WO1996000814A1 - Multi-region paper structures and apparatus and process for making the same - Google Patents

Multi-region paper structures and apparatus and process for making the same Download PDF

Info

Publication number
WO1996000814A1
WO1996000814A1 PCT/US1995/007786 US9507786W WO9600814A1 WO 1996000814 A1 WO1996000814 A1 WO 1996000814A1 US 9507786 W US9507786 W US 9507786W WO 9600814 A1 WO9600814 A1 WO 9600814A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
region
elevation
uncompacted
thickness
Prior art date
Application number
PCT/US1995/007786
Other languages
French (fr)
Inventor
Dean Van Phan
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU29047/95A priority Critical patent/AU705551B2/en
Priority to EP95924615A priority patent/EP0801698B1/en
Priority to KR1019960707544A priority patent/KR100198376B1/en
Priority to CA002192320A priority patent/CA2192320C/en
Priority to JP8503277A priority patent/JPH10502422A/en
Priority to MX9606545A priority patent/MX9606545A/en
Priority to DE69512683T priority patent/DE69512683T2/en
Priority to BR9508061A priority patent/BR9508061A/en
Publication of WO1996000814A1 publication Critical patent/WO1996000814A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/006Making patterned paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24446Wrinkled, creased, crinkled or creped
    • Y10T428/24455Paper

Definitions

  • the present invention relates to a multi-region paper structure having a transition region interconnecting regions of the paper structure disposed at different elevations and having thicknesses less than or equal to the thickness of transition region.
  • the apparatus and process for making such a paper web also form part of the present invention.
  • Paper structures such as toilet tissue, paper towels, and facial tissue, are widely used throughout the home and industry. Many attempts have been made to make such tissue products more consumer preferred.
  • One approach to providing consumer preferred tissue products having bulk and flexibility is illustrated in U.S. Patent 3,994,771 issued November 30, 1976 to Morgan et al. Improved bulk and flexibility may also be provided through bilaterally staggered compressed and uncompressed zones, as shown in U.S. Patent 4, 191,609 issued March 4, 1980 to Trokhan.
  • tissue products Another approach to making tissue products more consumer preferred is to dry the paper structure to impart greater bulk, tensile strength, and burst strength to the tissue products.
  • Examples of paper structures made in this manner are illustrated in U.S. Patent 4,637,859 issued January 20, 1987 to Trokhan.
  • a paper structure can be made stronger, without utilizing more cellulosic fibers, by having regions of differing basis weights as illustrated in U.S. Patent 4,514,345 issued April 5 30, 1985 to Johnson, et. al.
  • Papermaking belts having a semicontinuous pattern and paper made on such belts are disclosed in PCT Publication WO 94/04750 published March 3, 1994 in the name of Ayers et al., and having a U.S. priority date of August 26, 1992.
  • embossing a dry paper web typically imparts a particular aesthetic appearance to the paper structure at the expense of other properties of the structure.
  • embossing disrupts bonds between fibers in the cellulosic structure. This disruption occurs because the bonds are formed and set upon drying of the embryonic fibrous slurry. After drying the paper structure, moving fibers normal to the plane of the paper structure by embossing breaks fiber to fiber bonds. Breaking bonds results in reduced tensile strength of the dried paper web.
  • embossing is typically done after creping of the dried paper web from the drying drum. Embossing after creping can disrupt the creping pattern imparted to the web.
  • embossing can eliminate the creping pattern in some portions of the web by compacting the creping pattern. Such a result is undesirable because the creping pattern improves the softness and flexibility of the dried web.
  • dry embossing a paper structure acts to stretch or draw the paper structure around the perimeter of the embossments. As a result, the paper structure around the perimeter of the embossments will have a reduced thickness relative to the non-embossed portion of the paper web.
  • one object of the present invention is to provide a paper structure having visually discernible patterns without the need for embossing a dried paper web.
  • Another object of the present invention is to provide a paper structure having visually discernible patterns without sacrificing desirable paper web properties such as tensile strength and sheet flexibility.
  • Another object of the present invention is to provide a paper structure having a first region disposed at a first elevation and having a first thickness, a second region disposed at a second elevation different from the first elevation and having a second thickness, a third region disposed at a third region and having a third thickness greater than the first thickness, and a fourth transition region interconnecting the second region with at least one of the first and third regions, the transition region having a fourth thickness greater than the second thickness and greater than or equal to the first thickness.
  • Another object of the present invention is to provide an apparatus and method for forming the paper structure of the present invention.
  • Another object of the present invention is provide a paper structure characterized in having enhanced bulk caliper and roll compressibility.
  • the invention comprises a paper structure, such as a tissue paper web, having visually discernible patterns.
  • the paper structure comprises a first region disposed at a first elevation and having a first thickness; a patterned second region disposed at a second elevation different from the first elevation, the second region having a second thickness; a third region interconnected with the first region, the third region disposed at a third elevation different from the second elevation, and the third region having a third thickness; and a transition region having a fourth thickness.
  • the transition region interconnects the second region with at least one of the first and third regions.
  • the fourth thickness is greater than or equal to the first thickness and is greater than the second thickness.
  • the third thickness is greater than the first thickness.
  • the first elevation is different from the third elevation
  • paper structure has a background matrix comprising the first and third regions, wherein the first region comprises a plurality of discrete protuberances dispersed throughout the third region.
  • a portion of at least one of the second regions and the background matrix can be foreshortened, such as by creping.
  • at least a portion of the second region is bordered by a variable frequency creping pattern.
  • the variable frequency creping pattern extends from a border of the second region into the a background matrix comprising the first and third regions.
  • the variable frequency creping pattern terminates in the background region, and enhances the visual discernibility of the patterned second region.
  • the second region can comprise a continuous network, discrete zones, or combinations thereof.
  • the present invention also comprises an apparatus for use in making a web of papermaking fibers.
  • the apparatus can comprise a drying belt.
  • the drying belt comprises a foraminous background element having a first web contacting surface and a web patterning layer joined to the foraminous background element, the web patterning layer extending from the first web contacting surface to form a second web contacting surface at a second elevation different from the first elevation.
  • the web patterning layer is disposed in a predetermined pattern to inscribe a portion of the foraminous background element having a projected area of at least about 50 square millimeters, and more preferably at least about 100 square millimeters, wherein the elevation everywhere within the inscribed area is the first elevation of the first web contacting surface, and wherein there is no web patterning layer within the inscribed area.
  • the projected area of the second web contacting surface is preferably between about 5 and about 20 percent of the projected area of the apparatus, and more preferably between about 5 and about 14 percent of the projected area of the apparatus.
  • the apparatus having a web patterning layer with the above projected area and disposed to inscribe portions of the foraminous background element with the above width and area is relatively flexible. Such flexibility permits deflection of the first web contacting surface relative to the second web contacting surface for formation of compacted, relatively high density regions at different elevations.
  • the present invention also comprises a method for forming a paper structure according to the present invention.
  • the method comprises the following steps: providing a wet web of paper making fibers; deflecting the web in a first deflection step to provide a non-monoplanar web having a first uncompacted web region, and a second uncompacted web region having an elevation different from the elevation of the first uncompacted web region while the web has a consistency of between about 8 and about 30 percent.
  • deflecting first uncompacted web region relative to the second uncompacted web region in a second deflection step to temporarily reduce, and preferably substantially eliminate, the difference in elevation between the first uncompacted web region and the second uncompacted web region; compacting a predetermined portion of the first uncompacted web region at a web consistency of between about 40 to about 80 percent to provide a first compacted region and a third uncompacted region; compacting at least a portion of the second uncompacted web region at a web consistency of between about 40 to about 80 percent to form a second compacted web region; and restoring at least some of the difference in elevation lost in the first deflection step to provide the first compacted region and the third uncompacted region disposed at elevations different from the elevation of the second compacted region.
  • Figure 1 is a cross-sectional illustration of a paper structure according to the present invention.
  • Figure 2A is a photomicrograph of a cross-section of a paper structure according to the present invention.
  • Figure 2B is the photomicrograph of Figure 2A showing thickness and elevation reference lines.
  • Figure 3 is a photographic plan view of a paper structure according to the present invention.
  • Figure 4A is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure 3.
  • Figure 4B is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure 4A.
  • Figure 4C is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure
  • Figure 5 A is a plan view illustration of an apparatus for making a paper structure according to the present invention, the apparatus having a foraminous background element and a web patterning layer extending from the foraminous background element.
  • Figure 5B is an enlarged plan view illustration of a portion of a foraminous background element.
  • Figure 6 is a cross-sectional view of the apparatus of Figure 5 A.
  • Figure 7 is an illustration of a papermaking machine for making a paper structure according to the present invention.
  • Figure 8 is an illustration of a non-monoplanar, generally uncompacted paper web supported on the apparatus of Figure 6.
  • Figure 9 is an illustration of a paper web being compacted against the surface of a drying drum.
  • Figure 10 is a plan view illustration of a paper structure having a second region comprising discrete zones disposed within cells in a lattice network.
  • Figure 1 1 is a plan view illustration of a web support apparatus for making the paper structure of Figure 10.
  • FIGS 1-4 and 10 illustrate a paper structure 20 according to the present invention.
  • Figures 5-6 and 11 illustrate a web support apparatus 200 suitable for making paper structures according to the present invention.
  • Figures 7-9 illustrate a method employing the web support apparatus 200 for making the paper structure 20.
  • a paper structure according to the present invention is taken off the forming wire as a single sheet having one or more fiber constituent layers. Though not necessary, the paper structure of the present invention can be joined to one or more other sheets or plies after sheet drying to form a multi-ply paper product.
  • a "zone” as used herein refers to a contiguous portion of the paper structure.
  • a "region” of a paper structure, as used herein, refers to a portion or portions of the paper structure having a common property or characteristic, such as density, thickness, elevation, or creping frequency. A region can comprise one or more zones, and can be continuous or discontinuous.
  • the paper structure 20 according to the present invention comprises a tissue paper web having at least four regions.
  • the paper structure 20 comprises a first region 30 having a first thickness 31 and disposed at a first elevation 32; a patterned second region 50 having a second thickness 51 and disposed at a second elevation 52 different from the first elevation 32; and a third region 70 having a third thickness 71 and disposed at a third elevation 72.
  • the difference between elevation 52 and elevation 32 is indicated by reference numeral 62 in Figures 1-2.
  • the third region 70 is interconnected with the first region 30, and together the first and third regions 70 form a background matrix 100 of the paper structure 20.
  • the paper structure 20 further comprises a fourth transition region 90 having a fourth thickness 91.
  • the transition region 90 interconnects the second region 50 with at least one of the first and third regions 30 and 70 of the background matrix 100, and thereby supports the second region 50 at the elevation 52 such that the second region 50 is visually distinguishable from the background matrix 100 of the paper structure formed by the first region 30 and the third region 70.
  • the paper structure 20 is characterized in that the fourth thickness 91 of the transition region 90 is greater than or equal to the first thickness 31, the fourth thickness 91 is greater than the second thickness 51; and the third thickness 71 is greater than the first thickness 31. Accordingly, the paper structure 20 of the present invention does not exhibit the reduced web thinning around the perimeter of raised portions of the paper structure characteristic of embossing.
  • the thicknesses 31, 51, 71, and 91 and the difference in elevation 62 are measured using the procedure described below.
  • the fourth thickness 91 is greater than both the first thickness 31 and the second thickness 51.
  • the fourth thickness 91 can be at least about 1.2 and preferably at least about 1.5 times the first thickness 31, and the fourth thickness can be at least about 1.5 times and preferably at least about 2.0 times the second thickness 51.
  • the first and second thicknesses 31 and 51 can be less than the third thickness 71.
  • the first elevation 32 can be different from the third elevation 72.
  • the first region 30 comprises a plurality of discrete protuberances 34 (Figure 2A-B and 4C) dispersed throughout the third region 70.
  • the first region 30 and the second region 50 can be formed by selectively deflecting and compacting a wet web of paper making fibers.
  • the first and second regions 30 and 50 can be characterized as relatively high density regions and the third and fourth regions 70 and 90 can be characterized as relatively low density regions.
  • the second region 50 can comprise a plurality of discrete zones 54 dispersed throughout the background matrix 100, with each discrete zone 54 surrounded by the background matrix 100.
  • the third region 70 can comprise a generally continuous network extending in the machine (MD) and cross- machine (CD) directions throughout the background matrix 100.
  • each of the zones 54 has a projected area which is at least about 10 times, and preferably at least about 100 times the projected area of one of the protuberances 34.
  • the projected areas of a protuberance 34 and a zone 54 can be measured using standard image analysis procedures.
  • Figure 3 shows a number of discrete zones 54 (e.g., zones 54A-D).
  • each discrete zone 54 has the form of a flower shaped pattern.
  • the difference between the first elevation 32 and the second elevation 52 is preferably at least about 0.05 millimeter, and more preferably at least about 0.08 millimeter.
  • the elevations 32 and 52 and the thicknesses 31, 51, 71, and 91 are indicated in the photomicrographs of Figure 2 A and 2B.
  • Preferably at least a portion of at least one of the second region 50 and the background matrix 100 is foreshortened in the machine direction of the structure 20. Foreshortening can be provided by creping a paper web with a doctor blade, as described below.
  • the machine direction (MD) and the cross-machine direction (CD) are indicated in Figures 1-4.
  • Foreshortened portions of the paper structure 20 are characterized by having a creping pattern having a creping frequency.
  • the creping pattern of a portion of the background matrix 100 is indicated by reference numeral 35 in Figure 1 and Figure 4B, and is characterized by a series of peaks and valleys.
  • the creping pattern of the second region 50 is indicated by reference numeral 55 in Figures 1 and 2 and is characterized by a series of peaks and valleys.
  • the creping pattern 35 in a portion of the background matrix 100 is disposed at a different elevation than the creping pattern 55 of the second region 50.
  • the crepe frequency of a creping pattern is defined as the number of times a peak occurs on the surface of the paper structure for a given linear distance, and can be measured in cycles per millimeter of linear distance.
  • variable frequency creping region characterized by having a reduced creping frequency relative to the creping frequency of at least one of the creping patterns 35 and 55.
  • the variable frequency creping region can comprise a portion of at least one of the background matrix 100 and the transition region 90 disposed adjacent the patterned second region 50.
  • the variable frequency creping region extends from a portion of a border of the second region 50 into the background matrix 100, and terminates in the background matrix 100
  • the variable frequency creping region is visible in Figures 3 and 4A as wrinkles 92 bordering a portion of the discrete zones 54.
  • the wrinkles 92 extend in the cross machine direction from a portion of the border of each discrete zone 54 and terminate in the background matrix 100.
  • the creping pattern 55 can have a frequency of at least about 1.5 times the frequency of the wrinkle 92.
  • the transition region 90 and the wrinkles 92 of the variable frequency creping region border the second region 50, and thereby help to visually offset the second region 50 from the background matrix 100.
  • the second region 50 preferably has a projected area between about 5 and about 20 percent, and more preferably between about 5 and about 14 percent of the projected area of the paper structure 20.
  • the second region 50 inscribes one or more circular zones C ( Figure 3) of the background matrix 100 wherein the projected area of the circular zone C is at least about 50 square millimeters, and more preferably at least about 100 square millimeters.
  • the spacing D ( Figure 1 and 3) between at least some adjacent zones 54 is preferably at least about 25 mm.
  • the second region thereby imparts a relatively large-scale visually discernible pattern to the tissue web while comprising a relatively small percentage of the projected area of the tissue web.
  • At least some discrete zones 54 can enclose a plurality of discrete, unconnected enclosed zones 120.
  • At least some of the enclosed zones 120 can comprise a fifth region 130 having an elevation 132 and a sixth region 150 having an elevation 152, as shown schematically in Figure 1.
  • the fifth region 130 can have a thickness 131 greater than the thickness 51.
  • the sixth region 150 can comprise a plurality of protuberances 154 dispersed throughout the fifth region 130.
  • the sixth region 150 can have a thickness 151 less than the thickness 131.
  • the enclosed zone 120 can be foreshortened to have a creping pattern.
  • Figure 10 is a plan view illustration of an alternative embodiment of the paper structure 20 according to the present invention.
  • the second region 50 can comprise a lattice network 1050 defining cells 1052, and a plurality of discrete zones 54.
  • the discrete zones 54 can be disposed within at least some of the cells 1052 of the lattice network 1050.
  • a background matrix 100 within each cell 1052 can comprise the first region 30 and the third region 70.
  • the third region 30 can comprise a plurality of discrete protuberances 34 dispersed throughout the third region 70 within each cell 1052.
  • the lattice network 1050 shown in Figure 10 comprises spaced apart bands 1054 which intersect spaced apart bands 1056 to form the cells 1052.
  • the bands 1054 and/or the bands 1054 can be unbroken, or alternatively, can be formed by a plurality of short, spaced apart segments.
  • the bands 1054 and 1056 are unbroken.
  • the bands 1054 extend generally in the machine direction, and the bands 1056 extend generally in the cross-machine direction.
  • the paper structure 20 preferably has a basis weight of between about 7 pounds per 3000 square feet (about 1 1 gram/square meter) and about 35 pounds per 3000 square feet (57 gram/square meter), which basis weight range is desirable for providing paper structures 20 suitable for use bath tissue and facial tissue products.
  • the basis weight of the paper structure 20 is measured by cutting eight single ply samples of the paper structure 20 conditioned at 73 degrees Fahrenheit and 50 percent relative humidity, each sample measuring 4 inches by 4 inches (.0103 square meter). The eight 4 inch by 4 inch samples are placed one on top of each other and weighed to the nearest 0.0001 gram.
  • the basis weight of the eight samples (in grams/square meter) is the combined weight of the eight samples in grams divided by the sample area of 0.0103 square meter.
  • the basis weight of the paper structure 20 is obtained by dividing the combined basis weight of eight samples by eight.
  • a web support apparatus 200 suitable for making the paper structure 20 is shown in Figures 5A-B and 6.
  • the web support apparatus 200 can comprise a continuous drying belt (Figure 7) for drying and imparting a visually discernible pattern to the paper structure 20.
  • the web support apparatus 200 has a first web facing side 202 and a second oppositely facing side 204 ( Figure 6). The web support apparatus 200 is viewed with the first web facing side 202 facing the viewer in Figure 5A
  • the web support apparatus 200 comprises a foraminous background element 220 having a first web contacting surface 230 at a first elevation 231.
  • a plan view of the foraminous background element 220 is shown in Figure 5B.
  • the web support apparatus 200 also comprises a web patterning layer 250 joined to the foraminous background element 220.
  • the web patterning layer 250 extends from the first web contacting surface 230 to form a second web contacting surface 260 at a second elevation 261 different from the first elevation 231.
  • the difference 262 between the first elevation 231 and the second elevation 261 is at least about 0.05 millimeter and preferably between about 0.1 and about 2 mm.
  • the projected area of the second web contacting surface 260 is between about 5 and about 20 percent, and more preferably between about 5 and about 14 percent of the projected area of the apparatus 200 as viewed in Figure 5 A.
  • the projected area of the first web contacting surface 230 is preferably between about 10 and about 40 percent of the projected area of the apparatus.
  • the web patterning layer 250 is disposed on the foraminous background element 220 in a predetermined pattern to inscribe a plurality of circular portions CA ( Figure 5 A) of the foraminous background element 220 which are not covered by the web patterning layer 250, wherein the projected area of each circular portion CA is at least about 50 square millimeters, and more preferably at least about 100 square millimeters.
  • the elevation of the apparatus 200 everywhere within a circular portion CA is less than the elevation 261.
  • the belt apparatus 200 having a web patterning layer 250 with the above projected area and disposed to inscribe portions of the foraminous background element with the above area is relatively flexible compared to a belt made from the same underlying foraminous element but having a larger percentage of its surface covered by a web patterning layer. Such flexibility permits deflection of the first web contacting surface 230 relative to the second web contacting surface 260 for formation of relatively high density regions at different elevations, as described below.
  • the web patterning layer 250 comprises a plurality of discrete web patterning elements 254, such as discrete elements 254 A-C which inscribe a circular portion CA of the foraminous background element 220.
  • a discrete element 254 can enclose one or more other discrete elements 254.
  • a discrete element 254E is disposed within a discrete element 254D.
  • the spacing DA between some adjacent web patterning elements 254 is preferably at least about 25 millimeters.
  • Two web patterning elements 254 are considered to be adjacent if the shortest straight line that can be drawn between the two elements does not intersect a third element.
  • a at least some of the web patterning elements 254 enclose a plurality of discrete openings 270 in the web contacting surface 260 of the web patterning layer 250.
  • Each of the enclosed openings 270 has a web facing surface 272 ( Figure 6) comprising a portion of the foraminous background element 220.
  • the web support apparatus 200 preferably has an air permeability of between about 400 and about 800 standard cubic feet per minute (scfm), where the air permeability in scfm is a measure of the number of cubic feet of air per minute that pass through a one square foot area of the apparatus 200 at a pressure drop across the thickness of the apparatus 200 equal to about 0.5 inch of water.
  • the air permeability is measured using a Valmet permeability measuring device (Model Wigo Taifun Type 1000) available from the Valmet Corporation of Pansio, Finland.
  • the foraminous background element 220 shown in Figures 5B and 6 comprises woven filaments 222 and 224.
  • the filaments 222 extend generally in the machine direction, and the filaments 224 extend generally in the cross-machine direction.
  • the first web contacting surface 230 comprises discrete web contacting knuckles 232 located at the cross-over points of the woven filaments 222 and 224.
  • the knuckles 232 form a generally monoplanar web contacting surface 230.
  • Between about 5 and about 50 percent of the projected area of the foraminous background element 220 comprises open area corresponding to openings 221 between adjacent filaments 222 and 224.
  • the foraminous background element 220 preferably has between about 25 and about 100 of the filaments 222 per inch measured in the cross machine direction and between about 25 and about 100 of the filaments 224 per inch measured in the machine direction, where the filaments 222 and the filaments 224 have a diameter between about 0.1 and about 0.5 millimeter.
  • the foraminous background element preferably comprises between about 625 and about 10,000 discrete web contacting knuckles per square inch of the projected area of the foraminous background element.
  • the filaments 222, 224 can be formed from a number of different materials. Suitable filaments and filament weave patterns for forming the foraminous background element 220 are disclosed in U.S. Patent 4, 191,609 issued March 4, 1980 to Trokhan, and U.S. Patent 4,239,065 issued December 16, 1980 to Trokhan, which patents are inco ⁇ orated herein by reference.
  • the web patterning layer 250 preferably comprises a photosensitive resin.
  • the resin when cured, should have a hardness of no more than about 60 Shore D.
  • the hardness is measured on an unpatterned photopolymer resin coupon measuring about 1 inch by 2 inches ' by 0.025 inches thick cured under the same conditions as the web patterning layer 250. The hardness measurement is made at 85 degrees Centigrade and read 10 seconds after initial engagement of the Shore D durometer probe with the resin.
  • Web patterning layers 250 having a wide variety of shapes and sizes can be formed with photosensitive resins.
  • Suitable photosensitive resins include polymers which cure or cross-link under the influence of radiation.
  • U.S. Patent 4,514,345 issued April 30, 1985 to Johnson et al. is incorporated herein by reference for the purpose of disclosing suitable photosensitive resins and a method by which a photosensitive resin can be cured on the foraminous background element 220 to form the web patterning layer 250.
  • Figure 1 1 show an embodiment of a web support apparatus 200 having a web patterning layer 250 suitable for making the paper structure 20 of Figure 10.
  • the web patterning layer 250 comprises a lattice network 290 and a plurality of discrete web patterning elements 254 disposed within at least some of a plurality of cells 292 formed by the lattice network 290.
  • the lattice 290 in Figure 13 comprises spaced apart bands 294 which intersect spaced apart bands 296 to form the cells 292.
  • the bands 294 and/or the bands 296 can be unbroken, or alternatively, can be formed by a plurality of short, spaced apart segments.
  • the bands 294 extend generally in the machine direction and the bands 296 extend generally in the cross-machine direction. In Figure 1 1 the bands 294 and 296 are unbroken and intersect to form a continuous network lattice 290 having a continuous network web contacting top surface.
  • a paper structure 20 according to the present invention can be made with the papermaking apparatus shown in Figures 6-9.
  • the method of making the paper structure 20 of the present invention is initiated by depositing a slurry of papermaking fibers from a headbox 500 onto a foraminous, liquid pervious forming member, such as a forming belt 542, followed by forming an embryonic web of papermaking fibers 543 supported by the forming belt 542.
  • the forming belt 542 can comprise a continuous Fourdrinier wire, or alternatively, can be made according to the teachings of U.S. Patent 4,514,345 issued April 30 to Johnson et. al, which patent is incorporated herein by reference, or the teaching of U.S. Patent 5,245,025 issued to Trokhan.
  • wood pulp in all its varieties will normally comprise the paper making fibers used in this invention.
  • other cellulose fibrous pulps such as cotton liners, bagasse, rayon, etc.
  • Wood pulps useful herein include chemical pulps such as Kraft, sulfite and sulfate pulps as well as mechanical pulps including for example, ground wood, thermomechanical pulps and Chemi-ThermoMechanical Pulp (CTMP). Pulps derived from both deciduous and coniferous trees can be used. Both hardwood pulps and softwood pulps as well as blends of the two may be employed.
  • hardwood pulps refers to fibrous pulp derived from the woody substance of deciduous trees (angiosperms): wherein softwood pulps are fibrous pulps derived from the woody substance of coniferous trees (gymnosperms).
  • Hardwood pulps such as eucalyptus having an average fiber length of about 1.00 millimeter are particularly suitable for tissue webs described hereinafter, whereas northern softwood Kraft pulps having an average fiber length of about 2.5 millimeter are preferred.
  • fibers derived from recycled paper which may contain any or all of the above categories as well as other non-fibrous materials such as fillers and adhesives used to facilitate the original paper making.
  • the paper furnish can comprise a variety of additives, including but not limited to fiber binder materials, such as wet strength binder materials, dry strength binder materials, and chemical softening compositions.
  • Suitable wet strength binders include, but are not limited to, materials such as polyamide-epichlorohydrin resins sold under the trade name of Kymene® 557H by Hercules Inc., Wilmington, Delaware.
  • Suitable temporary wet strength binders include but are not limited to modified starch binders such as National Starch 78-0080 marketed by National Starch Chemical Corporation, New York, New York.
  • Suitable dry strength binders include materials such as carboxymethyl cellulose and cationic polymers such as ACCO® 71 1.
  • the embryonic web 543 is preferably prepared from an aqueous dispersion of papermaking fibers, though dispersions in liquids other than water can be used.
  • the fibers are dispersed in the carrier liquid to have a consistency of from about 0.1 to about 0.3 percent.
  • the percent consistency of a dispersion, slurry, web, or other system is defined as 100 times the quotient obtained when the weight of dry fiber in the system under consideration is divided by the total weight of the system. Fiber weight is always expressed on the basis of bone dry fibers.
  • the embryonic web 543 can be formed in a continuous papermaking process, as shown in Figure 7, or alternatively, a batch process, such as a handsheet making process can be used.
  • the embryonic web 543 is formed by removal of a portion of the aqueous dispersing medium by techniques well known to those skilled in the art.
  • the embryonic web can be generally monoplanar. Vacuum boxes, forming boards, hydrofoils, and the like are useful in effecting water removal from the dispersion.
  • the embryonic web 543 travels with the forming belt 542 about a return roll 502 and is brought into the proximity of the web support apparatus 200.
  • the next step in making the paper structure 20 comprises transferring the embryonic web 543 from the forming belt 542 to the web support apparatus 200 and supporting the embryonic web 543 on the first side 202 of the web support apparatus.
  • the embryonic web preferably has a consistency of at least 8 percent at the point of transfer to the forming belt 542.
  • the step of transferring the embryonic web 543 can simultaneously include the step of deflecting a portion of the web 543 and removing water from the web 543. Alternatively, the step of deflecting a portion of the web 543 can follow the step of transferring the web.
  • the step of deflecting the web 543 comprises deflecting a portion of the web 543 in a first deflection step to form a non- monoplanar web 545 having a first uncompacted web region 547 supported on the first web contacting surface 230 at the elevation 231, and a second uncompacted web region 549 supported on the second web contacting surface 260 at the elevation 261.
  • the first uncompacted web region 547 can comprise a dedensified or otherwise rebulked region 548 corresponding to the portions of the uncompacted web region 547 that are drawn or otherwise urged at least part way into the openings 221 in the foraminous background element 220.
  • the thickness of the region 548 is generally greater than the thickness of those portions of the region 547 overlying each knuckle 232.
  • the non-monoplanar web 545 is formed by deflecting the fibers in the embryonic web 543 which overly the foraminous background element 220 of the web support apparatus 200.
  • This first deflection step is preferably performed at a web consistency of between about 8 percent and about 30 percent, and more preferably at a web consistency of between about 10 percent and about 20 percent, so that deflection of the web takes place when the fibers of the web 543 are relatively mobile, and so that the deflection does not result in breaking of substantial numbers of fiber to fiber bonds.
  • the steps of transferring the embryonic web 543 to the web support apparatus 200 and deflecting the web 543 to form a non-planar web 545 can be provided, at least in part, by applying a differential fluid pressure to the embryonic web 543.
  • the embryonic web 543 can be vacuum transferred from the forming belt
  • a vacuum source such as vacuum box 600 shown in Figure 7.
  • One or more additional vacuum sources 620 can also be provided downstream of the embryonic web transfer point.
  • the pressure differential across the embryonic web 543 provided by the vacuum source deflects the fibers overlying the foraminous background element 220, and preferably removes water from the web through the foraminous background element 220 to increase the consistency of the web to between about 15 and about 30 percent.
  • the pressure differential provided by the vacuum source can be between about
  • the next step in forming the paper structure 20 can comprise pre-drying the non-monoplanar web 545, such as with a through-air dryer 650 shown in Figure 7.
  • the non-monoplanar web 545 is carried through the through-air dryer while supported on the web support apparatus 200.
  • the non-monoplanar web can be pre- dried by directing a drying gas, such as heated air, through the non-monoplanar web 545.
  • a drying gas such as heated air
  • the heated air is directed first through the non-monoplanar web 545, and subsequently through the foraminous background element 220 of the web support apparatus 200.
  • the non-monoplanar web 545 preferably exits the dryer 650 at a consistency of between about 50 and about 80 percent.
  • U.S. Patent 3,303,576 issued May 26,1965 to Sisson and U.S. Patent 5,274,930 issued January 4, 1994 to Ensign et al. are inco ⁇ orated herein by reference for the pu ⁇ ose of showing suitable through air dryers for use in practicing the present invention.
  • the web 545 is carried on the web support apparatus 200 through a nip 670 provided between a compaction surface 675 and a deformable compression surface 910 of a press member.
  • the compression member can comprise a roller 900.
  • the web 545 is carried through the nip 670 for positioning of the web 545 adjacent the compaction surface 675, and for positioning the second side 204 of the web support apparatus 200 adjacent the deformable compression surface 910.
  • the web 545 preferably enters the nip 670 at a consistency of between about 30 percent and about 80 percent, and more preferably at a consistency of between about 40 percent and about 70 percent.
  • the compaction surface 675 is preferably characterized in having a relatively high hardness and in being relatively incompressible.
  • a suitable surface 675 is the surface of a steel or iron heated dryer drum 680.
  • the surface 675 can be coated with a creping adhesive dispensed from a spray nozzle 690 located upstream of the nip 670, or alternatively, by an impression roll (not shown).
  • the creping adhesive can be applied to the non-monoplanar web 545 by any suitable means of glue application.
  • a suitable creping adhesive is shown in U.S. Patent 3,926,716 issued to Bates on December 16, 1975, which patent is inco ⁇ orated by reference.
  • the deformable compression surface 910 is preferably characterized in having a relatively low hardness and in being relatively highly compressible in comparison with the compaction surface 675.
  • the roller 900 can have in inner core 902, an intermediate layer 904, and an outer layer 906. or alternatively, the layer 904 can be eliminated.
  • the roller 900 can have a diameter of about 1-3 feet, and the dryer drum 680 can have a diameter of about 12-18 feet.
  • the deformable compression surface 910 is preferably located on a layer 906 formed from a material having a compressive modulus of less than about 1.5 million kPa.
  • the inner core 902 can be formed from a material such as steel
  • the intermediate layer 904 can be formed from an elastomeric material
  • the outer layer 906 comprising the surface 910 can be formed from a heat resistant elastomeric material such as nitril rubber.
  • the hardness of the surface 910 is less than 120 P&J, preferably between about 30 P&J and 100 P&J. The procedure for measuring the P&J hardness of a roll surface is provided below.
  • the next step in forming the paper structure 20 comprises pressing the web support apparatus 200 and the non-monoplanar web 545 between the compression surface 910 and the compaction surface 675 to provide a nip compression pressure of at least about 100 psi, and preferably at least about 200 psi.
  • the nip pressure is the total force applied to the nip divided by the nip area.
  • the total force applied to the nip can be determined from hydraulic gauge readings coupled with a force balance analysis based on the equipment geometry.
  • the nip width is determined by loading the nip 670 with a sheet of white paper and a sheet of carbon paper positioned between the apparatus 200 and the surface 675, such that the carbon paper provides an impression of the nip width on the white paper.
  • Pressing the web support apparatus 200 and the non-monoplanar web 545 in the nip 670 provides a second deflection step.
  • the second deflection step comprises deflecting the first web contacting surface 230 relative to the second web contacting surface 260.
  • the first web contacting surface 230 is deflected toward the compaction surface 675 by the deformable compression surface 910, as shown in Figure 9, thereby temporarily reducing, and preferably temporarily substantially eliminating the difference in elevation 262 between the web contacting surfaces 230 and 260.
  • Deflecting the first web contacting surface 230 relative to the second web contacting surface 260 provides deflection of a portion of the first uncompacted web region 547 relative to the second uncompacted web region 549, thereby reducing the difference in elevation between the first and second uncompacted web regions 547 and 549.
  • the first uncompacted web region 547 is deflected toward the compaction surface 675 by the first web contacting surface 230, to thereby reduce the difference in elevation between a portion of the first uncompacted web region 547 and a portion of the second uncompacted web region 549 to about zero.
  • the second deflection step is preferably performed at a web consistency of between about 30 percent and about 80 percent, and more preferably at a web consistency of between about 40 percent and about 70 percent.
  • Pressing the web support apparatus 200 and the non-monoplanar web 545 in the nip 670 also provides a web compaction step.
  • Compaction provides a reduction in the thickness of the portion of the web which is compacted.
  • the web compaction step comprises the step of compacting a predetermined portion of the first uncompacted web region 547 against the compaction surface 675 to form the first region 30.
  • the first uncompacted web region 547 can be locally compacted by the discrete web compaction knuckles 232 to form the discrete protuberances 34.
  • the web compaction step also comprises the step of compacting at least a portion of the second uncompacted web region 549 against the compaction surface 675 to form the second region 50.
  • a portion of the second uncompacted web region 549 is compacted by .
  • the second web contacting surface 260 of the web patterning layer 250 as shown in Figure 9.
  • the difference in elevation between the first region 30 and the second region 50 is essentially zero at the end of the compaction step, as both of the regions 30 and 50 are pressed against the compaction surface 675 by the first and second web contacting surfaces 230 and 260, respectively.
  • the web support apparatus 200 having a web patterning layer 250 with the above described projected area, and disposed to inscribe large portions of the foraminous background element 220 is relatively flexible. Such flexibility permits the deflection of the first web contacting surface 230 relative to the second web contacting surface 260 required for the second deflection step and the compaction step described above, so that at the end of the second deflection step and the compaction step, the first and second regions 30 and 50 are imprinted against the surface 675, as shown in Figure 9, and the difference in elevation between the first region 30 and the second region 50 is essentially zero.
  • a resin having a low hardness when cured will be compressed to some degree in the nip 670, thereby reducing the difference in elevation between the surfaces 260 and 230.
  • Relative deflection of the surfaces 230 and 260 is also enhanced by reducing the hardness of the compression surface 910.
  • a relatively low hardness compression surface 910 can conform to a deflected foraminous background element 200, and thereby provide a compressive load intermediate the web patterning elements 254 to press the first web contacting surface 230 and the first uncompacted web region 547 toward the compaction surface 675.
  • the step of compacting a predetermined portion of the first uncompacted web region 547 to form the first region 30 preferably also comprises the step of adhering at least a portion of the first region 30 to the compaction surface 675.
  • the discrete protuberances 34 can be adhered to the surface 675, as shown in Figure 9, while the relatively low density third region 70 remains spaced from, and unattached to, the surface 675.
  • the resulting partially compacted web is indicated by reference numeral 560 in Figures 7 and 9.
  • the protuberances 34 can be adhered to the surface 675 by the adhesive sprayed on the surface 675 by the nozzle 690.
  • the step of compacting the second uncompacted web region 549 to form the second region 50 preferably also comprises the step of adhering at least a portion of the region 50 to the compaction surface 675, as shown in Figure 9.
  • the partially compacted web 560 is dried on the heated surface 675 to have a consistency of between about 85 percent and 100 percent.
  • the final step in forming the structure 20 comprises restoring at least some of the difference in web elevation lost in the second deflection step. This restoring step provides the first region 30 at the first elevation 32 and the second region 50 at the second elevation 52, wherein the difference 62 between the first elevation 32 and the second elevation 52 is greater than the reduced difference in elevation between the first and second uncompacted web regions 547 and 549 provided by the second deflection step.
  • the step of restoring some of the difference in web elevation lost in the second deflection step preferably comprises releasing the partially compacted web 560 from the compaction surface 675.
  • the step of restoring some of the difference in web elevation comprises foreshortening the partially compacted web 560 concurrently with, or subsequent to, the step of releasing the partially compacted web from the compaction surface 675.
  • the step of releasing and foreshortening the partially compacted web 560 comprises the step of creping the partially compacted web 560 from the surface 675 with a doctor blade 700 to provide the paper structure 20.
  • foreshortening refers to the reduction in length of the partially compacted web 560 which occurs when energy is applied to the dry web in such a way that the length of the web is reduced in the machine direction.
  • Foreshortening can be accomplished in any of several ways. The most common and preferred way to foreshorten a web is by creping.
  • the partially compacted web 560 adhered to the compaction surface 675 is removed from the surface 675 by the doctor blade 700.
  • the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees.
  • the thicknesses and elevations of various regions 30-90 of a sample of the fibrous structure 20 are measured from microtomes made from cross-sections of the paper structure 20.
  • a sample measuring about 2.54 centimeters by 5.1 centimeters (1 inch by 2 inches) is provided and stapled onto a rigid cardboard holder.
  • the cardboard holder is placed in a silicon mold.
  • the paper sample is immersed in a resin such as Merigraph photopolymer manufactured by Hercules, Inc.
  • the sample is cured to harden the resin mixture.
  • the sample is removed from the silicon mold. Prior to immersion in photopolymer the sample is marked with a reference point to accurately determine where microtome slices are made. Preferably, the same reference point is utilized in both the plan view and various sectional views of the sample of the fibrous structure 20.
  • the sample is placed in a model 860 microtome sold by the American Optical Company of Buffalo, New York and leveled. The edge of the sample is removed from the sample, in slices, by the microtome until a smooth surface appears.
  • a sufficient number of slices are removed from the sample, so that the various regions 30-90 may be accurately reconstructed.
  • slices having a thickness of about 60 microns per slice are taken from the smooth surface. Multiple slices may be required so that the thicknesses 31, 51, 71, and 91 may be ascertained.
  • a sample slice is mounted on a microscope slide using oil and a cover slip.
  • the slide and the sample are mounted in a light transmission microscope and observed at about 40X magnification.
  • Photomicrographs are taken along the slice, and the individual photomicrographs are arranged in series to reconstruct the profile of the slice.
  • the thicknesses and elevations may be ascertained from the reconstructed profile, as shown in Figures 2 A and 2B.
  • the density of the individual regions can be ascertained.
  • U.S. Patent 5,277,761 issued January 11, 1994 in the name of Phan et al. is incorporated herein by reference for describing the micro basis weight of individual regions of a paper structure.
  • the thicknesses 31-91 may be established by using Hewlett Packard ScanJet
  • the Hewlett Packard Scanning software is DeskScan II version 1.6.
  • the scanner settings type is black and white photo.
  • the path is LaserWriter NT, NTX.
  • the brightness and contrast setting is 125.
  • the scaling is 100%.
  • the file is scanned and saved in a picture file format on a Macintosh IlCi computer.
  • the picture file is opened with a suitable photo-imaging software package or CAD program, such as PowerDraw version 5.0.
  • the thickness of each region can be determined by drawing a circle which is inscribed by the region.
  • the thickness of the region at that point is the diameter of the smallest circle that can be drawn in the region (in the microtome sample), multiplied by the appropriate scale factor.
  • the scale factor is the magnification of the photomicrograph multiplied by the magnification of the scanned image.
  • the circle can be drawn using any appropriate software drawing package, such as PowerDraw, version 5.0, available from Engineered Software of North Carolina.
  • the difference in elevation 62 is measured by drawing the smallest circle inscribed by region 50 (in the microtome sample), and by drawing two circles inscribed by region 30, as shown in Figure 2A and 2B.
  • a first line LI is drawn tangent to the two circles inscribed by region 30.
  • a second line L2 is drawn parallel to the first line LI and tangent to circle inscribed by region 50.
  • the distance between the first and second lines, multiplied by the appropriate scale factor, is the difference in elevation 62.
  • the projected area of the web contacting surface 260 is measured according to the following procedure. First, the web contacting surface 260 is darkened with a black marker (Sanford Sha ⁇ ie) to increase the contrast. Second, three digitized images of the web patterning apparatus 200 are acquired using a Hewlett Packard ScanJet lie Flatbed scanner. The scanner options are set as follows: Brightness 198, contrast 21 1, black and white photo resolution 100 DPI, scaling 100%. Third, the percentage of the projected area of the web support apparatus 200 comprising the web contacting surface 260 is determined using a suitable image analysis software system such as Optimas available from Bioscan, Inco ⁇ orated, Edmonds, WA.
  • Optimas available from Bioscan, Inco ⁇ orated, Edmonds, WA.
  • the ratio of the number of pixels having a greyscale value between 0 and 62 (corresponding to the web contacting surface 260) is divided by the total number of pixels in the scanned image (times 100) to determine the percentage of the projected area of the web support apparatus 200 comprising the web contacting surface 260.
  • Measurement of Web Support Apparatus Elevations The elevation difference 262 between the elevation 231 of the first web contacting surface 230 and the elevation 261 of the second web contacting surface 260 is measured using the following procedure.
  • the web support apparatus is supported on a flat horizontal surface with the web patterning layer facing upward.
  • a stylus having a circular contact surface of about 1.3 square millimeters and a vertical length of about 3 millimeters is mounted on a Federal Products dimensioning gauge (model 432B-81 amplifier modified for use with an EMD-4320 Wl breakaway probe) manufactured by the Federal Products Company of Buffalo, PJ.
  • the instrument is calibrated by determining the voltage difference between two precision shims of known thickness which provide a known elevation difference.
  • the instrument is zeroed at an elevation slightly lower than the first web contacting surface 230 to insure unrestricted travel of the stylus.
  • the stylus is placed over the elevation of interest and lowered to make the measurement.
  • the stylus exerts a pressure of about 0.24 grams/square millimeter at the point of measurement. At least three measurements are made at each elevation.
  • the difference in the average measurements of the individual elevations 231 and 261 is taken as the elevation difference 262.
  • the surface hardness of the roll 900 is measured using a P&J plastometer Model 2000 manufactured by Dominion Engineering Works LTD of Lachine, Quebec, Ontario.
  • the indentor shaft has a 3.17 millimeter ball.
  • the hardness is taken at three different positions: One in the middle of the roll, one 6 inches from one end of the roll, and one 6 inches from the other end of the roll.
  • the P&J hardness is the average of these three readings. The readings are made with the roll conditioned at a temperature of 21 degrees Celsius following the procedure provided by the manufacturer of the plastometer.
  • EXAMPLE 1 A 3% by weight aqueous slurry of NSK is made up in a conventional re-pulper.
  • the NSK slurry is refined gently and a 2% solution of the temporary wet strength resin (i.e., National starch 78-0080 marketed by National Starch and Chemical corporation of New- York, NY) is added to the NSK stock pipe at a rate of 0.02% by weight of the dry fibers.
  • the NSK slurry is diluted to about 0.2% consistency at the fan pump.
  • Second, a 3% by weight aqueous slurry of Eucalyptus fibers is made up in a conventional re-pulper. The Eucalyptus slurry is diluted to about 0.2% consistency at the fan pump.
  • the Fourdrinier wire is of a 5-shed, satin weave configuration having 1 10 machine- direction and 95 cross-machine-direction monofilaments per inch, respectively.
  • the embryonic wet web is vacuum transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to the web support apparatus 200 having a foraminous background element 220 and a web patterning layer 250 made of photosensitive resin.
  • a pressure differential of about 16 inches of mercury is used to transfer the web to the web support apparatus 200.
  • the foraminous background element is of a 5-shed, satin weave configuration having 59 machine- direction and 44 cross-machine-direction monofilaments per inch, the machine direction filaments having a diameter of about 0.25 mm and the cross-machine direction filaments having a diameter of about 0.33 mm.
  • Such a foraminous background element is manufactured by Appleton Wire Company, Appleton, Wisconsin.
  • the web patterning layer 250 has web contacting top surface with a projected area which is between about 10 and about 12 percent of the projected area of the apparatus 200.
  • the difference in elevation 262 is about .010 inch (.254 mm).
  • the web patterning layer comprises discrete web patterning elements as shown in Figure 5.
  • the web support apparatus 200 has an air permeability of about 600 scfm.
  • the multi-elevation web is formed at the vacuum transferred point. Further de- watering is accomplished by vacuum assisted drainage and by though air drying, as represented by devices 600, 620, and 650. until the web has a fiber consistency of about 65%. Transfer to the Yankee dryer is effected with a soft pressure roll 900 having a surface hardness of about 40 P&J.
  • the web is then adhered to the surface 675 of the a Yankee dryer drum 680 by pressing the soft pressure roll to the Yankee dryer surface at a compression pressure of at least about 40 psi.
  • a Polyvinyl alcohol based creping adhesive is used to enhance the adhesion of the web to the surface 675.
  • the web consistency is increased to between about 90% and 100% before dry creping the web from the surface 675 with a doctor blade.
  • the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees; the Yankee dryer is operated at about 800 fpm (feet per minute) (about 244 meters per minute).
  • the dry web is formed into roll at a speed of 650 fpm (200 meters per minutes).
  • the web made according to the above procedure is converted into a three-layer, one-ply toilet tissue paper.
  • the one-ply toilet tissue paper has a basis weight of about 18 pounds per 3000 square feet, and contains about 0.02% of the temporary wet strength resin.
  • the resulting one-ply tissue paper is soft , absorbent and has attractive aesthetics suitable for use as toilet tissue.
  • a 3% by weight aqueous slurry of NSK is made up in a conventional re-pulper.
  • the NSK slurry is refined gently and a 2% solution of the permanent wet strength resin (i.e., Kymene® 557H marketed by Hercules Inco ⁇ orated of Wilmington, Delaware) is added to the NSK stock pipe at a rate of 0.02% by weight of the dry fibers followed by the addition of a 1% solution of the dry strength resin (i.e., CMC from Hercules Inco ⁇ orated of Wilmington, Delaware) is added to the NSK stock before the fan pump at a rate of 0.08% by weight of the dry fibers.
  • the NSK slurry is diluted to about 0.2% consistency at the fan pump.
  • Second, a 3% by weight aqueous slurry of Eucalyptus fibers is made up in a conventional re-pulper. The Eucalyptus slurry is diluted to about 0.2% consistency at the fan pump.
  • the Fourdrinier wire is of a 5-shed, satin weave configuration having 1 10 machine-direction and 95 cross-machine-direction monofilaments per inch, respectively.
  • the embryonic wet web is transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to a web support apparatus having a foraminous background element 220 having web patterning layer 250.
  • the embryonic wet web is transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to the web support apparatus 200 having a foraminous background element 220 and a web patterning layer 250 made of photosensitive resin.
  • a pressure differential of about 16 inches of mercury is used to transfer the web to the web support apparatus 200.
  • the foraminous background element is of a 3 -shed, satin weave configuration having 79 machine-direction and 67 cross-machine-direction monofilaments per inch, the machine direction filaments having a diameter of about 0.18 mm and the cross-machine direction filaments having a diameter of about 0.21 mm.
  • Such a foraminous background element is manufactured by Appleton Wire Company, Appleton, Wisconsin.
  • the web patterning layer 250 has web contacting top surface 60 having a projected area which is between about 10 and about 12 percent of the projected area of the apparatus 200.
  • the difference in elevation 262 is about .010 inch (.254 mm).
  • the web patterning layer comprises discrete web patterning elements as shown in Figure 5.
  • the web support apparatus 200 has an air permeability of about 500 scfm.
  • the multi-elevation web is formed at the vacuum transferred point. Further de ⁇ watering is accomplished by vacuum assisted drainage and by though air drying, as represented by devices 600, 620, and 650. until the web has a fiber consistency of about 65%. Transfer to the Yankee dryer is effected with a soft pressure roll 900 having a surface hardness of about 40 P&J. The web is then adhered to the surface 675 of the a Yankee dryer drum 680 by pressing the soft pressure roll to the Yankee dryer surface at a compression pressure of at least about 40 psi. A Polyvinyl alcohol based creping adhesive is used to enhance the adhesion of the web to the surface 675. The web consistency is increased to between about 90% and 100%) before dry creping the web from the surface 675 with a doctor blade.
  • the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees; the Yankee dryer is operated at about 800 fpm (feet per minute) (about 244 meters per minute).
  • the dry web is formed into roll at a speed of 650 fpm (200 meters per minutes).
  • the web is converted to provide a two-layer, two-ply facial tissue paper.
  • Each ply has a basis weight of about 10 pounds per 3000 square feet and contains about 0.02% of the permanent wet strength resin and about 0.08% of the dry strength resin.
  • the resulting two-ply tissue paper is soft , absorbent and has attractive aesthetics suitable for use as facial tissues.

Abstract

A multi-region paper structure having a transition region interconnecting relatively thinner regions is disclosed. The paper structure comprises a first region, a patterned second region, and a third region, and transition region. The transition region interconnects the patterned second region with a background matrix. The background matrix comprises the first region and the third region. The first region comprises a plurality of discrete protuberances dispersed throughout the third region. The first and second regions are disposed at different elevations, and each has a thickness less than a thickness of the transition region. An apparatus and process for making the paper structure is also disclosed.

Description

MULTI-REGION PAPER STRUCTURE AND APPARATUS AND PROCESS FOR MAKING THE SAME
FIELD OF THE INVENTION
The present invention relates to a multi-region paper structure having a transition region interconnecting regions of the paper structure disposed at different elevations and having thicknesses less than or equal to the thickness of transition region. The apparatus and process for making such a paper web also form part of the present invention.
BACKGROUND OF THE INVENTION
Paper structures, such as toilet tissue, paper towels, and facial tissue, are widely used throughout the home and industry. Many attempts have been made to make such tissue products more consumer preferred. One approach to providing consumer preferred tissue products having bulk and flexibility is illustrated in U.S. Patent 3,994,771 issued November 30, 1976 to Morgan et al. Improved bulk and flexibility may also be provided through bilaterally staggered compressed and uncompressed zones, as shown in U.S. Patent 4, 191,609 issued March 4, 1980 to Trokhan.
Another approach to making tissue products more consumer preferred is to dry the paper structure to impart greater bulk, tensile strength, and burst strength to the tissue products. Examples of paper structures made in this manner are illustrated in U.S. Patent 4,637,859 issued January 20, 1987 to Trokhan. Alternatively, a paper structure can be made stronger, without utilizing more cellulosic fibers, by having regions of differing basis weights as illustrated in U.S. Patent 4,514,345 issued April 5 30, 1985 to Johnson, et. al. Papermaking belts having a semicontinuous pattern and paper made on such belts are disclosed in PCT Publication WO 94/04750 published March 3, 1994 in the name of Ayers et al., and having a U.S. priority date of August 26, 1992. Papermaking belts made using a deformable casting surface process are disclosed in U.S. Patent 5,275,700 issued January 4, 1994 to Trokhan. 0 Tissue paper manufacturers have also attempted to make tissue products more appealing to consumers by improving the aesthetic appearance of the product. For example, embossed patterns formed in tissue paper products after the tissue paper products have been dried are common. One embossed pattern which appears in cellulosic paper towel products marketed by the Procter and Gamble Company is illustrated in U.S. Patent Des. 239, 137 issued March 9, 1976 to Appleman. Embossing methods and/or embossed products are also disclosed in U.S. Patent 3,556,907 issued January 19, 1971 to Nystrand; U.S. Patent 3,867,225 issued February 18, 1975 to Nystrand; and U.S. Patent 3,414,459 issued December 3, 1968 to Wells.
However, embossing a dry paper web typically imparts a particular aesthetic appearance to the paper structure at the expense of other properties of the structure. In particular, embossing disrupts bonds between fibers in the cellulosic structure. This disruption occurs because the bonds are formed and set upon drying of the embryonic fibrous slurry. After drying the paper structure, moving fibers normal to the plane of the paper structure by embossing breaks fiber to fiber bonds. Breaking bonds results in reduced tensile strength of the dried paper web. In addition, embossing is typically done after creping of the dried paper web from the drying drum. Embossing after creping can disrupt the creping pattern imparted to the web. For instance, embossing can eliminate the creping pattern in some portions of the web by compacting the creping pattern. Such a result is undesirable because the creping pattern improves the softness and flexibility of the dried web. In addition, dry embossing a paper structure acts to stretch or draw the paper structure around the perimeter of the embossments. As a result, the paper structure around the perimeter of the embossments will have a reduced thickness relative to the non-embossed portion of the paper web.
U.S. Patent Application Serial No. 07/718,452, Tissue Paper Having Large Scale, Aesthetically Discernible Patterns and Apparatus for Making Same, filed June 19, 1991 to be issued as U.S. Patent 5,328,565 on July 12, 1994 in the name of Rasch et al. discloses a single lamina paper structure having at least three visually discernible regions. Rasch et al. teaches the three regions are visually distinguishable by an optically intensive property such as crepe frequency, elevation, or opacity. While the structures of Rasch et al. provide an improvement over embossed paper structures, there is a need to provide tissue products having improved visually discernible patterns over those taught in Rasch et al. Therefore, those involved in the papermaking field continue to search for ways to make paper structures having highly discernible aesthetic patterns without sacrificing desirable paper web properties. Accordingly, one object of the present invention is to provide a paper structure having visually discernible patterns without the need for embossing a dried paper web.
Another object of the present invention is to provide a paper structure having visually discernible patterns without sacrificing desirable paper web properties such as tensile strength and sheet flexibility.
Another object of the present invention is to provide a paper structure having a first region disposed at a first elevation and having a first thickness, a second region disposed at a second elevation different from the first elevation and having a second thickness, a third region disposed at a third region and having a third thickness greater than the first thickness, and a fourth transition region interconnecting the second region with at least one of the first and third regions, the transition region having a fourth thickness greater than the second thickness and greater than or equal to the first thickness.
Another object of the present invention is to provide an apparatus and method for forming the paper structure of the present invention.
Another object of the present invention is provide a paper structure characterized in having enhanced bulk caliper and roll compressibility.
SUMMARY OF THE INVENTION The invention comprises a paper structure, such as a tissue paper web, having visually discernible patterns. The paper structure comprises a first region disposed at a first elevation and having a first thickness; a patterned second region disposed at a second elevation different from the first elevation, the second region having a second thickness; a third region interconnected with the first region, the third region disposed at a third elevation different from the second elevation, and the third region having a third thickness; and a transition region having a fourth thickness. The transition region interconnects the second region with at least one of the first and third regions. The fourth thickness is greater than or equal to the first thickness and is greater than the second thickness. The third thickness is greater than the first thickness. In one embodiment the first elevation is different from the third elevation, and paper structure has a background matrix comprising the first and third regions, wherein the first region comprises a plurality of discrete protuberances dispersed throughout the third region.
A portion of at least one of the second regions and the background matrix can be foreshortened, such as by creping. In one embodiment at least a portion of the second region is bordered by a variable frequency creping pattern. The variable frequency creping pattern extends from a border of the second region into the a background matrix comprising the first and third regions. The variable frequency creping pattern terminates in the background region, and enhances the visual discernibility of the patterned second region. The second region can comprise a continuous network, discrete zones, or combinations thereof. The present invention also comprises an apparatus for use in making a web of papermaking fibers. The apparatus can comprise a drying belt. The drying belt comprises a foraminous background element having a first web contacting surface and a web patterning layer joined to the foraminous background element, the web patterning layer extending from the first web contacting surface to form a second web contacting surface at a second elevation different from the first elevation. The web patterning layer is disposed in a predetermined pattern to inscribe a portion of the foraminous background element having a projected area of at least about 50 square millimeters, and more preferably at least about 100 square millimeters, wherein the elevation everywhere within the inscribed area is the first elevation of the first web contacting surface, and wherein there is no web patterning layer within the inscribed area. The projected area of the second web contacting surface is preferably between about 5 and about 20 percent of the projected area of the apparatus, and more preferably between about 5 and about 14 percent of the projected area of the apparatus. The apparatus having a web patterning layer with the above projected area and disposed to inscribe portions of the foraminous background element with the above width and area is relatively flexible. Such flexibility permits deflection of the first web contacting surface relative to the second web contacting surface for formation of compacted, relatively high density regions at different elevations.
The present invention also comprises a method for forming a paper structure according to the present invention. The method comprises the following steps: providing a wet web of paper making fibers; deflecting the web in a first deflection step to provide a non-monoplanar web having a first uncompacted web region, and a second uncompacted web region having an elevation different from the elevation of the first uncompacted web region while the web has a consistency of between about 8 and about 30 percent. deflecting first uncompacted web region relative to the second uncompacted web region in a second deflection step to temporarily reduce, and preferably substantially eliminate, the difference in elevation between the first uncompacted web region and the second uncompacted web region; compacting a predetermined portion of the first uncompacted web region at a web consistency of between about 40 to about 80 percent to provide a first compacted region and a third uncompacted region; compacting at least a portion of the second uncompacted web region at a web consistency of between about 40 to about 80 percent to form a second compacted web region; and restoring at least some of the difference in elevation lost in the first deflection step to provide the first compacted region and the third uncompacted region disposed at elevations different from the elevation of the second compacted region.
DESCRIPTION OF THE DRAWINGS While the Specification concludes with claims particularly pointing out and distinctly claiming the present invention, the invention will be better understood from the following description taken in conjunction with the associated drawings, in which like elements are designated by the same reference numeral, and:
Figure 1 is a cross-sectional illustration of a paper structure according to the present invention. Figure 2A is a photomicrograph of a cross-section of a paper structure according to the present invention. Figure 2B is the photomicrograph of Figure 2A showing thickness and elevation reference lines. Figure 3 is a photographic plan view of a paper structure according to the present invention. Figure 4A is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure 3.
Figure 4B is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure 4A. Figure 4C is a photographic plan view of a portion of a paper structure according to the present invention, the view enlarged relative to Figure
4B. Figure 5 A is a plan view illustration of an apparatus for making a paper structure according to the present invention, the apparatus having a foraminous background element and a web patterning layer extending from the foraminous background element. Figure 5B is an enlarged plan view illustration of a portion of a foraminous background element. Figure 6 is a cross-sectional view of the apparatus of Figure 5 A. Figure 7 is an illustration of a papermaking machine for making a paper structure according to the present invention. Figure 8 is an illustration of a non-monoplanar, generally uncompacted paper web supported on the apparatus of Figure 6. Figure 9 is an illustration of a paper web being compacted against the surface of a drying drum. Figure 10 is a plan view illustration of a paper structure having a second region comprising discrete zones disposed within cells in a lattice network.
Figure 1 1 is a plan view illustration of a web support apparatus for making the paper structure of Figure 10.
DETAILED DESCRIPTION OF THE INVENTION Figures 1-4 and 10 illustrate a paper structure 20 according to the present invention. Figures 5-6 and 11 illustrate a web support apparatus 200 suitable for making paper structures according to the present invention. Figures 7-9 illustrate a method employing the web support apparatus 200 for making the paper structure 20.
Paper Structure
A paper structure according to the present invention is taken off the forming wire as a single sheet having one or more fiber constituent layers. Though not necessary, the paper structure of the present invention can be joined to one or more other sheets or plies after sheet drying to form a multi-ply paper product. A "zone" as used herein refers to a contiguous portion of the paper structure. A "region" of a paper structure, as used herein, refers to a portion or portions of the paper structure having a common property or characteristic, such as density, thickness, elevation, or creping frequency. A region can comprise one or more zones, and can be continuous or discontinuous. Referring to Figures 1-4, the paper structure 20 according to the present invention comprises a tissue paper web having at least four regions. The paper structure 20 comprises a first region 30 having a first thickness 31 and disposed at a first elevation 32; a patterned second region 50 having a second thickness 51 and disposed at a second elevation 52 different from the first elevation 32; and a third region 70 having a third thickness 71 and disposed at a third elevation 72. The difference between elevation 52 and elevation 32 is indicated by reference numeral 62 in Figures 1-2. The third region 70 is interconnected with the first region 30, and together the first and third regions 70 form a background matrix 100 of the paper structure 20. The paper structure 20 further comprises a fourth transition region 90 having a fourth thickness 91. The transition region 90 interconnects the second region 50 with at least one of the first and third regions 30 and 70 of the background matrix 100, and thereby supports the second region 50 at the elevation 52 such that the second region 50 is visually distinguishable from the background matrix 100 of the paper structure formed by the first region 30 and the third region 70.
Referring to Figures 1-2, the paper structure 20 is characterized in that the fourth thickness 91 of the transition region 90 is greater than or equal to the first thickness 31, the fourth thickness 91 is greater than the second thickness 51; and the third thickness 71 is greater than the first thickness 31. Accordingly, the paper structure 20 of the present invention does not exhibit the reduced web thinning around the perimeter of raised portions of the paper structure characteristic of embossing. The thicknesses 31, 51, 71, and 91 and the difference in elevation 62 are measured using the procedure described below. In one embodiment the fourth thickness 91 is greater than both the first thickness 31 and the second thickness 51. The fourth thickness 91 can be at least about 1.2 and preferably at least about 1.5 times the first thickness 31, and the fourth thickness can be at least about 1.5 times and preferably at least about 2.0 times the second thickness 51. The first and second thicknesses 31 and 51 can be less than the third thickness 71.
The first elevation 32 can be different from the third elevation 72. In the embodiment shown in Figures 1-4, the first region 30 comprises a plurality of discrete protuberances 34 (Figure 2A-B and 4C) dispersed throughout the third region 70. The first region 30 and the second region 50 can be formed by selectively deflecting and compacting a wet web of paper making fibers. For a web having a generally constant basis weight and first and second regions 30 and 50 with thicknesses 31 and 51 less than the third thickness 71 and the fourth thickness 91, the first and second regions 30 and 50 can be characterized as relatively high density regions and the third and fourth regions 70 and 90 can be characterized as relatively low density regions.
Referring to Figures 3-4, the second region 50 can comprise a plurality of discrete zones 54 dispersed throughout the background matrix 100, with each discrete zone 54 surrounded by the background matrix 100. The third region 70 can comprise a generally continuous network extending in the machine (MD) and cross- machine (CD) directions throughout the background matrix 100. As viewed in Figures 3 and 4A-C, each of the zones 54 has a projected area which is at least about 10 times, and preferably at least about 100 times the projected area of one of the protuberances 34. The projected areas of a protuberance 34 and a zone 54 can be measured using standard image analysis procedures. Figure 3 shows a number of discrete zones 54 (e.g., zones 54A-D). In the plan views of Figures 3 and 4 each discrete zone 54 has the form of a flower shaped pattern.
The difference between the first elevation 32 and the second elevation 52 is preferably at least about 0.05 millimeter, and more preferably at least about 0.08 millimeter. The elevations 32 and 52 and the thicknesses 31, 51, 71, and 91 are indicated in the photomicrographs of Figure 2 A and 2B. Preferably at least a portion of at least one of the second region 50 and the background matrix 100 is foreshortened in the machine direction of the structure 20. Foreshortening can be provided by creping a paper web with a doctor blade, as described below. The machine direction (MD) and the cross-machine direction (CD) are indicated in Figures 1-4. Foreshortened portions of the paper structure 20 are characterized by having a creping pattern having a creping frequency. The creping pattern of a portion of the background matrix 100 is indicated by reference numeral 35 in Figure 1 and Figure 4B, and is characterized by a series of peaks and valleys. The creping pattern of the second region 50 is indicated by reference numeral 55 in Figures 1 and 2 and is characterized by a series of peaks and valleys. The creping pattern 35 in a portion of the background matrix 100 is disposed at a different elevation than the creping pattern 55 of the second region 50. The crepe frequency of a creping pattern is defined as the number of times a peak occurs on the surface of the paper structure for a given linear distance, and can be measured in cycles per millimeter of linear distance. Referring to'Figures 3 and 4 A, at least a portion of the second region 50 can be bordered by a variable frequency creping region characterized by having a reduced creping frequency relative to the creping frequency of at least one of the creping patterns 35 and 55. The variable frequency creping region can comprise a portion of at least one of the background matrix 100 and the transition region 90 disposed adjacent the patterned second region 50. The variable frequency creping region extends from a portion of a border of the second region 50 into the background matrix 100, and terminates in the background matrix 100 The variable frequency creping region is visible in Figures 3 and 4A as wrinkles 92 bordering a portion of the discrete zones 54. The wrinkles 92 extend in the cross machine direction from a portion of the border of each discrete zone 54 and terminate in the background matrix 100. The creping pattern 55 can have a frequency of at least about 1.5 times the frequency of the wrinkle 92. The transition region 90 and the wrinkles 92 of the variable frequency creping region border the second region 50, and thereby help to visually offset the second region 50 from the background matrix 100.
The second region 50 preferably has a projected area between about 5 and about 20 percent, and more preferably between about 5 and about 14 percent of the projected area of the paper structure 20. The second region 50 inscribes one or more circular zones C (Figure 3) of the background matrix 100 wherein the projected area of the circular zone C is at least about 50 square millimeters, and more preferably at least about 100 square millimeters. In the embodiment wherein the second region comprises discrete zones 54, the spacing D (Figure 1 and 3) between at least some adjacent zones 54 is preferably at least about 25 mm. The second region thereby imparts a relatively large-scale visually discernible pattern to the tissue web while comprising a relatively small percentage of the projected area of the tissue web.
As shown in Figures 1, 3, and 4 A, at least some discrete zones 54 can enclose a plurality of discrete, unconnected enclosed zones 120. At least some of the enclosed zones 120 can comprise a fifth region 130 having an elevation 132 and a sixth region 150 having an elevation 152, as shown schematically in Figure 1. The fifth region 130 can have a thickness 131 greater than the thickness 51. The sixth region 150 can comprise a plurality of protuberances 154 dispersed throughout the fifth region 130. The sixth region 150 can have a thickness 151 less than the thickness 131. The enclosed zone 120 can be foreshortened to have a creping pattern.
Figure 10 is a plan view illustration of an alternative embodiment of the paper structure 20 according to the present invention. As shown in Figure 10, the second region 50 can comprise a lattice network 1050 defining cells 1052, and a plurality of discrete zones 54. The discrete zones 54 can be disposed within at least some of the cells 1052 of the lattice network 1050. A background matrix 100 within each cell 1052 can comprise the first region 30 and the third region 70. The third region 30 can comprise a plurality of discrete protuberances 34 dispersed throughout the third region 70 within each cell 1052.
The lattice network 1050 shown in Figure 10 comprises spaced apart bands 1054 which intersect spaced apart bands 1056 to form the cells 1052. The bands 1054 and/or the bands 1054 can be unbroken, or alternatively, can be formed by a plurality of short, spaced apart segments. In Figure 10 the bands 1054 and 1056 are unbroken. The bands 1054 extend generally in the machine direction, and the bands 1056 extend generally in the cross-machine direction. The intersecting, unbroken bands 1054 and 1056 thereby form a continuous network lattice 1050 The paper structure 20 according to the present invention preferably has a basis weight of between about 7 pounds per 3000 square feet (about 1 1 gram/square meter) and about 35 pounds per 3000 square feet (57 gram/square meter), which basis weight range is desirable for providing paper structures 20 suitable for use bath tissue and facial tissue products. The basis weight of the paper structure 20 is measured by cutting eight single ply samples of the paper structure 20 conditioned at 73 degrees Fahrenheit and 50 percent relative humidity, each sample measuring 4 inches by 4 inches (.0103 square meter). The eight 4 inch by 4 inch samples are placed one on top of each other and weighed to the nearest 0.0001 gram. The basis weight of the eight samples (in grams/square meter) is the combined weight of the eight samples in grams divided by the sample area of 0.0103 square meter. The basis weight of the paper structure 20 is obtained by dividing the combined basis weight of eight samples by eight.
Web Support Apparatus A web support apparatus 200 suitable for making the paper structure 20 is shown in Figures 5A-B and 6. The web support apparatus 200 can comprise a continuous drying belt (Figure 7) for drying and imparting a visually discernible pattern to the paper structure 20. The web support apparatus 200 has a first web facing side 202 and a second oppositely facing side 204 (Figure 6). The web support apparatus 200 is viewed with the first web facing side 202 facing the viewer in Figure 5A
Referring to Figure 6, the web support apparatus 200 comprises a foraminous background element 220 having a first web contacting surface 230 at a first elevation 231. A plan view of the foraminous background element 220 is shown in Figure 5B. The web support apparatus 200 also comprises a web patterning layer 250 joined to the foraminous background element 220. The web patterning layer 250 extends from the first web contacting surface 230 to form a second web contacting surface 260 at a second elevation 261 different from the first elevation 231. The difference 262 between the first elevation 231 and the second elevation 261 is at least about 0.05 millimeter and preferably between about 0.1 and about 2 mm.
The projected area of the second web contacting surface 260 is between about 5 and about 20 percent, and more preferably between about 5 and about 14 percent of the projected area of the apparatus 200 as viewed in Figure 5 A. The projected area of the first web contacting surface 230 is preferably between about 10 and about 40 percent of the projected area of the apparatus. The web patterning layer 250 is disposed on the foraminous background element 220 in a predetermined pattern to inscribe a plurality of circular portions CA (Figure 5 A) of the foraminous background element 220 which are not covered by the web patterning layer 250, wherein the projected area of each circular portion CA is at least about 50 square millimeters, and more preferably at least about 100 square millimeters. The elevation of the apparatus 200 everywhere within a circular portion CA is less than the elevation 261. The belt apparatus 200 having a web patterning layer 250 with the above projected area and disposed to inscribe portions of the foraminous background element with the above area is relatively flexible compared to a belt made from the same underlying foraminous element but having a larger percentage of its surface covered by a web patterning layer. Such flexibility permits deflection of the first web contacting surface 230 relative to the second web contacting surface 260 for formation of relatively high density regions at different elevations, as described below.
In the embodiment shown in Figure 5A, the web patterning layer 250 comprises a plurality of discrete web patterning elements 254, such as discrete elements 254 A-C which inscribe a circular portion CA of the foraminous background element 220. A discrete element 254 can enclose one or more other discrete elements 254. For instance, in Figure 5 A a discrete element 254E is disposed within a discrete element 254D.
The spacing DA between some adjacent web patterning elements 254 is preferably at least about 25 millimeters. Two web patterning elements 254 are considered to be adjacent if the shortest straight line that can be drawn between the two elements does not intersect a third element. In Figure 5 A at least some of the web patterning elements 254 enclose a plurality of discrete openings 270 in the web contacting surface 260 of the web patterning layer 250. Each of the enclosed openings 270 has a web facing surface 272 (Figure 6) comprising a portion of the foraminous background element 220.
The web support apparatus 200 preferably has an air permeability of between about 400 and about 800 standard cubic feet per minute (scfm), where the air permeability in scfm is a measure of the number of cubic feet of air per minute that pass through a one square foot area of the apparatus 200 at a pressure drop across the thickness of the apparatus 200 equal to about 0.5 inch of water. The air permeability is measured using a Valmet permeability measuring device (Model Wigo Taifun Type 1000) available from the Valmet Corporation of Pansio, Finland.
It is desirable that the apparatus 200 have the air permeability listed above so that the web support apparatus 200 can be used with a paper making machine having a vacuum transfer section and a through air drying capability, as described below. The foraminous background element 220 shown in Figures 5B and 6 comprises woven filaments 222 and 224. The filaments 222 extend generally in the machine direction, and the filaments 224 extend generally in the cross-machine direction. Referring to Figures 5B and 6, the first web contacting surface 230 comprises discrete web contacting knuckles 232 located at the cross-over points of the woven filaments 222 and 224. The knuckles 232 form a generally monoplanar web contacting surface 230. Between about 5 and about 50 percent of the projected area of the foraminous background element 220 comprises open area corresponding to openings 221 between adjacent filaments 222 and 224.
The foraminous background element 220 preferably has between about 25 and about 100 of the filaments 222 per inch measured in the cross machine direction and between about 25 and about 100 of the filaments 224 per inch measured in the machine direction, where the filaments 222 and the filaments 224 have a diameter between about 0.1 and about 0.5 millimeter. The foraminous background element preferably comprises between about 625 and about 10,000 discrete web contacting knuckles per square inch of the projected area of the foraminous background element.
The filaments 222, 224 can be formed from a number of different materials. Suitable filaments and filament weave patterns for forming the foraminous background element 220 are disclosed in U.S. Patent 4, 191,609 issued March 4, 1980 to Trokhan, and U.S. Patent 4,239,065 issued December 16, 1980 to Trokhan, which patents are incoφorated herein by reference.
The web patterning layer 250 preferably comprises a photosensitive resin. The resin, when cured, should have a hardness of no more than about 60 Shore D. The hardness is measured on an unpatterned photopolymer resin coupon measuring about 1 inch by 2 inches'by 0.025 inches thick cured under the same conditions as the web patterning layer 250. The hardness measurement is made at 85 degrees Centigrade and read 10 seconds after initial engagement of the Shore D durometer probe with the resin.
Web patterning layers 250 having a wide variety of shapes and sizes can be formed with photosensitive resins. Suitable photosensitive resins include polymers which cure or cross-link under the influence of radiation. U.S. Patent 4,514,345 issued April 30, 1985 to Johnson et al. is incorporated herein by reference for the purpose of disclosing suitable photosensitive resins and a method by which a photosensitive resin can be cured on the foraminous background element 220 to form the web patterning layer 250. Figure 1 1 show an embodiment of a web support apparatus 200 having a web patterning layer 250 suitable for making the paper structure 20 of Figure 10. The web patterning layer 250 comprises a lattice network 290 and a plurality of discrete web patterning elements 254 disposed within at least some of a plurality of cells 292 formed by the lattice network 290. The lattice 290 in Figure 13 comprises spaced apart bands 294 which intersect spaced apart bands 296 to form the cells 292. The bands 294 and/or the bands 296 can be unbroken, or alternatively, can be formed by a plurality of short, spaced apart segments. The bands 294 extend generally in the machine direction and the bands 296 extend generally in the cross-machine direction. In Figure 1 1 the bands 294 and 296 are unbroken and intersect to form a continuous network lattice 290 having a continuous network web contacting top surface.
Papermaking Method Description A paper structure 20 according to the present invention can be made with the papermaking apparatus shown in Figures 6-9. Referring to Figure 7, the method of making the paper structure 20 of the present invention is initiated by depositing a slurry of papermaking fibers from a headbox 500 onto a foraminous, liquid pervious forming member, such as a forming belt 542, followed by forming an embryonic web of papermaking fibers 543 supported by the forming belt 542. The forming belt 542 can comprise a continuous Fourdrinier wire, or alternatively, can be made according to the teachings of U.S. Patent 4,514,345 issued April 30 to Johnson et. al, which patent is incorporated herein by reference, or the teaching of U.S. Patent 5,245,025 issued to Trokhan.
It is anticipated that wood pulp in all its varieties will normally comprise the paper making fibers used in this invention. However, other cellulose fibrous pulps, such as cotton liners, bagasse, rayon, etc., can be used and none are disclaimed. Wood pulps useful herein include chemical pulps such as Kraft, sulfite and sulfate pulps as well as mechanical pulps including for example, ground wood, thermomechanical pulps and Chemi-ThermoMechanical Pulp (CTMP). Pulps derived from both deciduous and coniferous trees can be used. Both hardwood pulps and softwood pulps as well as blends of the two may be employed. The terms hardwood pulps as used herein refers to fibrous pulp derived from the woody substance of deciduous trees (angiosperms): wherein softwood pulps are fibrous pulps derived from the woody substance of coniferous trees (gymnosperms). Hardwood pulps such as eucalyptus having an average fiber length of about 1.00 millimeter are particularly suitable for tissue webs described hereinafter, whereas northern softwood Kraft pulps having an average fiber length of about 2.5 millimeter are preferred. Also applicable to the present invention are fibers derived from recycled paper, which may contain any or all of the above categories as well as other non-fibrous materials such as fillers and adhesives used to facilitate the original paper making.
The paper furnish can comprise a variety of additives, including but not limited to fiber binder materials, such as wet strength binder materials, dry strength binder materials, and chemical softening compositions. Suitable wet strength binders include, but are not limited to, materials such as polyamide-epichlorohydrin resins sold under the trade name of Kymene® 557H by Hercules Inc., Wilmington, Delaware. Suitable temporary wet strength binders include but are not limited to modified starch binders such as National Starch 78-0080 marketed by National Starch Chemical Corporation, New York, New York. Suitable dry strength binders include materials such as carboxymethyl cellulose and cationic polymers such as ACCO® 71 1. The ACCO® family of dry strength materials are available form American Cyanamid Company of Wayne, New Jersey. Suitable chemical softening compositions are disclosed in U.S. Patent 5,279,767 issued January 18, 1994 to Phan et al. Suitable biodegradable chemical softening compositions are disclosed in U.S. Patent 5,312,522 issued May 17, 1994 to Phan et al.
The embryonic web 543 is preferably prepared from an aqueous dispersion of papermaking fibers, though dispersions in liquids other than water can be used. The fibers are dispersed in the carrier liquid to have a consistency of from about 0.1 to about 0.3 percent. The percent consistency of a dispersion, slurry, web, or other system is defined as 100 times the quotient obtained when the weight of dry fiber in the system under consideration is divided by the total weight of the system. Fiber weight is always expressed on the basis of bone dry fibers. The embryonic web 543 can be formed in a continuous papermaking process, as shown in Figure 7, or alternatively, a batch process, such as a handsheet making process can be used. After the dispersion of papermaking fibers is deposited onto the forming belt 542, the embryonic web 543 is formed by removal of a portion of the aqueous dispersing medium by techniques well known to those skilled in the art. The embryonic web can be generally monoplanar. Vacuum boxes, forming boards, hydrofoils, and the like are useful in effecting water removal from the dispersion. The embryonic web 543 travels with the forming belt 542 about a return roll 502 and is brought into the proximity of the web support apparatus 200.
The next step in making the paper structure 20 comprises transferring the embryonic web 543 from the forming belt 542 to the web support apparatus 200 and supporting the embryonic web 543 on the first side 202 of the web support apparatus. The embryonic web preferably has a consistency of at least 8 percent at the point of transfer to the forming belt 542. The step of transferring the embryonic web 543 can simultaneously include the step of deflecting a portion of the web 543 and removing water from the web 543. Alternatively, the step of deflecting a portion of the web 543 can follow the step of transferring the web. Referring to Figure 7 and 8, the step of deflecting the web 543 comprises deflecting a portion of the web 543 in a first deflection step to form a non- monoplanar web 545 having a first uncompacted web region 547 supported on the first web contacting surface 230 at the elevation 231, and a second uncompacted web region 549 supported on the second web contacting surface 260 at the elevation 261. The first uncompacted web region 547 can comprise a dedensified or otherwise rebulked region 548 corresponding to the portions of the uncompacted web region 547 that are drawn or otherwise urged at least part way into the openings 221 in the foraminous background element 220. The thickness of the region 548 is generally greater than the thickness of those portions of the region 547 overlying each knuckle 232.
In the embodiment shown in Figure 8 the non-monoplanar web 545 is formed by deflecting the fibers in the embryonic web 543 which overly the foraminous background element 220 of the web support apparatus 200. This first deflection step is preferably performed at a web consistency of between about 8 percent and about 30 percent, and more preferably at a web consistency of between about 10 percent and about 20 percent, so that deflection of the web takes place when the fibers of the web 543 are relatively mobile, and so that the deflection does not result in breaking of substantial numbers of fiber to fiber bonds.
The steps of transferring the embryonic web 543 to the web support apparatus 200 and deflecting the web 543 to form a non-planar web 545 can be provided, at least in part, by applying a differential fluid pressure to the embryonic web 543. For instance, the embryonic web 543 can be vacuum transferred from the forming belt
542 to the web support apparatus 200 by a vacuum source, such as vacuum box 600 shown in Figure 7. One or more additional vacuum sources 620 can also be provided downstream of the embryonic web transfer point. The pressure differential across the embryonic web 543 provided by the vacuum source deflects the fibers overlying the foraminous background element 220, and preferably removes water from the web through the foraminous background element 220 to increase the consistency of the web to between about 15 and about 30 percent. The pressure differential provided by the vacuum source can be between about
7 inches of mercury to about 25 inches of mercury. The pressure differential provided by the vacuum source permits transfer and deflection of the embryonic web without compaction of the web. U.S. Patent 4,529,480 issued July 16, 1985 to Trokhan is incorporated herein by reference for the purpose of teaching transfer of an embryonic web and deflection of a portion of a web by applying a differential fluid pressure. The next step in forming the paper structure 20 can comprise pre-drying the non-monoplanar web 545, such as with a through-air dryer 650 shown in Figure 7. The non-monoplanar web 545 is carried through the through-air dryer while supported on the web support apparatus 200. The non-monoplanar web can be pre- dried by directing a drying gas, such as heated air, through the non-monoplanar web 545. In one embodiment, the heated air is directed first through the non-monoplanar web 545, and subsequently through the foraminous background element 220 of the web support apparatus 200. The non-monoplanar web 545 preferably exits the dryer 650 at a consistency of between about 50 and about 80 percent. U.S. Patent 3,303,576 issued May 26,1965 to Sisson and U.S. Patent 5,274,930 issued January 4, 1994 to Ensign et al. are incoφorated herein by reference for the puφose of showing suitable through air dryers for use in practicing the present invention.
After predrying, the web 545 is carried on the web support apparatus 200 through a nip 670 provided between a compaction surface 675 and a deformable compression surface 910 of a press member. The compression member can comprise a roller 900. The web 545 is carried through the nip 670 for positioning of the web 545 adjacent the compaction surface 675, and for positioning the second side 204 of the web support apparatus 200 adjacent the deformable compression surface 910. The web 545 preferably enters the nip 670 at a consistency of between about 30 percent and about 80 percent, and more preferably at a consistency of between about 40 percent and about 70 percent.
The compaction surface 675 is preferably characterized in having a relatively high hardness and in being relatively incompressible. A suitable surface 675 is the surface of a steel or iron heated dryer drum 680. The surface 675 can be coated with a creping adhesive dispensed from a spray nozzle 690 located upstream of the nip 670, or alternatively, by an impression roll (not shown). Alternatively, the creping adhesive can be applied to the non-monoplanar web 545 by any suitable means of glue application. A suitable creping adhesive is shown in U.S. Patent 3,926,716 issued to Bates on December 16, 1975, which patent is incoφorated by reference.
The deformable compression surface 910 is preferably characterized in having a relatively low hardness and in being relatively highly compressible in comparison with the compaction surface 675. The roller 900 can have in inner core 902, an intermediate layer 904, and an outer layer 906. or alternatively, the layer 904 can be eliminated. The roller 900 can have a diameter of about 1-3 feet, and the dryer drum 680 can have a diameter of about 12-18 feet. The deformable compression surface 910 is preferably located on a layer 906 formed from a material having a compressive modulus of less than about 1.5 million kPa. In one embodiment, the inner core 902 can be formed from a material such as steel, the intermediate layer 904 can be formed from an elastomeric material, and the outer layer 906 comprising the surface 910 can be formed from a heat resistant elastomeric material such as nitril rubber. The hardness of the surface 910 is less than 120 P&J, preferably between about 30 P&J and 100 P&J. The procedure for measuring the P&J hardness of a roll surface is provided below.
Referring to Figure 9, the next step in forming the paper structure 20 comprises pressing the web support apparatus 200 and the non-monoplanar web 545 between the compression surface 910 and the compaction surface 675 to provide a nip compression pressure of at least about 100 psi, and preferably at least about 200 psi. The nip pressure is the total force applied to the nip divided by the nip area. The total force applied to the nip can be determined from hydraulic gauge readings coupled with a force balance analysis based on the equipment geometry. The nip width is determined by loading the nip 670 with a sheet of white paper and a sheet of carbon paper positioned between the apparatus 200 and the surface 675, such that the carbon paper provides an impression of the nip width on the white paper.
Pressing the web support apparatus 200 and the non-monoplanar web 545 in the nip 670 provides a second deflection step. The second deflection step comprises deflecting the first web contacting surface 230 relative to the second web contacting surface 260. In particular, the first web contacting surface 230 is deflected toward the compaction surface 675 by the deformable compression surface 910, as shown in Figure 9, thereby temporarily reducing, and preferably temporarily substantially eliminating the difference in elevation 262 between the web contacting surfaces 230 and 260.
Deflecting the first web contacting surface 230 relative to the second web contacting surface 260 provides deflection of a portion of the first uncompacted web region 547 relative to the second uncompacted web region 549, thereby reducing the difference in elevation between the first and second uncompacted web regions 547 and 549. In particular, the first uncompacted web region 547 is deflected toward the compaction surface 675 by the first web contacting surface 230, to thereby reduce the difference in elevation between a portion of the first uncompacted web region 547 and a portion of the second uncompacted web region 549 to about zero. The second deflection step is preferably performed at a web consistency of between about 30 percent and about 80 percent, and more preferably at a web consistency of between about 40 percent and about 70 percent.
Pressing the web support apparatus 200 and the non-monoplanar web 545 in the nip 670 also provides a web compaction step. Compaction provides a reduction in the thickness of the portion of the web which is compacted. The web compaction step comprises the step of compacting a predetermined portion of the first uncompacted web region 547 against the compaction surface 675 to form the first region 30. In particular, the first uncompacted web region 547 can be locally compacted by the discrete web compaction knuckles 232 to form the discrete protuberances 34. The web compaction step also comprises the step of compacting at least a portion of the second uncompacted web region 549 against the compaction surface 675 to form the second region 50. In particular, a portion of the second uncompacted web region 549 is compacted by. the second web contacting surface 260 of the web patterning layer 250, as shown in Figure 9. The difference in elevation between the first region 30 and the second region 50 is essentially zero at the end of the compaction step, as both of the regions 30 and 50 are pressed against the compaction surface 675 by the first and second web contacting surfaces 230 and 260, respectively.
The web support apparatus 200 having a web patterning layer 250 with the above described projected area, and disposed to inscribe large portions of the foraminous background element 220 is relatively flexible. Such flexibility permits the deflection of the first web contacting surface 230 relative to the second web contacting surface 260 required for the second deflection step and the compaction step described above, so that at the end of the second deflection step and the compaction step, the first and second regions 30 and 50 are imprinted against the surface 675, as shown in Figure 9, and the difference in elevation between the first region 30 and the second region 50 is essentially zero.
Another factor which affects relative deflection of the surfaces 230 and 260 is the hardness of the web patterning layer 250. A resin having a low hardness when cured will be compressed to some degree in the nip 670, thereby reducing the difference in elevation between the surfaces 260 and 230. Relative deflection of the surfaces 230 and 260 is also enhanced by reducing the hardness of the compression surface 910. A relatively low hardness compression surface 910 can conform to a deflected foraminous background element 200, and thereby provide a compressive load intermediate the web patterning elements 254 to press the first web contacting surface 230 and the first uncompacted web region 547 toward the compaction surface 675.
The step of compacting a predetermined portion of the first uncompacted web region 547 to form the first region 30 preferably also comprises the step of adhering at least a portion of the first region 30 to the compaction surface 675. In particular, the discrete protuberances 34 can be adhered to the surface 675, as shown in Figure 9, while the relatively low density third region 70 remains spaced from, and unattached to, the surface 675. The resulting partially compacted web is indicated by reference numeral 560 in Figures 7 and 9. The protuberances 34 can be adhered to the surface 675 by the adhesive sprayed on the surface 675 by the nozzle 690. The step of compacting the second uncompacted web region 549 to form the second region 50 preferably also comprises the step of adhering at least a portion of the region 50 to the compaction surface 675, as shown in Figure 9. After the compaction step, the partially compacted web 560 is dried on the heated surface 675 to have a consistency of between about 85 percent and 100 percent. The final step in forming the structure 20 comprises restoring at least some of the difference in web elevation lost in the second deflection step. This restoring step provides the first region 30 at the first elevation 32 and the second region 50 at the second elevation 52, wherein the difference 62 between the first elevation 32 and the second elevation 52 is greater than the reduced difference in elevation between the first and second uncompacted web regions 547 and 549 provided by the second deflection step.
The step of restoring some of the difference in web elevation lost in the second deflection step preferably comprises releasing the partially compacted web 560 from the compaction surface 675. In a preferred embodiment the step of restoring some of the difference in web elevation comprises foreshortening the partially compacted web 560 concurrently with, or subsequent to, the step of releasing the partially compacted web from the compaction surface 675. Preferably, the step of releasing and foreshortening the partially compacted web 560 comprises the step of creping the partially compacted web 560 from the surface 675 with a doctor blade 700 to provide the paper structure 20.
As used herein, foreshortening refers to the reduction in length of the partially compacted web 560 which occurs when energy is applied to the dry web in such a way that the length of the web is reduced in the machine direction. Foreshortening can be accomplished in any of several ways. The most common and preferred way to foreshorten a web is by creping. The partially compacted web 560 adhered to the compaction surface 675 is removed from the surface 675 by the doctor blade 700. In general, the doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees.
ANALYTICAL PROCEDURES
Measurement of Thickness and Elevation
The thicknesses and elevations of various regions 30-90 of a sample of the fibrous structure 20 are measured from microtomes made from cross-sections of the paper structure 20. A sample measuring about 2.54 centimeters by 5.1 centimeters (1 inch by 2 inches) is provided and stapled onto a rigid cardboard holder. The cardboard holder is placed in a silicon mold. The paper sample is immersed in a resin such as Merigraph photopolymer manufactured by Hercules, Inc.
The sample is cured to harden the resin mixture. The sample is removed from the silicon mold. Prior to immersion in photopolymer the sample is marked with a reference point to accurately determine where microtome slices are made. Preferably, the same reference point is utilized in both the plan view and various sectional views of the sample of the fibrous structure 20.
The sample is placed in a model 860 microtome sold by the American Optical Company of Buffalo, New York and leveled. The edge of the sample is removed from the sample, in slices, by the microtome until a smooth surface appears.
A sufficient number of slices are removed from the sample, so that the various regions 30-90 may be accurately reconstructed. For the embodiment described herein, slices having a thickness of about 60 microns per slice are taken from the smooth surface. Multiple slices may be required so that the thicknesses 31, 51, 71, and 91 may be ascertained.
A sample slice is mounted on a microscope slide using oil and a cover slip. The slide and the sample are mounted in a light transmission microscope and observed at about 40X magnification. Photomicrographs are taken along the slice, and the individual photomicrographs are arranged in series to reconstruct the profile of the slice. The thicknesses and elevations may be ascertained from the reconstructed profile, as shown in Figures 2 A and 2B. By knowing the relative basis weights of individual regions, as well as the corresponding thicknesses of the individual regions, the density of the individual regions can be ascertained. U.S. Patent 5,277,761 issued January 11, 1994 in the name of Phan et al. is incorporated herein by reference for describing the micro basis weight of individual regions of a paper structure. The thicknesses 31-91 may be established by using Hewlett Packard ScanJet
IIC color flatbed scanner. The Hewlett Packard Scanning software is DeskScan II version 1.6. The scanner settings type is black and white photo. The path is LaserWriter NT, NTX. The brightness and contrast setting is 125. The scaling is 100%. The file is scanned and saved in a picture file format on a Macintosh IlCi computer. The picture file is opened with a suitable photo-imaging software package or CAD program, such as PowerDraw version 5.0.
Referring to Figure 2A and 2B, the thickness of each region can be determined by drawing a circle which is inscribed by the region. The thickness of the region at that point is the diameter of the smallest circle that can be drawn in the region (in the microtome sample), multiplied by the appropriate scale factor. The scale factor is the magnification of the photomicrograph multiplied by the magnification of the scanned image. The circle can be drawn using any appropriate software drawing package, such as PowerDraw, version 5.0, available from Engineered Software of North Carolina. The difference in elevation 62 is measured by drawing the smallest circle inscribed by region 50 (in the microtome sample), and by drawing two circles inscribed by region 30, as shown in Figure 2A and 2B. A first line LI is drawn tangent to the two circles inscribed by region 30. A second line L2 is drawn parallel to the first line LI and tangent to circle inscribed by region 50. The distance between the first and second lines, multiplied by the appropriate scale factor, is the difference in elevation 62.
Projected Area Measurement The projected area of the web contacting surface 260 is measured according to the following procedure. First, the web contacting surface 260 is darkened with a black marker (Sanford Shaφie) to increase the contrast. Second, three digitized images of the web patterning apparatus 200 are acquired using a Hewlett Packard ScanJet lie Flatbed scanner. The scanner options are set as follows: Brightness 198, contrast 21 1, black and white photo resolution 100 DPI, scaling 100%. Third, the percentage of the projected area of the web support apparatus 200 comprising the web contacting surface 260 is determined using a suitable image analysis software system such as Optimas available from Bioscan, Incoφorated, Edmonds, WA. The ratio of the number of pixels having a greyscale value between 0 and 62 (corresponding to the web contacting surface 260) is divided by the total number of pixels in the scanned image (times 100) to determine the percentage of the projected area of the web support apparatus 200 comprising the web contacting surface 260. Measurement of Web Support Apparatus Elevations The elevation difference 262 between the elevation 231 of the first web contacting surface 230 and the elevation 261 of the second web contacting surface 260 is measured using the following procedure. The web support apparatus is supported on a flat horizontal surface with the web patterning layer facing upward. A stylus having a circular contact surface of about 1.3 square millimeters and a vertical length of about 3 millimeters is mounted on a Federal Products dimensioning gauge (model 432B-81 amplifier modified for use with an EMD-4320 Wl breakaway probe) manufactured by the Federal Products Company of Providence, PJ. The instrument is calibrated by determining the voltage difference between two precision shims of known thickness which provide a known elevation difference. The instrument is zeroed at an elevation slightly lower than the first web contacting surface 230 to insure unrestricted travel of the stylus. The stylus is placed over the elevation of interest and lowered to make the measurement. The stylus exerts a pressure of about 0.24 grams/square millimeter at the point of measurement. At least three measurements are made at each elevation. The difference in the average measurements of the individual elevations 231 and 261 is taken as the elevation difference 262.
Measurement of P&J Hardness
The surface hardness of the roll 900 is measured using a P&J plastometer Model 2000 manufactured by Dominion Engineering Works LTD of Lachine, Quebec, Ontario. The indentor shaft has a 3.17 millimeter ball. The hardness is taken at three different positions: One in the middle of the roll, one 6 inches from one end of the roll, and one 6 inches from the other end of the roll. The P&J hardness is the average of these three readings. The readings are made with the roll conditioned at a temperature of 21 degrees Celsius following the procedure provided by the manufacturer of the plastometer. EXAMPLES
The following examples are provided to illustrate papermaking according to the present invention.
EXAMPLE 1 A 3% by weight aqueous slurry of NSK is made up in a conventional re-pulper.
The NSK slurry is refined gently and a 2% solution of the temporary wet strength resin (i.e., National starch 78-0080 marketed by National Starch and Chemical corporation of New- York, NY) is added to the NSK stock pipe at a rate of 0.02% by weight of the dry fibers. The NSK slurry is diluted to about 0.2% consistency at the fan pump. Second, a 3% by weight aqueous slurry of Eucalyptus fibers is made up in a conventional re-pulper. The Eucalyptus slurry is diluted to about 0.2% consistency at the fan pump.
Three individually treated furnish streams .(stream 1 = 100% NSK; stream 2 = 100%) Eucalyptus; stream 3 = 100% Eucalyptus) are kept separate through the headbox and deposited onto a Fourdrinier wire to form a three layer embryonic web containing two outer Eucalyptus layers and a middle NSK layer. Dewatering occurs through the Fourdrinier wire and is assisted by a deflector and vacuum boxes. The Fourdrinier wire is of a 5-shed, satin weave configuration having 1 10 machine- direction and 95 cross-machine-direction monofilaments per inch, respectively. The embryonic wet web is vacuum transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to the web support apparatus 200 having a foraminous background element 220 and a web patterning layer 250 made of photosensitive resin. A pressure differential of about 16 inches of mercury is used to transfer the web to the web support apparatus 200. The foraminous background element is of a 5-shed, satin weave configuration having 59 machine- direction and 44 cross-machine-direction monofilaments per inch, the machine direction filaments having a diameter of about 0.25 mm and the cross-machine direction filaments having a diameter of about 0.33 mm. Such a foraminous background element is manufactured by Appleton Wire Company, Appleton, Wisconsin.
The web patterning layer 250 has web contacting top surface with a projected area which is between about 10 and about 12 percent of the projected area of the apparatus 200. The difference in elevation 262 is about .010 inch (.254 mm). The web patterning layer comprises discrete web patterning elements as shown in Figure 5. The web support apparatus 200 has an air permeability of about 600 scfm. The multi-elevation web is formed at the vacuum transferred point. Further de- watering is accomplished by vacuum assisted drainage and by though air drying, as represented by devices 600, 620, and 650. until the web has a fiber consistency of about 65%. Transfer to the Yankee dryer is effected with a soft pressure roll 900 having a surface hardness of about 40 P&J. The web is then adhered to the surface 675 of the a Yankee dryer drum 680 by pressing the soft pressure roll to the Yankee dryer surface at a compression pressure of at least about 40 psi. A Polyvinyl alcohol based creping adhesive is used to enhance the adhesion of the web to the surface 675. The web consistency is increased to between about 90% and 100% before dry creping the web from the surface 675 with a doctor blade. The doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees; the Yankee dryer is operated at about 800 fpm (feet per minute) (about 244 meters per minute). The dry web is formed into roll at a speed of 650 fpm (200 meters per minutes).
The web made according to the above procedure is converted into a three-layer, one-ply toilet tissue paper. The one-ply toilet tissue paper has a basis weight of about 18 pounds per 3000 square feet, and contains about 0.02% of the temporary wet strength resin. Importantly, the resulting one-ply tissue paper is soft , absorbent and has attractive aesthetics suitable for use as toilet tissue.
EXAMPLE 2
A 3% by weight aqueous slurry of NSK is made up in a conventional re-pulper. The NSK slurry is refined gently and a 2% solution of the permanent wet strength resin (i.e., Kymene® 557H marketed by Hercules Incoφorated of Wilmington, Delaware) is added to the NSK stock pipe at a rate of 0.02% by weight of the dry fibers followed by the addition of a 1% solution of the dry strength resin (i.e., CMC from Hercules Incoφorated of Wilmington, Delaware) is added to the NSK stock before the fan pump at a rate of 0.08% by weight of the dry fibers. The NSK slurry is diluted to about 0.2% consistency at the fan pump. Second, a 3% by weight aqueous slurry of Eucalyptus fibers is made up in a conventional re-pulper. The Eucalyptus slurry is diluted to about 0.2% consistency at the fan pump.
Two individually treated furnish streams (stream 1 = 100% NSK / stream 2 = 100%) Eucalyptus) are kept separate through the headbox and deposited onto a Fourdrinier wire to form a two layer embryonic web containing equal portions of NSK and Eucalyptus. Dewatering occurs through the Fourdrinier wire and is assisted by a deflector and vacuum boxes. The Fourdrinier wire is of a 5-shed, satin weave configuration having 1 10 machine-direction and 95 cross-machine-direction monofilaments per inch, respectively.
The embryonic wet web is transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to a web support apparatus having a foraminous background element 220 having web patterning layer 250. The embryonic wet web is transferred from the Fourdrinier wire, at a fiber consistency of about 8% at the point of transfer, to the web support apparatus 200 having a foraminous background element 220 and a web patterning layer 250 made of photosensitive resin. A pressure differential of about 16 inches of mercury is used to transfer the web to the web support apparatus 200. The foraminous background element is of a 3 -shed, satin weave configuration having 79 machine-direction and 67 cross-machine-direction monofilaments per inch, the machine direction filaments having a diameter of about 0.18 mm and the cross-machine direction filaments having a diameter of about 0.21 mm. Such a foraminous background element is manufactured by Appleton Wire Company, Appleton, Wisconsin. The web patterning layer 250 has web contacting top surface 60 having a projected area which is between about 10 and about 12 percent of the projected area of the apparatus 200. The difference in elevation 262 is about .010 inch (.254 mm). The web patterning layer comprises discrete web patterning elements as shown in Figure 5. The web support apparatus 200 has an air permeability of about 500 scfm. The multi-elevation web is formed at the vacuum transferred point. Further de¬ watering is accomplished by vacuum assisted drainage and by though air drying, as represented by devices 600, 620, and 650. until the web has a fiber consistency of about 65%. Transfer to the Yankee dryer is effected with a soft pressure roll 900 having a surface hardness of about 40 P&J. The web is then adhered to the surface 675 of the a Yankee dryer drum 680 by pressing the soft pressure roll to the Yankee dryer surface at a compression pressure of at least about 40 psi. A Polyvinyl alcohol based creping adhesive is used to enhance the adhesion of the web to the surface 675. The web consistency is increased to between about 90% and 100%) before dry creping the web from the surface 675 with a doctor blade. The doctor blade has a bevel angle of about 25 degrees and is positioned with respect to the Yankee dryer to provide an impact angle of about 81 degrees; the Yankee dryer is operated at about 800 fpm (feet per minute) (about 244 meters per minute). The dry web is formed into roll at a speed of 650 fpm (200 meters per minutes).
The web is converted to provide a two-layer, two-ply facial tissue paper. Each ply has a basis weight of about 10 pounds per 3000 square feet and contains about 0.02% of the permanent wet strength resin and about 0.08% of the dry strength resin. The resulting two-ply tissue paper is soft , absorbent and has attractive aesthetics suitable for use as facial tissues.

Claims

What is Claimed is:
1. A paper structure comprising: a first region disposed at a first elevation and having a first thickness; a second region disposed at a second elevation different from the first elevation, the second region having a second thickness; a third region interconnected with the first region, the third region having a third thickness; and the third region having a third elevation; and a fourth transition region having a fourth thickness, the transition region interconnecting the second region with at least one of the first and third regions; characterized in that the fourth thickness is greater than the first thickness, the fourth thickness is greater than the second thickness, and characterized in that the third thickness is greater than the first thickness.
2. The paper structure of Claim 1 characterized in that the first elevation is different from the third elevation.
3. The paper structure of Claim 2 characterized in that the first region comprises a plurality of discrete protuberances dispersed throughout the third region.
4. The paper structure of Claims 1, 2, and 3 characterized in that the difference between the first elevation and the second elevation is at least about 0.05 millimeter.
5. The paper structure of Claims 1, 2, 3, and 4 characterized in that the fourth thickness is at least 1.5 times the second thickness.
6. The paper structure of Claims 1, 2, 3, 4, and 5 characterized in that the fourth thickness is at least 1.5 times the first thickness.
7. The paper structure of Claims 1, 2, 3, 4, 5, and 6 characterized in that the paper structure has a background matrix comprising at least a portion of each of the first and third regions, and characterized in that the second region inscribes a circular portion of the background matrix having a projected area of at least 50 square- millimeters.
8. The paper structure of Claims 1, 2, 3, 4, 5, 6, and 7 characterized in that the paper structure is foreshortened at two different elevations.
9. The paper structure of Claims 1, 2, 3, 4, 5, 6, 7, and 8 characterized in that at least a portion of the second region is bordered by a variable frequency creping region.
10. A paper structure comprising: a first region; a second patterned region; a background matrix comprising at least a portion of the first region and a third region, the first region comprising a plurality of discrete protuberances dispersed throughout the third region in the background matrix; a transition region interconnecting the second region with the background matrix; and a variable creping frequency region, the variable creping frequency region bordering at least a portion of the second patterned region, and the variable creping frequency region extending from a border of the patterned second region and terminating in the background matrix.
11. An apparatus for use in making a web of papermaking fibers, the apparatus comprising: a foraminous background element having a first web contacting surface at a first elevation; and a web patterning layer joined to the foraminous background element, the layer extending above the first web contacting surface of the foraminous background element to form a second web contacting surface at a second elevation different from the first elevation; characterized in that the web patterning layer inscribes a plurality of circular portions of the foraminous background element, each circular portion having a projected area of at least 50 square millimeters.
12. The apparatus of Claim 11 characterized in that each circular portion has a projected area of at least 100 square millimeters.
13. The apparatus of Claims 1 1 and 12 characterized in that the projected area of the second web contacting surface is between about 5 and about 20 percent of the projected area of the apparatus.
14. The apparatus of Claim 13 characterized in that the projected area of the second web contacting surface is between about 5 and about 14 percent of the projected area of the apparatus.
15. The apparatus of Claims 1 1, 12, 13, and 14 characterized in that the foraminous background element comprises woven filaments; and characterized in that the first web contacting surface of the foraminous background element comprises discrete web contacting knuckles at the cross-over points of the woven filaments.
16. The apparatus of Claims 11, 12, 13, 14, and 15 characterized in that the difference between the first elevation and the second elevation is at least about 0.05 millimeter.
17. The apparatus of Claims 11, 12, 13, 14, 15, and 16 characterized in that the web patterning layer comprises discrete web patterning elements.
18. The apparatus of Claims 11, 12, 13, 14, 15, 16, and 17 characterized in that the web patterning layer comprises a continuous network second web contacting surface.
19. A method of forming a paper structure comprising the steps of: providing a wet web of paper making fibers; deflecting the web in a first deflection step to provide a non-monoplanar web having a first uncompacted web region, and a second uncompacted web region having an elevation different from the elevation of the first uncompacted web region while the web has a consistency of between about 8 and about 30 percent; deflecting the first uncompacted web region relative to the second uncompacted web region in a second deflection step to temporarily reduce the ' difference in elevation between the first uncompacted web region and the second uncompacted web region; compacting a predetermined portion of the first uncompacted web region at a web consistency of between about 40 to about 80 percent to provide a first compacted region and a third uncompacted region; compacting at least a portion of the second uncompacted web region at a web consistency of between about 40 to about 80 percent to form a second compacted web region; and restoring at least some of the difference in elevation lost in the first deflection step to provide the first compacted region at an elevation different from the elevation of the second compacted region.
20. The method of Claim 19 further comprising the step of foreshortening the web after compacting the web.
21. The method of Claim 20 comprising the step of imparting a variable frequency crepe pattern to a portion of the web bordering at least a portion of the second compacted web region.
22. The method of Claims 19, 20, and 21 characterized in that the step of compacting the first uncompacted web region comprises forming a first compacted web region comprising a plurality of discrete compacted protuberances dispersed throughout the third uncompacted region.
23. The method of Claims 17, 18, 19, 20, 21, and 22 characterized in that the step of deflecting the web in the first deflection step comprises providing a differential fluid pressure across the thickness of the web.
24. A method of forming a paper structure comprising the steps of: providing an uncompacted, generally monoplanar web of paper making fibers; providing a web support apparatus comprising a foraminous background element having a first web contacting surface and a web patterning layer joined to the foraminous background element, the web patterning layer extending from the first web contacting surface to form a second web contacting surface at an elevation different from the elevation of the first web contacting surface, and the web patterning layer inscribing a plurality of circular portions of the foraminous background element, each of the inscribed circular portions of the foraminous background element having a projected area of at least 50 square millimeters; supporting the web on the web support apparatus; deflecting a portion of the web to form a non-monoplanar web having a first uncompacted web region supported on the first web contacting surface at an elevation different from an elevation of a second uncompacted web region supported on the second web contacting surface while the web has consistency of between about 8 and about 30 percent; providing a compaction surface; positioning the web intermediate the web support apparatus and the compaction surface; deflecting the first web contacting surface relative to the second web contacting surface in a second deflection step to reduce the difference in elevation between the first uncompacted web region and the second uncompacted web region; compacting a predetermined portion of the first uncompacted web region between the first web contacting surface and the compaction surface to form a first compacted region comprising a plurality of discrete compacted protuberances dispersed throughout a relatively uncompacted region; compacting at least a portion of the second uncompacted web region between the second web contacting surface and the compaction surface to form a second compacted region; drying the web to a consistency of at least about 90 percent; and creping the web from the compaction surface.
PCT/US1995/007786 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same WO1996000814A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU29047/95A AU705551B2 (en) 1994-06-29 1995-06-19 Multi-region paper structure and apparatus and process for making the same
EP95924615A EP0801698B1 (en) 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same
KR1019960707544A KR100198376B1 (en) 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same
CA002192320A CA2192320C (en) 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same
JP8503277A JPH10502422A (en) 1994-06-29 1995-06-19 Multi-area paper structure, manufacturing apparatus and manufacturing method thereof
MX9606545A MX9606545A (en) 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same.
DE69512683T DE69512683T2 (en) 1994-06-29 1995-06-19 FIBER STRUCTURE WITH SEVERAL ZONES AND DEVICE AND METHOD FOR THEIR PRODUCTION
BR9508061A BR9508061A (en) 1994-06-29 1995-06-19 Apparatus paper structure for use in the production of a paper-making fiber texture and process for forming a paper structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/268,133 US5549790A (en) 1994-06-29 1994-06-29 Multi-region paper structures having a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same
US08/268,133 1994-06-29

Publications (1)

Publication Number Publication Date
WO1996000814A1 true WO1996000814A1 (en) 1996-01-11

Family

ID=23021620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/007786 WO1996000814A1 (en) 1994-06-29 1995-06-19 Multi-region paper structures and apparatus and process for making the same

Country Status (12)

Country Link
US (3) US5549790A (en)
EP (1) EP0801698B1 (en)
JP (1) JPH10502422A (en)
KR (1) KR100198376B1 (en)
CN (1) CN1151772A (en)
AU (1) AU705551B2 (en)
BR (1) BR9508061A (en)
CA (1) CA2192320C (en)
DE (1) DE69512683T2 (en)
MX (1) MX9606545A (en)
TW (1) TW283682B (en)
WO (1) WO1996000814A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000605A1 (en) * 1996-06-28 1998-01-08 The Procter & Gamble Company Method of making wet pressed tissue paper with felts having selected permeabilities
US5795440A (en) * 1993-12-20 1998-08-18 The Procter & Gamble Company Method of making wet pressed tissue paper
US5814190A (en) * 1994-06-29 1998-09-29 The Procter & Gamble Company Method for making paper web having both bulk and smoothness
US5830316A (en) * 1997-05-16 1998-11-03 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
WO1998055690A1 (en) * 1997-06-06 1998-12-10 The Procter & Gamble Company Method of making paper web using flexible sheet of material
US6103062A (en) * 1998-10-01 2000-08-15 The Procter & Gamble Company Method of wet pressing tissue paper
US6146496A (en) * 1996-11-14 2000-11-14 The Procter & Gamble Company Drying for patterned paper webs
US6200419B1 (en) 1994-06-29 2001-03-13 The Procter & Gamble Company Paper web having both bulk and smoothness
CN1091821C (en) * 1997-06-06 2002-10-02 普罗克特和甘保尔公司 Differential density cellulosic structure and process for making same
US7624765B2 (en) * 2004-12-23 2009-12-01 Kimberly-Clark Worldwide, Inc. Woven throughdrying fabric having highlighted design elements
WO2010135270A1 (en) * 2009-05-19 2010-11-25 The Procter & Gamble Company Embossed fibrous structures and methods for making same
US7871498B2 (en) 2004-11-03 2011-01-18 Kimberly-Clark Worldwide, Inc. Fabrics for forming decorative tissue sheets
US8753737B2 (en) 2009-05-19 2014-06-17 The Procter & Gamble Company Multi-ply fibrous structures and methods for making same
WO2015149847A1 (en) * 2014-04-02 2015-10-08 Sca Hygiene Products Ab Absorbent paper product and method for manufacturing such absorbent paper product
TWI588314B (en) * 2011-09-30 2017-06-21 優你 嬌美股份有限公司 Wet tissue with non-woven and its manufacturing method, and wet tissue
US11162225B2 (en) 2013-12-19 2021-11-02 The Procter & Gamble Company Sanitary tissue products
US11268244B2 (en) 2013-12-19 2022-03-08 The Procter & Gamble Company Sanitary tissue products

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423186B1 (en) 1993-12-20 2002-07-23 The Procter & Gamble Company Apparatus and process for making structured paper and structured paper produced thereby
FR2728152B1 (en) * 1994-12-16 1997-01-24 Kaysersberg Sa COMBINED EMBOSSED ABSORBENT PAPER
AU3670797A (en) * 1996-09-06 1998-03-26 Kimberly-Clark Worldwide, Inc. Process for producing high-bulk tissue webs using nonwoven substrates
US6277467B1 (en) * 1996-12-23 2001-08-21 Fort James Corporation Soft, bulky single-ply tissue having a serpentine configuration and low sidedness and method for its manufacture
US6033523A (en) * 1997-03-31 2000-03-07 Fort James Corporation Method of making soft bulky single ply tissue
DE69814777T2 (en) 1997-03-31 2004-03-18 Fort James Corp. SOFT VOLUMINOUS LAYERED TISSUE PAPER
US6139686A (en) * 1997-06-06 2000-10-31 The Procter & Gamble Company Process and apparatus for making foreshortened cellulsic structure
US5914177A (en) * 1997-08-11 1999-06-22 The Procter & Gamble Company Wipes having a substrate with a discontinuous pattern of a high internal phase inverse emulsion disposed thereon and process of making
SE511143C2 (en) 1997-12-30 1999-08-09 Sca Hygiene Paper Ab Method of making a paper having a three-dimensional pattern
US6039839A (en) * 1998-02-03 2000-03-21 The Procter & Gamble Company Method for making paper structures having a decorative pattern
ID26515A (en) 1998-03-17 2001-01-11 Procter & Gamble EQUIPMENT AND PROCESS FOR MAKING STRUCTURED PAPER AND STRUCTURED PAPER PRODUCED.
US6547924B2 (en) 1998-03-20 2003-04-15 Metso Paper Karlstad Ab Paper machine for and method of manufacturing textured soft paper
US6103067A (en) 1998-04-07 2000-08-15 The Procter & Gamble Company Papermaking belt providing improved drying efficiency for cellulosic fibrous structures
CA2329806C (en) 1998-05-18 2006-08-01 The Procter & Gamble Company Process for increasing bulk of foreshortened fibrous web
US7265067B1 (en) 1998-06-19 2007-09-04 The Procter & Gamble Company Apparatus for making structured paper
DE69910578T2 (en) 1998-07-01 2004-06-24 Institute Of Paper Science And Technology, Inc. METHOD FOR REMOVING WATER FROM FIBROUS CARBINS WITH OSCILLATING PRELIMINARY FLOW REVERSE
US6787213B1 (en) 1998-12-30 2004-09-07 Kimberly-Clark Worldwide, Inc. Smooth bulky creped paper product
US6265052B1 (en) 1999-02-09 2001-07-24 The Procter & Gamble Company Tissue paper
US6270878B1 (en) 1999-05-27 2001-08-07 The Procter & Gamble Company Wipes having a substrate with a discontinous pattern of a high internal phase inverse emulsion disposed thereon and process of making
US6117270A (en) * 1999-07-01 2000-09-12 The Procter & Gamble Company Papermaking belts having a patterned framework with synclines therein and paper made therewith
US6158144A (en) * 1999-07-14 2000-12-12 The Procter & Gamble Company Process for capillary dewatering of foam materials and foam materials produced thereby
US6447642B1 (en) * 1999-09-07 2002-09-10 The Procter & Gamble Company Papermaking apparatus and process for removing water from a cellulosic web
US6733626B2 (en) * 2001-12-21 2004-05-11 Georgia Pacific Corporation Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US6602387B1 (en) 1999-11-26 2003-08-05 The Procter & Gamble Company Thick and smooth multi-ply tissue
KR100722893B1 (en) * 1999-12-29 2007-05-30 킴벌리-클라크 월드와이드, 인크. A Through-air-drying Fabric used on a Papermaking Machine for Molding a Pattern onto a Tissue Sheet and a Method of Making a Tissue Product
US6610619B2 (en) * 1999-12-29 2003-08-26 Kimberly-Clark Worldwide, Inc. Patterned felts for bulk and visual aesthetic development of a tissue basesheet
US6602577B1 (en) 2000-10-03 2003-08-05 The Procter & Gamble Company Embossed cellulosic fibrous structure
US6576091B1 (en) 2000-10-24 2003-06-10 The Procter & Gamble Company Multi-layer deflection member and process for making same
US6420100B1 (en) 2000-10-24 2002-07-16 The Procter & Gamble Company Process for making deflection member using three-dimensional mask
US6576090B1 (en) 2000-10-24 2003-06-10 The Procter & Gamble Company Deflection member having suspended portions and process for making same
US6743571B1 (en) * 2000-10-24 2004-06-01 The Procter & Gamble Company Mask for differential curing and process for making same
US6660129B1 (en) * 2000-10-24 2003-12-09 The Procter & Gamble Company Fibrous structure having increased surface area
US6610173B1 (en) 2000-11-03 2003-08-26 Kimberly-Clark Worldwide, Inc. Three-dimensional tissue and methods for making the same
US6602410B1 (en) 2000-11-14 2003-08-05 The Procter & Gamble Comapny Water purifying kits
US20030042195A1 (en) * 2001-09-04 2003-03-06 Lois Jean Forde-Kohler Multi-ply filter
US6564473B2 (en) 2001-10-22 2003-05-20 The Procter & Gamble Company High efficiency heat transfer using asymmetric impinging jet
US6790314B2 (en) 2001-11-02 2004-09-14 Kimberly-Clark Worldwide, Inc. Fabric for use in the manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements and method thereof
US6821385B2 (en) 2001-11-02 2004-11-23 Kimberly-Clark Worldwide, Inc. Method of manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements using fabrics comprising nonwoven elements
US6787000B2 (en) 2001-11-02 2004-09-07 Kimberly-Clark Worldwide, Inc. Fabric comprising nonwoven elements for use in the manufacture of tissue products having visually discernable background texture regions bordered by curvilinear decorative elements and method thereof
US6746570B2 (en) 2001-11-02 2004-06-08 Kimberly-Clark Worldwide, Inc. Absorbent tissue products having visually discernable background texture
US6749719B2 (en) 2001-11-02 2004-06-15 Kimberly-Clark Worldwide, Inc. Method of manufacture tissue products having visually discernable background texture regions bordered by curvilinear decorative elements
CA2414668C (en) * 2001-12-21 2011-10-25 Fort James Corporation An apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
US7442278B2 (en) * 2002-10-07 2008-10-28 Georgia-Pacific Consumer Products Lp Fabric crepe and in fabric drying process for producing absorbent sheet
AU2003279792A1 (en) * 2002-10-07 2004-05-04 Fort James Corporation Fabric crepe process for making absorbent sheet
US7588660B2 (en) * 2002-10-07 2009-09-15 Georgia-Pacific Consumer Products Lp Wet-pressed tissue and towel products with elevated CD stretch and low tensile ratios made with a high solids fabric crepe process
US7494563B2 (en) 2002-10-07 2009-02-24 Georgia-Pacific Consumer Products Lp Fabric creped absorbent sheet with variable local basis weight
US7662257B2 (en) 2005-04-21 2010-02-16 Georgia-Pacific Consumer Products Llc Multi-ply paper towel with absorbent core
US7789995B2 (en) 2002-10-07 2010-09-07 Georgia-Pacific Consumer Products, LP Fabric crepe/draw process for producing absorbent sheet
US8394236B2 (en) 2002-10-07 2013-03-12 Georgia-Pacific Consumer Products Lp Absorbent sheet of cellulosic fibers
SE0203078D0 (en) * 2002-10-18 2002-10-18 Sca Hygiene Prod Ab Absorbent tissue layer
US20040079500A1 (en) * 2002-10-18 2004-04-29 Sca Hygiene Products Ab Absorbent tissue layer
KR100925729B1 (en) * 2002-12-12 2009-11-11 엘지전자 주식회사 Power on/off estavlishment method and his alram for digital tv
US7067038B2 (en) * 2003-02-06 2006-06-27 The Procter & Gamble Company Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
US7052580B2 (en) * 2003-02-06 2006-05-30 The Procter & Gamble Company Unitary fibrous structure comprising cellulosic and synthetic fibers
US7387706B2 (en) * 2004-01-30 2008-06-17 Voith Paper Patent Gmbh Process of material web formation on a structured fabric in a paper machine
US7297226B2 (en) 2004-02-11 2007-11-20 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US8293072B2 (en) 2009-01-28 2012-10-23 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight absorbent sheet prepared with perforated polymeric belt
US8178025B2 (en) 2004-12-03 2012-05-15 Georgia-Pacific Consumer Products Lp Embossing system and product made thereby with both perforate bosses in the cross machine direction and a macro pattern
US20060157210A1 (en) * 2004-12-23 2006-07-20 Kimberly-Clark Worldwide, Inc. Method of making tissue sheets with textured woven fabrics having highlighted design elements
FR2885915B1 (en) 2005-05-20 2007-08-03 Rieter Perfojet Sa DRUM FOR MANUFACTURING MACHINE OF A NON-WOVEN PATTERN AND NON-WOVEN FABRIC
US7585388B2 (en) 2005-06-24 2009-09-08 Georgia-Pacific Consumer Products Lp Fabric-creped sheet for dispensers
US7597777B2 (en) 2005-09-09 2009-10-06 The Procter & Gamble Company Process for high engagement embossing on substrate having non-uniform stretch characteristics
US8540846B2 (en) 2009-01-28 2013-09-24 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight multi-ply sheet with cellulose microfiber prepared with perforated polymeric belt
US7914649B2 (en) * 2006-10-31 2011-03-29 The Procter & Gamble Company Papermaking belt for making multi-elevation paper structures
US7799411B2 (en) * 2006-10-31 2010-09-21 The Procter & Gamble Company Absorbent paper product having non-embossed surface features
US20080099170A1 (en) * 2006-10-31 2008-05-01 The Procter & Gamble Company Process of making wet-microcontracted paper
US20080200320A1 (en) * 2007-02-15 2008-08-21 Tyler Andrew Buckner Paper converting roll with an elastomeric roll cover
WO2009039159A2 (en) * 2007-09-17 2009-03-26 3D Systems, Inc. Region-based supports for parts produced by solid freeform fabrication
US20090136722A1 (en) * 2007-11-26 2009-05-28 Dinah Achola Nyangiro Wet formed fibrous structure product
US7914648B2 (en) * 2007-12-18 2011-03-29 The Procter & Gamble Company Device for web control having a plurality of surface features
US20100112320A1 (en) * 2008-05-07 2010-05-06 Ward William Ostendorf Paper product with visual signaling upon use
US20090280297A1 (en) * 2008-05-07 2009-11-12 Rebecca Howland Spitzer Paper product with visual signaling upon use
US20100119779A1 (en) * 2008-05-07 2010-05-13 Ward William Ostendorf Paper product with visual signaling upon use
CA2735867C (en) 2008-09-16 2017-12-05 Dixie Consumer Products Llc Food wrap basesheet with regenerated cellulose microfiber
USD636608S1 (en) 2009-11-09 2011-04-26 The Procter & Gamble Company Paper product
EP2539507A1 (en) 2010-02-26 2013-01-02 The Procter & Gamble Company Fibrous structure product with high wet bulk recovery
US8665493B2 (en) 2011-03-04 2014-03-04 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8616126B2 (en) 2011-03-04 2013-12-31 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US8943958B2 (en) 2011-03-04 2015-02-03 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US8839717B2 (en) 2011-03-04 2014-09-23 The Procter & Gamble Company Unique process for printing multiple color indicia upon web substrates
US8758560B2 (en) 2011-03-04 2014-06-24 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8927093B2 (en) 2011-03-04 2015-01-06 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8962124B2 (en) 2011-03-04 2015-02-24 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8927092B2 (en) 2011-03-04 2015-01-06 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8943957B2 (en) 2011-03-04 2015-02-03 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US8943959B2 (en) 2011-03-04 2015-02-03 The Procter & Gamble Company Unique process for printing multiple color indicia upon web substrates
US8943960B2 (en) 2011-03-04 2015-02-03 The Procter & Gamble Company Unique process for printing multiple color indicia upon web substrates
US8916261B2 (en) 2011-03-04 2014-12-23 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8839716B2 (en) 2011-03-04 2014-09-23 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US8916260B2 (en) 2011-03-04 2014-12-23 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8985013B2 (en) 2011-03-04 2015-03-24 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US8920911B2 (en) 2011-03-04 2014-12-30 The Procter & Gamble Company Web substrates having wide color gamut indicia printed thereon
US8833250B2 (en) 2011-03-04 2014-09-16 The Procter & Gamble Company Apparatus for applying indicia having a large color gamut on web substrates
US9458574B2 (en) 2012-02-10 2016-10-04 The Procter & Gamble Company Fibrous structures
CN102715862A (en) * 2012-07-05 2012-10-10 金红叶纸业集团有限公司 Paper for daily use
US8815054B2 (en) 2012-10-05 2014-08-26 The Procter & Gamble Company Methods for making fibrous paper structures utilizing waterborne shape memory polymers
US9085130B2 (en) 2013-09-27 2015-07-21 The Procter & Gamble Company Optimized internally-fed high-speed rotary printing device
US9303363B2 (en) 2013-11-14 2016-04-05 Georgia-Pacific Consumer Products Lp Soft, absorbent sheets having high absorbency and high caliper, and methods of making soft, absorbent sheets
US10132042B2 (en) 2015-03-10 2018-11-20 The Procter & Gamble Company Fibrous structures
AU2015320307A1 (en) 2014-09-25 2017-03-16 Gpcp Ip Holdings Llc Methods of making paper products using a multilayer creping belt, and paper products made using a multilayer creping belt
EP3023084B1 (en) 2014-11-18 2020-06-17 The Procter and Gamble Company Absorbent article and distribution material
US10517775B2 (en) 2014-11-18 2019-12-31 The Procter & Gamble Company Absorbent articles having distribution materials
US10765570B2 (en) 2014-11-18 2020-09-08 The Procter & Gamble Company Absorbent articles having distribution materials
US10144016B2 (en) 2015-10-30 2018-12-04 The Procter & Gamble Company Apparatus for non-contact printing of actives onto web materials and articles
WO2017156203A1 (en) 2016-03-11 2017-09-14 The Procter & Gamble Company A three-dimensional substrate comprising a tissue layer
EP3426212B1 (en) 2016-03-11 2020-10-21 The Procter and Gamble Company Compositioned, textured nonwoven webs
AU2017262480B2 (en) 2016-05-09 2022-06-16 Kimberly-Clark Worldwide, Inc. Textured subtractive patterning
AU2017262479B2 (en) * 2016-05-09 2021-08-19 Kimberly-Clark Worldwide, Inc. Patterned tissue product
CA3036897C (en) 2016-10-25 2021-11-16 The Procter & Gamble Company Fibrous structures
WO2018081192A1 (en) * 2016-10-25 2018-05-03 The Procter & Gamble Company Creped fibrous structures
CN106758477A (en) * 2017-01-21 2017-05-31 白城福佳科技有限公司 The method that paper moulds line
EP3829510B1 (en) 2018-08-03 2023-12-27 The Procter & Gamble Company Webs with compositions thereon
EP3829509B1 (en) 2018-08-03 2023-12-13 The Procter & Gamble Company Webs with compositions applied thereto
CA3064406C (en) 2018-12-10 2023-03-07 The Procter & Gamble Company Fibrous structures
USD897692S1 (en) * 2019-02-07 2020-10-06 Gpcp Ip Holdings Llc Paper product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485360A2 (en) * 1987-02-20 1992-05-13 James River Corporation Fibrous tape base material
WO1993000475A1 (en) * 1991-06-28 1993-01-07 The Procter & Gamble Company Cellulosic fibrous structures having at least three regions distinguished by intensive properties, an apparatus for and a method of making such cellulosic fibrous structures
US5275700A (en) * 1990-06-29 1994-01-04 The Procter & Gamble Company Papermaking belt and method of making the same using a deformable casting surface

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3163575A (en) * 1962-02-26 1964-12-29 Kimberly Clark Co Doctor blade for differentially creping sheets from a drum
US3300368A (en) * 1964-12-11 1967-01-24 Crown Zellerbach Corp Creped sheet materials and the process of producing the same
US3414459A (en) * 1965-02-01 1968-12-03 Procter & Gamble Compressible laminated paper structure
US3537954A (en) * 1967-05-08 1970-11-03 Beloit Corp Papermaking machine
US3867225A (en) * 1969-01-23 1975-02-18 Paper Converting Machine Co Method for producing laminated embossed webs
US3556907A (en) * 1969-01-23 1971-01-19 Paper Converting Machine Co Machine for producing laminated embossed webs
US3994771A (en) * 1975-05-30 1976-11-30 The Procter & Gamble Company Process for forming a layered paper web having improved bulk, tactile impression and absorbency and paper thereof
US4139410A (en) * 1976-06-09 1979-02-13 Olli Tapio Method of dewatering and drying in a Yankee machine
FI770610A (en) * 1977-02-24 1978-08-25 Valmet Oy TISSUEPAPPERSMASKIN
US4309246A (en) * 1977-06-20 1982-01-05 Crown Zellerbach Corporation Papermaking apparatus and method
AT351354B (en) * 1978-02-10 1979-07-25 Andritz Ag Maschf DEVICE FOR DEWATERING OF FIBER WALLS
US4191609A (en) * 1979-03-09 1980-03-04 The Procter & Gamble Company Soft absorbent imprinted paper sheet and method of manufacture thereof
US4239065A (en) * 1979-03-09 1980-12-16 The Procter & Gamble Company Papermachine clothing having a surface comprising a bilaterally staggered array of wicker-basket-like cavities
SE429769B (en) * 1980-04-01 1983-09-26 Nordiskafilt Ab ARKAGGREGT AND WAY TO MANUFACTURE THE SAME
US4533437A (en) * 1982-11-16 1985-08-06 Scott Paper Company Papermaking machine
US4514345A (en) * 1983-08-23 1985-04-30 The Procter & Gamble Company Method of making a foraminous member
US4637859A (en) * 1983-08-23 1987-01-20 The Procter & Gamble Company Tissue paper
US4528239A (en) * 1983-08-23 1985-07-09 The Procter & Gamble Company Deflection member
US4849054A (en) * 1985-12-04 1989-07-18 James River-Norwalk, Inc. High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same
US4740409A (en) * 1987-03-31 1988-04-26 Lefkowitz Leonard R Nonwoven fabric and method of manufacture
US5019211A (en) * 1987-12-09 1991-05-28 Kimberly-Clark Corporation Tissue webs containing curled temperature-sensitive bicomponent synthetic fibers
US5062924A (en) * 1988-04-08 1991-11-05 Beloit Corporation Blanket for an extended nip press with anisotropic woven base layers
US4973383A (en) * 1989-08-11 1990-11-27 Beloit Corporation Bearing blanket for an extended nip press
GB2241915A (en) * 1990-03-17 1991-09-18 Scapa Group Plc Production of perforate structures.
US5115544A (en) * 1990-04-03 1992-05-26 Albany International Corp. Non-wovens manufacturing process
US5126015A (en) * 1990-12-12 1992-06-30 James River Corporation Of Virginia Method for simultaneously drying and imprinting moist fibrous webs
GB9107166D0 (en) * 1991-04-05 1991-05-22 Scapa Group Plc Papermachine clothing
CA2069193C (en) * 1991-06-19 1996-01-09 David M. Rasch Tissue paper having large scale aesthetically discernible patterns and apparatus for making the same
US5245025A (en) * 1991-06-28 1993-09-14 The Procter & Gamble Company Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby
ES2122038T3 (en) * 1992-08-26 1998-12-16 Procter & Gamble BELT FOR PAPER MANUFACTURING WITH SEMI-CONTINUOUS CONFIGURATION AND PAPER MADE ON IT.
AU4825593A (en) * 1992-09-16 1994-04-12 J.R. Crompton Limited Improvements to the patterning of tissue paper
US5336373A (en) * 1992-12-29 1994-08-09 Scott Paper Company Method for making a strong, bulky, absorbent paper sheet using restrained can drying
CA2096978A1 (en) * 1993-03-18 1994-09-19 Michael A. Hermans Method for making paper sheets having high bulk and absorbency
KR960006530B1 (en) * 1993-08-30 1996-05-17 대우전자주식회사 Message treating apparatus & method for tv

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485360A2 (en) * 1987-02-20 1992-05-13 James River Corporation Fibrous tape base material
US5275700A (en) * 1990-06-29 1994-01-04 The Procter & Gamble Company Papermaking belt and method of making the same using a deformable casting surface
WO1993000475A1 (en) * 1991-06-28 1993-01-07 The Procter & Gamble Company Cellulosic fibrous structures having at least three regions distinguished by intensive properties, an apparatus for and a method of making such cellulosic fibrous structures

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776307A (en) * 1993-12-20 1998-07-07 The Procter & Gamble Company Method of making wet pressed tissue paper with felts having selected permeabilities
US5795440A (en) * 1993-12-20 1998-08-18 The Procter & Gamble Company Method of making wet pressed tissue paper
US5814190A (en) * 1994-06-29 1998-09-29 The Procter & Gamble Company Method for making paper web having both bulk and smoothness
US6200419B1 (en) 1994-06-29 2001-03-13 The Procter & Gamble Company Paper web having both bulk and smoothness
WO1998000605A1 (en) * 1996-06-28 1998-01-08 The Procter & Gamble Company Method of making wet pressed tissue paper with felts having selected permeabilities
US6146496A (en) * 1996-11-14 2000-11-14 The Procter & Gamble Company Drying for patterned paper webs
US5830316A (en) * 1997-05-16 1998-11-03 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
US6051105A (en) * 1997-05-16 2000-04-18 The Procter & Gamble Company Method of wet pressing tissue paper with three felt layers
WO1998055690A1 (en) * 1997-06-06 1998-12-10 The Procter & Gamble Company Method of making paper web using flexible sheet of material
US5893965A (en) * 1997-06-06 1999-04-13 The Procter & Gamble Company Method of making paper web using flexible sheet of material
CN1091821C (en) * 1997-06-06 2002-10-02 普罗克特和甘保尔公司 Differential density cellulosic structure and process for making same
US6103062A (en) * 1998-10-01 2000-08-15 The Procter & Gamble Company Method of wet pressing tissue paper
US7871498B2 (en) 2004-11-03 2011-01-18 Kimberly-Clark Worldwide, Inc. Fabrics for forming decorative tissue sheets
US7871492B2 (en) 2004-11-03 2011-01-18 Kimberly-Clark Worldwide, Inc. Decorative tissue sheets
US7988823B2 (en) 2004-12-23 2011-08-02 Kimberly-Clark Worldwide, Inc. Method of making textured tissue sheets having highlighted designs
US7624765B2 (en) * 2004-12-23 2009-12-01 Kimberly-Clark Worldwide, Inc. Woven throughdrying fabric having highlighted design elements
US9243368B2 (en) 2009-05-19 2016-01-26 The Procter & Gamble Company Embossed fibrous structures and methods for making same
US8753737B2 (en) 2009-05-19 2014-06-17 The Procter & Gamble Company Multi-ply fibrous structures and methods for making same
WO2010135270A1 (en) * 2009-05-19 2010-11-25 The Procter & Gamble Company Embossed fibrous structures and methods for making same
US9701101B2 (en) 2009-05-19 2017-07-11 The Procter & Gamble Company Multi-ply fibrous structures and methods for making same
US9937694B2 (en) 2009-05-19 2018-04-10 The Procter & Gamble Company Method for making multi-ply fibrous structures
TWI588314B (en) * 2011-09-30 2017-06-21 優你 嬌美股份有限公司 Wet tissue with non-woven and its manufacturing method, and wet tissue
US11162225B2 (en) 2013-12-19 2021-11-02 The Procter & Gamble Company Sanitary tissue products
US11268244B2 (en) 2013-12-19 2022-03-08 The Procter & Gamble Company Sanitary tissue products
US11767641B2 (en) 2013-12-19 2023-09-26 The Procter & Gamble Company Sanitary tissue products
WO2015149847A1 (en) * 2014-04-02 2015-10-08 Sca Hygiene Products Ab Absorbent paper product and method for manufacturing such absorbent paper product
RU2659278C2 (en) * 2014-04-02 2018-06-29 Ска Хайджин Продактс Аб Absorbing paper product and the method for manufacturing such absorption paper product
US10344432B2 (en) 2014-04-02 2019-07-09 Sca Hygiene Products Ab Absorbent paper product and method for manufacturing such absorbent paper product

Also Published As

Publication number Publication date
MX9606545A (en) 1997-03-29
AU705551B2 (en) 1999-05-27
US7094320B1 (en) 2006-08-22
BR9508061A (en) 1997-11-18
DE69512683T2 (en) 2000-04-27
TW283682B (en) 1996-08-21
US5609725A (en) 1997-03-11
US5549790A (en) 1996-08-27
KR19980058232A (en) 1998-09-25
JPH10502422A (en) 1998-03-03
DE69512683D1 (en) 1999-11-11
EP0801698A1 (en) 1997-10-22
AU2904795A (en) 1996-01-25
CA2192320C (en) 1999-07-20
CA2192320A1 (en) 1996-01-11
CN1151772A (en) 1997-06-11
KR100198376B1 (en) 1999-06-15
EP0801698B1 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US5609725A (en) Multi-region paper structures having a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same
EP0801697B1 (en) Paper structure having at least three regions, and apparatus and process for making the same
EP0767850B1 (en) Web patterning apparatus comprising a felt layer and a photosensitive resin layer and method of forming the apparatus
AU734263B2 (en) Paper web having both bulk and smoothness
CA2271640C (en) Improved drying for patterned paper webs
EP0938610B1 (en) Method of drying a paper web having both bulk and smoothness
CA2271874A1 (en) Paper web having a relatively thinner continuous network region and discrete relatively thicker regions in the plane of the continuous network region
AU729557B2 (en) Multi-region paper structure and apparatus and process for making the same
AU731534B2 (en) Paper structure having at least three regions, and apparatus and process for making the same
AU704258C (en) Paper structure having at least three regions, and apparatus and process for making the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95193843.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU IS JP KG KP KR KZ LK LR LT LV MD MG MN MX NO NZ PL RO RU SG SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2192320

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/1996/006545

Country of ref document: MX

Ref document number: 1995924615

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995924615

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995924615

Country of ref document: EP