US5387410A - Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes - Google Patents

Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes Download PDF

Info

Publication number
US5387410A
US5387410A US07/311,163 US31116389A US5387410A US 5387410 A US5387410 A US 5387410A US 31116389 A US31116389 A US 31116389A US 5387410 A US5387410 A US 5387410A
Authority
US
United States
Prior art keywords
set forth
chelate
nmr
paramagnetic
liposome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/311,163
Inventor
Mark E. Bosworth
Ronald M. Hopkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mallinckrodt Inc
Original Assignee
Mallinckrodt Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mallinckrodt Inc filed Critical Mallinckrodt Inc
Priority to US07/311,163 priority Critical patent/US5387410A/en
Priority to US07/567,850 priority patent/US5078986A/en
Assigned to MALLINCKRODT MEDICAL, INC., A DE CORP. reassignment MALLINCKRODT MEDICAL, INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MALLINCKRODT, INC., A CORP. OF DE
Priority to US08/151,350 priority patent/US5407660A/en
Application granted granted Critical
Publication of US5387410A publication Critical patent/US5387410A/en
Assigned to MALLINCKRODT INC. reassignment MALLINCKRODT INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MALLINCKRODT MEDICAL INC.
Assigned to MALLINCKRODT LLC reassignment MALLINCKRODT LLC CHANGE OF LEGAL ENTITY Assignors: MALLINCKRODT INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • A61K49/1812Suspensions, emulsions, colloids, dispersions liposomes, polymersomes, e.g. immunoliposomes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • This invention relates to nuclear magnetic resonance (NMR) imaging, and more particularly, to methods and compositions for enhancing NMR imaging.
  • the recently developed technique of NMR imaging encompasses the detection of certain atomic nuclei utilizing magnetic fields and radio-frequency radiation. It is similar in some respects to x-ray computed tomography (CT) in providing a cross-sectional display of the body organ anatomy with excellent resolution of soft tissue detail. As currently used, the images produced constitute a map of the distribution density of protons and/or their relaxation times in organs and tissues.
  • CT x-ray computed tomography
  • the technique of NMR imaging is advantageously non-invasive as it avoids the use of ionizing radiation.
  • the nuclei under study in a sample e.g. protons
  • RF radio-frequency
  • the coupling frequency (RF) of the nuclei depends on the applied magnetic field.
  • nuclei with appropriate spin when placed in an applied magnetic field align in the direction of the field.
  • B expressed generally in units of gauss or tesla (10 4 gauss)
  • an RF pulse of radiation will excite the nuclei and can be considered to tip the net magnetization out of the field direction, the extent of this rotation being determined by the pulse duration and energy.
  • the nuclei "relax" or return to equilibrium with the magnetic field, emitting radiation at the resonant frequency.
  • the decay of the signal is characterized by two relaxation times, i.e., T 1 , the spin-lattice relaxation time or longitudinal relaxation time, that is, time taken by the nuclei to return to equilibrium along the direction of the externally applied magnetic field, and T 2 , the spin-spin relaxation time associated with the dephasing of the initially coherent precession of individual proton spins.
  • T 1 the spin-lattice relaxation time or longitudinal relaxation time, that is, time taken by the nuclei to return to equilibrium along the direction of the externally applied magnetic field
  • T 2 the spin-spin relaxation time associated with the dephasing of the initially coherent precession of individual proton spins.
  • NMR imaging scanning planes and slice thickness can be selected. This permits high quality transverse, coronal and sagittal images to be obtained directly. The absence of any moving parts in NMR imaging equipment promotes a high reliability. It is believed that NMR imaging has a greater potential than CT for the selective examination of tissue characteristics in view of the fact that in CT, x-ray attenuation coefficients alone determine image contrast whereas at least four separate variables (T 1 , T 2 , proton density and flow) may contribute to the. NMR signal.
  • NMR may be capable of differentiating different tissue types and in detecting diseases which induce physio-chemical changes that may not be detected by x-ray or CT which are only sensitive to differences in the electron density of tissue. NMR images also enable the physician to detect structures smaller than those detectable by CT and thereby provide comparable or better spatial resolution.
  • T 1 and T 2 are the relaxation times, T 1 and T 2 .
  • these relaxation times are influenced by the proton's environment (e.g., viscosity, temperature).
  • These two relaxation phenomena are essentially mechanisms whereby the initially imparted radiofrequency energy is dissipated to the surrounding environment.
  • the rate of this energy loss or relaxation can be influenced by certain other nuclei which are paramagnetic and chemical compounds incorporating these paramagnetic nuclei may substantially alter the T 1 and T 2 values for nearby protons.
  • the extent of the paramagnetic effect of a given chemical compound is a function of the environment within which it finds itself.
  • the invention is directed to a method for enhancing NMR imaging of body organs and tissues which comprises administering a substantially nontoxic paramagnetic image altering agent to a living animal body in a sufficient amount to provide enhancement of NMR images of said body organs and tissues, the substantially nontoxic paramagnetic image altering agent containing a chelate of a paramagnetic element carried by a liposome.
  • the substantially nontoxic paramagnetic image altering .agent may be a chelate of a paramagnetic element, e.g. manganese, gadolinium, cobalt, chromium, nickel and iron or other elements of the lanthanide series.
  • Paramagnetic elements such as manganese are capable of altering or enhancing NMR images, i.e. they are capable of altering the NMR signal characteristics of body tissues, organs or fluids and thus aid in differentiating normal from diseased tissue. Administered as free ionic salts (e.g. chlorides), they also exhibit some target organ specificity (e.g. liver, heart). However, such paramagnetic compounds undesirably exhibit significant toxicity.
  • Water-soluble chelates of paramagnetic elements are relatively or substantially nontoxic and are therefore useful for enhancing NMR images by favorably altering proton density or relaxation times or rates T 1 and T 2 and thereby affording improved contrast between normal and diseased tissues or organs.
  • any of the conventional or common chelating agents may be used including, for example, ethylene-diaminetetraacetic acid (EDTA) and salts thereof, diethylenetriamine pentaacetic acid (DTPA) and salts thereof, nitrilotriacetic acid (NTA) and salts thereof, trans-1,2-diamino-cyclohexane-N,N,N',N'-tetraacetic acid and salts or hydrates thereof, 1,3-diamino-2-hydroxypropyl-N,N,N',N'-tetraacetic acid and salts or hydrates thereof and ethyleneglycol-bis (beta-aminoethyl ether)-N,N-te
  • various chelates of paramagnetic elements may be employed as a substantially nontoxic paramagnetic image altering agent, such as aqueous solutions containing disodium (ethylenediaminetetraacetato) manganese (II) with calcium disodium ethylenediaminetetraacetate as an additive and aqueous solutions of disodium (diethylenetriaminepentaacetato)gadolinium (III) with or without an additive such as calcium trisodium diethylenetriamine pentaacetate.
  • aqueous solutions containing disodium (ethylenediaminetetraacetato) manganese (II) with calcium disodium ethylenediaminetetraacetate as an additive and aqueous solutions of disodium (diethylenetriaminepentaacetato)gadolinium (III) with or without an additive such as calcium trisodium diethylenetriamine pentaacetate.
  • chelates should be administered at a pH of approximately 6.0-7.5
  • a paramagnetic image altering agent such as a manganese chelate is not only substantially nontoxic but has also been found to accumulate or become generally distributed in body organs and tissues such as the liver, bone and marrow, muscle and kidneys and has the capability for enhancement of NMR images for hepatic and renal imaging.
  • the paramagnetic image altering agent in a form in which the chelate of a paramagnetic element is carried to a desired site by means of a liposome.
  • Such preparations are particularly suitable for enhancement of NMR images of the reticuloendothelial system (RES) since the liposome provides greater liver/spleen specificity by permitting the chelate to be present in such organs in greater concentrations and for longer residence periods than would otherwise be found with the chelate alone.
  • RES reticuloendothelial system
  • the liposome functions as a carrier for delivering the paramagnetic image altering chelate to the desired organs without itself significantly altering the NMR proton signals.
  • a typical preparation of this nature is disodium (ethylenediaminetetraacetaro) manganese (II) contained in solution and within multilamellar liposomes as illustrated in greater detail hereinafter.
  • the chelate is carried by or within or outside the external surface of the liposome in such a manner that after arrival at or delivery to the desired organ or tissue site, the paramagnetic image altering agent is released in a diagnostically useful fashion.
  • Liposomes generally comprise lipid materials including lecithin and sterols and the liposomes employed herein may contain egg phosphatidyl choline, egg phosphatidic acid, cholesterol and alpha-tocopherol in various molar ratios and the lipids may be present at various total concentrations.
  • Useful liposomes may be prepared as generally described in Kimelberg et al., CRC Crit. Rev. Toxicol. 6 25 (1978), Papahadjopoulos, Ann. Reports in Med. Chem., 14 250-260 (1979) and Olson et al., Biochim. Biophys. Acta., 557 9-23 (1979). The preparation of liposomes and their release and stability characterics are also described in Yatvin et al., Medical Physics, Vol. 9, No. 2, 149 (1982).
  • the substantially nontoxic paramagnetic image altering agents are administered to a living animal body or mammalian species in a sufficient amount to provide enhancement of NMR images of body organs and tissues prior to obtaining an NMR scan or scans of such organs and tissues with "slices" being taken at the level of the desired organ at various time periods post-administration.
  • paramagnetic image altering agents or compositions were prepared.
  • a liposome preparation of disodium (ethylenediaminetetraacetato) manganese (II) (EDTA) (composition A in Example 1) for use in NMR imaging was prepared according to the following procedure.
  • the flask was then taken off the vacuum, stoppered, then placed at -15° C. overnight. On the following day, the flask was placed on the laboratory vacuum at room temperature for 1 hour. Then 55 ml of composition A of Example 1 was dispensed into the flask and the flask was stoppered. The flask was then swirled by hand so that the solution was swept across the dried lipid. The lipid gradually became suspended in the solution, and the end point was that at which all the lipid had been visually dispersed from the wall of the flask. This required 45 minutes for this preparation.
  • the liposomes had been formed (Kimelberg et al., "Properties and Biological Effects of Liposomes and their Uses in Pharmacology and Toxicology", CRC Crit. Rev. Toxicol. 6 25 (1978) and Papahadjopoulos, "Liposomes as Drug Carriers", Ann. Reports in Med. Chem., 14 250-260 (1979)).
  • the liposomes were then transferred to a glass beaker and then aspirated into a 25 ml glass syringe with a luer fitting.
  • a 25 mm Swinnex filter housing (Millipore Corp.) was then connected to the syringe.
  • the housing had previously been fitted with a 25 mm 1.0 micron pore size Unipore membrane with a polyester post filter (both from Bio-Rad Corp.).
  • the liposomes were then extruded through the membrane by depressing the syringe plunger. This process was repeated until all 55 ml were extruded.
  • This step was done to narrow the liposome size distribution (Olson et al., "Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes", Blochem. Biophys. Acta., 557 9-23 (1979)). There is no retention of lipid by the membrane and so the liposome lipid concentration remains the same. The sizing effect is presumably done by breaking the larger liposomes down to smaller ones as they pass through the membrane pores. Fifty ml of the liposomes were then placed in a 50 ml glass vial with an 890 gray stopper. The vial was placed in a refrigerated container for use in NMR imaging.
  • composition B in Example 1 A liposome preparation of manganous disodium ethylenediaminetetraacetate (composition B in Example 1) for use in NMR imaging was prepared according to the following procedure.
  • Egg phosphatidylcholine (769 rag), egg phosphatidic acid (172 mg)(Avanti Polar Lipids, Inc.), cholesterol (446.5 mg), and alpha-tocopherol (27.55 mg) were combined in a 250 ml round-bottom flask. Solvent volume at this point was 179 ml. The solvents were then dried, and the lipids deposited on the flask walls, in the same manner as for the Example 2 batch. The dried lipids were placed on the laboratory vacuum as before, and then immediately afterward, 48 ml of composition B of Example 1 were added to the flask, and the lipid was dispersed as described previously in Example 2.
  • the liposomes were then extruded, in the same manner as before, through a 1.0 micron pore size Unipore membrane. Thirty minutes prior to this, several 6-inch lengths of dialysis tubing (Spectrapor, 1 inch width, 10,000 MW, Spectrum Medical Industries, Inc.) were placed in 0.9% NaCl to hydrate.
  • the liposomes were transferred to these bags (5 required) and the bags were clamped off. Approximately 0.5 ml of liposomes were held aside. The bags were placed in a 4 L beaker containing 3.8 L of 0.9% NaCl, pH 6.4. The bags float because of the plastic dialysis bag clamps used. A magnetic stirring bar was placed in the beaker, and the beaker was covered with aluminum foil and placed on a magnetic stirrer (Thermodyne Inc., Type Nuova II) in a 5° C. cold room. The stirrer was turned up to the point at which the bags were gently agitated.
  • Thermodyne Inc., Type Nuova II was turned up to the point at which the bags were gently agitated.
  • the bags were placed in a beaker of fresh, precooled 0.9% NaCl, and the dialysis was continued. After 23.5 hours, the beaker was removed from the cold room, the bags were cut open, and the liposomes were transferred to a previously cooled 50 ml glass vial and stoppered. The vial was placed in a refrigerated container for use in NMR imaging. The purpose of this dialysis step was to remove the non-liposome-entrapped Mn-EDTA from the preparation. The Mn-EDTA concentration in the entrapped aqueous solution remained the same as it was before dialysis, but the external (i.e. non-liposome-entrapped) aqueous solution now consisted of just 0.9% NaCl.
  • Acute intravenous toxicity testing was performed in mice with manganese (II) chloride (MnCl 2 ), composition B of Example 1 (containing 4.6% manganous disodium ethylenediaminetetraacetate with 0.67% calcium disodium ethylenediaminetetraacetate), the composition of Example 2 and a concentrated aqueous suspension of the negatively charged liposomes alone in phosphate-buffered saline, test substances 1 through 4, respectively.
  • the cardiotoxic effects of single bolus intracoronary arterial injections of 4, 8, 16 or 32 mg MnCl 2 were evaluated in the isolated perfused rabbit heart (IPRH).
  • the manganese (II) chloride was dissolved in sterile water for injection, USP (SWFI; Abbott Laboratories) to yield unhydrated salt concentrations of 0.25%, w/v and 0.8% w/v for the mouse and IPRH testing, respectively.
  • the aqueous vehicle for the suspension of negatively charged liposomes consisted of 0.9% NaCl buffered with 0.003M sodium phosphate, pH 7.4. The lipid concentration was 50 ⁇ mol/ml.
  • mice A total of 60 mice, 30 males (body weight range of 20-33.5 g) and 30 females (body weight range of 19.1-29.7 g) were used. Fifty of the mice were Swiss ICR, CD-1, obtained from Charles River and ten were Swiss CF-1 obtained from Sasco (Omaha, Nebr.).
  • test substances were administered via the lateral tail vein of the mouse at a rate of 1 ml/min with the following doses given.
  • mice were observed for immediate reactions and then daily throughout a 7-day observation period, at which time survivors were killed and body weights determined.
  • the method of Litchfield and Wilcoxon J. Pharmacol. Exp. Ther. 96:99-113, 1949 was used to calculate the LD 50 for MnCl 2 (test substance 1).
  • the maximal percentage changes from pre-injection control values for HR and CF were determined during intervals of 0.15 and 15-30 seconds after injection. The percentage changes from control HR and CF were also recorded at 1, 2, 3 and 4 minutes after injection. The ECG was examined for arrhythmias. When ventricular fibrillation (VF) occurred, no calculations were performed with CF and HR data from that injection.
  • VF ventricular fibrillation
  • the LD 50 Mn(II) may be compared to the intravenous does of 0.05 mmol/kg which was used in dogs to enhance NMR images of myocardial infarcts (Brady et al., Radiology 144:343-347, 1982).
  • test substance 2 MnNa 2 EDTA
  • test substance 3 MnNa 2 EDTA/liposome formulation
  • Disodium (ethylenediaminetetraacetato) manganese (II) (test substance 2) had a much lower degree of acute intravenous toxicity than MnCl 2 . There were no deaths at a dose of test substance 2 which was 27 times as great as the LD 50 dose of MnCl 2 when compared on the basis of manganous content.
  • the acute toxicity of disodium (ethylenediaminetetraacetato) manganese (II) did not appear to be changed by partial incorporation (5%, v/v, entrapped) into negatively charged liposomes (test substance 3). A concentrated suspension of liposomes alone failed to elicit any toxic effects following intravenous administration to mice (test substance 4).
  • Test substance 4 a phosphate buffered saline suspension of liposomes with 50 ⁇ mol lipid/ml, was nontoxic in doses up to 50 ml/kg, a dose considered to be the maximal safe dose volume. No adverse reactions were observed and body weight gain was normal. Test substance 4 contained 2.5 times the lipid content of test substance 3 in an attempt to increase the likelihood that liposome-induced toxicity might be manifested.
  • Intravenous MnCl 2 displayed a high degree of acute toxicity in mice with convulsions the primary pharmacotoxic sign and cardiac arrest the probable cause of death.
  • MnCl 2 caused dose-related depression of contractility and heart rate and caused conduction delays and ventricular arrhythmias.
  • the observed cardiac effects are consistent with the effects of calcium deprivation and probably relate to competition between manganous ion and calcium ion for physiological processes requiring calcium ion.
  • Disodium (ethylenediaminetetraacetato) manganese (II) was supplied as a 5.2% w/v solution, at pH 6.8, containing 0.67% excess calcium disodium ethylenediaminetetraacetic acid and 54 MnCl 2 (0.22 mCi/ml, ICN Pharmaceutical, Inc.) was added to the 5.2% w/v MnNa 2 EDTA solution to yield a final 4.6% w/v 54 MnNa 2 EDTA solution with a radioactivity concentration of 12.5 ⁇ Ci/ml; the 54 MnNa 2 EDTA was characterized by paper chromatography employing a 70% methanol/10% ammonium hydroxide (85:10) solvent system. 98.5% of the 54 Mn was recovered in a chromatographic peak corresponding to the Rf of MnNa 2 EDTA.
  • 54 Mn-L was prepared as described in Example 2 using an aliquot of the 4.6% w/v 54 MnNa 2 EDTA solution.
  • the percent liposomal entrapment for the 54 Mn-L solution used in the study was 2.8%, w/v.
  • Rats were divided into 10 groups consisting of 2 male and 2 female rats per group. Five groups of rats received bolus intravenous injections of 2 ml/kg of 4.6% w/v 54 MnNa 2 EDTA (25 Ci/kg) via a lateral tail vein. The remaining five groups received bolus 2 ml/kg intravenous injections of 54 Mn-L (4.6% w/v 54 MnNa 2 EDTA; 2.8%, v/v, liposomal entrapment; 25 Ci/kg). Immediately after dosing, rats were housed in individual metabolism cages. Ground Purina Laboratory Chow and water were supplied ad libitum to animals sacrificed at 24 and 48 hr after treatment.
  • Rats from both 54 NmNa 2 EDTA and 54 Mn-L treatment groups were sacrificed by cervical dislocation at 0.5, 2, 4, 24 and 48 hr after treatment, and the following samples were obtained: injection site, blood, liver, lung, spleen, heart, kidneys, salivary gland (submaxillary), brain, bone with marrow, muscle and fat.
  • Urine samples were obtained from animals sacrificed at all intervals of 2 hr or more after injection and fecal samples were obtained from animals sacrificed at 24 and 48 hr after treatment.
  • the following tissues were assumed to have the indicated percents of body weight: blood (8%), bone and marrow (11%), skeletal muscle (45.5%), and fat (7.1%). The entire organ weights were determined for the remaining tissues.
  • Ct % dose/organ in tissue at time t.
  • Ai Concentration at time 0 of the line described by each first order term.
  • Ki Elimination rate constant for each first-order term.
  • the half-life (t 1/2) for each elimination phase was calculated as 0.693/Ki.
  • the square of the correlation coefficient (r 2 ) for each elimination phase was calculated as an indication of variability.
  • 54 MnNa 2 EDTA distributed primarily to the liver, bone with marrow, muscle and kidneys. Unusually high levels of radioactivity were observed in fat samples obtained from 2 of 4 rats sacrificed at 0.5, 2 and 4 hr after dosing resulting in a large standard error at these points. 54 Mn-L exhibited a similar distribution pattern as 54 MnNa 2 EDTA. However, significantly higher % dose/organ values for 54 Mn-L were observed in the spleen at each time interval, in the liver at 4 and 24 hr after dosing and in the heart at 2 hr after dosing. Additionally, the percent dose accumulated in fat was consistently less for 54 Mn-L compared to 54 MnNa 2 EDTA, although a significant difference in fat radioactivity content was observed only at 48 hr after injection.
  • Hepatic and renal clearances of 54 MnNa 2 EDTA and 54 Mn-L were biphasic consisting of an initial rapid elimination (t 1/2 ⁇ 1 hr) followed by a secondary slow elimination phase (t 1/2>17 hr). Approximately 92% of the hepatic 54 MnNa 2 EDTA and 86% of the hepatic 54 Mn-L was associated with the rapid first phase hepatic elimination. Approximately 81% of the renal 54 MnNa 2 EDTA and 84% of 54 Mn-L was associated with the rapid first phase renal elimination. 54 MnNa 2 EDTA was cleared from the spleen according to a monophasic elimination with a respective half-life of ⁇ 2 hr.
  • 54 MnNa 2 EDTA and 54 Mn-L exhibited similar biphasic excretory profiles. Initially after administration of test substance, radioactivity was rapidly excreted in the urine resulting in >50% of the dose being eliminated within 2 hr after treatment. At later time intervals, no additional urinary excretion of radioactivity was observed. The remaining radioactivity was primarily eliminated via the feces. Within 48 hr after treatment, 31 and 24% of the total doses of 54 MnNa 2 EDTA and 54 Mn-L had been excreted in the feces, respectively. The remaining radioactivity in the rats after 48 hr was primarily localized in the bone and marrow.
  • a negatively charged liposome formulation containing encapsulated 54 MnNa 2 EDTA was prepared.
  • the liposomes consisted of phosphatidylcholine, phosphatidic acid, cholesterol and ⁇ -tocopherol (8/2/9/.5) and were dispersed in Test substance 1 (12.5 ⁇ Ci/ml). Liposomes were dialyzed against normal saline prior to injection in order to remove unencapsulated 54 MnNa 2 EDTA. Greater than 98.5% of the radioactivity was entrapped following dialysis.
  • the liposome entrapment of Test substance 1 was 9.0%, v/v, and the lipid concentration was approximately 50 ⁇ mol/ml.
  • a positively charged liposome formulation containing encapsulated 54 MnNa 2 EDTA was prepared.
  • the liposomes consisted of phosphatidyl choline, stearylamine, cholesterol and ⁇ -tocopherol (8/2/9/.5) and were dispersed in Test substance 1 (12.5 ⁇ Ci/ml). Liposomes were dialyzed against normal saline prior to injection in order to remove unencapsulated 54 MnNa 2 EDTA. Greater than 98.5% of the remaining radioactivity was entrapped following dialysis. The liposome entrapment of Test substance 1 was 12.8%, v/v, and lipid concentration was approximately 50 ⁇ mol/ml.
  • a total of 80 Sprague Dawley rats (40 male, 168-212 g, 40 female, 149-180 g) were used. Drinking water was provided ad libitum. Rats were individually marked with indelible ink numbers at the tail base for identification prior to test substance identification.
  • the rats of each of four treatment groups received single 2 ml/kg intravenous injections of each of the four test substances.
  • Animals were sacrificed at 0.5, 2, 4, 24 and 48 hours after treatment and an extensive number of tissues were sampled for radioactivity determination.
  • urine samples were obtained from rats sacrificed at time intervals >0.5 hour and fecal samples at 24 and 48 hours after treatment.
  • Urine samples collected from rats treated with test substances 1 and 2 sacrificed at 48 hours were analyzed by paper chromatography for the presence of radioactive metabolites.
  • the unencapsulated solutions (test substances 1 and 2) accumulated on a dose-dependent, apparently saturable, basis primarily in liver, small intestine, bone and marrow, muscle and kidney.
  • the liposome entrapped solutions (test substances 3 and 4) accumulated in extremely high concentrations in the liver and spleen indicating uptake by the reticuloendothelial system. In addition, relatively high concentrations of all four formulations tested were observed in glandular organs such as the pancreas and salivary gland.
  • the unencapsulated formulations (test substances 1 and 2) tended to undergo faster tissue elimination than the entrapped formulations (test substances 3 and 4).
  • Test substances 1 and 2 were eliminated from the liver, kidney and spleen via biphasic kinetics indicating heterogeneous cellular compartmentalization of the 54 MnNa 2 EDTA.
  • Test substances 3 and 4 were eliminated from most organs slowly via monophasic kinetics indicating homogenous cellular distribution.
  • the negatively charged liposome formulation (test substance 3) was more rapidly cleared from the liver and radioactivity accumulated faster in the small intestine compared to test substance 4.
  • Test substances 1 and 2 were excreted primarily via the urine with urinary excretion complete within 2 hours after treatment. Paper chromatography of urine collected from rats treated with test substances 1 and 2 suggested that 54 MnNa 2 EDTA was excreted in the urine in unchanged form. At later times, test substances 1 and 2 were eliminated via the feces. Test substances 3 and 4 were excreted primarily via the feces and underwent very little urinary excretion (5%). The biological retention time of test substances 3 and 4 was prolonged compared to test substances 1 and 2.
  • test substances 3 and 4 were readily taken up by the reticuloendothelial system, were cleared from most organs at a slower rate than test substances 1 and 2 and were excreted primarily via the feces and undergo very limited urinary excretion whereas test substances 1 and 2 are excreted primarily via the urine.
  • composition C of Example 1 The acute intravenous toxicity of disodium (diethylenetriaminepentaacetato)gadolinium (III) (composition C of Example 1) was studied.
  • Example 4 The protocol of Example 4 was used. Groups of 2-4 mice, with sexes equally represented, received single intravenous doses of the test substance according to the following schedule:
  • the test substance (GdNa 2 DTPA) exhibited a relatively safe mouse acute intravenous toxicity profile as evidenced by the fact that no deaths were observed following intravenous administration of GdNa 2 DTPA at doses up to 12.0 g/kg (20.6 mmol Gd/kg).
  • the relatively low toxicity of GdNa 2 DTPA suggests a high degree of chelate stability.
  • Example 2 The preparation of Example 2 with manganous disodium ethylenediaminetetraacetate contained in solution within and outside multilamellar liposomes was administered to an anesthetized dog.
  • the total dose was 25 ml of the preparation, 12 ml of which was administered by bolus injection and the remaining 13 ml by infusion over a 3-5 minute period.
  • the dog was positioned on his back in a General Electric NMR clinical scanner. The desired level for transverse scanning was determined prior to the administration of the NMR enhancing preparation.
  • a first experiment involved a "slice" taken at the level of the kidneys in the dog.
  • the first scan was obtained prior to administration of the preparation.
  • Three additional scans were obtained at times corresponding to a) during the infusion, b) 35 minutes post-administration, and c) 75 minutes post-administration. In all three of these latter scans, good contrast was seen, with the extent of contrast dropping as the time increased. Not only were the kidneys visualized but surrounding fatty tissue and tissue from other areas were more readily contrasted.
  • the experiment showed that the paramagnetic chelate preparation altered proton signals.
  • Rabbits were anesthetized and surgically prepared for recording of arterial blood pressure. The EKG was recorded with surface electrodes. A preparation of composition D of Example 1 was administered intravenously, at doses of 0.1, 0.3 and 1.0 ml/kg (0.017, 0.034 and 0.17 mmol Gd(III)/kg), to groups of five rabbits at each dose level. Proton T 1 and T 2 values were determined on blood samples drawn before administration of the contrast agent and at time intervals of 5, 10 and 15 minutes after dosing, using a 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. Fifteen minutes after contrast injection, the rabbits were sacrificed and various tissues were removed for T 1 and T 2 determinations in the NMR spectrometer.
  • T 1 values for normal and infarcted myocardial tissue were obtained using the 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz.
  • T 1 values for myocardial tissue which had been normally perfused were reduced to 180 msec as compared to average myocardial T 1 values of 330 for untreated dogs. Infarcted regions of heart muscle had T 1 values of 290.
  • the blood samples and sections of the imaged hearts from the dogs receiving 2 ml/kg (0.34 mmol Gd(III)/kg) of the GdNa 2 DTPA solution were assayed for proton T 1 values in the 0.12 T NMR spectrometer at a probe frequency of 5.1 mHz.
  • Blood T 1 values dropped from an average of 510 msec before contrast administration to 50 and 100 msec at 5 minutes and 10 minutes after dosing.
  • the normally perfused myocardium had an average T 1 values of 135 msec, as compared to untreated dog T 1 of 330, while infarcted tissue T 1 's averaged 230.
  • Marmosets (5) were anesthetized and surgically prepared for recording of arterial blood pressure.
  • the EKG was recorded with surface electrodes.
  • a preparation of composition E of Example 1 was administered intravenously at a dose of 0.3 ml/kg (0.118 mmol Mn(II)/kg).
  • Proton T 1 and T 2 values were determined on blood samples drawn before administration of the contrast agent and at time intervals of 5, 10 and 15 minutes after dosing, using a 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. Fifteen minutes after contrast injection, the monkeys were sacrificed and various tissues were removed for T 1 and T 2 determinations in the NMR spectrometer.
  • a rabbit received 10 ml/kg (approximately 0.1 mmol Mn(II)/kg) of a preparation with disodium (ethylenediaminetetraacetato) manganese (II) contained in solution within multilamellar liposomes (MnNa 2 EDTA liposomes, test substance 3 of example 6).
  • the rabbit was then anesthetized, placed in the General Electric NMR scanner and images of the abdominal area, including liver and spleen, were obtained over a period of 2-5 hours after dosing. Liver and spleen images were altered as compared to similar scans in untreated rabbits, while no effect was observed in intestine, kidney and skeletal muscle. The peak alterations of liver and spleen proton signals were observed at the beginning of the imaging period (two hours after dosing with the liposomal formulation).
  • test substances 3 and 4 of example 6 were tested as follows: 0.5 ml each of liposomes and fresh dog plasma were mixed, then placed at 37° C. for 30 minutes. The mixture was then cooled and an aliquot was then run on a Sephadex G-50 column to separate the unentrapped (released) material from the liposome entrapped material. In both cases approximately 10-15% leakage had occurred, indicating that the liposomes were stable enough to use for in vivo imaging.

Abstract

Nuclear magnetic resonance (NMR) imaging of body organs and tissues is enhanced by administering to a living animal body a substantially nontoxic paramagnetic image altering agent comprised of a composition containing a chelate of a paramagnetic element, such as manganese, gadolinium or iron, carried by a liposome. The chelate is carried by or within the external surface of the liposome in such a manner that after arrival at or delivery to the desired organ or tissue site, the paramagnetic image altering agent is released in a diagnostically useful fashion.

Description

This is a continuation, of application Ser. No. 114,159, filed Oct. 27, 1987, which is a continuation of application Ser. No. 832,356, filed Feb. 24, 1986, which is a division of application Ser. No. 476,565, filed Mar. 18, 1983, all now abandoned.
BACKGROUND OF THE INVENTION
This invention relates to nuclear magnetic resonance (NMR) imaging, and more particularly, to methods and compositions for enhancing NMR imaging.
The recently developed technique of NMR imaging encompasses the detection of certain atomic nuclei utilizing magnetic fields and radio-frequency radiation. It is similar in some respects to x-ray computed tomography (CT) in providing a cross-sectional display of the body organ anatomy with excellent resolution of soft tissue detail. As currently used, the images produced constitute a map of the distribution density of protons and/or their relaxation times in organs and tissues. The technique of NMR imaging is advantageously non-invasive as it avoids the use of ionizing radiation.
While the phenomenon of NMR was discovered in 1945, it is only relatively recently that it has found application as a means of mapping the internal structure of the body as a result of the original suggestion of Lauterbur (Nature, 242, 190-191, 1973). The fundamental lack of any known hazard associated with the level of the magnetic and radio-frequency fields that are employed renders it possible to make repeated scans on vulnerable individuals. Additionally, any scan plane can readily be selected including transverse, coronal and sagittal sections.
In an NMR experiment, the nuclei under study in a sample (e.g. protons) are irradiated with the appropriate radio-frequency (RF) energy in a highly uniform magnetic field. These nuclei as they relax subsequently emit RF at a sharp resonant frequency. The coupling frequency (RF) of the nuclei depends on the applied magnetic field.
According to known principles, nuclei with appropriate spin when placed in an applied magnetic field (B, expressed generally in units of gauss or tesla (104 gauss)) align in the direction of the field. In the case of protons, these nuclei precess at a frequency f=42.6 B MHz at a field strength of 1 Tesla. At this frequency, an RF pulse of radiation will excite the nuclei and can be considered to tip the net magnetization out of the field direction, the extent of this rotation being determined by the pulse duration and energy. After the RF pulse, the nuclei "relax" or return to equilibrium with the magnetic field, emitting radiation at the resonant frequency. The decay of the signal is characterized by two relaxation times, i.e., T1, the spin-lattice relaxation time or longitudinal relaxation time, that is, time taken by the nuclei to return to equilibrium along the direction of the externally applied magnetic field, and T2, the spin-spin relaxation time associated with the dephasing of the initially coherent precession of individual proton spins. These relaxation times have been established for various fluids, organs and tissues in different species of mammals.
In NMR imaging, scanning planes and slice thickness can be selected. This permits high quality transverse, coronal and sagittal images to be obtained directly. The absence of any moving parts in NMR imaging equipment promotes a high reliability. It is believed that NMR imaging has a greater potential than CT for the selective examination of tissue characteristics in view of the fact that in CT, x-ray attenuation coefficients alone determine image contrast whereas at least four separate variables (T1, T2, proton density and flow) may contribute to the. NMR signal. For example, it has been shown (Damadian, Science, 171, 1151, 1971) that the values of the T1 and T2 relaxation in tissues are generally longer by about a factor of 2 in excised specimens of neo-plastic tissue compared with the host tissue.
By reason of its sensitivity to subtle physiochemical differences between organs and/or tissues, it is believed that NMR may be capable of differentiating different tissue types and in detecting diseases which induce physio-chemical changes that may not be detected by x-ray or CT which are only sensitive to differences in the electron density of tissue. NMR images also enable the physician to detect structures smaller than those detectable by CT and thereby provide comparable or better spatial resolution.
As noted above, two of the principal imaging parameters are the relaxation times, T1 and T2. For protons (or other appropriate nuclei), these relaxation times are influenced by the proton's environment (e.g., viscosity, temperature).
These two relaxation phenomena are essentially mechanisms whereby the initially imparted radiofrequency energy is dissipated to the surrounding environment. The rate of this energy loss or relaxation can be influenced by certain other nuclei which are paramagnetic and chemical compounds incorporating these paramagnetic nuclei may substantially alter the T1 and T2 values for nearby protons. The extent of the paramagnetic effect of a given chemical compound is a function of the environment within which it finds itself.
As the use of NMR imaging grows in acceptance, there will be a corresponding increase in the need for enhancing NMR images and for favorably influencing T1 and T2 relaxation times through the use of agents which enhance NMR images.
SUMMARY OF THE INVENTION
Among the several objects of the invention may be noted the provision of methods for enhancing NMR imaging of body organs and tissues; the provision of such methods which utilize substantially nontoxic paramagnetic image altering agents which alter proton signals in their immediate vicinity; and the provision of methods of this type which advantageously shorten the scanning time for NMR imaging; and compositions for use in NMR imaging which provide improved organ specificity. Other objects and features will be in part apparent and in part pointed out hereinafter.
Briefly, the invention is directed to a method for enhancing NMR imaging of body organs and tissues which comprises administering a substantially nontoxic paramagnetic image altering agent to a living animal body in a sufficient amount to provide enhancement of NMR images of said body organs and tissues, the substantially nontoxic paramagnetic image altering agent containing a chelate of a paramagnetic element carried by a liposome.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the present invention, it has now been found that NMR images of body organs and tissues may be usefully enhanced through the administration to a living animal body of a substantially nontoxic paramagnetic image altering agent prior to carrying out NMR imaging. The substantially nontoxic paramagnetic image altering .agent may be a chelate of a paramagnetic element, e.g. manganese, gadolinium, cobalt, chromium, nickel and iron or other elements of the lanthanide series.
Paramagnetic elements such as manganese are capable of altering or enhancing NMR images, i.e. they are capable of altering the NMR signal characteristics of body tissues, organs or fluids and thus aid in differentiating normal from diseased tissue. Administered as free ionic salts (e.g. chlorides), they also exhibit some target organ specificity (e.g. liver, heart). However, such paramagnetic compounds undesirably exhibit significant toxicity.
Water-soluble chelates of paramagnetic elements are relatively or substantially nontoxic and are therefore useful for enhancing NMR images by favorably altering proton density or relaxation times or rates T1 and T2 and thereby affording improved contrast between normal and diseased tissues or organs. For this purpose, any of the conventional or common chelating agents may be used including, for example, ethylene-diaminetetraacetic acid (EDTA) and salts thereof, diethylenetriamine pentaacetic acid (DTPA) and salts thereof, nitrilotriacetic acid (NTA) and salts thereof, trans-1,2-diamino-cyclohexane-N,N,N',N'-tetraacetic acid and salts or hydrates thereof, 1,3-diamino-2-hydroxypropyl-N,N,N',N'-tetraacetic acid and salts or hydrates thereof and ethyleneglycol-bis (beta-aminoethyl ether)-N,N-tetraacetic acid. Thus, in the practice of the invention, various chelates of paramagnetic elements may be employed as a substantially nontoxic paramagnetic image altering agent, such as aqueous solutions containing disodium (ethylenediaminetetraacetato) manganese (II) with calcium disodium ethylenediaminetetraacetate as an additive and aqueous solutions of disodium (diethylenetriaminepentaacetato)gadolinium (III) with or without an additive such as calcium trisodium diethylenetriamine pentaacetate. These chelates should be administered at a pH of approximately 6.0-7.5.
As shown by the biodistribution studies set forth in detail hereinafter, a paramagnetic image altering agent such as a manganese chelate is not only substantially nontoxic but has also been found to accumulate or become generally distributed in body organs and tissues such as the liver, bone and marrow, muscle and kidneys and has the capability for enhancement of NMR images for hepatic and renal imaging.
Further, in order to improve the organ target specificity of such chelates while retaining the advantageous low toxicity thereof, it has been found desirable in accordance with the present invention to administer the paramagnetic image altering agent in a form in which the chelate of a paramagnetic element is carried to a desired site by means of a liposome. Such preparations are particularly suitable for enhancement of NMR images of the reticuloendothelial system (RES) since the liposome provides greater liver/spleen specificity by permitting the chelate to be present in such organs in greater concentrations and for longer residence periods than would otherwise be found with the chelate alone. The liposome functions as a carrier for delivering the paramagnetic image altering chelate to the desired organs without itself significantly altering the NMR proton signals. A typical preparation of this nature is disodium (ethylenediaminetetraacetaro) manganese (II) contained in solution and within multilamellar liposomes as illustrated in greater detail hereinafter. The chelate is carried by or within or outside the external surface of the liposome in such a manner that after arrival at or delivery to the desired organ or tissue site, the paramagnetic image altering agent is released in a diagnostically useful fashion.
Liposomes generally comprise lipid materials including lecithin and sterols and the liposomes employed herein may contain egg phosphatidyl choline, egg phosphatidic acid, cholesterol and alpha-tocopherol in various molar ratios and the lipids may be present at various total concentrations. Useful liposomes may be prepared as generally described in Kimelberg et al., CRC Crit. Rev. Toxicol. 6 25 (1978), Papahadjopoulos, Ann. Reports in Med. Chem., 14 250-260 (1979) and Olson et al., Biochim. Biophys. Acta., 557 9-23 (1979). The preparation of liposomes and their release and stability characterics are also described in Yatvin et al., Medical Physics, Vol. 9, No. 2, 149 (1982).
The substantially nontoxic paramagnetic image altering agents are administered to a living animal body or mammalian species in a sufficient amount to provide enhancement of NMR images of body organs and tissues prior to obtaining an NMR scan or scans of such organs and tissues with "slices" being taken at the level of the desired organ at various time periods post-administration.
The following examples illustrate the practice of the invention.
Example 1
The following paramagnetic image altering agents or compositions were prepared.
(A) An aqueous solution containing 4.6% disodium (ethylenediaminetetraacetato) manganese (II) with 1% calcium disodium ethylenediaminetetraacetate, pH 6.9.
(B) An aqueous solution containing 4.6% disodium (ethylenediaminetetraacetato) manganese (II) with 0.67% calcium disodium ethylenediaminetetraacetate, pH 6.9.
(C) Aqueous 10% and 20%, w/v, solutions of disodium (diethylenetriaminepentaacetato)gadolinium (III), pH 6.8.
(D) Aqueous (10.14%, w/v) solution of disodium (diethylenetriaminepentaacetato)gadolinium (III) with 1.30% calcium trisodium diethylenetriamine pentaacetate.
(E) Aqueous solution (5.66%, w/v) of disodium (trans -1,2-diaminocyclohexane-N,N,N',N'-tetraacetate) manganese dihydrate.
Example 2
A liposome preparation of disodium (ethylenediaminetetraacetato) manganese (II) (EDTA) (composition A in Example 1) for use in NMR imaging was prepared according to the following procedure.
Egg phosphatidyl choline (396 rag) (PC) (type V-E, Sigma Chemical Co.), dipalmitoyl phosphatidic acid (85.6 mg) (PA) (Sigma), cholesterol (153.4 mg) (CH) (Sigma), and alphatocopherol (14.14 mg) (a-T) (Sigma) were combined in a 150 ml glass round-bottom flask. This was done by dispensing appropriate volumes of stock solutions of these compounds (chloroform-methanol solutions stored at -15° C.). Total solvent volume in the flask was 75.8 ml at this point. An additional 50 ml chloroform was added, and then the flask was placed on a rotary evaporating unit (Buchi, Type KRvr) utilizing dry ice-acetone in the condenser. A water bath (approx. 45° C.) was placed under the flask, in contact with the lower third of the flask. The solvents were then dried off as the evaporator vacuum was raised gradually. The lipids were dried to a thin, even film covering approximately one half of the flask area. This process required approximately 15 minutes. The flask was then removed from the evaporator and connected directly to the laboratory vacuum. The purpose of this step was to ensure removal of residual organic solvents. This vacuum step was done for approximately 1 hour at room temperature. For this preparation, the flask was then taken off the vacuum, stoppered, then placed at -15° C. overnight. On the following day, the flask was placed on the laboratory vacuum at room temperature for 1 hour. Then 55 ml of composition A of Example 1 was dispensed into the flask and the flask was stoppered. The flask was then swirled by hand so that the solution was swept across the dried lipid. The lipid gradually became suspended in the solution, and the end point was that at which all the lipid had been visually dispersed from the wall of the flask. This required 45 minutes for this preparation. At this point, the liposomes had been formed (Kimelberg et al., "Properties and Biological Effects of Liposomes and their Uses in Pharmacology and Toxicology", CRC Crit. Rev. Toxicol. 6 25 (1978) and Papahadjopoulos, "Liposomes as Drug Carriers", Ann. Reports in Med. Chem., 14 250-260 (1979)). For this preparation, the liposome lipid composition was egg PC/PA/CH/a-T=8/2/6/.5, expressed on a molar ratio basis, and the total lipid concentration was 20 micromoles/ml. The liposomes were then transferred to a glass beaker and then aspirated into a 25 ml glass syringe with a luer fitting. A 25 mm Swinnex filter housing (Millipore Corp.) was then connected to the syringe. The housing had previously been fitted with a 25 mm 1.0 micron pore size Unipore membrane with a polyester post filter (both from Bio-Rad Corp.). The liposomes were then extruded through the membrane by depressing the syringe plunger. This process was repeated until all 55 ml were extruded. This step was done to narrow the liposome size distribution (Olson et al., "Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes", Blochem. Biophys. Acta., 557 9-23 (1979)). There is no retention of lipid by the membrane and so the liposome lipid concentration remains the same. The sizing effect is presumably done by breaking the larger liposomes down to smaller ones as they pass through the membrane pores. Fifty ml of the liposomes were then placed in a 50 ml glass vial with an 890 gray stopper. The vial was placed in a refrigerated container for use in NMR imaging.
Example 3
A liposome preparation of manganous disodium ethylenediaminetetraacetate (composition B in Example 1) for use in NMR imaging was prepared according to the following procedure.
Egg phosphatidylcholine (769 rag), egg phosphatidic acid (172 mg)(Avanti Polar Lipids, Inc.), cholesterol (446.5 mg), and alpha-tocopherol (27.55 mg) were combined in a 250 ml round-bottom flask. Solvent volume at this point was 179 ml. The solvents were then dried, and the lipids deposited on the flask walls, in the same manner as for the Example 2 batch. The dried lipids were placed on the laboratory vacuum as before, and then immediately afterward, 48 ml of composition B of Example 1 were added to the flask, and the lipid was dispersed as described previously in Example 2. The dispersal process required 1.5 hours to complete, and 10-15 small glass beads (2 mm diameter) were used during the last 5 minutes to help disperse the lipid. For this preparation, the liposome lipid composition was egg PC/egg PA/CH/a-T=8/2/9/.5, and the lipid concentration was 50 micromoles/ml. The liposomes were then extruded, in the same manner as before, through a 1.0 micron pore size Unipore membrane. Thirty minutes prior to this, several 6-inch lengths of dialysis tubing (Spectrapor, 1 inch width, 10,000 MW, Spectrum Medical Industries, Inc.) were placed in 0.9% NaCl to hydrate. After extrusion, the liposomes were transferred to these bags (5 required) and the bags were clamped off. Approximately 0.5 ml of liposomes were held aside. The bags were placed in a 4 L beaker containing 3.8 L of 0.9% NaCl, pH 6.4. The bags float because of the plastic dialysis bag clamps used. A magnetic stirring bar was placed in the beaker, and the beaker was covered with aluminum foil and placed on a magnetic stirrer (Thermodyne Inc., Type Nuova II) in a 5° C. cold room. The stirrer was turned up to the point at which the bags were gently agitated. After 18 hours, the bags were placed in a beaker of fresh, precooled 0.9% NaCl, and the dialysis was continued. After 23.5 hours, the beaker was removed from the cold room, the bags were cut open, and the liposomes were transferred to a previously cooled 50 ml glass vial and stoppered. The vial was placed in a refrigerated container for use in NMR imaging. The purpose of this dialysis step was to remove the non-liposome-entrapped Mn-EDTA from the preparation. The Mn-EDTA concentration in the entrapped aqueous solution remained the same as it was before dialysis, but the external (i.e. non-liposome-entrapped) aqueous solution now consisted of just 0.9% NaCl.
Example 4
Acute intravenous toxicity testing was performed in mice with manganese (II) chloride (MnCl2), composition B of Example 1 (containing 4.6% manganous disodium ethylenediaminetetraacetate with 0.67% calcium disodium ethylenediaminetetraacetate), the composition of Example 2 and a concentrated aqueous suspension of the negatively charged liposomes alone in phosphate-buffered saline, test substances 1 through 4, respectively. In addition, the cardiotoxic effects of single bolus intracoronary arterial injections of 4, 8, 16 or 32 mg MnCl2 were evaluated in the isolated perfused rabbit heart (IPRH).
The manganese (II) chloride was dissolved in sterile water for injection, USP (SWFI; Abbott Laboratories) to yield unhydrated salt concentrations of 0.25%, w/v and 0.8% w/v for the mouse and IPRH testing, respectively. The aqueous vehicle for the suspension of negatively charged liposomes consisted of 0.9% NaCl buffered with 0.003M sodium phosphate, pH 7.4. The lipid concentration was 50 μmol/ml.
A total of 60 mice, 30 males (body weight range of 20-33.5 g) and 30 females (body weight range of 19.1-29.7 g) were used. Fifty of the mice were Swiss ICR, CD-1, obtained from Charles River and ten were Swiss CF-1 obtained from Sasco (Omaha, Nebr.).
A total of 8 female, New Zealand albino rabbits, with body weights ranging from 1.97-2.96 kg were used in the study. Data from only six rabbit heart experiments are presented because the first two were used as preliminary range-finding experiments.
Acute Intravenous Toxicity in Mice
The four test substances were administered via the lateral tail vein of the mouse at a rate of 1 ml/min with the following doses given.
______________________________________                                    
        Concentration               Number                                
        of Test     Dose     Dose   of Mice                               
Test    Substance   Level    Volume Injected                              
Substance                                                                 
        (% w/v)     (mg/kg)  (ml/kg)                                      
                                    Male Female                           
______________________________________                                    
1       0.25         25      10     5    5                                
        0.3125       31.25   12.5   5    5                                
        0.375        37.5    15     5    5                                
2       4.6          460     10     1    1                                
                     920     20     1    1                                
                    1840     40     3    3                                
                    2300     50     2    2                                
3       4.6.        2300     50     2    2                                
        (20 μmol                                                       
        lipid/ml)                                                         
4       50 μmol   625*    12.5   2    2                                
        lipid/ml    1250*    25     2    2                                
                    2500*    50     2    2                                
______________________________________                                    
 *μmol lipid/kg                                                        
Following injections, mice were observed for immediate reactions and then daily throughout a 7-day observation period, at which time survivors were killed and body weights determined. The method of Litchfield and Wilcoxon (J. Pharmacol. Exp. Ther. 96:99-113, 1949) was used to calculate the LD50 for MnCl2 (test substance 1).
Intracoronary Cardiotoxicity in the Isolated Perfused Rabbit Heart (IPRH)
Rabbits were sacrificed by cervical dislocation, the hearts excised and coronary perfusion was performed at constant pressure via the aortic root using an oxygenated physiological salt solution (Chenoweth's solution) heated to 37° C. A 0.8%, w/v, solution of MnCl2 was heated to 37° C. and intracoronary bolus injections of 0.5, 1.0, 2.0 and 4.0 ml were made in each of the six hearts via a sidearm of the perfusion apparatus. A period of time sufficient to allow the heart to stabilize was allowed between injections. The heart rate (HR), contractile force (CF) and electrocardiogram (ECG) were recorded on a Grass Model 7 polygraph. The maximal percentage changes from pre-injection control values for HR and CF were determined during intervals of 0.15 and 15-30 seconds after injection. The percentage changes from control HR and CF were also recorded at 1, 2, 3 and 4 minutes after injection. The ECG was examined for arrhythmias. When ventricular fibrillation (VF) occurred, no calculations were performed with CF and HR data from that injection.
RESULTS Acute Intravenous Toxicity in the Mouse
Lethality and body weight data are summarized in the following table:
______________________________________                                    
              Cumulative 7-Day                                            
                           Average Change                                 
Test  Dose    Mortalities/ in Body Wt. (g)                                
Sub   (mg/    Number Dosed of Survivors                                   
                                      LD.sub.50                           
stance                                                                    
      kg)     Male    Female Male  Female (mg/kg)                         
______________________________________                                    
1      25     3/5     1/5    1.2   2.7    28.0                            
       31.25  2/5     4/5    4.6   3.5                                    
       37.5   4/5     4/5    3.4   3.6                                    
2      460    0/1     0/1    0.1   0.7    >2300                           
       920    0/1     0/1    2.8   3.6                                    
      1840    0/3     0/3    3.0   1.7                                    
      2300    0/2     0/2    0.8   0.1                                    
3     2300    0/2     0/2    0.4   0.4    >2300                           
4      625*   0/2     0/2    5.0   4.0    >2500*                          
      1250*   0/2     0/2    5.1   4.7                                    
      2500*   0/2     0/2    5.5   3.7                                    
______________________________________                                    
 *μmol lipid/kg                                                        
Transient convulsions, of moderate severity, were noted in each animal receiving MnCl2. With the exception of one, all deaths were observed within one minute after dosing was completed. The apparent cause of death was cardiac arrest as ascertained by thoracotomy of one mouse just after cessation of respiration. The one delayed death was 4 days after dosing but that animal had shown no prior signs of toxicity other than the convulsions observed immediately after dosing. The MnCl2 LD50 of 28 mg/kg corresponds to 0.22 mmol/kg of Mn(II). The LD50 Mn(II) may be compared to the intravenous does of 0.05 mmol/kg which was used in dogs to enhance NMR images of myocardial infarcts (Brady et al., Radiology 144:343-347, 1982).
Neither test substance 2 (MnNa2 EDTA) nor test substance 3 (MnNa2 EDTA/liposome formulation) caused death at doses up to 2300 mg/kg of MnNa2 EDTA. Larger doses were not given because dose volumes would have been excessive. However, the 2300 mg/kg dose of MnNa2 EDTA did appear to impair weight gain as evidenced by data for both test substances 2 and 3. There were also slight increases or decreases in motor activity in a majority of mice receiving test substances 2 and 3 at all dose levels. The 2300 mg/kg dose, which is obviously considerably lower than the LD50, corresponds to 6.03 mmol/kg of Mn(II).
Disodium (ethylenediaminetetraacetato) manganese (II) (test substance 2) had a much lower degree of acute intravenous toxicity than MnCl2. There were no deaths at a dose of test substance 2 which was 27 times as great as the LD50 dose of MnCl2 when compared on the basis of manganous content. The acute toxicity of disodium (ethylenediaminetetraacetato) manganese (II) did not appear to be changed by partial incorporation (5%, v/v, entrapped) into negatively charged liposomes (test substance 3). A concentrated suspension of liposomes alone failed to elicit any toxic effects following intravenous administration to mice (test substance 4).
Test substance 4, a phosphate buffered saline suspension of liposomes with 50 μmol lipid/ml, was nontoxic in doses up to 50 ml/kg, a dose considered to be the maximal safe dose volume. No adverse reactions were observed and body weight gain was normal. Test substance 4 contained 2.5 times the lipid content of test substance 3 in an attempt to increase the likelihood that liposome-induced toxicity might be manifested.
__________________________________________________________________________
Coronary Cardiotoxicity of MnCl.sub.2 (test substance 1) in the IPRH      
The results are summarized as follows:                                    
                                 Incidence of                             
     Means % Change in                                                    
                   Mean % Change in                                       
                                 Ventricular                              
Dose of                                                                   
     Contractile Force (CF)                                               
                   Heart Rate (HR) at                                     
                                 Fibril-                                  
MnCl.sub.2                                                                
     at Times after Dosing                                                
                   Times after Dosing                                     
                                 lation                                   
(mg) 0-15S                                                                
         15-30S                                                           
             1M 2M 0-15S                                                  
                       15-30S                                             
                           1M 2M (VF)                                     
__________________________________________________________________________
 4    -5 -28 -12                                                          
                +5 -2   -2  -4                                            
                               -2                                         
                                 0/6                                      
 8   -74 -38 -17                                                          
                +2 -8   -7  -7                                            
                               -6                                         
                                 0/6                                      
16   -92 -61 -37                                                          
                -1 -31 -14 -14                                            
                              -11                                         
                                 2/6                                      
32   -100*                                                                
         -64 -33                                                          
                +2 -100*                                                  
                       -17 -17                                            
                              -14                                         
                                 5/6                                      
__________________________________________________________________________
 *Represents value from only 1 heart, all others had VF. This heart       
 demonstrated complete atrioventricular (AV) block with ventricular       
 standstill.                                                              
Dose-related decreases in CF and HR were observed. Those effects were maximal within the period of 0-15 seconds after injection and the parameters either returned to control levels or stabilized at a new baseline within two minutes after injection.
A dose-related incidence of arrhythmias was also observed. The VF reported in the above table did revert spontaneously to normal sinus rhythm in each instance but one (a 32 mg dose). However, VF would not be expected to revert spontaneously under clinical conditions. The single heart at the 32 mg dose of MnCl2 which failed to fibrillate did have a period of complete A-V conduction block with ventricular standstill. At the 16 mg dose, two of the four hearts which did not fibrillate had premature ventricular contractions during or immediately after injection. No arrhythmias were observed at the lower two doses.
In addition to the arrhythmias described above, examination of ECG tracings revealed dose-related increases in PR and QRS intervals indicative of conduction delays.
Intravenous MnCl2 displayed a high degree of acute toxicity in mice with convulsions the primary pharmacotoxic sign and cardiac arrest the probable cause of death.
In the isolated perfused rabbit heart, MnCl2 caused dose-related depression of contractility and heart rate and caused conduction delays and ventricular arrhythmias. The observed cardiac effects are consistent with the effects of calcium deprivation and probably relate to competition between manganous ion and calcium ion for physiological processes requiring calcium ion.
Example 5
A study was carried out to compare the biodistribution of disodium (ethylenediaminetetraacetato) manganese (II) (54 MnNa2 EDTA) and a partially liposome-entrapped manganous disodium (ethyelendiaminetetraacetato) manganese (II) formulation (54 Mn-L).
Disodium (ethylenediaminetetraacetato) manganese (II) was supplied as a 5.2% w/v solution, at pH 6.8, containing 0.67% excess calcium disodium ethylenediaminetetraacetic acid and 54 MnCl2 (0.22 mCi/ml, ICN Pharmaceutical, Inc.) was added to the 5.2% w/v MnNa2 EDTA solution to yield a final 4.6% w/v 54 MnNa2 EDTA solution with a radioactivity concentration of 12.5 μCi/ml; the 54 MnNa2 EDTA was characterized by paper chromatography employing a 70% methanol/10% ammonium hydroxide (85:10) solvent system. 98.5% of the 54 Mn was recovered in a chromatographic peak corresponding to the Rf of MnNa2 EDTA.
54 Mn-L was prepared as described in Example 2 using an aliquot of the 4.6% w/v 54 MnNa2 EDTA solution. The percent liposomal entrapment for the 54 Mn-L solution used in the study was 2.8%, w/v.
A total of forty Sprague-Dawley rats (20 male, 217-295 g; 20 female, 151-208 g; Charles River) were used. Drinking water was provided ad libitum. The animals, 2 males and 2 females per group, were selected randomly from their cages and were identified with indelible ink numbers at tail bases before test substance administration.
Rats were divided into 10 groups consisting of 2 male and 2 female rats per group. Five groups of rats received bolus intravenous injections of 2 ml/kg of 4.6% w/v 54 MnNa2 EDTA (25 Ci/kg) via a lateral tail vein. The remaining five groups received bolus 2 ml/kg intravenous injections of 54 Mn-L (4.6% w/v 54 MnNa2 EDTA; 2.8%, v/v, liposomal entrapment; 25 Ci/kg). Immediately after dosing, rats were housed in individual metabolism cages. Ground Purina Laboratory Chow and water were supplied ad libitum to animals sacrificed at 24 and 48 hr after treatment. Rats from both 54 NmNa2 EDTA and 54 Mn-L treatment groups were sacrificed by cervical dislocation at 0.5, 2, 4, 24 and 48 hr after treatment, and the following samples were obtained: injection site, blood, liver, lung, spleen, heart, kidneys, salivary gland (submaxillary), brain, bone with marrow, muscle and fat. Urine samples were obtained from animals sacrificed at all intervals of 2 hr or more after injection and fecal samples were obtained from animals sacrificed at 24 and 48 hr after treatment. The following tissues were assumed to have the indicated percents of body weight: blood (8%), bone and marrow (11%), skeletal muscle (45.5%), and fat (7.1%). The entire organ weights were determined for the remaining tissues.
Levels of radioactivity in the biological specimens and aliquots of the injected test substances were determined using a gamma scintillation spectrometer (Model 1085, Nuclear Chicago Corp., Des Plaines, Ill.). Results were calculated on a percent dose/organ (or fluid) and a percent dose/g (or ml) basis using an HP-85 desk top computer (Hewlett Packard, Fort Collins, Colo.). Statistical comparisons between 54 MnNa2 EDTA and 54 Mn-L treatment groups were performed using Student's t-test on each tissue, fluid or excreta at each time interval.
Kinetic data for the elimination of radioactivity from liver, spleen, kidneys, heart and bone with marrow were curve fitted by the peeling and least-square methods, to mono or bi-exponential equations: ##EQU1##
Where
Ct=% dose/organ in tissue at time t.
Ai=Concentration at time 0 of the line described by each first order term.
Ki=Elimination rate constant for each first-order term.
The half-life (t 1/2) for each elimination phase was calculated as 0.693/Ki. The square of the correlation coefficient (r2) for each elimination phase was calculated as an indication of variability.
RESULTS
54 MnNa2 EDTA was rapidly cleared from blood following intravenous administration. Thirty minutes after dosing, 2.1% of the total radioactivity remained in the blood and within 2 hr less than 0.1% remained in the blood. A similar blood disappearance was observed following intravenous administration of 54 MnNa2 EDTA and 54 Mn-L at any time interval.
On a percent dose/organ basis, 54 MnNa2 EDTA distributed primarily to the liver, bone with marrow, muscle and kidneys. Unusually high levels of radioactivity were observed in fat samples obtained from 2 of 4 rats sacrificed at 0.5, 2 and 4 hr after dosing resulting in a large standard error at these points. 54 Mn-L exhibited a similar distribution pattern as 54 MnNa2 EDTA. However, significantly higher % dose/organ values for 54 Mn-L were observed in the spleen at each time interval, in the liver at 4 and 24 hr after dosing and in the heart at 2 hr after dosing. Additionally, the percent dose accumulated in fat was consistently less for 54 Mn-L compared to 54 MnNa2 EDTA, although a significant difference in fat radioactivity content was observed only at 48 hr after injection.
Hepatic and renal clearances of 54 MnNa2 EDTA and 54 Mn-L were biphasic consisting of an initial rapid elimination (t 1/2<1 hr) followed by a secondary slow elimination phase (t 1/2>17 hr). Approximately 92% of the hepatic 54 MnNa2 EDTA and 86% of the hepatic 54 Mn-L was associated with the rapid first phase hepatic elimination. Approximately 81% of the renal 54 MnNa2 EDTA and 84% of 54 Mn-L was associated with the rapid first phase renal elimination. 54 MnNa2 EDTA was cleared from the spleen according to a monophasic elimination with a respective half-life of ˜2 hr. 54 Mn-L, on the other hand, underwent biphasic splenic elimination. Approximately 5% of the splenic 54 Mn-L was eliminated in the first phase with a half-life of ˜2 hr, whereas the remaining radioactivity was slowly eliminated from the spleen with a half life of ˜13 hr. Both test substances were cleared from the heart according to a monophasic elimination with half-lives of approximately 8 hr. Clearance of radioactivity from the bone and marrow was relatively slow following intravenous administration of both test substances as indicated by half-lives >100 hr.
Highest tissue concentrations were observed in the liver and kidneys following intravenous administration of 54 MnNa2 EDTA. Liver/blood and kidney/blood ratios for 54 MnNa2 EDTA were 11.3 and 9.1, respectively, 30 minutes after treatment. By 2 hr after treatment, 54 MnNa2 EDTA was almost completely cleared from the blood and tissue/blood ratios greater than 10 were observed for liver, kidney, salivary gland, bone and marrow, heart and fat, although fat tissue concentrations were extremely variable. A similar tissue concentration profile was obtained for 54 Mn-L with the major exception that significantly higher splenic concentrations were observed at each time interval after 54 Mn-L administration. The spleen/blood ratio for 54 Mn-L was 45.6 at 2 hr after treatment compared to a spleen/blood ratio of 6.8 for 54 MnNa2 EDTA at the same time interval.
54 MnNa2 EDTA and 54 Mn-L exhibited similar biphasic excretory profiles. Initially after administration of test substance, radioactivity was rapidly excreted in the urine resulting in >50% of the dose being eliminated within 2 hr after treatment. At later time intervals, no additional urinary excretion of radioactivity was observed. The remaining radioactivity was primarily eliminated via the feces. Within 48 hr after treatment, 31 and 24% of the total doses of 54 MnNa2 EDTA and 54 Mn-L had been excreted in the feces, respectively. The remaining radioactivity in the rats after 48 hr was primarily localized in the bone and marrow.
In summary, 54 MnNa2 EDTA and 54 Mn-L were rapidly cleared from the blood following intravenous administration. Similar biodistribution profiles were obtained from both compositions with the major exception of significantly higher splenic tissue concentrations at each time interval after administration of 54 Mn-L.
Example 6
A study was carried out to compare the biodistribution of the following test substances (each prepared at pH 6.7 with approximately radioactivity concentrations of 12.5 μCi/ml):
Test Substance
1. 54 Mn-disodium (ethylenediaminetetraacetaro) manganese (II), 4.6% w/v, solution containing 0.66%, w/v, excess calcium disodium ethylenediaminetetraacetate.
2. 54 Mn-disodium (ethylenediaminetetraacetato) manganese (II), 23.0%, w/v, solution containing 3.30%, w/v, excess calcium disodium ethylenediaminetetraacetate.
3. A negatively charged liposome formulation containing encapsulated 54 MnNa2 EDTA. The liposomes consisted of phosphatidylcholine, phosphatidic acid, cholesterol and α-tocopherol (8/2/9/.5) and were dispersed in Test substance 1 (12.5 μCi/ml). Liposomes were dialyzed against normal saline prior to injection in order to remove unencapsulated 54 MnNa2 EDTA. Greater than 98.5% of the radioactivity was entrapped following dialysis. The liposome entrapment of Test substance 1 was 9.0%, v/v, and the lipid concentration was approximately 50 μmol/ml.
4. A positively charged liposome formulation containing encapsulated 54 MnNa2 EDTA. The liposomes consisted of phosphatidyl choline, stearylamine, cholesterol and α-tocopherol (8/2/9/.5) and were dispersed in Test substance 1 (12.5 μCi/ml). Liposomes were dialyzed against normal saline prior to injection in order to remove unencapsulated 54 MnNa2 EDTA. Greater than 98.5% of the remaining radioactivity was entrapped following dialysis. The liposome entrapment of Test substance 1 was 12.8%, v/v, and lipid concentration was approximately 50 μmol/ml.
A total of 80 Sprague Dawley rats (40 male, 168-212 g, 40 female, 149-180 g) were used. Drinking water was provided ad libitum. Rats were individually marked with indelible ink numbers at the tail base for identification prior to test substance identification.
The rats of each of four treatment groups (each group consisting of 10 males and 10 females) received single 2 ml/kg intravenous injections of each of the four test substances. Animals were sacrificed at 0.5, 2, 4, 24 and 48 hours after treatment and an extensive number of tissues were sampled for radioactivity determination. In addition, urine samples were obtained from rats sacrificed at time intervals >0.5 hour and fecal samples at 24 and 48 hours after treatment. Urine samples collected from rats treated with test substances 1 and 2, sacrificed at 48 hours were analyzed by paper chromatography for the presence of radioactive metabolites. The unencapsulated solutions (test substances 1 and 2) accumulated on a dose-dependent, apparently saturable, basis primarily in liver, small intestine, bone and marrow, muscle and kidney. The liposome entrapped solutions (test substances 3 and 4) accumulated in extremely high concentrations in the liver and spleen indicating uptake by the reticuloendothelial system. In addition, relatively high concentrations of all four formulations tested were observed in glandular organs such as the pancreas and salivary gland. The unencapsulated formulations (test substances 1 and 2) tended to undergo faster tissue elimination than the entrapped formulations (test substances 3 and 4).
Test substances 1 and 2 were eliminated from the liver, kidney and spleen via biphasic kinetics indicating heterogeneous cellular compartmentalization of the 54 MnNa2 EDTA. Test substances 3 and 4 were eliminated from most organs slowly via monophasic kinetics indicating homogenous cellular distribution. In addition, the negatively charged liposome formulation (test substance 3) was more rapidly cleared from the liver and radioactivity accumulated faster in the small intestine compared to test substance 4.
Test substances 1 and 2 were excreted primarily via the urine with urinary excretion complete within 2 hours after treatment. Paper chromatography of urine collected from rats treated with test substances 1 and 2 suggested that 54 MnNa2 EDTA was excreted in the urine in unchanged form. At later times, test substances 1 and 2 were eliminated via the feces. Test substances 3 and 4 were excreted primarily via the feces and underwent very little urinary excretion (5%). The biological retention time of test substances 3 and 4 was prolonged compared to test substances 1 and 2.
In summary, test substances 3 and 4 were readily taken up by the reticuloendothelial system, were cleared from most organs at a slower rate than test substances 1 and 2 and were excreted primarily via the feces and undergo very limited urinary excretion whereas test substances 1 and 2 are excreted primarily via the urine.
Example 7
The acute intravenous toxicity of disodium (diethylenetriaminepentaacetato)gadolinium (III) (composition C of Example 1) was studied.
A total of 16 Swiss CF-1 albino mice (8 male, 22.0-25.6 g; 8 female, 18.2-24.1 g) were used. Picric acid markings were used for individual identification.
The protocol of Example 4 was used. Groups of 2-4 mice, with sexes equally represented, received single intravenous doses of the test substance according to the following schedule:
______________________________________                                    
GdNa.sub.2 DTPA                                                           
          Dose                                                            
Solution  Volume                Number and Sex                            
Concentration                                                             
          (ml/    Intravenous Dose                                        
                                of Mice                                   
(%, w/v)  10 g)   g/kg   mmol Gd/kg                                       
                                  Male  Female                            
______________________________________                                    
10        0.1     1.0    1.7      1     1                                 
10        0.2     2.0    3.4      1     1                                 
10        0.2     2.0    3.4      1     1                                 
10        0.6     6.0    10.3     1     1                                 
20        0.2     4.0    6.9      1     1                                 
20        0.4     8.0    13.7     1     1                                 
20        0.6     12.0   12.6     1     1                                 
______________________________________                                    
RESULTS
No deaths were observed following intravenous administration of GdNa2 DTPA at doses up to 12 g/kg. At doses ≧8 g/kg, slight ataxia was observed immediately after dosing. Following administration of dose volumes of 0.6 ml/10 g, respiratory distress was observed. All mice appeared normal within 6 hours after treatment. A slight reduction in body weight, as summarized below, was observed in several mice the week following intravenous administration of GdNa2 DTPA.
______________________________________                                    
Intravenous Dose                                                          
              Mean Body Weight Change (g)                                 
(g/kg)        Male       Female                                           
______________________________________                                    
1.0           2.3        0.7                                              
2.0           2.0        -0.8                                             
4.0           2.6        1.3                                              
6.0           2.8        1.4                                              
8.0           -1.3       -0.2                                             
12.0          -1.4       -1.4                                             
______________________________________                                    
The test substance (GdNa2 DTPA) exhibited a relatively safe mouse acute intravenous toxicity profile as evidenced by the fact that no deaths were observed following intravenous administration of GdNa2 DTPA at doses up to 12.0 g/kg (20.6 mmol Gd/kg). The relatively low toxicity of GdNa2 DTPA suggests a high degree of chelate stability. These data indicate that GdNa2 DTPA is a relatively safe paramagnetic chelate.
Example 8
The preparation of Example 2 with manganous disodium ethylenediaminetetraacetate contained in solution within and outside multilamellar liposomes was administered to an anesthetized dog. The total dose was 25 ml of the preparation, 12 ml of which was administered by bolus injection and the remaining 13 ml by infusion over a 3-5 minute period. The dog was positioned on his back in a General Electric NMR clinical scanner. The desired level for transverse scanning was determined prior to the administration of the NMR enhancing preparation.
A first experiment involved a "slice" taken at the level of the kidneys in the dog. For this purpose, the first scan was obtained prior to administration of the preparation. Three additional scans were obtained at times corresponding to a) during the infusion, b) 35 minutes post-administration, and c) 75 minutes post-administration. In all three of these latter scans, good contrast was seen, with the extent of contrast dropping as the time increased. Not only were the kidneys visualized but surrounding fatty tissue and tissue from other areas were more readily contrasted. The experiment showed that the paramagnetic chelate preparation altered proton signals.
Subsequently, a pre-scan was taken at the level of the dog's liver and a comparable dose was then administered as before. Slices were taken at 12, 25 and 40 minutes post-administration. In all three of the latter scans, good contrast was seen, particularly of the liver and spleen.
EXAMPLE 9
Rabbits were anesthetized and surgically prepared for recording of arterial blood pressure. The EKG was recorded with surface electrodes. A preparation of composition D of Example 1 was administered intravenously, at doses of 0.1, 0.3 and 1.0 ml/kg (0.017, 0.034 and 0.17 mmol Gd(III)/kg), to groups of five rabbits at each dose level. Proton T1 and T2 values were determined on blood samples drawn before administration of the contrast agent and at time intervals of 5, 10 and 15 minutes after dosing, using a 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. Fifteen minutes after contrast injection, the rabbits were sacrificed and various tissues were removed for T1 and T2 determinations in the NMR spectrometer.
Cardiovascular effects were minimal. Dose-related changes in tissue and blood T1 and T2 values were observed. Changes in T1 values were generally greater than changes in T2 values. The most profound effects on T1 were in blood and kidneys (both cortex and medulla) with large intestine, pancreas and stomach the next most sensitive. The T1 data obtained in comparison with normal T1 values are presented in the following table:
______________________________________                                    
            MEAN TISSUE T.sub.1 VALUES (msec)                             
            15 MINUTES AFTER ADMINISTRA-                                  
NOR-        TION OF THE DISODIUM                                          
MAL         (DIETHYLENETRIAMINEPEN-                                       
TISSUE      TAACETATO) GADOLINIUM (III)                                   
TISSUE T.sub.1 (msec)                                                     
                0.17 mmol/kg                                              
                           0.51 mmol/kg                                   
                                    1.7 mmol/k                            
______________________________________                                    
Heart  280      274        267      199                                   
Lung   311      311        303      225                                   
Skel.  215      215        217      173                                   
Muscle                                                                    
Liver  171      169        172      145                                   
Spleen 260      254        257      225                                   
Pancreas                                                                  
       175      154        172      129                                   
Stomach                                                                   
       245      245        219      159                                   
Small  225      221        224      177                                   
Intestine                                                                 
Large  220      215        228      143                                   
Intestine                                                                 
Renal  374      194        137       72                                   
Cortex                                                                    
Renal  252      200        130       47                                   
Medulla                                                                   
Fat     57       63         61       64                                   
Blood  --                                                                 
Pre-   --       528        580      573                                   
contrast                                                                  
 5     --       413        292      135                                   
minutes                                                                   
10     --       416        321      156                                   
minutes                                                                   
15     --       421        337      169                                   
minutes                                                                   
______________________________________                                    
EXAMPLE 10
Selective catheterization of the left anterior descending coronary artery or circumflex coronary artery was achieved via a percutaneous intracarotid artery approach in anesthetized dogs. Gelfoam plugs were inserted into the coronary artery, via the catheter, in order to produce coronary occlusion. Animals were treated with lidocaine to prevent coronary arrhythmias and morphine to relieve pain.
Twenty-four hours after coronary occlusion, four dogs received intravenous injections of 1 ml/kg (0.17 mmol Gd(III)/kg) of the preparation of composition D of Example 1 (GdNa2 DTPA) . Dogs were sacrificed 10 minutes after dosing and proton T1 values for normal and infarcted myocardial tissue were obtained using the 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. T1 values for myocardial tissue which had been normally perfused were reduced to 180 msec as compared to average myocardial T1 values of 330 for untreated dogs. Infarcted regions of heart muscle had T1 values of 290.
Two dogs received 2 ml/kg (0.34 mmol Gd(III)/kg) of the GdNa2 DTPA solution 24 hours after coronary artery occlusion. Blood samples were withdrawn before contrast administration and again 5 minutes and 10 minutes after dosing. Ten minutes after dosing the dogs were killed, the hearts removed intact and placed in the General Electric NMR scanner. Images of the excised hearts revealed marked differences between normal and infarcted tissues with the difference greater than that observed in hearts from dogs with infarcts who had not received a contrast enhancement agent. Blood remaining in the ventricles had a much different T1 image after treatment with the contrast agent.
The blood samples and sections of the imaged hearts from the dogs receiving 2 ml/kg (0.34 mmol Gd(III)/kg) of the GdNa2 DTPA solution were assayed for proton T1 values in the 0.12 T NMR spectrometer at a probe frequency of 5.1 mHz. Blood T1 values dropped from an average of 510 msec before contrast administration to 50 and 100 msec at 5 minutes and 10 minutes after dosing. The normally perfused myocardium had an average T1 values of 135 msec, as compared to untreated dog T1 of 330, while infarcted tissue T1 's averaged 230.
EXAMPLE 11
Two rabbits were anesthetized and abdominal NMR images were obtained in the General Electric NMR scanner. Rabbits then received intravenous doses of 0.3 ml/kg (0.5 mmol Gd(III)/kg) of the preparation of composition D of Example 1 (GdNa2 DTPA) and additional abdominal NMR images were made over a period of two hours after dosing. Marked alteration of renal medulla and renal cortex proton images were observed after administration of the GdNa2 DTPA with peak effects observed within 15 minutes.
EXAMPLE 12
Marmosets (5) were anesthetized and surgically prepared for recording of arterial blood pressure. The EKG was recorded with surface electrodes. A preparation of composition E of Example 1 was administered intravenously at a dose of 0.3 ml/kg (0.118 mmol Mn(II)/kg). Proton T1 and T2 values were determined on blood samples drawn before administration of the contrast agent and at time intervals of 5, 10 and 15 minutes after dosing, using a 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. Fifteen minutes after contrast injection, the monkeys were sacrificed and various tissues were removed for T1 and T2 determinations in the NMR spectrometer.
Cardiovascular effects were minimal. Blood (5 min) and liver T1 values were substantially reduced and several other tissue T1 's appeared to be slightly reduced (see following table):
______________________________________                                    
                     MONKEY (MARMOSET)                                    
                     TISSUE T.sub.1 VALUES (MEAN)                         
                     15 MIN AFTER 0.3 ml/kg                               
                     (0.118 mmol Mn(II)/kg)                               
TISSUE   NORMAL T.sub.1                                                   
                     OF EXAMPLE 1 (E)                                     
______________________________________                                    
Heart    256         183                                                  
Lung     231         280                                                  
Skeletal 243         206                                                  
Muscle                                                                    
Liver    118          32                                                  
Spleen   245         221                                                  
Pancreas 313         103                                                  
Stomach  206         145                                                  
Small    199         107                                                  
Intestine                                                                 
Large    274         185                                                  
Intestine                                                                 
Renal Cortex                                                              
         227         152                                                  
Renal Medulla                                                             
         --          209                                                  
Bladder  261         217                                                  
Fat       67          68                                                  
Blood    --          --                                                   
precontrast          507                                                  
 5 minute            375                                                  
10 minute            454                                                  
15 minute            511                                                  
______________________________________                                    
EXAMPLE 13
A rabbit received 10 ml/kg (approximately 0.1 mmol Mn(II)/kg) of a preparation with disodium (ethylenediaminetetraacetato) manganese (II) contained in solution within multilamellar liposomes (MnNa2 EDTA liposomes, test substance 3 of example 6). The rabbit was then anesthetized, placed in the General Electric NMR scanner and images of the abdominal area, including liver and spleen, were obtained over a period of 2-5 hours after dosing. Liver and spleen images were altered as compared to similar scans in untreated rabbits, while no effect was observed in intestine, kidney and skeletal muscle. The peak alterations of liver and spleen proton signals were observed at the beginning of the imaging period (two hours after dosing with the liposomal formulation).
EXAMPLE 14
Groups of two rabbits each received intravenous doses of 3 ml/kg or 10 ml/kg (approximately 0.03 or 0.1 mmol Mn(II)/kg) of a preparation with disodium (ethylenediaminetetraacetato) manganese (II) contained in solution within multilamellar liposomes (MnNa2 EDTA liposomes, test substance 3 of example 6) and were sacrificed at intervals of 2-14 hours after dosing. Liver and spleen proton T1 values were determined using a 0.12 T NMR spectrometer with a probe frequency of 5.1 mHz. Dose-related decreases in liver and spleen T1 values were observed with peak effects at two hours (see following table):
______________________________________                                    
                 MEAN TISSUE T.sub.1 VALUES                               
          NOR-   (msec) AT VARIOUS TIMES                                  
          MAL    AFTER ADMINISTRATION                                     
          TISSUE OF MnNa.sub.2 EDTA LIPOSOMES                             
DOSE   TISSUE   T.sub.1 (msec)                                            
                         2 hrs  4 hrs   12-14 hrs                         
______________________________________                                    
 3 ml/kg                                                                  
       spleen   260      99     133     --                                
       liver    171      99     131     --                                
10 ml/kg                                                                  
       spleen   260      35      45      80                               
       liver    171      93     110     120                               
______________________________________                                    
EXAMPLE 15
The plasma fragility of test substances 3 and 4 of example 6 was tested as follows: 0.5 ml each of liposomes and fresh dog plasma were mixed, then placed at 37° C. for 30 minutes. The mixture was then cooled and an aliquot was then run on a Sephadex G-50 column to separate the unentrapped (released) material from the liposome entrapped material. In both cases approximately 10-15% leakage had occurred, indicating that the liposomes were stable enough to use for in vivo imaging.
In view of the above it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above products and methods without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.

Claims (15)

What is claimed is:
1. A method for enhancing NMR imaging of body organs and tissues which comprises administering a substantially nontoxic paramagnetic image altering agent to a living animal body in a sufficient amount to provide enhancement of NMR images of said body organs and tissues, said paramagnetic image altering agent containing a chelate of a paramagnetic element carried by a liposome.
2. A method as set forth in claim 1 wherein said chelate of a paramagnetic element is selected from the group consisting of chelates of manganese, gadolinium, cobalt, chromium, nickel, iron and other elements of the lanthanide series.
3. A method as set forth in claim 2 wherein said chelate is manganous disodium ethylenediaminetetraacetate.
4. A method as set forth in claim 2 wherein said chelate is manganous trisodium diethylenetriamine pentaacetate.
5. A method as set forth in claim 2 wherein said chelate is gadolinium disodium diethylenetriamine pentaacetate.
6. A method as set forth in claim 2 wherein said chelate is disodium (trans 1,2-diaminocyclohexane-N,N,N',N'-tetraacetato) manganese dihydrate.
7. A method as set forth in claim 1 wherein said liposome comprises a lecithin and a sterol.
8. A method as set forth in claim 1 wherein said liposome comprises a lecithin, a charged lipid, a sterol and alpha-tocopherol in various molar ratios.
9. A method as set forth in claim 8 wherein said liposome comprises egg phosphatidyl choline, dipalmitoyl phosphatidic acid, cholesterol and alpha-tocopherol in a molar ratio of 8/2/6/.5.
10. A method as set forth in claim 8 wherein said liposome comprises egg phosphatidyl choline, egg phosphatidic acid, cholesterol and alpha-tocopherol in a molar ratio of 8/2/9/.5.
11. A method as set forth in claim 1 wherein NMR images of the liver are enhanced.
12. A method as set forth in claim 1 wherein NMR images of the spleen are enhanced.
13. A method as set forth in claim 1 wherein NMR images of the heart are enhanced.
14. A method as set forth in claim 1 wherein NMR images of the glandular organs are enhanced.
15. A method as set forth in claim 1 wherein NMR images of the lung and lumphatic system are enhanced.
US07/311,163 1983-03-18 1989-02-15 Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes Expired - Lifetime US5387410A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/311,163 US5387410A (en) 1983-03-18 1989-02-15 Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes
US07/567,850 US5078986A (en) 1989-02-15 1990-08-13 Method for enhancing magnetic resonance imaging using an image altering agent containing an excess of chelating agent
US08/151,350 US5407660A (en) 1983-03-18 1993-11-12 Diagnostic liposomal compositions for enhancing NMR imaging

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47656583A 1983-03-18 1983-03-18
US83235686A 1986-02-24 1986-02-24
US11415987A 1987-10-27 1987-10-27
US07/311,163 US5387410A (en) 1983-03-18 1989-02-15 Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11415987A Continuation 1983-03-18 1987-10-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US07/567,850 Continuation US5078986A (en) 1989-02-15 1990-08-13 Method for enhancing magnetic resonance imaging using an image altering agent containing an excess of chelating agent
US94139792A Continuation 1983-03-18 1992-09-08

Publications (1)

Publication Number Publication Date
US5387410A true US5387410A (en) 1995-02-07

Family

ID=27381458

Family Applications (2)

Application Number Title Priority Date Filing Date
US07/311,163 Expired - Lifetime US5387410A (en) 1983-03-18 1989-02-15 Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes
US08/151,350 Expired - Lifetime US5407660A (en) 1983-03-18 1993-11-12 Diagnostic liposomal compositions for enhancing NMR imaging

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/151,350 Expired - Lifetime US5407660A (en) 1983-03-18 1993-11-12 Diagnostic liposomal compositions for enhancing NMR imaging

Country Status (1)

Country Link
US (2) US5387410A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512294A (en) * 1994-08-05 1996-04-30 Li; King C. Targeted polymerized liposome contrast agents
US5626867A (en) * 1992-03-17 1997-05-06 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Liposomes with a negative excess charge
WO1998044910A1 (en) * 1997-04-09 1998-10-15 Philipp Lang NEW TECHNIQUE TO MONITOR DRUG DELIVERY NONINVASIVELY $i(IN VIVO)
US5833948A (en) * 1995-06-15 1998-11-10 Bracco Research S.A. Blood-pool imaging composition comprising micelles containing a lipophilic chelating agent and a non-ionic surfactant
US6132764A (en) * 1994-08-05 2000-10-17 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
US6205349B1 (en) * 1998-09-29 2001-03-20 Siemens Medical Systems, Inc. Differentiating normal living myocardial tissue, injured living myocardial tissue, and infarcted myocardial tissue in vivo using magnetic resonance imaging
US6207133B1 (en) * 1997-06-06 2001-03-27 Max-Delbrück-Centrum für Molekulare Medizin Anti-tumoral therapy agent containing a contrast agent
US6272370B1 (en) * 1998-08-07 2001-08-07 The Regents Of University Of Minnesota MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging
US20040101969A1 (en) * 2002-09-11 2004-05-27 Duke University Methods and compositions for blood pool identification, drug distribution quantification and drug release verification
WO2005117832A1 (en) * 2004-06-03 2005-12-15 Bracco Research Sa Liposomal assembly for therapeutic and/or diagnostic use
US7048716B1 (en) 1997-05-15 2006-05-23 Stanford University MR-compatible devices
US7169410B1 (en) 1998-05-19 2007-01-30 Sdg, Inc. Targeted liposomal drug delivery system
US20070197904A1 (en) * 2002-09-11 2007-08-23 Duke University MRI imageable liposomes for the evaluation of treatment efficacy, thermal distribution, and demonstration of dose painting
US20110200530A1 (en) * 2008-10-07 2011-08-18 Bracco Research S.A. or Bracco Suisse S.A. Targeting construct comprising anti-polymer antibody and contrast/therapeutic agents binding to the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198854B1 (en) 1997-09-18 2011-11-30 Pacira Pharmaceuticals, Inc. Sustained-release liposomal anesthetic compositions
JP4575592B2 (en) 1997-11-14 2010-11-04 パシラ ファーマシューティカルズ インコーポレーテッド Production of multivesicular liposomes
CN105853403B (en) * 2016-05-09 2019-03-29 上海天氏利医药科技有限公司 A kind of paclitaxel palmitate liposome and preparation method thereof
US11357727B1 (en) 2021-01-22 2022-06-14 Pacira Pharmaceuticals, Inc. Manufacturing of bupivacaine multivesicular liposomes
US11033495B1 (en) 2021-01-22 2021-06-15 Pacira Pharmaceuticals, Inc. Manufacturing of bupivacaine multivesicular liposomes
US11278494B1 (en) 2021-01-22 2022-03-22 Pacira Pharmaceuticals, Inc. Manufacturing of bupivacaine multivesicular liposomes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932657A (en) * 1973-11-12 1976-01-13 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome encapsulation of chelating agents
US4016290A (en) * 1973-11-12 1977-04-05 The United States Of America As Represented By The United States Energy Research And Development Administration Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes
US4224179A (en) * 1977-08-05 1980-09-23 Battelle Memorial Institute Process for the preparation of liposomes in aqueous solution
US4397846A (en) * 1981-05-15 1983-08-09 Murray Weiner Storage-stable lipid vesicles and method of preparation
US4497791A (en) * 1983-02-10 1985-02-05 Vestar Research Incorporated Method for labeling phagocytic cells
US4544545A (en) * 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
US4863717A (en) * 1986-11-10 1989-09-05 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for circumventing the problem of free radial reduction associated with the use of stable nitroxide free radicals as contrast agents for magnetic reasonance imaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932657A (en) * 1973-11-12 1976-01-13 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome encapsulation of chelating agents
US4016290A (en) * 1973-11-12 1977-04-05 The United States Of America As Represented By The United States Energy Research And Development Administration Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes
US4224179A (en) * 1977-08-05 1980-09-23 Battelle Memorial Institute Process for the preparation of liposomes in aqueous solution
US4397846A (en) * 1981-05-15 1983-08-09 Murray Weiner Storage-stable lipid vesicles and method of preparation
US4647447A (en) * 1981-07-24 1987-03-03 Schering Aktiengesellschaft Diagnostic media
US4497791A (en) * 1983-02-10 1985-02-05 Vestar Research Incorporated Method for labeling phagocytic cells
US4544545A (en) * 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
US4863717A (en) * 1986-11-10 1989-09-05 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for circumventing the problem of free radial reduction associated with the use of stable nitroxide free radicals as contrast agents for magnetic reasonance imaging

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626867A (en) * 1992-03-17 1997-05-06 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Liposomes with a negative excess charge
US6569451B1 (en) 1994-08-05 2003-05-27 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
US6132764A (en) * 1994-08-05 2000-10-17 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
US5512294A (en) * 1994-08-05 1996-04-30 Li; King C. Targeted polymerized liposome contrast agents
US20040253184A1 (en) * 1994-08-05 2004-12-16 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
US6350466B1 (en) 1994-08-05 2002-02-26 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
US5833948A (en) * 1995-06-15 1998-11-10 Bracco Research S.A. Blood-pool imaging composition comprising micelles containing a lipophilic chelating agent and a non-ionic surfactant
WO1998044910A1 (en) * 1997-04-09 1998-10-15 Philipp Lang NEW TECHNIQUE TO MONITOR DRUG DELIVERY NONINVASIVELY $i(IN VIVO)
US6468505B1 (en) 1997-04-09 2002-10-22 Philipp Lang Technique to monitor drug delivery noninvasively in vivo
US7048716B1 (en) 1997-05-15 2006-05-23 Stanford University MR-compatible devices
US6207133B1 (en) * 1997-06-06 2001-03-27 Max-Delbrück-Centrum für Molekulare Medizin Anti-tumoral therapy agent containing a contrast agent
US20100209492A1 (en) * 1998-05-19 2010-08-19 Sdg, Inc. (An Ohio Corporation) Targeted Liposomal Drug Delivery System
US8303983B2 (en) 1998-05-19 2012-11-06 Sdg, Inc. Targeted liposomal drug delivery system
US7169410B1 (en) 1998-05-19 2007-01-30 Sdg, Inc. Targeted liposomal drug delivery system
US20070104777A1 (en) * 1998-05-19 2007-05-10 Lau John R Targeted liposomal drug delivery system
US6272370B1 (en) * 1998-08-07 2001-08-07 The Regents Of University Of Minnesota MR-visible medical device for neurological interventions using nonlinear magnetic stereotaxis and a method imaging
US6205349B1 (en) * 1998-09-29 2001-03-20 Siemens Medical Systems, Inc. Differentiating normal living myocardial tissue, injured living myocardial tissue, and infarcted myocardial tissue in vivo using magnetic resonance imaging
US7672704B2 (en) 2002-09-11 2010-03-02 Duke University Methods and compositions for blood pool identification, drug distribution quantification and drug release verification
US20040101969A1 (en) * 2002-09-11 2004-05-27 Duke University Methods and compositions for blood pool identification, drug distribution quantification and drug release verification
US7769423B2 (en) 2002-09-11 2010-08-03 Duke University MRI imageable liposomes for the evaluation of treatment efficacy, thermal distribution, and demonstration of dose painting
US20070197904A1 (en) * 2002-09-11 2007-08-23 Duke University MRI imageable liposomes for the evaluation of treatment efficacy, thermal distribution, and demonstration of dose painting
US20070196284A1 (en) * 2004-06-03 2007-08-23 Bracco Research S.A. Liposomal assembly for therapeutic and/or diagnostic use
US7749485B2 (en) 2004-06-03 2010-07-06 Bracco Research S.A. Liposomal assembly for therapeutic and/or diagnostic use
WO2005117832A1 (en) * 2004-06-03 2005-12-15 Bracco Research Sa Liposomal assembly for therapeutic and/or diagnostic use
CN1960707B (en) * 2004-06-03 2012-11-14 博莱科瑞士股份有限公司 Liposomal assembly for therapeutic and/or diagnostic use
US20110200530A1 (en) * 2008-10-07 2011-08-18 Bracco Research S.A. or Bracco Suisse S.A. Targeting construct comprising anti-polymer antibody and contrast/therapeutic agents binding to the same
US9192685B2 (en) 2008-10-07 2015-11-24 Bracco Suisse S.A. Targeting construct comprising anti-polymer antibody and contrast/therapeutic agents binding to the same

Also Published As

Publication number Publication date
US5407660A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
US5078986A (en) Method for enhancing magnetic resonance imaging using an image altering agent containing an excess of chelating agent
US5387410A (en) Method for enhancing magnetic resonance with compositions containing paramagnetic elements carried by liposomes
Wolf et al. Cardiovascular toxicity and tissue proton T1 response to manganese injection in the dog and rabbit
Kabalka et al. Gadolinium-labeled liposomes: targeted MR contrast agents for the liver and spleen.
US4639364A (en) Methods and compositions for enhancing magnetic resonance imaging
US4899755A (en) Hepatobiliary NMR contrast agents
US4728575A (en) Contrast agents for NMR imaging
US5019369A (en) Method of targeting tumors in humans
US5324503A (en) Iodo-phenylated chelates for x-ray contrast
EP0307863B1 (en) Perfluoro-crown ethers in fluorine magnetic resonance imaging
Mauk et al. Stability of lipid vesicles in tissues of the mouse: a gamma-ray perturbed angular correlation study.
Tacker et al. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia
EP0442962B1 (en) Liposomal radiologic contrast agents
US5458870A (en) Compositions for magnetic resonance imaging using a manganese oxalate
US6468505B1 (en) Technique to monitor drug delivery noninvasively in vivo
US4612185A (en) Methods and compositions for enhancing magnetic resonance imaging
US5169944A (en) Methods and compositions for the enteral administration of hepatobiliary MRI contrast agents
NIESMAN et al. Liposome encapsulated MnCl2 as a liver specific contrast agent for magnetic resonance imaging
Ogihara-Umeda et al. Increased delivery of gallium-67 to tumors using serum-stable liposomes
Guilmette et al. Pharmacokinetics of the iron chelator desferrioxamine as affected by liposome encapsulation: Potential in treatment of chronic hemosiderosis
Schwendener Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (MRI)
Lau et al. Liposome‐encapsulated desferrioxamine in experimental iron overload
CA1267840A (en) Method of targeting tumors in humans
US4913853A (en) Compositions useful for fluorine magnetic resonance imaging
ONO et al. Study on hepatic artery chemoembolization using temperature-sensitive liposome or lipiodol emulsion

Legal Events

Date Code Title Description
AS Assignment

Owner name: MALLINCKRODT MEDICAL, INC., 675 MCDONNELL BOULEVAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MALLINCKRODT, INC., A CORP. OF DE;REEL/FRAME:005635/0379

Effective date: 19910227

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: MALLINCKRODT LLC, MISSOURI

Free format text: CHANGE OF LEGAL ENTITY;ASSIGNOR:MALLINCKRODT INC.;REEL/FRAME:026754/0001

Effective date: 20110623

Owner name: MALLINCKRODT INC., MISSOURI

Free format text: CHANGE OF NAME;ASSIGNOR:MALLINCKRODT MEDICAL INC.;REEL/FRAME:026754/0032

Effective date: 19980615