US7865252B2 - Upgradeable automation devices, systems, architectures, and methods - Google Patents

Upgradeable automation devices, systems, architectures, and methods Download PDF

Info

Publication number
US7865252B2
US7865252B2 US11/971,487 US97148708A US7865252B2 US 7865252 B2 US7865252 B2 US 7865252B2 US 97148708 A US97148708 A US 97148708A US 7865252 B2 US7865252 B2 US 7865252B2
Authority
US
United States
Prior art keywords
controller
automation
area
peripheral devices
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/971,487
Other versions
US20080183316A1 (en
Inventor
Randy Clayton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUTANI LLC
Original Assignee
Autani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Autani Corp filed Critical Autani Corp
Assigned to AUTANI CORPORATION reassignment AUTANI CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLAYTON, RANDY
Priority to US11/971,487 priority Critical patent/US7865252B2/en
Priority to AU2008207842A priority patent/AU2008207842B2/en
Priority to CA002676538A priority patent/CA2676538A1/en
Priority to PCT/US2008/052055 priority patent/WO2008092082A2/en
Priority to EP08728292A priority patent/EP2118716A4/en
Publication of US20080183316A1 publication Critical patent/US20080183316A1/en
Publication of US7865252B2 publication Critical patent/US7865252B2/en
Application granted granted Critical
Assigned to AUTANI, LLC reassignment AUTANI, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AUTANI CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house

Definitions

  • the present invention is directed generally to automation systems and, more specifically, to automation systems to monitor and control conditions in and/or around buildings and the operation of energy systems.
  • X10 has been the most widely implemented protocol in the home automation industry.
  • X10 is a low-speed, unidirectional PowerLine Communication/Carrier (PLC) solution that uses a home electrical power wiring to communicate with various devices that control the various functions in the home, such as light switches, wall receptacles, thermostats, etc.
  • PLC PowerLine Communication/Carrier
  • Common criticisms of X10 are directed toward its reliability and robustness, as well as the level of user-friendliness. As such, these systems have been left to hobbyist and those people willing to pay professional contractors to install and/or maintain the systems.
  • Other PLC protocols have been developed to address the criticisms of X10, which have enhanced performance and user experience, but have not substantially broadened the market for these products.
  • Zigbee is open standard based on IEEE 802.15.4
  • Z-Wave is a proprietary standard developed by Zensys, Inc., the current sole source for the chips that implement the protocol.
  • media center systems for the distribution and control of audio and video signals throughout the structure, which also include some home automation functionality.
  • the media center provides control over various automation devices deployed in the structure and typically be accessed locally by a computer or remotely via the Internet.
  • a universal remote control is typically provided, which communicates with the media center, which, in turn, communicates with the audio, video, and automation devices.
  • gateway controller that is controlled from a remote network operations center (“NOC”) via a network connection into the structure.
  • NOC remote network operations center
  • the gateway controller controls devices in the structure based on information provided by the NOC and provide status information to the NOC.
  • a remote control is provided to allow for control of the individual automation devices without having to reprogram the device through the NOC.
  • Non-residential energy consumers can employ highly sophisticated systems for controlling their heating, ventilation, and air conditioning (“HVAC”), as well as for access control and information technology. Otherwise, these consumers are also generally limited to the use of programmable thermostats and motion controlled lighting.
  • HVAC heating, ventilation, and air conditioning
  • Improved automation solutions are required that overcome the various limitations associated with prior art solutions to enable high quality, cost effective, and scalable automation solutions for homes and businesses that can applied by the end users to their particular automation needs.
  • the present invention provides, among other things, a scalable automation system that can be deployed as one or more independent systems at various times, which can later be consolidated and operated by a centralized automation controller either as independent systems or as one consolidated system.
  • the automation system of the present invention implements a hierarchical approach to the control platform that provides the end users with a wide range of implementation schemes allowing systems embodying the present invention to be tailored to the specific application and purpose of the user.
  • the present invention can be implemented using various wireline communication platforms, e.g., powerline, twisted pair, coax, and fiber, and protocols, as well as wireless technologies employing Zigbee, Z-wave, Bluetooth, and/or other proprietary and/or open standard, e.g., IEEE 802.x, communication protocols.
  • wireline communication platforms e.g., powerline, twisted pair, coax, and fiber, and protocols
  • wireless technologies employing Zigbee, Z-wave, Bluetooth, and/or other proprietary and/or open standard, e.g., IEEE 802.x, communication protocols.
  • automation components generally can be grouped into three different types, automation controller, remote controller, and peripheral, or controlled, device (or “peripherals”), which have different roles in the system, such as master or command (command a function be performed), slave or function (perform a function), and peer (master or slave depending on function).
  • master or command command a function be performed
  • slave or function perform a function
  • peer master or slave depending on function
  • different component types can provide command functionality, as well as perform multiple roles at one time or different times, which provides significant benefits from an implementation standpoint, as will be discussed herein.
  • the automation and remote controllers are peers from at least an interface perspective.
  • the controllers are generally masters of the peripherals, making the peripherals slaves to the controllers, and the peripherals are generally peers to other peripherals.
  • Peripheral devices in the present invention are generally implemented in a function role communicating directly with remote controllers and/or automation controllers depending upon the system configuration and responding to their commands to perform a function, which may include one or more steps, process, and/or actions.
  • the remote controller will be used to communicate directly with and control peripheral devices.
  • Common peripheral devices include electrical wall and device receptacles and jacks, on/off, contact, and dimmer switches, visual (e.g., motion), audio, material (smoke, humidity, CO 2 , etc.), electromagnetic wave (RF, IR, UV, etc.), and thermal sensors, thermostats, video equipment (e.g., cameras), audio equipment (e.g., microphones, speakers), computer and other office equipment and peripherals, etc.
  • Automation controllers are generally command components. While in many embodiments the automation controller may only serve in a command role, various configurations could implement automation controllers with in a function role, in lieu of, or in addition to the command role. For example, while in most applications it would be expected that the automation controller would be capable of controlling all of the peripheral devices in the system; it may be desirable to incorporate multiple automation controllers into the system to provide additional functionality at various points in the building that is being automated. Also, if the automation controller includes web browsing capability, video signal reception, communication equipment hook-up, etc., it may be desirable to have an automation controller deployed at a number of locations within the building, in lieu of a computer and a traditional television set top box. It may, in turn, be desirable to control all of the automation controllers from one or more centralized automation controllers.
  • Remote controllers in the present invention can serve as command or function components assuming a master, slave, or peer role depending upon the system configuration and functionality.
  • the system will be installed with only a remote controller and one or more peripheral devices.
  • the remote controller will provide command authority and control over the operation of the peripheral devices.
  • the automation controller may assume command authority over some or all of the peripheral devices, with the remote controller assuming a command role with respect to the automation controller for those peripheral devices that were assumed.
  • remote controllers can be employed in the present invention.
  • one type of remote controller may be able to provide command and/or slave functionality, while a second type of remote control may be able to serve solely to send commands to the automation controller, e.g., a standard remote control.
  • the different types of remote controllers may enable different levels of functionality and feedback to the user.
  • the remote controller can incorporate functionality that allows it to operate in multiple systems.
  • either type of remote controller can also serve as a “universal remote” controlling devices other than the automation peripheral devices.
  • the remote controller may be a master and/or peer in a home automation system communicating using the Zigbee and/or Z-wave protocols or other open or proprietary standard protocols with automation controllers and/or peripheral devices, while also supporting infrared (IR) or radio frequency (RF) signal transmission for line of sight (LOS) and/or non-line of sight (NLOS) control of audio and/or video equipment, such as TVs, DVD and CD players/recorders, DVRs, PVRs, and VCRs.
  • IR infrared
  • RF radio frequency
  • the system may be in operation without an automation controller using the remote controller to control a plurality of peripheral devices.
  • the remote controller recognizes that there is not an associated automation controller, so it operates in the first state, directly communicating with and controlling the peripheral devices.
  • the remote controller recognizes the automation controller and operates in a second state communicating with the automation controller, instead of directly with the peripheral devices. If the associated automation controller becomes unassociated with the remote controller, then the remote controller will revert to the first state and control the peripheral devices directly.
  • the automation controller and a remote controller can provide different levels of control and functionality to the system.
  • the remote controller may generally be able to control the on/off/dim state of a limited number of peripheral devices and provide some level of feedback, which will depend upon the type of remote controller, e.g., whether or not it has a display.
  • the remote controller does not have a display, but depicts the on/off/dim state of the peripheral device by lighting the key associated with that device.
  • display remotes, remote monitors, or touch pads can provide individual device status displays or a device list that can be scrolled.
  • the displays and touch pad can be integrated in the remote controller or separate components that communicate with the remote controller directly or indirectly.
  • the remote controller may be configured to provide device status, irrespective of whether it provides direct or indirect control of a peripheral device.
  • the system is operated using only the automation controller and the peripherals without a remote controller.
  • the automation controller will be accessible via one or more interfaces.
  • a display and data entry facility provided directly on the controller, a television or other monitor can be used for display with data entry on the controller or via an external device, such as a keyboard, etc.
  • Other devices such as computers, can be used to access the automation controller for the purposes of data access and input.
  • Other computers can be configured in a client-server architecture with the controller for data access and entry.
  • the controller functionality could be distributed among multiple controllers as discussed above.
  • Additional devices can be employed to provide additional functionality or robustness to the system.
  • storage devices could be employed to off-load data collected by the automation controller. Access to the storage devices could be achieved via the automation controller or directly by another computer, which can provide analysis capability off-line from the automation controller.
  • the automation controller can provide enhanced functionality concerning the automation system, such as Internet connectivity, remote monitoring (i.e., any computer, anywhere monitoring, advanced scheduling for peripheral devices (turn on different lights on different days of the week for security purposes), periodic and continual monitoring of peripheral devices (confirm children's light and TV are off), event correlation from peripheral device feedback (turn off lights if no one in the room for five minutes), peripheral device fault information (e.g., a light bulb burns out, so there is no current flow irrespective of the state of the peripheral device), event notification (e.g., email, text message, audible or visible signal, or electronically generated phone call, etc.), access control and monitoring to one or more parties concerning a detected event.
  • remote monitoring i.e., any computer, anywhere monitoring, advanced scheduling for peripheral devices (turn on different lights on different days of the week for security purposes), periodic and continual monitoring of peripheral devices (confirm children's light and TV are off)
  • event correlation from peripheral device feedback turn off lights if no one in the room for five minutes
  • peripheral device fault information
  • the automation controller can also provide additional functionality beyond the automation system. For example, it can provide a web interface for browsing or a control system for communication equipment used to provide services, such as plain old telephone service (POTS), voice over Internet Protocol (VoIP), video, audio, and data.
  • POTS plain old telephone service
  • VoIP voice over Internet Protocol
  • video audio
  • data data
  • various software applications can be run and/or files can be stored and sent to/from the automation controller.
  • Video applications can be included, such as video recording, audio/video broadcast or stream reception and codec functions. It could also provide modem, router, and/or switch capabilities, if desired.
  • the automation controller can be in a housing that includes one or more peripheral devices.
  • the automation controller housing can include one or more controlled electrical receptacles.
  • the inclusion of peripheral devices within the automation controller housing provides a cost effective and space efficient solution. Communication between the automation controller and the peripheral devices within the housing probably is most cost effectively implemented via circuitry internal to the housing; however, the peripheral devices could employ a transceiver and communicate in the same manner as other peripheral devices.
  • peripheral device transceivers typically have two receptacles per outlet.
  • each receptacle is considered a different controlled device.
  • the wall outlet can be considered one peripheral device with each receptacle being a sub-device. Both receptacles communicate with the controller via a common transceiver.
  • One of ordinary skill can expand this concept, for example, to provide a multi-receptacle, plug strip that shares a communication path (transceiver) to/from the controller.
  • the automation controller can employ integrated or external display capability.
  • the automation controller can be configured to display information on one or more television screens and/or computer monitors.
  • the automation controller may have an integrated display, which may or may not be a touch screen.
  • the system includes both stationary and mobile peripheral devices.
  • the mobile devices can be used for security and safety purposes, such as theft prevention and tracking the location of children and disabled adults, as well as pets and objects.
  • the system detects the location of the mobile device periodically and/or on-demand and can employ information concerning the mobile device provided by stationary devices.
  • peripheral devices can be configured to communicate with other systems.
  • a peripheral device such as a plug strip/surge protector, may include communication capability with a computer via USB cable or other connection.
  • the peripheral device could send a system message to the computer that power was going to be interrupted and for the computer to perform a graceful shutdown. It could also send a signal that initiates the booting up of the computer.
  • Embodiments of the present invention also may include a limited purpose remote controller (“LPRC”), which can be a wall mounted, free-standing, or handheld device.
  • the LPRC can be embodied as a configurable on-off or dimmer switch that can be used to control one or more peripheral devices directly and/or via the automation controller or the remote controller.
  • the LPRC can be configured to control one light or one electrical receptacle in a room similar to a traditional light switch.
  • the LPRC may be configured to control a group of lights and/or other peripheral devices.
  • the LPRC is reconfigurable, such that the automation instruction created by the LPRC upon actuation can be varied as desired by the user. For example, the lighting configuration can be varied, if a room is rearranged and audio and video components can be added and subtracted from the control of the LPRC as desired.
  • the automation system can be deployed over a wide range of applications from providing basic automation and control functionality with individual peripherals in the home or workplace to orchestrating the operation of the peripherals to provide comprehensive energy, automation, and access management solution.
  • the automation system will perform integrated energy management of part or all of a facility.
  • a user in a business setting may establish a multi-level energy management structure.
  • the user establishes day and time of day settings for the heating, ventilation, and air conditioning (“HVAC”) equipment/units and systems.
  • HVAC heating, ventilation, and air conditioning
  • this will involve setting a first temperature range for hours of operation and a second temperature range for hours of non-operation.
  • a second level of control may be implemented at the work space and common area level.
  • the temperature of a work space may be controlled depending upon whether or not a person is present at the facility or whether a meeting is scheduled or people are present in a workspace, such as a conference room.
  • the automation controller provides access control and/or monitoring or interacts with an access control/monitor system and a person's work space or part of a residence is not supplied electricity unless the person is present.
  • the automation controller Upon detection of a person entering a facility, the automation controller would turn on the supply of power to a person's work space and adjust the temperature of the work space accordingly.
  • the automation controller could begin powering up computer equipment and peripherals, so the equipment is ready to use when a person's reaches their work space. When a person leaves a work space, the automation can direct the return of the work space to its non-operational set points.
  • the automation controller can coordinate the different energy management activities within a facility and/or work space.
  • a work space environment will be defined at least in part by the temperature and lighting intensity.
  • the automation controller can be configured to balance the solar impact, i.e., light and heat provided by sunlight, within an area with the light and heating/cooling provided by the building systems to minimize the energy cost and/or consumption.
  • the automation controller could control various lights, HVAC vents and/or units, and window blinds in a coordinated manner to reduce energy consumption.
  • the automation controller could interact with an area controller that could be coordinating the peripherals within an area.
  • the area controller could include or be associated with various sensors, such as temperature, light intensity, and motion, in the area, which provide local information used to control the area environment.
  • FIGS. 1-5 b show embodiments of automation systems
  • FIGS. 6 a - 7 show embodiments of automation controller
  • FIGS. 8 a - 9 b show embodiments of peripheral devices
  • FIGS. 10 a - b show embodiments of a system including at least one mobile peripheral device and,
  • FIGS. 11-16 show embodiments of LPRCs.
  • FIG. 1 depicts an automation system 10 embodiment of the present invention.
  • the system 10 includes various components, such as an automation controller 12 , a remote controller 14 , and one or more peripheral devices 16 1-n .
  • the automation controller 12 has two way communications with the peripheral device 16 (as shown by the solid arrows). It also has at least one way communication with the remote controller 14 , and, optionally two way communications with the remote controller 14 (as indicated by the dashed arrows).
  • the remote controller 14 can have optional one or two way communications with one or more of the peripheral devices 16 1-n
  • Wired communication can make use of the power lines, local area networks, or direct links between communication ports, such as USB, RS-232 and 485, etc.
  • Wireless communications can employ one or more wireless technologies, such as Zigbee, Z-wave, Bluetooth, and/or other proprietary and/or open standard, e.g., IEEE 802.x, communication protocols transmitting signals in the infrared and/or radio frequency spectrum.
  • Zigbee and Z-wave are protocols that have been developed specifically for applications, such as automation, where some of the devices used in the system, such as those operating on battery power, may require low power, reliable, non-line of sight communication.
  • the automation controller 12 may serve as a peer or slave to the remote controller 14 depending upon the desired level of functionality and communication between the controllers. For example, when one way communication is provided from the remote controller 14 , the automation controller 12 will act only as a slave performing an operation in response to a command/input from the remote controller 14 . In embodiments providing for two way communication, the controllers may serve as peers or as a master and slave depending upon the configuration of the system 10 . For example, if the only communication from the automation controller 12 to the remote controller 14 is to send information requested by remote controller 14 , then the automation controller 12 will operate as a slave to the command/input sent by the user via the remote controller 14 . Conversely, if the automation controller 12 can request/command certain actions be taken by the remote controller 14 , such as report a status, then the controllers will most likely be operating in a peer relationship.
  • Embodiments based on FIG. 1 may include one or two way communication between the remote controller 14 and one or more of the peripheral devices 16 .
  • the remote to peripheral communication can provide primary, secondary, or alternate communications.
  • the remote controller 14 may be configured merely to serve as a repeater, and thus a peer to peripheral devices 16 , for communications between the automation controller 12 and the peripheral devices 16 .
  • the remote controller 14 may send a command to the peripheral device 16 that is redundant of command sent by the automation controller 12 .
  • the remote controller 14 may send the only command to the peripheral device 16 .
  • the automation controller 12 may be configured to receive this command from the remote controller 14 or the remote controller 14 may send a different command, such as a generic change of state command to the automation controller 12 .
  • the automation controller 12 could 1) query the peripheral devices 16 immediately or at a predetermined time to determine its operational state or 2) await a communication from the peripheral devices 16 directly, and/or indirectly via the remote controller 14 , indicating their state.
  • FIG. 2 shows embodiments of the system 10 including the automation controller 12 , at least one remote controller 14 , a first group of one or more peripheral devices 16 a1-an and a second group of one or more peripheral devices 16 r1-rn .
  • the automation controller 12 communicates directly with the remote controller 14 and the first group of one or more peripheral devices 16 a1-an . However, it does not communicate directly, and perhaps not at all, with the second group of one or more peripheral devices 16 r1-rn .
  • communication and control of the second group of one or more peripheral devices 16 r1-rn is performed via the remote controller 14 .
  • the automation controller 12 will not associate or monitor some or the entire second group of peripheral devices 16 r1-rn .
  • the automation controller 12 will monitor some or the entire second group of peripheral devices 16 r1-rn , as the second group provides status information to the remote controller 14 .
  • the automation controller 12 will indirectly control some or the entire second group of peripheral devices 16 r1-rn , via commands sent to the remote controller 14 .
  • the automation controller 12 may also monitor the second group of peripheral devices 16 r1-rn , via the remote controller 14 , which can serve as a repeater or to provide additional information along with the monitoring information to the automation controller 12 .
  • the architecture provided in FIG. 2 provides additional flexibility in tailoring the system 10 for a specific application.
  • the second group of peripheral devices 16 r1-rn may be implemented using a different communication scheme, which is only implemented on the remote controller 14 .
  • the remote controller 14 may be capable of communicating using both IR and RF frequencies, whereas the automation controller 12 may only be implemented using RF frequencies, or different protocols may be implemented on the remote controller 14 and the automation controller 12 .
  • the remote controller 14 may serve to translate the information being provided from the second group of peripheral devices 16 r1-rn to the automation controller 12 .
  • FIG. 3 shows embodiments of the present invention, in which the remote controller 14 is used to control one or more peripheral devices 16 1-n , without an automation controller 12 in the system 10 .
  • the remote controller 14 can be used to implement various functions on the peripheral devices 16 depending upon the functionality imparted to the remote controller 14 .
  • the processing power, storage capability, user interface, input/output capability, etc. can be tailored to control various numbers of peripheral devices 16 and impart various levels of functionality to the system 10 in the absence of the automation controller 12 .
  • the remote controller 14 is configured to communicate directly with the peripheral devices 16 using a suitable protocol, such as Zigbee, Z-Wave, etc., in a first state to send and receive information regarding the function of the peripheral device 16 .
  • the remote controller 14 is further configured to operate in a second state in the presence of an associated automation controller 12 , where the remote controller 14 communicates directly with the automation controller 12 , instead of the peripheral devices 16 . If the automation controller 12 becomes unavailable, either because it is removed from the system 10 , either physically or via software, or is not working properly, the remote controller 14 will recognize that the automation controller 12 is no longer present, or more generally unassociated with the remote controller 14 , and operate in the first state.
  • the system 10 may be in operation without an automation controller 12 using the remote controller 14 to control a plurality of peripheral devices 16 .
  • the remote controller 14 recognizes that there is not an associated automation controller 12 , so it operates in the first state, directly communicating with and controlling the peripheral devices 16 .
  • the remote controller 14 recognizes that the automation controller 12 and operates in a second state communicating with the automation controller 12 , instead of directly with the peripheral devices 16 .
  • the system 10 can be configured so that the remote controller 14 continues to communicate directly with the second group of peripheral devices 16 , while communicating via the automation controller 12 with the first group of peripheral devices 16 .
  • the ability of the remote controller 14 to move between the first and second states can be manually and/or automatically implemented.
  • a hardware switch or software defined key can be used to toggle manually between the first and second states.
  • remote controllers 14 may be desirable to keep remote controllers 14 unassociated with automation controller 12 that are detected.
  • the automation controller 12 may not belong to the end user.
  • the end user may want to partition a structure to include separate system 10 , which may or may not report to a single system for oversight and control.
  • the association of an automation controller 12 that is introduced into an existing system 10 being controlled by the remote controller 14 can be performed in a number of ways.
  • the automation controller 12 can scan its coverage area and develop a list of peripheral devices 16 and remote controllers 14 that can be associated with the newly introduced automation controller 12 .
  • the remote controller 14 can transfer system information to the automation controller 12 , such as a listing of currently associated peripheral devices 16 , current settings, and activity schedules.
  • the automation controller 12 and the remote controller 14 will continue to operate in a peer relationship, even though the remote controller 14 may not be communicating directly with the peripheral devices 16 .
  • the peer to peer communication would be used by the automation controller 12 to update the remote controller 14 with the latest settings and other information for the peripheral devices 16 that the remote controller 14 would communicate with directly and control, if the automation controller 12 became unassociated with the system 10 during operation.
  • peer to peer communication between the remote controller 14 and the automation controller 12 may be implemented to enable additional system functionality.
  • persistent storage may be included in the remote controller 14 and the automation controller 12 can be configured to send information concerning the setup and/or operation of the peripheral devices 16 and the automation controller 12 to the remote controller 14 as a data back-up, in the event that the automation controller 12 experiences an outage where data is lost.
  • the automation controller 12 could be used to change the peripheral devices 16 that will be controlled by the remote controller 14 , if the automation controller 12 becomes unassociated with the system 10 .
  • the remote controller 14 acts as an autonomous device, i.e., without a user inputting information.
  • the sleep/low power mode will extend the battery life.
  • a holder, or cradle can be provided for the remote controller 14 that can be used to provide various levels of functionality.
  • the holder may include a power outlet to charge a rechargeable battery.
  • FIG. 4 depicts embodiments of the remote controller 14 , in which the remote controller 14 is used to communicate to the peripheral devices 16 via a first signal type, such as Zigbee, and to one or more secondary peripheral devices 18 via a second signal type, such as proprietary Infrared (IR) and/or RF signals.
  • the embodiments enable the remote controller 14 also to serve as a traditional “universal remote” for typical secondary peripheral devices 18 , such as audio and video analog and digital players and recorders (e.g., CD, DVD, VCR, cassette, etc.), televisions/monitors, computers and peripherals, such as MP3 players, blinds, fans, and lights.
  • FIG. 5 a shows system 10 embodiments that include connectivity to various input, output, and monitoring devices (“input/output devices”) via an external network, such as the Internet, PSTN, etc.
  • Access to the system 10 can be enabled from a variety of devices, such as computers, mobile and fixed phone lines, personal digital assistants (PDA), etc., as well as from third party service provider networks for system monitoring and control.
  • a computer can communicate directly with the automation controller 12 or via one or more networks including personal, local, metro, and wide area, public and private, intranet and internet networks.
  • Access via the external network provides the end user with the capability to monitor and configure the system 10 remotely. For example, it may be desirable to change the temperature in the house before returning home, or to receive a text message letting you know that some event, such as a door opening, a smoke or CO detector sounding, tagged item/mobile device moving across a threshold, etc.
  • the automation controller 12 also can be deployed in client-server architecture, in which one or more computers, acting as clients, provide data entry and access to the controller 12 .
  • the client can also interact with storage devices supporting data storage for the system 10 either directly or via the automation controller 12 .
  • the automation controller 12 functionality can be distributed among a number of automation controllers 12 with oversight from a master controller 12 , which may further include client computers for data entry and access. Additional devices also can be employed to provide additional functionality or robustness to the system.
  • storage devices could be employed to off-load data collected by the automation controller 12 . Access to the storage devices could be achieved via the automation controller 12 and/or directly by another computer, which can provide analysis capability off-line from the automation controller 12 .
  • client computers can run planning and analysis software tools that enable the user view detailed and consolidated usage information. Planning activities, such as evaluating the impact of varying operational hours or replacing various electrical systems can be investigated using historical data from the system 10 .
  • FIGS. 6 a and 6 b depict various embodiments of the automation controller 12 .
  • the automation controller 12 will provide system oversight, coordination, and control of the peripheral devices 16 and the remote controller 14 .
  • Access to the automation controller 12 can be provided internally by the controller and/or external to the controller.
  • the automation controller 12 may be fully autonomous with data entry and access capabilities provided directly on it. In other embodiments, data entry and access to the automation controller 12 may be completely external.
  • the automation controller 12 may include a keypad and/or a visual display to enter and view information.
  • a touch screen interface may be included to combine the data entry and viewing functionality.
  • the data entry and viewing functionality will be provided outside of the automation controller 12 via a monitor and/or television screen with data entry via the remote controller 14 or support a display and keypad similar to a stand-alone computer.
  • the front of the automation controller 12 may also include an IR detector for those embodiments that support receiving IR signals.
  • the IR transmission capability of the remote controller 14 can be employed to control the automation controller 12 , instead of using the RF transmission link.
  • the automation controller 12 can support the use of a more traditional remote that transmits only using IR signals.
  • FIG. 6 b depicts an exemplary back view of the automation controller 12 .
  • It will generally include a variety of communication ports and transmitters and receivers for the various transmission protocols that are supported. For example, telephone, Ethernet, coax, and/or fiber connections can be provided. USB, RS-232 and 485 and other access ports and monitor connections. Transmitters and receivers for the various wireless transmission protocols are also included.
  • a Zigbee or Z-wave transmitter and receiver can support a first signal type (ST 1 ) and one or more 802.x transmitters and receivers can support networking via a second signal type (ST 2 ).
  • the automation controller 12 will also include an interface to support power line communications with peripheral devices 16 that communicate via power line protocols, such as X10.
  • the automation controller 12 will generally include one or more storage devices, as well as one or more processors, depending upon the particular capability being implemented on a particular automation controller 12 embodiment. In general, the automation controller 12 will provide most monitoring, coordination, control, and record keeping functions for the system 10 . The desired system size and capabilities will drive the level of functionality in the embodied in the automation controller 12 .
  • the automation controller 12 will typically connect to external power.
  • the automation controller 12 may also include a battery back-up, in case of an external power failure, depending upon the level of reliability desired. While the automation controller 12 could be operated on battery power only, the functionality of the controller 12 generally warrants a continuously available (excepting failures) power source.
  • the automation controller 12 will generally provide menu-driven access to control the peripheral devices 16 .
  • the capability to check, change and schedule a change in status and/or settings for the peripheral devices 16 is generally provided.
  • the automation controller 12 generally stores the system inventory and settings and may also be configured to store that information externally, such as in a computer or mass storage device, or at an off-site network operations center. The back-up of system information can be performed manually or automatically.
  • Discovery and association of automation controllers 12 , remote controllers 14 and peripheral devices 16 with the automation controller 12 and/or remote controller 14 can be a manual, automatic, or semi-automatic process.
  • the automation controller 12 will scan its operational range to discover various system components including other automation controllers 12 , remote controllers 14 and peripheral devices 16 with which it can be associated.
  • the automation controller 12 can update its potential inventory list each time it detects a new components.
  • the automation controller 12 can employ various discovery methods. For example, it can “ping” all the components in its transmission range to send discovery information to the automation controller 12 to ensure a timely and complete inventory is established. The automation controller 12 can also “listen” for signals from components in its reception range, which can be compared to its inventory lists derived from pinging or otherwise. The automation controller 12 can be configured to continue discovery via pinging, listening, or otherwise until a consistent inventory list is produced. Alternatively, it can provide an inventory list of components that can be confirmed via multiple discovery methods, which can be used to define its operational range. It can also identify components that were discovered using one method, but not confirmed via another method.
  • the component may be within the reception range of the automation controller 12 , but not the transmission range for one or more reasons, such as shielding, partial component failure, etc.
  • Association of the peripheral devices 16 and remote controllers 14 with the automation controller 12 can be performed automatically as part of the inventory process. However, it is often times more desirable, even though it is more work, to have the association process be separate from inventory to ensure that only desired associations are made.
  • the association procedure for components with the system 10 can involve interaction between the component and the controller as part of the procedure and/or the user can associate the component.
  • the procedure may be limited to adding a component identifier/address to a system database or may be more involved, such as configuring the component to assume particular operational states and/or roles in the network following the association.
  • the peripheral devices 16 and remote controllers 14 may have an associate button, switch, key, etc., that must be activated during association.
  • each device may have an association code or device identifier, such as a MAC address, that is entered via the automation controller 12 and/or the remote controller 14 as part of the association process without requiring communication between the controller and the component. The component will then respond to any controller that uses the proper address.
  • a remote controller 14 can be used to initiate and/or perform the association or commissioning process using line of sight communications, such IR, in lieu of or combination with non-line of sight communications, e.g., Zigbee.
  • line of sight communications such as IR
  • non-line of sight communications e.g., Zigbee.
  • the use of line of sight communication significantly reduces the probability of a peripheral device or other component being associated with a wrong network in deployment scenarios where systems have overlapping operational ranges, such as in multi-tenant facilities, and does not require physical interaction with the components.
  • the remote controller 14 is configured to provide a line of sight signal, i.e., an IR signal, to the peripheral device 16 placing it in an association mode, where it will become associated with the automation controller 12 and/or with the remote controller 14 .
  • the peripheral device 16 will remain in an association state until an automation controller 12 and/or remote controller 14 detects its presence and completes the association process.
  • the detection of the peripheral device 16 by the automation controller 12 can be initiated by the remote controller 14 and/or peripheral device 16 .
  • the remote controller 14 can be configured to send an association signal to the automation controller 12 , in addition to the peripheral device 16 .
  • the remote controller 14 may be desirable for the remote controller 14 to send a code/key to the automation controller 12 and peripheral devices 16 that is used in the association process to prevent the inadvertent initiation of the association process with another automation controller 12 within the range. If the association process is not initiated on the automation controller 12 by the remote controller 14 , it may be desirable for the remote controller 14 to provide a code/key to the peripheral device 16 for identification in the association process, when it is detected by the automation controller 12 .
  • the automation controller 12 can be configured to associate only with peripheral devices 16 and/or other automation controllers 12 for which a physical address, such as a MAC address, or code/key has been entered into the automation controller 12 .
  • the automation controller 12 can also be configured to associate with new components when it is in an association mode as discussed above, as opposed to trying to associate automatically with any component it detects during operation.
  • One such embodiment of non-overlapping ranges is described below with respect to geographically diverse systems that share peripheral devices 16 .
  • the association between peripheral devices 16 and automation controllers 12 can be performed by either or both devices 16 and controllers, using identifiers and signaling prompts, as may be appropriate.
  • Peripheral devices 16 in the present invention are generally implemented in a function role communicating directly with remote controllers 14 and/or automation controllers 12 depending upon the system configuration and responding to their commands to perform a function, which may include one or more steps, process, and/or actions.
  • Common peripheral devices 16 include electrical wall and device receptacles and jacks, on/off, contact, and dimmer switches, visual (e.g., motion), audio, material (smoke, humidity, CO, radiation, etc.), electromagnetic wave (RF, IR, UV, visible light, etc.), shock, and thermal sensors, thermostats, video equipment (e.g., cameras, monitors), audio equipment (e.g., microphones, speakers), blinds, fans, communication equipment used to provide services, such as plain old telephone service (POTS), voice over Internet Protocol (VoIP), video, audio, and data, etc.
  • POTS plain old telephone service
  • VoIP voice over Internet Protocol
  • the peripheral devices 16 can also be used to obtain data from other devices for evaluation, referred to herein as monitoring peripheral devices 16 .
  • a sensor or other peripheral device 16 can configured to monitor signals output by a piece of equipment or other device and send the signals along with the notification of the signaling event.
  • the signals can be error codes or other performance attributes in various forms, such as visual (flashing lights), audible (beeps), and/or electrical signals that are detected by the devices 16 and forwarded by the system 10 to the relevant parties, if desired.
  • light pattern changes on LEDs (flashing, color, etc.) on computer equipment could be converted to an error code for evaluation or the audible signal from a smoke detector could be evaluated to distinguish low battery alerts from actual smoke detection.
  • Data from monitoring peripheral devices 16 can be used as primary data or as data to corroborate data received from other peripheral devices 16 within the system 10 .
  • the system 10 can be configured such that the automation controller 12 receives a smoke detected alarm from the smoke detector peripheral device 16 and a corroborating alarm from an audible monitor peripheral device 16 that detected the smoke detector audible alarm.
  • the peripheral devices 16 can operate on external and/or battery power depending upon the requirements of a particular device and the accessibility of external power. For example, electrical receptacles may not be required to transmit and receive information frequently, so they could be operated on battery power. However, electrical receptacles are connected in an external power circuit, so those devices will generally be operated using external power, because it is available. Similarly, peripheral devices 16 that are communicating with the automation controller 12 via a powerline communication protocol will be configured generally to use external power as those devices will be connected by the external power lines. If the function of the peripheral devices 16 is something that should remain operational, even when there is an external power outage, then it may be desirable to provide battery power as the primary or secondary power source to the device.
  • the peripheral devices 16 can be controlled individually by the controllers or in groups to create “scenes” or to place a structure in a particular operational state, such as set the air and water temperatures, disabling/enabling the door alarms, turning on/off computer equipment and other electrical devices, and unlocking/locking the garage and other doors when a business opens/closes or a person leaves/returns to a residence.
  • the close proximity peripheral devices 16 can provide a low cost means for controlling devices, which are in close proximity to the automation controller 12 .
  • the automation controller 12 will be placed in close proximity to audio, video, and computer equipment, as well as lighting, which can be controlled via the low cost proximate peripheral devices 16 .
  • FIG. 8 a shows peripheral device 16 embodiments, in which a plurality of peripheral devices 16 form a control group, which share a common communication interface (transmitters, receivers, etc.) to the controllers 12 and/or 14 .
  • the sharing of the communication interface, and in some instances, some or all of the processing capability, provides for lower cost peripheral devices 16 .
  • each of the individual peripheral devices 16 1-n the control group is identified as a separate peripheral device 16 .
  • the entire device 16 is identified as one peripheral device 16 with sub-devices 16 1-n .
  • the identification of the peripheral devices 16 as individual devices or sub-devices is generally left to the skilled artisan.
  • instructions can be given to the device as a whole, which can be left to the device itself to implement.
  • peripheral device 16 can be instructed to turn off, which causes the peripheral device 16 to turn off sub-devices 16 1-n .
  • instructions to turn off are sent to each of the devices 16 1-n for action.
  • FIG. 8 a embodiment which is shown as a plug strip, is purely for exemplary purposes, as the common interface/processing architecture can be implemented for any application in which the devices are in relatively close proximity or can communicate effectively. For example, track lighting, holiday decorations, etc. can be implemented using this structure.
  • the peripheral devices 16 also can be configured to communicate with other secondary devices 18 or systems.
  • the peripheral device 16 can include communication capability with a computer via USB, Ethernet, serial or parallel port or other connection, which can be wired or wireless.
  • the peripheral device 16 could send a system message to one or more secondary devices, such as a computer, that power was going to be interrupted and for the computer to perform a graceful shutdown. It could also send a signal that initiates the booting, or starting, up of the computer.
  • the peripheral device 16 is embodied as a plug strip including a power cord for plugging into a power source, such as a standard electrical receptacle, and a plurality of electrical receptacles controlled at least in part by a common processor and using a common transmitter and receiver to communicate with the automation controller 12 via a first signal type, such as Zigbee, Zwave, PLC, 802.x, etc., and a computer via a secondary signal type, USB, etc., to send power up and power down signals to the computer.
  • the common processor could be used to control all functions associated with the plurality of electrical receptacles or additional processors could be used with one or more of the receptacles.
  • the peripheral device 16 could further include an energy storage device, i.e., battery, which can be configured to retain sufficient energy to power 1) the peripheral device 16 to signal the computer or other secondary device 18 and 2) the computer or other device for a sufficient period to allow a graceful shutdown, in the event of a primary power failure to the computer or other secondary device 18 .
  • an energy storage device i.e., battery
  • One of ordinary skill will appreciate that many computer and peripheral equipment types include APIs and other signaling protocols that enable the shutdown, restart, and turn-up of the equipment.
  • FIG. 9 a shows other embodiments of peripheral devices 16 of the present invention.
  • one or more peripheral devices 16 are located outside of the operational range (shown as a dashed line) of the automation controller 12 and/or the remote controller 14 , such as devices 16 2-n in FIG. 9 a , referred to as “outside devices”.
  • the peripheral device 16 is configured to receive and transmit information to and from the outside devices 16 2-n .
  • the relationship between the outside devices and the automation controller 12 can be implemented in various fashions, such as individual devices or sub-devices as discussed with respect to FIG. 8 a .
  • the outside devices may or may not be visible from an automation controller 12 inventory perspective.
  • the outside devices are visible to the automation controller 12 and are mapped based on their nearest neighbors in a mesh network topology and the outside devices and at least one device within the range (“inside device”) are configured as repeaters, so that instructions from the automation controller 12 can reach the outside devices.
  • the outside devices are associated with the inside device and may be considered as attributes of the inside device.
  • a controller, 12 or 14 sends a command to the inside device associated with the outside devices, which is then implemented on the outside devices at the appropriate time by the inside device.
  • the means in which the information is provided to and from the outside devices 16 may or may not be the same as the means in which the information was provided from the controllers, 12 or 14 , to the peripheral device 16 1 in the range.
  • the outside devices are electrically connected, then externally powered devices using power line communications between outside devices may be appropriate, while wireless communications may be used for communications between the controller 12 or 14 and the peripheral device 16 1 .
  • outside devices may have diverse functions, such as outside lighting, contact switches on gates and mailboxes, and sensors, it may be more easily implemented using battery powered devices and the same wireless communications protocol as used in within the range of the automation controller 12 .
  • wireless communication can be provided by the automation controller 12 and the inside devices 16 , whereas communication and power is provided to the outside devices via Ethernet.
  • FIG. 9 b shows another embodiment of the present invention including a peripheral device 16 t that is configured to translate a message from the protocol used by the automation controller 12 to the protocol used by one or more secondary devices 18 , which may be inside, shown as (a) in FIG. 9 b , or outside (b) the coverage range of the automation controller 12 .
  • the translation can be between wireless protocols and/or wireline protocols and implemented in a variety of ways, such as mapping the signal from one protocol to another or by embedded one protocol signal within the other protocol signal, similar to a digital wrapper.
  • the peripheral device 16 t could translate a Zigbee protocol signal to an RS-485 signal to communicate with components in an HVAC system.
  • the RS-485 link could be implemented as a full duplex, 4 wire solution or half-duplex 2 wire solution depending upon conditions, e.g., multiple radio interference conditions, and the amount and frequency of information being communicated through the link.
  • two translator peripheral devices 16 t could be used to set up a link (c) using a different protocol, while still communicating with other devices using the protocol of the automation controller 12 .
  • this translator devices 16 t may be used to convert from wireless to wired protocols (in this example Zigbee and RS-485) to enable the signal to reach an area more easily accessed using a wired protocol, but where the signal may be sent wirelessly within the area.
  • the translator device 16 t may be operated in a mode where the Zigbee message is inserted untouched into an RS-485 stream, which is sent to a second translator device 16 t , where it is received.
  • the 485 stream is analyzed and a Zigbee message is recreated by the second translator device 16 t and sent to the destination peripheral device 16 .
  • the remote controller 14 could be used as a translator device to control one or more secondary devices 18 . It will be appreciated that if a remote controller 14 is employed as a translator, it will have to be positioned properly to enable it to communicate with the secondary devices 18 .
  • range of an automation controller 12 can also be extended via repeater peripheral devices 16 , which are used to amplify, typically be receiving and retransmitting signals, without altering the signals.
  • Range extenders are known in the art and commonly available in 802.11 architectures.
  • the repeater functionality can be embedded in other peripheral devices 16 to eliminate the expense of deploying stand-alone repeater devices.
  • FIG. 10 a shows embodiments of the system 10 including mobile peripheral devices 16 m , which can be implemented to provide additional functionality to the system 10 .
  • Peripheral devices 16 that are fixed in space for a particular application can be referred to as stationary peripheral devices 16 to facilitate description. However, whether a peripheral device 16 is considered stationary or mobile may, in fact, depend upon the specific application and/or system configuration implemented by the user.
  • the mobile device 16 m can be used for determining when a subject (person, pet, object, etc) leaves or enters a structure or zone.
  • a peripheral device 16 can be attached, via bracelet, anklet, collar, or otherwise, to the subject and its transmission can be used to determine when the subject has left the zone, passes through a reception area or proximate to another device, etc.
  • Mobile peripheral devices 16 m can be applied to home, office, or construction areas for theft protection and safety measures as well.
  • the system can be configured to geolocate the mobile peripheral devices 16 m operating in an environment with two or more other peripheral devices 16 m .
  • the received signal strength from various receivers can be used to locate the device by determining vectors for triangulation.
  • This application allows a system to determine, not only when a subject has left a zone, but also, with some accuracy, where the transmitting device attached to the subject is located within the zone. This level of geo-location could be either constantly updated, or determined by querying the receivers in the zone. It will be appreciated that the system will determine the general location of the mobile device within the range of the system 10 . The precision of the mobile device location will depend upon the desired amount and precision of the information received by the controller 12 from various stationary peripheral devices 16 .
  • the frequency at which the system 10 tracks the mobile peripheral devices 16 can be configured by the user depending upon a desired implementation of the devices. For example, it may be desirable for the mobile peripheral devices 16 to transmit a signal, when it is prompted manually by remote controller 14 and/or automation controller 12 . In these scenarios, the user may want only want to know the location when they are looking for the object, such as a remote controller 14 , car keys, or even a pet.
  • the automation controller 12 can be configured to request signals from the mobile peripheral devices 16 m at different intervals depending upon the location of the mobile peripheral devices 16 m within the system range.
  • the mobile peripheral devices 16 will be driven by kinetic energy.
  • An energy storage device such as a rechargeable battery or capacitors can be provided to store excess kinetic energy.
  • the kinetic energy driven device 16 has the benefit in that the energy to transmit signals is being generated by the motion of the object to which the mobile device 16 m is attached, which is precisely when the energy is needed for transmission. When the object is at rest and no kinetic energy is being generated, the transmission frequency can be much less, because the object is stationary and its location is presumably known.
  • the mobile device 16 m can lay dormant, i.e., not transmit a signal on its own, unless it is requested by an automation controller 12 or remote controller 14 , or is activated/triggered by, or activates, another device in the system.
  • the mobile device 16 m could include an electromagnetic wave (e.g., RF, IR, etc.) detector and/or emitter/tag.
  • an electromagnetic wave e.g., RF, IR, etc.
  • the mobile device 16 m would be activated by the emitter signal from the emitter and begin transmitting signals to identify its location.
  • a RF detector located near a threshold of interest could be used to send a signal to the automation controller 12 that it has detected a mobile device emitter, at which time the automation controller 12 can ping the mobile device 16 m to send a tracking, or location, signal and/or other information that can be used by the controller to track the mobile device 16 m .
  • the mobile device 16 m will be regularly polled by the automation controller 12 and will be activated by, or activate, another device that is used to monitor the movement of the individual near thresholds of interest, building exits, etc. In this manner, regular updates will be obtained when a person is within a known area and the frequency of updates can be accelerated and notifications made, when a person leaves an area. It will be appreciated that the mobile device 16 m can perform a number of functions, such as measuring temperature, shock, pulse, etc. (i.e., health parameters) for individuals, in addition, to providing a tracking signal.
  • functions such as measuring temperature, shock, pulse, etc. (i.e., health parameters) for individuals, in addition, to providing a tracking signal.
  • the automation controller 12 when the automation controller 12 determines that an object being tracked with a mobile device 16 m has left some predefined area, such as exiting a building, the automation controller 12 can be configured to communicate the information to the user by the available means, such as email, text message, phone call, audible signal, etc. or merely log the time that object left the predefined range.
  • the automation controller 12 could take the same or a different action when the object wearing the mobile device reenters the predefined range.
  • An example of the automation controller 12 merely logging information could be logging when object that normally are expected to exit and reenter a range are being tracked, such as vehicles at a dealership or personnel at an office during normal business hours. Extending these same examples, the user may want to be notified when these objects enter and exit the premise during non-normal business hours.
  • Peripheral devices 16 can be deployed in data collection modes, if sufficient memory is provided for data storage during the collection interval, instead of transmitting the data as it is collected. The device 16 would then transmit the data collected over the interval to the controller or a display. For example, various sensors can be deployed that log data for periodic review and/or transmission, in lieu of regularly transmitting the data or waiting for a request by a controller.
  • a device 16 also may collect data on a fixed interval, but only transmit data when a threshold has been exceeded, such as high/low temperature, shock, gas concentration, humidity, etc., or upon request.
  • the peripheral device 16 can perform some processing of the raw data and transmit only the processed data, while perhaps retaining the raw data for a period of time to allow for retrieval if necessary.
  • the peripheral devices 16 could process the raw data and transmit a moving average of the data and any extreme outliers to the data. In this manner, communication traffic in the system 10 is reduced.
  • devices 16 that are configured to collect data for later access also can be deployed in embodiments, in which two systems 10 , or sub-systems of a larger system, are employed having non-overlapping ranges including geographically diverse configurations.
  • a device 16 that includes one or more sensors for detecting relevant conditions can be provided on the inside and/or outside of a shipping container. The data on the device 16 can be read before shipment by a system 10 at the point of origin and by a counterpart system 10 at the destination to determine the conditions to which the contents of the shipping container were exposed. It may also be possible to read the data en route.
  • the data collected can be used to verify that a container was not exposed to conditions, temperature, humidity, shock, etc., that could damage the contents and the point in time and duration of the exposure to extreme conditions.
  • the number of devices 16 deployed within a container and the sensors or other instruments included in or associated with the device 16 will generally depend upon the size of the container, (e.g., letter size package, cargo ship container) and the desire for redundant data collection, which may depend upon the value of the contents of the container.
  • the carrier can be present and confirm the origin and destination data and the shipper/user can implement sufficient security, such that the device 16 is not reset or data compromised during shipment.
  • the devices 16 used for shipping can be treated statically or as a mobile device 16 m by the system 10 .
  • the shipping devices can be detected before or after the device enters a facility to provide data on whether shipments should be rejected, inspected, and/or accepted from a carrier.
  • each of the geographically diverse systems 10 can be included in a broader overall system from a network management level, such that peripheral devices 16 in each of the local systems can be registered and status maintained in an overall database, such that when the peripheral device 16 re-enters the coverage area of one of the system 10 , it can be detected and the data logged.
  • the overall database could be enabled in various configurations by one of ordinary skill.
  • the overall database for the plurality of systems, or automation controllers 12 could be embodied in a multi-level automation controller architecture, in which a master controller provides at least some control over multiple automation controllers 12 or the overall database may be merely a shared database that is accessible by multiple systems.
  • the system 10 includes a limited purpose remote controller (“LPRC”) 22 , which can be a wall mounted, free-standing, or handheld device.
  • the LPRC 22 can be embodied as a configurable on-off or dimmer switch that can be used to control one or more peripheral devices 16 directly and/or via the automation controller 12 or the remote controller 14 .
  • the LPRC 22 can be configured to control one light or one electrical receptacle in a room similar to a traditional light switch.
  • the LPRC 22 could be configured to control a group of lights and/or other peripheral devices 16 .
  • the LPRC 22 could be mounted as a wall switch that could control all of the lights in a basement, turn on and off all of the components in an entertainment system, etc., even if those lights and components are on different wiring circuits.
  • FIGS. 11-16 depict various embodiments of the LPRC 22 , which for exemplary purposes, is described in terms of on-off, toggle, or dimmer wall switch.
  • the LRPC 22 requests the controller to issue a command to function device to perform a function, such as to turn on or off one or more switches and/or receptacles.
  • flipping the switch FIG. 11
  • flipping the switch FIG. 11
  • flipping the switch FIG. 11
  • flipping the switch FIG. 11
  • flipping the switch one direction cause one or more lights controlled by function devices to be turned on and flipping the switch in the other direction causes the same lights to turn off.
  • the LPRC could be activated using access control or presence technology, such as RFID or by placing a card in slot or reader.
  • a wall switch could be used to control any and/or all of the outlets/lights, etc. in a room, rooms, or building, not just those hardwired to a wall switch during construction.
  • the switch can be viewed as a limited purpose remote control for interfacing with the controller and/or peripheral devices 16 via a limited interface.
  • Additional functionality can be provided on the LPRC 22 .
  • multiple switches can be packaged similar to traditional circuit control switch, A/B type slide switches can be added to the traditional flip switches to allow the switch to toggle additional functions ( FIGS. 3 and 4 ).
  • the multi-function switches can employ common or separate processors, transmitters, or receivers depending upon the desired level of functionality ( FIGS. 5 & 6 ).
  • the switch can be powered via battery or external power.
  • the function of the switch can be programmed, most likely via the controller, to perform the desired function upon actuation of the LPRC.
  • the LPRC 22 can be configured to send a generic automation instruction to an automation controller 12 or a remote controller 14 . Upon receiving the generic instruction, the controller will execute a reconfigurable instruction set controlling a group of one or more peripheral devices 16 . In some embodiments, the same instruction may be sent whenever the LPRC 22 is actuated. In these embodiments, the controller will receive the instruction from the LPRC 22 and execute an instruction sequence for controlling one or more peripheral devices 16 tied to the receipt of the LPRC 22 instruction. For example, the first signal received from the LPRC 22 might cause the automation controller 12 to turn on one or more lights. The next three signals received from the LPRC 22 in this example, might cause the might cause the automation controller 12 to turn the lights to 66%, 33% and 0% (off) power, respectively.
  • the LPRC 22 will send the actual automation instructions, either directly or via a controller, that instruct the peripheral devices 16 to perform the automation function.
  • the automation controller 12 and perhaps the remote controller 14 , can be used to program the LPRC 22 to send automation instructions for a group of one or more peripheral devices 16 .
  • the LPRC 22 will send different generic instructions depending upon its actuation, such as flipping a switch up and down. The controller could be configured to execute different automation commands for each generic instruction received from the LPRC 22 .
  • the system 12 can be deployed in a vast number of configurations to achieve the functionality and cost objective of the end user.
  • the automated monitor and control aspects of the system 10 also enable it to provide higher level functions, such as security and energy management.
  • the automation system will perform integrated energy management of part or all of a facility.
  • a user in a may establish a multi-level energy management structure.
  • the system administrator establishes administrator settings for day and time of day settings for the HVAC system, hot water heater, etc. Typically, this will involve setting a first temperature range for hours of operation and a second temperature range non-operational hours.
  • Various settings for lighting in the facility may also be established.
  • a second level of control can be implemented by monitoring usage at the circuit level for an area, as well as for confirming the integrity of overall and individual usage data. Circuit monitoring also provide the user with data for planning peripheral device roll out, as well as for providing more granular operational hour control.
  • a third level of control may be implemented at the work space and common area level.
  • the temperature of a work space may be controlled depending upon whether or not a person is present at the facility or whether a meeting is scheduled or people are present in a work space, such as a conference room.
  • the hallways and other common areas may be controlled to a different temperature and/or lighting intensity.
  • Circuit level control also can be used in some just in time power deployments, when the first and last person enters a work area and for spaces and/or jobs that are not suitable for control at the individual work space level.
  • the automation controller 12 provides access control and/or monitoring or interacts with an access control/monitor system and part of a person's work space or a residence is not supplied electricity unless the person is present. Upon detection of a person entering a facility, the automation controller 12 would turn on the supply of power to a person's work space and adjust the temperature of the work space accordingly. In various embodiments, the automation controller 12 could begin powering up computer equipment and peripherals, so the equipment is ready to use when a person reaches their work space. When a person leaves a work space, the automation can direct the return of the work space to non-operational or out-of-the-work-space operational set points. An analogous procedure can be implemented for a residence.
  • the automation controller 12 can coordinate the different energy management activities within a facility and/or work space.
  • a work space environment will be defined at least in part by the temperature and lighting intensity.
  • the automation controller 12 can be configured to balance the solar impact, i.e., light and heat provided by sunlight or natural light, within an area with the light and heating/cooling provided by the building systems to minimize the energy cost.
  • the automation controller 12 could control various peripheral devices 16 , including lights, HVAC vents, window blinds, etc. in a coordinated manner to reduce energy consumption.
  • the temperature and light intensity within a work space/area is defined in the controller 12 .
  • the blinds would be open to varying degrees.
  • the controller 12 can close all of the blinds for privacy and to increase its effectiveness as a thermal barrier.
  • the controller 12 can leave the blinds closed, if desired, or open the blinds an appropriate amount to balance the solar impact with the temperature and lighting demands of the space.
  • peripheral devices 16 used to coordinate the light and temperature control provided by the facility/building system with the solar impact, sun light and thermal energy, can be determined by the skill artisan.
  • one or more light controllers and temperature controllers for the building systems can be deployed in the area along with blind controllers, external and internal temperature and light sensors, motion detectors, etc.
  • the automation controller 12 can be configured to maintain administrator settings for light intensity and temperature in the area by operating the blind controller to allow sun light and thermal energy to enter the area and adjusting the light and temperature controllers to control the amount of lighting and energy provided by the building systems accordingly.
  • the operation of the devices 16 can be configured in various ways, but a default configuration may be to minimize lighting and HVAC costs for the area, while operating in conformance with the area settings.
  • the automation controller 12 also could interact with an area controller that could be coordinating the peripheral devices 16 within an area.
  • the area controller could include or be associated with various sensors, such as temperature, light intensity, and motion, in the area, which provide local information used to control the area environment.
  • the area controller could be used merely to provide a single point of contact for a given area to the automation controller 12 or could be configured to control various actions of the peripheral devices 16 in the area.
  • the area controller can be used to turn power on and off to an area, which can be triggered manually, flipping a switch, inserting a card, etc. or upon detection of a person, via RFID or otherwise, or condition, similar to an LPRC as discussed above.
  • the system 10 generally will be implemented by an administrator that configures the automation controller 12 and add peripheral devices 16 to the system.
  • the administrator will generally establish various settings (“administrator settings”) for the performance of functions relating to energy consumption for the peripheral devices 16 based on the day, time of day, the presence of at least one person within an area in the facility, environmental conditions outside the facility and solar impact within the area.
  • the administrator settings can include set points, limits, and ranges, and provide for user input consistent with the administrator settings.
  • the automation controller 12 can be configured to determine the financial impact of allowing user variations to the administrator settings. The information can be used to modify the administrator settings and suggest alternative user settings.
  • the system can be configured to adapt to the behavior of personnel with the facility, which can modify administrator settings or merely provide the data to the administrator for information or action. For example, the system can monitor the presence of personnel in the area and adapt the set point times for transitioning from a person present in the area settings to not present in the area settings.
  • the transition set point times can be different for different energy consuming devices in the area. For example, various equipment lights and displays can be dimmed or turned off almost immediately when a person leaves the area, while it is often not desirable to turn off or hibernate a computer immediately when a person leaves the area.
  • Voice over Internet Protocol (VoIP) phones which do not locally host messaging or other services, can be turned off when a person is not present in the area and/or facility. Also, displays can be turned off when not in use and turned on when the server forwards a call to the phone or the phone is prompted by the user.
  • VoIP Voice over Internet Protocol
  • PoE Power over Ethernet
  • the devices 16 can be configured to transmit a wake up, or start up, signal back to the LAN equipment, i.e., servers, switches, etc., to power up a portion of the LAN for use.
  • the devices 16 can be implemented to communicate with secondary devices, such as those embodied in and described relative to FIGS. 8 a & b , and with the LAN server. In these embodiments, the device 16 can communicate start up and/or shutdown signals to both the LAN equipment and the computer equipment.
  • An example of these embodiments a is a plug strip/surge protector that is connected via Ethernet cables to a computer and the LAN.
  • the device 16 will send start-up signals to both the computer and the LAN.
  • the device 16 will also enable the supply of power to the power receptacles in the plug strip allow the computer and other electrical devices to power up.
  • the device 16 would send shut down signals to the computer and the LAN.
  • Various access control technologies such as RFID, IR, etc. can be used to track the movement of personnel and assets within a facility, in addition to access to the facility. Access tracking within the facility can be used to trigger the transition from a person being present in an area to not present, and vice versa. For example, the access control system can detect when a person moves between the different parts of a facility, such as laboratory, manufacturing, administrative, etc., and transition the person's work area to present or not present state.
  • the system 10 will include at least one peripheral device 16 , such as a current, power, and/or voltage monitor, for monitoring the overall energy consumed within a managed area as a function of time.
  • the various peripheral devices 16 deployed within the managed area will provide more specific electrical usage data.
  • the system 10 can be configured to provide overall, circuit, monitored, and unmonitored usage statistics that will allow a user to determine the cost effectiveness of additional monitoring in the managed area.
  • the system 10 can be configured in many different ways depending upon the extent of the deployment within a facility and the objectives.
  • the system 10 can provide detailed reporting and analysis of energy usage and the operation of the various monitored equipment.
  • the operational information can be used in combination with electricity rates from the utility to align the usage of electricity with the cost of electricity.
  • the controller 12 can implement rules to allow some activities only at night during hours of lower cost electricity.
  • the user can analyze the impact of replacing equipment with new equipment, installing solar or other power generation capabilities on site, or employing other sources of energy during various times of the day.
  • the system 10 can also be configured to participate in demand-response programs in cooperation with utilities and/or energy brokers, in which during times of peak demand, the operational set points of one or more energy consuming devices, typically the air conditioning unit, is varied to reduce power consumption during period of high demand.
  • the demand-response program can be implemented at a more specific level to provide additional savings and improved comfort.
  • the automation controller 12 instead of the utility or energy broker cycling the air conditioning units for a facility, the automation controller 12 could increase the temperature set point for various parts of the building that are less sensitive to temperature change or have a local, non-utility power capability, such as batteries, solar, etc., which could pick up the load.
  • the controller 12 can also delay certain processes from occurring until the demand-response condition has passed.
  • the actual energy consuming devices that are operated to consume less energy can be tailored to the amount of energy reduction being requested by demand-response client, i.e., utility or energy broker.
  • the automation controller 12 may determine that the requested energy consumption reduction requested by the client could be achieved by raising the temperature in various parts of the facility, such as rooms not currently occupied, by a few degrees and dimming the lighting in the hallways, rather than cycling the air conditioning for the entire facility.
  • the administrator of the system can assigned various peripheral devices 16 associated with energy consuming devices to be turned off or operated at lower power settings as a function of the requested power reduction.
  • the administrator can also establish a hierarchy of devices and the associated energy reduction for each device, such that the system 10 starts at the top of the list and implements the reduced energy settings until the cumulative reduction of all the devices achieves the requested reduction.
  • the administrator can establish target energy reduction amounts based on the demand-response system.
  • a demand-response system can be established by the client that provides for varying levels of incentives, e.g., rebates, credits, points, etc., corresponding to the extent of the energy reduction made by the user.
  • incentives e.g., rebates, credits, points, etc.
  • These types of demand-response system enable the administrator of the system 10 to reduce energy consumption according to the established hierarchy in order to achieve a target incentive amount established by the client as a function of the energy reduction.

Abstract

A multi-level automation control architecture, methods, and systems are disclosed, which provide enhanced scalability, functionality, and cost effectiveness for energy, access, and control. The systems include various combinations of automation controllers, remote controllers and peripheral devices that are used to provide monitoring and control functionality over the various systems in a structure, such as HVAC, water, lighting, etc. In various embodiments, the automation controller and various peripheral devices are implemented to provide an integrated energy management system for the structure. The system allows the user to manage energy based on the day, time, the presence of people, and the availability of natural lighting and heating, as well as prioritize and participate in demand-response program. The system can be implemented using a remote controller and expanded through the addition of automation controllers, remote controllers, and peripheral devices to enable the system to be tailored to specific user requirements.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application No. 60/886,918 filed Jan. 26, 2007 and is related to U.S. patent application entitled “Upgradeable Automation Devices, Systems, Architectures, and Methods” filed on even date herewith having Ser. No. 11/971,464.
STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH AND DEVELOPMENT
Not Applicable.
FIELD OF THE INVENTION
The present invention is directed generally to automation systems and, more specifically, to automation systems to monitor and control conditions in and/or around buildings and the operation of energy systems.
BACKGROUND OF THE INVENTION
Automation of the work and leisure environment has been a concept that has been long pursued. Despite the continued pursuit, widespread automation, particularly in the home, has not gone much beyond the use of timers, programmable thermostats, and universal remote controls for audio and video equipment.
In the home, higher levels of automation have been left to the domain of the hobbyist and high net worth individuals. A major reason being that home automation systems tend to be difficult to implement and maintain and/or extremely expensive relative to the utility and benefits of the system. Also, the solutions tend to be one size fits all, where the benefits associated with the systems are realized with large system deployments, irrespective of whether a person wants to automate an individual socket, a room, or an entire facility.
X10 has been the most widely implemented protocol in the home automation industry. X10 is a low-speed, unidirectional PowerLine Communication/Carrier (PLC) solution that uses a home electrical power wiring to communicate with various devices that control the various functions in the home, such as light switches, wall receptacles, thermostats, etc. Common criticisms of X10 are directed toward its reliability and robustness, as well as the level of user-friendliness. As such, these systems have been left to hobbyist and those people willing to pay professional contractors to install and/or maintain the systems. Other PLC protocols have been developed to address the criticisms of X10, which have enhanced performance and user experience, but have not substantially broadened the market for these products.
The high-end of the residential market has typically been addressed by comprehensive and expensive stand-alone systems, which often require the use of professional services firms to install and possibly maintain the system. These systems can be integrated with other systems, such as security and intercom systems, to defray the cost of system ownership. In addition to the price of the comprehensive system, the cost and inconvenience associated with providing an infrastructure to support these systems in existing structures has further constrained the market.
The emergence of wireless communication technology and digital media has reinvigorated the automation market, particularly the home market. New wireless protocols and standards are being developed and adopted to support wireless automation systems. The wireless systems are not constrained by power lines and do not require expensive wiring to build out a separate communication network or retrofit an existing structure.
Currently, there are two emerging protocols being introduced in the 1st generation of standard wireless automation products, namely Zigbee and Z-Wave. Both protocols attempt to provide a wireless networking standard that supports low data rates, low power consumption, security and reliability. Zigbee is open standard based on IEEE 802.15.4, while Z-Wave is a proprietary standard developed by Zensys, Inc., the current sole source for the chips that implement the protocol.
Many of the high-end automation system vendors have developed media center systems for the distribution and control of audio and video signals throughout the structure, which also include some home automation functionality. The media center provides control over various automation devices deployed in the structure and typically be accessed locally by a computer or remotely via the Internet. A universal remote control is typically provided, which communicates with the media center, which, in turn, communicates with the audio, video, and automation devices.
Other products employ a gateway controller that is controlled from a remote network operations center (“NOC”) via a network connection into the structure. The gateway controller controls devices in the structure based on information provided by the NOC and provide status information to the NOC. A remote control is provided to allow for control of the individual automation devices without having to reprogram the device through the NOC.
Outside the home in non-residential settings, whether it is for or non-profit, academic, governmental, social, etc., owners and tenants face challenges similar to those in the residential market. Non-residential energy consumers can employ highly sophisticated systems for controlling their heating, ventilation, and air conditioning (“HVAC”), as well as for access control and information technology. Otherwise, these consumers are also generally limited to the use of programmable thermostats and motion controlled lighting.
As such, most energy consumers have little visibility into their energy consumption patterns. The lack of visibility makes it difficult to modify or tailor consumption patterns to reduce the energy consumed or the cost of the energy being consumed. Furthermore, participation in utility based conservation programs, such as demand-response programs, is typically limited to those residential and non-residential facilities that can operate with periodic interruptions of their air conditioning systems.
Improved automation solutions are required that overcome the various limitations associated with prior art solutions to enable high quality, cost effective, and scalable automation solutions for homes and businesses that can applied by the end users to their particular automation needs.
BRIEF SUMMARY OF THE INVENTION
The present invention provides, among other things, a scalable automation system that can be deployed as one or more independent systems at various times, which can later be consolidated and operated by a centralized automation controller either as independent systems or as one consolidated system. Unlike the prior art, the automation system of the present invention implements a hierarchical approach to the control platform that provides the end users with a wide range of implementation schemes allowing systems embodying the present invention to be tailored to the specific application and purpose of the user. The present invention can be implemented using various wireline communication platforms, e.g., powerline, twisted pair, coax, and fiber, and protocols, as well as wireless technologies employing Zigbee, Z-wave, Bluetooth, and/or other proprietary and/or open standard, e.g., IEEE 802.x, communication protocols.
In the present invention, automation components generally can be grouped into three different types, automation controller, remote controller, and peripheral, or controlled, device (or “peripherals”), which have different roles in the system, such as master or command (command a function be performed), slave or function (perform a function), and peer (master or slave depending on function). Notably, in the present invention, different component types can provide command functionality, as well as perform multiple roles at one time or different times, which provides significant benefits from an implementation standpoint, as will be discussed herein. Generally, the automation and remote controllers are peers from at least an interface perspective. The controllers are generally masters of the peripherals, making the peripherals slaves to the controllers, and the peripherals are generally peers to other peripherals.
Peripheral devices in the present invention are generally implemented in a function role communicating directly with remote controllers and/or automation controllers depending upon the system configuration and responding to their commands to perform a function, which may include one or more steps, process, and/or actions. For example, in the absence of an automation controller, the remote controller will be used to communicate directly with and control peripheral devices. Common peripheral devices include electrical wall and device receptacles and jacks, on/off, contact, and dimmer switches, visual (e.g., motion), audio, material (smoke, humidity, CO2, etc.), electromagnetic wave (RF, IR, UV, etc.), and thermal sensors, thermostats, video equipment (e.g., cameras), audio equipment (e.g., microphones, speakers), computer and other office equipment and peripherals, etc.
Automation controllers are generally command components. While in many embodiments the automation controller may only serve in a command role, various configurations could implement automation controllers with in a function role, in lieu of, or in addition to the command role. For example, while in most applications it would be expected that the automation controller would be capable of controlling all of the peripheral devices in the system; it may be desirable to incorporate multiple automation controllers into the system to provide additional functionality at various points in the building that is being automated. Also, if the automation controller includes web browsing capability, video signal reception, communication equipment hook-up, etc., it may be desirable to have an automation controller deployed at a number of locations within the building, in lieu of a computer and a traditional television set top box. It may, in turn, be desirable to control all of the automation controllers from one or more centralized automation controllers.
Remote controllers in the present invention can serve as command or function components assuming a master, slave, or peer role depending upon the system configuration and functionality. For example, in various embodiments, the system will be installed with only a remote controller and one or more peripheral devices. In these embodiments, the remote controller will provide command authority and control over the operation of the peripheral devices. In various embodiments, when an automation controller is introduced into a system having only peripheral devices controlled by a remote controller, the automation controller may assume command authority over some or all of the peripheral devices, with the remote controller assuming a command role with respect to the automation controller for those peripheral devices that were assumed.
It will be appreciated that different types of remote controllers can be employed in the present invention. For example, one type of remote controller may be able to provide command and/or slave functionality, while a second type of remote control may be able to serve solely to send commands to the automation controller, e.g., a standard remote control. It will be further appreciated that the different types of remote controllers may enable different levels of functionality and feedback to the user.
In addition, the remote controller can incorporate functionality that allows it to operate in multiple systems. For example, either type of remote controller can also serve as a “universal remote” controlling devices other than the automation peripheral devices. For example, the remote controller may be a master and/or peer in a home automation system communicating using the Zigbee and/or Z-wave protocols or other open or proprietary standard protocols with automation controllers and/or peripheral devices, while also supporting infrared (IR) or radio frequency (RF) signal transmission for line of sight (LOS) and/or non-line of sight (NLOS) control of audio and/or video equipment, such as TVs, DVD and CD players/recorders, DVRs, PVRs, and VCRs.
In various embodiments of the present invention, the system may be in operation without an automation controller using the remote controller to control a plurality of peripheral devices. In these embodiments, the remote controller recognizes that there is not an associated automation controller, so it operates in the first state, directly communicating with and controlling the peripheral devices. When the end user of the system introduces an automation controller into the system, the remote controller recognizes the automation controller and operates in a second state communicating with the automation controller, instead of directly with the peripheral devices. If the associated automation controller becomes unassociated with the remote controller, then the remote controller will revert to the first state and control the peripheral devices directly.
The automation controller and a remote controller can provide different levels of control and functionality to the system. The remote controller, for example, may generally be able to control the on/off/dim state of a limited number of peripheral devices and provide some level of feedback, which will depend upon the type of remote controller, e.g., whether or not it has a display. In an exemplary embodiment, the remote controller does not have a display, but depicts the on/off/dim state of the peripheral device by lighting the key associated with that device. Alternatively, display remotes, remote monitors, or touch pads can provide individual device status displays or a device list that can be scrolled. The displays and touch pad can be integrated in the remote controller or separate components that communicate with the remote controller directly or indirectly. The remote controller may be configured to provide device status, irrespective of whether it provides direct or indirect control of a peripheral device.
In various embodiments, the system is operated using only the automation controller and the peripherals without a remote controller. In these embodiments, the automation controller will be accessible via one or more interfaces. For example, a display and data entry facility provided directly on the controller, a television or other monitor can be used for display with data entry on the controller or via an external device, such as a keyboard, etc. Other devices, such as computers, can be used to access the automation controller for the purposes of data access and input. Other computers can be configured in a client-server architecture with the controller for data access and entry. Alternatively, the controller functionality could be distributed among multiple controllers as discussed above.
Additional devices can be employed to provide additional functionality or robustness to the system. For example, storage devices could be employed to off-load data collected by the automation controller. Access to the storage devices could be achieved via the automation controller or directly by another computer, which can provide analysis capability off-line from the automation controller.
The automation controller can provide enhanced functionality concerning the automation system, such as Internet connectivity, remote monitoring (i.e., any computer, anywhere monitoring, advanced scheduling for peripheral devices (turn on different lights on different days of the week for security purposes), periodic and continual monitoring of peripheral devices (confirm children's light and TV are off), event correlation from peripheral device feedback (turn off lights if no one in the room for five minutes), peripheral device fault information (e.g., a light bulb burns out, so there is no current flow irrespective of the state of the peripheral device), event notification (e.g., email, text message, audible or visible signal, or electronically generated phone call, etc.), access control and monitoring to one or more parties concerning a detected event.
The automation controller can also provide additional functionality beyond the automation system. For example, it can provide a web interface for browsing or a control system for communication equipment used to provide services, such as plain old telephone service (POTS), voice over Internet Protocol (VoIP), video, audio, and data. In embodiments with sufficient computing and storage capacity, various software applications can be run and/or files can be stored and sent to/from the automation controller. Video applications can be included, such as video recording, audio/video broadcast or stream reception and codec functions. It could also provide modem, router, and/or switch capabilities, if desired.
Furthermore, the automation controller can be in a housing that includes one or more peripheral devices. For example, the automation controller housing can include one or more controlled electrical receptacles. Given that the automation controller will often times be located proximate other electrical equipment that can be controlled, the inclusion of peripheral devices within the automation controller housing provides a cost effective and space efficient solution. Communication between the automation controller and the peripheral devices within the housing probably is most cost effectively implemented via circuitry internal to the housing; however, the peripheral devices could employ a transceiver and communicate in the same manner as other peripheral devices.
In addition, there does not necessarily need to be a one-to-one correspondence between the number of peripheral device transceivers for communicating with the controllers and the number of electrical devices being controlled. For example, electrical wall outlets typically have two receptacles per outlet. In the prior art, each receptacle is considered a different controlled device. In the present invention, the wall outlet can be considered one peripheral device with each receptacle being a sub-device. Both receptacles communicate with the controller via a common transceiver. One of ordinary skill can expand this concept, for example, to provide a multi-receptacle, plug strip that shares a communication path (transceiver) to/from the controller.
Similar to the remote controller, the automation controller can employ integrated or external display capability. For example, the automation controller can be configured to display information on one or more television screens and/or computer monitors. Conversely, the automation controller may have an integrated display, which may or may not be a touch screen.
In various embodiments, the system includes both stationary and mobile peripheral devices. The mobile devices can be used for security and safety purposes, such as theft prevention and tracking the location of children and disabled adults, as well as pets and objects. The system detects the location of the mobile device periodically and/or on-demand and can employ information concerning the mobile device provided by stationary devices.
Also, the peripheral devices can be configured to communicate with other systems. For example, a peripheral device, such as a plug strip/surge protector, may include communication capability with a computer via USB cable or other connection. In these embodiments, the peripheral device could send a system message to the computer that power was going to be interrupted and for the computer to perform a graceful shutdown. It could also send a signal that initiates the booting up of the computer.
Embodiments of the present invention also may include a limited purpose remote controller (“LPRC”), which can be a wall mounted, free-standing, or handheld device. The LPRC can be embodied as a configurable on-off or dimmer switch that can be used to control one or more peripheral devices directly and/or via the automation controller or the remote controller. For example, the LPRC can be configured to control one light or one electrical receptacle in a room similar to a traditional light switch. Alternatively, the LPRC may be configured to control a group of lights and/or other peripheral devices. The LPRC is reconfigurable, such that the automation instruction created by the LPRC upon actuation can be varied as desired by the user. For example, the lighting configuration can be varied, if a room is rearranged and audio and video components can be added and subtracted from the control of the LPRC as desired.
The automation system can be deployed over a wide range of applications from providing basic automation and control functionality with individual peripherals in the home or workplace to orchestrating the operation of the peripherals to provide comprehensive energy, automation, and access management solution.
In various embodiments, the automation system will perform integrated energy management of part or all of a facility. For example, a user in a business setting may establish a multi-level energy management structure. At a first level, the user establishes day and time of day settings for the heating, ventilation, and air conditioning (“HVAC”) equipment/units and systems. Typically, this will involve setting a first temperature range for hours of operation and a second temperature range for hours of non-operation.
A second level of control may be implemented at the work space and common area level. For example, the temperature of a work space may be controlled depending upon whether or not a person is present at the facility or whether a meeting is scheduled or people are present in a workspace, such as a conference room.
The concept of controlling the temperature depending upon the presence of a person at the home or work place can be exceeded more generally to “just in time” energy management. In various embodiments, the automation controller provides access control and/or monitoring or interacts with an access control/monitor system and a person's work space or part of a residence is not supplied electricity unless the person is present. Upon detection of a person entering a facility, the automation controller would turn on the supply of power to a person's work space and adjust the temperature of the work space accordingly. In various embodiments, the automation controller could begin powering up computer equipment and peripherals, so the equipment is ready to use when a person's reaches their work space. When a person leaves a work space, the automation can direct the return of the work space to its non-operational set points.
At another level, the automation controller can coordinate the different energy management activities within a facility and/or work space. For example, a work space environment will be defined at least in part by the temperature and lighting intensity. The automation controller can be configured to balance the solar impact, i.e., light and heat provided by sunlight, within an area with the light and heating/cooling provided by the building systems to minimize the energy cost and/or consumption. In this case, the automation controller could control various lights, HVAC vents and/or units, and window blinds in a coordinated manner to reduce energy consumption. Alternatively, the automation controller could interact with an area controller that could be coordinating the peripherals within an area. For example, the area controller could include or be associated with various sensors, such as temperature, light intensity, and motion, in the area, which provide local information used to control the area environment.
The present invention addresses limitations of the prior art as will become apparent from the specification and drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
The accompanying drawings are included for the purpose of exemplary illustration of various aspects of the present invention, and not for purposes of limiting the invention, wherein:
FIGS. 1-5 b show embodiments of automation systems;
FIGS. 6 a-7 show embodiments of automation controller;
FIGS. 8 a-9 b show embodiments of peripheral devices;
FIGS. 10 a-b show embodiments of a system including at least one mobile peripheral device and,
FIGS. 11-16 show embodiments of LPRCs.
It will be appreciated that the implementations, features, etc. described with respect to embodiments in specific figures may be implemented with respect to other embodiments in other figures, unless expressly stated, or otherwise not possible.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 depicts an automation system 10 embodiment of the present invention. The system 10 includes various components, such as an automation controller 12, a remote controller 14, and one or more peripheral devices 16 1-n. In this embodiment, the automation controller 12 has two way communications with the peripheral device 16 (as shown by the solid arrows). It also has at least one way communication with the remote controller 14, and, optionally two way communications with the remote controller 14 (as indicated by the dashed arrows). In addition, the remote controller 14 can have optional one or two way communications with one or more of the peripheral devices 16 1-n
Communication between the automation controller 12 and the peripheral devices 16 can be wired and/or wireless depending upon the particular implementation. Wired communication can make use of the power lines, local area networks, or direct links between communication ports, such as USB, RS-232 and 485, etc. Wireless communications can employ one or more wireless technologies, such as Zigbee, Z-wave, Bluetooth, and/or other proprietary and/or open standard, e.g., IEEE 802.x, communication protocols transmitting signals in the infrared and/or radio frequency spectrum. As mentioned above, Zigbee and Z-wave are protocols that have been developed specifically for applications, such as automation, where some of the devices used in the system, such as those operating on battery power, may require low power, reliable, non-line of sight communication.
In embodiments such as FIG. 1, the automation controller 12 may serve as a peer or slave to the remote controller 14 depending upon the desired level of functionality and communication between the controllers. For example, when one way communication is provided from the remote controller 14, the automation controller 12 will act only as a slave performing an operation in response to a command/input from the remote controller 14. In embodiments providing for two way communication, the controllers may serve as peers or as a master and slave depending upon the configuration of the system 10. For example, if the only communication from the automation controller 12 to the remote controller 14 is to send information requested by remote controller 14, then the automation controller 12 will operate as a slave to the command/input sent by the user via the remote controller 14. Conversely, if the automation controller 12 can request/command certain actions be taken by the remote controller 14, such as report a status, then the controllers will most likely be operating in a peer relationship.
Embodiments based on FIG. 1 may include one or two way communication between the remote controller 14 and one or more of the peripheral devices 16. The remote to peripheral communication can provide primary, secondary, or alternate communications. For example, the remote controller 14 may be configured merely to serve as a repeater, and thus a peer to peripheral devices 16, for communications between the automation controller 12 and the peripheral devices 16. The remote controller 14 may send a command to the peripheral device 16 that is redundant of command sent by the automation controller 12.
Also, the remote controller 14 may send the only command to the peripheral device 16. In this instance, the automation controller 12 may be configured to receive this command from the remote controller 14 or the remote controller 14 may send a different command, such as a generic change of state command to the automation controller 12. Upon receipt of a command directed to a peripheral device by the remote controller 14, the automation controller 12 could 1) query the peripheral devices 16 immediately or at a predetermined time to determine its operational state or 2) await a communication from the peripheral devices 16 directly, and/or indirectly via the remote controller 14, indicating their state.
FIG. 2 shows embodiments of the system 10 including the automation controller 12, at least one remote controller 14, a first group of one or more peripheral devices 16 a1-an and a second group of one or more peripheral devices 16 r1-rn. In these embodiments, the automation controller 12 communicates directly with the remote controller 14 and the first group of one or more peripheral devices 16 a1-an. However, it does not communicate directly, and perhaps not at all, with the second group of one or more peripheral devices 16 r1-rn.
In FIG. 2 embodiments, communication and control of the second group of one or more peripheral devices 16 r1-rn is performed via the remote controller 14. In various embodiments, the automation controller 12 will not associate or monitor some or the entire second group of peripheral devices 16 r1-rn. In other embodiments, the automation controller 12 will monitor some or the entire second group of peripheral devices 16 r1-rn, as the second group provides status information to the remote controller 14. In other embodiments, the automation controller 12 will indirectly control some or the entire second group of peripheral devices 16 r1-rn, via commands sent to the remote controller 14. The automation controller 12 may also monitor the second group of peripheral devices 16 r1-rn, via the remote controller 14, which can serve as a repeater or to provide additional information along with the monitoring information to the automation controller 12.
The architecture provided in FIG. 2 provides additional flexibility in tailoring the system 10 for a specific application. For example, the second group of peripheral devices 16 r1-rn, may be implemented using a different communication scheme, which is only implemented on the remote controller 14. For example, in various embodiments, the remote controller 14 may be capable of communicating using both IR and RF frequencies, whereas the automation controller 12 may only be implemented using RF frequencies, or different protocols may be implemented on the remote controller 14 and the automation controller 12. In those instances where the communication protocol between the remote controller 14 and the second group of peripheral devices 16 r1-rn, differs from the communication protocols implemented on the automation controller 12, then the remote controller 14 may serve to translate the information being provided from the second group of peripheral devices 16 r1-rn to the automation controller 12.
FIG. 3 shows embodiments of the present invention, in which the remote controller 14 is used to control one or more peripheral devices 16 1-n, without an automation controller 12 in the system 10. The remote controller 14 can be used to implement various functions on the peripheral devices 16 depending upon the functionality imparted to the remote controller 14. For example, the processing power, storage capability, user interface, input/output capability, etc. can be tailored to control various numbers of peripheral devices 16 and impart various levels of functionality to the system 10 in the absence of the automation controller 12.
In various embodiments, the remote controller 14 is configured to communicate directly with the peripheral devices 16 using a suitable protocol, such as Zigbee, Z-Wave, etc., in a first state to send and receive information regarding the function of the peripheral device 16. The remote controller 14 is further configured to operate in a second state in the presence of an associated automation controller 12, where the remote controller 14 communicates directly with the automation controller 12, instead of the peripheral devices 16. If the automation controller 12 becomes unavailable, either because it is removed from the system 10, either physically or via software, or is not working properly, the remote controller 14 will recognize that the automation controller 12 is no longer present, or more generally unassociated with the remote controller 14, and operate in the first state.
In practice, the system 10 may be in operation without an automation controller 12 using the remote controller 14 to control a plurality of peripheral devices 16. The remote controller 14 recognizes that there is not an associated automation controller 12, so it operates in the first state, directly communicating with and controlling the peripheral devices 16. When the end user of the system 10 introduces an automation controller 12 into system 10, the remote controller 14 recognizes that the automation controller 12 and operates in a second state communicating with the automation controller 12, instead of directly with the peripheral devices 16. As discussed with respect to FIG. 2, the system 10 can be configured so that the remote controller 14 continues to communicate directly with the second group of peripheral devices 16, while communicating via the automation controller 12 with the first group of peripheral devices 16.
The ability of the remote controller 14 to move between the first and second states can be manually and/or automatically implemented. A hardware switch or software defined key can be used to toggle manually between the first and second states.
In addition, it may be desirable to keep remote controllers 14 unassociated with automation controller 12 that are detected. For example, in an apartment complex or other space where multiple users are in close proximity, the automation controller 12, as well as other remote controllers 14 and peripheral devices 16 that are within the system 10 operating range may not belong to the end user. In addition, the end user may want to partition a structure to include separate system 10, which may or may not report to a single system for oversight and control.
The association of an automation controller 12 that is introduced into an existing system 10 being controlled by the remote controller 14, in the absence of an automation controller 12, can be performed in a number of ways. For example, the automation controller 12 can scan its coverage area and develop a list of peripheral devices 16 and remote controllers 14 that can be associated with the newly introduced automation controller 12. Also, the remote controller 14 can transfer system information to the automation controller 12, such as a listing of currently associated peripheral devices 16, current settings, and activity schedules.
In these embodiments, the automation controller 12 and the remote controller 14 will continue to operate in a peer relationship, even though the remote controller 14 may not be communicating directly with the peripheral devices 16. The peer to peer communication would be used by the automation controller 12 to update the remote controller 14 with the latest settings and other information for the peripheral devices 16 that the remote controller 14 would communicate with directly and control, if the automation controller 12 became unassociated with the system 10 during operation.
In various embodiments, where the remote controller 14 may or may not be configured to control the system 10 in the absence of the automation controller 12, peer to peer communication between the remote controller 14 and the automation controller 12 may be implemented to enable additional system functionality. For example, persistent storage may be included in the remote controller 14 and the automation controller 12 can be configured to send information concerning the setup and/or operation of the peripheral devices 16 and the automation controller 12 to the remote controller 14 as a data back-up, in the event that the automation controller 12 experiences an outage where data is lost. In addition, the automation controller 12 could be used to change the peripheral devices 16 that will be controlled by the remote controller 14, if the automation controller 12 becomes unassociated with the system 10.
In the some of the above embodiments and others, the remote controller 14 acts as an autonomous device, i.e., without a user inputting information. In these embodiments, it may be desirable to have the remote controller 14 operate in a sleep mode, e.g., with display lights off, etc., and/or include a manual control, such as a switch, to switch the remote controller 14 to a lower power operational state. The sleep/low power mode will extend the battery life. In some embodiments, a holder, or cradle, can be provided for the remote controller 14 that can be used to provide various levels of functionality. For example, the holder may include a power outlet to charge a rechargeable battery. It also may include a communication link for direct communication with the automation controller 12, other network devices, or an external network. The communication link could allow for the download of configuration files for controlling peripheral devices 16 and secondary devices (described below), software updates, etc.
FIG. 4 depicts embodiments of the remote controller 14, in which the remote controller 14 is used to communicate to the peripheral devices 16 via a first signal type, such as Zigbee, and to one or more secondary peripheral devices 18 via a second signal type, such as proprietary Infrared (IR) and/or RF signals. The embodiments enable the remote controller 14 also to serve as a traditional “universal remote” for typical secondary peripheral devices 18, such as audio and video analog and digital players and recorders (e.g., CD, DVD, VCR, cassette, etc.), televisions/monitors, computers and peripherals, such as MP3 players, blinds, fans, and lights.
FIG. 5 a shows system 10 embodiments that include connectivity to various input, output, and monitoring devices (“input/output devices”) via an external network, such as the Internet, PSTN, etc. Access to the system 10 can be enabled from a variety of devices, such as computers, mobile and fixed phone lines, personal digital assistants (PDA), etc., as well as from third party service provider networks for system monitoring and control. For example, a computer can communicate directly with the automation controller 12 or via one or more networks including personal, local, metro, and wide area, public and private, intranet and internet networks. Access via the external network provides the end user with the capability to monitor and configure the system 10 remotely. For example, it may be desirable to change the temperature in the house before returning home, or to receive a text message letting you know that some event, such as a door opening, a smoke or CO detector sounding, tagged item/mobile device moving across a threshold, etc.
As shown in FIG. 5 b, the automation controller 12 also can be deployed in client-server architecture, in which one or more computers, acting as clients, provide data entry and access to the controller 12. The client can also interact with storage devices supporting data storage for the system 10 either directly or via the automation controller 12. As previously described, the automation controller 12 functionality can be distributed among a number of automation controllers 12 with oversight from a master controller 12, which may further include client computers for data entry and access. Additional devices also can be employed to provide additional functionality or robustness to the system. For example, storage devices could be employed to off-load data collected by the automation controller 12. Access to the storage devices could be achieved via the automation controller 12 and/or directly by another computer, which can provide analysis capability off-line from the automation controller 12.
In various embodiments in which data is stored in a device external to the automation controller 12, it may be desirable to enable various software applications on the client computers to enable analysis and planning activities to be performed without burdening the automation controller 12. For example, client computers can run planning and analysis software tools that enable the user view detailed and consolidated usage information. Planning activities, such as evaluating the impact of varying operational hours or replacing various electrical systems can be investigated using historical data from the system 10.
FIGS. 6 a and 6 b depict various embodiments of the automation controller 12. In many system 10 embodiments, the automation controller 12 will provide system oversight, coordination, and control of the peripheral devices 16 and the remote controller 14. Access to the automation controller 12 can be provided internally by the controller and/or external to the controller. In various embodiments, the automation controller 12 may be fully autonomous with data entry and access capabilities provided directly on it. In other embodiments, data entry and access to the automation controller 12 may be completely external.
As shown in FIG. 6 a, the automation controller 12 may include a keypad and/or a visual display to enter and view information. In various embodiments, a touch screen interface may be included to combine the data entry and viewing functionality. In other embodiments the data entry and viewing functionality will be provided outside of the automation controller 12 via a monitor and/or television screen with data entry via the remote controller 14 or support a display and keypad similar to a stand-alone computer.
The front of the automation controller 12 may also include an IR detector for those embodiments that support receiving IR signals. In those embodiments, the IR transmission capability of the remote controller 14 can be employed to control the automation controller 12, instead of using the RF transmission link. Also, the automation controller 12 can support the use of a more traditional remote that transmits only using IR signals.
FIG. 6 b depicts an exemplary back view of the automation controller 12. It will generally include a variety of communication ports and transmitters and receivers for the various transmission protocols that are supported. For example, telephone, Ethernet, coax, and/or fiber connections can be provided. USB, RS-232 and 485 and other access ports and monitor connections. Transmitters and receivers for the various wireless transmission protocols are also included. For example, a Zigbee or Z-wave transmitter and receiver can support a first signal type (ST1) and one or more 802.x transmitters and receivers can support networking via a second signal type (ST2). In various embodiments, the automation controller 12 will also include an interface to support power line communications with peripheral devices 16 that communicate via power line protocols, such as X10.
In addition to the input/output and networking connections and associated hardware and software interfaces, the automation controller 12 will generally include one or more storage devices, as well as one or more processors, depending upon the particular capability being implemented on a particular automation controller 12 embodiment. In general, the automation controller 12 will provide most monitoring, coordination, control, and record keeping functions for the system 10. The desired system size and capabilities will drive the level of functionality in the embodied in the automation controller 12.
The automation controller 12 will typically connect to external power. The automation controller 12 may also include a battery back-up, in case of an external power failure, depending upon the level of reliability desired. While the automation controller 12 could be operated on battery power only, the functionality of the controller 12 generally warrants a continuously available (excepting failures) power source.
While varying levels of functionality can be embodied in the remote controller 14, in many embodiments, the full features and functionality of the system 10 are typically accessible and controllable via the automation controller 12. The automation controller 12 will generally provide menu-driven access to control the peripheral devices 16. The capability to check, change and schedule a change in status and/or settings for the peripheral devices 16 is generally provided. The automation controller 12 generally stores the system inventory and settings and may also be configured to store that information externally, such as in a computer or mass storage device, or at an off-site network operations center. The back-up of system information can be performed manually or automatically.
Discovery and association of automation controllers 12, remote controllers 14 and peripheral devices 16 with the automation controller 12 and/or remote controller 14 can be a manual, automatic, or semi-automatic process. In some embodiments, the automation controller 12 will scan its operational range to discover various system components including other automation controllers 12, remote controllers 14 and peripheral devices 16 with which it can be associated. The automation controller 12 can update its potential inventory list each time it detects a new components.
As part of the discovery process, the automation controller 12 can employ various discovery methods. For example, it can “ping” all the components in its transmission range to send discovery information to the automation controller 12 to ensure a timely and complete inventory is established. The automation controller 12 can also “listen” for signals from components in its reception range, which can be compared to its inventory lists derived from pinging or otherwise. The automation controller 12 can be configured to continue discovery via pinging, listening, or otherwise until a consistent inventory list is produced. Alternatively, it can provide an inventory list of components that can be confirmed via multiple discovery methods, which can be used to define its operational range. It can also identify components that were discovered using one method, but not confirmed via another method. For example, a component that the automation controller 12 discovers by listening, but it does not responds to the ping signal sent by the automation controller 12. In this example, the component may be within the reception range of the automation controller 12, but not the transmission range for one or more reasons, such as shielding, partial component failure, etc.
Association of the peripheral devices 16 and remote controllers 14 with the automation controller 12 can be performed automatically as part of the inventory process. However, it is often times more desirable, even though it is more work, to have the association process be separate from inventory to ensure that only desired associations are made.
The association procedure for components with the system 10 can involve interaction between the component and the controller as part of the procedure and/or the user can associate the component. The procedure may be limited to adding a component identifier/address to a system database or may be more involved, such as configuring the component to assume particular operational states and/or roles in the network following the association.
In some instances, it may be desirable to require interaction between the component and the controller to minimize the chances of an improper association. For example, the peripheral devices 16 and remote controllers 14 may have an associate button, switch, key, etc., that must be activated during association. Alternatively, each device may have an association code or device identifier, such as a MAC address, that is entered via the automation controller 12 and/or the remote controller 14 as part of the association process without requiring communication between the controller and the component. The component will then respond to any controller that uses the proper address.
In various embodiments, a remote controller 14 can be used to initiate and/or perform the association or commissioning process using line of sight communications, such IR, in lieu of or combination with non-line of sight communications, e.g., Zigbee. The use of line of sight communication significantly reduces the probability of a peripheral device or other component being associated with a wrong network in deployment scenarios where systems have overlapping operational ranges, such as in multi-tenant facilities, and does not require physical interaction with the components.
In an exemplary association process, the remote controller 14 is configured to provide a line of sight signal, i.e., an IR signal, to the peripheral device 16 placing it in an association mode, where it will become associated with the automation controller 12 and/or with the remote controller 14. In some instances, the peripheral device 16 will remain in an association state until an automation controller 12 and/or remote controller 14 detects its presence and completes the association process. The detection of the peripheral device 16 by the automation controller 12 can be initiated by the remote controller 14 and/or peripheral device 16. For example, the remote controller 14 can be configured to send an association signal to the automation controller 12, in addition to the peripheral device 16. In this example, it may be desirable for the remote controller 14 to send a code/key to the automation controller 12 and peripheral devices 16 that is used in the association process to prevent the inadvertent initiation of the association process with another automation controller 12 within the range. If the association process is not initiated on the automation controller 12 by the remote controller 14, it may be desirable for the remote controller 14 to provide a code/key to the peripheral device 16 for identification in the association process, when it is detected by the automation controller 12.
In embodiments without a remote controller 14, the automation controller 12 can be configured to associate only with peripheral devices 16 and/or other automation controllers 12 for which a physical address, such as a MAC address, or code/key has been entered into the automation controller 12. The automation controller 12 can also be configured to associate with new components when it is in an association mode as discussed above, as opposed to trying to associate automatically with any component it detects during operation.
In some embodiments, it may be desirable to associate a peripheral device with an automation controller 12, when the peripheral device is not present within the communication range of the automation controller 12. For example, it may be desirable to associate a peripheral device with multiple automation controllers 12 within one or different systems 10 that have non-overlapping ranges of operation. One such embodiment of non-overlapping ranges is described below with respect to geographically diverse systems that share peripheral devices 16. The association between peripheral devices 16 and automation controllers 12, whether present in the range or not, can be performed by either or both devices 16 and controllers, using identifiers and signaling prompts, as may be appropriate.
Peripheral devices 16 in the present invention are generally implemented in a function role communicating directly with remote controllers 14 and/or automation controllers 12 depending upon the system configuration and responding to their commands to perform a function, which may include one or more steps, process, and/or actions. Common peripheral devices 16 include electrical wall and device receptacles and jacks, on/off, contact, and dimmer switches, visual (e.g., motion), audio, material (smoke, humidity, CO, radiation, etc.), electromagnetic wave (RF, IR, UV, visible light, etc.), shock, and thermal sensors, thermostats, video equipment (e.g., cameras, monitors), audio equipment (e.g., microphones, speakers), blinds, fans, communication equipment used to provide services, such as plain old telephone service (POTS), voice over Internet Protocol (VoIP), video, audio, and data, etc.
The peripheral devices 16 can also be used to obtain data from other devices for evaluation, referred to herein as monitoring peripheral devices 16. For example, a sensor or other peripheral device 16 can configured to monitor signals output by a piece of equipment or other device and send the signals along with the notification of the signaling event. The signals can be error codes or other performance attributes in various forms, such as visual (flashing lights), audible (beeps), and/or electrical signals that are detected by the devices 16 and forwarded by the system 10 to the relevant parties, if desired. For example, light pattern changes on LEDs (flashing, color, etc.) on computer equipment could be converted to an error code for evaluation or the audible signal from a smoke detector could be evaluated to distinguish low battery alerts from actual smoke detection.
Data from monitoring peripheral devices 16 can be used as primary data or as data to corroborate data received from other peripheral devices 16 within the system 10. For example, when a smoke detector is embodied as a peripheral device 16 in the system 10, the system 10 can be configured such that the automation controller 12 receives a smoke detected alarm from the smoke detector peripheral device 16 and a corroborating alarm from an audible monitor peripheral device 16 that detected the smoke detector audible alarm.
The peripheral devices 16 can operate on external and/or battery power depending upon the requirements of a particular device and the accessibility of external power. For example, electrical receptacles may not be required to transmit and receive information frequently, so they could be operated on battery power. However, electrical receptacles are connected in an external power circuit, so those devices will generally be operated using external power, because it is available. Similarly, peripheral devices 16 that are communicating with the automation controller 12 via a powerline communication protocol will be configured generally to use external power as those devices will be connected by the external power lines. If the function of the peripheral devices 16 is something that should remain operational, even when there is an external power outage, then it may be desirable to provide battery power as the primary or secondary power source to the device.
The peripheral devices 16 can be controlled individually by the controllers or in groups to create “scenes” or to place a structure in a particular operational state, such as set the air and water temperatures, disabling/enabling the door alarms, turning on/off computer equipment and other electrical devices, and unlocking/locking the garage and other doors when a business opens/closes or a person leaves/returns to a residence.
In some embodiments, such as depicted in FIG. 7, it is desirable to include one or more peripheral devices 16 packaged along with or proximate to the automation controller 12. The close proximity of the peripheral devices 16 to the automation controller 12 allows for a direct wired connection in lieu of, or in addition to, the communication scheme used with other peripheral devices 16. As such, the close proximity peripheral devices 16 can provide a low cost means for controlling devices, which are in close proximity to the automation controller 12. For example, in many cases, the automation controller 12 will be placed in close proximity to audio, video, and computer equipment, as well as lighting, which can be controlled via the low cost proximate peripheral devices 16.
FIG. 8 a shows peripheral device 16 embodiments, in which a plurality of peripheral devices 16 form a control group, which share a common communication interface (transmitters, receivers, etc.) to the controllers 12 and/or 14. The sharing of the communication interface, and in some instances, some or all of the processing capability, provides for lower cost peripheral devices 16. In various embodiments, each of the individual peripheral devices 16 1-n the control group is identified as a separate peripheral device 16. Whereas, in other embodiments, the entire device 16 is identified as one peripheral device 16 with sub-devices 16 1-n. The identification of the peripheral devices 16 as individual devices or sub-devices is generally left to the skilled artisan. When using sub-device identification, instructions can be given to the device as a whole, which can be left to the device itself to implement. For example, peripheral device 16 can be instructed to turn off, which causes the peripheral device 16 to turn off sub-devices 16 1-n. In the individual device implementation, instructions to turn off are sent to each of the devices 16 1-n for action.
The FIG. 8 a embodiment, which is shown as a plug strip, is purely for exemplary purposes, as the common interface/processing architecture can be implemented for any application in which the devices are in relatively close proximity or can communicate effectively. For example, track lighting, holiday decorations, etc. can be implemented using this structure.
As shown in FIG. 8 b, the peripheral devices 16 also can be configured to communicate with other secondary devices 18 or systems. For example, the peripheral device 16 can include communication capability with a computer via USB, Ethernet, serial or parallel port or other connection, which can be wired or wireless. In these embodiments, the peripheral device 16 could send a system message to one or more secondary devices, such as a computer, that power was going to be interrupted and for the computer to perform a graceful shutdown. It could also send a signal that initiates the booting, or starting, up of the computer.
In various embodiments, the peripheral device 16 is embodied as a plug strip including a power cord for plugging into a power source, such as a standard electrical receptacle, and a plurality of electrical receptacles controlled at least in part by a common processor and using a common transmitter and receiver to communicate with the automation controller 12 via a first signal type, such as Zigbee, Zwave, PLC, 802.x, etc., and a computer via a secondary signal type, USB, etc., to send power up and power down signals to the computer. The common processor could be used to control all functions associated with the plurality of electrical receptacles or additional processors could be used with one or more of the receptacles.
The peripheral device 16 could further include an energy storage device, i.e., battery, which can be configured to retain sufficient energy to power 1) the peripheral device 16 to signal the computer or other secondary device 18 and 2) the computer or other device for a sufficient period to allow a graceful shutdown, in the event of a primary power failure to the computer or other secondary device 18. One of ordinary skill will appreciate that many computer and peripheral equipment types include APIs and other signaling protocols that enable the shutdown, restart, and turn-up of the equipment.
FIG. 9 a shows other embodiments of peripheral devices 16 of the present invention. In these embodiments, one or more peripheral devices 16 are located outside of the operational range (shown as a dashed line) of the automation controller 12 and/or the remote controller 14, such as devices 16 2-n in FIG. 9 a, referred to as “outside devices”. In these embodiment, the peripheral device 16, is configured to receive and transmit information to and from the outside devices 16 2-n.
The relationship between the outside devices and the automation controller 12 can be implemented in various fashions, such as individual devices or sub-devices as discussed with respect to FIG. 8 a. The outside devices may or may not be visible from an automation controller 12 inventory perspective. In various embodiments, the outside devices are visible to the automation controller 12 and are mapped based on their nearest neighbors in a mesh network topology and the outside devices and at least one device within the range (“inside device”) are configured as repeaters, so that instructions from the automation controller 12 can reach the outside devices. In other embodiments, the outside devices are associated with the inside device and may be considered as attributes of the inside device. In this scenario, a controller, 12 or 14, sends a command to the inside device associated with the outside devices, which is then implemented on the outside devices at the appropriate time by the inside device.
The means in which the information is provided to and from the outside devices 16 may or may not be the same as the means in which the information was provided from the controllers, 12 or 14, to the peripheral device 16 1 in the range. For example, if the outside devices are electrically connected, then externally powered devices using power line communications between outside devices may be appropriate, while wireless communications may be used for communications between the controller 12 or 14 and the peripheral device 16 1. In other applications, outside devices may have diverse functions, such as outside lighting, contact switches on gates and mailboxes, and sensors, it may be more easily implemented using battery powered devices and the same wireless communications protocol as used in within the range of the automation controller 12. In still other embodiments, wireless communication can be provided by the automation controller 12 and the inside devices 16, whereas communication and power is provided to the outside devices via Ethernet.
FIG. 9 b shows another embodiment of the present invention including a peripheral device 16 t that is configured to translate a message from the protocol used by the automation controller 12 to the protocol used by one or more secondary devices 18, which may be inside, shown as (a) in FIG. 9 b, or outside (b) the coverage range of the automation controller 12. The translation can be between wireless protocols and/or wireline protocols and implemented in a variety of ways, such as mapping the signal from one protocol to another or by embedded one protocol signal within the other protocol signal, similar to a digital wrapper. For example, the peripheral device 16 t could translate a Zigbee protocol signal to an RS-485 signal to communicate with components in an HVAC system. The RS-485 link could be implemented as a full duplex, 4 wire solution or half-duplex 2 wire solution depending upon conditions, e.g., multiple radio interference conditions, and the amount and frequency of information being communicated through the link. In addition, two translator peripheral devices 16 t could be used to set up a link (c) using a different protocol, while still communicating with other devices using the protocol of the automation controller 12. In this implementation, this translator devices 16 t may be used to convert from wireless to wired protocols (in this example Zigbee and RS-485) to enable the signal to reach an area more easily accessed using a wired protocol, but where the signal may be sent wirelessly within the area. In this example, the translator device 16 t may be operated in a mode where the Zigbee message is inserted untouched into an RS-485 stream, which is sent to a second translator device 16 t, where it is received. The 485 stream is analyzed and a Zigbee message is recreated by the second translator device 16 t and sent to the destination peripheral device 16.
In various embodiments, such as those shown in FIG. 4, the remote controller 14 could be used as a translator device to control one or more secondary devices 18. It will be appreciated that if a remote controller 14 is employed as a translator, it will have to be positioned properly to enable it to communicate with the secondary devices 18.
One of ordinary skill in the art will appreciate further that the range of an automation controller 12 can also be extended via repeater peripheral devices 16, which are used to amplify, typically be receiving and retransmitting signals, without altering the signals. Range extenders are known in the art and commonly available in 802.11 architectures. Of course, the repeater functionality can be embedded in other peripheral devices 16 to eliminate the expense of deploying stand-alone repeater devices.
FIG. 10 a shows embodiments of the system 10 including mobile peripheral devices 16 m, which can be implemented to provide additional functionality to the system 10. Peripheral devices 16 that are fixed in space for a particular application can be referred to as stationary peripheral devices 16 to facilitate description. However, whether a peripheral device 16 is considered stationary or mobile may, in fact, depend upon the specific application and/or system configuration implemented by the user.
In the present invention, the mobile device 16 m can be used for determining when a subject (person, pet, object, etc) leaves or enters a structure or zone. In these embodiments, a peripheral device 16 can be attached, via bracelet, anklet, collar, or otherwise, to the subject and its transmission can be used to determine when the subject has left the zone, passes through a reception area or proximate to another device, etc. Mobile peripheral devices 16 m can be applied to home, office, or construction areas for theft protection and safety measures as well.
The system can be configured to geolocate the mobile peripheral devices 16 m operating in an environment with two or more other peripheral devices 16 m. For example, the received signal strength from various receivers can be used to locate the device by determining vectors for triangulation. This application allows a system to determine, not only when a subject has left a zone, but also, with some accuracy, where the transmitting device attached to the subject is located within the zone. This level of geo-location could be either constantly updated, or determined by querying the receivers in the zone. It will be appreciated that the system will determine the general location of the mobile device within the range of the system 10. The precision of the mobile device location will depend upon the desired amount and precision of the information received by the controller 12 from various stationary peripheral devices 16.
The frequency at which the system 10 tracks the mobile peripheral devices 16 can be configured by the user depending upon a desired implementation of the devices. For example, it may be desirable for the mobile peripheral devices 16 to transmit a signal, when it is prompted manually by remote controller 14 and/or automation controller 12. In these scenarios, the user may want only want to know the location when they are looking for the object, such as a remote controller 14, car keys, or even a pet. The automation controller 12 can be configured to request signals from the mobile peripheral devices 16 m at different intervals depending upon the location of the mobile peripheral devices 16 m within the system range.
In other instances, the user may want to know as soon as possible, or practical, that a child or disabled adult has left the range of the system 10. In these instances, the frequency and extent of the transmission must be balanced against the battery life of the device. In various embodiments, the mobile peripheral devices 16 will be driven by kinetic energy. An energy storage device, such as a rechargeable battery or capacitors can be provided to store excess kinetic energy. The kinetic energy driven device 16 has the benefit in that the energy to transmit signals is being generated by the motion of the object to which the mobile device 16 m is attached, which is precisely when the energy is needed for transmission. When the object is at rest and no kinetic energy is being generated, the transmission frequency can be much less, because the object is stationary and its location is presumably known.
In still other embodiments, the mobile device 16 m can lay dormant, i.e., not transmit a signal on its own, unless it is requested by an automation controller 12 or remote controller 14, or is activated/triggered by, or activates, another device in the system. For example, the mobile device 16 m could include an electromagnetic wave (e.g., RF, IR, etc.) detector and/or emitter/tag. In the case of a detector, when the device comes within the range of an emitter, which can be located proximate the exit of buildings, premises, room, or otherwise, the mobile device 16 m would be activated by the emitter signal from the emitter and begin transmitting signals to identify its location. If the mobile device 16 m includes an RF emitter, a RF detector located near a threshold of interest could be used to send a signal to the automation controller 12 that it has detected a mobile device emitter, at which time the automation controller 12 can ping the mobile device 16 m to send a tracking, or location, signal and/or other information that can be used by the controller to track the mobile device 16 m.
In various embodiments, such as those involving disabled adults and children, the mobile device 16 m will be regularly polled by the automation controller 12 and will be activated by, or activate, another device that is used to monitor the movement of the individual near thresholds of interest, building exits, etc. In this manner, regular updates will be obtained when a person is within a known area and the frequency of updates can be accelerated and notifications made, when a person leaves an area. It will be appreciated that the mobile device 16 m can perform a number of functions, such as measuring temperature, shock, pulse, etc. (i.e., health parameters) for individuals, in addition, to providing a tracking signal.
In application, when the automation controller 12 determines that an object being tracked with a mobile device 16 m has left some predefined area, such as exiting a building, the automation controller 12 can be configured to communicate the information to the user by the available means, such as email, text message, phone call, audible signal, etc. or merely log the time that object left the predefined range. The automation controller 12 could take the same or a different action when the object wearing the mobile device reenters the predefined range. An example of the automation controller 12 merely logging information could be logging when object that normally are expected to exit and reenter a range are being tracked, such as vehicles at a dealership or personnel at an office during normal business hours. Extending these same examples, the user may want to be notified when these objects enter and exit the premise during non-normal business hours.
Peripheral devices 16 can be deployed in data collection modes, if sufficient memory is provided for data storage during the collection interval, instead of transmitting the data as it is collected. The device 16 would then transmit the data collected over the interval to the controller or a display. For example, various sensors can be deployed that log data for periodic review and/or transmission, in lieu of regularly transmitting the data or waiting for a request by a controller.
A device 16 also may collect data on a fixed interval, but only transmit data when a threshold has been exceeded, such as high/low temperature, shock, gas concentration, humidity, etc., or upon request. Alternatively, the peripheral device 16 can perform some processing of the raw data and transmit only the processed data, while perhaps retaining the raw data for a period of time to allow for retrieval if necessary. For example, the peripheral devices 16 could process the raw data and transmit a moving average of the data and any extreme outliers to the data. In this manner, communication traffic in the system 10 is reduced.
As shown in FIG. 10 b, devices 16 that are configured to collect data for later access also can be deployed in embodiments, in which two systems 10, or sub-systems of a larger system, are employed having non-overlapping ranges including geographically diverse configurations. For example, a device 16 that includes one or more sensors for detecting relevant conditions can be provided on the inside and/or outside of a shipping container. The data on the device 16 can be read before shipment by a system 10 at the point of origin and by a counterpart system 10 at the destination to determine the conditions to which the contents of the shipping container were exposed. It may also be possible to read the data en route. If the device 16 is provided within a sealed container, the data collected can be used to verify that a container was not exposed to conditions, temperature, humidity, shock, etc., that could damage the contents and the point in time and duration of the exposure to extreme conditions. The number of devices 16 deployed within a container and the sensors or other instruments included in or associated with the device 16 will generally depend upon the size of the container, (e.g., letter size package, cargo ship container) and the desire for redundant data collection, which may depend upon the value of the contents of the container. In practice, the carrier can be present and confirm the origin and destination data and the shipper/user can implement sufficient security, such that the device 16 is not reset or data compromised during shipment.
From a tracking perspective, the devices 16 used for shipping can be treated statically or as a mobile device 16 m by the system 10. For example, the shipping devices can be detected before or after the device enters a facility to provide data on whether shipments should be rejected, inspected, and/or accepted from a carrier. In other embodiments, each of the geographically diverse systems 10 can be included in a broader overall system from a network management level, such that peripheral devices 16 in each of the local systems can be registered and status maintained in an overall database, such that when the peripheral device 16 re-enters the coverage area of one of the system 10, it can be detected and the data logged. The overall database could be enabled in various configurations by one of ordinary skill. For example, the overall database for the plurality of systems, or automation controllers 12, could be embodied in a multi-level automation controller architecture, in which a master controller provides at least some control over multiple automation controllers 12 or the overall database may be merely a shared database that is accessible by multiple systems.
In various embodiments, the system 10 includes a limited purpose remote controller (“LPRC”) 22, which can be a wall mounted, free-standing, or handheld device. The LPRC 22 can be embodied as a configurable on-off or dimmer switch that can be used to control one or more peripheral devices 16 directly and/or via the automation controller 12 or the remote controller 14. For example, the LPRC 22 can be configured to control one light or one electrical receptacle in a room similar to a traditional light switch. Alternatively, the LPRC 22 could be configured to control a group of lights and/or other peripheral devices 16. For example, the LPRC 22 could be mounted as a wall switch that could control all of the lights in a basement, turn on and off all of the components in an entertainment system, etc., even if those lights and components are on different wiring circuits.
FIGS. 11-16 depict various embodiments of the LPRC 22, which for exemplary purposes, is described in terms of on-off, toggle, or dimmer wall switch. Instead of opening and closing a circuit as in a traditional light switch, the LRPC 22 requests the controller to issue a command to function device to perform a function, such as to turn on or off one or more switches and/or receptacles. In an embodiment, flipping the switch (FIG. 11) one direction cause one or more lights controlled by function devices to be turned on and flipping the switch in the other direction causes the same lights to turn off. For a button (FIG. 12), the on-off instructions alternate with each push. In other embodiments, the LPRC could be activated using access control or presence technology, such as RFID or by placing a card in slot or reader.
In this manner, a wall switch could be used to control any and/or all of the outlets/lights, etc. in a room, rooms, or building, not just those hardwired to a wall switch during construction. The switch can be viewed as a limited purpose remote control for interfacing with the controller and/or peripheral devices 16 via a limited interface.
Additional functionality can be provided on the LPRC 22. For example, multiple switches can be packaged similar to traditional circuit control switch, A/B type slide switches can be added to the traditional flip switches to allow the switch to toggle additional functions (FIGS. 3 and 4). The multi-function switches can employ common or separate processors, transmitters, or receivers depending upon the desired level of functionality (FIGS. 5 & 6). The switch can be powered via battery or external power. The function of the switch can be programmed, most likely via the controller, to perform the desired function upon actuation of the LPRC.
In various embodiments, the LPRC 22 can be configured to send a generic automation instruction to an automation controller 12 or a remote controller 14. Upon receiving the generic instruction, the controller will execute a reconfigurable instruction set controlling a group of one or more peripheral devices 16. In some embodiments, the same instruction may be sent whenever the LPRC 22 is actuated. In these embodiments, the controller will receive the instruction from the LPRC 22 and execute an instruction sequence for controlling one or more peripheral devices 16 tied to the receipt of the LPRC 22 instruction. For example, the first signal received from the LPRC 22 might cause the automation controller 12 to turn on one or more lights. The next three signals received from the LPRC 22 in this example, might cause the might cause the automation controller 12 to turn the lights to 66%, 33% and 0% (off) power, respectively.
In other embodiments, the LPRC 22 will send the actual automation instructions, either directly or via a controller, that instruct the peripheral devices 16 to perform the automation function. In these embodiments, the automation controller 12, and perhaps the remote controller 14, can be used to program the LPRC 22 to send automation instructions for a group of one or more peripheral devices 16. In yet other embodiments, the LPRC 22 will send different generic instructions depending upon its actuation, such as flipping a switch up and down. The controller could be configured to execute different automation commands for each generic instruction received from the LPRC 22.
As described above, the system 12 can be deployed in a vast number of configurations to achieve the functionality and cost objective of the end user. The automated monitor and control aspects of the system 10 also enable it to provide higher level functions, such as security and energy management.
In various embodiments, the automation system will perform integrated energy management of part or all of a facility. For example, a user in a may establish a multi-level energy management structure. At a first level, the system administrator establishes administrator settings for day and time of day settings for the HVAC system, hot water heater, etc. Typically, this will involve setting a first temperature range for hours of operation and a second temperature range non-operational hours. Various settings for lighting in the facility may also be established.
A second level of control can be implemented by monitoring usage at the circuit level for an area, as well as for confirming the integrity of overall and individual usage data. Circuit monitoring also provide the user with data for planning peripheral device roll out, as well as for providing more granular operational hour control.
A third level of control may be implemented at the work space and common area level. For example, the temperature of a work space may be controlled depending upon whether or not a person is present at the facility or whether a meeting is scheduled or people are present in a work space, such as a conference room. Also, the hallways and other common areas may be controlled to a different temperature and/or lighting intensity. Circuit level control also can be used in some just in time power deployments, when the first and last person enters a work area and for spaces and/or jobs that are not suitable for control at the individual work space level.
The concept of controlling the temperature and lighting depending upon the presence of a person at the home or work place can be extended more generally to “just in time” energy management. In various embodiments, the automation controller 12 provides access control and/or monitoring or interacts with an access control/monitor system and part of a person's work space or a residence is not supplied electricity unless the person is present. Upon detection of a person entering a facility, the automation controller 12 would turn on the supply of power to a person's work space and adjust the temperature of the work space accordingly. In various embodiments, the automation controller 12 could begin powering up computer equipment and peripherals, so the equipment is ready to use when a person reaches their work space. When a person leaves a work space, the automation can direct the return of the work space to non-operational or out-of-the-work-space operational set points. An analogous procedure can be implemented for a residence.
At another level, the automation controller 12 can coordinate the different energy management activities within a facility and/or work space. For example, a work space environment will be defined at least in part by the temperature and lighting intensity. The automation controller 12 can be configured to balance the solar impact, i.e., light and heat provided by sunlight or natural light, within an area with the light and heating/cooling provided by the building systems to minimize the energy cost.
In this case, the automation controller 12 could control various peripheral devices 16, including lights, HVAC vents, window blinds, etc. in a coordinated manner to reduce energy consumption. For example, the temperature and light intensity within a work space/area is defined in the controller 12. During the course of the day, the blinds would be open to varying degrees. When it is night, the controller 12 can close all of the blinds for privacy and to increase its effectiveness as a thermal barrier. During the day time, but not during operational hours, the controller 12 can leave the blinds closed, if desired, or open the blinds an appropriate amount to balance the solar impact with the temperature and lighting demands of the space. During non-operational daylight hours or when the work space is unoccupied, the control of natural light does not have to consider glare from natural light when determining the amount of natural light to allow in the space or the direct impingement of sun light on a person in the space. Whereas, when a person is present in the work space, solar impact issues typically have to be considered.
The specific types and number of peripheral devices 16 used to coordinate the light and temperature control provided by the facility/building system with the solar impact, sun light and thermal energy, can be determined by the skill artisan. For example, one or more light controllers and temperature controllers for the building systems can be deployed in the area along with blind controllers, external and internal temperature and light sensors, motion detectors, etc. The automation controller 12 can be configured to maintain administrator settings for light intensity and temperature in the area by operating the blind controller to allow sun light and thermal energy to enter the area and adjusting the light and temperature controllers to control the amount of lighting and energy provided by the building systems accordingly. The operation of the devices 16 can be configured in various ways, but a default configuration may be to minimize lighting and HVAC costs for the area, while operating in conformance with the area settings.
The automation controller 12 also could interact with an area controller that could be coordinating the peripheral devices 16 within an area. For example, the area controller could include or be associated with various sensors, such as temperature, light intensity, and motion, in the area, which provide local information used to control the area environment. The area controller could be used merely to provide a single point of contact for a given area to the automation controller 12 or could be configured to control various actions of the peripheral devices 16 in the area. In various embodiments, the area controller can be used to turn power on and off to an area, which can be triggered manually, flipping a switch, inserting a card, etc. or upon detection of a person, via RFID or otherwise, or condition, similar to an LPRC as discussed above.
For energy management, the system 10 generally will be implemented by an administrator that configures the automation controller 12 and add peripheral devices 16 to the system. The administrator will generally establish various settings (“administrator settings”) for the performance of functions relating to energy consumption for the peripheral devices 16 based on the day, time of day, the presence of at least one person within an area in the facility, environmental conditions outside the facility and solar impact within the area.
The administrator settings can include set points, limits, and ranges, and provide for user input consistent with the administrator settings. In various embodiments, the automation controller 12 can be configured to determine the financial impact of allowing user variations to the administrator settings. The information can be used to modify the administrator settings and suggest alternative user settings.
The system can be configured to adapt to the behavior of personnel with the facility, which can modify administrator settings or merely provide the data to the administrator for information or action. For example, the system can monitor the presence of personnel in the area and adapt the set point times for transitioning from a person present in the area settings to not present in the area settings.
The transition set point times can be different for different energy consuming devices in the area. For example, various equipment lights and displays can be dimmed or turned off almost immediately when a person leaves the area, while it is often not desirable to turn off or hibernate a computer immediately when a person leaves the area. Voice over Internet Protocol (VoIP) phones, which do not locally host messaging or other services, can be turned off when a person is not present in the area and/or facility. Also, displays can be turned off when not in use and turned on when the server forwards a call to the phone or the phone is prompted by the user.
Other devices that employ Power over Ethernet (“PoE”) can also be turned on and off via the system 10, as well as part or all of the local area network (“LAN”), when there are no users on the LAN. In various embodiments, the devices 16 can be configured to transmit a wake up, or start up, signal back to the LAN equipment, i.e., servers, switches, etc., to power up a portion of the LAN for use. In various embodiments, the devices 16 can be implemented to communicate with secondary devices, such as those embodied in and described relative to FIGS. 8 a& b, and with the LAN server. In these embodiments, the device 16 can communicate start up and/or shutdown signals to both the LAN equipment and the computer equipment. An example of these embodiments a is a plug strip/surge protector that is connected via Ethernet cables to a computer and the LAN. In the case of a start-up, upon notification that a user of the computer is present in the facility or otherwise, the device 16 will send start-up signals to both the computer and the LAN. The device 16 will also enable the supply of power to the power receptacles in the plug strip allow the computer and other electrical devices to power up. Similarly, when there is to be a shut down, because the user is no longer present, there is a power interruption, or otherwise, the device 16 would send shut down signals to the computer and the LAN.
Various access control technologies, such as RFID, IR, etc. can be used to track the movement of personnel and assets within a facility, in addition to access to the facility. Access tracking within the facility can be used to trigger the transition from a person being present in an area to not present, and vice versa. For example, the access control system can detect when a person moves between the different parts of a facility, such as laboratory, manufacturing, administrative, etc., and transition the person's work area to present or not present state.
The extent of deployment of the system 10 will determine the level of detail of the information provided to the user and available for control of the information. In various embodiments, the system 10 will include at least one peripheral device 16, such as a current, power, and/or voltage monitor, for monitoring the overall energy consumed within a managed area as a function of time. The various peripheral devices 16 deployed within the managed area will provide more specific electrical usage data. In a typical scenario where the peripheral devices 16 are not monitoring all electrical consumption points, the system 10 can be configured to provide overall, circuit, monitored, and unmonitored usage statistics that will allow a user to determine the cost effectiveness of additional monitoring in the managed area.
The system 10 can be configured in many different ways depending upon the extent of the deployment within a facility and the objectives. The system 10 can provide detailed reporting and analysis of energy usage and the operation of the various monitored equipment. The operational information can be used in combination with electricity rates from the utility to align the usage of electricity with the cost of electricity. For example, the controller 12 can implement rules to allow some activities only at night during hours of lower cost electricity. Also, the user can analyze the impact of replacing equipment with new equipment, installing solar or other power generation capabilities on site, or employing other sources of energy during various times of the day.
The system 10 can also be configured to participate in demand-response programs in cooperation with utilities and/or energy brokers, in which during times of peak demand, the operational set points of one or more energy consuming devices, typically the air conditioning unit, is varied to reduce power consumption during period of high demand. Using the system 10 of the present invention, the demand-response program can be implemented at a more specific level to provide additional savings and improved comfort. For example, instead of the utility or energy broker cycling the air conditioning units for a facility, the automation controller 12 could increase the temperature set point for various parts of the building that are less sensitive to temperature change or have a local, non-utility power capability, such as batteries, solar, etc., which could pick up the load. The controller 12 can also delay certain processes from occurring until the demand-response condition has passed.
In various embodiments, the actual energy consuming devices that are operated to consume less energy can be tailored to the amount of energy reduction being requested by demand-response client, i.e., utility or energy broker. For example, the automation controller 12 may determine that the requested energy consumption reduction requested by the client could be achieved by raising the temperature in various parts of the facility, such as rooms not currently occupied, by a few degrees and dimming the lighting in the hallways, rather than cycling the air conditioning for the entire facility.
In application, the administrator of the system can assigned various peripheral devices 16 associated with energy consuming devices to be turned off or operated at lower power settings as a function of the requested power reduction. The administrator can also establish a hierarchy of devices and the associated energy reduction for each device, such that the system 10 starts at the top of the list and implements the reduced energy settings until the cumulative reduction of all the devices achieves the requested reduction.
In various applications, the administrator can establish target energy reduction amounts based on the demand-response system. For example, a demand-response system can be established by the client that provides for varying levels of incentives, e.g., rebates, credits, points, etc., corresponding to the extent of the energy reduction made by the user. These types of demand-response system enable the administrator of the system 10 to reduce energy consumption according to the established hierarchy in order to achieve a target incentive amount established by the client as a function of the energy reduction.
These and other variations and modifications of the present invention are possible and contemplated, and it is intended that the foregoing specification and the following claims cover such modifications and variations.

Claims (17)

What is claimed is:
1. An automation system comprising:
a plurality of peripheral devices, each configured to perform at least one function relating to energy consumption in a facility; and,
an automation controller in communication with the plurality of peripheral devices and providing for control of the performance of the function by each device based on at least one of day, time of day, presence of at least one person within an area in the facility, environmental conditions outside the facility, solar impact within the area, administrator settings including set points, limits, and ranges, and user input consistent with the administrator settings,
wherein at least one of the plurality of peripheral devices is configured to enable communication between the automation controller and at least one secondary device by communicating with the automation controller via signals in at least a first signal protocol used for the plurality of peripheral devices, translating signals by at least one of mapping the first signal protocol into a second signal protocol and receiving the signals in the second signal protocol embedded in the first signal protocol, and communicating with the at least one secondary device via the signals in the second signal protocol.
2. The automation system of claim 1, wherein:
the plurality of peripheral devices includes at least one light controller, at least one temperature controller, at least one blind controller, at least one external and one internal temperature sensors, and at least one external light sensor; and,
one of an area controller and the automation controller configured to maintain administrator settings for light intensity and temperature in the area by operating the at least one blind controller to allow sun light and thermal energy to enter the area and adjusting the light and temperature controllers accordingly.
3. The automation system of claim 2, wherein the at least one blind controller is operated to minimize lighting and HVAC costs for the area within the administrator's settings for sun light intensity and thermal energy.
4. The automation system of claim 1, wherein the automation controller configured to communicate with a demand-response client external to the system and control multiple peripheral devices to reduce energy consumption to an amount requested by the demand-response client.
5. The automation system of claim 1, wherein the system is configured to calculate a cost differential resulting from operating based on user input relative to operating based on the administrator settings.
6. The automation system of claim 1, wherein the system is configured to have different settings for the peripheral devices in the area depending upon whether the person is not present in the facility, present in the facility and not in the area and present in the facility and in the area.
7. The automation system of claim 6, wherein the system is configured to reduce the power consumed by telephone equipment, when the person is not present in the area.
8. The automation system of claim 1, wherein at least one of the plurality of peripheral devices is configured to transmit and receive signals to and from the automation controller in at least the first signal protocol including Zigbee, Zwave, and PLC format, map the signal between the first signal protocol and the second signal protocol including RS-485, RS-232, and RS-422, and transmit and receive signals in the second signal protocol to and from the at least one secondary device.
9. The automation system of claim 8, wherein the secondary device is at least one of a thermostat, a hot water heater, and an HVAC unit.
10. The automation system of claim 8, wherein the at least one peripheral device is configured to translate signals between the automation controller and a plurality of secondary devices.
11. The automation system of claim 1, wherein the peripheral device is one of a plurality of peripheral devices selected from the group consisting of on/off switches, dimmer switches, electrical receptacles, light sockets, sensors, audio equipment, video equipment, environmental, access, and electrical controls, and communication equipment.
12. The automation system of claim 1, wherein at least one of the peripheral device is configured to collect data over an interval and transmit at least one of an average of the data over the interval to the automation controller and changes in the data between intervals.
13. The automation system of claim 1, wherein the system includes a remote controller that is configured to at least enable association of peripheral devices with the automation controller.
14. An automation system comprising:
a plurality of peripheral devices, each configured to perform at least one function relating to energy consumption in a facility;
an automation controller in communication with the plurality of peripheral devices and providing for control of the performance of the function by each device based on at least one of day, time of day, presence of at least one person within an area in the facility, environmental conditions outside the facility, solar impact within the area, administrator settings including set points, limits, and ranges, and user input consistent with the administrator settings, and
wherein the system is configured to have different settings for at least one of the peripheral devices in the area depending upon whether a person is not present in the facility, present in the facility and not in the area and present in the facility and in the area, and the system calculates a time the person is not in the area and adjusts a time interval for transitioning from settings for present to not present in the area.
15. A method of automating functions comprising:
configuring a plurality of peripheral devices to perform at least one function relating to energy consumption in a facility;
providing settings via an automation controller for an area within the facility depending the day, time of day, the presence of a person in the facility in the area, and the presence of a person in the facility and not in the area;
controlling the function of the peripheral devices to account for at least one of environmental conditions outside the facility and solar impact in the area to maintain the area according to the settings corresponding to the day, time of day, the presence of a person in the facility in the area, and the presence of a person in the facility and not in the area;
calculating a time the person is not in the area; and,
adjusting a time interval for transitioning from settings for present to not present in the area based on the calculation of the time the person is not in the area.
16. The method of claim 15, wherein controlling includes controlling at least one blind controller peripheral device in the area to minimize lighting and HVAC costs in the area according to the settings for the area.
17. The method of claim 15, wherein:
configuring includes configuring at least one peripheral device as a plug strip connected to a power source and including a plurality of electrical receptacles controlled at least in part by a common processor and using a common transmitter and receiver to communicate with the automation controller via a first signal type and a computer via a secondary signal type to send power up and power down signals to the computer; and,
providing includes providing settings for powering up and down the computer depending the day, time of day, the presence of a person in the facility in the area, and the presence of a person in the facility and not in the area.
US11/971,487 2007-01-26 2008-01-09 Upgradeable automation devices, systems, architectures, and methods Active 2028-03-18 US7865252B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/971,487 US7865252B2 (en) 2007-01-26 2008-01-09 Upgradeable automation devices, systems, architectures, and methods
EP08728292A EP2118716A4 (en) 2007-01-26 2008-01-25 Upgradeable automation devices, systems, architectures, and methods for energy management and other applications
CA002676538A CA2676538A1 (en) 2007-01-26 2008-01-25 Upgradeable automation devices, systems, architectures, and methods for energy management and other applications
PCT/US2008/052055 WO2008092082A2 (en) 2007-01-26 2008-01-25 Upgradeable automation devices, systems, architectures, and methods for energy management and other applications
AU2008207842A AU2008207842B2 (en) 2007-01-26 2008-01-25 Upgradeable automation devices, systems, architectures, and methods for energy management and other applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88691807P 2007-01-26 2007-01-26
US11/971,487 US7865252B2 (en) 2007-01-26 2008-01-09 Upgradeable automation devices, systems, architectures, and methods

Publications (2)

Publication Number Publication Date
US20080183316A1 US20080183316A1 (en) 2008-07-31
US7865252B2 true US7865252B2 (en) 2011-01-04

Family

ID=39668872

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/971,487 Active 2028-03-18 US7865252B2 (en) 2007-01-26 2008-01-09 Upgradeable automation devices, systems, architectures, and methods
US11/971,464 Abandoned US20080183307A1 (en) 2007-01-26 2008-01-09 Upgradeable Automation Devices, Systems, Architectures, and Methods
US13/103,458 Active US8504174B2 (en) 2007-01-26 2011-05-09 Upgradeable automation devices, systems, architectures, and methods
US13/959,730 Abandoned US20140217905A1 (en) 2007-01-26 2013-08-05 Upgradeable Automation Devices, Systems, Architectures, and Methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US11/971,464 Abandoned US20080183307A1 (en) 2007-01-26 2008-01-09 Upgradeable Automation Devices, Systems, Architectures, and Methods
US13/103,458 Active US8504174B2 (en) 2007-01-26 2011-05-09 Upgradeable automation devices, systems, architectures, and methods
US13/959,730 Abandoned US20140217905A1 (en) 2007-01-26 2013-08-05 Upgradeable Automation Devices, Systems, Architectures, and Methods

Country Status (5)

Country Link
US (4) US7865252B2 (en)
EP (1) EP2118716A4 (en)
AU (1) AU2008207842B2 (en)
CA (1) CA2676538A1 (en)
WO (1) WO2008092082A2 (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065597A1 (en) * 2005-12-12 2009-03-12 Garozzo James P Low voltage power line communication for climate control system
US20090278479A1 (en) * 2008-05-06 2009-11-12 Platner Brian P Networked, wireless lighting control system with distributed intelligence
US20100082176A1 (en) * 2008-09-26 2010-04-01 Michael Alan Chang Peer-To-Peer Home Automation Management
US20100318198A1 (en) * 2009-06-16 2010-12-16 Control4 Corporation Automation Control of Electronic Devices
US20110029139A1 (en) * 2009-07-30 2011-02-03 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US20110031806A1 (en) * 2009-07-30 2011-02-10 Lutron Electronics Co., Inc. Load Control System Having An Energy Savings Mode
US20110035061A1 (en) * 2009-07-30 2011-02-10 Lutron Electronics Co., Inc. Load Control System Having An Energy Savings Mode
US20110125542A1 (en) * 2009-07-17 2011-05-26 Honeywell International Inc. Demand response management system
US20110137436A1 (en) * 2010-03-23 2011-06-09 Michael Alan Chang Intelligent gateway for heterogeneous peer-to-peer home automation networks
US20110173542A1 (en) * 2009-08-21 2011-07-14 Imes Kevin R Mobile energy management system
US20110270446A1 (en) * 2010-05-03 2011-11-03 Energy Eye, Inc. Systems and methods for an environmental control system including a motorized vent covering
US20120053869A1 (en) * 2010-08-30 2012-03-01 Owen James E Delayed Meter Reporting
US20120079297A1 (en) * 2010-09-28 2012-03-29 Kabushiki Kaisha Toshiba Communication device, start node, system, method and compuet program product
US20120095601A1 (en) * 2009-07-30 2012-04-19 Lutron Electronics Co., Inc. Dynamic Keypad for Controlling Energy-Savings Modes of a Load Control System
US8214494B1 (en) * 2009-05-18 2012-07-03 Alarm.Com Incorporated Network device management technology
US8410630B2 (en) 2010-07-16 2013-04-02 Lumenpulse Lighting Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US8548607B1 (en) * 2008-11-03 2013-10-01 Autani Corp. Automation system network management, architectures, and methods and applications thereof
US8565903B2 (en) 2007-10-05 2013-10-22 Honeywell International Inc. Critical resource notification system and interface device
US8572230B2 (en) 2009-07-17 2013-10-29 Honeywell International Inc. System for using attributes to deploy demand response resources
US8626354B2 (en) 2011-01-28 2014-01-07 Honeywell International Inc. Approach for normalizing automated demand response events in energy management control systems
US8630744B2 (en) 2011-01-28 2014-01-14 Honeywell International Inc. Management and monitoring of automated demand response in a multi-site enterprise
US8639391B1 (en) 2012-11-08 2014-01-28 Green Edge Technologies, Inc. Systems, devices, and methods for automation and energy management
US8667132B2 (en) 2009-07-17 2014-03-04 Honeywell International Inc. Arrangement for communication about and management of a resource using a mobile device
US8671191B2 (en) 2009-07-17 2014-03-11 Honeywell International Inc. Installation system for demand response resources
US8676953B2 (en) 2009-07-17 2014-03-18 Honeywell International Inc. Use of aggregated groups for managing demand response resources
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US8855730B2 (en) 2013-02-08 2014-10-07 Ubiquiti Networks, Inc. Transmission and reception of high-speed wireless communication using a stacked array antenna
US8892223B2 (en) 2011-09-07 2014-11-18 Honeywell International Inc. HVAC controller including user interaction log
US8902071B2 (en) 2011-12-14 2014-12-02 Honeywell International Inc. HVAC controller with HVAC system fault detection
US8946924B2 (en) 2009-07-30 2015-02-03 Lutron Electronics Co., Inc. Load control system that operates in an energy-savings mode when an electric vehicle charger is charging a vehicle
US8957551B1 (en) 2014-01-24 2015-02-17 Green Edge Technologies, Inc. Apparatuses and methods for configuring a building automation system
US8975778B2 (en) 2009-07-30 2015-03-10 Lutron Electronics Co., Inc. Load control system providing manual override of an energy savings mode
US9002523B2 (en) 2011-12-14 2015-04-07 Honeywell International Inc. HVAC controller with diagnostic alerts
US9013059B2 (en) 2009-07-30 2015-04-21 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US20150127169A1 (en) * 2013-11-04 2015-05-07 Honeywell International Inc. Remote contractor system with site specific energy audit capability
US9100207B2 (en) 2013-02-13 2015-08-04 Green Edge Technologies, Inc. Systems, devices, and methods for mapping devices to realize building automation and energy management
US9110450B2 (en) 2013-03-14 2015-08-18 Green Edge Technologies, Inc. Systems, devices, and methods for dynamically assigning functions to an actuator
US9124130B2 (en) 2009-07-30 2015-09-01 Lutron Electronics Co., Inc. Wall-mountable temperature control device for a load control system having an energy savings mode
US9124535B2 (en) 2009-07-17 2015-09-01 Honeywell International Inc. System for using attributes to deploy demand response resources
US9137050B2 (en) 2009-07-17 2015-09-15 Honeywell International Inc. Demand response system incorporating a graphical processing unit
US9153001B2 (en) 2011-01-28 2015-10-06 Honeywell International Inc. Approach for managing distribution of automated demand response events in a multi-site enterprise
US9172605B2 (en) 2014-03-07 2015-10-27 Ubiquiti Networks, Inc. Cloud device identification and authentication
US9191037B2 (en) 2013-10-11 2015-11-17 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
US9209652B2 (en) 2009-08-21 2015-12-08 Allure Energy, Inc. Mobile device with scalable map interface for zone based energy management
US9206993B2 (en) 2011-12-14 2015-12-08 Honeywell International Inc. HVAC controller with utility saver switch diagnostic feature
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
US9322569B2 (en) 2010-05-03 2016-04-26 Harmonic Design, Inc. Systems and methods for a motorized vent covering in an environment control system
US9360874B2 (en) 2009-08-21 2016-06-07 Allure Energy, Inc. Energy management system and method
US9368870B2 (en) 2014-03-17 2016-06-14 Ubiquiti Networks, Inc. Methods of operating an access point using a plurality of directional beams
US9366702B2 (en) 2013-08-23 2016-06-14 Green Edge Technologies, Inc. Devices and methods for determining whether an electrical device or component can sustain variations in voltage
US9366448B2 (en) 2011-06-20 2016-06-14 Honeywell International Inc. Method and apparatus for configuring a filter change notification of an HVAC controller
US9389850B2 (en) 2012-11-29 2016-07-12 Honeywell International Inc. System and approach to manage versioning of field devices in a multi-site enterprise
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9442500B2 (en) 2012-03-08 2016-09-13 Honeywell International Inc. Systems and methods for associating wireless devices of an HVAC system
US9477239B2 (en) 2012-07-26 2016-10-25 Honeywell International Inc. HVAC controller with wireless network based occupancy detection and control
US9488994B2 (en) 2012-03-29 2016-11-08 Honeywell International Inc. Method and system for configuring wireless sensors in an HVAC system
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US9531618B2 (en) 2012-06-27 2016-12-27 Ubiquiti Networks, Inc. Method and apparatus for distributed control of an interfacing-device network
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US9584119B2 (en) 2013-04-23 2017-02-28 Honeywell International Inc. Triac or bypass circuit and MOSFET power steal combination
US9628074B2 (en) 2014-06-19 2017-04-18 Honeywell International Inc. Bypass switch for in-line power steal
US9660447B2 (en) 2012-03-02 2017-05-23 Ideal Industries, Inc. Connector having wireless control capabilities
US9665078B2 (en) 2014-03-25 2017-05-30 Honeywell International Inc. System for propagating messages for purposes of demand response
US9673811B2 (en) 2013-11-22 2017-06-06 Honeywell International Inc. Low power consumption AC load switches
US9683749B2 (en) 2014-07-11 2017-06-20 Honeywell International Inc. Multiple heatsink cooling system for a line voltage thermostat
US9691076B2 (en) 2013-07-11 2017-06-27 Honeywell International Inc. Demand response system having a participation predictor
US9716530B2 (en) 2013-01-07 2017-07-25 Samsung Electronics Co., Ltd. Home automation using near field communication
US9800463B2 (en) 2009-08-21 2017-10-24 Samsung Electronics Co., Ltd. Mobile energy management system
US9806705B2 (en) 2013-04-23 2017-10-31 Honeywell International Inc. Active triac triggering circuit
US9818073B2 (en) 2009-07-17 2017-11-14 Honeywell International Inc. Demand response management system
US9857091B2 (en) 2013-11-22 2018-01-02 Honeywell International Inc. Thermostat circuitry to control power usage
US9912034B2 (en) 2014-04-01 2018-03-06 Ubiquiti Networks, Inc. Antenna assembly
US9983244B2 (en) 2013-06-28 2018-05-29 Honeywell International Inc. Power transformation system with characterization
US9989937B2 (en) 2013-07-11 2018-06-05 Honeywell International Inc. Predicting responses of resources to demand response signals and having comfortable demand responses
US10063499B2 (en) 2013-03-07 2018-08-28 Samsung Electronics Co., Ltd. Non-cloud based communication platform for an environment control system
US10094585B2 (en) 2013-01-25 2018-10-09 Honeywell International Inc. Auto test for delta T diagnostics in an HVAC system
US10129383B2 (en) 2014-01-06 2018-11-13 Samsung Electronics Co., Ltd. Home management system and method
US10135628B2 (en) 2014-01-06 2018-11-20 Samsung Electronics Co., Ltd. System, device, and apparatus for coordinating environments using network devices and remote sensory information
US10139843B2 (en) 2012-02-22 2018-11-27 Honeywell International Inc. Wireless thermostatic controlled electric heating system
US10250520B2 (en) 2011-08-30 2019-04-02 Samsung Electronics Co., Ltd. Customer engagement platform and portal having multi-media capabilities
US10326732B1 (en) 2018-10-08 2019-06-18 Quest Automated Services, LLC Automation system with address generation
US10346931B2 (en) 2013-07-11 2019-07-09 Honeywell International Inc. Arrangement for communicating demand response resource incentives
US10452084B2 (en) 2012-03-14 2019-10-22 Ademco Inc. Operation of building control via remote device
US10488062B2 (en) 2016-07-22 2019-11-26 Ademco Inc. Geofence plus schedule for a building controller
US10523673B1 (en) 2018-10-08 2019-12-31 Quest Automated Services, LLC Automation system controller
US10521867B2 (en) 2012-09-15 2019-12-31 Honeywell International Inc. Decision support system based on energy markets
US10533761B2 (en) 2011-12-14 2020-01-14 Ademco Inc. HVAC controller with fault sensitivity
US10534383B2 (en) 2011-12-15 2020-01-14 Ademco Inc. HVAC controller with performance log
US10534351B1 (en) 2018-10-08 2020-01-14 Quest Automated Services, LLC Automation system network
US10534331B2 (en) 2013-12-11 2020-01-14 Ademco Inc. Building automation system with geo-fencing
US10541556B2 (en) 2017-04-27 2020-01-21 Honeywell International Inc. System and approach to integrate and manage diverse demand response specifications for multi-site enterprises
US20200033902A1 (en) * 2013-12-26 2020-01-30 Lutron Technology Company Llc Load-sensing remote control device for use in a load control system
US10560894B2 (en) 2015-01-13 2020-02-11 Trane International Inc. Mesh routing of sleepy sensor data
US10747243B2 (en) 2011-12-14 2020-08-18 Ademco Inc. HVAC controller with HVAC system failure detection
US10811892B2 (en) 2013-06-28 2020-10-20 Ademco Inc. Source management for a power transformation system
US10900687B2 (en) 2018-10-31 2021-01-26 Trane International Inc. Flexible scheduling HVAC graphical user interface and methods of use thereof
US10928087B2 (en) 2012-07-26 2021-02-23 Ademco Inc. Method of associating an HVAC controller with an external web service
US11054448B2 (en) 2013-06-28 2021-07-06 Ademco Inc. Power transformation self characterization mode
US11218360B2 (en) 2019-12-09 2022-01-04 Quest Automated Services, LLC Automation system with edge computing
US11778715B2 (en) 2020-12-23 2023-10-03 Lmpg Inc. Apparatus and method for powerline communication control of electrical devices

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2551871A1 (en) * 2004-10-14 2006-04-27 Lagotek Corporation Distributed wireless home and commercial electrical automation systems
US20130024029A1 (en) * 2007-05-24 2013-01-24 Bao Tran System for reducing energy consumption in a building
US8750971B2 (en) 2007-05-24 2014-06-10 Bao Tran Wireless stroke monitoring
GB2450357B (en) * 2007-06-20 2010-10-27 Royal Bank Scotland Plc Resource consumption control apparatus and methods
US7782205B1 (en) * 2007-09-25 2010-08-24 Hiroki Gakumura Electronic device with an antitheft function and method for preventing theft of electronic devices
US20090143917A1 (en) * 2007-10-22 2009-06-04 Zodiac Pool Systems, Inc. Residential Environmental Management Control System Interlink
US20090138131A1 (en) * 2007-10-22 2009-05-28 Zodiac Pool Systems, Inc. Residential Environmental Management control System with Sprinkler Control Module
US20090115597A1 (en) * 2007-11-06 2009-05-07 Jean-Pierre Giacalone Energy saving and security system
US8145357B2 (en) 2007-12-20 2012-03-27 Zodiac Pool Systems, Inc. Residential environmental management control system with automatic adjustment
US8610376B2 (en) 2008-04-14 2013-12-17 Digital Lumens Incorporated LED lighting methods, apparatus, and systems including historic sensor data logging
US10539311B2 (en) 2008-04-14 2020-01-21 Digital Lumens Incorporated Sensor-based lighting methods, apparatus, and systems
US8866408B2 (en) 2008-04-14 2014-10-21 Digital Lumens Incorporated Methods, apparatus, and systems for automatic power adjustment based on energy demand information
US8823277B2 (en) 2008-04-14 2014-09-02 Digital Lumens Incorporated Methods, systems, and apparatus for mapping a network of lighting fixtures with light module identification
EP3361833A3 (en) 2008-04-14 2018-10-31 Digital Lumens Incorporated Modular lighting systems
US8543249B2 (en) 2008-04-14 2013-09-24 Digital Lumens Incorporated Power management unit with modular sensor bus
US8754589B2 (en) 2008-04-14 2014-06-17 Digtial Lumens Incorporated Power management unit with temperature protection
US8531134B2 (en) 2008-04-14 2013-09-10 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and time-based tracking of operational modes
US8805550B2 (en) 2008-04-14 2014-08-12 Digital Lumens Incorporated Power management unit with power source arbitration
US8373362B2 (en) 2008-04-14 2013-02-12 Digital Lumens Incorporated Methods, systems, and apparatus for commissioning an LED lighting fixture with remote reporting
US8841859B2 (en) 2008-04-14 2014-09-23 Digital Lumens Incorporated LED lighting methods, apparatus, and systems including rules-based sensor data logging
US8368321B2 (en) 2008-04-14 2013-02-05 Digital Lumens Incorporated Power management unit with rules-based power consumption management
US8552664B2 (en) 2008-04-14 2013-10-08 Digital Lumens Incorporated Power management unit with ballast interface
US8138690B2 (en) * 2008-04-14 2012-03-20 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, local state machine, and meter circuit
US8339069B2 (en) 2008-04-14 2012-12-25 Digital Lumens Incorporated Power management unit with power metering
US8610377B2 (en) 2008-04-14 2013-12-17 Digital Lumens, Incorporated Methods, apparatus, and systems for prediction of lighting module performance
US8275471B2 (en) 2009-11-06 2012-09-25 Adura Technologies, Inc. Sensor interface for wireless control
US8364325B2 (en) * 2008-06-02 2013-01-29 Adura Technologies, Inc. Intelligence in distributed lighting control devices
US20090302996A1 (en) * 2008-06-10 2009-12-10 Millennial Net, Inc. System and method for a management server
US20090302994A1 (en) * 2008-06-10 2009-12-10 Mellennial Net, Inc. System and method for energy management
KR101601109B1 (en) * 2008-07-16 2016-03-22 삼성전자주식회사 Universal remote controller and method for remote controlling thereof
US9355557B2 (en) 2008-07-16 2016-05-31 Samsung Electronics Co., Ltd. Universal remote controller and remote control method thereof
US8214084B2 (en) * 2008-10-24 2012-07-03 Ilumisys, Inc. Integration of LED lighting with building controls
WO2010061735A1 (en) 2008-11-27 2010-06-03 インターナショナル・ビジネス・マシーンズ・コーポレーション System for assisting with execution of actions in response to detected events, method for assisting with execution of actions in response to detected events, assisting device, and computer program
US8354948B2 (en) * 2008-12-03 2013-01-15 Roger Priest Track fan remote control system
BRPI0900528A2 (en) * 2009-01-22 2010-12-14 Whirlpool Sa remotely controlled general purpose device programming system and remotely controlled general purpose device programming method
US20100211546A1 (en) * 2009-02-13 2010-08-19 Lennox Manufacturing Inc. System and method to backup data about devices in a network
US8954170B2 (en) 2009-04-14 2015-02-10 Digital Lumens Incorporated Power management unit with multi-input arbitration
US8536802B2 (en) 2009-04-14 2013-09-17 Digital Lumens Incorporated LED-based lighting methods, apparatus, and systems employing LED light bars, occupancy sensing, and local state machine
US8593135B2 (en) 2009-04-14 2013-11-26 Digital Lumens Incorporated Low-cost power measurement circuit
EP2249217B1 (en) * 2009-05-08 2013-04-24 Siemens Aktiengesellschaft Automation device and automation system
US20100318236A1 (en) * 2009-06-11 2010-12-16 Kilborn John C Management of the provisioning of energy for a workstation
US8538407B2 (en) 2009-06-30 2013-09-17 Honeywell International Inc. Fixed mobile convergence home control system
US8671167B2 (en) * 2009-07-17 2014-03-11 Honeywell International Inc. System for providing demand response services
CN102498448B (en) * 2009-07-20 2015-04-29 阿鲁瑞能源公司 Energy management system and method
US20110107116A1 (en) * 2009-11-04 2011-05-05 Broadcom Corporation System and Method for Power Over Ethernet Enabled Network Management
US20110163606A1 (en) * 2010-01-05 2011-07-07 Vivek Kumar Method and Apparatus for Monitoring and Controlling a Power System
KR20110090721A (en) * 2010-02-02 2011-08-10 삼성전자주식회사 Method and apparatus for controlling operations of devices based on information of power consumption of the devices
EP2365416A1 (en) * 2010-02-02 2011-09-14 Samsung Electronics Co., Ltd. Method and apparatus for controlling operations of devices based on information about power consumption of the devices
EP2542982A4 (en) * 2010-03-05 2016-10-26 Infrared5 Inc System and method for two way communication and controlling content in a web browser
DE102010010890B4 (en) * 2010-03-10 2012-03-22 Siemens Aktiengesellschaft A method for replacing an existing guide in an automation system by a new guide and trained automation system
TW201220952A (en) * 2010-03-29 2012-05-16 Koninkl Philips Electronics Nv Network of heterogeneous devices including at least one outdoor lighting fixture node
EP2577878A4 (en) * 2010-05-28 2016-12-07 Ronen Apelker Automated load control system and method
US9760140B1 (en) 2010-07-03 2017-09-12 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage by a device
US9007186B1 (en) * 2010-07-03 2015-04-14 Best Energy Reduction Technologies, Llc Method and apparatus for controlling power to a device
US9331524B1 (en) * 2010-07-03 2016-05-03 Best Energy Reduction Technologies, Llc Method, system and apparatus for monitoring and measuring power usage
DE102010046893A1 (en) 2010-09-29 2012-03-29 E:Cue Control Gmbh Operating device for controlling a multi-colored light source and lighting device
CA3043404A1 (en) 2010-11-04 2012-05-10 Digital Lumens Incorporated Method, apparatus, and system for occupancy sensing
JP5692904B2 (en) * 2010-11-17 2015-04-01 任天堂株式会社 Input system, information processing apparatus, information processing program, and pointing position calculation method
US8115397B2 (en) * 2011-01-04 2012-02-14 Greenwave Reality PTE, Ltd. Power failure reporting in a networked light
WO2012097437A1 (en) * 2011-01-17 2012-07-26 Boudreau-Espley-Pitre Corporation System and method for energy consumption optimization
CN103477592A (en) * 2011-02-16 2013-12-25 科泰克工业有限公司 Wireless power, light and automation control
US10429869B2 (en) 2011-02-16 2019-10-01 Kortek Industries Pty Ltd Wireless power, light and automation control
EP2498152A1 (en) * 2011-03-07 2012-09-12 Siemens Aktiengesellschaft Method for controlling a room automation system
US8355805B2 (en) 2011-03-08 2013-01-15 D. Light Design, Inc. Systems and methods for activation and deactivation of appliances
US8738943B2 (en) 2011-03-21 2014-05-27 International Business Machines Corporation Controlling and minimizing electrical power consumed by electrical components connected to a networked computing environment
EP3734143A3 (en) 2011-03-21 2020-12-02 Digital Lumens Incorporated Methods, apparatus and systems for providing occupancy-based variable lighting
US9179182B2 (en) * 2011-04-12 2015-11-03 Kenneth J. Huebner Interactive multi-display control systems
BR112013026674A2 (en) * 2011-04-21 2017-11-07 Koninklijke Philips Nv method of controlling light brightness in a space, system for controlling light brightness in a space, and computer readable medium
US8953327B1 (en) * 2011-05-26 2015-02-10 iBlaidZ, Inc. Self-winding membrane device
US9386666B2 (en) 2011-06-30 2016-07-05 Lutron Electronics Co., Inc. Method of optically transmitting digital information from a smart phone to a control device
WO2013003804A2 (en) 2011-06-30 2013-01-03 Lutron Electronics Co., Inc. Method for programming a load control device using a smart phone
WO2013012547A1 (en) 2011-06-30 2013-01-24 Lutron Electronics Co., Inc. Load control device having internet connectivity, and method of programming the same using a smart phone
US9069361B2 (en) * 2011-07-08 2015-06-30 Sharp Laboratories Of America, Inc. Thermostat with set point range feedback
US20130222122A1 (en) 2011-08-29 2013-08-29 Lutron Electronics Co., Inc. Two-Part Load Control System Mountable To A Single Electrical Wallbox
US20130060356A1 (en) * 2011-09-01 2013-03-07 Sony Corporation, A Japanese Corporation Facilitated use of characterizing abstracts for heterogeneous home-automation edge components
US9252967B2 (en) * 2011-09-01 2016-02-02 Sony Corporation Facilitated use of heterogeneous home-automation edge components
US20130060357A1 (en) * 2011-09-01 2013-03-07 Sony Corporation, A Japanese Corporation Facilitated use of heterogeneous home-automation edge components via a common application programming interface
US20130063602A1 (en) * 2011-09-12 2013-03-14 Bruce Scapier System and method for remote monitoring of equipment moisture exposure
US9588506B1 (en) 2011-10-10 2017-03-07 Autani, Llc Automation devices, systems, architectures, and methods for energy management and other applications
US8826265B2 (en) * 2011-10-24 2014-09-02 Texas Instruments Incorporated Data concentrator initiated multicast firmware upgrade
CA2854784C (en) 2011-11-03 2021-07-20 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
US9192019B2 (en) 2011-12-07 2015-11-17 Abl Ip Holding Llc System for and method of commissioning lighting devices
US9874885B2 (en) * 2011-12-12 2018-01-23 Honeywell International Inc. System and method for optimal load and source scheduling in context aware homes
FR2984576A1 (en) * 2011-12-15 2013-06-21 France Telecom METHOD FOR INSTALLING A DOMOTIC SYSTEM AND ASSOCIATED DOMOTIC SYSTEM
CN104411376B (en) * 2011-12-20 2017-08-11 安加扎设计股份有限公司 A kind of utilization payable at sight is the solar lighting method and apparatus with technology
CN108650760B (en) * 2011-12-28 2020-06-23 路创技术有限责任公司 Load control system with independently controlled units responsive to broadcast controller
US9253260B1 (en) * 2011-12-28 2016-02-02 Ewc Controls Incorporated Hybrid zone control system
RU2638156C2 (en) * 2012-03-08 2017-12-12 Филипс Лайтинг Холдинг Б.В. Methods and apparatus for configuring control devices
CN106937459B (en) 2012-03-19 2020-06-16 数字照明股份有限公司 Method, system and apparatus for providing variable illumination
US9927819B2 (en) * 2012-03-27 2018-03-27 Honeywell International Inc. Home energy management devices, systems, and methods
US9367053B2 (en) * 2012-03-27 2016-06-14 Siemens Schweiz Ag System and method for coordination of building automation system demand and shade control
US20130262464A1 (en) * 2012-03-29 2013-10-03 B.L. Klane Holdings L.L.C. System Configuration Method And Apparatus
WO2013153480A2 (en) * 2012-04-10 2013-10-17 Koninklijke Philips N.V. A unifed controller for integrated lighting, shading and thermostat control
US20130335233A1 (en) * 2012-06-11 2013-12-19 Anthony Kamar Systems and methods for portable device communications and interaction
KR101240478B1 (en) * 2012-06-14 2013-03-06 문진석 Boiler control method
US9118220B2 (en) 2012-07-02 2015-08-25 Ecolink Intelligent Technology, Inc. Method and apparatus for providing energy device and system status
US20140032732A1 (en) * 2012-07-27 2014-01-30 Ingersoll-Rand Company System for account setup and/or device installation
JP5958177B2 (en) * 2012-08-22 2016-07-27 ソニー株式会社 Electronic device activation control device, electronic device activation control system, electronic device activation control method, and program
US20150234369A1 (en) * 2012-09-21 2015-08-20 Koninklijke Philips N.V. Unified controller for integrated lighting, shading and thermostat control
US8769030B2 (en) 2012-09-28 2014-07-01 Google Inc. Device event notification registration through direct interaction with mobile device
US9933761B2 (en) 2012-11-30 2018-04-03 Lutron Electronics Co., Inc. Method of controlling a motorized window treatment
US9413171B2 (en) 2012-12-21 2016-08-09 Lutron Electronics Co., Inc. Network access coordination of load control devices
US10019047B2 (en) 2012-12-21 2018-07-10 Lutron Electronics Co., Inc. Operational coordination of load control devices for control of electrical loads
US10244086B2 (en) 2012-12-21 2019-03-26 Lutron Electronics Co., Inc. Multiple network access load control devices
GB201302643D0 (en) * 2013-02-15 2013-04-03 Senselogix Ltd Improvements relating to appliance control systems
JP5759497B2 (en) * 2013-02-25 2015-08-05 シャープ株式会社 Message notification device, control method, and control program
US9476657B1 (en) * 2013-03-13 2016-10-25 Google Inc. Controlling data center cooling systems
US9167669B2 (en) 2013-03-14 2015-10-20 Lutron Electronic Co., Inc. State change devices for switched electrical receptacles
US10135629B2 (en) 2013-03-15 2018-11-20 Lutron Electronics Co., Inc. Load control device user interface and database management using near field communication (NFC)
US9686165B2 (en) * 2013-04-25 2017-06-20 Control4 Corporation Systems and methods for indicating link quality
AU2014259974B2 (en) 2013-04-30 2018-04-19 Digital Lumens, Incorporated Operating light emitting diodes at low temperature
US10079507B2 (en) * 2013-06-28 2018-09-18 Intel Corporation Techniques for adaptive demand/response energy management of electronic systems
US10017985B2 (en) 2013-08-14 2018-07-10 Lutron Electronics Co., Inc. Window treatment control using bright override
US20150088331A1 (en) * 2013-09-24 2015-03-26 Fibar Group sp. z o.o. Intelligent wall plug
EP3056068B1 (en) 2013-10-10 2020-09-09 Digital Lumens Incorporated Methods, systems, and apparatus for intelligent lighting
US8811459B1 (en) * 2013-10-21 2014-08-19 Oleumtech Corporation Robust and simple to configure cable-replacement system
US10181261B2 (en) 2013-11-12 2019-01-15 Utc Fire & Security Americas Corporation, Inc. Mobile user interface for security panel
EP2874350B1 (en) * 2013-11-13 2018-08-08 Deutsche Telekom AG Dynamic allocation and virtualisation of network resources in the access network and in customer networks
US9363264B2 (en) * 2013-11-25 2016-06-07 At&T Intellectual Property I, L.P. Networked device access control
US9900177B2 (en) 2013-12-11 2018-02-20 Echostar Technologies International Corporation Maintaining up-to-date home automation models
US9769522B2 (en) 2013-12-16 2017-09-19 Echostar Technologies L.L.C. Methods and systems for location specific operations
US9848479B2 (en) 2013-12-26 2017-12-19 Lutron Electronics Co., Inc. Faceplate remote control device for use in a load control system
US10806010B2 (en) 2013-12-26 2020-10-13 Lutron Technology Company Llc Control device for use with a three-way lamp socket
DK201400019A1 (en) * 2014-01-14 2015-07-27 Claus Skals Søgaard System and Method for operation-free automatic control of lighting in clean rooms.
US9437070B2 (en) 2014-04-02 2016-09-06 Angaza Design, Inc. Solar lighting with pay-as-you go technology
US20150292764A1 (en) * 2014-04-10 2015-10-15 Trane International Inc. Reconfigurable network controller
US9483067B2 (en) * 2014-04-18 2016-11-01 Cisco Technology, Inc. Controlling intelligent powered devices
CN105100000B (en) * 2014-05-04 2020-05-12 中芯国际集成电路制造(上海)有限公司 Interface conversion device and network system
CN104133439A (en) * 2014-07-22 2014-11-05 深圳市银河风云网络系统股份有限公司 Method for terminal to control intelligent home appliances and intelligent socket
CN115297596A (en) * 2014-08-22 2022-11-04 路创技术有限责任公司 Load control system responsive to occupant and mobile device position
US9989507B2 (en) 2014-09-25 2018-06-05 Echostar Technologies International Corporation Detection and prevention of toxic gas
US10057079B2 (en) * 2014-10-21 2018-08-21 T-Mobile Usa, Inc. Wireless building automation
US9511259B2 (en) 2014-10-30 2016-12-06 Echostar Uk Holdings Limited Fitness overlay and incorporation for home automation system
US9983011B2 (en) 2014-10-30 2018-05-29 Echostar Technologies International Corporation Mapping and facilitating evacuation routes in emergency situations
FR3030696A1 (en) * 2014-12-19 2016-06-24 Muller & Cie Ets M DEVICE FOR SYNCHRONIZED CONTROL OF SELF-CONTAINED CLIMATIC DEVICES
DE112015004036B4 (en) * 2015-01-16 2019-01-24 Mitsubishi Electric Corporation Holder and terminal control method
WO2016159872A1 (en) * 2015-04-02 2016-10-06 Agito Motion Systems Ltd Centralized networked topology for motion related control system
US9948477B2 (en) 2015-05-12 2018-04-17 Echostar Technologies International Corporation Home automation weather detection
WO2017007418A1 (en) * 2015-07-06 2017-01-12 Eight Inc. Design Singapore Pte. Ltd. Building services control
CA2994708C (en) 2015-08-05 2020-10-13 Lutron Electronics Co., Inc. Commissioning and controlling load control devices
EP3376835B1 (en) 2015-08-05 2021-11-17 Lutron Technology Company LLC Load control system responsive to the location of an occupant and/or mobile device
US9960980B2 (en) 2015-08-21 2018-05-01 Echostar Technologies International Corporation Location monitor and device cloning
US10042342B1 (en) 2015-10-08 2018-08-07 Best Energy Reduction Technologies, Llc Monitoring and measuring power usage and temperature
US10532419B2 (en) * 2015-10-29 2020-01-14 Lincoln Global, Inc. System and method of communicating in a welding system over welding power cables
US10255212B2 (en) 2015-11-19 2019-04-09 Honeywell International Inc. Automatic master-slave system and approach
US9996066B2 (en) * 2015-11-25 2018-06-12 Echostar Technologies International Corporation System and method for HVAC health monitoring using a television receiver
US10101717B2 (en) 2015-12-15 2018-10-16 Echostar Technologies International Corporation Home automation data storage system and methods
US10091017B2 (en) 2015-12-30 2018-10-02 Echostar Technologies International Corporation Personalized home automation control based on individualized profiling
US10073428B2 (en) 2015-12-31 2018-09-11 Echostar Technologies International Corporation Methods and systems for control of home automation activity based on user characteristics
US10060644B2 (en) 2015-12-31 2018-08-28 Echostar Technologies International Corporation Methods and systems for control of home automation activity based on user preferences
US10294600B2 (en) 2016-08-05 2019-05-21 Echostar Technologies International Corporation Remote detection of washer/dryer operation/fault condition
US10049515B2 (en) 2016-08-24 2018-08-14 Echostar Technologies International Corporation Trusted user identification and management for home automation systems
US10785848B2 (en) 2016-09-29 2020-09-22 Signify Holding B.V. Lighting system commissioning
USD844593S1 (en) 2017-02-06 2019-04-02 Hunter Douglas, Inc. Automation gateway
FR3070811B1 (en) * 2017-09-04 2021-05-21 Somfy Activites Sa CONFIGURATION AND / OR MAINTENANCE PROCESS OF A HOME AUTOMATION SYSTEM FOR A BUILDING AND CONFIGURATION DEVICE OF AN ASSOCIATED HOME AUTOMATION SYSTEM
WO2019152744A1 (en) * 2018-01-31 2019-08-08 Korteks Advanced Sciences, Inc. Modular multi-channel syringe pump
US10845080B2 (en) 2018-05-21 2020-11-24 Johnson Controls Technology Company Heating, ventilation, and/or air conditioning network address control systems
US10634381B2 (en) 2018-05-21 2020-04-28 Johnson Controls Technology Company Heating, ventilation, and/or air conditioning system with zone control circuitry and master control circuitry
US11041648B2 (en) 2018-05-21 2021-06-22 Johnson Controls Technology Company Heating, ventilation, and/or air conditioning system fault log management systems
WO2019244280A1 (en) * 2018-06-20 2019-12-26 三菱電機株式会社 Air-conditioning device and operation state determination method
WO2020076816A1 (en) * 2018-10-08 2020-04-16 Google Llc Control and/or registration of smart devices, locally by an assistant client device
CN109618358B (en) * 2019-01-29 2021-10-08 上海电力学院 Wireless sensor network node energy optimization method based on adaptive control
US11287151B2 (en) 2019-02-15 2022-03-29 Carrier Corporation Method and apparatus for thermally preconditioning a meeting space
US20210270077A1 (en) * 2020-03-02 2021-09-02 Hall Labs Llc Battery system for powering an overhead door opener
US11914336B2 (en) * 2020-06-15 2024-02-27 Honeywell International Inc. Platform agnostic systems and methods for building management systems
US11553618B2 (en) * 2020-08-26 2023-01-10 PassiveLogic, Inc. Methods and systems of building automation state load and user preference via network systems activity
CN112034725A (en) * 2020-09-14 2020-12-04 开封大学 Remote home control method based on Internet of things
US11480358B2 (en) 2021-02-25 2022-10-25 Synapse Wireless, Inc. Machine learning systems for modeling and balancing the activity of air quality devices in industrial applications

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847781A (en) 1986-09-23 1989-07-11 Associated Data Consoltants Energy management system
US5086385A (en) 1989-01-31 1992-02-04 Custom Command Systems Expandable home automation system
US5177461A (en) 1988-11-28 1993-01-05 Universal Electronics Inc. Warning light system for use with a smoke detector
US5262771A (en) * 1988-03-03 1993-11-16 U.S. Philips Corporation Method for addressing processor units
US5275219A (en) * 1991-12-12 1994-01-04 Giacomel Jeffrey A Environmentally interactive automatic closing system for blinds and other louvered window coverings
US5510975A (en) 1994-07-01 1996-04-23 Atlantic Software, Inc. Method of logical operations in home automation
US5544036A (en) 1992-03-25 1996-08-06 Brown, Jr.; Robert J. Energy management and home automation system
US5572438A (en) 1995-01-05 1996-11-05 Teco Energy Management Services Engery management and building automation system
US5629587A (en) * 1995-09-26 1997-05-13 Devtek Development Corporation Programmable lighting control system for controlling illumination duration and intensity levels of lamps in multiple lighting strings
US5668446A (en) * 1995-01-17 1997-09-16 Negawatt Technologies Inc. Energy management control system for fluorescent lighting
US5721934A (en) * 1994-06-29 1998-02-24 Intel Corporation Retrofit external power saving system and method for use
US5726644A (en) * 1995-06-30 1998-03-10 Philips Electronics North America Corporation Lighting control system with packet hopping communication
US5761083A (en) 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US5886894A (en) 1995-03-28 1999-03-23 Chubb Security Canada, Inc. Control system for automated security and control systems
US5924486A (en) 1997-10-29 1999-07-20 Tecom, Inc. Environmental condition control and energy management system and method
US6453687B2 (en) * 2000-01-07 2002-09-24 Robertshaw Controls Company Refrigeration monitor unit
US6535859B1 (en) * 1999-12-03 2003-03-18 Ultrawatt Energy System, Inc System and method for monitoring lighting systems
US6548967B1 (en) * 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US6622097B2 (en) 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
US20030233172A1 (en) * 2000-09-04 2003-12-18 Claes-Goran Granqvist Climate control system and a method for controlling such
US20040002792A1 (en) * 2002-06-28 2004-01-01 Encelium Technologies Inc. Lighting energy management system and method
US6756998B1 (en) 2000-10-19 2004-06-29 Destiny Networks, Inc. User interface and method for home automation system
US20040138768A1 (en) 2002-04-17 2004-07-15 Christopher Murray Home automation system
US6792319B1 (en) * 2000-10-19 2004-09-14 Destiny Networks, Inc. Home automation system and method
US6798341B1 (en) 1998-05-18 2004-09-28 Leviton Manufacturing Co., Inc. Network based multiple sensor and control device with temperature sensing and control
US20050036258A1 (en) * 2003-08-11 2005-02-17 Ma Xlu Juan Power strips with embedded controllers
US20050046583A1 (en) 1999-09-27 2005-03-03 Richards James L. System and method for monitoring assets, objects, people and animals utilizing impulse radio
US6879806B2 (en) 2001-06-01 2005-04-12 Zensys A/S System and a method for building routing tables and for routing signals in an automation system
US6901439B1 (en) 1999-01-22 2005-05-31 Leviton Manufacturing Co., Inc. Method of adding a device to a network
US6909921B1 (en) 2000-10-19 2005-06-21 Destiny Networks, Inc. Occupancy sensor and method for home automation system
US6912429B1 (en) 2000-10-19 2005-06-28 Destiny Networks, Inc. Home automation system and method
US20050171645A1 (en) 2003-11-27 2005-08-04 Oswald James I. Household energy management system
US6930455B2 (en) 1993-11-12 2005-08-16 Leviton Manufacturing Co., Inc. Theatrical lighting control network
US20050194455A1 (en) * 2003-03-21 2005-09-08 Alles Harold G. Energy usage estimation for climate control system
US20050216302A1 (en) 2004-03-16 2005-09-29 Icontrol Networks, Inc. Business method for premises management
US6970072B1 (en) 2003-05-29 2005-11-29 Smarthome, Inc. Home automation module having externally powered communications port
US6980079B1 (en) * 1999-07-13 2005-12-27 Matsushita Electric Industrial Co., Ltd. Control network system of household electric appliance
US6980080B2 (en) 2000-04-10 2005-12-27 Zensys A/S RF home automation system with replicable controllers
US20060065510A1 (en) * 2004-09-03 2006-03-30 Kiko Frederick J Universal control apparatus and methods
US7039532B2 (en) 2001-06-28 2006-05-02 Hunter Robert R Method and apparatus for reading and controlling utility consumption
US20060103504A1 (en) * 2004-11-12 2006-05-18 Afco Systems Development, Inc. Tracking system and method for electrically powered equipment
US7082339B2 (en) 2002-04-17 2006-07-25 Black & Decker Inc. Home automation system
US20060185799A1 (en) * 2005-02-24 2006-08-24 Lawrence Kates Motorized window shade system
US20060212175A1 (en) 2005-03-15 2006-09-21 Lg Electronics Inc Building management system and operating method thereof
US20060207730A1 (en) * 2004-05-06 2006-09-21 Joel Berman Automated shade control method and system
US7111952B2 (en) * 2003-03-24 2006-09-26 Lutron Electronics Co., Inc. System to control daylight and artificial illumination and sun glare in a space
US20070094708A1 (en) * 2005-10-26 2007-04-26 Capital One Financial Corporation System and method for automatically activating an electronic device
US20070171052A1 (en) 2005-03-03 2007-07-26 Norihiko Moriwaki Sensor network system and data retrieval method for sensing data

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3701554A1 (en) * 1987-01-21 1988-08-04 Duerr Gmbh & Co MACHINE SYSTEM WITH SEVERAL ACTUATORS
US4918439A (en) * 1987-06-23 1990-04-17 Cl 9, Inc. Remote control device
DE69131786T2 (en) * 1991-05-06 2000-06-21 Koninkl Philips Electronics Nv Building control system
US5449987A (en) * 1993-09-24 1995-09-12 Truth Division Of Spx Corporation Window operator control
US5575438A (en) * 1994-05-09 1996-11-19 United Technologies Corporation Unmanned VTOL ground surveillance vehicle
US6111524A (en) * 1995-11-09 2000-08-29 Vehicle Enhancement Systems, Inc. Systems and methods for identifying tractor/trailers and components thereof
US5877957A (en) * 1996-11-06 1999-03-02 Ameritech Services, Inc. Method and system of programming at least one appliance to change state upon the occurrence of a trigger event
US6574234B1 (en) * 1997-09-05 2003-06-03 Amx Corporation Method and apparatus for controlling network devices
US6241156B1 (en) * 1999-05-13 2001-06-05 Acutherm L.P. Process and apparatus for individual adjustment of an operating parameter of a plurality of environmental control devices through a global computer network
US6720922B2 (en) * 2002-03-29 2004-04-13 Microsoft Corporation Radio-frequency badge for location measurement
US6847912B2 (en) * 2002-05-07 2005-01-25 Marconi Intellectual Property (Us) Inc. RFID temperature device and method
US6865427B2 (en) * 2002-07-18 2005-03-08 International Business Machines Corporation Method for management of workflows between devices in a pervasive embedded or external environment
DE60330018D1 (en) * 2002-09-04 2009-12-24 Koninkl Philips Electronics Nv MASTER-SLAVE-ORIENTED TWO-SIDED WIRELESS RF LIGHTING CONTROL SYSTEM
US6990394B2 (en) * 2002-12-24 2006-01-24 Pasternak Barton A Lighting control system and method
US7136709B2 (en) * 2003-11-04 2006-11-14 Universal Electronics Inc. Home appliance control system and methods in a networked environment
US20050234600A1 (en) * 2004-04-16 2005-10-20 Energyconnect, Inc. Enterprise energy automation
US7453677B2 (en) * 2004-10-06 2008-11-18 Teknic, Inc. Power and safety control hub
US20060146553A1 (en) * 2004-10-08 2006-07-06 B/E Aerospace, Inc. Dimmable reading light with emergency lighting capability
CN2796178Y (en) * 2005-04-30 2006-07-12 赵伟忠 Power wir plug-in panel with intelligent controller
US20070035382A1 (en) * 2005-08-04 2007-02-15 Lee Thomas H Radio frequency identification (RFID) device with multiple identifiers and a control input
ES2379097T3 (en) * 2005-08-10 2012-04-20 Koninklijke Philips Electronics N.V. Selective control of lighting devices
FR2897186B1 (en) * 2006-02-06 2008-05-09 Somfy Sas METHOD FOR RELAY COMMUNICATION BETWEEN A NOMAD REMOTE CONTROL AND DOMOTIC EQUIPMENT.
US8203445B2 (en) * 2006-03-28 2012-06-19 Wireless Environment, Llc Wireless lighting

Patent Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847781A (en) 1986-09-23 1989-07-11 Associated Data Consoltants Energy management system
US5262771A (en) * 1988-03-03 1993-11-16 U.S. Philips Corporation Method for addressing processor units
US5177461A (en) 1988-11-28 1993-01-05 Universal Electronics Inc. Warning light system for use with a smoke detector
US5086385A (en) 1989-01-31 1992-02-04 Custom Command Systems Expandable home automation system
US5275219A (en) * 1991-12-12 1994-01-04 Giacomel Jeffrey A Environmentally interactive automatic closing system for blinds and other louvered window coverings
US5761083A (en) 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US5544036A (en) 1992-03-25 1996-08-06 Brown, Jr.; Robert J. Energy management and home automation system
US6930455B2 (en) 1993-11-12 2005-08-16 Leviton Manufacturing Co., Inc. Theatrical lighting control network
US5721934A (en) * 1994-06-29 1998-02-24 Intel Corporation Retrofit external power saving system and method for use
US5510975A (en) 1994-07-01 1996-04-23 Atlantic Software, Inc. Method of logical operations in home automation
US5684710A (en) 1995-01-05 1997-11-04 Tecom Inc. System for measuring electrical power interruptions
US5696695A (en) 1995-01-05 1997-12-09 Tecom Inc. System for rate-related control of electrical loads
US5572438A (en) 1995-01-05 1996-11-05 Teco Energy Management Services Engery management and building automation system
US5668446A (en) * 1995-01-17 1997-09-16 Negawatt Technologies Inc. Energy management control system for fluorescent lighting
US5886894A (en) 1995-03-28 1999-03-23 Chubb Security Canada, Inc. Control system for automated security and control systems
US5726644A (en) * 1995-06-30 1998-03-10 Philips Electronics North America Corporation Lighting control system with packet hopping communication
US5629587A (en) * 1995-09-26 1997-05-13 Devtek Development Corporation Programmable lighting control system for controlling illumination duration and intensity levels of lamps in multiple lighting strings
US7309965B2 (en) * 1997-08-26 2007-12-18 Color Kinetics Incorporated Universal lighting network methods and systems
US6548967B1 (en) * 1997-08-26 2003-04-15 Color Kinetics, Inc. Universal lighting network methods and systems
US6216956B1 (en) 1997-10-29 2001-04-17 Tocom, Inc. Environmental condition control and energy management system and method
US5924486A (en) 1997-10-29 1999-07-20 Tecom, Inc. Environmental condition control and energy management system and method
US6798341B1 (en) 1998-05-18 2004-09-28 Leviton Manufacturing Co., Inc. Network based multiple sensor and control device with temperature sensing and control
US6901439B1 (en) 1999-01-22 2005-05-31 Leviton Manufacturing Co., Inc. Method of adding a device to a network
US6980079B1 (en) * 1999-07-13 2005-12-27 Matsushita Electric Industrial Co., Ltd. Control network system of household electric appliance
US20050046583A1 (en) 1999-09-27 2005-03-03 Richards James L. System and method for monitoring assets, objects, people and animals utilizing impulse radio
US6535859B1 (en) * 1999-12-03 2003-03-18 Ultrawatt Energy System, Inc System and method for monitoring lighting systems
US6453687B2 (en) * 2000-01-07 2002-09-24 Robertshaw Controls Company Refrigeration monitor unit
US6980080B2 (en) 2000-04-10 2005-12-27 Zensys A/S RF home automation system with replicable controllers
US20030233172A1 (en) * 2000-09-04 2003-12-18 Claes-Goran Granqvist Climate control system and a method for controlling such
US6912429B1 (en) 2000-10-19 2005-06-28 Destiny Networks, Inc. Home automation system and method
US6756998B1 (en) 2000-10-19 2004-06-29 Destiny Networks, Inc. User interface and method for home automation system
US6792319B1 (en) * 2000-10-19 2004-09-14 Destiny Networks, Inc. Home automation system and method
US6909921B1 (en) 2000-10-19 2005-06-21 Destiny Networks, Inc. Occupancy sensor and method for home automation system
US6879806B2 (en) 2001-06-01 2005-04-12 Zensys A/S System and a method for building routing tables and for routing signals in an automation system
US7039532B2 (en) 2001-06-28 2006-05-02 Hunter Robert R Method and apparatus for reading and controlling utility consumption
US6622097B2 (en) 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
US7082339B2 (en) 2002-04-17 2006-07-25 Black & Decker Inc. Home automation system
US20040138768A1 (en) 2002-04-17 2004-07-15 Christopher Murray Home automation system
US7092772B2 (en) 2002-04-17 2006-08-15 Black & Decker Inc. Home automation system
US20040002792A1 (en) * 2002-06-28 2004-01-01 Encelium Technologies Inc. Lighting energy management system and method
US20050194455A1 (en) * 2003-03-21 2005-09-08 Alles Harold G. Energy usage estimation for climate control system
US7111952B2 (en) * 2003-03-24 2006-09-26 Lutron Electronics Co., Inc. System to control daylight and artificial illumination and sun glare in a space
US6970072B1 (en) 2003-05-29 2005-11-29 Smarthome, Inc. Home automation module having externally powered communications port
US20050036258A1 (en) * 2003-08-11 2005-02-17 Ma Xlu Juan Power strips with embedded controllers
US20050171645A1 (en) 2003-11-27 2005-08-04 Oswald James I. Household energy management system
US20050216302A1 (en) 2004-03-16 2005-09-29 Icontrol Networks, Inc. Business method for premises management
US20050216580A1 (en) 2004-03-16 2005-09-29 Icontrol Networks, Inc. Premises management networking
US7417397B2 (en) * 2004-05-06 2008-08-26 Mechoshade Systems, Inc. Automated shade control method and system
US20060207730A1 (en) * 2004-05-06 2006-09-21 Joel Berman Automated shade control method and system
US20060065510A1 (en) * 2004-09-03 2006-03-30 Kiko Frederick J Universal control apparatus and methods
US7400239B2 (en) * 2004-09-03 2008-07-15 Simply Automated, Incorporated Universal control apparatus and methods
US20060103504A1 (en) * 2004-11-12 2006-05-18 Afco Systems Development, Inc. Tracking system and method for electrically powered equipment
US7333000B2 (en) * 2004-11-12 2008-02-19 Afco Systems Development, Inc. Tracking system and method for electrically powered equipment
US7389806B2 (en) * 2005-02-24 2008-06-24 Lawrence Kates Motorized window shade system
US20060185799A1 (en) * 2005-02-24 2006-08-24 Lawrence Kates Motorized window shade system
US20070171052A1 (en) 2005-03-03 2007-07-26 Norihiko Moriwaki Sensor network system and data retrieval method for sensing data
US20060212175A1 (en) 2005-03-15 2006-09-21 Lg Electronics Inc Building management system and operating method thereof
US20070094708A1 (en) * 2005-10-26 2007-04-26 Capital One Financial Corporation System and method for automatically activating an electronic device

Cited By (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065597A1 (en) * 2005-12-12 2009-03-12 Garozzo James P Low voltage power line communication for climate control system
US7979164B2 (en) * 2005-12-12 2011-07-12 Emerson Electric Co. Low voltage power line communication for climate control system
US8565903B2 (en) 2007-10-05 2013-10-22 Honeywell International Inc. Critical resource notification system and interface device
US20090278479A1 (en) * 2008-05-06 2009-11-12 Platner Brian P Networked, wireless lighting control system with distributed intelligence
US10172213B2 (en) 2008-05-06 2019-01-01 Abl Ip Holding, Llc Networked, wireless lighting control system with distributed intelligence
US9215784B2 (en) 2008-05-06 2015-12-15 Abl Ip Holding, Llc Networked, wireless lighting control system with distributed intelligence
US8731689B2 (en) * 2008-05-06 2014-05-20 Abl Ip Holding, Llc Networked, wireless lighting control system with distributed intelligence
US8190275B2 (en) * 2008-09-26 2012-05-29 Michael Alan Chang Peer-to-peer home automation management
US20100082176A1 (en) * 2008-09-26 2010-04-01 Michael Alan Chang Peer-To-Peer Home Automation Management
US9767249B1 (en) * 2008-11-03 2017-09-19 Autani, Llc Energy consumption via VPN configuration management
US8548607B1 (en) * 2008-11-03 2013-10-01 Autani Corp. Automation system network management, architectures, and methods and applications thereof
US10541902B1 (en) 2009-05-18 2020-01-21 Alarm.Com Incorporated Network device management technology
US8214494B1 (en) * 2009-05-18 2012-07-03 Alarm.Com Incorporated Network device management technology
US11373514B2 (en) 2009-05-18 2022-06-28 Alarm.Com Incorporated Network device management technology
US9929929B1 (en) * 2009-05-18 2018-03-27 Alarm.Com Incorporated Network device management technology
US10951507B1 (en) 2009-05-18 2021-03-16 Alarm.Com Incorporated Network device management technology
US9026648B1 (en) 2009-05-18 2015-05-05 Alarm.Com Incorporated Network device management technology
US20100318198A1 (en) * 2009-06-16 2010-12-16 Control4 Corporation Automation Control of Electronic Devices
US9152139B2 (en) * 2009-06-16 2015-10-06 Control4 Corporation Automation Control of Electronic Devices
US9124535B2 (en) 2009-07-17 2015-09-01 Honeywell International Inc. System for using attributes to deploy demand response resources
US8667132B2 (en) 2009-07-17 2014-03-04 Honeywell International Inc. Arrangement for communication about and management of a resource using a mobile device
US10762454B2 (en) 2009-07-17 2020-09-01 Honeywell International Inc. Demand response management system
US9137050B2 (en) 2009-07-17 2015-09-15 Honeywell International Inc. Demand response system incorporating a graphical processing unit
US20110125542A1 (en) * 2009-07-17 2011-05-26 Honeywell International Inc. Demand response management system
US8572230B2 (en) 2009-07-17 2013-10-29 Honeywell International Inc. System for using attributes to deploy demand response resources
US9183522B2 (en) 2009-07-17 2015-11-10 Honeywell International Inc. Demand response management system
US9818073B2 (en) 2009-07-17 2017-11-14 Honeywell International Inc. Demand response management system
US8782190B2 (en) 2009-07-17 2014-07-15 Honeywell International, Inc. Demand response management system
US8676953B2 (en) 2009-07-17 2014-03-18 Honeywell International Inc. Use of aggregated groups for managing demand response resources
US8671191B2 (en) 2009-07-17 2014-03-11 Honeywell International Inc. Installation system for demand response resources
US9013059B2 (en) 2009-07-30 2015-04-21 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US8975778B2 (en) 2009-07-30 2015-03-10 Lutron Electronics Co., Inc. Load control system providing manual override of an energy savings mode
US8666555B2 (en) 2009-07-30 2014-03-04 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US9991710B2 (en) 2009-07-30 2018-06-05 Lutron Electronics Co., Inc. Load control system providing manual override of an energy savings mode
US20110029139A1 (en) * 2009-07-30 2011-02-03 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US20110035061A1 (en) * 2009-07-30 2011-02-10 Lutron Electronics Co., Inc. Load Control System Having An Energy Savings Mode
US20110029136A1 (en) * 2009-07-30 2011-02-03 Lutron Electronics Co., Inc. Load Control System Having An Energy Savings Mode
US20120095601A1 (en) * 2009-07-30 2012-04-19 Lutron Electronics Co., Inc. Dynamic Keypad for Controlling Energy-Savings Modes of a Load Control System
US9141093B2 (en) 2009-07-30 2015-09-22 Lutron Electronics Co., Ltd. Load control system having an energy savings mode
US9124130B2 (en) 2009-07-30 2015-09-01 Lutron Electronics Co., Inc. Wall-mountable temperature control device for a load control system having an energy savings mode
US10756541B2 (en) 2009-07-30 2020-08-25 Lutron Technology Company Llc Load control system providing manual override of an energy savings mode
US11293223B2 (en) 2009-07-30 2022-04-05 Lutron Technology Company Llc Load control system providing manual override of an energy savings mode
US8417388B2 (en) 2009-07-30 2013-04-09 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US8866343B2 (en) * 2009-07-30 2014-10-21 Lutron Electronics Co., Inc. Dynamic keypad for controlling energy-savings modes of a load control system
US8571719B2 (en) 2009-07-30 2013-10-29 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US8901769B2 (en) 2009-07-30 2014-12-02 Lutron Electronics Co., Inc. Load control system having an energy savings mode
US20110031806A1 (en) * 2009-07-30 2011-02-10 Lutron Electronics Co., Inc. Load Control System Having An Energy Savings Mode
US8946924B2 (en) 2009-07-30 2015-02-03 Lutron Electronics Co., Inc. Load control system that operates in an energy-savings mode when an electric vehicle charger is charging a vehicle
US8174381B2 (en) 2009-08-21 2012-05-08 Allure Energy, Inc. Mobile energy management system
US10613556B2 (en) 2009-08-21 2020-04-07 Samsung Electronics Co., Ltd. Energy management system and method
US9405310B2 (en) 2009-08-21 2016-08-02 Allure Energy Inc. Energy management method
US9964981B2 (en) 2009-08-21 2018-05-08 Samsung Electronics Co., Ltd. Energy management system and method
US10310532B2 (en) 2009-08-21 2019-06-04 Samsung Electronics Co., Ltd. Zone based system for altering an operating condition
US9360874B2 (en) 2009-08-21 2016-06-07 Allure Energy, Inc. Energy management system and method
US9766645B2 (en) 2009-08-21 2017-09-19 Samsung Electronics Co., Ltd. Energy management system and method
US8855794B2 (en) 2009-08-21 2014-10-07 Allure Energy, Inc. Energy management system and method, including auto-provisioning capability using near field communication
US8855830B2 (en) 2009-08-21 2014-10-07 Allure Energy, Inc. Energy management system and method
US8571518B2 (en) 2009-08-21 2013-10-29 Allure Energy, Inc. Proximity detection module on thermostat
US10416698B2 (en) 2009-08-21 2019-09-17 Samsung Electronics Co., Ltd. Proximity control using WiFi connection
US20110173542A1 (en) * 2009-08-21 2011-07-14 Imes Kevin R Mobile energy management system
US8626344B2 (en) 2009-08-21 2014-01-07 Allure Energy, Inc. Energy management system and method
US9800463B2 (en) 2009-08-21 2017-10-24 Samsung Electronics Co., Ltd. Mobile energy management system
US11550351B2 (en) 2009-08-21 2023-01-10 Samsung Electronics Co., Ltd. Energy management system and method
US9838255B2 (en) 2009-08-21 2017-12-05 Samsung Electronics Co., Ltd. Mobile demand response energy management system with proximity control
US9164524B2 (en) 2009-08-21 2015-10-20 Allure Energy, Inc. Method of managing a site using a proximity detection module
US9977440B2 (en) 2009-08-21 2018-05-22 Samsung Electronics Co., Ltd. Establishing proximity detection using 802.11 based networks
US9874891B2 (en) 2009-08-21 2018-01-23 Samsung Electronics Co., Ltd. Auto-adaptable energy management apparatus
US10551861B2 (en) 2009-08-21 2020-02-04 Samsung Electronics Co., Ltd. Gateway for managing energy use at a site
US9209652B2 (en) 2009-08-21 2015-12-08 Allure Energy, Inc. Mobile device with scalable map interface for zone based energy management
US10444781B2 (en) 2009-08-21 2019-10-15 Samsung Electronics Co., Ltd. Energy management system and method
US10996702B2 (en) 2009-08-21 2021-05-04 Samsung Electronics Co., Ltd. Energy management system and method, including auto-provisioning capability
US20110137436A1 (en) * 2010-03-23 2011-06-09 Michael Alan Chang Intelligent gateway for heterogeneous peer-to-peer home automation networks
US8086757B2 (en) 2010-03-23 2011-12-27 Michael Alan Chang Intelligent gateway for heterogeneous peer-to-peer home automation networks
US9322569B2 (en) 2010-05-03 2016-04-26 Harmonic Design, Inc. Systems and methods for a motorized vent covering in an environment control system
US20110270446A1 (en) * 2010-05-03 2011-11-03 Energy Eye, Inc. Systems and methods for an environmental control system including a motorized vent covering
US8759999B2 (en) 2010-07-16 2014-06-24 Lumenpulse Lighting, Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US10462879B2 (en) 2010-07-16 2019-10-29 Lumenpulse Group Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US9307619B2 (en) 2010-07-16 2016-04-05 Lumenopulse Lighting Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US9622329B2 (en) 2010-07-16 2017-04-11 Lumenpulse Lighting Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US8410630B2 (en) 2010-07-16 2013-04-02 Lumenpulse Lighting Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US9024464B2 (en) 2010-07-16 2015-05-05 Lumenpulse Lighting Inc. Powerline communication control of light emitting diode (LED) lighting fixtures
US9213050B2 (en) * 2010-08-30 2015-12-15 Sharp Laboratories Of America, Inc. Delayed meter reporting
US20120053869A1 (en) * 2010-08-30 2012-03-01 Owen James E Delayed Meter Reporting
US20120079297A1 (en) * 2010-09-28 2012-03-29 Kabushiki Kaisha Toshiba Communication device, start node, system, method and compuet program product
US8782448B2 (en) * 2010-09-28 2014-07-15 Kabushiki Kaisha Toshiba Communication device for transmitting received start-up signal and power signal for starting up a designated node
US8630744B2 (en) 2011-01-28 2014-01-14 Honeywell International Inc. Management and monitoring of automated demand response in a multi-site enterprise
US8626354B2 (en) 2011-01-28 2014-01-07 Honeywell International Inc. Approach for normalizing automated demand response events in energy management control systems
US9153001B2 (en) 2011-01-28 2015-10-06 Honeywell International Inc. Approach for managing distribution of automated demand response events in a multi-site enterprise
US9366448B2 (en) 2011-06-20 2016-06-14 Honeywell International Inc. Method and apparatus for configuring a filter change notification of an HVAC controller
US10250520B2 (en) 2011-08-30 2019-04-02 Samsung Electronics Co., Ltd. Customer engagement platform and portal having multi-media capabilities
US10805226B2 (en) 2011-08-30 2020-10-13 Samsung Electronics Co., Ltd. Resource manager, system, and method for communicating resource management information for smart energy and media resources
US9157647B2 (en) 2011-09-07 2015-10-13 Honeywell International Inc. HVAC controller including user interaction log
US8892223B2 (en) 2011-09-07 2014-11-18 Honeywell International Inc. HVAC controller including user interaction log
US8902071B2 (en) 2011-12-14 2014-12-02 Honeywell International Inc. HVAC controller with HVAC system fault detection
US9206993B2 (en) 2011-12-14 2015-12-08 Honeywell International Inc. HVAC controller with utility saver switch diagnostic feature
US10533761B2 (en) 2011-12-14 2020-01-14 Ademco Inc. HVAC controller with fault sensitivity
US10747243B2 (en) 2011-12-14 2020-08-18 Ademco Inc. HVAC controller with HVAC system failure detection
US9002523B2 (en) 2011-12-14 2015-04-07 Honeywell International Inc. HVAC controller with diagnostic alerts
US10534383B2 (en) 2011-12-15 2020-01-14 Ademco Inc. HVAC controller with performance log
US10139843B2 (en) 2012-02-22 2018-11-27 Honeywell International Inc. Wireless thermostatic controlled electric heating system
US9660447B2 (en) 2012-03-02 2017-05-23 Ideal Industries, Inc. Connector having wireless control capabilities
US9442500B2 (en) 2012-03-08 2016-09-13 Honeywell International Inc. Systems and methods for associating wireless devices of an HVAC system
US10452084B2 (en) 2012-03-14 2019-10-22 Ademco Inc. Operation of building control via remote device
US9971364B2 (en) 2012-03-29 2018-05-15 Honeywell International Inc. Method and system for configuring wireless sensors in an HVAC system
US9488994B2 (en) 2012-03-29 2016-11-08 Honeywell International Inc. Method and system for configuring wireless sensors in an HVAC system
US10635119B2 (en) 2012-03-29 2020-04-28 Ademco Inc. Method and system for configuring wireless sensors in an HVAC system
US10326678B2 (en) 2012-06-27 2019-06-18 Ubiquiti Networks, Inc. Method and apparatus for controlling power to an electrical load based on sensor data
US9531618B2 (en) 2012-06-27 2016-12-27 Ubiquiti Networks, Inc. Method and apparatus for distributed control of an interfacing-device network
US10498623B2 (en) 2012-06-27 2019-12-03 Ubiquiti Inc. Method and apparatus for monitoring and processing sensor data using a sensor-interfacing device
US10536361B2 (en) 2012-06-27 2020-01-14 Ubiquiti Inc. Method and apparatus for monitoring and processing sensor data from an electrical outlet
US11349741B2 (en) 2012-06-27 2022-05-31 Ubiquiti Inc. Method and apparatus for controlling power to an electrical load based on sensor data
US9887898B2 (en) 2012-06-27 2018-02-06 Ubiquiti Networks, Inc. Method and apparatus for monitoring and processing sensor data in an interfacing-device network
US10928087B2 (en) 2012-07-26 2021-02-23 Ademco Inc. Method of associating an HVAC controller with an external web service
US10133283B2 (en) 2012-07-26 2018-11-20 Honeywell International Inc. HVAC controller with wireless network based occupancy detection and control
US9477239B2 (en) 2012-07-26 2016-10-25 Honeywell International Inc. HVAC controller with wireless network based occupancy detection and control
US11493224B2 (en) 2012-07-26 2022-11-08 Ademco Inc. Method of associating an HVAC controller with an external web service
US10613555B2 (en) 2012-07-26 2020-04-07 Ademco Inc. HVAC controller with wireless network based occupancy detection and control
US10521867B2 (en) 2012-09-15 2019-12-31 Honeywell International Inc. Decision support system based on energy markets
US9337663B2 (en) 2012-11-08 2016-05-10 Green Edge Technologies, Inc. Systems, devices, and methods for automation and energy management
US8639391B1 (en) 2012-11-08 2014-01-28 Green Edge Technologies, Inc. Systems, devices, and methods for automation and energy management
US9389850B2 (en) 2012-11-29 2016-07-12 Honeywell International Inc. System and approach to manage versioning of field devices in a multi-site enterprise
US9716530B2 (en) 2013-01-07 2017-07-25 Samsung Electronics Co., Ltd. Home automation using near field communication
US10094585B2 (en) 2013-01-25 2018-10-09 Honeywell International Inc. Auto test for delta T diagnostics in an HVAC system
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9490533B2 (en) 2013-02-04 2016-11-08 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9373885B2 (en) 2013-02-08 2016-06-21 Ubiquiti Networks, Inc. Radio system for high-speed wireless communication
US9531067B2 (en) 2013-02-08 2016-12-27 Ubiquiti Networks, Inc. Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
US9293817B2 (en) 2013-02-08 2016-03-22 Ubiquiti Networks, Inc. Stacked array antennas for high-speed wireless communication
US8855730B2 (en) 2013-02-08 2014-10-07 Ubiquiti Networks, Inc. Transmission and reception of high-speed wireless communication using a stacked array antenna
US9100207B2 (en) 2013-02-13 2015-08-04 Green Edge Technologies, Inc. Systems, devices, and methods for mapping devices to realize building automation and energy management
US10063499B2 (en) 2013-03-07 2018-08-28 Samsung Electronics Co., Ltd. Non-cloud based communication platform for an environment control system
US9110450B2 (en) 2013-03-14 2015-08-18 Green Edge Technologies, Inc. Systems, devices, and methods for dynamically assigning functions to an actuator
US10404253B2 (en) 2013-04-23 2019-09-03 Ademco Inc. Triac or bypass circuit and MOSFET power steal combination
US10396770B2 (en) 2013-04-23 2019-08-27 Ademco Inc. Active triac triggering circuit
US9584119B2 (en) 2013-04-23 2017-02-28 Honeywell International Inc. Triac or bypass circuit and MOSFET power steal combination
US9806705B2 (en) 2013-04-23 2017-10-31 Honeywell International Inc. Active triac triggering circuit
US11054448B2 (en) 2013-06-28 2021-07-06 Ademco Inc. Power transformation self characterization mode
US9983244B2 (en) 2013-06-28 2018-05-29 Honeywell International Inc. Power transformation system with characterization
US10811892B2 (en) 2013-06-28 2020-10-20 Ademco Inc. Source management for a power transformation system
US10467639B2 (en) 2013-07-11 2019-11-05 Honeywell International Inc. Demand response system having a participation predictor
US9691076B2 (en) 2013-07-11 2017-06-27 Honeywell International Inc. Demand response system having a participation predictor
US10948885B2 (en) 2013-07-11 2021-03-16 Honeywell International Inc. Predicting responses of resources to demand response signals and having comfortable demand responses
US10346931B2 (en) 2013-07-11 2019-07-09 Honeywell International Inc. Arrangement for communicating demand response resource incentives
US9989937B2 (en) 2013-07-11 2018-06-05 Honeywell International Inc. Predicting responses of resources to demand response signals and having comfortable demand responses
US9366702B2 (en) 2013-08-23 2016-06-14 Green Edge Technologies, Inc. Devices and methods for determining whether an electrical device or component can sustain variations in voltage
US9191037B2 (en) 2013-10-11 2015-11-17 Ubiquiti Networks, Inc. Wireless radio system optimization by persistent spectrum analysis
US11566802B2 (en) 2013-11-04 2023-01-31 Ademco Inc. Remote contractor system with site specific energy audit capability
US10948206B2 (en) 2013-11-04 2021-03-16 Ademco Inc. Methods and system for obtaining access to building automation systems
US20150127169A1 (en) * 2013-11-04 2015-05-07 Honeywell International Inc. Remote contractor system with site specific energy audit capability
US10371400B2 (en) * 2013-11-04 2019-08-06 Ademco Inc. Remote contractor system with site specific energy audit capability
US9673811B2 (en) 2013-11-22 2017-06-06 Honeywell International Inc. Low power consumption AC load switches
US9857091B2 (en) 2013-11-22 2018-01-02 Honeywell International Inc. Thermostat circuitry to control power usage
US10649418B2 (en) 2013-12-11 2020-05-12 Ademco Inc. Building automation controller with configurable audio/visual cues
US10768589B2 (en) 2013-12-11 2020-09-08 Ademco Inc. Building automation system with geo-fencing
US10591877B2 (en) 2013-12-11 2020-03-17 Ademco Inc. Building automation remote control device with an in-application tour
US10534331B2 (en) 2013-12-11 2020-01-14 Ademco Inc. Building automation system with geo-fencing
US10712718B2 (en) 2013-12-11 2020-07-14 Ademco Inc. Building automation remote control device with in-application messaging
US20200033902A1 (en) * 2013-12-26 2020-01-30 Lutron Technology Company Llc Load-sensing remote control device for use in a load control system
US10129383B2 (en) 2014-01-06 2018-11-13 Samsung Electronics Co., Ltd. Home management system and method
US10135628B2 (en) 2014-01-06 2018-11-20 Samsung Electronics Co., Ltd. System, device, and apparatus for coordinating environments using network devices and remote sensory information
US8957551B1 (en) 2014-01-24 2015-02-17 Green Edge Technologies, Inc. Apparatuses and methods for configuring a building automation system
US9172605B2 (en) 2014-03-07 2015-10-27 Ubiquiti Networks, Inc. Cloud device identification and authentication
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
US9912053B2 (en) 2014-03-17 2018-03-06 Ubiquiti Networks, Inc. Array antennas having a plurality of directional beams
US9843096B2 (en) 2014-03-17 2017-12-12 Ubiquiti Networks, Inc. Compact radio frequency lenses
US9368870B2 (en) 2014-03-17 2016-06-14 Ubiquiti Networks, Inc. Methods of operating an access point using a plurality of directional beams
US10324429B2 (en) 2014-03-25 2019-06-18 Honeywell International Inc. System for propagating messages for purposes of demand response
US9665078B2 (en) 2014-03-25 2017-05-30 Honeywell International Inc. System for propagating messages for purposes of demand response
US9941570B2 (en) 2014-04-01 2018-04-10 Ubiquiti Networks, Inc. Compact radio frequency antenna apparatuses
US9912034B2 (en) 2014-04-01 2018-03-06 Ubiquiti Networks, Inc. Antenna assembly
US10353411B2 (en) 2014-06-19 2019-07-16 Ademco Inc. Bypass switch for in-line power steal
US9628074B2 (en) 2014-06-19 2017-04-18 Honeywell International Inc. Bypass switch for in-line power steal
US9683749B2 (en) 2014-07-11 2017-06-20 Honeywell International Inc. Multiple heatsink cooling system for a line voltage thermostat
US10088174B2 (en) 2014-07-11 2018-10-02 Honeywell International Inc. Multiple heatsink cooling system for a line voltage thermostat
US11172446B2 (en) 2015-01-13 2021-11-09 Trane International Inc. Mesh routing of sleepy sensor data
US11805481B2 (en) 2015-01-13 2023-10-31 Trane International Inc. Mesh routing of sleepy sensor data
US10736036B2 (en) 2015-01-13 2020-08-04 Trane International Inc. Sleep current failure detection
US10560894B2 (en) 2015-01-13 2020-02-11 Trane International Inc. Mesh routing of sleepy sensor data
US10488062B2 (en) 2016-07-22 2019-11-26 Ademco Inc. Geofence plus schedule for a building controller
US10541556B2 (en) 2017-04-27 2020-01-21 Honeywell International Inc. System and approach to integrate and manage diverse demand response specifications for multi-site enterprises
US10523673B1 (en) 2018-10-08 2019-12-31 Quest Automated Services, LLC Automation system controller
US10534351B1 (en) 2018-10-08 2020-01-14 Quest Automated Services, LLC Automation system network
US10326732B1 (en) 2018-10-08 2019-06-18 Quest Automated Services, LLC Automation system with address generation
US10900687B2 (en) 2018-10-31 2021-01-26 Trane International Inc. Flexible scheduling HVAC graphical user interface and methods of use thereof
US11218360B2 (en) 2019-12-09 2022-01-04 Quest Automated Services, LLC Automation system with edge computing
US11778715B2 (en) 2020-12-23 2023-10-03 Lmpg Inc. Apparatus and method for powerline communication control of electrical devices

Also Published As

Publication number Publication date
AU2008207842B2 (en) 2013-08-01
EP2118716A4 (en) 2011-05-11
CA2676538A1 (en) 2008-07-31
US8504174B2 (en) 2013-08-06
WO2008092082A3 (en) 2008-10-30
US20080183307A1 (en) 2008-07-31
AU2008207842A1 (en) 2008-07-31
EP2118716A2 (en) 2009-11-18
US20140217905A1 (en) 2014-08-07
US20080183316A1 (en) 2008-07-31
WO2008092082A2 (en) 2008-07-31
US20110213472A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
US7865252B2 (en) Upgradeable automation devices, systems, architectures, and methods
US9575472B1 (en) Automation devices, systems, architectures, and methods for energy management and other applications
US9767249B1 (en) Energy consumption via VPN configuration management
US8581439B1 (en) Automation devices, systems, architectures, and methods including controllable transfer switches
US9588506B1 (en) Automation devices, systems, architectures, and methods for energy management and other applications
US11398924B2 (en) Wireless lighting controller for a lighting control system
US9974150B2 (en) Secure device rejoining for mesh network devices
KR102390049B1 (en) System, device, and apparatus for coordinating environments using network devices and remote sensory information
Bhatt et al. Design and development of wired building automation systems
US20170034896A1 (en) Systems and methods of controlling light sources according to location
CN108234238B (en) Commissioning and personalization device in a local area network
EP3216043B1 (en) Configurable mesh network for an electrical switching system
CA2949128A1 (en) Wireless lighting control systems and methods
KR101738784B1 (en) Intelligent integrated switch coupled wireless network function for constructing IoT environment and control method using the same
US20180032041A1 (en) Automated Control System for Homes
KR20170062424A (en) Intelligent integrated switch coupled wireless network function for constructing IoT environment and control method using the same
Bhatt Building automation systems
JP4395769B2 (en) Power line carrier communication system
KR20070095638A (en) A distributed home network system supporting ubiquitous environments
Bekauri Energy Management in Smart Home
KARIMOV Hybrid Home Area Network for Automation System
Lábaj et al. Home Automation

Legal Events

Date Code Title Description
AS Assignment

Owner name: AUTANI CORPORATION, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLAYTON, RANDY;REEL/FRAME:020342/0695

Effective date: 20080109

STCF Information on status: patent grant

Free format text: PATENTED CASE

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
AS Assignment

Owner name: AUTANI, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AUTANI CORPORATION;REEL/FRAME:035271/0128

Effective date: 20150313

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12