USH1725H - Clear polyphenylene ether/block copolymer composition - Google Patents

Clear polyphenylene ether/block copolymer composition Download PDF

Info

Publication number
USH1725H
USH1725H US08/606,181 US60618196A USH1725H US H1725 H USH1725 H US H1725H US 60618196 A US60618196 A US 60618196A US H1725 H USH1725 H US H1725H
Authority
US
United States
Prior art keywords
block copolymer
range
block
molecular weight
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US08/606,181
Inventor
Michael John Modic
Ronald Wroczynski
James Scobbo
Gim Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell USA Inc
Original Assignee
Shell Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Oil Co filed Critical Shell Oil Co
Priority to US08/606,181 priority Critical patent/USH1725H/en
Priority to PCT/US1997/002641 priority patent/WO1997031062A1/en
Application granted granted Critical
Publication of USH1725H publication Critical patent/USH1725H/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment

Definitions

  • This invention relates to polyphenylene ether blend compositions.
  • Polyphenylene ethers also known as polyphenylene oxide (PPO®) are naturally clear high melting thermoplastic engineering resins. Because of their high melting points the polymers by themselves are of limited utility. However, PPE is highly miscible in polystyrene and highly miscible in many high impact polystyrenes produced by rubber modification (HIPS). Such blends are lower melting and thus constitute the type of PPE compositions typically employed in commerce. While PPE is a high strength material, it has low impact strength as measured by notch sensitive tests such as notched Izod. The incorporation of high impact polystyrene improves impact strength but results in a loss of clarity.
  • A-B-A triblock linear polymers which are generally designated A-B-A can be produced either by the sequential polymerization of the monovinylarene monomer followed by the conjugated diene monomer, followed by a second aliquot of monovinyl aromatic monomer or by the coupling of the A-B species with a difunctional coupling agent.
  • polyfunctional coupling agents can be utilized to give a radial or star configuration.
  • polymers are defined in terms of their total monovinyl aromatic content since resinous products are produced from predominantly polymerized monovinyl aromatic component whereas rubbery materials result from predominantly conjugated diene compositions.
  • a clear PPE composition containing 2 to 30 weight percent of a hydrogenated conjugated diene/monovinyl aromatic linear block copolymer, said copolymer having:
  • polymerized monovinyl aromatic blocks having a molecular weight within the range of 23,000-100,000;
  • PPE resins suitable for use in this invention are commercially available and are produced by techniques well known in the art such as by oxidizing a phenol with an oxygen-containing gas in the presence of a catalyst system comprising a cuprous salt and a tertiary amine.
  • Suitable PPE resins are homo- and copolymers with repeating units of the formula ##STR1## wherein Q, Q', Q" and Q'", are independently selected from the group consisting of hydrogen, hydrocarbon radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, hydrocarbonoxy radicals and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, and Q', Q" and Q'” in addition may be halogen with the proviso that Q and Q' are preferably free of any tertiary carbon atoms; and n represents the total number of monomer residues and is an integer of at least 50.
  • poly(2,6-dimethyl-1,4-phenylene)ether Especially preferred is poly(2,6-dimethyl-1,4-phenylene)ether.
  • the monovinyl aromatic/conjugated diene copolymers can be made by anionic polymerization with an alkali metal catalyst such as sec-butyllithium as disclosed for instance in Bean, Jr., U.S. Pat. No. 4,764,572 (Aug. 16, 1988), Holden et al, U.S. Pat. No. 3,231,635 Jan. (25, 1966,) Wald et al, U.S. Pat. No. 3,700,633 (Oct. 24, 1972, and Stevens et al, U.S. Pat. No. 5,194,530 (Mar. 16, 1993), the disclosures of which are hereby incorporated by reference.
  • an alkali metal catalyst such as sec-butyllithium as disclosed for instance in Bean, Jr., U.S. Pat. No. 4,764,572 (Aug. 16, 1988), Holden et al, U.S. Pat. No. 3,231,635 Jan. (25, 1966,) Wald et al, U.S. Pat.
  • the monovinyl aromatic monomer suitable for producing the resinous block of the block copolymers of this invention is styrene or ⁇ -methylstyrene, most preferably styrene.
  • the conjugated diene monomers suitable for producing the rubbery block of the block copolymers utilized in this invention are preferably conjugated alkadienes having 4 to 8 carbon atoms.
  • Illustrative of such conjugated alkadienes are 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1,3-octadiene, and 2-methyl-1,3-pentadiene.
  • Preferred conjugated alkadienes are butadiene and isoprene, most preferably isoprene.
  • the block copolymers utilized in this invention are those which have been selectively hydrogenated to remove most of the ethylenic or vinyl unsaturation and to leave unaffected most of the aromatic unsaturation.
  • Suitable known catalysts for accomplishing this include nickel compounds in combination with a reducing agent such as an aluminum alkyl. Hydrogenation is taught in U.S. Pat. Nos. 3,494,942, 3,634,549, 3,670,054, 3,700,633, and Reissue 27,145, the disclosures of which are hereby incorporated by reference.
  • the hydrogenation is effective to remove a majority generally at least 90%, more generally at least 95% of the original unsaturation in the polymerized diene component and to remove no more than 50%, preferably no more than 25%, more preferably no more than 10% of the aromatic unsaturation in the polymerized monovinylarene component.
  • the block copolymers utilized in this invention have a weight percent polymerized monovinyl arene content within the range of 45 to 58.
  • the individual polymerized monovinyl arene blocks have a molecular weight within the range of 23,000-100,000, preferably a molecular weight within the range of 40,000-80,000.
  • the polymerized conjugated diene blocks have a molecular weight of less than 150,000.
  • the total molecular weight of the block copolymers is within the range of 40,000-225,000 for the A-B diblock polymers, preferably 60,000-160,000 and for the A-B-A polymers, the molecular weight is within the range of 80,000-350,000, preferably 100,000-275,000.
  • Molecular weights of linear polydienes are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated. Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown linear polymers or segments that are to be measured. For anionically polymerized linear polymers, the polymer is essentially monodispersed and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. As used herein, references to molecular weight mean "peak" molecular weight. These techniques are known in the art as disclosed for instance by Erickson et al, U.S. Pat. No. 5,229,464 (Jul. 20, 1993), the disclosure of which is hereby incorporated by reference.
  • the block copolymer is present in the compositions of this invention in an amount within the range of 2-30, preferably 5-25, more preferably 10-25 weight percent based on the weight of the copolymer and PPE component.
  • the PPE resin and the block copolymer can be combined by either melt blending or solution blending, but preferably are combined by melt blending.
  • the composition cannot contain any additional ingredients which would significantly impart haze.
  • a small amount of polystyrene may be added to improve the processability of the blends.
  • the polystyrene should not be added in an amount high enough to affect the haze properties (i.e. less than 10% weight).
  • the compositions will, however, in almost all instances contain a small amount of stabilizer such as an antioxidant, so as to prevent degradation of the polymer.
  • Such ingredients are generally present in an amount within the range of 0.01 to 2 weight percent, more generally 0.05 to 0.5 weight percent. Suitable stabilizers disclosed for instance in St.
  • composition of the invention may have some slight haze imparted by the copolymer.
  • the compositions are such that they have a visual appearance of clarity and preferably a luminous transmittance of at least 20% of that of the unmodified PPE.
  • the compositions consist essentially of the PPE resin, the block copolymer, and the stabilizer with the stabilizer preferably being present in an amount within the range of 0.05 to 0.5 weight percent based on the weight of the PPE and block copolymer. Alternatively it consists essentially of these ingredients plus the polystyrene. Most preferably the compositions consist essentially of PPE, A-B block copolymer and antioxidant, again with the antioxidant being present in an amount within the range of 0.05 to 0.5 weight percent based on the weight of the polymeric ingredients.
  • compositions of this invention are useful for consumer items such as lighting fixtures.
  • a styrene-isoprene A-B block copolymer was prepared utilizing an organolithium initiator in cyclohexane solvent and subsequent to the recovery of the polymers, they were each hydrogenated utilizing a nickel/aluminum catalyst to give a product wherein 2% of the original unsaturation in the polymerized isoprene remains and no more than 5% of the original unsaturation of the styrene is removed.
  • the PPE utilized was a product sold under the trade designation PPO 806 by GE Plastics.
  • the PPE and each of the block copolymers was melt blended on a 25 mm co-rotating twin screw extruder at 300° C. and a screw speed of 300 RPM. All of the ingredients, including antioxidant, were dry tumble blended together prior to addition to the twin screw extruder.
  • the blend extrudates were collected as pellets.
  • the resulting blends were molded into test specimens on a 25 ton injection molding machine. The results of the analysis of these test specimens is shown herein below in Table 1.
  • Run 1 the neat PPE has excellent clarity but low impact strength.
  • Run 2 a block copolymer having only 22 weight percent styrene improves the impact strength but destroys clarity.
  • Runs 3-5 clarity is improved compared with Run 2 if the percentage polymerized styrene content is greater.
  • Run 4 with the same block copolymer as Run 3 at a higher level shows that 200,000 total molecular weight is close to the upper acceptable limit for total molecular weight with an AB polymer. As can be seen by comparing Run 4 with Run 6, the poor clarity in Run 4 is the result of the total molecular weight being almost too high, not the 50--50 weight ratio of resinous to rubbery component.
  • Run 7 shows that 12,000 total molecular weight is too low because at this molecular weight clarity is destroyed. Finally, Run 7 shows that the absolute size of the styrene block as well as the percent styrene is important since Run 7 had 50% styrene but gave unacceptable results.

Abstract

A clear polyphenylene ether composition having improved impact strength comprising said polyphenylene ether and a block copolymer having a resinous block and a rubbery block wherein the resinous block is relatively high molecular weight and is derived from either styrene or butadiene with a resinous content of the block copolymer being within the range of 45 to 58 weight percent.

Description

BACKGROUND OF THE INVENTION
This invention relates to polyphenylene ether blend compositions.
Polyphenylene ethers (PPE) also known as polyphenylene oxide (PPO®) are naturally clear high melting thermoplastic engineering resins. Because of their high melting points the polymers by themselves are of limited utility. However, PPE is highly miscible in polystyrene and highly miscible in many high impact polystyrenes produced by rubber modification (HIPS). Such blends are lower melting and thus constitute the type of PPE compositions typically employed in commerce. While PPE is a high strength material, it has low impact strength as measured by notch sensitive tests such as notched Izod. The incorporation of high impact polystyrene improves impact strength but results in a loss of clarity.
Another class of polymers which can be blended with PPE resins is the block copolymers produced with alkali metal catalysts. This technology is well known in the art and allows the sequential polymerization of monomers such as vinylaromatics and conjugated dienes to give block copolymers having resinous and rubbery blocks. Through this technology, diblock polymers can be formed which are typically designated A-B. Also, triblock linear polymers which are generally designated A-B-A can be produced either by the sequential polymerization of the monovinylarene monomer followed by the conjugated diene monomer, followed by a second aliquot of monovinyl aromatic monomer or by the coupling of the A-B species with a difunctional coupling agent. Alternatively, polyfunctional coupling agents can be utilized to give a radial or star configuration. Generally, such polymers are defined in terms of their total monovinyl aromatic content since resinous products are produced from predominantly polymerized monovinyl aromatic component whereas rubbery materials result from predominantly conjugated diene compositions.
SUMMARY OF THE INVENTION
It is an object of this invention to provide clear, tough PPE compositions;
It is a further object of this invention to provide impact resistant compositions with a minimal sacrifice of clarity; and
It is a further object of this invention to provide a process for producing clear impact resistant PPE compositions.
In accordance with this invention, there is provided a clear PPE composition containing 2 to 30 weight percent of a hydrogenated conjugated diene/monovinyl aromatic linear block copolymer, said copolymer having:
45-58 weight percent monovinyl aromatic content;
polymerized monovinyl aromatic blocks having a molecular weight within the range of 23,000-100,000;
polymerized conjugated diene blocks of less than 150,000 molecular weight; and
a total molecular weight in the case of A-B polymers within the range of 40,000-225,000, and in the case of A-B-A polymers, 80,000-350,000.
DETAILED DESCRIPTION OF THE INVENTION
Surprisingly, it has been discovered that it is the molecular weight of the individual monovinyl arene blocks as well as the weight percent monovinyl arene content that is critical when the goal is to give clear impact resistant blends. For instance, two A-B polymers, one with a 15,000 molecular weight styrene block and a 15,000 molecular weight isoprene block and the other with a 40,000 molecular weight styrene block and a 40,000 molecular weight isoprene block would both have 50 weight percent styrene but only the second would be suitable for this invention because the first has such low molecular weight individual styrene blocks.
The PPE resins suitable for use in this invention are commercially available and are produced by techniques well known in the art such as by oxidizing a phenol with an oxygen-containing gas in the presence of a catalyst system comprising a cuprous salt and a tertiary amine. Suitable PPE resins are homo- and copolymers with repeating units of the formula ##STR1## wherein Q, Q', Q" and Q'", are independently selected from the group consisting of hydrogen, hydrocarbon radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, hydrocarbonoxy radicals and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, and Q', Q" and Q'" in addition may be halogen with the proviso that Q and Q' are preferably free of any tertiary carbon atoms; and n represents the total number of monomer residues and is an integer of at least 50.
Especially preferred is poly(2,6-dimethyl-1,4-phenylene)ether.
The monovinyl aromatic/conjugated diene copolymers can be made by anionic polymerization with an alkali metal catalyst such as sec-butyllithium as disclosed for instance in Bean, Jr., U.S. Pat. No. 4,764,572 (Aug. 16, 1988), Holden et al, U.S. Pat. No. 3,231,635 Jan. (25, 1966,) Wald et al, U.S. Pat. No. 3,700,633 (Oct. 24, 1972, and Stevens et al, U.S. Pat. No. 5,194,530 (Mar. 16, 1993), the disclosures of which are hereby incorporated by reference.
The monovinyl aromatic monomer suitable for producing the resinous block of the block copolymers of this invention is styrene or α-methylstyrene, most preferably styrene.
The conjugated diene monomers suitable for producing the rubbery block of the block copolymers utilized in this invention are preferably conjugated alkadienes having 4 to 8 carbon atoms. Illustrative of such conjugated alkadienes are 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1,3-octadiene, and 2-methyl-1,3-pentadiene. Preferred conjugated alkadienes are butadiene and isoprene, most preferably isoprene.
The block copolymers utilized in this invention are those which have been selectively hydrogenated to remove most of the ethylenic or vinyl unsaturation and to leave unaffected most of the aromatic unsaturation. Suitable known catalysts for accomplishing this include nickel compounds in combination with a reducing agent such as an aluminum alkyl. Hydrogenation is taught in U.S. Pat. Nos. 3,494,942, 3,634,549, 3,670,054, 3,700,633, and Reissue 27,145, the disclosures of which are hereby incorporated by reference. The hydrogenation is effective to remove a majority generally at least 90%, more generally at least 95% of the original unsaturation in the polymerized diene component and to remove no more than 50%, preferably no more than 25%, more preferably no more than 10% of the aromatic unsaturation in the polymerized monovinylarene component.
The block copolymers utilized in this invention have a weight percent polymerized monovinyl arene content within the range of 45 to 58.
The individual polymerized monovinyl arene blocks have a molecular weight within the range of 23,000-100,000, preferably a molecular weight within the range of 40,000-80,000.
The polymerized conjugated diene blocks have a molecular weight of less than 150,000.
The total molecular weight of the block copolymers is within the range of 40,000-225,000 for the A-B diblock polymers, preferably 60,000-160,000 and for the A-B-A polymers, the molecular weight is within the range of 80,000-350,000, preferably 100,000-275,000.
Molecular weights of linear polydienes are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated. Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown linear polymers or segments that are to be measured. For anionically polymerized linear polymers, the polymer is essentially monodispersed and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. As used herein, references to molecular weight mean "peak" molecular weight. These techniques are known in the art as disclosed for instance by Erickson et al, U.S. Pat. No. 5,229,464 (Jul. 20, 1993), the disclosure of which is hereby incorporated by reference.
The block copolymer is present in the compositions of this invention in an amount within the range of 2-30, preferably 5-25, more preferably 10-25 weight percent based on the weight of the copolymer and PPE component.
The PPE resin and the block copolymer can be combined by either melt blending or solution blending, but preferably are combined by melt blending.
Since the purpose of this invention is to provide a clear composition, the composition cannot contain any additional ingredients which would significantly impart haze. A small amount of polystyrene may be added to improve the processability of the blends. However, the polystyrene should not be added in an amount high enough to affect the haze properties (i.e. less than 10% weight). Preferably, if used, 2 to 5 weight percent based on the weight of the total composition is used. The compositions will, however, in almost all instances contain a small amount of stabilizer such as an antioxidant, so as to prevent degradation of the polymer. Such ingredients are generally present in an amount within the range of 0.01 to 2 weight percent, more generally 0.05 to 0.5 weight percent. Suitable stabilizers disclosed for instance in St. Clair, U.S. Pat. No. 4,835,200 (May 30, 1989), the disclosure of which is hereby incorporated by reference. One particularly suitable material is tetrakis-!methylene-(3,5-di-t-butyl-4-hydroxycinnamate)! methane sold under the tradename Irganox 1010 by Ciba Geigy. Other hindered phenols are also suitable.
When reference is made to clarity it is to be understood that the composition of the invention may have some slight haze imparted by the copolymer. However, the compositions are such that they have a visual appearance of clarity and preferably a luminous transmittance of at least 20% of that of the unmodified PPE.
Preferably, the compositions consist essentially of the PPE resin, the block copolymer, and the stabilizer with the stabilizer preferably being present in an amount within the range of 0.05 to 0.5 weight percent based on the weight of the PPE and block copolymer. Alternatively it consists essentially of these ingredients plus the polystyrene. Most preferably the compositions consist essentially of PPE, A-B block copolymer and antioxidant, again with the antioxidant being present in an amount within the range of 0.05 to 0.5 weight percent based on the weight of the polymeric ingredients.
The compositions of this invention are useful for consumer items such as lighting fixtures.
EXAMPLES
In the following examples, a styrene-isoprene A-B block copolymer was prepared utilizing an organolithium initiator in cyclohexane solvent and subsequent to the recovery of the polymers, they were each hydrogenated utilizing a nickel/aluminum catalyst to give a product wherein 2% of the original unsaturation in the polymerized isoprene remains and no more than 5% of the original unsaturation of the styrene is removed.
The PPE utilized was a product sold under the trade designation PPO 806 by GE Plastics. The PPE and each of the block copolymers was melt blended on a 25 mm co-rotating twin screw extruder at 300° C. and a screw speed of 300 RPM. All of the ingredients, including antioxidant, were dry tumble blended together prior to addition to the twin screw extruder. The blend extrudates were collected as pellets. The resulting blends were molded into test specimens on a 25 ton injection molding machine. The results of the analysis of these test specimens is shown herein below in Table 1.
              TABLE 1                                                     
______________________________________                                    
                 Im-                Lumi-                                 
                 pact,.sup.3                                              
                        Flex        nous.sup.4                            
AB,.sup.1        ft-lb/ Mod   Visual                                      
                                    Trans- Clarity.sup.5                  
MW        AB,.sup.2                                                       
                 in     (Mpsi)                                            
                              Clarity                                     
                                    mittance                              
                                           (Haze)                         
______________________________________                                    
1   --        0      1.0  381   Yes   56.0   23.5                         
2    .sup. 28--100.sup.7                                                  
              17.0   9.7  276   No     0.5   0.0                          
3   100--100  10.6   2.0  348   Yes   14.0   1.4                          
4   100--100  25.8   2.2  316   No     2.9   0.1                          
5   40--40    10.6   2.2  349   Yes   36.5   10.6                         
6   40--40    25.8   2.3  324   Yes   26.4   4.1                          
7   6--6      18.2   --.sup.6                                             
                          --.sup.6                                        
                                No    --.sup.6                            
                                             --.sup.6                     
______________________________________                                    
 .sup.1 Selectively hydrogenated styreneisoprene block copolymer to give  
 styreneethylene/propylene AB polymer. MW shown in thousands ("Peak" MW). 
 .sup.2 Weight percent block copolymer based on total weight of block     
 copolymer/PPE blend.                                                     
 .sup.3 Notched Izod run on 1/8inch specimens at room temperature.        
 .sup.4 ASTM D1003                                                        
 .sup.5 ASTM D1003                                                        
 .sup.6 Not run because blend extrudate was too low viscosity to pelletize
 and delaminated upon cooling.                                            
 .sup.7 22 wt. percent styrene.                                           
As shown by Run 1, the neat PPE has excellent clarity but low impact strength. As shown by Run 2, a block copolymer having only 22 weight percent styrene improves the impact strength but destroys clarity. As shown by Runs 3-5, clarity is improved compared with Run 2 if the percentage polymerized styrene content is greater. Run 4 with the same block copolymer as Run 3 at a higher level shows that 200,000 total molecular weight is close to the upper acceptable limit for total molecular weight with an AB polymer. As can be seen by comparing Run 4 with Run 6, the poor clarity in Run 4 is the result of the total molecular weight being almost too high, not the 50--50 weight ratio of resinous to rubbery component. Run 7 shows that 12,000 total molecular weight is too low because at this molecular weight clarity is destroyed. Finally, Run 7 shows that the absolute size of the styrene block as well as the percent styrene is important since Run 7 had 50% styrene but gave unacceptable results.
While this invention has been described in detail for the purpose of illustration, it is not to be construed as limited thereby but is intended to cover all changes and modifications within the spirit and scope thereof.

Claims (15)

What is claimed is:
1. A clear composition comprising:
a polyphenylene ether; and
a hydrogenated AB block copolymer having a terminal resinous block derived from styrene or a-methylstyrene and a rubbery block derived from a 4-8 carbon atom conjugated alkadiene, said resinous block having a molecular weight within the range of 23,000-100,000, the total resinous component content of said block copolymer being within the range of 45-58 weight percent;
wherein the total molecular weight of said block copolymer is within the range of 40,000-225,000, said block copolymer being present in an amount within the range of 2-30 weight percent based on the weight of said polyphenylene ether and said block copolymer;
wherein said block copolymer is hydrogenated to the extent that unsaturation is said rubbery block is reduced to less than 10% of the original unsaturation; and
wherein no more than 10% of the original aromatic unsaturation of said resinous block is removed.
2. A composition according to claim 1 wherein said conjugated alkadiene is selected from the group consisting of isoprene and butadiene and said block copolymer is present in an amount within the range of 5-25 weight percent.
3. A composition according to claim 1 wherein said resinous block has a molecular weight within the range of 40,000-80,000, said total molecular weight of said block copolymer is within the range of 60,000-160,000, and wherein said block copolymer is present in an amount within the range of 10-25 weight percent based on the weight of said polyphenylene ether and said block copolymer.
4. A composition according to claim 1 wherein said polyphenylene ether is poly(2,6-dimethyl-1,4-phenylene)ether.
5. A composition according to claim 1 comprising in addition a stabilizer.
6. A composition according to claim 5 wherein said stabilizer is tetrakis (methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)) methane.
7. A clear composition comprising:
a polyphenylene ether;
a hydrogenated AB block copolymer having a terminal resinous block derived from styrene or a-methylstyrene and a rubbery block derived from a 4-8 carbon atom conjugated alkadiene, said resinous block having a molecular weight within the range of 23,000-100,000, the total resinous component content of said block copolymer being within the range of 45-58 weight percent wherein the total molecular weight of said block copolymer is within the range of 40,000-225,000, said block copolymer being present in an amount within the range of 2-30 weight percent based on the weight of said polyphenylene ether and said block copolymer; and
a stabilizer.
8. A composition comprising:
a polyphenylene ether of the formula ##STR2## wherein Q, Q', Q" and Q'", are independently selected from the group consisting of hydrogen, hydrocarbon radicals, halohydrocarbon radicals having at least two carbon atoms between the halogen atom and the phenol nucleus, hydrocarbonoxy radicals and halohydrocarbonoxy radicals having at least two carbon atoms between the halogen atoms and the phenol nucleus, and Q', Q" and Q'" in addition may be halogen with the proviso that if Q', Q" or Q'" are halogen Q and Q' are preferably free of tertiary carbon atoms; and n represents the total number of monomer residues and is an integer of at least 50;
a block copolymer having the general configuration of AB wherein A is a polymerized styrene block and B is an ethylene/propylene block derived from hydrogenation of polymerized isoprene; and
a stabilizer;
wherein said polymerized styrene block has a molecular weight within the range of 23,000-100,000 and constitutes 45-58 weight percent of said block copolymer, wherein said block copolymer has a molecular weight within the range of 40,000-225,000 and wherein said block copolymer is present in said composition in an amount within the range of 2-30 weight percent based on the weight of said polyphenylene ether and said block copolymer.
9. A composition according to claim 8 comprising an addition of stabilizer.
10. A composition according to claim 9 wherein said stabilizer is tetrakis-(methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)) methane.
11. A composition according to claim 10 wherein said hydrogenated polymerized isoprene contains less than 10% of the original unsaturation in the unhydrogenated polymerized isoprene and wherein greater than 90% of the polymerized styrene aromatic unsaturation remains.
12. A composition according to claim 10 wherein said polymerized styrene block has a molecular weight within the range of 40,000-80,000, said molecular weight of said block copolymer is within the range of 60,000-160,000 and wherein said block copolymer is present in an amount within the range of 10-25 weight percent based on the weight of said polyphenylene ether and said block copolymer and wherein said polyphenylene ether is poly(2,6-dimethyl-1,4-phenylene)ether.
13. A composition according to claim 12 wherein said ethylene/propylene block has a molecular weight of less than 150,000.
14. A composition according to claim 8 comprising in addition an amount of polystyrene sufficient to improve processability but less than 10 weight percent.
15. A composition according to claim 8 comprising in addition 2 to 5 weight percent polystyrene based on total weight of said composition.
US08/606,181 1996-02-23 1996-02-23 Clear polyphenylene ether/block copolymer composition Abandoned USH1725H (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/606,181 USH1725H (en) 1996-02-23 1996-02-23 Clear polyphenylene ether/block copolymer composition
PCT/US1997/002641 WO1997031062A1 (en) 1996-02-23 1997-02-20 Clear polyphenylene ether/block copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/606,181 USH1725H (en) 1996-02-23 1996-02-23 Clear polyphenylene ether/block copolymer composition

Publications (1)

Publication Number Publication Date
USH1725H true USH1725H (en) 1998-05-05

Family

ID=24426908

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/606,181 Abandoned USH1725H (en) 1996-02-23 1996-02-23 Clear polyphenylene ether/block copolymer composition

Country Status (2)

Country Link
US (1) USH1725H (en)
WO (1) WO1997031062A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2201449A1 (en) * 1996-04-03 1997-10-03 Shell Internationale Research Maatschappij B.V. High impact polyphenylene ether/styrene resin/elastomer composition

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27145A (en) * 1860-02-14 Mortising-machine
US3231635A (en) * 1963-10-07 1966-01-25 Shell Oil Co Process for the preparation of block copolymers
US3494942A (en) * 1966-11-11 1970-02-10 Takeda Chemical Industries Ltd Total synthesis of 13-hydrocarbon-substituted gonapolyenes
USRE27145E (en) 1969-05-20 1971-06-22 Side-chain
US3634549A (en) * 1969-08-04 1972-01-11 Shell Oil Co Conjugated diene block copolymers having a random copolymer elastomeric block and their hydrogenated counterparts
US3670054A (en) * 1969-10-29 1972-06-13 Shell Oil Co Block copolymers having reduced solvent sensitivity
US3700633A (en) * 1971-05-05 1972-10-24 Shell Oil Co Selectively hydrogenated block copolymers
US3952072A (en) * 1973-11-14 1976-04-20 Mitsubishi Gas Chemical Company, Inc. Stabilized polyphenylene ether type resin composition
US4038343A (en) * 1974-10-18 1977-07-26 Mitsubishi Gas Chemical Company, Inc. Resin composition containing copolyphenylene ether
US4081424A (en) * 1976-06-07 1978-03-28 Shell Oil Company Multicomponent polyolefin - block copolymer - polymer blends
US4184999A (en) * 1978-07-19 1980-01-22 General Electric Company Stabilized polyphenylene ether resin compositions containing hindered phenols
US4196116A (en) * 1977-11-28 1980-04-01 General Electric Company Impact resistant polyphenylene ether compositions containing EPDM rubber-modified alkenyl aromatic resins and hydrogenated diblock copolymers
US4277575A (en) * 1979-10-02 1981-07-07 General Electric Company Impact modifier for thermoplastic compositions
US4282335A (en) * 1979-03-30 1981-08-04 Mitsubishi Gas Chemical Company, Inc. High molecular resin composition
US4309514A (en) * 1979-11-30 1982-01-05 General Electric Company Molding compositions comprising polyphenylene ether and hydrogenated radial block copolymer of vinyl aromatic compound and diene rubber
US4315086A (en) * 1979-08-08 1982-02-09 Sumitomo Chemical Company, Limited Resin compositions
US4322507A (en) * 1980-03-13 1982-03-30 General Electric Company Molded article of polyphenylene ether and hydrogenated block copolymer
US4322506A (en) * 1979-12-26 1982-03-30 Phillips Petroleum Co. Polyphenylene oxide/rubber blending
US4341879A (en) * 1980-03-17 1982-07-27 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition having improved heat stability and impact strength
US4360568A (en) * 1980-05-12 1982-11-23 Phillips Petroleum Company Hot melt adhesive and additive therefor
WO1983001254A1 (en) * 1981-10-02 1983-04-14 Gen Electric Improved high impact thermoplastic compositions containing diblock impact modifier
US4684681A (en) * 1982-01-06 1987-08-04 General Electric Company Flow enhanced polyphenylene ether resin compositions
US4684696A (en) * 1986-03-14 1987-08-04 General Electric Company Impact modified polyphenylene compositions
US4764572A (en) * 1985-07-23 1988-08-16 Shell Oil Company Anionic polymerization process
US4835200A (en) * 1986-12-19 1989-05-30 Shell Oil Company Color stable hot melt adhesive
EP0367188A2 (en) * 1988-11-01 1990-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Thermoplastic polymer composition
EP0409657A2 (en) * 1989-07-21 1991-01-23 Novacor Chemicals (Canada) Ltd. Impact modified thermoplastic blends
JPH0386756A (en) * 1989-08-30 1991-04-11 Asahi Chem Ind Co Ltd Impact-and heat-resistant, transparent resin composition
US5182151A (en) * 1989-07-10 1993-01-26 Sumitomo Chemical Company, Limited Thermoplastic resin composition
US5194530A (en) * 1991-04-15 1993-03-16 Shell Oil Company Termination of anionic polymerization using hydrocarbon terminating agents
US5229464A (en) * 1991-04-29 1993-07-20 Shell Oil Company Epoxidized viscous conjugated diene block copolymers
US5273706A (en) * 1989-11-06 1993-12-28 The Dow Chemical Company Blow molding of thermoplastic polymeric compositions containing a fluorinated olefin
EP0611802A2 (en) * 1988-08-31 1994-08-24 Idemitsu Kosan Company Limited Styrene-based polymer compositions
USH1387H (en) * 1993-11-09 1994-12-06 Shell Oil Company Polyphenylene ether/thermoplastic elastomer block copolymer blends for adhesives and sealants

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27145A (en) * 1860-02-14 Mortising-machine
US3231635A (en) * 1963-10-07 1966-01-25 Shell Oil Co Process for the preparation of block copolymers
US3494942A (en) * 1966-11-11 1970-02-10 Takeda Chemical Industries Ltd Total synthesis of 13-hydrocarbon-substituted gonapolyenes
USRE27145E (en) 1969-05-20 1971-06-22 Side-chain
US3634549A (en) * 1969-08-04 1972-01-11 Shell Oil Co Conjugated diene block copolymers having a random copolymer elastomeric block and their hydrogenated counterparts
US3670054A (en) * 1969-10-29 1972-06-13 Shell Oil Co Block copolymers having reduced solvent sensitivity
US3700633A (en) * 1971-05-05 1972-10-24 Shell Oil Co Selectively hydrogenated block copolymers
US3952072A (en) * 1973-11-14 1976-04-20 Mitsubishi Gas Chemical Company, Inc. Stabilized polyphenylene ether type resin composition
US4038343A (en) * 1974-10-18 1977-07-26 Mitsubishi Gas Chemical Company, Inc. Resin composition containing copolyphenylene ether
US4081424A (en) * 1976-06-07 1978-03-28 Shell Oil Company Multicomponent polyolefin - block copolymer - polymer blends
US4196116A (en) * 1977-11-28 1980-04-01 General Electric Company Impact resistant polyphenylene ether compositions containing EPDM rubber-modified alkenyl aromatic resins and hydrogenated diblock copolymers
US4184999A (en) * 1978-07-19 1980-01-22 General Electric Company Stabilized polyphenylene ether resin compositions containing hindered phenols
US4282335A (en) * 1979-03-30 1981-08-04 Mitsubishi Gas Chemical Company, Inc. High molecular resin composition
US4315086A (en) * 1979-08-08 1982-02-09 Sumitomo Chemical Company, Limited Resin compositions
US4277575A (en) * 1979-10-02 1981-07-07 General Electric Company Impact modifier for thermoplastic compositions
US4309514A (en) * 1979-11-30 1982-01-05 General Electric Company Molding compositions comprising polyphenylene ether and hydrogenated radial block copolymer of vinyl aromatic compound and diene rubber
US4322506A (en) * 1979-12-26 1982-03-30 Phillips Petroleum Co. Polyphenylene oxide/rubber blending
US4322507A (en) * 1980-03-13 1982-03-30 General Electric Company Molded article of polyphenylene ether and hydrogenated block copolymer
US4341879A (en) * 1980-03-17 1982-07-27 Mitsubishi Gas Chemical Company, Inc. Polyphenylene ether resin composition having improved heat stability and impact strength
US4360568A (en) * 1980-05-12 1982-11-23 Phillips Petroleum Company Hot melt adhesive and additive therefor
WO1983001254A1 (en) * 1981-10-02 1983-04-14 Gen Electric Improved high impact thermoplastic compositions containing diblock impact modifier
US4684681A (en) * 1982-01-06 1987-08-04 General Electric Company Flow enhanced polyphenylene ether resin compositions
US4764572A (en) * 1985-07-23 1988-08-16 Shell Oil Company Anionic polymerization process
US4684696A (en) * 1986-03-14 1987-08-04 General Electric Company Impact modified polyphenylene compositions
US4835200A (en) * 1986-12-19 1989-05-30 Shell Oil Company Color stable hot melt adhesive
EP0611802A2 (en) * 1988-08-31 1994-08-24 Idemitsu Kosan Company Limited Styrene-based polymer compositions
EP0367188A2 (en) * 1988-11-01 1990-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Thermoplastic polymer composition
US5182151A (en) * 1989-07-10 1993-01-26 Sumitomo Chemical Company, Limited Thermoplastic resin composition
EP0409657A2 (en) * 1989-07-21 1991-01-23 Novacor Chemicals (Canada) Ltd. Impact modified thermoplastic blends
JPH0386756A (en) * 1989-08-30 1991-04-11 Asahi Chem Ind Co Ltd Impact-and heat-resistant, transparent resin composition
US5273706A (en) * 1989-11-06 1993-12-28 The Dow Chemical Company Blow molding of thermoplastic polymeric compositions containing a fluorinated olefin
US5194530A (en) * 1991-04-15 1993-03-16 Shell Oil Company Termination of anionic polymerization using hydrocarbon terminating agents
US5229464A (en) * 1991-04-29 1993-07-20 Shell Oil Company Epoxidized viscous conjugated diene block copolymers
USH1387H (en) * 1993-11-09 1994-12-06 Shell Oil Company Polyphenylene ether/thermoplastic elastomer block copolymer blends for adhesives and sealants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PCT Search Report dated 27 Jun. 1997. *

Also Published As

Publication number Publication date
WO1997031062A1 (en) 1997-08-28

Similar Documents

Publication Publication Date Title
US4383082A (en) Polyphenylene ether resin compositions containing polyolefin in high amount
US4166055A (en) Composition of a polyphenylene ether, a block copolymer of a vinyl aromatic compound and a conjugated diene and a polyolefin
US3835200A (en) Composition of a polyphenylene ether, a rubber styrene graft copolymer and normally rigid block copolymer of a vinyl aromatic compound and a conjugated diene
US4239673A (en) Composition of a polyphenylene ether, a block copolymer of a vinyl aromatic compound and a conjugated diene and a polyolefin
CA1042588A (en) Composition of a polyphenylene ether and a hydrogenated block copolymer
US4242263A (en) Composition of a polyphenylene ether, a block copolymer of a vinyl aromatic compound and a conjugated diene and a polyolefin
CA1056091A (en) Resin composition containing copolyphenylene ether
EP1151041B1 (en) Semi-transparent blends of polyphenylene ether, styrenic resins, and elastomeric block copolymers
US4252913A (en) Low molecular weight polyphenylene ether compositions
CA1267741A (en) Polyphenylene ether resin compositions containing olefin polymer or copolymer
EP0930340B1 (en) Process for preparing semi-transparent blends of polyphenylene ether and styrenic copolymers
CA1137677A (en) High molecular resin composition comprising polyphenylene ether and an olefin oligomer
DE19815592A1 (en) Polyphenylene ether-polystyrene blend
GB2060656A (en) Self-extinguishing polyphenylene oxide/plasticizer blends
CA1087791A (en) Impact resistant polyphenylene ether resin compositions containing radial teleblock copolymers
EP0133487A2 (en) Polyphenylene ether resin compositions containing polyolefin in high amount
CA2021100A1 (en) Polyphenylene ether compositions having improved flow
USH1725H (en) Clear polyphenylene ether/block copolymer composition
CA1176391A (en) Thermoplastic molding materials including polyphenylene ether and block copolymers of non- elastomeric monovinylaromatic compound and elastomeric conjugated diene
WO1981002020A1 (en) Improve polyphenylene plasticizer blends
JPH01287163A (en) Polyphenylene ether based resin composition
CA2201449A1 (en) High impact polyphenylene ether/styrene resin/elastomer composition
US5856391A (en) Polymer mixture based on polyphenylene ether and talcum
GB1559263A (en) Ether compositions
JPH0689247B2 (en) Impact resistant polyphenylene ether resin composition

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE