, the container was taken out, and the polyvinyl acetal particles in the container were observed. No dimensional change due to abrasion was observed. In addition, aerobic microorganisms adhered to the particle surface at a high density, and erosion of the carrier by these microorganisms was not confirmed. (Manufacture of inclusive immobilized carrier)
  • a mixture of activated sludge concentrated to about 50 g / 1 by centrifugation and 2% sodium alginate at a volume ratio of 1: 1 was separately prepared, and this was prepared by the above-mentioned procedure.
  • the porous spherical particles obtained in the examples were impregnated. The mixture was flowed under reduced pressure to increase the impregnation amount.
  • the microbial inclusion body obtained by impregnating the porous spherical particles with the mixed solution of sodium alginate and the microorganism is further added to a 5% calcium chloride aqueous solution and stirred, and the state is maintained for about 3 hours. And reacted.
  • sodium alginate contained in the polyvinyl acetal-based porous material was insolubilized and immobilized in a state in which the microorganisms were included.
  • the microbial entrapping immobilization support obtained in this manner has the alginate gel adhered in the pores and on the surface of the aforementioned porous spherical particles, and is hydrophilic similarly to the polyvinyl acetal porous body. It had good flexibility and was rich in flexibility and elasticity at the time of setting. Further, the porous spherical particles are polyvinyl formal and are rich in hydrophilicity, so that the gel is easily adapted to the porous spherical particles, and the gel is uniformly present in the particles. Furthermore, the high porosity and the three-dimensional network structure keep the gel ratio in the particles high.
  • Example 3 it was recognized that hollow particles could be obtained by, for example, dropping the first reaction solution of Example 1 and the dripping solution in the opposite direction. In this case, it was found that the lower the concentration of polyvinyl alcohol, the easier it was to obtain clean particles.
  • the porosity and the pore diameter of the spherical particles could be controlled by adding a pore-forming agent such as starch to the dripping solution.
  • a pore-forming agent such as starch
  • starch used as the pore-forming agent
  • the temperature of the first reaction solution is set slightly higher to expand the starch, and the amount of sulfuric acid in the second reaction solution is increased because the starch consumes sulfuric acid. It has been found that setting to the value gives better results. It was also found that the acetalization time could be significantly reduced by slightly raising the temperature of the second reaction solution.o
  • all of the algae obtained in these examples are excellent in use as a carrier for immobilizing microorganisms, and have good results in flow performance, specific gravity, abrasion resistance, weather resistance (light) resistance, and microbial degradation resistance.
  • compressing the spherical particles of the present invention improves water permeability and facilitates use.
  • the acetalization degree was as low as 30 mol% or less, the wear resistance was reduced.
  • the porous spherical particles of the present invention are porous spherical particles having a polyvinyl acetal-based resin as a skeleton, the porous spherical particles have high mechanical strength and abrasion resistance. It can be used for various purposes such as plant support material, culture medium for animal and plant cells, artificial moss, soil improvement material, underwater fluidized cleaning member, underwater fluidized massaging member.
  • a microorganism carrier in particular, a fluidized bed microorganism carrier
  • the carrier is hard to be worn by friction between carriers and friction with the inner wall of the reaction tank when the carrier flows, and the life of the carrier is prolonged.
  • it has excellent fluidity, specific gravity, weather resistance (light) resistance, and microbial degradation resistance, making it suitable as a fluidized bed microbial carrier and microbial inclusion support. Can be used.
  • porous spherical particles having a skeleton of a polyvinyl acetal resin having a uniform particle shape close to a true sphere it is easy to fill in various containers, further improving abrasion resistance, and a fluidized bed type microorganism. Fluidity as a carrier can also be improved.
  • the reaction time and the post-processing step can be significantly reduced, and the spherical particles can be produced continuously in large quantities. Therefore, the production time can be greatly reduced, and a material excellent in strength can be obtained. Further, a granular material having an arbitrary particle size and as uniform as possible can be obtained. In addition, the yield can be improved with less loss in the post-process as in the conventional method, and the space required for the reaction can be reduced.
  • hollow polyvinyl acetal-based porous spherical particles can be obtained, and are particularly suitably used as a fluidized bed type microorganism support. I. Porous spherical particles having a skeleton of polyvinyl acetal resin.
  • Porous spherical particles composed of a sponge whose skeleton is a polyvinyl acetal resin.
  • the polyvinyl acetal resin is polyvinyl formal
  • porous spherical particles according to the above item.
  • porous spherical particle according to any one of claims 1 to 3, wherein the porosity of the porous spherical particle is 50 to 98%.
  • porous spherical particle according to any one of claims 1 to 4, wherein the particle is a hollow body.
  • Sponge-like porous spherical particles with a water content of 10% or less which quickly expand to a volume of 2 to 10 times when injected into water, and have a size of 1 to 10 in a water-containing state.
  • the compressed porous spherical particles according to claim 10 which has a diameter of 20 mm.
  • a microbial carrier characterized by using porous spherical particles having a skeleton of a polyvinyl acetal resin as described in (1).
  • microorganism-carrying microorganism according to claim 12 wherein microorganisms are fixed on the surface and / or in the pores of the porous spherical particle according to any one of claims 1 to 11. body.
  • microorganism is entrapped and immobilized by a microorganism immobilizing agent on the surface and / or in the pores of the porous spherical particles according to any one of claims 1 to 11. 3.
  • microorganism carrier according to claim 14 wherein the microorganism immobilizing agent mainly comprises sodium alginate.
  • An aqueous solution obtained by mixing a water-soluble polymer having a property of gelling in an acidic solution, polyvinyl alcohol and aldehydes is dropped into the acidic solution, and the droplets are gelled.
  • a method for producing porous spherical particles comprising reacting polyvinyl alcohol and aldehydes in the droplets to obtain porous spherical particles having a polyvinyl acetal resin as a skeleton.
  • An aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction and polyvinyl alcohol is dropped into a polyvalent metal salt aqueous solution, and the solution is subjected to ion exchange reaction.
  • the droplets are gelled to form gel-like spherical particles containing polyvinyl alcohol, and then the gel-like particles are added to an acidic solution containing aldehyde, and the polyvinyl alcohol contained in the gel-like particle body is added.
  • porous spherical particles characterized by obtaining alcohol-reacted aldehydes to obtain porous spherical particles having a skeleton of polyvinyl acetal resin having an acetalization degree of 30 to 85 mol%.
  • Method. 19 The water-soluble polymer with gelling performance is found in the aqueous solution obtained by mixing and dissolving the water-soluble polymer with gelling performance and polyvinyl alcohol.
  • porous spherical particle according to claim 18 comprising 5 to 5% by weight, and further comprising 5 to 20% by weight of polyvinyl alcohol. Production method.
  • the gel-like particles are added to an acidic aqueous solution containing aldehydes, and the polyvinyl alcohol contained in the gel-like particles is reacted with the aldehydes to form a polyvinyl acetal resin as a skeleton.
  • a method for producing porous spherical particles characterized by obtaining hollow porous spherical particles.
  • aqueous solution according to any one of claims 17 to 20 which is obtained by mixing and dissolving at least a water-soluble high-molecular compound having a property of gelling by ion exchange reaction and polyvinyl alcohol.
  • the spherical particles obtained in claims 17 to 20 are pressed to extrude gas contained in the pores of the porous spherical particles, and the spherical particles are also extruded.

Abstract

Porous spherical particles being excellent in mechanical strength and abrasion resistance, having an affinity for microorganisms, and being appropriately usable as microbial carriers; and a process whereby these particles can be easily produced at a high productivity. The above-mentioned particles comprise a polyvinyl acetal resin as the skeleton and have a porosity of 50 to 95 % and a degree of acetalization of 30 to 85 % by mol. The above-mentioned process comprises dropping an aqueous solution containing a mixture dissolved therein of polyvinyl alcohol, a water-soluble polymer capable of gelling via an ion exchange reaction and aldehydes into an acidic solution and solidifying the droplets through the reaction between the polyvinyl alcohol and the aldehydes. The particles are appropriate as microbial carriers, in particular, those to be used in waste water treatment tanks of the fluidized bed type.

Description

明 細 書 ポ ビ'二ルァセタール系多孔性球伏粒子及びその製造方法並びに微生物担体  Description POBI'-Diacetal porous spherical particles, method for producing the same, and microorganism carrier
技術分野 Technical field
本発明は、 多孔性球状粒子及びその製造方法に関する。 さ らに詳し く いえば、 特に流動床型の微生物担持体と して特に好適に用いられるポリ ビニルァセタール系樹脂を骨格とする多孔性球状粒子、 及びその多孔性 球状粒子を好適に製造するこ とができる多孔性球状粒子の製造方法に関 する。 背景技術  The present invention relates to porous spherical particles and a method for producing the same. More specifically, a porous spherical particle having a skeleton of a polyvinyl acetal resin particularly preferably used as a fluidized bed type microorganism carrier, and a porous spherical particle thereof are preferably produced. The present invention relates to a method for producing porous spherical particles. Background art
反応器内に微生物や酵素を充填し、 その微生物、 酵素による反応を利 用 して生産物を得る方法はいわゆるバイオ リ アク ターと呼ばれる もので あり、 食品、 医薬品、 化学品の製造分野や下水道、 排水、 排ガスなどの 処理分野において従来よ り工業的な活用がなされている。 また近年では 処理能力をよ り効率化するために、 この微生物生体触媒を反応槽内に高 密度に充塡する手段が種々研究されている。  A method of filling a reactor with microorganisms and enzymes and using the reaction of the microorganisms and enzymes to obtain a product is a so-called bioreactor, which is used in the fields of food, pharmaceuticals, chemicals, and sewage. It has been used more industrially in the fields of wastewater and waste gas treatment. In recent years, in order to make the processing capacity more efficient, various researches have been conducted on means for filling the microbial biocatalyst with high density in the reaction tank.
その手段の 1 つと して最も代表的なものは、 微生物を粒状担持体に担 持させる方法であり、 詳し く は微生物を担体表面に担持して生物膜を利 用する生物膜法と担持体の内部に微生物を固定化する包括固定化微生物 法の 2 つに分けられる。 またこの担持体の素材と しては高分子物質及び 無機系物質があり、 担体の使用形態についても、 反応槽の内部に担体を 固定化して使用する固定床型も し く は担体を流動させながら使用する流 動床型とがあげられる。  The most typical one of the means is a method in which microorganisms are supported on a granular carrier, and more specifically, a biofilm method in which microorganisms are supported on a carrier surface and a biofilm is used, and a carrier. The microbial immobilization method for immobilizing microorganisms inside a cell is divided into two methods. The material of the carrier includes a polymer substance and an inorganic substance, and the form of use of the carrier is also fixed, and the carrier is immobilized inside the reaction tank, or a fixed bed type or a carrier is made to flow. A fluidized bed type is used while using.
中でも、 流動床型にて使用される担持体には、 流動性能及び比重が重 要となるため、 無機系の担持体より も高分子系の粒状担持体が用いられ るのが一般的である。 この担持体の素材と して、 例えばポ リ ビニルアル コールゲル ( P V Aゲル) 、 ァ ク リ ノレア ミ ドゲル、 ポ リエチレングリ コ ールゲル等のゲル状粒状体や、 ポ リ エチレン、 ポ リ ウ レタ ン、 ポ リ塩化 ビニリデン、 セルロ ース等の多孔質粒状体を用いる方法などが種々提案 されている。 In particular, the fluidity and specific gravity of a carrier used in a fluidized bed type are important. For this reason, it is common to use a polymer-based granular carrier rather than an inorganic carrier. Examples of the material of the carrier include gel-like granules such as polyvinyl alcohol gel (PVA gel), acrylonitrile midgel, and polyethylene glycol gel, and polyethylene, polyurethane, and polystyrene. Various methods using a porous granular material such as vinylidene dichloride and cellulose have been proposed.
従来、 これらの粒状体は以下のように して製造されていた。 すなわち 、 原料を溶解させた水溶液に、 気孔形成剤、 架橋剤、 触媒等の添加物を 混練したものを大型の反応型に流し込み、 湯浴も し く は空気浴にて反応 させ不溶化させる。 さ らに水洗にて気孔形成剤を抽出除去するこ とによ りブロ ッ ク状の高分子多孔質体が得られる。 次に、 この大型ブロ ッ ク状 の高分子多孔質体を、 数 ミ リの厚さにスラ イ スするこ とによ り シー ト形 状となし、 さ らにこのシー ト体を数 ミ リ単位にカ ッ ト し紐状となし、 最 後にこの紐状高分子多孔質体を数ミ リ の長さずつカ ツ 卜する こ と によ り 、 数ミ リ角の立方形粒子を製造している。 また、 前記大型ブロ ッ ク状の 高分子多孔質体を、 数ミ リ の厚さにスラ イ スする こ とにより シー ト形状 とな し、 さ らにこのシー ト体を数 ミ リ単位に打ち抜き型で打ち抜く こ と によっても粒状多孔質体が得られる。  Conventionally, these granular materials have been manufactured as follows. That is, a mixture obtained by kneading additives such as a pore-forming agent, a cross-linking agent, and a catalyst into an aqueous solution in which raw materials are dissolved is poured into a large-sized reaction type, and the mixture is reacted in a hot water bath or an air bath to be insolubilized. Further, by extracting and removing the pore-forming agent by washing with water, a block-like polymer porous body can be obtained. Next, this large block-shaped polymer porous body is formed into a sheet shape by slicing to a thickness of several millimeters. By cutting into a string and cutting it into a string, and finally cutting the string-like polymer porous body by several millimeters in length, cubic particles with several millimeters of angle are produced. are doing. In addition, the large block-shaped polymer porous body is sliced to a thickness of several millimeters to form a sheet shape, and the sheet body is further reduced to several millimeters. A granular porous body can also be obtained by punching with a punching die.
ところで、 微生物担持体に望まれる性質と しては、 微生物との親和性 のほかに、 流動性能、 比重、 耐摩耗性、 耐候 (光) 性、 耐微生物分解性 などがあげられ、 担体の種類によってこれらの性能が異なる。 上記各担 体種の中でもゲル状担体は微生物との親和性は優れている ものの、 機械 的強度が低く 、 特に耐摩耗性能については著し く 劣っており、 担体流動 時に発生する担体同士の摩擦や反応槽内壁との摩擦により摩耗し易 く 、 担体寿命が短いつ また、 ポ リ エチ レ ン、 ポ リ ウ レタ ン等の多孔質粒状体 は耐候性能がさほど高いものではな く 、 セルロースについてはそれ自身 が生物分解を受け易く 、 長期使用において担体が崩壊し易く 、 寿命が短 いといった問題があった。 また、 容器への充塡や、 耐摩耗性の向上、 及 び流動床型の微生物担持体と しての流動性の向上などを考慮すると、 で きる限り真球に近い均一粒子径の多孔性粒状体を得るこ とが重要である が、 従来の多孔性粒状体は、 立方形粒子であるため、 この点が必ずし も 十分なものではなかった。 By the way, properties desired for a microorganism carrier include not only affinity for microorganisms, but also flow performance, specific gravity, abrasion resistance, weather (light) resistance, and microbial resistance, and the like. These performances differ depending on the application. Among the above carrier types, the gel carrier has excellent affinity for microorganisms, but has low mechanical strength, and in particular, has a remarkably inferior abrasion resistance, and friction between carriers generated when the carrier flows. And the carrier is short due to friction with the inner wall of the reaction tank.Polyethylene, polyurethane and other porous granular materials do not have very high weather resistance, and cellulose Is itself However, there is a problem in that the carrier is susceptible to biodegradation, the carrier is easily broken down over a long period of use, and the life is short. In addition, considering the filling of the container, the improvement of the abrasion resistance, and the improvement of the fluidity as a fluidized bed type microbial carrier, the porosity of a uniform particle diameter as close as possible to a true sphere is possible. It is important to obtain granules, but this point was not always sufficient because conventional porous granules are cubic particles.
また、 従来の多孔性粒状体は、 上述した製造方法で製造されていたた め、 反応に少な く と も数時間を要し、 反応後に 3段階もの成形工程を必 要と し、 また、 数 ミ リ単位の均一な粒状体となすには少なく と も 2 日以 上の製造日数を必要と していた。 また打ち抜き型で打ち抜く 場合、 数 ミ リ程度の粒子はそのう ち抜き型に詰まる こ とが多く 、 これを取り除く 後 処理を必要と した。 さ らにブロ ッ ク状の多孔質体を後加工によりスライ ス、 カ ッ ト、 も し く は打ち抜きをするため、 歩留ま り も低いものであつ た。  In addition, since the conventional porous granular material is manufactured by the above-described manufacturing method, the reaction requires at least several hours, and requires three stages of forming steps after the reaction. It took at least two days to produce uniform granules in millimeter units. In the case of punching with a punching die, particles of about a few millimeters are often clogged in the punching die, and a post-treatment for removing the particles is required. Furthermore, the yield was low because the block-shaped porous body was sliced, cut or punched by post-processing.
この点、 後加工の時間を大幅に短縮し、 歩留ま りを向上させる手段と して、 プロ ッ ク状の高分子体をスライスせずにそのまま粉砕器などにて 粉砕する方法があげられる。 この方法では確かに加工時間が大幅に短縮 できる と と もに歩留ま り も高く する こ とができるが、 均一な粒子径を持 つ多孔性球状粒子を得るこ とは困難であった。  In this regard, as a means of greatly reducing the time required for post-processing and improving the yield, there is a method of crushing the block-like polymer without slicing it with a crusher without slicing. . Although this method can certainly shorten the processing time and increase the yield, it has been difficult to obtain porous spherical particles having a uniform particle diameter.
さ らに上記いずれの方法も型ごとに反応を行うため、 生産量の増加に 比例して反応槽のスペースを広く とる必要があり、 限られた設備の中で はその生産量に限界があるとと もに生産性も悪いといった問題点もあつ た。  In addition, in each of the above methods, since the reaction is performed for each mold, it is necessary to increase the space of the reaction tank in proportion to the increase in production volume, and the production volume is limited in limited facilities. At the same time, there was a problem that productivity was poor.
本発明の課題は、 機械的強度及び耐摩耗性が高く 、 また微生物との親 和性をも合わせ持ち、 微生物担持体、 特に流動床型の微生物担持体と し て好適に使用できる多孔性球状粒子を提供する と ころにある。 また本発 明の課題は、 できる限り真球に近い均一粒子怪の多孔性球状粒子を、 簡 単に、 かつ高生産で製造する こ とができ る多孔性球状粒子の製造方法を 提供する ところにある。 発明の開示 An object of the present invention is to provide a porous sphere that has high mechanical strength and abrasion resistance, and also has compatibility with microorganisms, and can be suitably used as a microorganism carrier, particularly a fluidized bed type microorganism carrier. That's where the particles come in. Again An object of the present invention is to provide a method for producing porous spherical particles that enables simple and high-production of porous spherical particles having a uniform particle shape as close as possible to a true sphere. Disclosure of the invention
本発明者らは、 上記課題を解決するため鋭意研究した結果、 ポ リ ビニ ルァセタール系樹脂を骨格とする多孔性球状粒子、 特に、 ポリ ビニルァ セタール系樹脂を骨格とするスポンジ状の多孔性球状粒子、 中でもポ リ ビニルホルマール樹脂を骨格とする多孔性球状粒子を用いると、 耐摩耗 性、 耐候 (光) 性、 耐微生物分解性、 流動性及び微生物親和性に優れた 素材を得るこ とができるという知 aを得た。  The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that porous spherical particles having a skeleton of a polyvinyl acetal resin, in particular, sponge-like porous spherical particles having a skeleton of a polyvinyl acetal resin. In particular, when porous spherical particles having a skeleton of polyvinyl formal resin are used, a material having excellent wear resistance, weather (light) resistance, microbial decomposition resistance, fluidity and microbial affinity can be obtained. I got a knowledge.
本発明は、 ポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子 である。 さ らには、 気孔と して連通孔を有するスポンジ状のポ リ ビニル ァセタール系樹脂からなる多孔性球状粒子である。 従って、 微生物の担 持体と して、 ポ リ ビニルァセタール系多孔性球状粒子、 特にポ リ ビニル ホルマール ( P V F ) の多孔性球状粒子を用いると、 耐摩耗性、 耐候 ( 光) 性、 耐微生物分解性、 流動性及び微生物親和性に優れた微生物担持 体とするこ とができる。  The present invention is a porous spherical particle having a skeleton of a polyvinyl acetal resin. Further, it is a porous spherical particle made of a sponge-like polyvinyl acetal resin having communication holes as pores. Therefore, when polyvinyl acetal-based porous spherical particles, particularly polyvinyl formal (PVF) porous spherical particles are used as a carrier for microorganisms, wear resistance, weather resistance (light) resistance, and microbial degradation resistance A microorganism carrier having excellent properties, fluidity and microbial affinity can be obtained.
かかる多孔性球状粒子は、 含水ゲル構造でな く 、 ポ リ ビニルァセター ルの骨格構造を有するスポ ン ジ状多孔質体であるため、 耐摩耗性及び機 械的強度がゲル状体に比べて優れており、 微生物担持体と しての用途の ほか、 農作物の水耕栽培における溶液保持材ゃ植物支持材、 動植物細胞 の培地、 人工水苔、 土壌改良材、 配管洗浄部材、 濾過材、 吸水材等に好 適に用いられる。 また特殊な使用例と しては、 水中流動型洗浄部材ゃ水 中流動型マ ッサージ部材と して利用すること も可能である。 ここで、 水 中流動洗浄部材とは表面がデリ ケ一 トな野菜や凹凸の多い野菜などを洗 浄するために、 水中に野菜と と もに入れ、 水槽の底部より泡を発生させ て全体をパブリ ング攪拌する こ とによ り、 野菜等と接触させ、 野菜の表 面を洗浄するための洗浄部材をいう。 また、 水中流動型マッサ一ジ部材 とは、 人体に対しマッサージ効果を得る ものであって、 浴槽などの水槽 中において該粒子を流動させながら人体に接触させるこ とにより皮膚に 刺激を与えマ ッサージ効果を得るための部材をいう。 Such porous spherical particles are not a hydrogel structure but a sponge-like porous body having a skeleton structure of polyvinyl acetate, and therefore have excellent wear resistance and mechanical strength as compared with a gel-like body. In addition to its use as a microorganism carrier, it is also used as a solution holding material for hydroponic cultivation of agricultural crops, plant support materials, animal and plant cell culture media, artificial moss, soil improvement materials, pipe cleaning materials, filtration materials, water absorbing materials It is suitably used for such purposes. As a special use example, it can be used as an underwater flowing type cleaning member / underwater flowing type massaging member. Here, the fluid-in-water cleaning member is used to wash vegetables with delicate surfaces or vegetables with many irregularities. In order to clean the vegetable surface, put it in the water together with the vegetables, generate bubbles from the bottom of the aquarium, and publish and stir the whole to bring them into contact with the vegetables, etc. Refers to a cleaning member. The underwater-flowable massaging member is a member for obtaining a massage effect on the human body, and irritates the skin by contacting the particles with the human body while flowing the particles in a water tank such as a bathtub, thereby giving a massage. Refers to a member for obtaining an effect.
特に、 微生物担持体の場合、 微生物との親和性を合わせ持ち、 また流 動性にも優れているこ とから流動床型の用途に最適に使用するこ とがで きる。 特に、 ポ リ ビニルァセタール系樹脂を骨格とする、 真球に近い均 一粒子径の多孔性球状粒子の場合、 機械的強度及び耐摩耗性に一層優れ ており、 容器への充塡ゃ微生物担持体と しての流動性が一層向上する また、 本発明者らはこれらの多孔性球状粒子を製造する方法と して、 酸性溶液中にてゲル化する性質を有する水溶性高分子とポ リ ビニルアル コール及びアルデヒ ド類を含む溶液を酸性溶液中に滴下し、 該液滴をゲ ル化せしめる と と もに該液滴中のポ リ ビニルアルコールとアルデヒ ド類 とを反応させることによってポ リ ビニル系ァセタール系樹脂を骨格とす る多孔性球状粒子を得るこ とができることを見出 した。  In particular, in the case of a microorganism carrier, it has an affinity for microorganisms and has excellent fluidity, so that it can be optimally used for fluidized bed applications. In particular, porous spherical particles having a uniform particle size close to a true sphere and having a skeleton of a poly (vinyl acetal) resin are more excellent in mechanical strength and abrasion resistance, and can be used to fill a container with a microorganism carrier. Further, the present inventors have proposed a method for producing these porous spherical particles as a water-soluble polymer having a property of gelling in an acidic solution and a polyvinyl alcohol. A solution containing alcohol and aldehydes is dropped into an acidic solution, the droplets are gelled, and the polyvinyl alcohol in the droplets is reacted with the aldehydes to form polyvinyl alcohol. It has been found that porous spherical particles having a skeleton of an acetal-based resin can be obtained.
本製造方法によると、 粒子を形成する原液の液滴が反応液と接触して 直接粒子となるため、 ァセタール化処理と球状粒子の成形過程を同時に 行う こ とができる。 また、 ァセ夕一ル化のための触媒である酸に接触す る とゲル化する水溶性高分子を含んでいるため液滴の形状が崩れる こ と がない。 従って、 従来のように多工程を要するこ となく 、 簡単に、 かつ 高生産で、 しかも真球に近い均一粒子怪の多孔性球状粒子を製造するこ とができる。 発明を実施するための最良の形態 本発明は、 ポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子 である。 さ らには、 気孔と して連通孔を有するスポンジ状のポ リ ビニル ァセタール系樹脂からなる多孔性球状粒子である。 According to the present production method, the droplets of the stock solution forming the particles are brought into contact with the reaction solution and directly formed into particles, so that the acetalization treatment and the process of forming the spherical particles can be performed simultaneously. Also, since it contains a water-soluble polymer that gels when it comes into contact with an acid, which is a catalyst for acetylation, the shape of the droplet does not collapse. Therefore, it is possible to easily produce porous spherical particles having a uniform particle shape close to a true sphere, without requiring multiple steps as in the related art, with high productivity. BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a porous spherical particle having a skeleton of a polyvinyl acetal resin. Further, it is a porous spherical particle made of a sponge-like polyvinyl acetal resin having communication holes as pores.
本発明で得られるボ リ ビニルァセタール系多孔性球状粒子は、 ポ リ ビ ニルアルコールとアルデヒ ド類を反応させて得られる。 原料となるポリ ビニルアルコールと しては特に限定される ものではないが、 平均重合度 力く 5 0 0 〜 3 8 0 0であるポ リ ビニルアルコールが望ま し く 、 また完全 ゲン化であること、 も し く はそれに部分ゲン化物及び低重合度物を混合 したものであるこ とが望ま しい。 平均重合度が 5 0 0未満の場合では、 高気孔率を有する ものを得るこ とが困難になり、 平均重合度が 3 8 0 0 を超える場合は水に溶解した際にその粘度があま り にも高く なるため、 混練などの工程上において取り扱いが困難となる。 なお、 重合度の異な るポリ ビニルアルコール原料をプレン ドして使用するこ と もでき、 また 、 上記範囲のものではな く 例えば重合度 1 5 0 0 のものに重合度 3 0 0 のものを混合して使用 しても問題はない。 特に弾性、 柔軟性、 風合い、 気孔率の調整、 吸水性向上などを得るために、 低重合度のポ リ ビニルァ ルコール樹脂を使用 してもよい。  The polyvinyl acetal porous spherical particles obtained in the present invention are obtained by reacting polyvinyl alcohol with aldehydes. The raw material polyvinyl alcohol is not particularly limited, but a polyvinyl alcohol having an average degree of polymerization of 50,000 to 380,000 is desirable, and it must be completely genated. It is desirable that the mixture be a mixture of a partially genated product and a low-polymerized product. When the average degree of polymerization is less than 50,000, it is difficult to obtain a material having a high porosity, and when the average degree of polymerization exceeds 380, the viscosity increases when dissolved in water. Therefore, handling becomes difficult in a process such as kneading. Polyvinyl alcohol raw materials having different degrees of polymerization can be blended and used, and those having a degree of polymerization of 300 instead of those in the above-mentioned range are also used. There is no problem with mixing. In particular, a polyvinyl alcohol resin having a low degree of polymerization may be used to adjust elasticity, flexibility, texture, porosity, and improve water absorption.
このポ リ ビニルァセタール系多孔性球状粒子の気孔率は、 用いる用途 に応じて設定すればよ く 、 限定される ものではない力〈、 5 0 ~ 9 8 %が 好ま しい範囲である。 上記気孔率が 5 0 %未満の場合は、 個々の気孔同 士が互いに隣接するこ とができにく く なるため独泡が存在する傾向が見 受けられ、 これにより透水性が著し く 阻害される。 また上記気孔率が 9 8 %を超える と、 耐摩耗性などの機械的な強度が低下するため、 用途に よってはその使用が制限されるといった不都合が生ずる場合がある。  The porosity of the polyvinyl acetal-based porous spherical particles may be set according to the intended use, and the force is not limited, and is preferably in the range of 50 to 98%. When the above porosity is less than 50%, it is difficult for the individual porosity to be adjacent to each other, and there is a tendency for closed cells to be present, whereby the water permeability is significantly impaired. Is done. If the above porosity exceeds 98%, mechanical strength such as abrasion resistance is reduced, so that there may be a disadvantage that the use is restricted depending on the use.
ポリ ビニルァセタール系多孔質体のァセタール化度については、 特に 限定される ものではない力く、 ァセタール化度が 3 0 〜 8 5 モル%、 好ま しく は 4 5〜 7 0 モル%のポ リ ビニルァセ夕一ル系多孔質体が好適であ る。 中でもホルマール化度が 3 0 ~ 8 5 モル%、 好ま し く は 4 5 〜 7 0 モル%のポ リ ビ二ルホルマールが好適である。 The degree of acetalization of the polyvinyl acetal-based porous material is not particularly limited, and the acetalization degree is preferably 30 to 85 mol%. Alternatively, a polyvinyl acetate type porous material of 45 to 70 mol% is suitable. Among them, polyvinyl formal having a degree of formalization of 30 to 85 mol%, preferably 45 to 70 mol% is preferred.
ァセタール化度をこのよ う に調整するこ とにより、 柔軟でかつ耐摩耗 性を有する微生物担持体とするこ とが可能である。 なお、 ァセタール化 度が 3 0 モル%未満の場合、 分子架橋度が低く 強度的に劣り、 摩擦堅牢 度が低く なる。 従って、 特に、 流動床型にて粒状多孔質体と して使用 し た場合、 担持体流動時に発生する担持体同士の摩擦や反応槽内壁との摩 擦により摩耗し易 く 、 担持体寿命が低下する。 また耐微生物侵食性が低 下する点で好ま し く ない。 さ らに、 製造工程上取り扱いにく いという問 題点もある。 一方、 ァセタール化度が 8 5 モル%を超えると、 気孔率の 低下とと もに、 見かけ比重が増加して含水率が低下し、 特に流動床型に て粒状多孔質体と して使用 した場合、 沈降し易く なるが浮遊しに く く な るため、 処理槽内における流動性能が低下する。 また特に、 残存水酸基 量の減少に伴い親水性が低下するため好ま し く ない。 また、 湿潤時の反 発弾性も低く なり、 吸水性及び耐久性の点で好ま し く ない。 特に乾燥圧 縮加工を施して圧縮プレス品と した場合、 これを処理槽中等で湿潤させ ても、 元の形状に復元しにく く 又は復元しないため、 永久歪みを受け易 く 、 プレス加工品とするこ とができない。 この点、 ァセタール化度が 3 0〜 8 5 モル%、 好ま し く は 4 5〜 7 0 モル%のポ リ ビニルァセ夕一ル 系多孔質体、 特にホルマール化度が 3 0 ~ 8 5 モル%、 好ま し く は 4 5 〜 Ί 0 モル%のポ リ ビニルホルマールの場合は、 耐微生物侵食性の点で 良好であり、 また強度的に優れ、 摩擦堅牢度が大きい。  By adjusting the degree of acetalization in this way, it is possible to obtain a microorganism carrier having flexibility and abrasion resistance. If the degree of acetalization is less than 30 mol%, the degree of molecular crosslinking is low, the strength is poor, and the fastness to friction is low. Therefore, in particular, when used as a granular porous material in a fluidized bed type, the carrier tends to wear due to friction between the carriers generated during the flow of the carriers and friction with the inner wall of the reaction vessel, and the life of the carrier is shortened. descend. Also, it is not preferable in that the resistance to microbial erosion is reduced. Another problem is that it is difficult to handle in the manufacturing process. On the other hand, when the degree of acetalization exceeds 85 mol%, the porosity decreases, the apparent specific gravity increases, and the water content decreases. In particular, it was used as a granular porous material in a fluidized bed type. In this case, sedimentation is easy, but it is difficult to float, and the flow performance in the treatment tank is reduced. In addition, it is not preferable because hydrophilicity is reduced with a decrease in the amount of residual hydroxyl groups. Also, the rebound resilience when wet becomes low, which is not preferable in terms of water absorption and durability. In particular, when a dry pressed product is used to make a compressed pressed product, even if it is moistened in a treatment tank or the like, it is difficult to or does not recover its original shape, so it is susceptible to permanent distortion, and is a pressed product. I can't do that. In this respect, the polyvinyl acetal-based porous material having an acetalization degree of 30 to 85 mol%, preferably 45 to 70 mol%, particularly a formalization degree of 30 to 85 mol%. Polyvinyl formal with a content of preferably 45 to 100 mol% is good in terms of resistance to microbial erosion, is excellent in strength, and has high friction fastness.
従って、 特に、 流動床型にて粒状多孔質体と して使用 した場合、 担持 体寿命が向上する。 さ らに、 流動床型の粒状多孔質体と して用いた場合 、 処理槽内を浮沈、 流動し易い好適な気孔率と、 含水状態の見かけ比重 を保有する こ とができ、 また親水性も良好である こ とから、. 優れた流動 性能を発揮する。 また、 湿潤時の反発弾性も高く なり、 また乾燥圧縮加 ェを施して圧縮プレス品と しても永久歪みは受けにく く 、 これを処理槽 中等で湿潤させても元の形状に復元する。 従って、 本発明の多孔性球状 粒子はプレス加工品と し、 圧縮多孔性球状粒子とするこ とができ、 粒状 多孔質体の搬送性を飛躍的に向上する こ とができるとと もに、 これを処 理槽中等で湿潤させると、 処理液に馴染み、 吸水して元の形状に復元しTherefore, the life of the carrier is improved, particularly when used as a granular porous body in a fluidized bed type. In addition, when used as a fluidized bed type granular porous material, a suitable porosity that easily floats and sinks in the treatment tank and an apparent specific gravity of a water-containing state are obtained. It has excellent fluidity because of its good hydrophilicity. In addition, the rebound resilience when wet becomes high, and even if it is subjected to dry compression processing, it is hard to receive permanent distortion even if it is a compressed press product. Even if it is wet in a processing tank or the like, it restores its original shape . Therefore, the porous spherical particles of the present invention can be made into a pressed product, and can be made into compressed porous spherical particles, which can significantly improve the transportability of the granular porous material, and When this is moistened in a processing tank, it becomes familiar with the processing solution, absorbs water and restores its original shape.
、 処理槽中で直ちに浮沈、 流動させる こ とができ、 含水粒子となるまで 待つ必要がな く 、 処理時間を著し く 短縮できる。 なお、 圧縮多孔性球状 粒子とは、 本発明に係る多孔性球状粒子を何らかの形で圧縮 (プレス) した粒子を意味する。 In addition, it can be floated and settled and fluidized immediately in the treatment tank, and there is no need to wait until the particles become hydrated, so that the treatment time can be significantly reduced. The compressed porous spherical particles mean particles obtained by compressing (pressing) the porous spherical particles according to the present invention in some form.
また、 この多孔性の球状粒子の性質を決める要因の他の 1 つと して重 要なものに粒子の比重がある。 粒子の比重は前記気孔率で概ね制御でき る力《、 用途に応じて粒子の比重をさ らに小さ く 、 すなわち一層軽く する 場合もある。 特に、 流動床などで使用する微生物担持体の場合、 流動性 が重要な要素となるため、 比重の広範囲の制御は重要である。 そこで耐 摩耗性及び機械的強度に優れたポリ ビニルァセタール系樹脂を骨格とす る多孔性球状粒子の内部を中空状の粒子とすれば、 その中空の程度に応 じて、 多孔構造と合俟つて粒子の比重を広範囲に制御する こ とができる 。 なお、 本発明の中空粒子は後述の方法により簡単に製造するこ とがで さ  Another important factor that determines the properties of the porous spherical particles is the specific gravity of the particles. The specific gravity of the particles can be generally controlled by the porosity described above. << Depending on the application, the specific gravity of the particles may be further reduced, that is, may be further reduced. In particular, in the case of a microorganism carrier used in a fluidized bed or the like, since fluidity is an important factor, a wide range of specific gravity control is important. Therefore, if the inside of porous spherical particles having a skeleton of a polyvinyl acetal resin having excellent wear resistance and mechanical strength is made into hollow particles, the porous structure is combined with the porous structure according to the degree of the hollow. The specific gravity of the particles can be controlled over a wide range. The hollow particles of the present invention can be easily produced by the method described below.
本発明の微生物担持体の含水状態の見かけ比重は、 1 . 0〜 1 . 2 に 調整する こ とが好ま しい。 含水状態における見かけ比重が 1 . 0未満の 場合では、 処理槽に投入しても浮いているだけで、 処理するこ とが困難 となり、 1 . 2 を超えると沈降し易く なり、 この点でも流動性に欠ける 。 従って、 ポ リ ビニルァセタール系多孔質体の含水状態の見かけ比重を 1 . 0〜 1 . 2 と した本発明の微生物担持体では、 特に流動床型の粒状 多孔質体と して用いた場合、 適切な流動性を良好に発揮するこ とができ ο The apparent specific gravity of the microorganism carrier of the present invention in a water-containing state is preferably adjusted to 1.0 to 1.2. If the apparent specific gravity in a water-containing state is less than 1.0, it will be difficult to treat it simply because it floats even if it is put into the treatment tank. Lack of sex. Therefore, the apparent specific gravity of the water-containing state of the polyvinyl acetal-based porous The microbial carrier of the present invention having a ratio of 1.0 to 1.2 can exhibit appropriate fluidity satisfactorily, particularly when used as a fluidized-bed granular porous material.
なお、 本発明の微生物担持体は、 多孔質体の気孔内に被処理液を充満 させた際の比重がより被処理液自身の比重に近く なる ものが好ま しい。 被処理液を水と して換算すると、 含水状態における見かけ比重は、 1 . It is preferable that the microorganism carrier of the present invention has a specific gravity which is closer to the specific gravity of the liquid to be treated when the liquid to be treated is filled in the pores of the porous body. When the liquid to be treated is converted to water, the apparent specific gravity in a water-containing state is 1.
0以上で、 なおかつ限りなく 1 . 0 に近いものが最適である力く、 ポ リ ビ 二ルァセタール系多孔質体と しての実用上の含水状態における見かけ比 重は上記の通り 1 . 0 ~ 1 . 2 、 好ま し く は 1 . 0 1 - 1 . 1 が最適で ある。 素材自体の真比重と しては 1 . 2 4〜 1 . 2 8 の範囲内、 好ま し く は 1 . 2 5〜 1 . 2 6 の範囲内のものが最適である。 これらの範囲内 の比重を有するポ リ ビニルァセタール系多孔質体を微生物担持体と して 用いた場合、 特に流動床型の粒状多孔質体と して用いると、 良好な流動 性を発揮する。 The optimum value is preferably at least 0 and still infinitely close to 1.0, and the apparent specific gravity in a practically water-containing state as a porous vinyl acetal-based porous material is 1.0 to 1.0 as described above. 1.2 is preferred, preferably 1.0 1-1.1. The true specific gravity of the material itself is optimally in the range of 1.24 to 1.28, preferably in the range of 1.25 to 1.26. When a polyvinyl acetal-based porous material having a specific gravity within these ranges is used as a microorganism carrier, particularly when used as a fluidized-bed granular porous material, good fluidity is exhibited.
本発明の微生物担持体は、 含水状態での大きさが l mm〜 2 O mmの 粒状物であるこ とが望ま しい。 これによつて、 流動性能が向上し、 微生 物処理能力を発揮するこ とができるとと もに、 粒状微生物担持体の回収 フ ィ ルタ ーを設置した汚水処理装置等に使用 しても、 当該回収フ ィ ルタ 一を通過し、 装置の処理排液の排出口から流出するおそれもなく 、 微生 物濃度を高濃度に保持することができる。  It is desirable that the microorganism carrier of the present invention is a granular material having a size of 1 mm to 20 mm in a water-containing state. As a result, the flow performance can be improved and the microorganisms can be treated, and even when used in a sewage treatment device equipped with a filter for collecting particulate microbial carriers. However, the microorganism concentration can be maintained at a high level without passing through the recovery filter and flowing out of the processing liquid discharge port of the apparatus.
粒子の大きさが 2 0 mmを超えると、 本発明の多孔性球状粒子を微生 物担持体と して用いる場合に不利益となるこ とがある。 すなわち、 粒子 の流動性能が低下するばかりでなく 、 微生物を担持する有効表面積が乏 し く なるため、 微生物の高濃度維持が困難となり、 微生物処理能力が低 下する。 この点で、 粒子径が小さい方が流動性が良く なり、 流動床型反 応器では担持体を流動させるためのエネルギーが小さ く てすみ、 処理性 能が向上するが、 あま り小さすぎると、 具体的には粒子の大きさ力 1 m m未満の場合は、 粒状微生物担持体の回収フ ィ ルターを設置した汚水処 理装置等に使用する と、 当該回収フ ィ ルタ ーを通過し、 装置の処理排液 の排出口から流出するおそれがあり、 微生物濃度を高濃度に保持するこ とが困難になる。 この点で、 回収フ ィ ルター、 例えば、 処理液流出口に 設置した目開き 1 . 5 m mゥ エ ッ ジワ イ ヤース ク リ ー ンのス リ ッ ト 目開 きをもっ と細かいものにするこ と も考えられる。 しかし、 排水中の微粒 子、 微生物、 微生物の粘性生産物などがこのス リ ツ 卜に付着して、 閉塞 してしま うため、 フ ィ ルタ一の目開きにも自ずと限界があり、 粒状微生 物担持体の回収フ ィ ルターとの関係からも、 ポ リ ビニルァセタール系多 孔性球状粒子の最適な大きさが定まる ものである。 If the size of the particles exceeds 20 mm, it may be disadvantageous when the porous spherical particles of the present invention are used as a microorganism carrier. That is, not only the flowability of the particles is reduced, but also the effective surface area for supporting the microorganisms is reduced, so that it is difficult to maintain a high concentration of the microorganisms, and the processing ability of the microorganisms is reduced. In this regard, the smaller the particle size, the better the fluidity, and in a fluidized bed reactor, less energy is required to flow the carrier, and the processability is improved. Although the performance is improved, if the particle size is too small, specifically, if the particle size is less than 1 mm, it can be used in a sewage treatment device equipped with a filter for collecting particulate microbial carriers. There is a risk that the wastewater will pass through the collection filter and flow out of the processing wastewater discharge port of the device, making it difficult to maintain a high concentration of microorganisms. At this point, the collection filter, for example, the slit opening of the 1.5 mm ゥ edge wire screen installed at the processing solution outlet, should be made finer. You might also say that. However, since fine particles, microorganisms, and viscous products of microorganisms in the wastewater adhere to the slits and block the slits, there is a natural limit to the opening of the filter. The optimal size of the polyvinyl acetal-based porous spherical particles is also determined from the relationship with the filter for collecting the biological support.
本発明の多孔性球状粒子の大きさは後述の通り、 滴下する液滴の大き さによって簡単に制御するこ とができる。 具体的には、 液滴の吐出量及 び滴下に要する ノ ズルの口径を任意に調整するこ とにより任意の粒径を 持つ粒子を得るこ とができる。  As described later, the size of the porous spherical particles of the present invention can be easily controlled by the size of the droplet to be dropped. Specifically, particles having an arbitrary particle size can be obtained by arbitrarily adjusting the ejection amount of the droplet and the diameter of the nozzle required for the droplet.
本発明における多孔性球状粒子は、 平均気孔怪と して、 2 0 〜 3 0 0 // mの水や空気が自由に行き来できる程度の大きさの孔を多数備えてお り、 分子レベルでの網目構造を有する単なるゲルとは異なる。 微生物担 持体と して流動槽内で用いた時、 水中の有機物質、 リ ンまたは窒素系化 合物などは、 この大きさの孔を自由に行き来し、 行き渡り易く なる。 ま た、 2 0 〜 3 0 0 ^ mの気孔径の孔を多数備えた微生物担持体は、 微生 物が膜を形成し易く 、 かつ、 担持体表面に形成された微生物膜が剝離し に く い点で、 好適である。 また、 気孔径の制御は後述のような製造方法 を用いるこ とにより、 ある程度可能となる。  The porous spherical particles according to the present invention are provided with a large number of pores having a size such that water or air of 20 to 300 // m can freely flow as an average stoma, and at the molecular level. It is different from a mere gel having a network structure of When used as a microbial carrier in a fluidized tank, organic substances, phosphorus, or nitrogen compounds in water can freely flow through pores of this size and spread. In addition, a microorganism carrier having a large number of pores having a pore diameter of 20 to 300 ^ m is easy to form a film with microorganisms, and the microorganism film formed on the surface of the carrier is separated. It is suitable because it is difficult. Further, the pore diameter can be controlled to some extent by using a manufacturing method described later.
本発明における多孔性球状粒子からなるスポ ン ジは、 同様に水や空気 を自由に行き来でき る程度の大きさの孔を多数備えており、 かつ、 水分  The sponge made of porous spherical particles according to the present invention similarly has a large number of pores large enough to allow water and air to flow freely, and
1 I) 率 5 0 %が水で膨潤した状態での 5 0 %圧縮応力で、 2 〜 2 0 0 X 1 0 3 N Z m2程度の、 適度な弾性を有している。 この適度な弾性は、 担持体 流動時の良好な耐摩耗性を奏する。 1 I) It has a moderate elasticity of about 2 to 200 × 10 3 NZ m 2 at a compressive stress of 50% at a rate of 50% when swollen with water. This moderate elasticity provides good wear resistance when the carrier flows.
また、 この多孔性の球状粒子の耐摩耗性及び機械的強度を向上させる には、 粒子表面に細孔を有する皮膜を有し、 粒子内部を多孔質構造とす るこ とが望ま しい。 後述の本発明の製造方法で作成した球状粒子には表 面に皮膜が付されており、 機械的強度に優れたものとなる。  In order to improve the wear resistance and mechanical strength of the porous spherical particles, it is desirable to have a film having pores on the surface of the particles and to have a porous structure inside the particles. The spherical particles produced by the production method of the present invention described later have a coating on the surface, and have excellent mechanical strength.
本発明の多孔性球状粒子は、 流動床型の処理槽に投入するだけで、 含 水多孔質体と して処理槽内を曝気などによって良好に浮沈して流動し、 さ らに材質的に微生物との親和性が良好であるこ とから、 微生物が付着 して優れた生物処理を行う こ とができる。 また、 耐摩耗性が良好である ため、 担持体流動時に発生する担持体同士の摩擦や反応槽内壁との摩擦 によっても摩耗しにく い。 さ らに機械的強度が高く 、 耐候 (光) 性、 耐 微生物分解性にも優れ、 担持体寿命が長く なる。  The porous spherical particles of the present invention can be satisfactorily floated and flowed by aeration or the like in the treatment tank as a water-containing porous body simply by being thrown into a fluidized bed treatment tank, and furthermore, the material is further reduced in material quality. Because of the good affinity with the microorganisms, the microorganisms can adhere and perform excellent biological treatment. In addition, since the abrasion resistance is good, the abrasion hardly occurs due to the friction between the supports and the friction with the inner wall of the reaction tank when the supports flow. Furthermore, the mechanical strength is high, the weather resistance (light) and the microbial resistance are excellent, and the life of the carrier is prolonged.
本発明のポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子は 微生物担持体と しても優れたものである。  The porous spherical particles of the present invention having a poly (vinyl acetal) resin as a skeleton are excellent as a microorganism carrier.
上述の微生物担持体は、 既述の通り、 多孔質体の細孔内を含む担持体 表面に微生物を付着させる上で好適であり、 また粒状化させた場合でも 流動性に優れ、 流動床型の用途にも最適である。 しかし、 包括固定化微 生物法は、 1 ) 微生物を高濃度に保持し、 排水の高速処理を図るこ とが でき、 2 ) 特定の微生物を固定化することにより、 特定物質の処理また は有機物の回収が可能となり、 3 ) 汚泥発生量を低減できることから、 上述の微生物膜法とと もに、 包括固定化微生物法と しても適用できるよ う にする ことが望ま しい。 そこで多孔質体の細孔内に微生物固定化剤に より微生物を積極的に固定化した微生物担持体を開発した。  As described above, the microorganism carrier described above is suitable for attaching microorganisms to the surface of the carrier including the pores of the porous body, and has excellent fluidity even when granulated, and is a fluidized bed type. It is also ideal for applications. However, the comprehensive immobilized microbial method can 1) maintain microorganisms at a high concentration and achieve high-speed treatment of wastewater. 2) Immobilize specific microorganisms to process specific substances or treat organic matter. 3) Since the amount of sludge generated can be reduced, it is desirable that the method can be applied not only to the above-mentioned microbial membrane method but also to the comprehensive immobilized microorganism method. Therefore, we have developed a microorganism carrier in which microorganisms are positively immobilized in the pores of the porous body with a microorganism immobilizing agent.
これにより、 耐摩耗性、 耐候 (光) 性、 耐微生物分解性、 流動性及び 微生物親和性に優れる とと もに、 微生物を高濃度に保持し、 排水の高速 処理を図る こ とができ、 特定の微生物を固定化するこ とにより、 特定物 質の処理または有価物の回収が可能となり、 汚泥発生量を低減できる。 すなわち、 微生物膜法と包括固定化微生物法の長所をそれぞれ生かし、 さ らに微生物膜法と包括固定化微生物法の両者の欠点をも克服する微生 物担持体とするこ とができる。 As a result, wear resistance, weather (light) resistance, microbial degradation resistance, fluidity and It has excellent microbial affinity, can maintain high concentration of microorganisms, can process wastewater at high speed, and can immobilize specific microorganisms to process specific substances or collect valuable resources. And the amount of sludge generated can be reduced. In other words, it is possible to provide a microbial support that can take advantage of the advantages of the microbial membrane method and the entrapping immobilized microorganism method, and also overcome the disadvantages of both the microbial membrane method and the entrapping immobilized microorganism method.
ここで、 微生物固定化剤と しては、 種々採用でき格別限定されないが 、 アルギン酸ソーダを主成分とする微生物固定化剤が好ま しい。 アルギ ン酸ソーダを主成分とすれば、 ポ リ ビニルァセタール系多孔性球状粒子 、 特にポ リ ビニルホルマール多孔性球状粒子に良好に充塡固定化し易く 相性がよい。 また特に耐摩耗性の点で良好である。  Here, the microorganism immobilizing agent can be variously employed and is not particularly limited, but a microorganism immobilizing agent containing sodium alginate as a main component is preferable. When sodium alginate is used as a main component, it is easily filled and fixed to polyvinyl acetal-based porous spherical particles, particularly, polyvinyl formal porous spherical particles, and has good compatibility. It is particularly good in terms of wear resistance.
微生物固定化剤を用いて微生物を包括固定化するには、 例えば、 多孔 性球状粒子に微生物を含む微生物固定化剤の混合溶液を含浸させ、 上記 微生物固定化剤を上記多孔質体の細孔内で不溶化させるこ とで達成でき る。  To entrap and immobilize microorganisms using a microorganism immobilizing agent, for example, porous spherical particles are impregnated with a mixed solution of a microorganism-immobilizing agent containing microorganisms, and the microorganism immobilizing agent is pored in the porous body. This can be achieved by insolubilization within.
本発明の微生物担持体は、 上述の包括固定型 (包括固定法) 及び前述 の非包括固定型 (微生物膜法) を問わず、 また既述の通り、 流動床、 固 定床のいずれの担持体と しても適用され、 また汚水処理装置を含む、 各 種のバイオ リ アク ターの用途に適用される。  The microorganism carrier of the present invention may be any of a fluidized bed and a fixed bed, irrespective of the above-mentioned inclusively immobilized type (inclusively immobilized method) and the above-mentioned non-inclusively immobilized type (microbial membrane method). It is applied as a body and is applied to various bioreactor applications, including sewage treatment equipment.
特に、 本発明の微生物担持体は、 処理槽内で、 本発明の粒状微生物担 持体を浮沈、 対流させて処理する流動床型汚水処理装置と して好適に用 いるこ とができる。  In particular, the microorganism carrier of the present invention can be suitably used as a fluidized bed type sewage treatment apparatus for treating the particulate microorganism carrier of the present invention by floating and convection in a treatment tank.
流動床型のバイオ リ アク ターは、 例えば前記担持体を被処理液と接触 させて生物処理、 化学的処理を行う ものであれば適用できる。 具体的に は有機物質等の分解のほか、 硝化脱窒などの酸化還元や、 付加、 置換、 変換、 脱離などの化学反応を行わせる装置に適用できる。 本発明の多孔性球状粒子は、 既述の通り、 圧縮プレス成型品とするこ とが望ま しい。 特に、 水分率 1 0 %以下のスポ ン ジ粒状物であって、 水 中に投入すると速やかに 2倍から 1 0倍の体積に膨れて、 かつ、 含水状 態での大きさが 1 m m〜 2 0 m mになるこ とを特徴とする、 ポ リ ビニル ァセタール系多孔性球状粒子が好適である。 The fluidized bed type bioreactor is applicable, for example, as long as it carries out biological treatment and chemical treatment by bringing the carrier into contact with the liquid to be treated. Specifically, the present invention can be applied to an apparatus that performs not only decomposition of organic substances and the like, but also oxidation and reduction such as nitrification and denitrification and chemical reactions such as addition, substitution, conversion, and desorption. As described above, the porous spherical particles of the present invention are desirably formed into a compression press molded product. In particular, sponge granules with a water content of 10% or less, which quickly expand to a volume of 2 to 10 times when poured into water, and have a size of 1 mm or more in a water-containing state. Polyvinyl acetal-based porous spherical particles characterized by having a thickness of 20 mm are preferred.
本発明のポ リ ビニルァセタール樹脂を骨格とする多孔性球状粒子を圧 縮プレス した圧縮多孔性球状粒子 (以下、 圧縮粒子と略記する。 ) は圧 縮工程と乾燥工程により製造する こ とができる。 かかる圧縮粒子は、 微 生物担持体と して処理槽に投入した際、 速やかに吸水して元の形状と大 きさに復元すると同時に、 湿潤し処理液に馴染み、 程な く浮沈、 流動さ せるこ とができるようになる。 これに対し、 圧縮プレス しない多孔性球 状粒子は、 取り込んだ空気が離れにく く 、 水面上に浮いたまま となって 、 流動させるこ とができるよう になるまで時間がかかる。 また、 圧縮プ レスするこ とにより多孔質体の体積が小さ く なり、 既述の通り、 搬送コ ス トを格段に下げるこ と もできる。  The compressed porous spherical particles (hereinafter abbreviated as compressed particles) obtained by compressing and pressing the porous spherical particles having a skeleton of a polyvinyl acetal resin of the present invention can be produced by a compression step and a drying step. When the compressed particles are introduced into the treatment tank as a microbial carrier, they quickly absorb water to restore the original shape and size, and at the same time, get wet and adapt to the treatment liquid, and float and sink in a short time. You will be able to On the other hand, the porous spherical particles that are not subjected to the compression press are hard to separate the air taken in, take a long time to float on the water surface, and to be able to flow. In addition, the compression press reduces the volume of the porous body, and as described above, can significantly reduce the transport cost.
また、 こ こでの圧縮プ レス工程は乾燥工程の後行う こ とが望ま しい。 湿潤状態で圧縮プレス しても、 ま もなく 元に戻ってしま う。 適切な条件 で製造されたポ リ ビニルァセタール多孔性球状粒子は、 その水分率が 1 0 %以下に乾燥された状態で圧縮プレスするこ とにより、 圧縮された状 態のまま、 長期保存するこ とができ、 かつ水中に投入すると速やかに蟛 れて、 元の形状と大きさに復元する。  It is desirable that the compression press step be performed after the drying step. It will soon return to its original state even if it is pressed with a wet press. Polyvinyl acetal porous spherical particles manufactured under appropriate conditions can be stored for a long period of time in a compressed state by pressing under a condition where the moisture content of the particles is dried to 10% or less. When it is put into water, it quickly returns to its original shape and size.
圧縮率は高い程良く 、 I Z S I Z I Oが好ま しい。 1 / 2 〜 1 / 1 0 に圧縮された圧縮粒子は、 水中に投入すると速やかに 2倍から 1 0倍 に膨れ、 元の大きさ と形状に復元する。 多孔性球状粒子の含水状態での 大きさ は、 微生物担持体と して使用される場合、 既述の理由で 1 〜 2 0 m mであるこ とが好ま しい。 なお、 処理槽内に投入後直ちに使用するこ とを一層望む場合は、 含水 状態のポ リ ビニルァセタール系多孔性球状粒子とするこ とが望ま しい。 The higher the compression ratio, the better and IZSIZIO is preferred. Compressed particles compressed to 1/2 to 1/10 swell quickly to 2 to 10 times when injected into water, and restore their original size and shape. When used as a microorganism carrier, the size of the porous spherical particles in a water-containing state is preferably 1 to 20 mm for the reasons described above. If it is desired to use the polymer immediately after being charged into the treatment tank, it is preferable to use polyvinyl acetal-based porous spherical particles in a water-containing state.
かかる多孔性球状粒子は、 既述のよう に微生物担持体と しての用途の ほか、 酵素固定化担持体、 農作物の水耕栽培における溶液保持材ゃ植物 支持材、 動植物細胞の培地、 人工水苔、 土壌改良材等に好適に用いられ る。 また、 特殊な使用例と しては、 水中流動型洗浄部材ゃ水中流動型マ ッサージ部材と して利用するこ と も可能である。  Such porous spherical particles are used not only as a microorganism carrier as described above, but also as an enzyme-immobilized carrier, a solution holding material for hydroponic cultivation of agricultural crops, a plant supporting material, a medium for animal and plant cells, and an artificial water. It is suitably used for moss, soil improvement materials, and the like. As a special use example, it can be used as a submersible fluid type cleaning member / submersible fluid type massaging member.
この多孔性球状粒子を包括固定化微生物担持体とするには、 多孔性球 状粒子を、 活性汚泥を分散させた液体に投入して、 上記多孔性球状粒子 の表面及び Zまたは細孔内に微生物を付着させて、 固定化するこ とがで きる。 また例えば、 微生物の固定に微生物固定化剤を用いる場合は、 活 性汚泥中に固定化剤を分散させておき、 その中へ多孔性球状粒子を投入 して固定化させればよい。 この場合に圧縮粒子を用いると粒子の内部に まで速やかに汚泥が浸透するため、 好適である。  In order to use the porous spherical particles as the entrapping and immobilized microorganism carrier, the porous spherical particles are put into a liquid in which activated sludge is dispersed, and are placed on the surface of the porous spherical particles and in the Z or pores. Microorganisms can be attached and immobilized. In addition, for example, when a microorganism fixing agent is used for fixing microorganisms, the fixing agent may be dispersed in active sludge, and porous spherical particles may be introduced into the dispersion to be fixed. In this case, it is preferable to use the compressed particles because the sludge quickly penetrates into the inside of the particles.
特に、 固定化剤と してアルギン酸ソーダを用いた場合には、 上記の多 孔性球状粒子の微生物担持体に、 微生物を含むアルギン酸ソーダの混合 溶液を含浸させ、 さ らにこのアルギン酸ソーダの混合溶液を含浸させて 得られた微生物担持体に塩化カルシゥ ム水溶液等の多価金属塩水溶液を 加え、 上記アルギン酸ソーダを上記多孔質体の表面及び Zまたは細孔内 で不溶化させて上記微生物を包括固定した粒子状の多孔質微生物担持体 を得るこ とができる。 なお、 微生物固定化剤を微生物担持体の細孔内に 流入させるには、 減圧下で行う こ とが望ま しい。  In particular, when sodium alginate is used as the immobilizing agent, the above-described microporous spherical particle microbial support is impregnated with a mixed solution of sodium alginate containing microorganisms, and further mixed with the sodium alginate. An aqueous solution of a polyvalent metal salt such as an aqueous solution of calcium chloride is added to the microorganism carrier obtained by impregnating the solution, and the sodium alginate is insolubilized on the surface of the porous body and in the Z or pores to cover the microorganisms. It is possible to obtain a fixed particulate porous microorganism carrier. In addition, it is preferable that the flow of the microorganism-immobilizing agent into the pores of the microorganism carrier be performed under reduced pressure.
本発明の多孔性球状粒子の微生物担持体は、 公知の微生物処理装置の いずれにも対応でき、 単槽型でも多槽型のものでも微生物処理槽に充塡 するこ とにより利用できる ものであり、 嫌気性処理、 好気性処理のいず れにおいても効果的に作用する。 また本発明の微生物担持体は、 流動床 のみならず担持体を反応槽内部にて固定化したいわゆる固定床型の担持 体と しての使用に際しても好適である。 The microbial carrier of the porous spherical particles of the present invention can be used in any of known microbial treatment apparatuses, and can be used by filling a single or multi-tank type microbial treatment tank into a microorganism treatment tank. It works effectively in both anaerobic and aerobic treatments. Further, the microorganism carrier of the present invention may be a fluidized bed. In addition, the present invention is also suitable for use as a so-called fixed-bed-type carrier in which the carrier is immobilized inside the reaction tank.
上述した多孔性球状粒子は、 以下の製造方法によって、 簡単に、 かつ 高い生産性で製造するこ とができる。  The above-mentioned porous spherical particles can be easily produced with high productivity by the following production method.
その一つの製造方法と しては、 酸性溶液中にてゲル化する性質を持つ 水溶性高分子とポ リ ビニルアルコール及びアルデヒ ド類を混合してなる 水溶液を酸性溶液中に滴下し、 該液滴をゲル化せしめると同時に該液滴 中のポ リ ビニルアルコールとアルデヒ ド類とを反応させてポ リ ビニル系 ァセタール系樹脂を骨格とする多孔性球状粒子を得るこ とを特徴とする 多孔性球状粒子の製造方法が挙げられる。  As one of the production methods, an aqueous solution obtained by mixing a water-soluble polymer having a property of gelling in an acidic solution, polyvinyl alcohol and aldehydes is dropped into the acidic solution, The porosity is characterized in that the droplets are gelled and, at the same time, the polyvinyl alcohol and the aldehydes in the droplets are reacted with each other to obtain porous spherical particles having a skeleton of a polyvinyl acetal resin. A method for producing spherical particles can be used.
本製造方法によると、 ァセタール化処理と球状粒子の成形過程を同時 に行う こ とができるため、 従来のよう に多く の工程を要するこ とな く 、 簡単に、 かつ高生産で、 しかも真球に近い均一粒子径の多孔性球状粒子 を製造する こ とができる。 さ らに、 粒子の表面には皮膜が付されており 、 機械的強度に優れたものとなる。  According to the present production method, the acetalization treatment and the molding process of the spherical particles can be performed simultaneously, so that a large number of steps are not required as in the conventional method, and the production is simple, high in production and spherical. Thus, it is possible to produce porous spherical particles having a uniform particle diameter close to the above. In addition, a film is provided on the surface of the particles, which results in excellent mechanical strength.
本製造方法はポ リ ビニルアルコールを含む溶液を酸性溶液と反応させ 、 液滴の形状にすると同時に、 触媒である酸性溶液の作用により、 この 液滴に含まれるポ リ ビニルアルコールとアルデヒ ド類のァセタール化を 同時に開始させるこ とに特徴を有する。 すなわち、 溶液中のポ リ ビニル アルコールとアルデヒ ド類は触媒である酸性溶液と接触しない間は、 反 応を起こさず溶液の状態を保っているが、 酸性溶液に接触すると同時に ァセタール化反応を開始し、 固化し始める。 また溶液に含まれる酸性溶 液中にてゲル化する性質を持つ水溶性高分子、 例えばイオン交換反応に よりゲル化する性質を持つ水溶性高分子は酸の作用により、 即座にィォ ン交換等してゲル状物質となり粘性を有するため、 ポ リ ビニルアルコ一 ルとアルデヒ ド類の反応終了までの間、 球状形態が変形するのを防止す るための役割を担う。 なお、 本発明の製造方法においては、 ポ リ ビニル アルコールと水溶性高分子とアルデヒ ド類からなる水溶液中に微生物を 混練するこ とにより包括固定化担体とする こ と も可能である等、 使用目 的に応じての配合の調整などの必要な処理をとるこ と もできる。 In this production method, a solution containing polyvinyl alcohol is reacted with an acidic solution to form droplets, and at the same time, by the action of the acidic solution as a catalyst, the reaction between the polyvinyl alcohol and aldehydes contained in the droplets is performed. It is characterized by starting acetalization at the same time. In other words, while the polyvinyl alcohol and aldehydes in the solution do not react with the acidic solution as a catalyst, they do not react and maintain the solution state, but the acetalization reaction starts simultaneously with the contact with the acidic solution. And begin to solidify. In addition, water-soluble polymers that gel in an acidic solution contained in a solution, for example, water-soluble polymers that gel in an ion exchange reaction, are immediately ion-exchanged by the action of an acid. As a result, it becomes a gel-like substance and has viscosity, preventing the spherical form from being deformed until the reaction between the polyvinyl alcohol and the aldehydes is completed. Play a role. In the production method of the present invention, it is possible to knead microorganisms into an aqueous solution composed of polyvinyl alcohol, a water-soluble polymer, and aldehydes to obtain an entrapping immobilization carrier. Necessary processing such as adjustment of the composition according to the purpose can also be taken.
この方法により得られた粒子が多孔性となるのは、 この球状粒子を乾 燥させる こ とにより、 ポ リ ビニルァセタール系骨格粒子中に存在する例 えばアルギン酸カルシウムなどのゲルが乾燥し、 収縮することによって 、 空隙が形成されるこ とに起因する。 また、 粒子表面に皮膜が形成され る理由は、 その表面においては気孔形成剤と して機能する物質 (水溶性 高分子ゲル、 デンプンなどの気孔形成剤の双方) が存在し得ないため、 気孔形成剤が豊富に存在する粒子内部でアルデヒ ド類と反応するとき と 同様の骨格形成工程をとるこ とができないためであると考えられる。 そ の結果、 球状粒子の形でァセタール化反応が行われる本発明の粒子表面 では、 多孔性球状粒子は表面に細孔を有する薄膜を粒子表面に設けた粒 子となる一方、 粒子内部は高気孔率のスポ ン ジ状立体網目構造を有する 多孔質体となる。  The particles obtained by this method become porous because, by drying the spherical particles, a gel such as calcium alginate, which is present in the polyvinyl acetal skeleton particles, is dried and shrunk. This results in the formation of voids. The reason that a film is formed on the particle surface is that a substance that functions as a pore-forming agent (both a water-soluble polymer gel and a pore-forming agent such as starch) cannot exist on the surface of the particle. This is probably because the same skeletal formation process as when reacting with aldehydes inside the particles rich in the forming agent cannot be taken. As a result, on the particle surface of the present invention in which the acetalization reaction is performed in the form of spherical particles, the porous spherical particles become particles having a thin film having fine pores on the surface, while the inside of the particles is high. The porous body has a spongy three-dimensional network structure with a porosity.
なお、 酸性溶液中にて例えばイオン交換反応により ゲル化する性質を 持つ水溶性高分子 (以下の他の製造方法において同 じ) は、 特に限定さ れる ものではな く 、 例えばアルギン酸ナ ト リ ウム、 カラギーナン、 ポ リ ァク リ ル酸ナ 卜 リ ゥムを例示できる。  The water-soluble polymer having the property of gelling in an acidic solution, for example, by an ion exchange reaction (the same applies to other production methods described below) is not particularly limited, and may be, for example, sodium alginate. , Carrageenan and sodium polyacrylate.
ポ リ ビニルアルコールの濃度は、 特に限定される ものではないが、 一 般にポ リ ビニルアルコール濃度が高く なると球状粒子ができ易く 、 ポ リ ビニルアルコール濃度が低い場合は含水ゲル状のものができ易く なる。 これらの粒子の物性の違いは、 ポ リ ビニルアルコール濃度のみに依存す るわけではな く 、 他の因子によっても影響を受けるが、 ポ リ ビニルアル コール濃度は、 球状粒子において、 含水ゲル粒子ではな く 、 樹脂骨格の 粒子となる上で重要な主要成分である。 従って、 本発明では、 その配合 量が重要となる。 本発明では、 ポ リ ビニルアルコール濃度が 2 0重量% を超える場合は、 溶液の粘度があま りにも高く なり、 取り扱いが困難と なるばかりでな く 、 滴下の際に糸を引いたような しずく状の粒子が生成 され、 均一径または均一径に近い球状のものはできにく く なる。 またポ リ ビニルアルコール濃度が 5重量%未満の場合は、 滴下後のァセタール 化反応によ り得られる球状粒子の強度が低く なり、 好ま し く ない。 従つ て、 ポ リ ビニルアルコ一ル濃度は 5 〜 2 0重量%にするこ とが望ま しい 。 特に、 7 〜 1 5重量%が最適である。 ただし、 後述の請求の範囲第 2 0項の製造方法で中空粒子を製造する場合は、 若千濃度を低く した方が きれいな粒子ができ易 く 、 1 〜 7重量%程度にした方が好適である。 ま たこの混合液の温度と しては特に範囲を限定する ものではなく 、 互いに 変性するこ となく 流動性を保持できる温度であればよ く 、 常温でも何ら 問題はない。 The concentration of the polyvinyl alcohol is not particularly limited, but generally, when the polyvinyl alcohol concentration is high, spherical particles are easily formed, and when the polyvinyl alcohol concentration is low, a hydrogel is formed. It will be easier. The difference in physical properties of these particles does not depend solely on the concentration of polyvinyl alcohol, but is also affected by other factors.The concentration of polyvinyl alcohol is different for spherical particles than for hydrous gel particles. Of resin skeleton It is an important main component in forming particles. Therefore, in the present invention, the amount is important. According to the present invention, when the concentration of polyvinyl alcohol exceeds 20% by weight, the viscosity of the solution becomes too high, and not only is it difficult to handle, but also it is difficult for the solution to be pulled during the dripping. Droplet-shaped particles are generated, and spherical particles having a uniform diameter or a nearly uniform diameter are hardly formed. If the polyvinyl alcohol concentration is less than 5% by weight, the strength of the spherical particles obtained by the acetalization reaction after dropping becomes low, which is not preferable. Therefore, it is desirable that the concentration of the polyvinyl alcohol be 5 to 20% by weight. In particular, 7 to 15% by weight is optimal. However, in the case of producing hollow particles by the production method described in claim 20 described below, it is preferable to lower the concentration of the particles to make it easier to produce clean particles, and it is preferable to set the concentration to about 1 to 7% by weight. is there. The temperature of the mixed solution is not particularly limited as long as it can maintain fluidity without denaturing each other, and there is no problem at room temperature.
アルデヒ ド類と しては、 ホルムアルデヒ ド、 ベンズァルデヒ ド、 ァセ 卜アルデヒ ド、 ブチルアルデヒ ド、 ァク リ ルアルデヒ ドまたはグリ オキ ザールなどの脂肪属、 芳香属アルデヒ ド類を例示するこ とができる。 ま た共存する酸により容易にアルデヒ ドに変換するよ うなァセタールを利 用 してもよいが、 ポリ ビニルアルコールとの反応性、 水溶性、 価格、 取 り扱い性、 反応生成物の強度、 反発弾性及び反応後の処理の容易性など の点を考慮するとホルムアルデヒ ドが特に優れている。  Examples of the aldehydes include aliphatic and aromatic aldehydes such as formaldehyde, benzaldehyde, acetate aldehyde, butyl aldehyde, acryl aldehyde and glyoxal. . An acetal that can be easily converted to an aldehyde by a coexisting acid may be used, but the reactivity with polyvinyl alcohol, water solubility, price, handleability, strength of the reaction product, and repulsion Considering the elasticity and ease of treatment after the reaction, formaldehyde is particularly excellent.
アルデヒ ド類の濃度は、 特に限定される ものではないが、 樹脂骨格粒 子のァセタール化度に影響を与える ものであるため重要である。 本発明 においては、 アルデヒ ドの濃度は共存する酸触媒の濃度及び反応温度に 応じて適宜適正濃度を選定することが必要である。 アルデヒ ド濃度が高 いほど所望するァセタール化度までの到達時間を短縮するこ とができる が、 高すぎると反応速度が速く ァセタール化度の制御が困難となる。 一 般にァセタール化度が高いものは強度が向上するがあま り高すぎると多 孔質体を製造する場合は気孔率が低下するとと もに見かけ比重が増して 含水率が低下する。 また残存水酸基の減少に伴い親水性が低下する。 ま た、 粒子の反発弾性も低下する。 The concentration of the aldehydes is not particularly limited, but is important because it affects the degree of acetalization of the resin skeleton particles. In the present invention, it is necessary to appropriately select an appropriate aldehyde concentration depending on the concentration of the coexisting acid catalyst and the reaction temperature. The higher the aldehyde concentration, the shorter the time to reach the desired degree of acetalization However, if it is too high, the reaction rate will be high and it will be difficult to control the degree of acetalization. In general, the higher the acetalization degree, the higher the strength, but if it is too high, when producing a porous body, the porosity decreases and the apparent specific gravity increases, and the water content decreases. In addition, the hydrophilicity decreases as the residual hydroxyl groups decrease. Also, the rebound resilience of the particles decreases.
一方、 ァセタール化度は、 既述の通り、 3 0〜 8 5 モル%が好適な範 囲である。 特に、 ゴム状弾性や比較的硬さを必要とする流動床型の微生 物担持体と して好適に用いる場合は、 5 5〜 8 5 モル%に設定する必要 がある。 このと きのアルデヒ ド類の濃度は種類により異なる力く、 ホルム アルデヒ ドを用いる場合、 3〜 1 0重量%程度に設定することが好ま し い。  On the other hand, as described above, the acetalization degree is preferably in the range of 30 to 85 mol%. In particular, when it is suitably used as a fluidized bed type microbial support that requires rubber-like elasticity and relatively high hardness, it must be set to 55 to 85 mol%. At this time, the concentration of the aldehydes varies depending on the type, and when using formaldehyde, it is preferable to set the concentration to about 3 to 10% by weight.
酸性溶液中にてゲル化する性質を持つ水溶性高分子、 例えばイオ ン交 換反応により ゲル化する性質を持つ水溶性高分子と しては、 既述のよう に特に限定される ものではな く 、 例えばアルギン酸ナ ト リ ウム、 カラギ 一ナ ン、 ポ リ ア ク リ ル酸ナ ト リ ウム等があげられる力く、 ゲル化速度の速 さ、 ゲルの状態などから考慮するとアルギン酸ナ 卜 リ ゥムが最も優れて おり、 これを利用する こ とが好ま しい。 アルギン酸ナ 卜 リ ゥムの分子量 は特に限定されるものではないが、 高分子量の方がゲル化速度が速く き れいな粒子を製造し易い。 ただし、 あま り に高分子量になると、 その溶 液の粘度が上昇しすぎるため、 しずく状の粒子となり易く 好ま しく ない 。 具体的には、 例えば 2 0 °C、 4 %濃度で 3 0 d P a · s e c程度の粘 性を持つアルギン酸ナ ト リ ウムが好適に用いられる。 ただし、 これに限 定されるものではない。  The water-soluble polymer having a property of gelling in an acidic solution, for example, the water-soluble polymer having a property of gelling by an ion exchange reaction is not particularly limited as described above. For example, sodium alginate, sodium carrageenan, sodium polyacrylate, and the like can be cited as examples. Considering the high gelation rate and gel state, sodium alginate can be used. The game is the best and it is preferable to use it. The molecular weight of sodium alginate is not particularly limited, but the higher the molecular weight, the faster the gelation rate and the easier it is to produce clean particles. However, when the molecular weight is too high, the viscosity of the solution is too high, and thus it is not preferable because it tends to become droplet-shaped particles. Specifically, for example, sodium alginate having a viscosity of about 30 dPa · sec at a concentration of 20 ° C. and 4% is suitably used. However, it is not limited to this.
なお、 ポ リ ビニルアルコール溶液中に含有する例えばイオン交換反応 によりゲル化する性質を持つ水溶性高分子は、 既述の通り、 気孔形成剤 及び形状維持剤と しての役割を担う力 <、 その限りにおいて、 この濃度は 特に限定される ものではない。 一般にこれらの濃度が高い場合は溶液の 粘度が増し、 滴下に支障をきたすこ とが多い。 一方濃度が低い場合はゲ ル生成の反応速度が遅く なり球状粒子を得るこ とは困難となる。 このよ うな取り扱いを考慮すると、 この濃度はアルギン酸ナ ト リ ゥムの分子量 にもよるが、 上記の範囲の分子量では 0 . 5 ~ 5 重量%がよ く 、 特に 1 〜 5重量%が好適である。 特にアルギン酸ナ 卜 リ ゥムの濃度が 0 . 5重 量%よ り少ない場合は、 水面または水中における水溶性高分子自身の表 面張力より分散力の方が強く なり、 水をかかえ込めな く なり水面上で拡 散する。 一方、 アルギン酸ナ ト リ ウムの濃度が 5重量%を超えると、 供 給口から糸を引いた状態で溶液中に注入させる結果、 均一径の球状粒子 が得られにく く なる。 As described above, the water-soluble polymer contained in the polyvinyl alcohol solution and having a property of gelling by, for example, an ion exchange reaction is capable of acting as a pore-forming agent and a shape maintaining agent. As long as this concentration is There is no particular limitation. In general, when these concentrations are high, the viscosity of the solution increases, which often hinders dripping. On the other hand, when the concentration is low, the reaction speed of gel formation becomes slow, and it is difficult to obtain spherical particles. In consideration of such handling, this concentration depends on the molecular weight of sodium alginate, but is preferably 0.5 to 5% by weight, particularly preferably 1 to 5% by weight in the above range of molecular weight. is there. In particular, when the concentration of sodium alginate is less than 0.5% by weight, the dispersing force becomes stronger than the surface tension of the water-soluble polymer itself on the water surface or in water, and water cannot be trapped. It spreads over the water surface. On the other hand, if the concentration of sodium alginate exceeds 5% by weight, it is difficult to obtain spherical particles having a uniform diameter as a result of injecting the yarn into the solution while pulling the yarn from the supply port.
ポ リ ビニルアルコールとアルデヒ ド類との反応を促進するため本発明 においては製造工程中に酸性溶液を用いるこ とが好ま しい。 これらの酸 類と しては特に限定される ものではないが、 例えば硫酸、 塩酸、 リ ン酸 及びマ レイ ン酸などの無機酸、 並びに有機酸のいずれかを選択して用い るこ とができる力 と りわけ強酸が好ま しい。 特に硫酸が取扱い上最適 であるが、 併用する多価金属塩の種類に応じて使用する酸の種類を適宜 選定するこ と も必要である。  In the present invention, it is preferable to use an acidic solution during the production process in order to promote the reaction between the polyvinyl alcohol and the aldehyde. Although these acids are not particularly limited, for example, any one of inorganic acids such as sulfuric acid, hydrochloric acid, phosphoric acid, and maleic acid, and organic acids may be selected and used. Particularly strong acids are preferred. In particular, sulfuric acid is optimal for handling, but it is necessary to appropriately select the type of acid to be used according to the type of polyvalent metal salt used in combination.
多価金属塩水溶液も特に限定される ものではないが、 主に塩化カルシ ゥム、 塩化亜鉛、 硫酸アルミ ニウムなどが好適である。 濃度は選択する 金属塩の種類や水溶液の温度により多少異なるが、 塩化カルシウムを用 いた場合は 1 ~ 2 0重量%程度が最適である。 また、 請求の範囲第 2 0 項記載の発明においては、 この濃度があま り高いと生成するゲル粒子が 大き く なるとと もに、 隣接する他の粒子と融着する現象が起き易く なり 不具合を生じる。 なお、 請求の範囲第 1 7項記載の製造方法では、 塩化 カルシゥムなどの多価金属塩を酸性水溶液中に少量添加しておく と球状 粒子が崩れるこ となく 、 均一径を有する球状粒子が製造できる。 The aqueous solution of the polyvalent metal salt is not particularly limited, but mainly calcium chloride, zinc chloride, aluminum sulfate and the like are preferred. The concentration varies somewhat depending on the type of metal salt selected and the temperature of the aqueous solution, but when calcium chloride is used, the optimal concentration is about 1 to 20% by weight. Further, in the invention described in claim 20, when the concentration is too high, the generated gel particles become large, and the phenomenon that the particles are fused to other adjacent particles tends to occur. Occurs. In the production method described in claim 17, a small amount of a polyvalent metal salt such as calcium chloride is added to an acidic aqueous solution to obtain a spherical shape. Spherical particles having a uniform diameter can be produced without collapsing the particles.
請求の範囲第 1 7 項乃至第 2 0項の製造方法によ り製造されたポ リ ビ 二ルァセタール系球状粒子は、 水溶性高分子の含水ゲル中にポ リ ビニル ァセタ一ルが含まれているのではな く 、 ポ リ ビニルァセタ一ルの榭脂骨 格内にアルギン酸ナ 卜 リ ゥム等の水溶性高分子の含水ゲルが含まれた状 態で得られる。 そ して、 既述の通り、 乾燥されたこの樹脂粒子は、 アル ギン酸ナ ト リ ウム等の水溶性高分子のゲルが収縮し、 微細な孔径の多孔 質となる。 これにより、 ゴム状弾性または比較的硬い多孔性の球状樹脂 粒子が得られる。 また、 水中に投入すると、 収縮したアルギン酸ナ ト リ ゥム等の水溶性高分子のゲルが含水ゲルと して概ね復元し、 多孔質構造 と して微生物の住処と して利用できる。 なお、 その粒子中に含有される 上記ゲルを排除すると外部開孔する多孔質の球状粒子が得られる。 より 大きな気孔径及び気孔率を有する粒子を製造する場合には、 後述のよう に、 ポ リ ビニルアルコールの溶液に予めデンプンなどの気孔形成剤を加 えておく こ とによ り製造でき る。 気孔怪及び気孔率を大き く するこ とに よりァセタール反応後の残存物質の除去が容易になり洗浄時間が短縮で きる。 また、 気孔率の向上は、 見かけ比重の低減に寄与し、 これに伴い 水中での流動性が向上する。  The polyvinyl acetal-based spherical particles produced by the production method according to claims 17 to 20 are characterized in that the polyvinyl acetal is contained in a hydrogel of a water-soluble polymer. Instead, it is obtained in a state in which a hydrogel of a water-soluble polymer such as sodium alginate is contained in the fatty bone of polyvinyl acetate. Then, as described above, the dried resin particles become porous with a fine pore diameter due to shrinkage of a gel of a water-soluble polymer such as sodium alginate. Thereby, rubbery elastic or relatively hard porous spherical resin particles can be obtained. Also, when put into water, the gel of water-soluble polymer such as contracted sodium alginate is almost restored as a hydrous gel, and it can be used as a porous structure as a dwelling place for microorganisms. When the gel contained in the particles is excluded, porous spherical particles that open to the outside are obtained. In the case of producing particles having a larger pore diameter and porosity, the particles can be produced by adding a pore-forming agent such as starch in advance to a polyvinyl alcohol solution as described later. By increasing the porosity and porosity, the removal of residual substances after the acetal reaction becomes easy, and the washing time can be shortened. In addition, an increase in porosity contributes to a reduction in apparent specific gravity, and accordingly, fluidity in water is improved.
また、 本発明の球状粒子の製造方法の他の実施形態と しては、 イ オ ン 交換反応によりゲル化する性質を持つ水溶性高分子とポ リ ビニルアルコ 一ルとを混合溶解してなる水溶液を、 多価金属塩水溶液中に滴下し、 ィ オン交換反応によ り該液滴をゲル化させポ リ ビニルアルコールを含むゲ ル状球状粒子を形成し、 その後該ゲル状粒子をアルデヒ ドを含む酸性溶 液中に添加し、 該ゲル状粒子体中に含有されるポ リ ビニルアルコールを アルデヒ ド類と反応させるこ とにより ァセタール化度が 3 0〜 8 5 モル %のポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子を得るこ とができる。 In another embodiment of the method for producing spherical particles of the present invention, an aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by an ion exchange reaction and polyvinyl alcohol is used. Is dropped into an aqueous solution of a polyvalent metal salt, and the droplets are gelled by an ion exchange reaction to form gel-like spherical particles containing polyvinyl alcohol. Thereafter, the gel-like particles are converted into aldehyde. Polyacetal resin having a degree of acetalization of 30 to 85 mol% by reacting the polyvinyl alcohol contained in the gel-like particles with aldehydes by adding to the acidic solution containing the gel-like particles. To obtain porous spherical particles having a skeleton of Can be.
この製造方法では、 水溶性高分子の含水ゲルを、 球状粒子の主要成分 と して用いるのではな く 、 あく まで球状粒子の保形手段と して利用する ことで、 ゴム弾性や比較的硬質等の物性を有し、 限りな く 均一径に近い ポ リ ビニルァセタール系骨格球状粒子を簡単にかつ大量に製造する こと ができる。 すなわち、 ポ リ ビニルァセタールとなる骨格粒子の主要成分 であるポ リ ビニルアルコールと、 製造工程上球状粒子の保形作用及び気 孔形成作用を果たすアルギン酸ナ ト リ ウム等の水溶性高分子との各配合 量比率、 及びポ リ ビニルアルコールのァセタール化度を上記配合割合に 調整するこ とによって、 ゴム弾性や比較的硬質等の物性を有し、 真球に 近い均一粒子径に近いポ リ ビニルァセタール系骨格球状粒子を簡単にか つ大量に製造するこ とを可能とする ものである。 また、 ァセタール化反 応を別工程とするため、 上記請求の範囲第 1 7項等の製造方法と比較し てァセタール化度の調整が簡単である点で好ま しい。 ァセタール化度の 調整は、 反応液のアルデヒ ド類の配合量、 反応液の温度、 反応時間を調 整するこ とにより制御するこ とができる。  In this production method, a hydrogel of a water-soluble polymer is not used as a main component of the spherical particles, but is used as a shape retaining means of the spherical particles. Thus, it is possible to easily and mass-produce polyvinyl acetal-based spherical particles having physical properties such as infinitely close to a uniform diameter. That is, each of polyvinyl alcohol, which is a main component of the skeleton particles to be polyvinyl acetal, and a water-soluble polymer such as sodium alginate, which has a shape-retaining action and a pore-forming action for spherical particles in the production process. By adjusting the blending ratio and the degree of acetalization of polyvinyl alcohol to the above blending ratio, a polyvinyl acetal system having physical properties such as rubber elasticity and relatively hardness and having a uniform particle size close to a true sphere is obtained. This makes it possible to produce skeleton spherical particles easily and in large quantities. In addition, since the acetalization reaction is performed in a separate step, it is preferable in that the degree of acetalization can be easily adjusted as compared with the production method according to the above-described claim 17. The degree of acetalization can be controlled by adjusting the amount of the aldehydes in the reaction solution, the temperature of the reaction solution, and the reaction time.
一方、 耐摩耗性及び機械的強度に優れたポ リ ビニルァセタール系樹脂 を骨格とする中空状の多孔性球状粒子を製造する方法と しては、 請求の 範囲第 2 0項に記載の通り、 多価金属塩水溶液を、 イオン交換反応によ りゲル化する性質を持つ水溶性高分子とポ リ ビニルアルコールを混合溶 解してなる水溶液中に滴下し、 多価金属塩の液滴と水溶性高分子の反応 により凝固させて、 液滴外周部に、 多価金属塩と反応した水溶性高分子 のゲルとポ リ ビニルアルコールが混在するゲル状球状粒子体を形成し、 その後、 該ゲル状粒子体をアルデヒ ド類を含む酸性水溶液中に添加し、 ゲル状粒子体中に含有するポリ ビニルアルコールをアルデヒ ド類と反応 させるこ とによ って得られる。 本発明の製造方法は、 多価金属塩水溶液をポ リ ビニルアルコール溶液 に滴下させるこ とにより、 液滴外周部がゲル化し、 これにより液滴内部 にポ リ ビニルアルコール溶液が侵入できないため、 ゲル化が起こるこ と なく 、 結果と して生成物が中空粒子となる。 On the other hand, as a method for producing hollow porous spherical particles having a skeleton of a polyvinyl acetal resin having excellent wear resistance and mechanical strength, as described in claim 20, An aqueous solution of a valent metal salt is dropped into an aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction and polyvinyl alcohol, and the droplet of the polyvalent metal salt is dissolved in water. The polymer is solidified by the reaction of the polymer to form a gel-like spherical particle in which a gel of a water-soluble polymer reacted with a polyvalent metal salt and polyvinyl alcohol are mixed at the outer periphery of the droplet, and then the gel The particles are obtained by adding the particles to an acidic aqueous solution containing aldehydes, and reacting the polyvinyl alcohol contained in the gel-like particles with the aldehydes. In the production method of the present invention, the polyhydric metal salt aqueous solution is dropped into the polyvinyl alcohol solution, so that the outer periphery of the droplet gels, and the polyvinyl alcohol solution cannot enter the inside of the droplet. As a result, the product is formed into hollow particles.
上記の各種の製造方法で得られる球状粒子が多孔性となるのは、 既述 の通り、 球状粒子の乾燥によ り ポ リ ビニルァセタ一ル系骨格粒子中に存 在するゲルが収縮することに起因する。 しかしながら、 より大きな径の 気孔を必要とする場合や、 粒子の外面と内面の気孔率の分布をなく した い場合などには、 少なく と もポ リ ビニルアルコールとイオン交換反応に よりゲル化する性質を持つ水溶性高分子を混合溶解してなる水溶液に気 孔形成剤を加えるこ とにより、 孔径の大きな多孔質体を製造するこ とが できる。 気孔形成剤と しては特に限定される ものではないが、 デンプン の粒度が比較的均一であり、 また、 粒子の大き さが、 本発明の多孔性球 状粒子に求められる細孔の径に合うために最適である。 さ らに、 多孔性 球状粒子を洗浄する際に水で比較的洗い流し易く 、 粒子成形後の取扱い が容易となる。 このデンプンなどの気孔形成剤と添加することにより製 造した多孔性球状粒子は、 特に流動床型の微生物担持体と して好適に利 用可能である。  As described above, the spherical particles obtained by the above-described various production methods become porous because the gel existing in the polyvinyl acetate-based skeleton particles shrinks due to drying of the spherical particles. to cause. However, when larger pores are required or when it is desired to eliminate the distribution of porosity between the outer and inner surfaces of the particles, at least the property of gelling by ion exchange reaction with polyvinyl alcohol By adding a pore-forming agent to an aqueous solution obtained by mixing and dissolving a water-soluble polymer having the above, a porous body having a large pore diameter can be produced. The pore-forming agent is not particularly limited, but the starch has a relatively uniform particle size, and the size of the particles is determined by the pore size required for the porous spherical particles of the present invention. Perfect to fit. Further, when the porous spherical particles are washed, they are relatively easily washed off with water, and handling after the particle molding is facilitated. The porous spherical particles produced by adding this pore-forming agent such as starch can be suitably used particularly as a fluidized bed type microorganism carrier.
また、 積極的に上記のポ リ ビニルァセタール系樹脂を骨格とする多孔 性球状粒子からゲルを取り除く こ と もできる。 すなわち上記の多孔性球 状粒子は乾燥によりゲルが収縮して多孔質体を形成しているが、 湿潤状 態と した際には多孔質構造を呈しつつゲルが復元する傾向を示す。 従つ て、 かかるゲルを積極的に取り除く こ とにより、 湿潤状態で外部開孔す る多孔質体と して用いるこ と もできる。  Further, the gel can be positively removed from the porous spherical particles having the skeleton of the polyvinyl acetal resin as described above. That is, the above porous spherical particles shrink the gel by drying to form a porous body, but when in a wet state, the gel tends to recover while exhibiting a porous structure. Therefore, by actively removing such a gel, it can be used as a porous body that is opened externally in a wet state.
ゲルの主成分は、 酸性溶液によってゲル化する性質を有する水溶性高 分子のゲルである。 例えばアルギン酸などのこの水溶性高分子ゲルを取 り除く 方法と しては、 粒子をナ ト リ ウムイオンを含む溶液中に添加し、 攪拌洗浄するこ とにより イオン交換させる方法や、 エチレンジア ミ ン四 酢酸 ( E D T A) やリ ン酸緩衝剤のようなカルシウムイオンに対するキ レー ト剤を利用する方法、 その他、 遠心分離させる方法が例示できる。 いずれの方法も、 好適なゲル除去方法である。 The main component of the gel is a water-soluble high molecular gel that has the property of gelling with an acidic solution. For example, remove this water-soluble polymer gel such as alginic acid. As a method for removing particles, a method in which particles are added to a solution containing sodium ions and then ion-exchanged by stirring and washing, or a method such as ethylenediaminetetraacetic acid (EDTA) or a phosphate buffer is used. Examples of the method include a method using a chelating agent for calcium ions, and a method of centrifugation. Either method is a suitable gel removal method.
なお、 後述の実施例を含む本発明の気孔径、 気孔率及びァセタール化 度は次の測定法に基づく ものである。  The pore diameter, porosity, and acetalization degree of the present invention including the examples described below are based on the following measurement methods.
(気孔径の測定)  (Measurement of pore size)
気孔径の測定は A S TM CDesignat ion: D4404-84) に基づいて測定 した。 具体的には、 P O R O U S MA T E R I A L S , I N C社製ポ ロシメ ーターを用い、 水銀圧入法細孔測定によ り平均気孔径を求めた。  The pore size was measured based on ASTM CDesignation: D4404-84). Specifically, the average pore diameter was determined by a mercury intrusion porosimetry using a porosimeter manufactured by PORUS MATERIALS, INC.
(気孔率の測定)  (Measurement of porosity)
サンプルをゥエ ツ 卜状態で、 ノ ギスを用いて直径を 3箇所で測り、 見 かけ体積 (V a ) 及び、 島津製作所製乾式自動密度計アキュ ピッ ク 1 3 3 0 (商品名) を用いて真体積 (V) を測定する。 この値を用いて下記 の数式により気孔率 £ (%) を計算した。  Measure the sample at three points with a vernier caliper in the state of a jet, and use the apparent volume (V a) and the Shimadzu Dry Automatic Density Meter Acupic 1330 (trade name). And measure the true volume (V). Using this value, the porosity was calculated by the following equation.
£ = ( 1 - V a /V ) x l 0 0  £ = (1-V a / V) x l 0 0
(ァセタール化度の測定)  (Measurement of degree of acetalization)
重水素ク ロロホルム、 ト リ フルォロ酢酸水溶液中でのプロ ト ン N MR 測定から次の数式によりァセタール化度 F (%) を算出 した。  The acetalization degree F (%) was calculated from the proton NMR measurement in an aqueous solution of deuterium chloroform and trifluoroacetic acid by the following equation.
F = ( a / c ) x l 0 0  F = (a / c) x l 0 0
c : メ チンプロ ト ン (例えば、 4. 1 5 3、 4. 4 4 2 p p m) の ピーク強度の合計  c: Sum of peak intensities of methine protons (for example, 4.153, 4.442 ppm)
a : エーテル基に隣接するメ チレンプロ ト ン (例えば、 4. 6 6 7 a: Methylene proton adjacent to the ether group (for example, 4.66 7
、 5. 1 5 0、 5. 3 1 3、 5. 3 2 6 p p m) のピー ク強度 の合計 以下、 実施例に基づいて本発明を詳細に説明する。 ただし、 本発明は これに限定される ものではない。 なお、 以下の実施例及び比較例におけ る%とは重量%を意味する。 , 5.150, 5.313, 5.326 ppm) Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to this. In the following Examples and Comparative Examples,% means% by weight.
(実施例 1 )  (Example 1)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
アルギン酸ナ ト リ ウ ム 1 . 0 %  Sodium alginate 1.0%
ホルムアルデヒ ド 4 . 0 %  Holmaldehyde 4.0%
水 8 7 . 5 %  87.5% water
(反応液)  (Reaction liquid)
硫酸 1 0 . 0 %  Sulfuric acid 10.0%
水 9 0 . 0 %  90.0% water
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコ一ル榭脂を熱 水に溶解した後冷却し、 これに別に調整したアルギン酸ナ ト リ ウムの水 溶液を添加して、 さ らにホルムアルデヒ ド水溶液を加え均一に混合した 。 次にこの混合液を 1 0 %硫酸水溶液中に滴下した。 この硫酸水溶液の 液温は 6 0 °Cであった。 硫酸水溶液中で形成した液滴は約 5分ほどでゲ ル化し、 その状態で i 5 分ほど反応させた後該粒子を分離したと ころポ リ ビニルァセタールを樹脂骨格とする弾性粒子体が得られた。 これを水 洗いにて充分洗浄、 乾燥するこ とにより粒子径 3 〜 4 mmである真球に 近い均一粒子径のポ リ ビニルァセタール系多孔性球状粒子を得た。  Polyvinyl alcohol resin having an average degree of polymerization of 1500 and completely saponified is dissolved in hot water, cooled, and a separately adjusted aqueous solution of sodium alginate is added thereto. The aqueous solution of formaldehyde was added to the mixture, and mixed uniformly. Next, this mixture was dropped into a 10% aqueous sulfuric acid solution. The liquid temperature of the aqueous sulfuric acid solution was 60 ° C. The droplets formed in the aqueous sulfuric acid solution gelate in about 5 minutes, and after reacting in that state for about 5 minutes, the particles are separated.As a result, elastic particles having a resin skeleton of polyvinyl acetal are obtained. Was. This was thoroughly washed with water and dried to obtain polyvinyl acetal porous spherical particles having a uniform particle diameter close to a true sphere having a particle diameter of 3 to 4 mm.
(実施例 2 )  (Example 2)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
アルギン酸ナ ト リ ウ ム し 0 %  0% sodium alginate
水 9 1 . 5 % (反応液) Water 9 1.5% (Reaction liquid)
硫酸 5 0 %  50% sulfuric acid
ホルムァルデヒ ド 4 0 %  Holmaldehyde 40%
水 9 1 0 %  Water 9 10%
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコール樹脂を熱 水に溶解した後冷却し、 これに別に調整したアルギン酸ナ 卜 リ ウムの水 溶液を添加混合した。 この混合液を別に調整したホルムアルデヒ ド水溶 液と硫酸水溶液とを均一混合したものに滴下した。 この酸性ホルマ リ ン 溶液の液温は 6 0 °Cであった。 滴下した液滴は 5 分ほどでゲル化し、 そ の状態で 3 0分ほど反応させる こ とによ りポ リ ビニルァセタールを樹脂 骨格とする弾性粒子が生成した。 これは実施例 1 で得られたものとほぼ 同様のものであった。  A completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 was dissolved in hot water and then cooled, and a separately adjusted aqueous solution of sodium alginate was added thereto and mixed. This mixture was dropped into a mixture of a separately prepared aqueous solution of formaldehyde and an aqueous solution of sulfuric acid. The liquid temperature of this acidic formalin solution was 60 ° C. The dropped droplets gelled in about 5 minutes, and were reacted for about 30 minutes in this state, thereby producing elastic particles having a poly (vinyl acetal) resin skeleton. This was almost the same as that obtained in Example 1.
(比較例 1 )  (Comparative Example 1)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
ホルムアルデヒ ド 4 . 0 %  Holmaldehyde 4.0%
水 8 9 . 5 %  89.5% water
(反応液)  (Reaction liquid)
硫酸 1 0 . 0 %  Sulfuric acid 10.0%
水 9 0 . 0 %  90.0% water
平均重合度が 1 5 0 0 で完全ゲン化のポ リ ビニルアルコール榭脂を熱 水に溶解した後冷却し、 これにホルムアルデヒ ド水溶液を加え均一に混 合した。 次にこの混合液を液温 6 0 °Cの 1 0 %硫酸水溶液中に滴下した 。 しかしながら、 滴下した混合液は液滴と してとどま っておらず徐々 に 酸性水溶液中に拡散していき、 それと同時に反応が進行したため雲状の 固形物を生成したにすぎず、 球状粒子を得るこ とはできなかった。 (比較例 2 ) Polyvinyl alcohol resin having an average degree of polymerization of 1500 and being completely genated was dissolved in hot water, cooled, and an aqueous formaldehyde solution was added thereto and mixed uniformly. Next, this mixture was dropped into a 10% aqueous sulfuric acid solution at a liquid temperature of 60 ° C. However, the dropped mixture does not remain as droplets but gradually diffuses into the acidic aqueous solution.At the same time, the reaction proceeds, and only a cloud-like solid is generated, and spherical particles are obtained. I couldn't do that. (Comparative Example 2)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコ ール 8 0 %  Polyvinyl alcohol 80%
水 9 2 0 %  92.0% water
(反応液)  (Reaction liquid)
硫酸 5 0 %  50% sulfuric acid
ホルムアルデヒ ド 4 0 %  Holmaldehyde 40%
水 9 1 0 %  Water 9 10%
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコール樹脂を熱 水に溶解した後冷却した。 次にこの混合液を別に調整したホルムアルデ ヒ ド水溶液と硫酸水溶液とを均一混合したものに滴下した。 この酸性ホ ルマ リ ン水溶液の液温は 6 0 °Cであった。 しかしながら比較例 1 と同様 の現象が生じ、 球状粒子を得る こ とはできなかった。  A completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 was dissolved in hot water and then cooled. Next, this mixture was dropped into a mixture of a separately prepared aqueous solution of formaldehyde and an aqueous solution of sulfuric acid. The liquid temperature of the acidic aqueous phormalin solution was 60 ° C. However, the same phenomenon as in Comparative Example 1 occurred, and spherical particles could not be obtained.
(実施例 3 )  (Example 3)
(滴下液)  (Drip liquid)
塩化カルシウ ム 2 0 %  Calcium chloride 20%
水 9 8 0 %  Water 98%
(第 1 反応液)  (1st reaction liquid)
ポ リ ビニルアルコ ール 3 0 %  Polyvinyl alcohol 30%
アルギン酸ナ ト リ ゥ ム 0 5 %  Alginate sodium 0 5%
水 9 6 5 %  96.5% water
(第 2 反応液)  (Second reaction solution)
ホルムアルデヒ ド 8 0 %  Holmaldehyde 80%
硫酸 1 0 0 %  Sulfuric acid 100%
水 8 2 0 %  Water 8 20%
平均重合度が 1 5 0 .0 で完全ゲン化のポ リ ビニルアルコール樹脂を熱 水に溶解した後冷却し、 これに別に調整したアルギン酸ナ ト リ ウム水溶 液を添加して全量 2 0 0 0 m 1 の混合溶液と した。 この混合溶液の温度 は室温であった。 これに塩化カルシウム水溶液をゆっ く り と滴下する と 、 該液滴が凝固し始め約 5分後には完全ゲル化し、 半透明の球状粒子が 生成した。 次にこのゲル状粒子を分離回収し、 さ らにホルマリ ンと硫酸 からなる液温 6 0 °Cの混合溶液に添加した。 添加と同時に半透明のゲル 状粒子は白濁し始め約 1 0分後には完全に白色化し、 ポ リ ビニルァセ夕 ールを樹脂骨格とするゴム弾性を有する球状粒子が得られた。 これを水 で十分に洗浄し、 粒子径 3 〜 4 m mである真球に近い均一粒子径のポ リ ビニルァセタール系中空粒子を得た。 Heating a fully greased polyvinyl alcohol resin with an average degree of polymerization of 150.0 After dissolving in water, the mixture was cooled, and a separately adjusted aqueous sodium alginate solution was added thereto to obtain a mixed solution having a total volume of 2000 ml. The temperature of this mixed solution was room temperature. When an aqueous solution of calcium chloride was slowly added dropwise thereto, the droplets began to solidify and completely gelled after about 5 minutes, producing translucent spherical particles. Next, the gel-like particles were separated and collected, and further added to a mixed solution of formalin and sulfuric acid at a liquid temperature of 60 ° C. At the same time as the addition, the translucent gel-like particles began to become cloudy and completely whitened after about 10 minutes, and spherical particles having rubber elasticity and having a resin skeleton of polyvinyl acetate resin were obtained. This was sufficiently washed with water to obtain polyvinyl acetal hollow particles having a uniform particle diameter close to a true sphere having a particle diameter of 3 to 4 mm.
(比較例 3 )  (Comparative Example 3)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
塩化カルシウム 5 . 0 %  Calcium chloride 5.0%
水 8 7 . 5 %  87.5% water
(第 1 反応液)  (1st reaction liquid)
アルギン酸ナ ト リ ウム 0 . 5 %  Sodium alginate 0.5%
水 9 9 . 5 %  99.5% water
(第 2 反応液)  (Second reaction solution)
ホルムアルデヒ ド 8 . 0 %  Holmaldehyde 8.0%
硫酸 1 0 . 0 %  Sulfuric acid 10.0%
水 8 2 . 0 %  Water 82.0%
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコール樹脂を熱 水に溶解した後冷却し、 これに別に調整した塩化カルシウム水溶液を添 加して全量 2 0 0 0 m l の混合溶液と した。 これをアルギン酸ナ 卜 リ ウ ム水溶液中にゆつ く り と滴下すると該溶液が沈降しながらゲル化し半透  Polyvinyl alcohol resin with an average degree of polymerization of 150 and completely saponified is dissolved in hot water, then cooled, and a separately prepared calcium chloride aqueous solution is added thereto to give a total of 2000 ml mixed solution. And When this solution is slowly dropped into an aqueous sodium alginate solution, the solution gels while settling and becomes semipermeable.
9 7 明の紐状ゲルが生成した。 次にこの紐状ゲルを分離回収しさ らにホルマ リ ンと硫酸からなる液温 6 0 °Cの混合水溶液に添加した。 添加と同時に 半透明のゲル状粒子は白濁し始め、 約 1 0分後には完全に白色化し、 ゴ ム弾性を有する ものが得られたが球状粒子ではな く 中空でもなかった。 (比較例 4 ) 9 7 A light string gel formed. Next, the string-like gel was separated and collected, and then added to a mixed aqueous solution of formalin and sulfuric acid at a liquid temperature of 60 ° C. At the same time as the addition, the translucent gel-like particles began to become cloudy and completely whitened after about 10 minutes, and had rubber elasticity, but were not spherical particles nor hollow. (Comparative Example 4)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 5 . 0 %  Polyvinyl alcohol 5.0%
塩化カルシウム 2 . 0 %  Calcium chloride 2.0%
ホルムアルデヒ ド 3 . 0 %  Holmaldehyde 3.0%
硫酸 4 . 0 %  Sulfuric acid 4.0%
水 8 6 . 0 %  86.0% water
(第 1 反応液)  (1st reaction liquid)
アルギン酸ナ ト リ ウム 0 . 5 %  Sodium alginate 0.5%
水 9 6 . 5 %  96.5% water
(第 2 反応液)  (Second reaction solution)
 water
平均重合度が 1 5 0 0 で完全ゲン化のポ リ ビニルアルコール榭脂及び 塩化カルシウム、 ホルムアルデヒ ド、 硫酸からなる混合液をアルギン酸 ナ ト リ ゥム水溶液中にゆつ く り と滴下すると該溶液は沈降しながらゲル 化した。 この粒子を分離し、 6 0 °Cの湯浴中に添加して 3 0分反応させ ると弹性粒子が得られた。 しかしながら該粒子は中空粒子ではなく 、 ま た実施例 3 で得たものより も強度的に劣る ものであった。 なお、 滴下し 残った滴下液は 1 5分後には固形化しており、 滴下液を調整した後極め て早期に使い切らなければな らないこ とが判明 した。  When a mixture of polyvinyl alcohol resin and calcium chloride, formaldehyde, and sulfuric acid with an average degree of polymerization of 1500 and completely genated, is slowly dropped into an aqueous solution of sodium alginate, the solution is dissolved. Gelled while settling. These particles were separated, added to a water bath at 60 ° C., and allowed to react for 30 minutes, to obtain hydrophilic particles. However, the particles were not hollow particles and were inferior in strength to those obtained in Example 3. The dripping liquid remaining after the dripping was solidified after 15 minutes, and it was found that the dripping liquid had to be used up very quickly after adjusting the dripping liquid.
(実施例 4 ) (Example 4)
(滴下液) ポ リ ビニルアルコール 7 5 % (Drip liquid) Polyvinyl alcohol 7 5%
アルギン酸ナ ト リ ゥ ム 1 0 %  Alginate sodium 10%
水 9 1 5 %  Water 9 15%
(第 1 反応液)  (1st reaction liquid)
塩化カルシウ ム 3 0 %  Calcium chloride 30%
水 9 7 0 %  970% water
(第 2 反応液)  (Second reaction solution)
ホルムァルデヒ ド 3 0 %  Holmaldehyde 30%
硫酸 4 0 %  40% sulfuric acid
水 9 3 0 %  930% water
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコール樹脂を熱 水に溶解した後冷却し、 これに別に調整したアルギン酸ナ ト リ ゥム水溶 液を添加して全量 2 0 0 0 m l の混合溶液と した。 これを塩化カルシゥ ム水溶液 5 0 0 0 m 1 中にゆつ く り と滴下するとすぐに該液滴が凝固し 始め流動性を失い、 約 3 分後には完全にゲル化し半透明の球状粒子を生 じた。 次にこのゲル状粒子を分離回収し、 さ らにホルムアルデヒ ド濃度 が 4 %、 硫酸濃度が 5 %の混合水溶液に添加した。 添加と同時に半透明 のゲル状粒子は白濁し始め約 3 分後には完全に白色化し、 ゴム弾性を有 する球状粒子が得られた。 これを水で十分に洗浄し、 粒子径 3 〜 4 m m である真球に近い均一粒子径のポ リ ビニルァセタール系多孔性球状粒子 を得た。 この球状粒子を乾燥後、 内部構造を走査電子顕微鏡で観察した ところ 2 ~ 4 mの気孔を多数有しており、 いずれも連通気孔であった  A completely saponified polyvinyl alcohol resin with an average degree of polymerization of 1500 is dissolved in hot water, then cooled, and a separately adjusted aqueous sodium alginate solution is added thereto to bring the total amount to 200,000. ml of the mixed solution. As soon as this is slowly dropped into 500 ml of an aqueous solution of calcium chloride, the droplets begin to solidify and lose their fluidity, and after about 3 minutes are completely gelled to form translucent spherical particles. occured. Next, the gel particles were separated and collected, and further added to a mixed aqueous solution having a formaldehyde concentration of 4% and a sulfuric acid concentration of 5%. At the same time as the addition, the translucent gel-like particles began to become cloudy and completely whitened after about 3 minutes, and spherical particles having rubber elasticity were obtained. This was sufficiently washed with water to obtain polyvinyl acetal porous spherical particles having a uniform particle diameter close to a true sphere having a particle diameter of 3 to 4 mm. After drying these spherical particles, the internal structure was observed with a scanning electron microscope.As a result, they had many pores of 2 to 4 m, all of which were interconnected.
(実施例 5 ) (Example 5)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコ ール 7 . 5 % アルギン酸ナ 卜 リ ゥム 0 % Polyvinyl alcohol 7.5% Alginate sodium 0%
水 9 1 5 %  Water 9 15%
(第 1 反応液)  (1st reaction liquid)
塩化カルシウム 3 0 %  Calcium chloride 30%
水 9 7 0 %  970% water
(第 2 反応液)  (Second reaction solution)
ホルムアルデヒ ド 8 0 %  Holmaldehyde 80%
硫酸 1 0 0 %  Sulfuric acid 100%
水 8 2 0 %  Water 8 20%
実施例 4 と同様の操作にてゲル状粒子を得た後、 このゲル状粒子を分 離回収しさ らにホルムアルデヒ ド 8 %、 硫酸 1 0 %からなる 8 0 °Cの混 合水溶液中に添加した。 この状態にて 5分間反応させると弾性を有さな い 3 〜 4 m mの球状粒子が得られた。 この球状粒子は微細なク レーター 状の凹凸を有していた。 これを水で十分に洗浄した後乾燥し、 内部構造 を走査電子顕微鏡にて観察したと ろ、 2 4 a mの多数の気孔を有し ており、 いずれも連通孔であった  After obtaining the gel-like particles by the same operation as in Example 4, the gel-like particles were separated and collected, and then added to a mixed aqueous solution of 80% formaldehyde and 10% sulfuric acid at 80 ° C. did. After reacting for 5 minutes in this state, 3 to 4 mm spherical particles having no elasticity were obtained. The spherical particles had fine crater-like irregularities. This was thoroughly washed with water, dried, and the internal structure was observed with a scanning electron microscope.As a result, it had many pores of 24 am, all of which were communication holes.
(実施例 6 )  (Example 6)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 5 %  Polyvinyl alcohol 7 5%
アルギン酸ナ ト リ ウム 1 0 %  Sodium alginate 10%
水 9 1 5 %  Water 9 15%
(第 1 反応液)  (1st reaction liquid)
塩化カルシウム 3 0 %  Calcium chloride 30%
水 9 7 0 %  970% water
(第 2 反応液)  (Second reaction solution)
ホルムァルデヒ ド 8 . 0 % 硫酸 1 0 . 0 % Holmaldehyde 8.0% Sulfuric acid 10.0%
水 9 3 . 0 %  93.0% water
実施例 5 と同様の操作にて、 ゲル状粒子をホルムアルデヒ ド 8 %及び 硫酸 1 0 %の 2 0 °Cの混合溶液に添加して 1 5 時間反応させる と、 実施 例 2 と同様の硬質球状粒子を得、 その粒子表面は実施例 5 で得たものよ り も平滑であつた。  In the same manner as in Example 5, the gel-like particles were added to a mixed solution of 8% formaldehyde and 10% sulfuric acid at 20 ° C and reacted for 15 hours. Particles were obtained, and the particle surfaces were smoother than those obtained in Example 5.
(実施例 7 )  (Example 7)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
アルギン酸ナ ト リ ウ ム 1 . 0 %  Sodium alginate 1.0%
コ ー ンス ターチ 5 . 0 %  Coon Starch 5.0%
水 8 6 . 5 %  86.5% water
(第 1 反応液)  (1st reaction liquid)
塩化カノレシゥ ム 3 . 0 %  Canolecidium chloride 3.0%
水 9 7 . 0 %  97.0% water
(第 2反応液)  (2nd reaction liquid)
ホルムアルデヒ ド 1 0 . 0 %  Holmaldehyde 10.0%
硫酸 1 5 . 0 %  Sulfuric acid 15.0%
水 7 5 . 0 %  Water 75.0%
実施例 4 と同様の操作にて調整した混合液を、 7 0 °Cの塩化カルシゥ ム水溶液 5 0 0 0 m 1 中に滴下すると該溶液は凝固し始め、 1 5 分後に は完全にゲル化して半透明の弾性粒子が得られた。 次にこのゲル状粒子 をホルムアルデヒ ドと硫酸からなる 6 0 °Cの水溶液に添加して 6 0分ほ ど反応させるこ とにより 白色球状粒子が得られた。 この状態にて攪拌す ると該粒子は容易に流動し、 実施例 4 で得られたものと比較しても高い 流動性を示すものであった。 なお、 本実施例で得られた球状粒子のァセ タール化度は約 6 7 モル%であった。 When the mixture prepared in the same manner as in Example 4 was dropped into 500 ml of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, completely gelled. Thus, translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 60 ° C. and reacted for about 60 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. The spherical particles obtained in this example The degree of tarification was about 67 mol%.
(実施例 8 )  (Example 8)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
アルギン酸ナ ト リ ウム 1 . 0 %  Sodium alginate 1.0%
コーンスターチ 5 . 0 %  Corn starch 5.0%
水 8 6 . 5 %  86.5% water
(第 1 反応液)  (1st reaction liquid)
塩化カノレシゥ厶 3 . 0 %  Canolecum chloride 3.0%
水 9 7 . 0 %  97.0% water
(第 2 反応液)  (Second reaction solution)
ホルムアルデヒ ド 1 0 . 0 %  Holmaldehyde 10.0%
硫酸 1 5 . 0 %  Sulfuric acid 15.0%
水 7 5 . 0 %  Water 75.0%
実施例 4 と同様の操作にて調整した混合液を、 7 0 °Cの塩化カルシゥ ム水溶液 5 0 0 0 m l 中に滴下すると該溶液は凝固し始め、 1 5分後に は完全にゲル化して半透明の弾性粒子が得られた。 次にこのゲル状粒子 をホルムアルデヒ ドと硫酸からなる 7 5 °Cの水溶液に添加して 1 5分ほ ど反応させる こ とにより白色球状粒子が得られた。 この状態にて攪拌す ると該粒子は容易に流動し、 実施例 4 で得られたものと比較しても高い 流動性を示すものであった。 なお、 本実施例で得られた球状粒子のァセ 夕一ル化度は約 6 5 モル%であった。  When the mixed solution prepared in the same manner as in Example 4 was dropped into 500 ml of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, completely gelled. Translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 75 ° C. and reacted for about 15 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. The degree of acylation of the spherical particles obtained in this example was about 65 mol%.
(比較例 5 )  (Comparative Example 5)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 1 0 . 0 %  Polyvinyl alcohol 10.0%
アルギン酸ナ ト リ ウ ム し 0 % 水 8 9 . 0 % 0% sodium alginate 89.0% water
(反応液)  (Reaction liquid)
塩化カルシウ ム 3 . 0 %  Calcium chloride 3.0%
水 9 7 . 0 %  97.0% water
平均重合度が 1 5 0 0 で完全ケン化のポ リ ビニルアルコ一ル樹脂を熱 水に溶解した後冷却し、 これに別に調整したアルギン酸ナ ト リ ウム水溶 液を添加して全量 2 0 0 0 m l の混合溶液と した。 これを塩化カルシゥ ム 3 %の水溶液 5 0 0 0 m l 中にゆつ く り と滴下するとすぐに該溶液が 凝固し始め流動性を失い約 3 分後には完全にゲル化したが粒子の形状は しずく状であり、 真球状のものではなかった。  A completely saponified polyvinyl alcohol resin having an average degree of polymerization of 1500 is dissolved in hot water and then cooled, and a separately adjusted aqueous sodium alginate solution is added thereto to bring the total amount to 200,000. ml of the mixed solution. As soon as this was slowly dropped into 500 ml of 3% aqueous solution of calcium chloride, the solution began to solidify and lost its fluidity, and after about 3 minutes completely gelled, the shape of the particles was changed. It was drop-shaped and not a true sphere.
(比較例 6 )  (Comparative Example 6)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 8 0 %  Polyvinyl alcohol 80%
水 9 2 0 %  92.0% water
(反応液)  (Reaction liquid)
塩化カルシウム 3 0 %  Calcium chloride 30%
水 9 7 0 %  970% water
平均重合度が 1 5 0 0 で完全ゲ ン化のポ リ ビニルアルコール樹脂を水 に溶解してなる 8 %水溶液を塩化カルシウ ム 3 %の水溶液 5 0 0 0 m l 中にゆっ く り と滴下すると、 該液滴は塩化カルシウム水溶液の水面上に 広がり、 その状態にて 1 0分間放置しても該溶液が凝固するこ とはな く ゲル化物は得られなかった。  An 8% aqueous solution obtained by dissolving polyvinyl alcohol resin with an average degree of polymerization of 1500 and completely converted to water is slowly dropped into 500 ml of a 3% aqueous solution of calcium chloride. However, the droplets spread on the surface of the aqueous solution of calcium chloride, and the solution did not solidify even when left in that state for 10 minutes, and no gel was obtained.
(比較例 7 )  (Comparative Example 7)
(滴下液)  (Drip liquid)
ポ リ ビニルアルコール 7 . 5 %  Polyvinyl alcohol 7.5%
アルギン酸ナ ト リ ウ ム 1 . 0 % コー ンスターチ 5 0 % Sodium alginate 1.0% Cornstarch 50%
水 8 6 5 %  86.5% water
(第 1 反応液)  (1st reaction liquid)
塩化カルシウ ム 3 0 %  Calcium chloride 30%
水 9 7 0 %  970% water
(第 2 反応液)  (Second reaction solution)
ホルムァルデヒ ド 1 0 0 %  Holmaldehyde 1 0 0%
硫酸 1 5 0 %  Sulfuric acid 150%
水 7 5 0 %  Water 750%
実施例 4 と同様の操作にて調整した混合液を、 7 0 °Cの塩化カルシゥ ム水溶液 5 0 0 0 m 】 中に滴下すると該溶液は凝固し始め、 1 5分後に は完全にゲル化して半透明の弾性粒子が得られた。 次にこのゲル状粒子 をホルムアルデヒ ドと硫酸からなる 6 0 °Cの水溶液に添加して 1 5分ほ ど反応させるこ とにより 白色球状粒子が得られた。 この状態にて攪拌す ると該粒子は容易に流動し、 実施例 4 で得られたものと比較しても高い 流動性を示すものであった。 ただし、 本比較例で得られた球状粒子のァ セタール化度は約 3 0 モル%であり、 後述する耐久性試験において摩耗 が確認された。  When the mixture prepared in the same manner as in Example 4 was dropped into 500 m of an aqueous solution of calcium chloride at 70 ° C., the solution began to solidify, and after 15 minutes, it completely gelled. Thus, translucent elastic particles were obtained. Next, the gel-like particles were added to an aqueous solution of formaldehyde and sulfuric acid at 60 ° C. and reacted for about 15 minutes to obtain white spherical particles. When stirred in this state, the particles flowed easily, and exhibited higher fluidity than that obtained in Example 4. However, the degree of acetalization of the spherical particles obtained in this comparative example was about 30 mol%, and wear was confirmed in a durability test described later.
各実施例で得られた球状粒子は網目構造を持つ連続気泡のスポ ン ジ状 のものであり、 親水性が良く 、 ゥ エ ツ ト時の柔軟性及び弾性に富んだも のであった。 この多孔質体のう ちサ ンプルと して 1 0個選択し、 特性を 測定したと ころ、 気孔率が 8 0 〜 9 5 %の間に均一的に分散しており、 平均気孔率は 9 0 %であった。 また気孔径は 3 0 〜 1 0 0 / mの間に分 布しており、 平均で 6 0 〃 mであった。 この範囲における気孔径は多孔 質内に微生物を維持するのに適度な大きさであり、 担持体と して利用す るのに好適であった。 また、 各実施例で得られた多孔性球状粒子の含水状態での見かけ比重 は、 サンプル 1 0 個当たり約 し 0 1 7 〜 1 . 0 1 9 であった。 なお、 中空粒子の実施例 3 の粒子の比重はこれより も小さ く 1 . 0 0 8程度で あった。 遠心脱水した後の水分率は 5 0. 4 %であり、 5 0 %圧縮応力 は 2 0 X 1 0 3 N Z n であった。 2 0粒を振盪したビーカーの水に投入 したところ、 しばら く 水面で浮遊した後、 3 分 2 8秒ですベての粒が水 面下に穏やかに沈んだ。 The spherical particles obtained in each of the examples were sponge-like open cells having a network structure, had good hydrophilicity, and were rich in flexibility and elasticity in a wet state. When 10 samples were selected as a sample of this porous body and the characteristics were measured, the porosity was uniformly dispersed between 80% and 95%, and the average porosity was 9%. 0%. In addition, the pore size was distributed between 30 and 100 / m, with an average of 60 μm. The pore diameter in this range was appropriate for maintaining microorganisms in the porous material, and was suitable for use as a carrier. The apparent specific gravity of the porous spherical particles obtained in each example in a water-containing state was about 0.17 to 1.019 per 10 samples. The specific gravity of the hollow particles of Example 3 was smaller than this and was about 1.008. The water content after centrifugal dehydration was 50.4%, and the 50% compressive stress was 20 × 10 3 NZn. When 20 grains were put into the water of a shaker beaker, they floated for a while, and all the grains gently sank below the surface in 3 minutes and 28 seconds.
(プレス試験)  (Press test)
次に、 各実施例で得られた多孔性球状粒子を 6 0 °Cで 1 時間乾燥した 。 水分率は 3. 0 %であった。 これを 4 . 9 x i 0 6 NZm2の圧力でプ レスしたと ころ、 直径が 0. 7 5〜 1 . 5 mmに圧縮された。 これらの う ちの 2 0粒を振盪した水中に投入したところ、 速やかに吸水して膨れ 、 8秒ですベて水面下に沈んだ。 沈んだ粒を取り出 して、 水分率 5 0 % に水に湿潤した状態で測定したと ころ、 すべてが水に投入して元の形状 の大きさに復元していた。 すなわち、 水中に投入すると速やかに 2倍か ら 4 倍の体積に膨れたこ とを確認した。 Next, the porous spherical particles obtained in each Example were dried at 60 ° C. for 1 hour. The water content was 3.0%. When this was pressed at a pressure of 4.9 xi06 NZm 2 , it was compressed to 0.75-1.5 mm in diameter. When 20 of these were placed in shaken water, they quickly absorbed and swollen, and sank below the surface in 8 seconds. When the settled grains were taken out and measured in a state of being moistened with water to a water content of 50%, they were all poured into water and restored to the original size. In other words, it was confirmed that when it was put into water, it immediately swelled to 2 to 4 times its volume.
これに対して、 プレスする前の乾燥したサンプルのうち 2 0粒を、 振 盪したビーカ一の水に投入したところすベての粒子は水面で浮遊した。 粒子の表面では水を吸収しても中の空気が抜けないため、 2 時間振盪し ても水面下に沈んだ粒子はなかった。  On the other hand, when 20 grains of the dried sample before pressing were put into the water of a shaker beaker, all the grains floated on the water surface. Even after absorbing water, the air inside did not escape at the surface of the particles, so no particles settled below the water surface even after shaking for 2 hours.
(耐久性試験)  (Durability test)
また、 バイオリ アク ター内での流動を想定した模擬テス ト と して、 直 径 1 5 O mm, 高さ 4 0 0 m mの容器内に得られた各実施例及び比較例 In addition, as a simulated test assuming the flow in the bio-reactor, the examples and comparative examples obtained in a container with a diameter of 150 mm and a height of 400 mm were used.
7 の多孔性球状粒子を水量に対して 1 0 %体積になるように充塡し、 水 中にて曝気流動させたと ころ該粒子は均一に分散流動した。 この流動をThe porous spherical particles of No. 7 were filled so as to have a volume of 10% with respect to the amount of water, and were aerated and flown in water, whereby the particles were uniformly dispersed and flown. This flow
1 ヶ月連続して運転させた後、 該粒子を取り出 して観察したと ころ、 実 施例に係る粒子は摩擦による摩耗や破損などは全く みられず、 耐摩耗性 に富んでいる こ とが確認された。 ただし、 ァセタール化度が不十分な比 較例 7 の粒子には摩耗が見受け られた。 After operating continuously for one month, the particles were taken out and observed. The particles according to the examples did not show any wear or breakage due to friction, and were confirmed to be rich in wear resistance. However, the particles of Comparative Example 7, which had an insufficient degree of acetalization, showed wear.
さ らに、 他素材からなる単体と耐摩耗性能を比較するための促進試験 と して、 上述と同様の試験容器の側壁内面に耐水性のサン ドペーパー ( 1 0 0番手) を貼りつけ、 各種担体を水量に対して 1 0 %体積となるよ うに個別に充塡し、 水中にて攪拌流動させた。 攪拌は水槽内に投入した 攪拌羽を 3 0 0 r p mの速度で回転させて担体を機械的に流動させ、 内 壁との摩擦が発生するよ うに設定した。 この流動を 1 週間連続して行い 、 経時的に担体の状態を観察したと ころ、 本発明の多孔性球状粒子につ いては摩擦による摩耗は全く 見受けられず、 耐摩耗性に富んでいるこ と が確認された。  In addition, as an accelerated test to compare the abrasion resistance performance with a unit made of another material, a water-resistant sandpaper (100 count) was attached to the inner surface of the side wall of the test container as described above. Various carriers were individually filled so as to have a volume of 10% with respect to the amount of water, and stirred and fluidized in water. The stirring was set so that the stirring blades, which had been introduced into the water tank, were rotated at a speed of 300 rpm to mechanically flow the carrier, thereby generating friction with the inner wall. This flow was carried out continuously for one week, and the state of the carrier was observed over time. As a result, the porous spherical particles of the present invention did not show any abrasion due to friction, and showed that they were rich in abrasion resistance. And were confirmed.
これに対し、 他素材と して選定した直径 3 m mのポ リ ゥ レタ ンスボン ジ、 セルロ ーススポ ン ジ、 アルギン酸カルシウ ム球状ゲルについては、 いずれも 2 4 時間後に表面が削れて摩耗されているのが確認された。 さ らに 1 週間後には摩耗が進行し、 いずれの素材もその大きさが半分以下 に減少した。 なお、 アルギン酸カルシウムゲルについては、 1 %濃度の Ύルギン酸ソ一ダ水溶液を 2 %濃度の塩化カルシゥム水溶液に滴下凝固 するこ とによ り作成したものを用いた。  On the other hand, the surface of the 3 mm-diameter poly-resin bond, cellulose sponge, and calcium alginate spherical gel, which were selected as other materials, were all worn and worn after 24 hours. Was confirmed. After a week, wear progressed and the size of each material was reduced by less than half. As the calcium alginate gel, a gel prepared by dropping and solidifying a 1% aqueous sodium alginate solution into a 2% aqueous calcium chloride solution was used.
(担持体の微生物分解性試験)  (Test for microbial degradation of carrier)
また、 該粒子を 2 m mのメ ッ シュの多数の穴を持つポリ プロ ピレ ン容 器に 1 0 %ほど充塡し、 この容器ごと活性汚泥法曝気槽内に浸漬した。 一年後にこの容器を取り出し、 容器内のポ リ ビニルァセタール粒子につ いて観察したところ、 摩耗による寸法変化は全く 見受けられなかった。 また該粒子表面には好気性の微生物が高密度に付着しており、 これらの 微生物による担持体の浸食は確認されなかつた。 (包括固定化担体の製造) The particles were filled in a polypropylene container having a large number of 2 mm mesh holes with about 10%, and the container was immersed in an activated sludge aeration tank. One year later, the container was taken out, and the polyvinyl acetal particles in the container were observed. No dimensional change due to abrasion was observed. In addition, aerobic microorganisms adhered to the particle surface at a high density, and erosion of the carrier by these microorganisms was not confirmed. (Manufacture of inclusive immobilized carrier)
遠心分離にて 5 0 g / 1 程度に濃縮した活性汚泥と 2 %のアルギン酸 ソーダとを体積比 1 : 1 の割合で混合したものを別に調整し、 これを前 述操作にて製造した各実施例で得られた多孔性球状粒子に含浸させた。 含浸量を增加させるために減圧下にて該混合液を流入させた。  A mixture of activated sludge concentrated to about 50 g / 1 by centrifugation and 2% sodium alginate at a volume ratio of 1: 1 was separately prepared, and this was prepared by the above-mentioned procedure. The porous spherical particles obtained in the examples were impregnated. The mixture was flowed under reduced pressure to increase the impregnation amount.
このように して多孔性球状粒子にアルギン酸ソーダと微生物との混合 溶液を含浸して得た微生物包括体を、 さ らに 5 %塩化カルシウム水溶液 に添加して攪拌し、 約 3 時間その状態にて反応させた。 これによりポ リ ビニルァセタール系多孔質体中に含有していたアルギン酸ソ一ダは不溶 化し、 微生物を包括した状態で固定化された。  The microbial inclusion body obtained by impregnating the porous spherical particles with the mixed solution of sodium alginate and the microorganism is further added to a 5% calcium chloride aqueous solution and stirred, and the state is maintained for about 3 hours. And reacted. As a result, sodium alginate contained in the polyvinyl acetal-based porous material was insolubilized and immobilized in a state in which the microorganisms were included.
このよう にして得られた微生物包括固定化担持体は、 前述の多孔性球 状粒子の細孔中及び表面にアルギン酸系ゲルが付着したものであり、 該 ポリ ビニルァセタール系多孔質体と同様に親水性が良く 、 ゥ エ ツ ト時の 柔軟性及び弾性に富んだものであった。 また、 多孔性球状粒子ポ リ ビニ ルホルマールであり、 親水性に富んだものであるため、 多孔性球状粒子 にゲルがな じみ易く 、 粒子中に均一にゲルが存在する。 さ らに気孔率が が高く 立体網目構造をしているため、 粒子中におけるゲルの割合を高く 維持している。  The microbial entrapping immobilization support obtained in this manner has the alginate gel adhered in the pores and on the surface of the aforementioned porous spherical particles, and is hydrophilic similarly to the polyvinyl acetal porous body. It had good flexibility and was rich in flexibility and elasticity at the time of setting. Further, the porous spherical particles are polyvinyl formal and are rich in hydrophilicity, so that the gel is easily adapted to the porous spherical particles, and the gel is uniformly present in the particles. Furthermore, the high porosity and the three-dimensional network structure keep the gel ratio in the particles high.
バイオリ アク ター内での流動を想定した模擬テス ト と して、 直径 1 5 O m m . 高さ 4 0 O m mの容器内に、 得られた上記微生物包括固定化担 持体を充塡し、 水中にて曝気流動させたと ころ該粒子は均一に分散流動 した。 この流動を 1 ヶ月連続して運転させた後、 該粒子を取り出 して観 察したが、 摩擦による摩耗や破損などは全く みられず、 耐摩耗性に富ん でいるこ とが確認された。 また多孔性球状粒子の微生物による浸食劣化 は全く 受けておらず、 担持体の寿命が長く 維持できる こ とが確認された 上記実施例、 比較例の結果よ り、. 本発明の製造方法で多孔性球状粒子 を製造するためには、 ゲル化する性質を有する水溶性高分子を適度な濃 度で配合しなければならず、 その形状維持のためにァセ夕一ル化を行う 必要があるこ とがわかる。 例えば、. 実施例 1 と比較例 1 や、 実施例 2 と 比較例 2 との比較においては、 滴下液にアルギン酸ナ ト リ ウムが含まれ ていないため滴下による液滴が形状を維持できず雲状の粒子となる結果 を得た。 As a simulation test assuming the flow in the bioreactor, a container with a diameter of 15 O mm and a height of 40 O mm was filled with the obtained microorganism-containing and immobilized carrier. When aerated and fluidized in water, the particles were uniformly dispersed and fluidized. After operating this flow continuously for one month, the particles were taken out and observed, but no wear or breakage due to friction was observed, and it was confirmed that they were rich in wear resistance. . In addition, the porous spherical particles did not undergo any erosion degradation by microorganisms, confirming that the life of the carrier can be maintained for a long time. From the results of the above Examples and Comparative Examples, in order to produce porous spherical particles by the production method of the present invention, a water-soluble polymer having a gelling property must be blended at an appropriate concentration. However, it is clear that it is necessary to reduce the shape to maintain the shape. For example, in the comparison between Example 1 and Comparative Example 1 and between Example 2 and Comparative Example 2, since the dropping liquid does not contain sodium alginate, the droplet formed by dropping cannot maintain the shape and the cloud The result was that the particles were shaped like particles.
また、 実施例 3 で示したように、 例えば実施例 1 の第 1 反応液と滴下 液とを反対にして滴下すると、 中空状の粒子を得るこ とができる こ とが 認められた。 この場合ポ リ ビニルアルコールの濃度は低い方がきれいな 粒子となり易いこ とが判明 した。  Further, as shown in Example 3, it was recognized that hollow particles could be obtained by, for example, dropping the first reaction solution of Example 1 and the dripping solution in the opposite direction. In this case, it was found that the lower the concentration of polyvinyl alcohol, the easier it was to obtain clean particles.
また、 実施例 7及び実施例 8 から明らかなように、 滴下液にデンプン などの気孔形成剤を加えるこ とによつて、 球状粒子の気孔率及び気孔径 を制御するこ とができた。 気孔形成剤と してデンプンを用いた場合は、 第 1 反応液の温度を多少高めに設定してデンプンを膨らませ、 かつデン プンが硫酸を消費するため第 2 反応液の硫酸の配合量を高めに設定した 方が好ま しい結果を得るこ とがわかった。 また、 第 2反応液温度を若干 上げるこ とでァセタール化の時間を大幅に短縮できるこ とが認められた o  Further, as is clear from Examples 7 and 8, the porosity and the pore diameter of the spherical particles could be controlled by adding a pore-forming agent such as starch to the dripping solution. When starch is used as the pore-forming agent, the temperature of the first reaction solution is set slightly higher to expand the starch, and the amount of sulfuric acid in the second reaction solution is increased because the starch consumes sulfuric acid. It has been found that setting to the value gives better results. It was also found that the acetalization time could be significantly reduced by slightly raising the temperature of the second reaction solution.o
また、 これら実施例で得られた拉子はすべて、 微生物固定化担体と し ての用途に優れ、 流動性能、 比重、 耐摩耗性、 耐候 (光) 性、 耐微生物 分解性において好結果を有する ものであった。 また、 本発明の球状粒子 を圧縮するこ とにより水との浸透性が向上し、 使用の便宜が図られる こ とが認められた。 ただし、 ァセタール化度が 3 0 モル%以下と低い場合 には、 耐摩耗性は低下した。 産業上の利用可能性 In addition, all of the algae obtained in these examples are excellent in use as a carrier for immobilizing microorganisms, and have good results in flow performance, specific gravity, abrasion resistance, weather resistance (light) resistance, and microbial degradation resistance. Was something. In addition, it has been found that compressing the spherical particles of the present invention improves water permeability and facilitates use. However, when the acetalization degree was as low as 30 mol% or less, the wear resistance was reduced. Industrial applicability
本発明の多孔性球状粒子は、 ポリ ビニルァセタール系樹脂を骨格とす る多孔性球状粒子であるため、 機械的強度及び耐摩耗性が高く 、 微生物 担持体や農作物の水耕栽培における溶液保持材ゃ植物支持材、 動植物細 胞の培地、 人工水苔、 土壌改良材、 水中流動型洗浄部材、 水中流動型マ ッサージ部材など各種用途に使用するこ とができる。 特に、 微生物担持 体、 と りわけ流動床型微生物担持体の場合は、 担体流動時に発生する担 体同士の摩擦や反応槽内壁との摩擦によっても摩耗しにく く 、 担体寿命 が長く なる。 また、 微生物との親和性のほかに、 流動性能、 比重、 耐候 (光) 性、 耐微生物分解性に優れており、 流動床型微生物担持体、 微生 物包括固定化担体と して好適に使用するこ とができる。  Since the porous spherical particles of the present invention are porous spherical particles having a polyvinyl acetal-based resin as a skeleton, the porous spherical particles have high mechanical strength and abrasion resistance. It can be used for various purposes such as plant support material, culture medium for animal and plant cells, artificial moss, soil improvement material, underwater fluidized cleaning member, underwater fluidized massaging member. In particular, in the case of a microorganism carrier, in particular, a fluidized bed microorganism carrier, the carrier is hard to be worn by friction between carriers and friction with the inner wall of the reaction tank when the carrier flows, and the life of the carrier is prolonged. In addition to its affinity with microorganisms, it has excellent fluidity, specific gravity, weather resistance (light) resistance, and microbial degradation resistance, making it suitable as a fluidized bed microbial carrier and microbial inclusion support. Can be used.
また、 真球に近い均一粒子怪のポ リ ビニルァセタール系樹脂を骨格と する多孔性球状粒子の場合、 各種容器に充塡し易 く 、 耐摩耗性が一層向 上し、 また流動床型の微生物担持体と しての流動性の向上も図る こ とが できる。  In addition, in the case of porous spherical particles having a skeleton of a polyvinyl acetal resin having a uniform particle shape close to a true sphere, it is easy to fill in various containers, further improving abrasion resistance, and a fluidized bed type microorganism. Fluidity as a carrier can also be improved.
また、 本発明の多孔性球状粒子の製造方法は、 液滴形状にて一段階で 反応させるため、 反応時間及び後加工工程をそれぞれ大幅に短縮でき、 大量連続的に該球状粒子を製造できる。 従って、 製造時間が大幅に短縮 され、 かつ強度的に優れた材料を得ることができ、 さ らには任意の粒径 を有した可及的に均一径の粒状体が得られる。 また、 従来法のような後 工程での損失も少なく 歩留ま りを向上することが可能であり、 さ らに反 応に必要なスペースを縮小することもできる。 また、 中空状のポ リ ビニ ルァセタール系多孔性球状粒子を得ることができ、 特に、 流動床型の微 生物担持体と して好適に用いられる。 I . ポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子。 Further, in the method for producing porous spherical particles of the present invention, since the reaction is performed in one step in the form of droplets, the reaction time and the post-processing step can be significantly reduced, and the spherical particles can be produced continuously in large quantities. Therefore, the production time can be greatly reduced, and a material excellent in strength can be obtained. Further, a granular material having an arbitrary particle size and as uniform as possible can be obtained. In addition, the yield can be improved with less loss in the post-process as in the conventional method, and the space required for the reaction can be reduced. In addition, hollow polyvinyl acetal-based porous spherical particles can be obtained, and are particularly suitably used as a fluidized bed type microorganism support. I. Porous spherical particles having a skeleton of polyvinyl acetal resin.
2 . ポ リ ビニルァセタール系樹脂を骨格とするスポンジからなる多孔 性球状粒子。  2. Porous spherical particles composed of a sponge whose skeleton is a polyvinyl acetal resin.
3 . ポ リ ビニルァセタール系榭脂がポ リ ビニルホルマールであり、 そ 求  3. The polyvinyl acetal resin is polyvinyl formal,
のホルマール化度が 3 0 〜 8 5 モル%である請求の範囲第 1 項又は第 2 の The compound according to claim 1 or 2, wherein the degree of formalization is from 30 to 85 mol%.
項に記載の多孔性球状粒子。 The porous spherical particles according to the above item.
4 . 多孔性球状粒子の気孔率が 5 0 〜 9 8 %である請求の範囲第 1 項 乃至第 3項のいずれかに記載の多孔性球状粒子。  4. The porous spherical particle according to any one of claims 1 to 3, wherein the porosity of the porous spherical particle is 50 to 98%.
5 . 粒子が中空体である請求の範囲第 1 項乃至第 4項のいずれかに記 載の多孔性球状粒子。  5. The porous spherical particle according to any one of claims 1 to 4, wherein the particle is a hollow body.
6 . 粒子表面に細孔を有する皮膜を有し、 粒子内部が多孔質構造であ る請求の範囲第 1 項乃至第 5 項のいずれかに記載の多孔性球状粒子。 7 . 多孔性球状粒子の含水状態での見かけ比重が 1 . 0〜 1 . 2 であ る請求の範囲第 1 項乃至第 6項のいずれかに記載の多孔性球状粒子。 8 . 多孔性球状粒子の含水状態での大きさが 1 〜 2 0 m mの粒状物で ある請求の範囲第 1 項乃至第 7項のいずれかに記載の多孔性球状粒子 c 9 . 多孔性球状粒子の平均気孔怪が 2 0〜 3 0 0 mである請求の範 囲第 1 項乃至第 8項のいずれかに記載の多孔性球状粒子。  6. The porous spherical particle according to any one of claims 1 to 5, which has a film having pores on the particle surface, and the inside of the particle has a porous structure. 7. The porous spherical particle according to any one of claims 1 to 6, wherein the apparent specific gravity of the porous spherical particle in a water-containing state is 1.0 to 1.2. 8. The porous spherical particle according to any one of claims 1 to 7, wherein the porous spherical particle is a granular material having a size of 1 to 20 mm in a water-containing state. 9. The porous spherical particle according to any one of claims 1 to 8, wherein the particle has an average pore diameter of 20 to 300 m.
1 0 . ポ リ ビニルァセタ ール系樹脂を骨格とする圧縮多孔性球状粒子 c 10. Compressed porous spherical particles based on polyvinyl acetate resin c
I I . 水分率 1 0 %以下のスポ ン ジ状の多孔性球状粒子であって、 水中 に投入すると速やかに 2 倍から 1 0倍の体積に膨れて、 かつ含水状態で の大きさが 1 〜 2 0 m mになる請求の範囲第 1 0 項記載の圧縮多孔性球 状粒子。 II. Sponge-like porous spherical particles with a water content of 10% or less, which quickly expand to a volume of 2 to 10 times when injected into water, and have a size of 1 to 10 in a water-containing state. 10. The compressed porous spherical particles according to claim 10, which has a diameter of 20 mm.
1 2 . 微生物担持体と して、 請求の範囲第 1 項乃至第 1 1 項のいずれか  12. Any one of claims 1 to 11 as a microorganism carrier
4 ϋ に記載のポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子を用 いるこ とを特徴とする微生物担持体。 4 ϋ A microbial carrier characterized by using porous spherical particles having a skeleton of a polyvinyl acetal resin as described in (1).
1 3 . 請求の範囲第 1 項乃至第 1 1 項のいずれかに記載の多孔性球状粒 子の表面及び/または細孔内に微生物が固定された請求の範囲第 1 2項 記載の微生物担持体。  13. The microorganism-carrying microorganism according to claim 12, wherein microorganisms are fixed on the surface and / or in the pores of the porous spherical particle according to any one of claims 1 to 11. body.
1 4 . 請求の範囲第 1 項乃至第 1 1 項のいずれかに記載の多孔性球状粒 子の表面及び/または細孔内に微生物固定化剤により微生物が包括固定 された請求の範囲第 1 2 項記載の微生物担持体。  14. The method according to claim 1, wherein the microorganism is entrapped and immobilized by a microorganism immobilizing agent on the surface and / or in the pores of the porous spherical particles according to any one of claims 1 to 11. 3. The microorganism carrier according to item 2.
1 5 . 微生物固定化剤がアルギン酸ソーダを主成分とする請求の範囲第 1 4項記載の微生物担持体。  15. The microorganism carrier according to claim 14, wherein the microorganism immobilizing agent mainly comprises sodium alginate.
1 6 . 請求の範囲第 1 2項乃至第 1 5項のいずれかに記載の微生物担持 体を用いたバイオ リ アク ター。  16. A bioreactor using the microorganism carrier according to any one of claims 12 to 15.
1 7 . 酸性溶液中にてゲル化する性質を持つ水溶性高分子とポ リ ビニル アルコ ール及びアルデヒ ド類を混合してなる水溶液を酸性溶液中に滴下 し、 該液滴をゲル化せしめると同時に該液滴中のポ リ ビニルアルコール とアルデヒ ド類とを反応させてポ リ ビニル系ァセタール系樹脂を骨格と する多孔性球状粒子を得るこ とを特徴とする多孔性球状粒子の製造方法 o  17. An aqueous solution obtained by mixing a water-soluble polymer having a property of gelling in an acidic solution, polyvinyl alcohol and aldehydes is dropped into the acidic solution, and the droplets are gelled. At the same time, a method for producing porous spherical particles, comprising reacting polyvinyl alcohol and aldehydes in the droplets to obtain porous spherical particles having a polyvinyl acetal resin as a skeleton. o
1 8 . イ オ ン交換反応により ゲル化する性質を持つ水溶性高分子とポ リ ビニルアルコールとを混合溶解してなる水溶液を、 多価金属塩水溶液中 に滴下し、 イオン交換反応により該液滴をゲル化させポ リ ビニルアルコ ールを含むゲル状球状粒子を形成し、 その後該ゲル状粒子をアルデヒ ド を含む酸性溶液中に添加し、 該ゲル状粒子体中に含有されるポ リ ビニル アルコールをアルデヒ ド類と反応させるこ とによりァセタール化度が 3 0〜 8 5 モル%のポ リ ビニルァセタール系樹脂を骨格とする多孔性球状 粒子を得る こ とを特徴とする多孔性球状粒子の製造方法。 1 9 . ゲル化する性能を持つ水溶性高分子とポ リ ビニルアルコールとを 混合溶解してなる水溶液においてゲル化性能を持つ水溶性高分子が 0 .18. An aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction and polyvinyl alcohol is dropped into a polyvalent metal salt aqueous solution, and the solution is subjected to ion exchange reaction. The droplets are gelled to form gel-like spherical particles containing polyvinyl alcohol, and then the gel-like particles are added to an acidic solution containing aldehyde, and the polyvinyl alcohol contained in the gel-like particle body is added. Production of porous spherical particles characterized by obtaining alcohol-reacted aldehydes to obtain porous spherical particles having a skeleton of polyvinyl acetal resin having an acetalization degree of 30 to 85 mol%. Method. 19. The water-soluble polymer with gelling performance is found in the aqueous solution obtained by mixing and dissolving the water-soluble polymer with gelling performance and polyvinyl alcohol.
5乃至 5 重量%からなり、 さ らにポ リ ビニルアルコール力く 5乃至 2 0重 量%から構成されているこ とを特徴とする請求の範囲第 1 8項記載の多 孔性球状粒子の製造方法。 19. The porous spherical particle according to claim 18, comprising 5 to 5% by weight, and further comprising 5 to 20% by weight of polyvinyl alcohol. Production method.
2 0 . 多価金属塩水溶液を、 イ オン交換反応によりゲル化する性質を持 つ水溶性高分子とポ リ ビニルアルコールを混合溶解してなる水溶液中に 滴下し、 多価金属塩の液滴と水溶性高分子の反応により凝固させて、 液 滴外周部に、 多価金属塩と反応した水溶性高分子のゲルとポ リ ビニルァ ルコールが混在するゲル状球状粒子体を形成し、 その後、 該ゲル状粒子 体をアルデヒ ド類を含む酸性水溶液中に添加し、 ゲル状粒子体中に含有 するポ リ ビニルアルコールをァルデヒ ド類と反応させてポ リ ビ二ルァセ タール系樹脂を骨格とする中空状の多孔性球状粒子を得るこ とを特徴と する多孔性球状粒子の製造方法。  20. Drop the polyvalent metal salt aqueous solution into an aqueous solution prepared by mixing and dissolving a water-soluble polymer having the property of gelling by ion exchange reaction and polyvinyl alcohol, and drop the polyvalent metal salt. And solidified by the reaction of the water-soluble polymer with the water-soluble polymer to form a gel-like spherical particle body in which a gel of the water-soluble polymer reacted with the polyvalent metal salt and polyvinyl alcohol are mixed at the outer periphery of the droplet. The gel-like particles are added to an acidic aqueous solution containing aldehydes, and the polyvinyl alcohol contained in the gel-like particles is reacted with the aldehydes to form a polyvinyl acetal resin as a skeleton. A method for producing porous spherical particles, characterized by obtaining hollow porous spherical particles.
2 1 . 少な く と もイオン交換反応によりゲル化する性質を持つ水溶性高 分子とポ リ ビニルアルコールとを混合溶解してなる請求の範囲第 1 7 項 乃至第 2 0 項に記載の水溶液に気孔形成剤を含有している請求の範囲第 1 7項乃至第 2 0項に記載の多孔性球状粒子の製造方法。  21. The aqueous solution according to any one of claims 17 to 20 which is obtained by mixing and dissolving at least a water-soluble high-molecular compound having a property of gelling by ion exchange reaction and polyvinyl alcohol. The method for producing porous spherical particles according to any one of claims 17 to 20, comprising a pore-forming agent.
2 2 . 気孔形成剤がデンプンである請求の範囲第 2 1 項記載の多孔性球 状粒子の製造方法。  22. The method for producing porous spherical particles according to claim 21, wherein the pore-forming agent is starch.
2 3 . 請求の範囲第 1 7 項乃至第 2 0項に記載の球状粒子に含有するゲ ルを除去してポリ ビニルァセタール系樹脂を骨格とする多孔性球状粒子 を得る請求の範囲第 1 7 項乃至第 2 0項に記載の多孔性球状粒子の製造 方法。  23. The method according to claim 17, wherein the gel contained in the spherical particles according to claims 17 to 20 is removed to obtain porous spherical particles having a polyvinyl acetal resin as a skeleton. Item 30. The method for producing porous spherical particles according to Item 20.
2 4 . 請求の範囲第 1 7 項乃至第 2 0項で得られた球状粒子をプレス し 、 多孔性球状粒子の細孔中に含有する気体を押し出すとと もに球状粒子 を 2分の 1 〜 1 0分の 1 の容積に圧縮してなる圧縮多孔性球状粒子の製 造方法。 24. The spherical particles obtained in claims 17 to 20 are pressed to extrude gas contained in the pores of the porous spherical particles, and the spherical particles are also extruded. Of compressed porous spherical particles obtained by compressing spheroids into a volume of one half to one tenth.

Claims

補正書の請求の範囲 Claims of amendment
[1 997年 1 2月 29日 (29. 1 2. 97) 国際事務局受理:出願当初の請求の範囲 1, 2 , 2, 1 7, 1 8及び 20は補正された;他の請求の範囲は変更なし。 (4頁) ] [1 February 29, 1997 Accepted by the International Bureau: Claims 1, 2, 2, 17, 17, 18 and 20 at the time of filing were amended; The range is unchanged. (Page 4)]
I . (補正後) ポ リ ビニルァセタール系樹脂を骨格と した弾性を有する スポ ン ジからなる多孔性球状粒子。 I. (After correction) Porous spherical particles made of elastic sponge with a poly (vinyl acetal) resin skeleton.
2. (補正後) 気孔と して連通孔を有するスポ ン ジからなる請求の範囲 第 1 項に記載の多孔性球状粒子。  2. The porous spherical particle according to claim 1, comprising a sponge having a communication hole as a pore (after correction).
3. ポ リ ビニルァセタール系樹脂がポ リ ビニルホルマールであ り 、 その ホルマール化度が 3 0〜 8 5 モル%である請求の範囲第 1 項又は第 2 項 に記載の多孔性球状粒子。  3. The porous spherical particles according to claim 1 or 2, wherein the polyvinyl acetal resin is polyvinyl formal and has a formalization degree of 30 to 85 mol%.
4 . 多孔性球状粒子の気孔率が 5 0 〜 9 8 %である請求の範囲第 1 項乃 至第 3項のいずれかに記載の多孔性球状粒子。  4. The porous spherical particle according to any one of claims 1 to 3, wherein the porosity of the porous spherical particle is 50 to 98%.
5. 粒子が中空体である請求の範囲第 1 項乃至第 4 項のいずれかに記載 の多孔性球状粒子。  5. The porous spherical particle according to any one of claims 1 to 4, wherein the particle is a hollow body.
6 . 粒子表面に細孔を有する皮膜を有し、 粒子内部が多孔質構造である 請求の範囲第 1 項乃至第 5 項のいずれかに記載の多孔性球状粒子。  6. The porous spherical particle according to any one of claims 1 to 5, having a coating having pores on the surface of the particle, wherein the inside of the particle has a porous structure.
7 . 多孔性球状粒子の含水状態での見かけ比重が 1 . 0 ~ 1 . 2 である 請求の範囲第 1 項乃至第 6 項のいずれかに記載の多孔性球状粒子。  7. The porous spherical particle according to any one of claims 1 to 6, wherein an apparent specific gravity of the porous spherical particle in a water-containing state is 1.0 to 1.2.
8. 多孔性球状粒子の含水状態での大きさが 1 〜 2 O mmの粒状物であ る請求の範囲第 1 項乃至第 7 項のいずれかに記載の多孔性球状拉子。 8. The porous spherical absorpti according to any one of claims 1 to 7, wherein the porous spherical particles are granular having a size of 1 to 2 Omm in a water-containing state.
9 . 多孔性球状粒子の平均気孔径が 2 0 〜 3 0 0 mである請求の範囲 第 1 項乃至第 8項のいずれかに記載の多孔性球状粒子。 9. The porous spherical particle according to any one of claims 1 to 8, wherein the porous spherical particle has an average pore diameter of 20 to 300 m.
1 0. ボ リ ビニルァセタール系樹脂を骨格とする圧縮多孔性球状拉子。 10 0. A compressed porous spherical abduct having a skeleton of polyvinyl acetal resin.
I I . 水分率 1 0 %以下のスポ ン ジ状の多孔性球状粒子であって、 水中 に投入すると速やかに 2 倍から 1 0倍の体積に膨れて、 かつ含水状態で の大き さが 1 〜 2 0 mmになる請求の範囲第 1 0 項記載の圧縮多孔性球 状粒子。 II. Sponge-like porous spherical particles with a water content of 10% or less, which rapidly expand to a volume of 2 to 10 times when poured into water, and have a size of 1 to 10 in a water-containing state. 10. The compressed porous spherical particles according to claim 10, which has a diameter of 20 mm.
44 補正された用紙 (条約第 19条) 44 Amended paper (Article 19 of the Convention)
1 2 . (浦正後) 微生物担持体と して、 請求の範囲第 1 項乃至第 1 1 項 のいずれかに記載の多孔性球状粒子を用いることを特徽とする微生物担 持体。 12. (Masaura Ura) A microbial carrier characterized by using the porous spherical particles according to any one of claims 1 to 11 as a microbial carrier.
1 3 . 請求の範囲第 1 項乃至第 1 1 項のいずれかに記載の多孔性球状粒 子の表面及び 7または細孔内に微生物が固定された請求の範囲第 1 2 項 記載の微生物担持体。  13. The microorganism-carrying microorganism according to claim 12, wherein microorganisms are immobilized on the surface and 7 or in the pores of the porous spherical particles according to any one of claims 1 to 11. body.
1 4 . 請求の範囲第 1 項乃至第 1 1 項のいずれかに記載の多孔性球状粒 子の表面及び Zまたは細孔内に微生物固定化剤により微生物が包括固定 された請求の範囲第 1 2項記載の微生物担持体。  14. The method according to claim 1, wherein the microorganism is entrapped and immobilized on the surface and Z or pores of the porous spherical particles according to any one of claims 1 to 11 by a microorganism immobilizing agent. Item 3. The microorganism carrier according to Item 2.
1 5 . 微生物固定化剤がアルギン酸ソーダを主成分とする請求の範囲第 1 項記載の微生物担持体。  15. The microorganism carrier according to claim 1, wherein the microorganism immobilizing agent comprises sodium alginate as a main component.
1 6 . 請求の範囲第 1 2項乃至第 1 5項のいずれかに記載の微生物担持 体を用いたバイオ リ アク ター。  16. A bioreactor using the microorganism carrier according to any one of claims 12 to 15.
1 7 . (補正後) 酸性溶液中にてゲル化する性質を持つ水溶性高分子と ポ リ ビニルアルコール及びアルデヒ ド類を混合してなる水溶液を酸性溶 液中に滴下し、 該液滴をゲル化せしめると同時に該液滴中のポ リ ビニル アルコールとアルデヒ ド類とを反応させるこ とを特徴とする、 ポ リ ビニ ルァセタール系榭脂を骨格と した弾性を有するスポ ン ジからなる多孔性 球状粒子の製造方法。  17. After the correction, an aqueous solution obtained by mixing a water-soluble polymer having a property of gelling in an acidic solution, polyvinyl alcohol, and aldehydes was dropped into the acidic solution, and the droplets were dropped. A porous sponge having an elastic sponge with a polyvinyl acetal-based resin as a skeleton, characterized by reacting polyvinyl alcohol and aldehydes in the droplets at the same time as gelling. A method for producing spherical particles.
1 8 . (補正後) イ オ ン交換反応によりゲル化する性質を持つ水溶性高 分子とポ リ ビニルアルコ ールとを混合溶解してなる水溶液を、 多価金属 塩水溶液中に滴下し、 イオン交換反応により該液滴をゲル化させポ リ ビ ニルアルコールを含むゲル状球状粒子を形成し、 その後該ゲル状粒子を アルデヒ ドを含む酸性溶液中に添加し、 該ゲル状粒子体中に含有される ポ リ ビニルアルコールをアルデヒ ド類と反応させるこ とを特徴とする、 ァセ タ一ル化度が 3 0 〜 8 5 モル%のポ リ ビニルァセタール系樹脂を骨  18 (After correction) An aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction with polyvinyl alcohol is dropped into a polyvalent metal salt aqueous solution, and ion The droplets are gelled by an exchange reaction to form gel-like spherical particles containing polyvinyl alcohol, and then the gel-like particles are added to an acidic solution containing aldehyde, and contained in the gel-like particles. A polyvinyl acetal-based resin having a degree of acetylation of 30 to 85 mol%, characterized by reacting a polyvinyl alcohol with an aldehyde.
45 45
補正された用紙 (条約第 19条) 格と した弾性を有するスポ ン ジからなる多孔性球状粒子の製造方法。Amended paper (Article 19 of the Convention) A method for producing porous spherical particles made of sponge having excellent elasticity.
1 9 . ゲル化する性能を持つ水溶性高分子とポ リ ビニルアルコールとを 混合溶解してなる水溶液においてゲル化性能を持つ水溶性高分子が 0 .19. The water-soluble polymer with gelling performance is found in the aqueous solution obtained by mixing and dissolving the water-soluble polymer with gelling performance and polyvinyl alcohol.
5 乃至 5 重量%からなり、 さ らにポ リ ビニルアルコールが 5 乃至 2 0重 量%から構成されている こ とを特徴とする請求の範囲第 1 8項記載の多 孔性球状粒子の製造方法。 19. The method for producing porous spherical particles according to claim 18, wherein the composition comprises 5 to 5% by weight, and the polyvinyl alcohol comprises 5 to 20% by weight. Method.
2 0 . (補正後) 多価金属塩水溶液を、 イ オ ン交換反応により ゲル化す る性質を持つ水溶性高分子とポ リ ビニルアルコールを混合溶解してなる 水溶液中に滴下し、 多価金属塩の液滴と水溶性高分子の反応により凝固 させて、 液滴外周部に、 多価金属塩と反応した水溶性高分子のゲルとポ リ ビニルアルコ ールが混在するゲル状球状粒子体を形成し、 その後、 該 ゲル状粒子体をアルデヒ ド類を含む酸性水溶液中に添加し、 ゲル状粒子 体中に含有するポ リ ビニルアルコールをアルデヒ ド類と反応させること を特徴とする、 ポ リ ビニルァセタール系樹脂を骨格と した弾性を有する スポ ン ジからなる中空状の多孔性球状粒子の製造方法。  20. (After correction) An aqueous solution of a polyvalent metal salt is dropped into an aqueous solution obtained by mixing and dissolving a water-soluble polymer having a property of gelling by ion exchange reaction and polyvinyl alcohol, and the polyvalent metal salt is added. The salt droplets are coagulated by the reaction of the water-soluble polymer with the water-soluble polymer. Forming the gel-like particles and then adding the gel-like particles to an acidic aqueous solution containing aldehydes, and reacting the polyvinyl alcohol contained in the gel-like particles with the aldehydes. A method for producing hollow, porous spherical particles comprising an elastic sponge having a vinylacetal resin as a skeleton.
2 1 . 少なく と もイオン交換反応によりゲル化する性質を持つ水溶性高 分子とポ リ ビニルアルコールとを混合溶解してなる請求の範囲第 1 7項 乃至第 2 0 項に記載の水溶液に気孔形成剤を含有している請求の範囲第 1 7項乃至第 2 0項に記載の多孔性球状粒子の製造方法。  21. The aqueous solution according to any one of claims 17 to 20 wherein at least a water-soluble polymer having a property of gelling by an ion exchange reaction and polyvinyl alcohol are mixed and dissolved. The method for producing porous spherical particles according to any one of claims 17 to 20, comprising a forming agent.
2 2 . 気孔形成剤がデンプンである請求の範囲第 2 1 項記載の多孔性球 状粒子の製造方法。  22. The method for producing porous spherical particles according to claim 21, wherein the pore-forming agent is starch.
2 3 . 請求の範囲第 1 7項乃至第 2 0項に記載の球状粒子に含有するゲ ルを除去してポ リ ビニルァセタール系樹脂を骨格とする多孔性球状粒子 を得る請求の範囲第 1 7項乃至第 2 0 項に記載の多孔性球状粒子の製造 方法。  23. The porous spherical particles having a skeleton of a polyvinyl acetal resin by removing the gel contained in the spherical particles according to claims 17 to 20 to obtain porous spherical particles. Item 20. The method for producing porous spherical particles according to Item 20.
2 4 . 請求の範囲第 1 7項乃至第 2 0項で得られた球状粒子をプレスし  24. Press the spherical particles obtained in Claims 17 to 20
46 46
補正された用紙 (条約第 19条) 、 多孔性球状粒子の細孔中に含有する気体を押し出すとと もに球状粒子 を 2 分の 1 〜 1 0分の 1 の容積に圧縮してなる圧縮多孔性球状粒子の製 造方法。 Amended paper (Article 19 of the Convention) , Manufacturing method of the compressed porous spherical particles comprising the push the gas contained in the pores of the porous spherical particles and a monitor spherical particles compressed to 1 volume of 1 to 1 0 minutes 2 minutes.
47 補正された用紙 (条約第 条) 47 Amended paper (Article 5 of the Convention)
PCT/JP1997/002638 1996-07-31 1997-07-30 Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers WO1998004616A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/219412 1996-07-31
JP21941296 1996-07-31
JP09212533 1997-07-22
JP9/212533 1997-07-22

Publications (1)

Publication Number Publication Date
WO1998004616A1 true WO1998004616A1 (en) 1998-02-05

Family

ID=26519290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002638 WO1998004616A1 (en) 1996-07-31 1997-07-30 Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers

Country Status (1)

Country Link
WO (1) WO1998004616A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897000A1 (en) * 1996-05-01 1999-02-17 Kanebo Ltd. Microorganism carrier and process for production thereof
US7588780B2 (en) * 2002-03-29 2009-09-15 Boston Scientific Scimed, Inc. Embolization
US9283035B2 (en) 2005-04-28 2016-03-15 Boston Scientific Scimed, Inc. Tissue-treatment methods
US9463426B2 (en) 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
WO2017090658A1 (en) * 2015-11-24 2017-06-01 Jsr株式会社 Method for manufacturing porous particles, porous particles, carrier, column, and method for separating target substance
US10398724B2 (en) 2002-06-12 2019-09-03 Boston Scientific Scimed, Inc. Bulking agents
CN110418835A (en) * 2017-02-23 2019-11-05 日本瓦姆&珀巴尔株式会社 Cell or tissue embeds device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220532A (en) * 1986-03-20 1987-09-28 Sanwa Kako Kk Production of polyvinyl acetal sponge
JPH02212523A (en) * 1989-02-10 1990-08-23 Kuraray Co Ltd Hydrated spherical polyvinyl alcohol gel and its production
JPH03195489A (en) * 1989-12-22 1991-08-27 Kuraray Co Ltd Production of spherical formed product of immobilized biocatalyst
JPH05271425A (en) * 1992-03-27 1993-10-19 Kuraray Co Ltd Production of pva gel molding
JPH08116974A (en) * 1994-10-26 1996-05-14 Kuraray Co Ltd Formed hydrous gel containing immobilized microorganism
JPH09164391A (en) * 1995-12-15 1997-06-24 Kuraray Co Ltd Hydrogel for batch waste water treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220532A (en) * 1986-03-20 1987-09-28 Sanwa Kako Kk Production of polyvinyl acetal sponge
JPH02212523A (en) * 1989-02-10 1990-08-23 Kuraray Co Ltd Hydrated spherical polyvinyl alcohol gel and its production
JPH03195489A (en) * 1989-12-22 1991-08-27 Kuraray Co Ltd Production of spherical formed product of immobilized biocatalyst
JPH05271425A (en) * 1992-03-27 1993-10-19 Kuraray Co Ltd Production of pva gel molding
JPH08116974A (en) * 1994-10-26 1996-05-14 Kuraray Co Ltd Formed hydrous gel containing immobilized microorganism
JPH09164391A (en) * 1995-12-15 1997-06-24 Kuraray Co Ltd Hydrogel for batch waste water treatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897000A1 (en) * 1996-05-01 1999-02-17 Kanebo Ltd. Microorganism carrier and process for production thereof
EP0897000A4 (en) * 1996-05-01 2002-04-10 Aion Co Ltd Microorganism carrier and process for production thereof
US7588780B2 (en) * 2002-03-29 2009-09-15 Boston Scientific Scimed, Inc. Embolization
US10398724B2 (en) 2002-06-12 2019-09-03 Boston Scientific Scimed, Inc. Bulking agents
US9283035B2 (en) 2005-04-28 2016-03-15 Boston Scientific Scimed, Inc. Tissue-treatment methods
US9463426B2 (en) 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
JPWO2017090658A1 (en) * 2015-11-24 2018-09-27 Jsr株式会社 Porous particle production method, porous particle, carrier, column, and target substance separation method
CN108699256A (en) * 2015-11-24 2018-10-23 Jsr株式会社 The manufacturing method of porous granule, the separation method of porous granule, carrying body, column and target substance
WO2017090658A1 (en) * 2015-11-24 2017-06-01 Jsr株式会社 Method for manufacturing porous particles, porous particles, carrier, column, and method for separating target substance
CN108699256B (en) * 2015-11-24 2021-12-07 Jsr株式会社 Method for producing porous particle, support, column, and method for separating target substance
US11421102B2 (en) 2015-11-24 2022-08-23 Jsr Corporation Method for manufacturing porous particles, porous particles, carrier, column, and method for separating target substance
CN110418835A (en) * 2017-02-23 2019-11-05 日本瓦姆&珀巴尔株式会社 Cell or tissue embeds device
CN110418835B (en) * 2017-02-23 2022-10-18 日本瓦姆&珀巴尔株式会社 Cell or tissue embedding device

Similar Documents

Publication Publication Date Title
JPH1052268A (en) Carrier for microorganism and its production
JP2933580B2 (en) Sponge-like spherical particles and method for producing the same
CN1067090C (en) Polyvinyl alcohol hydrogel and process for producing the same
US6007712A (en) Waste water treatment apparatus
JP6172464B2 (en) Method for producing porous hydrogel molding
CN110272894B (en) Microorganism carrier with built-in spongy porous structure and preparation method thereof
CN102786710A (en) Method for preparing bio-carrier by porous foam polymer modification
TW421658B (en) Porious spherical particles and the preparation process for preparing thereof
Zhang et al. Structure and property of polyvinyl alcohol/precipitated silica composite hydrogels for microorganism immobilization
JP2001089574A (en) Polyvinyl alcohol-based water-containing gel, its production and drainage treating device
JP3608913B2 (en) Bioreactor carrier and production method
JPH10174990A (en) Carrier for bioreactor and method
WO1998004616A1 (en) Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers
JP3441352B2 (en) Polyvinyl alcohol-based hydrogel and method for producing the same
CN105566689B (en) It is a kind of for starch based aquagel expanded material of sewage disposal and preparation method thereof
JP5025857B2 (en) Gel particles for cleaning separation membrane module, manufacturing method and cleaning method
JPH10204204A (en) Porous spherical particles and production thereof
WO1999036464A1 (en) Spongy porous spherical particles and process for producing the same
EP0829536B1 (en) Carrier for bioreactor and method of producing the same
JP3287686B2 (en) Polymeric granular hydrogel and method for producing the same
JP3554613B2 (en) Wastewater treatment materials
JP5105679B2 (en) Method for producing carrier for water treatment
JPH055045A (en) Production of polyvinyl acetal-based porous material
JP3771382B2 (en) Deodorizer and deodorizer
KR100642032B1 (en) Polyvinyl alcohol hydrogel and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: PAT. BUL. 05/98 UNDER INID NUMBER (54) "TITLE", REPLACE THE EXISTING TEXT BY "POROUS SPHERICAL POLYVINYL ACETAL PARTICLES, PROCESS FOR PRODUCING THE SAME, AND MICROBIAL CARRIERS"

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase