US7063719B2 - Stent devices with detachable distal or proximal wires - Google Patents

Stent devices with detachable distal or proximal wires Download PDF

Info

Publication number
US7063719B2
US7063719B2 US10/423,369 US42336903A US7063719B2 US 7063719 B2 US7063719 B2 US 7063719B2 US 42336903 A US42336903 A US 42336903A US 7063719 B2 US7063719 B2 US 7063719B2
Authority
US
United States
Prior art keywords
stent
wire
distal
proximal
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/423,369
Other versions
US20030199965A1 (en
Inventor
Lex P. Jansen
Henry Nita
John E. Ortiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stryker European Operations Holdings LLC
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Scimed Inc filed Critical Boston Scientific Scimed Inc
Priority to US10/423,369 priority Critical patent/US7063719B2/en
Publication of US20030199965A1 publication Critical patent/US20030199965A1/en
Application granted granted Critical
Publication of US7063719B2 publication Critical patent/US7063719B2/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Assigned to STRYKER CORPORATION, STRYKER NV OPERATIONS LIMITED reassignment STRYKER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOSTON SCIENTIFIC SCIMED, INC.
Assigned to STRYKER MEDTECH LIMITED reassignment STRYKER MEDTECH LIMITED NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER NV OPERATIONS LIMITED
Assigned to STRYKER EUROPEAN HOLDINGS I, LLC reassignment STRYKER EUROPEAN HOLDINGS I, LLC NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER MEDTECH LIMITED
Assigned to STRYKER EUROPEAN HOLDINGS I, LLC reassignment STRYKER EUROPEAN HOLDINGS I, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED SERIAL NOS. 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0241. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE DATE 9/29/2014. Assignors: STRYKER MEDTECH LIMITED
Assigned to STRYKER MEDTECH LIMITED reassignment STRYKER MEDTECH LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL # 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0034. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT. Assignors: STRYKER NV OPERATIONS LIMITED
Assigned to STRYKER EUROPEAN HOLDINGS III, LLC reassignment STRYKER EUROPEAN HOLDINGS III, LLC NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER EUROPEAN HOLDINGS I, LLC
Assigned to STRYKER EUROPEAN OPERATIONS HOLDINGS LLC reassignment STRYKER EUROPEAN OPERATIONS HOLDINGS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER EUROPEAN HOLDINGS III, LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve

Definitions

  • This invention is a stent and stent delivery system suited for the noninvasive treatment of aneurysms, diseased blood vessels, and other bodily lumen.
  • the stents described herein are able to be positioned in situ with one or more wires attached to at least one location at the distal end of the stent and/or at least one location at the proximal end of the stent.
  • stents are prosthetic devices which may be introduced into a body cavity such as the lumen of a blood vessel or in some other difficult to access location. Stents are particularly useful for permanently widening a vessel which is either in a narrowed condition or has been damaged by aneurysm. Stents are typically introduced into the vasculature or other body cavity by the use of a catheter. Stents are usually tubular bodies made up of radially stiff shapes (for example circles) connected together to form the tubular shape.
  • stents are delivered to the target site as radially expandable preformed structures. In other words, only the diameter of the stent may be increased or decreased once properly positioned in the region where they are to be left.
  • WO 92/02,246, owned by Numed, Inc. shows a radially expandable stent made from fine wire formed into a serpentine ribbon wound into a cylindrical shape for introduction into a body vessel. The stent is placed within the vessel over a balloon which, when expanded, expands the stent in a radial fashion to support the wall of the vessel in the expanded configuration. This stent is said to be useful in the transluminar implantation of a stent for use in coronary angioplasty to prevent restenosis.
  • WO 97/48351 to the Medical University of South Carolina, discloses a multiple layered, self-forming intravascular flow modifier (IFM).
  • IFM intravascular flow modifier
  • at least a portion of the outer layer surrounds at least a portion of the inner layer so that at least some loops of the outer layer overlap and contact at least some loops of the inner layer.
  • the IFM also has a relatively high stiffness.
  • the IFM is deployed using co-axial catheters.
  • this invention includes novel stents, stent delivery systems and methods of using these stents and stent delivery systems.
  • the invention includes a self-expandable and self-forming stent device having a proximal end and a distal end and at least one detachable proximal wire connected to the proximal end or at least one detachable distal wire connected to the distal end.
  • the stents can comprise at least one detachable proximal wire connected to the proximal end of the stent; at least one distal wire connected to the distal end of the stent; or both at least one proximal and at least one distal wire connected to the proximal and distal ends of the stent, respectively.
  • the proximal and/or distal wires are attached to more than one location of the stent.
  • one or more of the attached distal and/or proximal wires are electrolytically detachable from the stent by imposition of a current on the proximal wire.
  • one or more of the attached distal and/or proximal wires are adapted to detach from the stent using mechanical, hydraulic, ultrasonic or radio-frequency detachment mechanisms.
  • the stent further comprises at least one insulator between the proximal and distal wires.
  • any of the stent described herein further comprise at least one aperture through which the distal wire is threaded.
  • any of the stents described herein can further comprise a bioactive coating (e.g., a therapeutic agent).
  • a bioactive coating e.g., a therapeutic agent
  • any of the stent devices described herein further comprise a sheath.
  • the sheath can further include at least one delivery wire.
  • stents with attached proximal and/or distal wires are self-forming.
  • the self-forming stent device has a first substantially linear configuration for insertion into a restraining member and a second tubular configuration upon extrusion from the restraining member, the second tubular configuration comprising a plurality of turns, wherein the turns are not touching and further wherein the second tubular configuration has an outer diameter and at least a portion of the outer diameter conforms to the vasculature.
  • the stent self-forms into the second tubular configuration and the restraining member comprises a deployment catheter.
  • the stent further includes at least one aperture in each turn of the secondary configuration through which the distal wire is threaded.
  • the invention includes a method of delivering any of the self-forming stents described herein to a selected site in a body cavity, the method comprising: (a) loading a substantially straightened, self-forming stent into a catheter; (b) accessing the selected site with the catheter; and (c) discharging the stent from the catheter at the selected site, wherein the stent forms a tubular configuration upon discharge.
  • step (c) comprises: (i) pushing the stent out of the catheter by applying pressure to the proximal wire while keeping the stent in the desired location by applying tension to the distal wire; and (ii) applying electrical impulses sufficient to detach the distal and proximal wires from the stent.
  • step (c) further comprises (iii) moving the catheter.
  • the selected site is a lesion.
  • FIG. 1 depicts a step in deployment of an exemplary stent of the present invention.
  • the stent is depicted within a deployment catheter. Also shown are a proximal wire attached via an electrolytically detachable mechanism to the proximal end of the stent and a distal wire attached via an electrolytically detachable mechanism to the distal end of the stent.
  • FIG. 2 depicts the stent delivery system of FIG. 1 in which an operator has pulled the catheter back and pushed the stent out of the catheter with the proximal wire.
  • the stent is maintained in the desired location over the lesion by exerting tension on the distal wire.
  • FIG. 3 depicts the stent delivery system of FIGS. 1 and 2 in which the operator has pulled the catheter farther back and pushed the stent farther out of the catheter with the proximal wire while exerting tension on the distal wire.
  • the stent which has been deployed from the catheter is a tubular coil configuration.
  • FIG. 4 depicts a substantially straightened exemplary stent according to the present invention wherein the distal wire is threaded through apertures (holes) in the wire making up the stent and attached to the distal end of the stent.
  • the present invention includes self-forming or self-expandable stent devices comprising one or more distal wires and/or one or more proximal wires detachably connected to the ends of the stent device.
  • the wires allow the operator to manipulate the position and final configuration of the stent upon deployment.
  • Stent delivery systems e.g, including inventive stents described herein including proximal and distal wires and a catheter
  • methods of using the stents and stent delivery systems are also included in the present invention.
  • the stent comprises a self-expandable stent device with attached proximal and/or distal wires.
  • Self-expandable stents are, as described, for example, in U.S. Pat. No. 6,042,597; U.S. Pat. No. 4,655,771 to Wallensten, U.S. Pat. No. 4,954,126 to Wallensten and U.S. Pat. No. 5,061,275 to Wallensten et al. and references cited therein.
  • the stent with attached delivery wires does not require a balloon or other external application of force to expand, but, rather, self-expand longitudinally and/or radially or upon deployment.
  • the stent with attached proximal and/or distal wires comprises a self-forming stent which does not assume its final tubular configuration until deployed at the target site.
  • the stent is pre-formed into a tubular configuration but delivered to the target site in a substantially straightened (e.g., linear yet flexible) configuration, for example within a restraining member such as a catheter.
  • a substantially straightened (e.g., linear yet flexible) configuration for example within a restraining member such as a catheter.
  • the stent Upon extrusion from the deployment catheter, the stent forms a coiled, tubular configuration in which the individual turns of the coil are not touching each other.
  • the stent is pre-formed into the final tubular structure, for example by winding an elongated wire into a helical coil.
  • the stent can then be substantially straightened for introduction into a catheter and does not form the final tubular configuration until deployment.
  • the self-forming or expandable stents of the invention further include a sheath or covering which accompanies the stent as it is moved within the deployment catheter.
  • the sheath is preferably flexible and/or lubricated, for example treated with a low friction polymer that allows easy movement within the catheter.
  • one or more wires attached to sheath allow for removal of the covering upon placement of the stent in the desired position.
  • stent delivery systems can be prepackaged with stent, sheath and attached wires.
  • Advantages of the present invention include, but are not limited to, (i) providing stent devices whose outer diameter conforms to the vasculature of the target site; (ii) enhancing the ability to place stents in small, tortuous vessels; (iii) providing greater control of the positioning of the stent during deployment; (iv) providing greater control of the configuration of stent during deployment; and (v) facilitating deployment by providing self-forming stent devices that are in a substantially linear shape during deployment.
  • the stents described herein are able to be positioned at the target site during deployment by the operator using detachably connected distal and/or proximal wires.
  • the stents can include one or more proximal wires; one or more distal wires; or one or more distal and proximal wires.
  • the proximal and distal wires can be connected, via a detachable mechanism, at multiple locations on the stent.
  • FIG. 1 Shown in FIG. 1 is a self-forming stent with detachable distal 1 and proximal 4 wires.
  • These wires may be made of any suitable material or combinations of material.
  • the wires are made of an electro-conductive material such as nitinol (or other super-elastic alloy), stainless steel or a cobalt alloy.
  • the wire may be of the same material as the stent or made of different material.
  • the distal wire is attached to, at least, the distal end of the stent while the proximal wire is attached to, at least, the proximal end of the end.
  • both the proximal and/or distal wires can be used to push and pull the stent device as desired by the operator.
  • the flexibility needed to allow a self-forming stent to conform to the vasculature may impede self-formation.
  • the distal wire is especially useful in these instances as it imparts the ability to configure the secondary, tubular structure by exerting tension as the stent is extruded from the catheter.
  • proximal and distal wires are attached to the stents described herein via any suitable attachment mechanism that can be readily detached by an operator.
  • any suitable attachment mechanism that can be readily detached by an operator.
  • a variety mechanically detachable mechanisms are described in, for example, U.S. Pat. No. 5,234,437, to Sepetka, U.S. Pat. Nos. 5,250,071 and 5,312,415, to Palermo, U.S. Pat. No. 5,261,916, to Engelson, and U.S. Pat. No. 5,304,195, to Twyford et al.).
  • Other mechanical type detachable mechanisms include screw-type connections, hydraulically detachable connections and the like. Mechanism that are detached using electrolytic, ultrasonic and/or radio-frequency methods also form an aspect of the invention.
  • the detachment junction is electrolytically detachable.
  • U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al. describe an electrolytically detachable mechanism.
  • the stent is bonded via a metal-to-metal joint to the proximal wire and distal wire.
  • the stent preferably includes at least one insulator between the proximal and distal wire attachment sites so that the operator can detach each wire separately if desired.
  • the stent is deployed from the catheter to the target site and a small electrical current is passed through the proximal/distal wire-stent assembly.
  • the current causes the joint between the proximal or distal wire and the stent to be severed via electrolysis.
  • the proximal wire, distal wire and catheter may then be retracted leaving the detached stent at an exact position within the vessel. Since no significant mechanical force is applied to the stent during electrolytic detachment, highly accurate placement is readily achieved.
  • the proximal wire 4 can be controlled by an operator to push segments of the stent making up the individual turns of the stent into the vasculature.
  • the operator can control the tension on the distal wire 1 to control positioning of the distal end of the stent.
  • the proximal and distal wires are detachably attached to the stent, for example via electrolytically detachment mechanisms.
  • the proximal and/or distal wires may contact multiple locations on the stent.
  • the distal wire is detachably connected to one location and the distal end of the stent and one or more additional locations on the stent. If physically connected, each attachment junction is readily detachable.
  • the distal wire 1 is threaded through the a hole in the wire(s) making up the stent 2 at one or more turns of the preformed helical structure, further adding to the operator's ability to control position during deployment.
  • the operator detaches the end of the distal wire and pulls it back through the holes to remove it from the subject.
  • stents described herein are typically pre-shaped or pre-formed.
  • a helical coil is shaped from a flexible material, for example a flexible metallic wire.
  • Methods of forming such coil structures are known in the art, for example by winding an elongated wire around a mandrel.
  • the stent can be straightened into a first, substantially linear configuration for insertion into a deployment mechanism (e.g., catheter) and self-forms to some extent into a second tubular configuration upon deployment at the target site.
  • a deployment mechanism e.g., catheter
  • the self-expandable and self-forming stent devices of the invention are preferably constructed of material having sufficient softness and resilience to allow formation of a tubular structure whose outer diameter conforms essentially to the diameter of the vasculature.
  • the diameter of the tubular configuration varies across the length of the stent such that the outer portion of one or more turns is contact with the vasculature.
  • the softness of a self-forming stent may somewhat impede self-formation of the second, tubular configuration.
  • the self-forming stent can be configured into the desired location and dimensions using the distal wire attached to the distal end of the stent and/or a proximal wire attached to the proximal end of the stent.
  • Positioning and formation of a self-forming stent can also be controlled to some extent by manipulating the deployment catheter, for example, withdrawing at a rate such that one stent turn (e.g., individual turn of the coil) is deployed at a time. Accordingly, each turn of the stent's tubular configuration can be positioned and formed while the distal end of the stent is kept in place using the distal wire and the catheter and proximal wire are manipulated by the operator.
  • the second, tubular configuration of the deployed stents described herein are typically comprised of a plurality of helical turns.
  • the pitch, spacing and diameter of each turn can be varied according to preference.
  • the overall tube shape of the stent may be achieved using a variety of shapes (e.g., circles, ovals, etc). Each turn need not have the same pitch, diameter or shape as the other turns.
  • the stent comprises a self-forming type
  • the stent is configured (e.g, softness and lack of contact and/or permanent and/or temporary physical connection between the turns) such that it can be straightened substantially for insertion into a deployment catheter yet still self-form into a tubular structure upon deployment. It will also be apparent from the teachings herein that the pre-formed tubular shape of the inventive stents need not be completely linear within the deployment catheter.
  • vaso-occlusive coils are secured in the vasculature if contact is maintained between the vasculature and coil for a sufficient amount of time (see, e.g., co-owned U.S. Pat. No. 6,096,034).
  • inventive stents described herein can be secured within the vasculature if the contact between the turns of the stent and vasculature is maintained for a sufficient amount of time. Determining the appropriate amount of time will depend on factors, for example, stent material, size of vasculature, size of lesion, maintenance of long term clinical objective (e.g., maintaining stent inner diameter and integrity).
  • the stent will be secured if held in placed between about 2 seconds to about 2 minutes, more preferably less than about one minute.
  • the material used in constructing the stents described herein may be any of a wide variety of materials; preferably, the proximal and distal ends of the stent include sufficient amounts of one or more electrically conductive materials to allow for electrolytically detachable linkages to the proximal and distal wires.
  • the stent also includes a radio-opaque material (e.g., a metal).
  • Suitable metals and alloys for the wire making up the stent include the Platinum Group metals, especially platinum, rhodium, palladium, rhenium, as well as tungsten, gold, silver, tantalum, and alloys of these metals. These metals have significant radiopacity and in their alloys may be tailored to accomplish an appropriate blend of flexibility and stiffness. They are also largely biologically inert. Highly preferred is a platinum/tungsten alloy.
  • the stent may also be of any of a wide variety of stainless steels if some sacrifice of radiopacity may be tolerated.
  • Certain “super-elastic alloys” include nickel/titanium alloys (48–58 atomic % nickel and optionally containing modest amounts of iron); copper/zinc alloys (38–42 weight % zinc); copper/zinc alloys containing 1–10 weight % of beryllium, silicon, tin, aluminum, or gallium; or nickel/aluminum alloys (36–38 atomic % aluminum).
  • nickel/titanium alloys 48–58 atomic % nickel and optionally containing modest amounts of iron
  • copper/zinc alloys 38–42 weight % zinc
  • nickel/aluminum alloys 36–38 atomic % aluminum
  • Particularly preferred are the alloys described in U.S. Pat. Nos. 3,174,851
  • the diameter of a single wire used to make the stent will be in the range of 0.001 and 0.05 inches.
  • the diameter of the wire is preferably in the range of 0.001 to 0.02 inches.
  • the wire of such diameter is typically then formed into a stent having a primary diameter of between 0.005 and 0.035 inches. For most neurovascular indications, the preferable diameter is 0.010 to 0.018 inches.
  • the wire is typically of sufficient diameter to provide a hoop strength to the resulting device sufficient to hold the device in place within the chosen body cavity without distending the wall of the cavity and without moving from the cavity as a result of the repetitive fluid pulsing found in the vascular system.
  • the overall diameter of the device as deployed is generally between 2 and 30 millimeters.
  • the stents described herein can also include additional additives, for example, any material that exhibits biological activity in vivo, for example, including but not limited to, therapeutic agents such as taxol.
  • additional additives for example, any material that exhibits biological activity in vivo, for example, including but not limited to, therapeutic agents such as taxol.
  • suitable bioactive materials are known to those of skill in the art and described in the art.
  • the stents may optionally include a wide variety of synthetic and natural polymers, such as polyurethanes (including copolymers with soft segments containing esters, ethers and carbonates), ethers, acrylates (including cyanoacrylates), olefins (including polymers and copolymers of ethylene, propylene, butenes, butadiene, styrene, and thermoplastic olefin elastomers), polydimethyl siloxane-based polymers, polyethyleneterephthalate, cross-linked polymers, non-cross linked polymers, rayon, cellulose, cellulose derivatives such nitrocellulose, natural rubbers, polyesters such as lactides, glycolides, caprolactones and their copolymers and acid derivatives, hydroxybutyrate and polyhydroxyvalerate and their copolymers, polyether esters such as polydioxinone, anhydrides such as polymers and copolymers of sebacic acid, he
  • synthetic and natural polymers
  • Polymeric materials which are activatable can also be included, for example thioisocyanates, aldehydes, isocyanates, divinyl compounds, epoxides or acrylates.
  • photoactivatable crosslinkable groups as succinimidyl azido salicylate, succinimidyl-azidobenzoate, succinimidyl dithio acetate, azidoiodobenzene, fluoro nitrophenylazide, salicylate azides, benzophenone-maleimide, and the like may be used as photoactivatable crosslinking reagents.
  • the activatable material may also consist of a thin coating which can be activated by external forces such as laser, radio-frequency, ultrasound or the like, with the same hardening result taking place. These materials would allow for normal tissue ingrowth to take place.
  • the self-forming or expandable stents described herein further include a sheath or covering.
  • the sheath may serve a variety of purposes, for example, to constrain self-expanding stents or to easy delivery, for example by providing a lubricated sheath. Methods of increasing lubricity are known in the art, e.g., using a sheath comprising a low friction polymer.
  • the sheath also has one or more delivery wires attached thereto. In this way, the stent can be delivered easily through a catheter while within the sheath. The sheath delivery wires could then be used to.
  • proximal and/or distal wire(s) of the stent can then be detached as described above.
  • the present invention also includes stent delivery systems (e.g., stent, proximal wire, distal wire, sheath, catheter and/or guidewire) and methods of using the stents described herein.
  • stent delivery systems e.g., stent, proximal wire, distal wire, sheath, catheter and/or guidewire
  • the stents described herein are preferably introduced to the chosen site using the procedure outlined below. This procedure may be used in treating a variety of maladies.
  • the stent is used alone, for example, as shown in the accompanying FIGS to assist in facilitating blood flow near a site of injury in the vasculature.
  • the stent is used in combination with one or more additional devices.
  • the aneurysm itself may be filled with the mechanical devices prior to introducing the inventive stent.
  • an emboli begins to form and, at some later time, is at least partially replaced by neovascularized collagenous material formed around the vaso-occlusive devices.
  • the stent then serves to hold open the vasculature around the emboli.
  • the stents described herein are typically first loaded into a carrier, for example a delivery catheter, for introduction into the body cavity and delivery to the target site. It is clear that should the target site be in a remote site, e.g., in the brain, methods of reaching this site are somewhat limited.
  • a carrier for example a delivery catheter
  • One widely accepted procedure is found in U.S. Pat. No. 4,994,069 to Ritchart, et al. It utilizes a fine endovascular catheter such as is found in U.S. Pat. No. 4,739,768, to Engelson.
  • a large catheter is introduced through an entry site in the vasculature.
  • a guiding catheter is then used to provide a safe passageway from the entry site to a region near the site to be treated. For instance, in treating a site in the human brain, a guiding catheter would be chosen which would extend from the entry site at the femoral artery, up through the large arteries extending to the heart, around the heart through the aortic arch, and downstream through one of the arteries extending from the upper side of the aorta.
  • a guidewire and neurovascular catheter such as that described in the Engelson patent are then placed through the guiding catheter as a unit. Once the tip of the guidewire reaches the end of the guiding catheter, it is then extended using fluoroscopy, by the physician to the site to be treated using the vaso-occlusive devices of this invention.
  • the guidewire is advanced for a distance and the neurovascular catheter follows. Once both the distal tip of the neurovascular catheter and the guidewire have reached the treatment site, and the distal tip of that catheter is appropriately situated, e.g., within the vasculature to be treated, the guidewire is then withdrawn.
  • the neurovascular catheter then has an open lumen to the outside of the body. The devices of this invention are then deployed into the vasculature.
  • the operation of the assembly generally comprises the steps of (1) advancing a catheter through a vessel lumen, for example, to the vicinity of the site to be occluded (e.g., an aneurysm, vascular malformation, or arterial venous fistula), (2) advancing the substantially linearized tubular stent through the catheter to the target location, and (3) pushing or pulling the stent using the proximal and distal wires and/or moving the catheter to deploy the stent into the target site in a tubular configuration.
  • a vessel lumen for example, to the vicinity of the site to be occluded (e.g., an aneurysm, vascular malformation, or arterial venous fistula)
  • the substantially linearized tubular stent through the catheter to the target location
  • pushing or pulling the stent using the proximal and distal wires and/or moving the catheter to deploy the stent into the target site in a tubular configuration e.g., a coronarysm, vascular
  • a self-forming stent 2 is dimensioned to be able to be advanced through a catheter 5 that is sized to access the desired site, in particular using a sufficiently soft material to allow straightening. Further, the turns making up the helical, tubular shape of the stent as deployed are not touching. In addition, the turns are not connected, so that the stent can be substantially straightened (rather than simply radially constricted) for insertion into a deployment catheter. The attached distal wire provides the ability to position the stent without sacrificing the softness which allows the stent to conform its outer diameter to that of the target site vasculature.
  • Distal wire 1 is shown attached to the distal end of the stent 2 , via a remotely detachable mechanism (e.g., GDC-type electrolytic detachment mechanism).
  • Proximal wire 4 is shown attached to the proximal end of the stent 2 , also via a remotely detachable mechanism.
  • the stent-containing catheter 5 is positioned within the vasculature 7 across the target lesion 6 .
  • the catheter 5 is suitable for delivering the stent 2 and transmitting electrical impulses to electrolytically detach the proximal wire 4 and the distal wire 1 from the stent 2 .
  • the catheter 5 is inserted through the vessel lumen to the target site (e.g., an aneurysm, lesion, etc.).
  • the target site e.g., an aneurysm, lesion, etc.
  • catheter insertion and navigational procedures involving guidewire and/or flow-directed means may be used to access the site with the catheter.
  • catheter 5 may include a guidewire usable therewith to guide the distal end of the catheter toward the desired or selected occlusion site.
  • Guidewires of this type are commercially available, and generally include an elongate wire having a tapered, wire-wound distal end region which is adapted to be advanced through a tortuous vessel path, with the catheter being moved axially along the advanced guidewire.
  • the catheter is preferably between about 50–300 cm in length, and typically between about 60–200 cm in length.
  • the catheter also is designed for accessing a vessel site at which, for example, the stent is desired.
  • the vessel site may be within a small diameter vessel 46 having 2–5 mm lumen diameter and accessible by way of a tortuous vessel path which may involve sharp vessel turns and multiple vessel branches.
  • the catheter preferably has a small diameter, flexible construction with a lumen diameter of less than about 40 mil, and preferably between about 8–30 mil.
  • Catheters of this type which are typically used for accessing deep brain vascular sites, are commercially available.
  • the catheter 5 , proximal wire 4 and distal wire 1 are manipulated to deploy the stent 2 from the catheter.
  • the stent assumes a pre-formed helical shape.
  • the catheter 5 is pulled back slightly and the proximal wire 4 used to push the stent 2 out of the catheter.
  • the operator controls the tension on the distal wire 1 to keep the distal end of the stent 2 in place, for example perpendicular to the vasculature 7 .
  • FIG. 3 depicts further deployment of the stent 2 across the lesion 6 as shown in FIGS. 1 and 2 .
  • the stent 2 is shown forming its final tubular (e.g., helical coil) configuration upon discharge from the catheter 5 .
  • the catheter 5 is pulled slightly farther back and the proximal wire 4 used to push more of the stent 2 out of the catheter 5 .
  • the tension on the distal wire 1 is controlled to keep the stent 2 in place.
  • the manipulations of catheter 5 , proximal wire 4 , and distal wire 1 are repeated until the stent 2 is placed in the desired location in the vasculature 7 .
  • the stents described herein may include a sheath with one or more attached wires.
  • the stents can be positioned using the distal and proximal wires and, moreover, held in position while the sheath is removed using the wire attached thereto.
  • the stents and stent delivery systems may be used as a kit with other implantable devices.

Abstract

Stent and stent delivery system suited for the noninvasive treatment of aneurysms, diseased blood vessels, and other bodily lumen are described. Detachable proximal and/or distal wires connected to the proximal and distal ends, respectively, of the stent allow the operator to manipulate the position and final configuration of the stent upon deployment.

Description

This application is a continuation of patent application Ser. No. 09/724,731 filed Nov. 28, 2000 now U.S. Pat. No. 6,579,308, from which priority is claimed under 35 USC §120, and which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
This invention is a stent and stent delivery system suited for the noninvasive treatment of aneurysms, diseased blood vessels, and other bodily lumen. Unlike most known stents, the stents described herein are able to be positioned in situ with one or more wires attached to at least one location at the distal end of the stent and/or at least one location at the proximal end of the stent.
BACKGROUND
This invention is an stent and stent delivery system which may be used within various portions of the body's vasculature. In general, stents are prosthetic devices which may be introduced into a body cavity such as the lumen of a blood vessel or in some other difficult to access location. Stents are particularly useful for permanently widening a vessel which is either in a narrowed condition or has been damaged by aneurysm. Stents are typically introduced into the vasculature or other body cavity by the use of a catheter. Stents are usually tubular bodies made up of radially stiff shapes (for example circles) connected together to form the tubular shape.
Currently, the majority of stents are delivered to the target site as radially expandable preformed structures. In other words, only the diameter of the stent may be increased or decreased once properly positioned in the region where they are to be left. For instance, WO 92/02,246, owned by Numed, Inc., shows a radially expandable stent made from fine wire formed into a serpentine ribbon wound into a cylindrical shape for introduction into a body vessel. The stent is placed within the vessel over a balloon which, when expanded, expands the stent in a radial fashion to support the wall of the vessel in the expanded configuration. This stent is said to be useful in the transluminar implantation of a stent for use in coronary angioplasty to prevent restenosis.
Other disclosures of expandable intraluminal stents involving radially expanding wire mesh include U.S. Pat. No. 4,776,337, to Palmaz. The patent shows a tubular member which may be made of a variety of different things supported by a gridlike collection of metal or plastic wires. U.S. Pat. No. 4,800,882, to Gianturco, shows a wire stent made of a number of curved sections that are formed into a generally circular configuration. U.S. Pat. No. 6,007,573 shows a rolled sheet stent releasably mounted on the distal tip of the deployment catheter. U.S. Pat. No. 06,063,101 shows a balloon expandable stent which includes a hollow wire through which drugs and the like are delivered to the stent itself. The hollow wire is detached after drug deliver using ultrasonic energy.
Stents delivered to a restricted coronary artery, expanded to a larger diameter as by a balloon catheter, and left in place in the artery at the site of a dilated lesion are shown in U.S. Pat. No. 4,740,207 to Kreamer; U.S. Pat. No. 5,007,926 to Derbyshire; U.S. Pat. No. 4,733,665 to Palmaz; U.S. Pat. No. 5,026,377 to Burton et al.; U.S. Pat. No. 5,158,548 to Lau et al.; U.S. Pat. No. 5,242,399 to Lau et al.; U.S. Pat. No. 5,344,426 to Lau et al.; U.S. Pat. No. 5,415,664 to Pinchuk; U.S. Pat. No. 5,453,090 to Martinez et al.; U.S. Pat. No. 4,950,227 to Savin; U.S. Pat. No. 5,403,341 to Solar; U.S. Pat. No. 5,108,416 to Ryan et al. and European Patent Application No. 707 837 A1 to Sheiban, all of which are incorporated herein by reference.
WO 97/48351, to the Medical University of South Carolina, discloses a multiple layered, self-forming intravascular flow modifier (IFM). Notably, at least a portion of the outer layer surrounds at least a portion of the inner layer so that at least some loops of the outer layer overlap and contact at least some loops of the inner layer. In other words, the turns making up the final configuration are necessarily overlapping and touching each other. The IFM also has a relatively high stiffness. The IFM is deployed using co-axial catheters.
None of these documents depict self-expandable or self-forming stents having a wire attached to the proximal end of the stent and/or the distal end of the stent which allow the operator to position the stent in situ. Further, none describe a self-forming stent which forms a tubular structure of turns from a substantially linear configuration upon deployment and in which the turns making up the tubular structure do not contact each other. Thus, the present invention is particularly directed to stents which can be configured upon deployment and delivery systems which facilitate delivery thereof.
SUMMARY OF THE INVENTION
Thus, this invention includes novel stents, stent delivery systems and methods of using these stents and stent delivery systems.
In one aspect, the invention includes a self-expandable and self-forming stent device having a proximal end and a distal end and at least one detachable proximal wire connected to the proximal end or at least one detachable distal wire connected to the distal end. The stents can comprise at least one detachable proximal wire connected to the proximal end of the stent; at least one distal wire connected to the distal end of the stent; or both at least one proximal and at least one distal wire connected to the proximal and distal ends of the stent, respectively. In some embodiments, the proximal and/or distal wires are attached to more than one location of the stent. In some embodiments, one or more of the attached distal and/or proximal wires are electrolytically detachable from the stent by imposition of a current on the proximal wire. In other embodiments, one or more of the attached distal and/or proximal wires are adapted to detach from the stent using mechanical, hydraulic, ultrasonic or radio-frequency detachment mechanisms. In yet other embodiments, the stent further comprises at least one insulator between the proximal and distal wires. In other embodiments, any of the stent described herein further comprise at least one aperture through which the distal wire is threaded. Further, any of the stents described herein can further comprise a bioactive coating (e.g., a therapeutic agent). In still further embodiments, any of the stent devices described herein further comprise a sheath. The sheath can further include at least one delivery wire.
In other aspects, stents with attached proximal and/or distal wires are self-forming. In some embodiments, the self-forming stent device has a first substantially linear configuration for insertion into a restraining member and a second tubular configuration upon extrusion from the restraining member, the second tubular configuration comprising a plurality of turns, wherein the turns are not touching and further wherein the second tubular configuration has an outer diameter and at least a portion of the outer diameter conforms to the vasculature. In certain embodiments, the stent self-forms into the second tubular configuration and the restraining member comprises a deployment catheter. In other embodiments, the stent further includes at least one aperture in each turn of the secondary configuration through which the distal wire is threaded.
In other aspects, the invention includes a method of delivering any of the self-forming stents described herein to a selected site in a body cavity, the method comprising: (a) loading a substantially straightened, self-forming stent into a catheter; (b) accessing the selected site with the catheter; and (c) discharging the stent from the catheter at the selected site, wherein the stent forms a tubular configuration upon discharge. In certain embodiments, wherein step (c) comprises: (i) pushing the stent out of the catheter by applying pressure to the proximal wire while keeping the stent in the desired location by applying tension to the distal wire; and (ii) applying electrical impulses sufficient to detach the distal and proximal wires from the stent. In addition, step (c) further comprises (iii) moving the catheter. In some embodiments, the selected site is a lesion.
These and other embodiments of the subject invention will readily occur to those of skill in the art in light of the disclosure herein.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts a step in deployment of an exemplary stent of the present invention. The stent is depicted within a deployment catheter. Also shown are a proximal wire attached via an electrolytically detachable mechanism to the proximal end of the stent and a distal wire attached via an electrolytically detachable mechanism to the distal end of the stent.
FIG. 2 depicts the stent delivery system of FIG. 1 in which an operator has pulled the catheter back and pushed the stent out of the catheter with the proximal wire. The stent is maintained in the desired location over the lesion by exerting tension on the distal wire.
FIG. 3 depicts the stent delivery system of FIGS. 1 and 2 in which the operator has pulled the catheter farther back and pushed the stent farther out of the catheter with the proximal wire while exerting tension on the distal wire. The stent which has been deployed from the catheter is a tubular coil configuration.
FIG. 4 depicts a substantially straightened exemplary stent according to the present invention wherein the distal wire is threaded through apertures (holes) in the wire making up the stent and attached to the distal end of the stent.
DESCRIPTION OF THE INVENTION
The present invention includes self-forming or self-expandable stent devices comprising one or more distal wires and/or one or more proximal wires detachably connected to the ends of the stent device. The wires allow the operator to manipulate the position and final configuration of the stent upon deployment. Stent delivery systems (e.g, including inventive stents described herein including proximal and distal wires and a catheter) and methods of using the stents and stent delivery systems are also included in the present invention.
In one aspect, the stent comprises a self-expandable stent device with attached proximal and/or distal wires. Self-expandable stents are, as described, for example, in U.S. Pat. No. 6,042,597; U.S. Pat. No. 4,655,771 to Wallensten, U.S. Pat. No. 4,954,126 to Wallensten and U.S. Pat. No. 5,061,275 to Wallensten et al. and references cited therein. Thus, in some embodiments the stent with attached delivery wires does not require a balloon or other external application of force to expand, but, rather, self-expand longitudinally and/or radially or upon deployment.
In other aspects, the stent with attached proximal and/or distal wires comprises a self-forming stent which does not assume its final tubular configuration until deployed at the target site. Thus, in these embodiments, the stent is pre-formed into a tubular configuration but delivered to the target site in a substantially straightened (e.g., linear yet flexible) configuration, for example within a restraining member such as a catheter. Upon extrusion from the deployment catheter, the stent forms a coiled, tubular configuration in which the individual turns of the coil are not touching each other. The stent is pre-formed into the final tubular structure, for example by winding an elongated wire into a helical coil. The stent can then be substantially straightened for introduction into a catheter and does not form the final tubular configuration until deployment.
In yet other aspects, the self-forming or expandable stents of the invention further include a sheath or covering which accompanies the stent as it is moved within the deployment catheter. The sheath is preferably flexible and/or lubricated, for example treated with a low friction polymer that allows easy movement within the catheter. Further, one or more wires attached to sheath allow for removal of the covering upon placement of the stent in the desired position. Further, stent delivery systems can be prepackaged with stent, sheath and attached wires.
Advantages of the present invention include, but are not limited to, (i) providing stent devices whose outer diameter conforms to the vasculature of the target site; (ii) enhancing the ability to place stents in small, tortuous vessels; (iii) providing greater control of the positioning of the stent during deployment; (iv) providing greater control of the configuration of stent during deployment; and (v) facilitating deployment by providing self-forming stent devices that are in a substantially linear shape during deployment.
All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to “a wire” includes two or more.
The most common noninvasive therapy for aneurysms is through the process of filling the aneurysm sac with one of a variety of fillers such as detachable expandable micro-balloons and coils. Each of these procedures, however, require the placement of the material into the aneurysm sac via the neck of the aneurysm. These methods therefore run the substantial risk of rupturing the wall of the sac and causing severe hemorrhaging. Obviously, this is especially true if the wall of the aneurysm is extremely thin. The amount of material necessary to fill the aneurysm completely is often difficult to determine. Use of too large an amount may result in migration of the introduced material into other segments of the vasculature thereby causing the production of emboli or vessel blockage.
Many aneurysms occur in tortuous segments of the vasculature. Access to aneurysm sites can be extremely difficult. The inflexibility of most pre-formed metallic stents is also likely to damage the endothelial wall of healthy arteries during delivery. Finally, it is unlikely that the blood vessel from which the aneurysm arises is straight in the region of the aneurysm. Therefore, a stent should exhibit some flexibility along its axis so to conform to the curvature of the vessel at the aneurysm site. Furthermore, it is difficult to position most stent devices after or during deployment.
Accordingly, the stents described herein are able to be positioned at the target site during deployment by the operator using detachably connected distal and/or proximal wires. It will be apparent from the teachings herein that the stents can include one or more proximal wires; one or more distal wires; or one or more distal and proximal wires. Furthermore, the proximal and distal wires can be connected, via a detachable mechanism, at multiple locations on the stent.
Shown in FIG. 1 is a self-forming stent with detachable distal 1 and proximal 4 wires. These wires may be made of any suitable material or combinations of material. Preferably, the wires are made of an electro-conductive material such as nitinol (or other super-elastic alloy), stainless steel or a cobalt alloy. The wire may be of the same material as the stent or made of different material.
The distal wire is attached to, at least, the distal end of the stent while the proximal wire is attached to, at least, the proximal end of the end. In both self-expanding and self-forming stents, both the proximal and/or distal wires can be used to push and pull the stent device as desired by the operator. By way of example only, in certain instances, the flexibility needed to allow a self-forming stent to conform to the vasculature may impede self-formation. Accordingly, the distal wire is especially useful in these instances as it imparts the ability to configure the secondary, tubular structure by exerting tension as the stent is extruded from the catheter.
The proximal and distal wires are attached to the stents described herein via any suitable attachment mechanism that can be readily detached by an operator. For example, a variety mechanically detachable mechanisms are described in, for example, U.S. Pat. No. 5,234,437, to Sepetka, U.S. Pat. Nos. 5,250,071 and 5,312,415, to Palermo, U.S. Pat. No. 5,261,916, to Engelson, and U.S. Pat. No. 5,304,195, to Twyford et al.). Other mechanical type detachable mechanisms include screw-type connections, hydraulically detachable connections and the like. Mechanism that are detached using electrolytic, ultrasonic and/or radio-frequency methods also form an aspect of the invention.
In certain embodiments, the detachment junction is electrolytically detachable. U.S. Pat. No. 5,354,295 and its parent, U.S. Pat. No. 5,122,136, both to Guglielmi et al., describe an electrolytically detachable mechanism. As disclosed therein, in these embodiments, the stent is bonded via a metal-to-metal joint to the proximal wire and distal wire. Furthermore, the stent preferably includes at least one insulator between the proximal and distal wire attachment sites so that the operator can detach each wire separately if desired. The stent is deployed from the catheter to the target site and a small electrical current is passed through the proximal/distal wire-stent assembly. The current causes the joint between the proximal or distal wire and the stent to be severed via electrolysis. The proximal wire, distal wire and catheter may then be retracted leaving the detached stent at an exact position within the vessel. Since no significant mechanical force is applied to the stent during electrolytic detachment, highly accurate placement is readily achieved. The proximal wire 4 can be controlled by an operator to push segments of the stent making up the individual turns of the stent into the vasculature. At the same time, the operator can control the tension on the distal wire 1 to control positioning of the distal end of the stent. Thus, the proximal and distal wires are detachably attached to the stent, for example via electrolytically detachment mechanisms.
The proximal and/or distal wires may contact multiple locations on the stent. Thus, in certain embodiments, the distal wire is detachably connected to one location and the distal end of the stent and one or more additional locations on the stent. If physically connected, each attachment junction is readily detachable.
As shown in FIG. 4, in yet other embodiments, the distal wire 1 is threaded through the a hole in the wire(s) making up the stent 2 at one or more turns of the preformed helical structure, further adding to the operator's ability to control position during deployment. When the stent is positioned at the desired target site, the operator detaches the end of the distal wire and pulls it back through the holes to remove it from the subject.
The stents described herein are typically pre-shaped or pre-formed. For example, for the self-forming embodiments, a helical coil is shaped from a flexible material, for example a flexible metallic wire. Methods of forming such coil structures are known in the art, for example by winding an elongated wire around a mandrel. The stent can be straightened into a first, substantially linear configuration for insertion into a deployment mechanism (e.g., catheter) and self-forms to some extent into a second tubular configuration upon deployment at the target site.
The self-expandable and self-forming stent devices of the invention are preferably constructed of material having sufficient softness and resilience to allow formation of a tubular structure whose outer diameter conforms essentially to the diameter of the vasculature. In other words, the diameter of the tubular configuration varies across the length of the stent such that the outer portion of one or more turns is contact with the vasculature. In certain instances, the softness of a self-forming stent may somewhat impede self-formation of the second, tubular configuration. In these instances, the self-forming stent can be configured into the desired location and dimensions using the distal wire attached to the distal end of the stent and/or a proximal wire attached to the proximal end of the stent. Positioning and formation of a self-forming stent can also be controlled to some extent by manipulating the deployment catheter, for example, withdrawing at a rate such that one stent turn (e.g., individual turn of the coil) is deployed at a time. Accordingly, each turn of the stent's tubular configuration can be positioned and formed while the distal end of the stent is kept in place using the distal wire and the catheter and proximal wire are manipulated by the operator.
The second, tubular configuration of the deployed stents described herein are typically comprised of a plurality of helical turns. The pitch, spacing and diameter of each turn can be varied according to preference. In addition, the overall tube shape of the stent may be achieved using a variety of shapes (e.g., circles, ovals, etc). Each turn need not have the same pitch, diameter or shape as the other turns.
When the stent comprises a self-forming type, the stent is configured (e.g, softness and lack of contact and/or permanent and/or temporary physical connection between the turns) such that it can be straightened substantially for insertion into a deployment catheter yet still self-form into a tubular structure upon deployment. It will also be apparent from the teachings herein that the pre-formed tubular shape of the inventive stents need not be completely linear within the deployment catheter.
It is known that certain vaso-occlusive coils are secured in the vasculature if contact is maintained between the vasculature and coil for a sufficient amount of time (see, e.g., co-owned U.S. Pat. No. 6,096,034). Similarly, the inventive stents described herein can be secured within the vasculature if the contact between the turns of the stent and vasculature is maintained for a sufficient amount of time. Determining the appropriate amount of time will depend on factors, for example, stent material, size of vasculature, size of lesion, maintenance of long term clinical objective (e.g., maintaining stent inner diameter and integrity). One of skill in the art can readily determine such time in view of the teachings and references cited herein. Typically, the stent will be secured if held in placed between about 2 seconds to about 2 minutes, more preferably less than about one minute.
The material used in constructing the stents described herein may be any of a wide variety of materials; preferably, the proximal and distal ends of the stent include sufficient amounts of one or more electrically conductive materials to allow for electrolytically detachable linkages to the proximal and distal wires. Preferably, the stent also includes a radio-opaque material (e.g., a metal). Suitable metals and alloys for the wire making up the stent include the Platinum Group metals, especially platinum, rhodium, palladium, rhenium, as well as tungsten, gold, silver, tantalum, and alloys of these metals. These metals have significant radiopacity and in their alloys may be tailored to accomplish an appropriate blend of flexibility and stiffness. They are also largely biologically inert. Highly preferred is a platinum/tungsten alloy.
The stent may also be of any of a wide variety of stainless steels if some sacrifice of radiopacity may be tolerated. Certain “super-elastic alloys” include nickel/titanium alloys (48–58 atomic % nickel and optionally containing modest amounts of iron); copper/zinc alloys (38–42 weight % zinc); copper/zinc alloys containing 1–10 weight % of beryllium, silicon, tin, aluminum, or gallium; or nickel/aluminum alloys (36–38 atomic % aluminum). Particularly preferred are the alloys described in U.S. Pat. Nos. 3,174,851; 3,351,463; and 3,753,700. Especially preferred is the titanium/nickel alloy known as “nitinol”. These are very sturdy alloys which will tolerate significant flexing even when used as a very small diameter.
Generally speaking, when the stents are formed of a metallic material and that metal is a platinum alloy or a superelastic alloy such as nitinol, the diameter of a single wire used to make the stent will be in the range of 0.001 and 0.05 inches. Similarly, if the stents are formed from a wire which is then wound with a radioopaque material, the diameter of the wire is preferably in the range of 0.001 to 0.02 inches. The wire of such diameter is typically then formed into a stent having a primary diameter of between 0.005 and 0.035 inches. For most neurovascular indications, the preferable diameter is 0.010 to 0.018 inches. The wire is typically of sufficient diameter to provide a hoop strength to the resulting device sufficient to hold the device in place within the chosen body cavity without distending the wall of the cavity and without moving from the cavity as a result of the repetitive fluid pulsing found in the vascular system. The overall diameter of the device as deployed is generally between 2 and 30 millimeters. Thus, all of the dimensions here are provided only as guidelines and are not critical to the invention. However, only dimensions suitable for placement within the human body are included in the scope of this invention.
The stents described herein can also include additional additives, for example, any material that exhibits biological activity in vivo, for example, including but not limited to, therapeutic agents such as taxol. Non-limiting examples of suitable bioactive materials are known to those of skill in the art and described in the art.
In addition one or more metals, the stents may optionally include a wide variety of synthetic and natural polymers, such as polyurethanes (including copolymers with soft segments containing esters, ethers and carbonates), ethers, acrylates (including cyanoacrylates), olefins (including polymers and copolymers of ethylene, propylene, butenes, butadiene, styrene, and thermoplastic olefin elastomers), polydimethyl siloxane-based polymers, polyethyleneterephthalate, cross-linked polymers, non-cross linked polymers, rayon, cellulose, cellulose derivatives such nitrocellulose, natural rubbers, polyesters such as lactides, glycolides, caprolactones and their copolymers and acid derivatives, hydroxybutyrate and polyhydroxyvalerate and their copolymers, polyether esters such as polydioxinone, anhydrides such as polymers and copolymers of sebacic acid, hexadecandioic acid and other diacids, orthoesters may be used. In a preferred embodiment, the polymeric filament comprises the materials of the present invention or other suture materials that have already been approved for use in wound heating in humans.
Polymeric materials which are activatable can also be included, for example thioisocyanates, aldehydes, isocyanates, divinyl compounds, epoxides or acrylates. In addition to the aforementioned, photoactivatable crosslinkable groups as succinimidyl azido salicylate, succinimidyl-azidobenzoate, succinimidyl dithio acetate, azidoiodobenzene, fluoro nitrophenylazide, salicylate azides, benzophenone-maleimide, and the like may be used as photoactivatable crosslinking reagents. The activatable material may also consist of a thin coating which can be activated by external forces such as laser, radio-frequency, ultrasound or the like, with the same hardening result taking place. These materials would allow for normal tissue ingrowth to take place.
In other embodiments, the self-forming or expandable stents described herein further include a sheath or covering. The sheath may serve a variety of purposes, for example, to constrain self-expanding stents or to easy delivery, for example by providing a lubricated sheath. Methods of increasing lubricity are known in the art, e.g., using a sheath comprising a low friction polymer. Preferably, the sheath also has one or more delivery wires attached thereto. In this way, the stent can be delivered easily through a catheter while within the sheath. The sheath delivery wires could then be used to. unsheath the stent while the proximal and/or distal wires of the stent are used to keep it in the desired position. This allows for very precise placement of the stent and reduced or eliminates jumping. The proximal and/or distal wire(s) of the stent can then be detached as described above.
Stent Delivery Systems and Methods of Use
The present invention also includes stent delivery systems (e.g., stent, proximal wire, distal wire, sheath, catheter and/or guidewire) and methods of using the stents described herein. The stents described herein are preferably introduced to the chosen site using the procedure outlined below. This procedure may be used in treating a variety of maladies. In some embodiments, the stent is used alone, for example, as shown in the accompanying FIGS to assist in facilitating blood flow near a site of injury in the vasculature. In other embodiments, the stent is used in combination with one or more additional devices. For instance, in treatment of an aneurysm, the aneurysm itself may be filled with the mechanical devices prior to introducing the inventive stent. Shortly after these mechanical vaso-occlusive devices are placed within the aneurysm, an emboli begins to form and, at some later time, is at least partially replaced by neovascularized collagenous material formed around the vaso-occlusive devices. The stent then serves to hold open the vasculature around the emboli.
In using the stent, a selected site is reached through the vascular system using a collection of specifically chosen catheters and guide wires. Accordingly, the stents described herein are typically first loaded into a carrier, for example a delivery catheter, for introduction into the body cavity and delivery to the target site. It is clear that should the target site be in a remote site, e.g., in the brain, methods of reaching this site are somewhat limited. One widely accepted procedure is found in U.S. Pat. No. 4,994,069 to Ritchart, et al. It utilizes a fine endovascular catheter such as is found in U.S. Pat. No. 4,739,768, to Engelson. First of all, a large catheter is introduced through an entry site in the vasculature. Typically, this would be through a femoral artery in the groin. Other entry sites sometimes chosen are found in the neck and are in general well known by physicians who practice this type of medicine. Once the introducer is in place, a guiding catheter is then used to provide a safe passageway from the entry site to a region near the site to be treated. For instance, in treating a site in the human brain, a guiding catheter would be chosen which would extend from the entry site at the femoral artery, up through the large arteries extending to the heart, around the heart through the aortic arch, and downstream through one of the arteries extending from the upper side of the aorta. A guidewire and neurovascular catheter such as that described in the Engelson patent are then placed through the guiding catheter as a unit. Once the tip of the guidewire reaches the end of the guiding catheter, it is then extended using fluoroscopy, by the physician to the site to be treated using the vaso-occlusive devices of this invention. During the trip between the treatment site and the guide catheter tip, the guidewire is advanced for a distance and the neurovascular catheter follows. Once both the distal tip of the neurovascular catheter and the guidewire have reached the treatment site, and the distal tip of that catheter is appropriately situated, e.g., within the vasculature to be treated, the guidewire is then withdrawn. The neurovascular catheter then has an open lumen to the outside of the body. The devices of this invention are then deployed into the vasculature.
Referring to the drawings in detail, wherein like numerals indicate like elements, exemplary deployment of a self-forming type stent as described herein is depicted. The operation of the assembly generally comprises the steps of (1) advancing a catheter through a vessel lumen, for example, to the vicinity of the site to be occluded (e.g., an aneurysm, vascular malformation, or arterial venous fistula), (2) advancing the substantially linearized tubular stent through the catheter to the target location, and (3) pushing or pulling the stent using the proximal and distal wires and/or moving the catheter to deploy the stent into the target site in a tubular configuration.
Referring to FIG. 1, a self-forming stent 2 is dimensioned to be able to be advanced through a catheter 5 that is sized to access the desired site, in particular using a sufficiently soft material to allow straightening. Further, the turns making up the helical, tubular shape of the stent as deployed are not touching. In addition, the turns are not connected, so that the stent can be substantially straightened (rather than simply radially constricted) for insertion into a deployment catheter. The attached distal wire provides the ability to position the stent without sacrificing the softness which allows the stent to conform its outer diameter to that of the target site vasculature. Distal wire 1 is shown attached to the distal end of the stent 2, via a remotely detachable mechanism (e.g., GDC-type electrolytic detachment mechanism). Proximal wire 4 is shown attached to the proximal end of the stent 2, also via a remotely detachable mechanism. The stent-containing catheter 5 is positioned within the vasculature 7 across the target lesion 6.
The catheter 5 is suitable for delivering the stent 2 and transmitting electrical impulses to electrolytically detach the proximal wire 4 and the distal wire 1 from the stent 2. The catheter 5 is inserted through the vessel lumen to the target site (e.g., an aneurysm, lesion, etc.). Conventional catheter insertion and navigational procedures involving guidewire and/or flow-directed means may be used to access the site with the catheter. Thus, although not shown, catheter 5 may include a guidewire usable therewith to guide the distal end of the catheter toward the desired or selected occlusion site. Guidewires of this type are commercially available, and generally include an elongate wire having a tapered, wire-wound distal end region which is adapted to be advanced through a tortuous vessel path, with the catheter being moved axially along the advanced guidewire.
The catheter is preferably between about 50–300 cm in length, and typically between about 60–200 cm in length. The catheter also is designed for accessing a vessel site at which, for example, the stent is desired. For example, the vessel site may be within a small diameter vessel 46 having 2–5 mm lumen diameter and accessible by way of a tortuous vessel path which may involve sharp vessel turns and multiple vessel branches. In that case, the catheter preferably has a small diameter, flexible construction with a lumen diameter of less than about 40 mil, and preferably between about 8–30 mil. Catheters of this type, which are typically used for accessing deep brain vascular sites, are commercially available.
Referring to FIG. 2, once the distal end of the self-forming stent is positioned at the selected site as depicted in FIG. 1 (e.g. its location may be determined by a coating at the distal end of the catheter with a radiopaque material or otherwise affixing such a material to the distal end of the catheter or incorporating such a material into the distal end of the catheter), the catheter 5, proximal wire 4 and distal wire 1 are manipulated to deploy the stent 2 from the catheter. Upon deployment, the stent assumes a pre-formed helical shape. In particular, the catheter 5 is pulled back slightly and the proximal wire 4 used to push the stent 2 out of the catheter. At the same time, the operator controls the tension on the distal wire 1 to keep the distal end of the stent 2 in place, for example perpendicular to the vasculature 7.
FIG. 3 depicts further deployment of the stent 2 across the lesion 6 as shown in FIGS. 1 and 2. In FIG. 3, the stent 2 is shown forming its final tubular (e.g., helical coil) configuration upon discharge from the catheter 5. The catheter 5 is pulled slightly farther back and the proximal wire 4 used to push more of the stent 2 out of the catheter 5. Again, the tension on the distal wire 1 is controlled to keep the stent 2 in place. The manipulations of catheter 5, proximal wire 4, and distal wire 1 are repeated until the stent 2 is placed in the desired location in the vasculature 7.
In other embodiments, the stents described herein may include a sheath with one or more attached wires. In these embodiments, the stents can be positioned using the distal and proximal wires and, moreover, held in position while the sheath is removed using the wire attached thereto.
The stents and stent delivery systems may be used as a kit with other implantable devices.
Modifications of the procedure and device described above, and the methods of using them in keeping with this invention will be apparent to those having skill in this mechanical and surgical art. These variations are intended to be within the scope of the claims that follow.

Claims (25)

1. A stent device having a proximal end and a distal end and at least one detachable distal wire connected to the distal end, wherein the detachable distal wire comprises an electrolytically detachable end adapted to detach from the stent by imposition of a current on the distal wire.
2. The stent device of claim 1, comprising at least one detachable proximal wire connected to the proximal end.
3. The stent of claim 2, wherein the detachable proximal wire comprises an electrolytically detachable end adapted to detach from the stent by imposition of a current on the proximal wire.
4. The stent of claim 2, wherein the detachable proximal wire is adapted to detach from the stent using mechanical, hydraulic, ultrasonic or radio-frequency detachment mechanisms.
5. The stent of claim 2, wherein the distal and proximal wires are each further attached to least one additional site in the stent.
6. The stent of claim 5, wherein the stent further comprises at least one insulator between the sites of attachment of the proximal wire and the sites of attachment of the distal wire.
7. The stent of claim 5, wherein each additional site of attachment is via an electrolytically detachable link.
8. The stent of claim 5, wherein the each additional site of attachment is via mechanical, hydraulic, ultrasonic or radio-frequency detachable link.
9. The stent of claim 1, further comprising at least one insulator between the proximal and distal ends.
10. The stent of claim 1, wherein the distal wire is further attached to at least one additional location in the stent.
11. The stent of claim 1, further comprising at least one aperture through which the distal wire is threaded.
12. The stent of claim 1, further comprising a bioactive coating.
13. The stent of claim 12, wherein the bioactive coating comprises a therapeutic agent.
14. The stent device of claim 1, wherein the stent is self-expandable.
15. The stent device of claim 1, wherein the stent is self-forming.
16. The stent device of claim 15, wherein the stent has a first substantially linear configuration for insertion into a restraining member and a second tubular configuration upon extrusion from the restraining member, the second tubular configuration comprising a plurality of turns, wherein the turns are not touching and further wherein the second tubular configuration has an outer diameter and at least a portion of the outer diameter conforms to the vasculature.
17. The stent of claim 16, wherein the stent self-forms into the second tubular configuration.
18. The stent of claim 16, wherein the restraining member comprises a deployment catheter.
19. The stent of claim 16, wherein the stent further includes at least one aperture in each turn of the secondary configuration through which the distal wire is threaded.
20. A method of delivering a stent according to claim 16 to a selected site in a body cavity, the method comprising:
(a) loading a substantially straightened stent according to claim 16 into a catheter;
(b) accessing the selected site with the catheter; and
(c) discharging the stent from the catheter at the selected site, wherein the stent forms a tubular configuration upon discharge.
21. The method of claim 20, wherein step (c) comprises:
(i) pushing the stat out of the catheter by applying pressure to the proximal wire while keeping the stent in the desired location by applying tension to the distal wire; and
(ii) applying electrical impulses sufficient to detach the distal and proximal wires from the stent.
22. The method of claim 21, wherein step (e) further comprises:
(iii) moving the catheter.
23. The method of claim 20, wherein the selected site is a lesion.
24. The stent device of claim 1, further comprising a sheath.
25. The stent of claim 24, wherein the sheath further includes at least one delivery wire.
US10/423,369 2000-11-28 2003-04-25 Stent devices with detachable distal or proximal wires Expired - Lifetime US7063719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/423,369 US7063719B2 (en) 2000-11-28 2003-04-25 Stent devices with detachable distal or proximal wires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/724,731 US6579308B1 (en) 2000-11-28 2000-11-28 Stent devices with detachable distal or proximal wires
US10/423,369 US7063719B2 (en) 2000-11-28 2003-04-25 Stent devices with detachable distal or proximal wires

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/724,731 Continuation US6579308B1 (en) 2000-11-28 2000-11-28 Stent devices with detachable distal or proximal wires

Publications (2)

Publication Number Publication Date
US20030199965A1 US20030199965A1 (en) 2003-10-23
US7063719B2 true US7063719B2 (en) 2006-06-20

Family

ID=24911671

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/724,731 Expired - Fee Related US6579308B1 (en) 2000-11-28 2000-11-28 Stent devices with detachable distal or proximal wires
US10/423,369 Expired - Lifetime US7063719B2 (en) 2000-11-28 2003-04-25 Stent devices with detachable distal or proximal wires

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/724,731 Expired - Fee Related US6579308B1 (en) 2000-11-28 2000-11-28 Stent devices with detachable distal or proximal wires

Country Status (8)

Country Link
US (2) US6579308B1 (en)
EP (1) EP1339358B1 (en)
JP (1) JP2004534554A (en)
AT (1) ATE466552T1 (en)
AU (2) AU1992202A (en)
CA (1) CA2429992A1 (en)
DE (1) DE60142075D1 (en)
WO (1) WO2002043616A2 (en)

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US20070239272A1 (en) * 2003-05-20 2007-10-11 Navia Jose L Apparatus and methods for repair of a cardiac valve
US20070299500A1 (en) * 2002-02-28 2007-12-27 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US20090299390A1 (en) * 2007-12-14 2009-12-03 Houdin Dehnad Multistrand coil for interventional therapy
US20090306761A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US20100023034A1 (en) * 2008-06-19 2010-01-28 Coherex Medical, Inc. Clot retrieval method and device
US7942925B2 (en) 2001-07-09 2011-05-17 Surpass Medical Ltd. Implantable intraluminal device and method of using same in treating aneurysms
DE102010021947A1 (en) * 2010-05-28 2011-12-01 Phenox Gmbh implant replacement
US20140088681A1 (en) * 2010-01-27 2014-03-27 Sriram Iyer Device and method for preventing stenosis at an anastomosis site
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US8999364B2 (en) 2004-06-15 2015-04-07 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9023094B2 (en) 2007-06-25 2015-05-05 Microvention, Inc. Self-expanding prosthesis
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9144508B2 (en) 2007-07-19 2015-09-29 Back Bay Medical Inc. Radially expandable stent
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9452017B2 (en) 2012-05-11 2016-09-27 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9554848B2 (en) 1999-04-05 2017-01-31 Medtronic, Inc. Ablation catheters and associated systems and methods
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9888961B2 (en) 2013-03-15 2018-02-13 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US9908143B2 (en) 2008-06-20 2018-03-06 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US10076382B2 (en) 2010-10-25 2018-09-18 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10646359B2 (en) 2008-06-20 2020-05-12 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10736690B2 (en) 2014-04-24 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11213678B2 (en) 2013-09-09 2022-01-04 Medtronic Ardian Luxembourg S.A.R.L. Method of manufacturing a medical device for neuromodulation
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US11931484B2 (en) 2021-01-15 2024-03-19 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579308B1 (en) * 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires
US6716238B2 (en) * 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
EP1300120A1 (en) * 2001-10-08 2003-04-09 Jomed Nv Stent delivery system
US20040193178A1 (en) 2003-03-26 2004-09-30 Cardiomind, Inc. Multiple joint implant delivery systems for sequentially-controlled implant deployment
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
ATE467402T1 (en) 2003-03-26 2010-05-15 Cardiomind Inc IMPLANT DEPOSIT CATHETER WITH ELECTROLYTICALLY DEGRADABLE COMPOUNDS
CA2507649C (en) * 2003-04-02 2011-10-11 Mehran Bashiri Detachable and retrievable stent assembly
US20040260380A1 (en) * 2003-06-18 2004-12-23 D-Crown Ltd Devices for delivering multiple stenting structures in situ
US20040260381A1 (en) * 2003-06-18 2004-12-23 D-Crown Ltd Devices and methods for forming stenting structures in situ
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US20050209671A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
WO2005094727A1 (en) * 2004-03-02 2005-10-13 Cardiomind Inc. Electrolytic stent delivery systems
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US20050209670A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Stent delivery system with diameter adaptive restraint
EP1789029A2 (en) 2004-08-30 2007-05-30 Interstitial Therapeutics Methods and compositions for the treatment of cell proliferation
US20060085057A1 (en) * 2004-10-14 2006-04-20 Cardiomind Delivery guide member based stent anti-jumping technologies
WO2006044147A2 (en) * 2004-10-14 2006-04-27 Cardiomind, Inc. Small vessel stent designs
CN101076290B (en) 2004-12-09 2011-11-23 铸造品股份有限公司 Aortic valve repair
ES2764992T3 (en) 2005-04-04 2020-06-05 Flexible Stenting Solutions Inc Flexible stent
US20060253190A1 (en) * 2005-05-06 2006-11-09 Kuo Michael D Removeable stents
US20060276886A1 (en) * 2005-06-07 2006-12-07 Cardiomind, Inc. Ten-thousandths scale metal reinforced stent delivery guide sheath or restraint
US20070027522A1 (en) * 2005-06-14 2007-02-01 Chang Jean C Stent delivery and guidewire systems
US20070055339A1 (en) * 2005-08-23 2007-03-08 George William R Staged stent delivery systems
US20070067023A1 (en) * 2005-09-22 2007-03-22 Boston Scientific Scimed, Inc. Tether guided stent side branch
US8956400B2 (en) * 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
US8435284B2 (en) 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US7699884B2 (en) * 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
WO2007127362A2 (en) * 2006-04-26 2007-11-08 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
WO2009105699A1 (en) 2008-02-22 2009-08-27 Endologix, Inc. Design and method of placement of a graft or graft system
US9402707B2 (en) 2008-07-22 2016-08-02 Neuravi Limited Clot capture systems and associated methods
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
WO2012052982A1 (en) 2010-10-22 2012-04-26 Neuravi Limited Clot engagement and removal system
EP2635241B1 (en) 2010-11-02 2019-02-20 Endologix, Inc. Apparatus for placement of a graft or graft system
AU2011349578B2 (en) 2010-12-23 2016-06-30 Twelve, Inc. System for mitral valve repair and replacement
US11259824B2 (en) 2011-03-09 2022-03-01 Neuravi Limited Clot retrieval device for removing occlusive clot from a blood vessel
WO2012120490A2 (en) 2011-03-09 2012-09-13 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
JP5872692B2 (en) 2011-06-21 2016-03-01 トゥエルヴ, インコーポレイテッド Artificial therapy device
CA3090422C (en) 2011-10-19 2023-08-01 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9642635B2 (en) 2013-03-13 2017-05-09 Neuravi Limited Clot removal device
WO2014140092A2 (en) 2013-03-14 2014-09-18 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
CN105208950A (en) 2013-03-14 2015-12-30 尼尔拉维有限公司 A clot retrieval device for removing occlusive clot from a blood vessel
US9433429B2 (en) 2013-03-14 2016-09-06 Neuravi Limited Clot retrieval devices
CN108294846A (en) 2013-05-20 2018-07-20 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
US10285720B2 (en) 2014-03-11 2019-05-14 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
EP3154452A1 (en) 2014-06-13 2017-04-19 Neuravi Limited Devices for removal of acute blockages from blood vessels
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
CN107427612A (en) * 2014-10-07 2017-12-01 耶路撒冷希伯来大学伊森姆研究发展有限公司 Degradable medical treatment device on demand
US11253278B2 (en) 2014-11-26 2022-02-22 Neuravi Limited Clot retrieval system for removing occlusive clot from a blood vessel
US10617435B2 (en) 2014-11-26 2020-04-14 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
CN106999196B (en) 2014-11-26 2020-07-28 尼尔拉维有限公司 Thrombus retrieval device for removing obstructive thrombus from blood vessel
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
EP3337428A1 (en) 2015-08-21 2018-06-27 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
EP3448316B1 (en) 2016-04-29 2023-03-29 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors
MX2019001899A (en) 2016-08-17 2019-09-18 Neuravi Ltd A clot retrieval system for removing occlusive clot from a blood vessel.
CA3035706A1 (en) 2016-09-06 2018-03-15 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10842498B2 (en) 2018-09-13 2020-11-24 Neuravi Limited Systems and methods of restoring perfusion to a vessel
US11406416B2 (en) 2018-10-02 2022-08-09 Neuravi Limited Joint assembly for vasculature obstruction capture device
JP2020142074A (en) 2019-03-04 2020-09-10 ニューラヴィ・リミテッド Actuated clot retrieval catheter
EP3791815A1 (en) 2019-09-11 2021-03-17 Neuravi Limited Expandable mouth catheter
US11712231B2 (en) 2019-10-29 2023-08-01 Neuravi Limited Proximal locking assembly design for dual stent mechanical thrombectomy device
US11779364B2 (en) 2019-11-27 2023-10-10 Neuravi Limited Actuated expandable mouth thrombectomy catheter
US11839725B2 (en) 2019-11-27 2023-12-12 Neuravi Limited Clot retrieval device with outer sheath and inner catheter
US11517340B2 (en) 2019-12-03 2022-12-06 Neuravi Limited Stentriever devices for removing an occlusive clot from a vessel and methods thereof
US11633198B2 (en) 2020-03-05 2023-04-25 Neuravi Limited Catheter proximal joint
US11883043B2 (en) 2020-03-31 2024-01-30 DePuy Synthes Products, Inc. Catheter funnel extension
US11759217B2 (en) 2020-04-07 2023-09-19 Neuravi Limited Catheter tubular support
US11871946B2 (en) 2020-04-17 2024-01-16 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11730501B2 (en) 2020-04-17 2023-08-22 Neuravi Limited Floating clot retrieval device for removing clots from a blood vessel
US11717308B2 (en) 2020-04-17 2023-08-08 Neuravi Limited Clot retrieval device for removing heterogeneous clots from a blood vessel
US11737771B2 (en) 2020-06-18 2023-08-29 Neuravi Limited Dual channel thrombectomy device
US11439418B2 (en) 2020-06-23 2022-09-13 Neuravi Limited Clot retrieval device for removing clot from a blood vessel
US11395669B2 (en) 2020-06-23 2022-07-26 Neuravi Limited Clot retrieval device with flexible collapsible frame
US11864781B2 (en) 2020-09-23 2024-01-09 Neuravi Limited Rotating frame thrombectomy device
US11872354B2 (en) 2021-02-24 2024-01-16 Neuravi Limited Flexible catheter shaft frame with seam

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655771A (en) 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
US5007926A (en) 1989-02-24 1991-04-16 The Trustees Of The University Of Pennsylvania Expandable transluminally implantable tubular prosthesis
US5026377A (en) 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
US5061275A (en) 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
WO1992002246A1 (en) 1990-08-02 1992-02-20 Indu Parikh Growth factor compositions, preparation and use
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
EP0707837A1 (en) 1994-10-20 1996-04-24 Cordis Europa N.V. Catheter for stent implantation
US5624449A (en) 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
WO1997048351A1 (en) 1996-06-21 1997-12-24 Medical University Of South Carolina In situ formable and self-forming intravascular flow modifier (ifm), catheter and ifm assembly, and method for deployment of same
US5824052A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet stent having helical articulation and methods of use
US5961547A (en) 1995-06-22 1999-10-05 Ali Razavi Temporary stent
US5964797A (en) 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5984929A (en) 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US6007573A (en) 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US6022369A (en) * 1998-02-13 2000-02-08 Precision Vascular Systems, Inc. Wire device with detachable end
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6059823A (en) 1996-02-13 2000-05-09 Scimed Life Systems, Inc. Endovascular apparatus
US6063101A (en) * 1998-11-20 2000-05-16 Precision Vascular Systems, Inc. Stent apparatus and method
US6090115A (en) 1995-06-07 2000-07-18 Intratherapeutics, Inc. Temporary stent system
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
WO2000049973A2 (en) 1999-02-26 2000-08-31 Vascular Architects, Inc. Coiled stent and catheter assembly
US6299627B1 (en) * 1998-06-18 2001-10-09 Target Therapeutics, Inc. Water-soluble coating for bioactive vasoocclusive devices
US6331184B1 (en) * 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6338736B1 (en) * 1996-05-14 2002-01-15 PFM PRODUKTE FüR DIE MEDIZIN AKTIENGESELLSCHAFT Strengthened implant for bodily ducts
US6361558B1 (en) * 1998-03-31 2002-03-26 Cordis Neurovascular, Inc. Stent aneurysm treatment system and method
US6416540B1 (en) * 2000-11-01 2002-07-09 Sandip V. Mathur Magnetically actuated cleanable stent and method
US6579308B1 (en) * 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires
US6792979B2 (en) * 1999-02-01 2004-09-21 Board Of Regents, The University Of Texas System Methods for creating woven devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2157936C (en) * 1993-03-11 2004-11-02 Gregory Pinchasik Stent
SG75982A1 (en) * 1998-12-03 2000-10-24 Medinol Ltd Controlled detachment stents
US6258117B1 (en) * 1999-04-15 2001-07-10 Mayo Foundation For Medical Education And Research Multi-section stent

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954126A (en) 1982-04-30 1990-09-04 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4954126B1 (en) 1982-04-30 1996-05-28 Ams Med Invent S A Prosthesis comprising an expansible or contractile tubular body
US4655771B1 (en) 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US4655771A (en) 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4776337A (en) 1985-11-07 1988-10-11 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4776337B1 (en) 1985-11-07 2000-12-05 Cordis Corp Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5061275A (en) 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
US4740207A (en) 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
US4800882A (en) 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5007926A (en) 1989-02-24 1991-04-16 The Trustees Of The University Of Pennsylvania Expandable transluminally implantable tubular prosthesis
US5026377A (en) 1989-07-13 1991-06-25 American Medical Systems, Inc. Stent placement instrument and method
US5108416A (en) 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5122136A (en) 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
WO1992002246A1 (en) 1990-08-02 1992-02-20 Indu Parikh Growth factor compositions, preparation and use
US5304195A (en) 1991-12-12 1994-04-19 Target Therapeutics, Inc. Detachable pusher-vasoocclusive coil assembly with interlocking coupling
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5234437A (en) 1991-12-12 1993-08-10 Target Therapeutics, Inc. Detachable pusher-vasoocclusion coil assembly with threaded coupling
US5312415A (en) 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5624449A (en) 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
US5403341A (en) 1994-01-24 1995-04-04 Solar; Ronald J. Parallel flow endovascular stent and deployment apparatus therefore
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
EP0707837A1 (en) 1994-10-20 1996-04-24 Cordis Europa N.V. Catheter for stent implantation
US6090115A (en) 1995-06-07 2000-07-18 Intratherapeutics, Inc. Temporary stent system
US5961547A (en) 1995-06-22 1999-10-05 Ali Razavi Temporary stent
US6059823A (en) 1996-02-13 2000-05-09 Scimed Life Systems, Inc. Endovascular apparatus
US6338736B1 (en) * 1996-05-14 2002-01-15 PFM PRODUKTE FüR DIE MEDIZIN AKTIENGESELLSCHAFT Strengthened implant for bodily ducts
WO1997048351A1 (en) 1996-06-21 1997-12-24 Medical University Of South Carolina In situ formable and self-forming intravascular flow modifier (ifm), catheter and ifm assembly, and method for deployment of same
US6096034A (en) 1996-07-26 2000-08-01 Target Therapeutics, Inc. Aneurysm closure device assembly
US5964797A (en) 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US6007573A (en) 1996-09-18 1999-12-28 Microtherapeutics, Inc. Intracranial stent and method of use
US5824052A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet stent having helical articulation and methods of use
US5984929A (en) 1997-08-29 1999-11-16 Target Therapeutics, Inc. Fast detaching electronically isolated implant
US6022369A (en) * 1998-02-13 2000-02-08 Precision Vascular Systems, Inc. Wire device with detachable end
US6361558B1 (en) * 1998-03-31 2002-03-26 Cordis Neurovascular, Inc. Stent aneurysm treatment system and method
US6299627B1 (en) * 1998-06-18 2001-10-09 Target Therapeutics, Inc. Water-soluble coating for bioactive vasoocclusive devices
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6063101A (en) * 1998-11-20 2000-05-16 Precision Vascular Systems, Inc. Stent apparatus and method
US6792979B2 (en) * 1999-02-01 2004-09-21 Board Of Regents, The University Of Texas System Methods for creating woven devices
WO2000049973A2 (en) 1999-02-26 2000-08-31 Vascular Architects, Inc. Coiled stent and catheter assembly
US6331184B1 (en) * 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6416540B1 (en) * 2000-11-01 2002-07-09 Sandip V. Mathur Magnetically actuated cleanable stent and method
US6579308B1 (en) * 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9554848B2 (en) 1999-04-05 2017-01-31 Medtronic, Inc. Ablation catheters and associated systems and methods
US7942925B2 (en) 2001-07-09 2011-05-17 Surpass Medical Ltd. Implantable intraluminal device and method of using same in treating aneurysms
US8419787B2 (en) 2001-11-23 2013-04-16 Surpass Medical Ltd Implantable intraluminal device and method of using same in treating aneurysms
US8696728B2 (en) 2002-02-28 2014-04-15 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US20070299500A1 (en) * 2002-02-28 2007-12-27 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US8641748B2 (en) 2002-02-28 2014-02-04 Bay Street Medical, Inc. Guidewire loaded stent for delivery through a catheter
US20070299502A1 (en) * 2002-02-28 2007-12-27 Counter Clockwise, Inc. Guidewire loaded stent for delivery through a catheter
US9114038B2 (en) 2002-02-28 2015-08-25 Back Bay Medical Inc. Method of delivering a stent
US9675413B2 (en) 2002-04-08 2017-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US7914576B2 (en) * 2003-05-20 2011-03-29 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US20110153009A1 (en) * 2003-05-20 2011-06-23 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US20070239272A1 (en) * 2003-05-20 2007-10-11 Navia Jose L Apparatus and methods for repair of a cardiac valve
US8480733B2 (en) 2003-05-20 2013-07-09 The Cleveland Clinic Foundation Apparatus and methods for repair of a cardiac valve
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US8999364B2 (en) 2004-06-15 2015-04-07 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060276831A1 (en) * 2005-02-04 2006-12-07 Porter Stephen C Porous materials for use in aneurysms
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US9023094B2 (en) 2007-06-25 2015-05-05 Microvention, Inc. Self-expanding prosthesis
US9144508B2 (en) 2007-07-19 2015-09-29 Back Bay Medical Inc. Radially expandable stent
US8556927B2 (en) 2007-12-14 2013-10-15 DuPuy Synthes Products, LLC Multistrand coil for interventional therapy
US20090299390A1 (en) * 2007-12-14 2009-12-03 Houdin Dehnad Multistrand coil for interventional therapy
US8876876B2 (en) 2008-06-06 2014-11-04 Back Bay Medical Inc. Prosthesis and delivery system
US20090306760A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US20090306761A1 (en) * 2008-06-06 2009-12-10 Bay Street Medical Prosthesis and delivery system
US20100023034A1 (en) * 2008-06-19 2010-01-28 Coherex Medical, Inc. Clot retrieval method and device
US10646359B2 (en) 2008-06-20 2020-05-12 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10893960B2 (en) 2008-06-20 2021-01-19 Razmodics Llc Stent fabrication via tubular casting processes
US9908143B2 (en) 2008-06-20 2018-03-06 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US20140088681A1 (en) * 2010-01-27 2014-03-27 Sriram Iyer Device and method for preventing stenosis at an anastomosis site
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
DE102010021947A1 (en) * 2010-05-28 2011-12-01 Phenox Gmbh implant replacement
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US10076382B2 (en) 2010-10-25 2018-09-18 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US11116572B2 (en) 2010-10-25 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having multi-electrode arrays for renal neuromodulation and associated systems and methods
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9402684B2 (en) 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US9452017B2 (en) 2012-05-11 2016-09-27 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US10512504B2 (en) 2012-05-11 2019-12-24 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US9855096B2 (en) 2012-05-11 2018-01-02 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode catheter assemblies for renal neuromodulation and associated systems and methods
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US10792098B2 (en) 2013-03-15 2020-10-06 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9888961B2 (en) 2013-03-15 2018-02-13 Medtronic Ardian Luxembourg S.A.R.L. Helical push wire electrode
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US11213678B2 (en) 2013-09-09 2022-01-04 Medtronic Ardian Luxembourg S.A.R.L. Method of manufacturing a medical device for neuromodulation
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10736690B2 (en) 2014-04-24 2020-08-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US11464563B2 (en) 2014-04-24 2022-10-11 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters and associated systems and methods
US11931484B2 (en) 2021-01-15 2024-03-19 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof

Also Published As

Publication number Publication date
DE60142075D1 (en) 2010-06-17
WO2002043616A2 (en) 2002-06-06
CA2429992A1 (en) 2002-06-06
WO2002043616A3 (en) 2002-10-10
AU1992202A (en) 2002-06-11
US6579308B1 (en) 2003-06-17
EP1339358A2 (en) 2003-09-03
JP2004534554A (en) 2004-11-18
US20030199965A1 (en) 2003-10-23
EP1339358B1 (en) 2010-05-05
AU2002219922A1 (en) 2002-06-11
WO2002043616A8 (en) 2003-02-20
ATE466552T1 (en) 2010-05-15

Similar Documents

Publication Publication Date Title
US7063719B2 (en) Stent devices with detachable distal or proximal wires
US11564817B2 (en) Procedures for vascular occlusion
US10322018B2 (en) System and method for delivering and deploying an occluding device within a vessel
US8636760B2 (en) System and method for delivering and deploying an occluding device within a vessel
US10064747B2 (en) System and method for delivering and deploying an occluding device within a vessel
US8540763B2 (en) Detachable self-expanding aneurysm cover device
EP2543345B1 (en) Surgical apparatus for aneurysms
EP1351626B1 (en) Detachable self-expanding aneurysm cover device
US6340368B1 (en) Implantable device with radiopaque ends
EP1078610A2 (en) Hydraulic stent deployment system
US20040260380A1 (en) Devices for delivering multiple stenting structures in situ
US20040260381A1 (en) Devices and methods for forming stenting structures in situ
WO2004112653A2 (en) Devices and methods for delivering and forming single and multiple stenting structures in situ
AU2007268143B2 (en) System and method for delivering and deploying an occluding device within a vessel

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: STRYKER NV OPERATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:025969/0841

Effective date: 20110103

Owner name: STRYKER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:025969/0841

Effective date: 20110103

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER MEDTECH LIMITED;REEL/FRAME:037153/0241

Effective date: 20151013

Owner name: STRYKER MEDTECH LIMITED, MALTA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER NV OPERATIONS LIMITED;REEL/FRAME:037153/0034

Effective date: 20151013

AS Assignment

Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED SERIAL NOS. 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0241. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE DATE 9/29/2014;ASSIGNOR:STRYKER MEDTECH LIMITED;REEL/FRAME:038043/0011

Effective date: 20151013

Owner name: STRYKER MEDTECH LIMITED, MALTA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL # 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0034. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER NV OPERATIONS LIMITED;REEL/FRAME:038039/0001

Effective date: 20151013

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553)

Year of fee payment: 12

AS Assignment

Owner name: STRYKER EUROPEAN OPERATIONS HOLDINGS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:STRYKER EUROPEAN HOLDINGS III, LLC;REEL/FRAME:052860/0716

Effective date: 20190226

Owner name: STRYKER EUROPEAN HOLDINGS III, LLC, DELAWARE

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS I, LLC;REEL/FRAME:052861/0001

Effective date: 20200519