WO1995034331A1 - Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis - Google Patents

Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis Download PDF

Info

Publication number
WO1995034331A1
WO1995034331A1 PCT/IB1995/000386 IB9500386W WO9534331A1 WO 1995034331 A1 WO1995034331 A1 WO 1995034331A1 IB 9500386 W IB9500386 W IB 9500386W WO 9534331 A1 WO9534331 A1 WO 9534331A1
Authority
WO
WIPO (PCT)
Prior art keywords
plug according
plug
polymeric material
group
chosen
Prior art date
Application number
PCT/IB1995/000386
Other languages
French (fr)
Inventor
Sylwester Gogolewski
Rheinold Ganz
Original Assignee
Ao-Forschungsinstitut Davos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ao-Forschungsinstitut Davos filed Critical Ao-Forschungsinstitut Davos
Publication of WO1995034331A1 publication Critical patent/WO1995034331A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30723Plugs or restrictors for sealing a cement-receiving space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/02Dextran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • A61F2/3676Distal or diaphyseal parts of shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30075Properties of materials and coating materials swellable, e.g. when wetted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30171Concave polygonal shapes rosette- or star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30205Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30884Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4631Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/005Rosette-shaped, e.g. star-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • This invention relates to a plug for insertion in an opening formed in a medullated bone to act as a cement barrier.
  • implantable devices which can be used for temporary or permanent closing of the medullary cavity of the femur or other long-bones during the replacement with cemented endo- jointprostheses, in particular the femoral component of a total hip prosthesis and are generally called intramedullary plugs or more specifically femoral cavity plugs (FCP) .
  • FCP femoral cavity plugs
  • Total hip replacement is the most performed major therapeutic intervention in orthopaedic surgery.
  • Two types of prostheses are used for the total hip replacement, i.e. cementless and/or cemented types.
  • cement- less prostheses the fixation of the prosthesis to bone should result from the bony attachment/ingrowth to the stem of the prosthesis.
  • cemented prostheses a methyl- methacrylate monomer (cement) is first injected into the reamed medullary cavity of the femur and subsequently the stem of the prosthesis is pressed in. Polymerization of the monomer should provide fixation of the prosthetic device to bone.
  • the drawbac of this surgical procedure is related to the fact that upon injection of the cement, it flows freely down the medullary cavity.
  • FCP femoral cavity plugs
  • the FCP implants were also produced from resorbable polymers such as polylactides, polyglycolide, polydioxanone, polyglycolide-co-trimethylene carbonate, etc. as described in US-A-4 950 295 and US-A-4 344 190.
  • the resorbable FCP do not substantially swell/increase their dimensions in the tissue environment either, they do not adapt to the medullary cavity, and do not satisfactorily protect against the cement downflow.
  • the hollow, thin-wall cone-like structures utilized in some commercial designs of resorbable FCP collapse easily upon insertion into the cavity which additionally reduces their functionality.
  • the present invention as claimed is intended to solve the drawbacks of existing polymeric femoral cavity plugs (FCP) used in the total hip replacement surgery with cemented prostheses by providing an intramedullary plug being made of polymeric material and being self-expanding and adapting its dimensions to the cross-section of the medullary cavity.
  • FCP polymeric femoral cavity plugs
  • the plug according to the invention is capable of increasing its dimensions • in the femoral cavity, adapting its shape to the geometry of the intramedullary canal and in consequence, closing the latter firmly.
  • the self-adapting, expandable FCP plugs of the invention are preferably produced from biocompatible polymers which, due to their chemical and/or physical characteristics are able to increase their dimensions.
  • the process of plug expansion can result from the substantial absorption of water from tissue fluids resulting in the swelling of the polymeric material.
  • This process can also be caused by the change in polymer structure from glassy to rubbery, which takes place when polymer is heated above the glass-transition temperature, e.g. from room to body temperature.
  • the significant changes in elastic modulus that occur in the vicinity of the T q lead to large dimensional changes.
  • the FCP of the invention can be produced from both the nonresorbable/nondegradable and/or resorbable/degradable/ soluble polymers, the resorbable/degradable/soluble polymers are preferred as their resorption, degradation, and/or dissolution in the femoral cavity solves the problem of plug removal during reoperation.
  • the expandable FCP of the invention are prepared from absorbent polymers which when in contact with an aqueous environment take up from 2 to 5000 weight-% of water as compared with their weight in the dry form, and preferably at least 5 weight-% of as related to their weight in the dry form.
  • Typical nonresorbable/nondegradable polymers to be used for the FCP of the invention are for example various polyacrylates such as polyhydroxymethyl methacrylate, polyhydroxyethyl meth- acrylate, and other superabsorbent acrylates, e.g. poly sodium acrylate. They can be used alone and/or in combination with various nonresorbable cellulose derivatives, e.g. hydroxyethyl, hydroxypropyl or cross-linked carboxymethylcellulose etc.
  • hydrophilic polyurethanes e.g. based on isophorone diisocyanate, 4,4'-dicyclohexamethylene diiosocyanate, trans-l,4-cyclohexane diisocyanate, di-meryl diisocyanate, 4,4' -diphenylmethane- diisocyanate with polyols, preferably polyethylene oxide, epoxies, acrylics or various other chain extenders.
  • Polymers of interest are so-called shape-memory thermoplastics e.g. polyurethane-based softenable shape-memory polymers, which can decrease and/or increase the dimensions when heated from room temperature to body temperature.
  • Typical absorbent resorbable/degradable/soluble polymers for the FCP plugs of the invention are various polysaccharides, e.g. cellulose derivatives produced by oxidation of various cellulose materials such as 2,3-dialdehyde cellulose or 6-carboxy cellulose.
  • alginic acid a linear copolymer composed of two monomeric units, D-mannuronic acid and L-guluronic acid. Its calcium salt is bioresorbable, but not soluble in water, while the sodium salt is bioresorbable and water soluble. Mixing of these calcium and sodium alginates produces materials whose dissolution/ resorption rate can easily be controlled.
  • Alginate materials may take up to 200 weight-% of water in the loose form.
  • Alginates in compressed form may take up- to 600 weight-% of water as related to its weight in dry form. This in addition can be enhanced by applying special geometrical shapes to the final plugs.
  • the latter may have the shape of a solid cone with fins on its surface or of a cylinder, preferably with regularly disposed indents on its surface or a shape of rosette.
  • Alginates are non-toxic and used in the food industry as additives to various products. They are also biocompatible and seem to have a marked effect on the healing of wounds. Their medical applications include skin dressings to treat full-thickness skin wounds, haemostats and carriers for encapsulation of islet of Langerhans (the artificial pancreas) . Alginate wool was used
  • tissue reaction to alginates depends on the ratio of mannuronic to guluronic unit content. Therefore alginates with high guluronic content are preferred to be used for the plug of the invention as they do not interfere with the human immune system.
  • the absorbent/shape memory polymers mentioned are examples only and do not aim to exhaust the complete list of biocompatible polymers which can be used for the self-expanding FCP of the invention. The use of other absorbent/shape memory polymers for such applications will be obvious for anyone skilled- in-the-art.
  • the self-expanding FCP of the invention can be in the form of densely packed woven and nonwoven fibrous structures, compact solid elements, or a combination of fibrous and solid components.
  • the FCP are in a compressed form adding to their expandability.
  • the FCP of the invention can have various geometrical shapes as described above and can be introduced in the medullar cavity using a tube-in-the-tube introducer as described in detail in the US-A-4 293 962.
  • the FCP-introducer system was inserted into the reamed medullary cavity of the cadaveric femur freshly rinsed with water.
  • the marks on the wall of the external tube allowed for a controlled placing of the introducer at the required level in the medullary cavity.
  • the internal tube was pressed downwards pushing out the plug into the cavity.
  • the introducer was withdrawn. An instant swelling of the plug led to a firm closing of the canal as it was checked by injection of a polyme hylmethacrylate (PMMA) cement.
  • PMMA polyme hylmethacrylate
  • the FCP was produced from oxidized cellulose using the technique described above.
  • the cellulose material initially had the form of a loose staple fibres resembling cotton wool.
  • the compressed FCP was placed in the tube-in-the-tube introducer from PEEK.
  • the plug-introducer system was inserted into the medullary cavity of a transparent model of the human femur produced by the CAD stereolithography. The plug was released into the cavity and the introducer withdrawn. The inside of the cavity was moisturized with water which resulted in plug expansion and locking the intramedullary canal.

Abstract

The plug is designed for insertion in an opening formed in a medullated bone to act as a cement barrier. It comprises a polymeric material expandable in volume by uptake of water or temperature increase. The plug is capable of increasing its dimensions in the femoral cavity, adapting its shape to the geometry of the intramedullary canal and in consequence, closing the latter firmly. The self-adapting, expandable plug is produced from biocompatible expandable polymers.

Description

SELF-EXPANDING, ADAPTABLE CAVITY PLUG -FOR USE IN
IMPLANTATION OF END0-30INT PROSTHESIS
This invention relates to a plug for insertion in an opening formed in a medullated bone to act as a cement barrier. Such implantable devices which can be used for temporary or permanent closing of the medullary cavity of the femur or other long-bones during the replacement with cemented endo- jointprostheses, in particular the femoral component of a total hip prosthesis and are generally called intramedullary plugs or more specifically femoral cavity plugs (FCP) .
Total hip replacement is the most performed major therapeutic intervention in orthopaedic surgery.
Two types of prostheses are used for the total hip replacement, i.e. cementless and/or cemented types. In the case of cement- less prostheses, the fixation of the prosthesis to bone should result from the bony attachment/ingrowth to the stem of the prosthesis. In the case of cemented prostheses, a methyl- methacrylate monomer (cement) is first injected into the reamed medullary cavity of the femur and subsequently the stem of the prosthesis is pressed in. Polymerization of the monomer should provide fixation of the prosthetic device to bone. The drawbac of this surgical procedure is related to the fact that upon injection of the cement, it flows freely down the medullary cavity. In consequence, there is no sufficient pressure generated which would allow for the uniform intrusion of the cement into the trabecular spaces of the surrounding bone of the trochanteric area as well as perfect filling of the created cavity, and thus adequately fix the prosthesis. This frequently results in weakening of the fixation.
To overcome this problem, femoral cavity plugs (FCP) of various shapes were proposed to close the intramedullary cavity and protect against downflow of the cement (pressure-injection techniques) . Examples of such a plugs are described in detail in TJS-A-4 293 962, US-A-4 950 295 and US-A-4 344 190.
Existing FCP implants suffer, however, from the same drawbacks, i.e. they do not increase and/or increase only minimally their dimensions after insertion, do not properly adapt to the medullary cavity, and in consequence, they do not adequately close the medullary cavity of the femur.
Additional problems arise when the FCP implants have to be removed during the revision procedure, as they can hardly be found in the cavity. To solve the problem of plug removal, the FCP implants were also produced from resorbable polymers such as polylactides, polyglycolide, polydioxanone, polyglycolide-co-trimethylene carbonate, etc. as described in US-A-4 950 295 and US-A-4 344 190.
But similarly to the existing nonresorbable FCP implants, the resorbable FCP they do not substantially swell/increase their dimensions in the tissue environment either, they do not adapt to the medullary cavity, and do not satisfactorily protect against the cement downflow. Moreover, the hollow, thin-wall cone-like structures utilized in some commercial designs of resorbable FCP, collapse easily upon insertion into the cavity which additionally reduces their functionality.
There exist also plugs which can expand its shape mechanically, e.g. as disclosed in US-A-4 276 659 or EP 58 744. These known plugs, however, collapse easily in the medullary cavity and never adapt to its contour. In consequence they do not close adequately the medullary cavity.
The present invention as claimed is intended to solve the drawbacks of existing polymeric femoral cavity plugs (FCP) used in the total hip replacement surgery with cemented prostheses by providing an intramedullary plug being made of polymeric material and being self-expanding and adapting its dimensions to the cross-section of the medullary cavity. In accordance with the invention, this object is accomplished by the features of the characteristic part of claim 1.
The plug according to the invention is capable of increasing its dimensions in the femoral cavity, adapting its shape to the geometry of the intramedullary canal and in consequence, closing the latter firmly. The self-adapting, expandable FCP plugs of the invention are preferably produced from biocompatible polymers which, due to their chemical and/or physical characteristics are able to increase their dimensions.
The process of plug expansion can result from the substantial absorption of water from tissue fluids resulting in the swelling of the polymeric material.
This process can also be caused by the change in polymer structure from glassy to rubbery, which takes place when polymer is heated above the glass-transition temperature, e.g. from room to body temperature. The significant changes in elastic modulus that occur in the vicinity of the Tq lead to large dimensional changes.
Although the FCP of the invention can be produced from both the nonresorbable/nondegradable and/or resorbable/degradable/ soluble polymers, the resorbable/degradable/soluble polymers are preferred as their resorption, degradation, and/or dissolution in the femoral cavity solves the problem of plug removal during reoperation. The expandable FCP of the invention are prepared from absorbent polymers which when in contact with an aqueous environment take up from 2 to 5000 weight-% of water as compared with their weight in the dry form, and preferably at least 5 weight-% of as related to their weight in the dry form.
Typical nonresorbable/nondegradable polymers to be used for the FCP of the invention are for example various polyacrylates such as polyhydroxymethyl methacrylate, polyhydroxyethyl meth- acrylate, and other superabsorbent acrylates, e.g. poly sodium acrylate. They can be used alone and/or in combination with various nonresorbable cellulose derivatives, e.g. hydroxyethyl, hydroxypropyl or cross-linked carboxymethylcellulose etc.
Another group of water absorbent polymers are hydrophilic polyurethanes, e.g. based on isophorone diisocyanate, 4,4'-dicyclohexamethylene diiosocyanate, trans-l,4-cyclohexane diisocyanate, di-meryl diisocyanate, 4,4' -diphenylmethane- diisocyanate with polyols, preferably polyethylene oxide, epoxies, acrylics or various other chain extenders.
Polymers of interest are so-called shape-memory thermoplastics e.g. polyurethane-based softenable shape-memory polymers, which can decrease and/or increase the dimensions when heated from room temperature to body temperature. Typical absorbent resorbable/degradable/soluble polymers for the FCP plugs of the invention are various polysaccharides, e.g. cellulose derivatives produced by oxidation of various cellulose materials such as 2,3-dialdehyde cellulose or 6-carboxy cellulose.
Another polysaccharide of interest for the FCP is alginic acid a linear copolymer composed of two monomeric units, D-mannuronic acid and L-guluronic acid. Its calcium salt is bioresorbable, but not soluble in water, while the sodium salt is bioresorbable and water soluble. Mixing of these calcium and sodium alginates produces materials whose dissolution/ resorption rate can easily be controlled.
When degraded, the alginates break down to simple glucose-type residues and finally to carbon dioxide and water. Alginate materials may take up to 200 weight-% of water in the loose form. Alginates in compressed form may take up- to 600 weight-% of water as related to its weight in dry form. This in addition can be enhanced by applying special geometrical shapes to the final plugs. The latter may have the shape of a solid cone with fins on its surface or of a cylinder, preferably with regularly disposed indents on its surface or a shape of rosette.
Alginates are non-toxic and used in the food industry as additives to various products. They are also biocompatible and seem to have a marked effect on the healing of wounds. Their medical applications include skin dressings to treat full-thickness skin wounds, haemostats and carriers for encapsulation of islet of Langerhans (the artificial pancreas) . Alginate wool was used
- in the treatment of tooth sockets alone and loaded with antibiotics as described by J.F.S. Rumble, Twenty-five dental cases treated with absorbable alginate wool, British Dental Journal, April 14, 1949, 203;
- for haemostasis in neurosurgical practice as described by L.C.Oliver, G.Blaine, Haemostasis with absorbable alginates in neurosurgical practice, British Journal of Surgery 147, 307 (1950) ;
- for the treatment of tissue wounds when the alginate film/gel is formed in situ after injecting a solution of sodium alginate and calcium chloride into e.g. a muscle, as described by G.Blaine, Experimental observations on absorbable alginate products in surgery, Annals of Surgery, 125, 102 (1947) whereby the same concept of in situ transition of sodium alginate into calcium alginate has been the subject of TJS-A-5 266 326 (1993) .
It has been found that the tissue reaction to alginates depends on the ratio of mannuronic to guluronic unit content. Therefore alginates with high guluronic content are preferred to be used for the plug of the invention as they do not interfere with the human immune system. The absorbent/shape memory polymers mentioned are examples only and do not aim to exhaust the complete list of biocompatible polymers which can be used for the self-expanding FCP of the invention. The use of other absorbent/shape memory polymers for such applications will be obvious for anyone skilled- in-the-art.
The self-expanding FCP of the invention can be in the form of densely packed woven and nonwoven fibrous structures, compact solid elements, or a combination of fibrous and solid components. Preferably the FCP are in a compressed form adding to their expandability.
The FCP of the invention can have various geometrical shapes as described above and can be introduced in the medullar cavity using a tube-in-the-tube introducer as described in detail in the US-A-4 293 962.
Example I
Continuous monofilaments from calcium alginate were wound-up onto a PTFE mandrel with a diameter of 15 mm. The resulting structure was placed into the piston-cylinder device with a circular cross-section and subsequently compressed in the dry form at 60°C and 10 bar for 5 minutes. Next, pressure was released and the resulting plug was removed from the mould. The plug was inserted into the thin-wall tube from medical grade stainless steel and next another tube with closed ends was introduced into the first tube to act as a piston for the release of the FCP.
The FCP-introducer system was inserted into the reamed medullary cavity of the cadaveric femur freshly rinsed with water. The marks on the wall of the external tube allowed for a controlled placing of the introducer at the required level in the medullary cavity. Next the internal tube was pressed downwards pushing out the plug into the cavity. Finally the introducer was withdrawn. An instant swelling of the plug led to a firm closing of the canal as it was checked by injection of a polyme hylmethacrylate (PMMA) cement.
Example II
99 grams of calcium alginate powder was swollen in a solution containing 1 gram of sodium alginate in 50 ml of water and subsequently water was removed from the system by drying the material in a vacuum oven. Next the dry material was placed in the piston-cylinder device and pressurized at 20 bar and 70°C for 10 minutes. The resulting plug was placed in water which resulted in a 200% increase of the plug diameter. Example III
20 gram of sodium alginate was dissolved in deionized water to produce 1% weight/volume solution. The solution was poured in the glass ampoule with circular cross-section and next 40 ml of 1 weight/volume-% solution of calcium chloride in deionized water was poured into the ampoule. The system was allowed for gelling due to sodium-calcium ion exchange. Next the excess of calcium chloride was removed and water present in the system was evacuated under vacuum. The resulting solid, void-free plug was removed from the ampoule and place in water which resulted in 100% increase of the plug diameter.
Example IV
The FCP was produced from oxidized cellulose using the technique described above. The cellulose material initially had the form of a loose staple fibres resembling cotton wool. The compressed FCP was placed in the tube-in-the-tube introducer from PEEK. The plug-introducer system was inserted into the medullary cavity of a transparent model of the human femur produced by the CAD stereolithography. The plug was released into the cavity and the introducer withdrawn. The inside of the cavity was moisturized with water which resulted in plug expansion and locking the intramedullary canal. Example V
50 gram of carboxymethyl cellulose was dissolved in 200 ml of water to form a viscous solution. The solution was extruded through the spinneret into a preheated chamber connected to a two-stage rotary pump. Removal of water from the extruded solution resulted in a bundle of continuous monofilaments. these were compressed in a cylindrical mould into a FCP plug. When placed in water the plug diameter increased to about 60% of its initial diameter in a dry state.

Claims

Claims
1. Plug for insertion in an opening formed in a medullated bone to act as a cement barrier, characterized in that said plug comprises a polymeric material expandable in volume.
2. Plug according to claim 1, characterized in that said polymeric material is expandable in volume by uptake of water.
3. Plug according to claim 2, characterized in that said polymeric material, if placed in a aqueous environment, is able to absorb from 2 to 5000 weight-% of water as related to its weight in the dry state.
4. Plug according to claim 2, wherein said polymeric material is able to absorb at least 5 weight-% of water as related to its weight in the dry state.
5. Plug according to claim 2, wherein said cross-section is able to increase in a aqueous environment at least 5 % as compared with said cross-section in the dry state.
6. Plug according to claim 1, characterized in that said polymeric material is expandable in volume by temperature increase.
7. Plug according to claim 6, characterized in that_ said polymeric material is capable to increase its volume when heated from room temperature to body temperature.
8. Plug according to claim 6 or 7, characterized in that said polymeric material is chosen from the group of softenable, memory polymers which increase their dimension at body temperature, preferably polyurethane-based materials.
9. Plug according to one of the claims 1 - 8, characterized in that said polymeric material is resorbable.
10. Plug according to one of the claims 1 - 8, characterized in that said polymeric material is degradable.
11. Plug according to one of the claims 1 - 8, characterized in that said polymeric material is soluble in aqueous solutions.
12. Plug according to one of the claims 1 - 8, characterized in that said polymeric material is nondegradable.
13. Plug according to one of the claims 1 - 12, characterized in that said plug has essentially no hollow geometrical structure.
14. Plug according to one of the claims 1 - 13, characterized in that said plug has the shape of a solid cone, preferably with fins on its surface.
15. Plug according to one of the claims 1 - 13, characterized in that said plug has the shape of a cylinder, preferably with regularly disposed indents on its surface and/or a rosette-like geometry.
16. Plug according to one of the claims 1 - 15, characterized in that said plug comprises fibrous polymeric material.
17. Plug according to one of the claims 1 - 16, characterized in that said plug comprises continuous fibres.
18. Plug according to one of the claims 1 - 16, characterized in that said plug comprises staple fibres.
19. Plug according to one of the claims 1 - 18, characterized in that said plug is made of a solid, void-free block.
20. Plug according to one of the claims 1 - 19, characterized in that said polymeric material is present in a compressed form.
21. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is chosen from the group of alginates, preferably from the group of calcium alginates.
22. Plug according to claim 21, characterized in that said alginates have a high guluronic content, preferably more than 50 weight-%.
23. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is carboxymethyl cellulose.
24. Plug according to one of the claims 1 - 23, characterized in that said plug has a density of between 0.6 to 3.0 g/crr , preferably of between 0.8 to 2.0 g/cm3.
25. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is chosen from the group of polyacrylates, preferably from polyhydroxymethyl methacrylate, polyhydroxyethyl methacrylate, and polysodium acrylate.
26. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is chosen from the group of hydrophilic polyurethanes, preferably based on isophorone diisocyanate, 4,4'-dicyclohexamethylene diiosocyanate, trans-l,4-cyclohexane diisocyanate, di-meryl diisocyanate, 4,4'-diphenylmethane diisocyanate with polyols, preferably polyethylene oxide, epoxies or acrylics as chain extenders.
27. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is chosen from the group of polysaccharides, preferably from cellulose derivatives produced by oxidation of cellulose materials.
28. Plug according to one of the claims 1 - 20, characterized in that said polymeric material is chosen from the group of anionic and neutral microbial polysaccharides, preferably xanthan gum or gellan gum.
PCT/IB1995/000386 1994-06-10 1995-05-22 Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis WO1995034331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25825894A 1994-06-10 1994-06-10
US08/258,258 1994-06-10

Publications (1)

Publication Number Publication Date
WO1995034331A1 true WO1995034331A1 (en) 1995-12-21

Family

ID=22979772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1995/000386 WO1995034331A1 (en) 1994-06-10 1995-05-22 Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis

Country Status (1)

Country Link
WO (1) WO1995034331A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042147A1 (en) * 1998-02-23 1999-08-26 Massachusetts Institute Of Technology Biodegradable shape memory polymers
EP0968690A1 (en) * 1998-07-02 2000-01-05 Sulzer Orthopädie AG Plug system for the medullary canal of a tubular bone
WO2000072783A1 (en) * 1999-05-28 2000-12-07 Hoegfors Christian Implantable device for lengthening and correcting malpositions of skeletal bones
EP1127559A1 (en) * 2000-02-18 2001-08-29 IsoTis N.V. Plug for insertion into a bone canal
EP1127558A1 (en) * 2000-02-18 2001-08-29 IsoTis N.V. Plug for insertion into a bone canal
EP1180978A1 (en) 1999-05-28 2002-02-27 Bret A. Ferree Methods and apparatus for treating disc herniation
US6388043B1 (en) 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
US7144397B2 (en) 2000-08-18 2006-12-05 Intrinsic Therapeutics, Inc. Minimally invasive system for manipulating intervertebral disc tissue
US7217744B2 (en) 2002-02-26 2007-05-15 Mnemoscience Gmbh Polymeric networks
US7258700B2 (en) 1999-08-18 2007-08-21 Intrinsic Therapeutics, Inc. Devices and method for nucleus pulposus augmentation and retention
WO2008130989A2 (en) * 2007-04-19 2008-10-30 Smith & Nephew, Inc. Prosthetic implants
US7914553B2 (en) 1999-08-13 2011-03-29 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9000066B2 (en) 2007-04-19 2015-04-07 Smith & Nephew, Inc. Multi-modal shape memory polymers
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US9120919B2 (en) 2003-12-23 2015-09-01 Smith & Nephew, Inc. Tunable segmented polyacetal
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US9770534B2 (en) 2007-04-19 2017-09-26 Smith & Nephew, Inc. Graft fixation
US9815240B2 (en) 2007-04-18 2017-11-14 Smith & Nephew, Inc. Expansion moulding of shape memory polymers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023787A2 (en) * 1979-07-25 1981-02-11 University Of Exeter Plugs for the medullary canal of a bone
FR2570606A1 (en) * 1984-09-26 1986-03-28 Landanger Laboratoire Obturator in particular for the cavity of the femur or the bottom of the acetabulum (cotyl)
FR2616319A1 (en) * 1987-06-12 1988-12-16 Science Medecine Sa Flexible biocompatible intramedullary obturator
EP0338981A1 (en) * 1988-04-22 1989-10-25 Mathys AG Bettlach Plug for the medullary canal
FR2683992A1 (en) * 1991-11-25 1993-05-28 Boucher Guy Semirigid bioresorbable intramedullary obturator with fins
FR2707477A1 (en) * 1993-07-02 1995-01-20 Cahlix Marc Andre Obturator for bone cavities

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023787A2 (en) * 1979-07-25 1981-02-11 University Of Exeter Plugs for the medullary canal of a bone
FR2570606A1 (en) * 1984-09-26 1986-03-28 Landanger Laboratoire Obturator in particular for the cavity of the femur or the bottom of the acetabulum (cotyl)
FR2616319A1 (en) * 1987-06-12 1988-12-16 Science Medecine Sa Flexible biocompatible intramedullary obturator
EP0338981A1 (en) * 1988-04-22 1989-10-25 Mathys AG Bettlach Plug for the medullary canal
FR2683992A1 (en) * 1991-11-25 1993-05-28 Boucher Guy Semirigid bioresorbable intramedullary obturator with fins
FR2707477A1 (en) * 1993-07-02 1995-01-20 Cahlix Marc Andre Obturator for bone cavities

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388043B1 (en) 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
WO1999042147A1 (en) * 1998-02-23 1999-08-26 Massachusetts Institute Of Technology Biodegradable shape memory polymers
US6160084A (en) * 1998-02-23 2000-12-12 Massachusetts Institute Of Technology Biodegradable shape memory polymers
CZ303404B6 (en) * 1998-02-23 2012-08-29 Massachusetts Institute Of Technology Biologically degradable shape memory polymer compositions and object produced therefrom
US6720402B2 (en) 1998-02-23 2004-04-13 Mnemoscience Gmbh Shape memory polymers
AU751861B2 (en) * 1998-02-23 2002-08-29 Massachusetts Institute Of Technology Biodegradable shape memory polymers
EP0968690A1 (en) * 1998-07-02 2000-01-05 Sulzer Orthopädie AG Plug system for the medullary canal of a tubular bone
US6179842B1 (en) 1998-07-02 2001-01-30 Sulzer Orthopaedie Ag Blocking system for the medullary canal of a tubular bone
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
EP1180978A1 (en) 1999-05-28 2002-02-27 Bret A. Ferree Methods and apparatus for treating disc herniation
US9084616B2 (en) 1999-05-28 2015-07-21 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US10327907B2 (en) 1999-05-28 2019-06-25 Suture Concepts Inc. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
WO2000072783A1 (en) * 1999-05-28 2000-12-07 Hoegfors Christian Implantable device for lengthening and correcting malpositions of skeletal bones
EP1180978B2 (en) 1999-05-28 2010-11-17 Bret A. Ferree Apparatus for treating disc herniation
US7914553B2 (en) 1999-08-13 2011-03-29 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US7258700B2 (en) 1999-08-18 2007-08-21 Intrinsic Therapeutics, Inc. Devices and method for nucleus pulposus augmentation and retention
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
EP1127559A1 (en) * 2000-02-18 2001-08-29 IsoTis N.V. Plug for insertion into a bone canal
EP1127558A1 (en) * 2000-02-18 2001-08-29 IsoTis N.V. Plug for insertion into a bone canal
US7144397B2 (en) 2000-08-18 2006-12-05 Intrinsic Therapeutics, Inc. Minimally invasive system for manipulating intervertebral disc tissue
US7217744B2 (en) 2002-02-26 2007-05-15 Mnemoscience Gmbh Polymeric networks
US9120919B2 (en) 2003-12-23 2015-09-01 Smith & Nephew, Inc. Tunable segmented polyacetal
US11185354B2 (en) 2005-12-28 2021-11-30 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US10470804B2 (en) 2005-12-28 2019-11-12 Intrinsic Therapeutics, Inc. Bone anchor delivery systems and methods
US9610106B2 (en) 2005-12-28 2017-04-04 Intrinsic Therapeutics, Inc. Bone anchor systems
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US10245018B2 (en) 2006-06-13 2019-04-02 Suture Concepts Inc. Method and apparatus for closing fissures in the annulus fibrosus
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US9815240B2 (en) 2007-04-18 2017-11-14 Smith & Nephew, Inc. Expansion moulding of shape memory polymers
US9770534B2 (en) 2007-04-19 2017-09-26 Smith & Nephew, Inc. Graft fixation
US9308293B2 (en) 2007-04-19 2016-04-12 Smith & Nephew, Inc. Multi-modal shape memory polymers
US9000066B2 (en) 2007-04-19 2015-04-07 Smith & Nephew, Inc. Multi-modal shape memory polymers
WO2008130989A3 (en) * 2007-04-19 2010-02-04 Smith & Nephew, Inc. Prosthetic implants
WO2008130989A2 (en) * 2007-04-19 2008-10-30 Smith & Nephew, Inc. Prosthetic implants
US10076424B2 (en) 2007-09-07 2018-09-18 Intrinsic Therapeutics, Inc. Impaction systems
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US10716685B2 (en) 2007-09-07 2020-07-21 Intrinsic Therapeutics, Inc. Bone anchor delivery systems

Similar Documents

Publication Publication Date Title
WO1995034331A1 (en) Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis
CA2082398C (en) Surgical implant and method incorporating chemotherapeutic agents
US5290271A (en) Surgical implant and method for controlled release of chemotherapeutic agents
Costantino et al. Synthetic biomaterials in facial plastic and reconstructive surgery
US8110007B2 (en) Porous and nonporous materials for tissue grafting and repair
Agrawal et al. Technique to control pH in vicinity of biodegrading PLA‐PGA implants
US5425762A (en) Prosthetic implants and process for obtaining the same
US5941909A (en) Filling material for soft tissue implant prostheses and implants made therewith
Dougherty et al. The natural history of alloplastic implants in orbital floor reconstruction: an animal model
US20090022770A1 (en) Chitosan Compositions
JP2002516156A (en) Implantable tissue repair device
CA2731850A1 (en) Fracture fixation systems
JP2004529687A (en) Complex for attachment, growth and / or repair of biological tissue, and use of the complex
US20150250598A1 (en) Orthopedic system and methods for treating an infection
US20190022273A1 (en) Devices and compositions and methods of use thereof
US20150265745A1 (en) Porous and Nonporous Materials for Tissue Grafting and Repair
DE102004030347B4 (en) implant
US10105207B2 (en) Porous and nonporous materials for tissue grafting and repair
CN103796688B (en) Biomaterial and its implementation
Daane Alloplastic implantation
JP7263348B2 (en) Implants and kits for treatment and/or biological reconstruction of bone defects
Länsman et al. Evaluation of Poly-L/D-lactide (PLDLA) 96/4 Scaffolds Implanted in the Subcutis of Rats

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase