US4509506A - Shielding device for radioactive seed - Google Patents

Shielding device for radioactive seed Download PDF

Info

Publication number
US4509506A
US4509506A US06/262,760 US26276081A US4509506A US 4509506 A US4509506 A US 4509506A US 26276081 A US26276081 A US 26276081A US 4509506 A US4509506 A US 4509506A
Authority
US
United States
Prior art keywords
tube
seeds
suture material
open ends
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/262,760
Inventor
David C. Windorski
David O. Kubiatowicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medi Physics Inc
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Assigned to MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE reassignment MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: KUBIATOWICZ, DAVID O., WINDORSKI, DAVID C.
Priority to US06/262,760 priority Critical patent/US4509506A/en
Priority to EP82302287A priority patent/EP0064860B1/en
Priority to DE8282302287T priority patent/DE3272289D1/en
Priority to JP57076751A priority patent/JPS57192568A/en
Publication of US4509506A publication Critical patent/US4509506A/en
Application granted granted Critical
Assigned to MINNESOTA MINING AND MANUFACTURING COMPANY, 3M CENTER, P.O. BOX 33428 ST. PAUL, MN 55133 reassignment MINNESOTA MINING AND MANUFACTURING COMPANY, 3M CENTER, P.O. BOX 33428 ST. PAUL, MN 55133 ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MEDI-PHYSICS, INC.
Assigned to MEDI-PHYSICS, INC. reassignment MEDI-PHYSICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MINNESOTA MINING AND MANUFACTURING COMPANY
Assigned to MEDI-PHYSICS, INC. reassignment MEDI-PHYSICS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MINNESOTA MINING AND MANUFACTURING COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/101Magazines or cartridges for seeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N2005/1019Sources therefor
    • A61N2005/1023Means for creating a row of seeds, e.g. spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1027Interstitial radiation therapy

Definitions

  • This invention relates to the field of radiation therapy. More specifically, it relates to radioactive "seeds" which are implanted into diseased tissue to provide sustained radiation therapy.
  • the invention relates to a novel shielding device for minimizing radiation exposure to individuals handling the seeds prior to and during implantation.
  • Implantable radioactive seeds for use in radiation therapy are described in U.S. Pat. No. 3,351,049.
  • the seeds described therein comprise a tiny sealed capsule having an elongate cavity containing the radioisotope adsorbed onto a carrier body.
  • the seeds are implanted directly into the diseased tissue. Because radioisotopes having short half-lives and emitting low energy X-rays, such as iodine-125, are used, the seeds can be left in the tissue indefinitely without excessive damage to surrounding healthy tissue or excessive radiation exposure to individuals in the patient's environment.
  • each suture is loaded with up to twenty seeds, spaced one centimeter apart, and provided with a needle at one end.
  • the object is to fill the body of the tumor, or tissue from which the tumor was excised, with radioactive seeds, set one centimeter equidistant from one another, to provide homogeneous radiation throughout the implanted volume. This is conveniently done by threading lengths of suture, loaded with seeds, through the tissue to be irradiated.
  • Radioactive seeds particularly seeds contained within absorbable suture filament
  • packaging the seeds in a manner which allows for sterilization, yet minimizes radiation exposure to those individuals handling the seeds prior to and during implantation.
  • Iodine-125 seeds are presently available commercially in lead storage/shipping containers (Medical Products Division of 3M, St. Paul, MN).
  • the seeds are placed in glass vials inside the lead container. Before implantation into the tissue, the glass vials are removed from the lead container, the caps loosened, and the vials sterilized by steam or ethylene oxide.
  • the seeds are then generally placed in a sterile shielding container of, for example, stainless steel, and transported to the operating room.
  • a sterile shielding container of, for example, stainless steel
  • Iodine-125 seeds in an absorbable suture carrier are not presently available commercially. However, methods for inserting the seeds into suture are known. (See for example, "A Method for Inserting I-125 Seeds into Absorbable Sutures for Permanent Implantation in Tissue", Bernice B. Palos et al., Int. J. Radiation Oncology Biol. Phys., Vol. 6, pp. 381-385, March, 1980. Radioactive seeds in this form pose an even greater risk of radiation exposure during implantation than individual seeds, because the seeds are physically attached to each other and must be handled in groups instead of individually.
  • the present invention effectively eliminates the aforementioned problem of radiation exposure to those handling radioactive seeds during implantation. Furthermore, the invention allows a plurality of radioactive seeds in a string-like carrier to be shipped, stored, sterilized, and delivered to the tissue in a single shielding device.
  • a device for handling radioactive seeds comprising a curved tube of dense material open at both ends, having an interior diameter large enough to allow the seeds to be moved freely therein and side walls of sufficient thickness to prevent radiation from penetrating therethrough.
  • Contained within the tube is a plurality of radioactive seeds arranged consecutively and spaced apart in a string-like carrier.
  • one end of the string-like carrier extends through one of the open ends of the tube and contains removable means to prevent the end of the carrier from entering the tube and the seeds escaping prematurely from the opposite end of the tube.
  • the opposite end of the carrier extends through the other open end of the tube and, preferably, is attached to needle means for penetrating body tissue.
  • the seeds are disposed within the curved portion of the tube and spaced far enough from either open end of the tube to prevent radiation from escaping from the ends of the tube.
  • the curved, preferably circular, shape of the tube allows the ends of the tube to be left open to facilitate sterilization of the contents without permitting primary and scattered radiation from escaping through the open ends. This is possible because radioactive emissions travel in a straight path and cannot bend around corners and curves. Because of the placement of the seeds within the tube, radioactive emissions strike the curved wall of the tube and cannot escape from the open ends.
  • the seeds can be sterilized in the shielding tube and sealed in a sterile package for shipment and storage.
  • the seeds are ready for implantation without further handling.
  • the removable means e.g., a paper tab, for preventing one end of the string-like carrier from entering the tube is removed, and the carrier is pulled from the other end of the tube into the tissue along the path determined by the surgeon.
  • Maximum shielding of operating room personnel from radiation is accomplished since the seeds remain in the shielding tube up to the very time of implantation.
  • FIG. 1 is a top plan view of the handling device of the invention.
  • FIG. 2 is an enlarged transverse sectional view of one end of the device.
  • the device 10 comprises a curved tube having two open ends 14 and 16.
  • the tube is preferably circular as illustrated with the two open ends opposing one another.
  • the tube may be formed of any dense material which will prevent penetration of radiation from the radioactive seeds inside the tube.
  • Stainless steel is the material of choice because it is easily formable, readily available, resistant to corrosion and of low toxicity.
  • Lead, lead-filled plastic and other dense materials such as tungsten, silver, copper, nickel and iron can be used, but are less preferred.
  • Contained within tube 12 is a plurality of radioactive seeds 18 (only one is illustrated in FIG. 2) which are arranged consecutively and spaced apart on a string-like carrier 20.
  • the radioactive seeds useful in the practice of the invention are preferrably those described in U.S. Pat.
  • the seeds contain radioactive isotopes which emit radiation principally limited to low energy X-rays and which have half-lives sufficiently short that they decay predictably, i.e., with a known radioactive half-life, to a negligible output level and therefore can be left permanently implanted in the tissue.
  • Iodine-125 is the preferred radioactive isotope for use in the seeds. Iodine-125 seeds are available commercially from the Medical Products Division of 3M, St. Paul, Minn.
  • String-like carrier 20 is preferably an absorbable suture such as Vicryl® (Polyglactin 910) manufactured by Ethicon Inc., Summerville, N.J.
  • Vicryl® Polyglactin 910 manufactured by Ethicon Inc., Summerville, N.J.
  • a method for inserting the seeds into the suture is described in Int. J. Radiation Oncology Biol. Phys., Vol. 6, supra. Basically, the method involves the following steps:
  • a stylet is placed in a vise so that it is held horizontally facing away from the operator.
  • the first seed is inserted into the sheath and worked one centimeter down.
  • the end of carrier 20 protruding through end 16 of tube 12 is fitted with a cardboard tab 22 or other removable means for preventing the end of carrier 20 from entering the open end of the tube.
  • the other end of carrier 20 protruding through open end 14 of the tube 12 is preferably attached to a needle 24. Needle 24 is used to draw carrier 20 into the tissue and deposit seeds 18 at the desired locations.
  • the seeds in the carrier 20 may be inspected by pulling the carrier from tube 12 at one end by means of tab 22.
  • Carrier 20 may be removed through open end 14 of tube 12 by first removing tab 22.
  • An excess length of suture is generally provided between needle 24 (when present) and open end 14 of tube 12.
  • the tube is preferrably mounted on a support (not shown) such as a stiff paper card having slots therein to secure the tube to the support. Additional anchoring means are provided on the support around which the excess suture may be wound.
  • the preferred embodiment of tube 12 is made of type 304 stainless steel tubing having an outside diameter of 0.188 inch and an inside diameter of 0.058 inch. These tubing dimensions provide 99.99 percent shielding for photons and X-rays emitted from iodine-125.
  • the preferred tube is 24 centimeters long and is bent into a circular shape having a diameter of 8.5 centimeters.
  • the terminal seed 18 on carrier 20 is located far enough from the open end of the tube that straight line radiation emissions from the seed (shown as dotted lines 26 and 28) strike the interior walls of tube 12 and do not escape nor are scattered through the ends of the tube.
  • Tube 12 containing the seeds in the suture carrier is positioned near the implant site.
  • tab 22 is removed.
  • the needle end is then pulled and the seeds exit the tube and are positioned in the tissue. The extra length of suture is cut off.
  • the device of the invention effectively minimizes radiation exposure to handlers of the seeds before and during the implantation procedure.

Abstract

Radioactive seeds contained in a suture material are shielded during shipping and storage inside a curved tube of dense material having two open ends. The suture material protrudes through at least one end of the tube. Preferably, one end of the suture material has removable means for preventing the end from entering the tube prematurely, and the other end is attached to a needle.
The seeds spaced from the open ends of the curved tube so as to prevent radiation from escaping from the tube.

Description

FIELD OF THE INVENTION
This invention relates to the field of radiation therapy. More specifically, it relates to radioactive "seeds" which are implanted into diseased tissue to provide sustained radiation therapy. In particular, the invention relates to a novel shielding device for minimizing radiation exposure to individuals handling the seeds prior to and during implantation.
BACKGROUND ART
Implantable radioactive seeds for use in radiation therapy are described in U.S. Pat. No. 3,351,049. The seeds described therein comprise a tiny sealed capsule having an elongate cavity containing the radioisotope adsorbed onto a carrier body. The seeds are implanted directly into the diseased tissue. Because radioisotopes having short half-lives and emitting low energy X-rays, such as iodine-125, are used, the seeds can be left in the tissue indefinitely without excessive damage to surrounding healthy tissue or excessive radiation exposure to individuals in the patient's environment.
The use of absorbable sutures as carriers for iodine-125 seeds has greatly improved the ease and precision with which the seeds can be implanted into the tissue. Typically, each suture is loaded with up to twenty seeds, spaced one centimeter apart, and provided with a needle at one end. The object is to fill the body of the tumor, or tissue from which the tumor was excised, with radioactive seeds, set one centimeter equidistant from one another, to provide homogeneous radiation throughout the implanted volume. This is conveniently done by threading lengths of suture, loaded with seeds, through the tissue to be irradiated. Basic techniques for implanting the seed-carrying sutures into malignant tissue are described in "Surgical Radiation Therapy with Vicryl-125 I Absorbable Sutures", W. P. Scott, et al, Surgery, Gynecology and Obstetrics, Vol. 142, pp. 667-670, May, 1976.
One major problem associated with the use of radioactive seeds, particularly seeds contained within absorbable suture filament, involves packaging the seeds in a manner which allows for sterilization, yet minimizes radiation exposure to those individuals handling the seeds prior to and during implantation.
The most common method for shielding radioactivity is through the use of lead containers. Iodine-125 seeds are presently available commercially in lead storage/shipping containers (Medical Products Division of 3M, St. Paul, MN). The seeds are placed in glass vials inside the lead container. Before implantation into the tissue, the glass vials are removed from the lead container, the caps loosened, and the vials sterilized by steam or ethylene oxide. The seeds are then generally placed in a sterile shielding container of, for example, stainless steel, and transported to the operating room. Thus, for brief periods of time before and after sterilization and during the implantation procedure, the seeds are unshielded and those handling them are exposed to some radiation hazard.
Iodine-125 seeds in an absorbable suture carrier are not presently available commercially. However, methods for inserting the seeds into suture are known. (See for example, "A Method for Inserting I-125 Seeds into Absorbable Sutures for Permanent Implantation in Tissue", Bernice B. Palos et al., Int. J. Radiation Oncology Biol. Phys., Vol. 6, pp. 381-385, March, 1980. Radioactive seeds in this form pose an even greater risk of radiation exposure during implantation than individual seeds, because the seeds are physically attached to each other and must be handled in groups instead of individually.
SUMMARY OF THE INVENTION
The present invention effectively eliminates the aforementioned problem of radiation exposure to those handling radioactive seeds during implantation. Furthermore, the invention allows a plurality of radioactive seeds in a string-like carrier to be shipped, stored, sterilized, and delivered to the tissue in a single shielding device.
According to the present invention there is provided a device for handling radioactive seeds comprising a curved tube of dense material open at both ends, having an interior diameter large enough to allow the seeds to be moved freely therein and side walls of sufficient thickness to prevent radiation from penetrating therethrough. Contained within the tube is a plurality of radioactive seeds arranged consecutively and spaced apart in a string-like carrier. Preferably, one end of the string-like carrier extends through one of the open ends of the tube and contains removable means to prevent the end of the carrier from entering the tube and the seeds escaping prematurely from the opposite end of the tube. The opposite end of the carrier extends through the other open end of the tube and, preferably, is attached to needle means for penetrating body tissue. The seeds are disposed within the curved portion of the tube and spaced far enough from either open end of the tube to prevent radiation from escaping from the ends of the tube.
The curved, preferably circular, shape of the tube allows the ends of the tube to be left open to facilitate sterilization of the contents without permitting primary and scattered radiation from escaping through the open ends. This is possible because radioactive emissions travel in a straight path and cannot bend around corners and curves. Because of the placement of the seeds within the tube, radioactive emissions strike the curved wall of the tube and cannot escape from the open ends.
The seeds can be sterilized in the shielding tube and sealed in a sterile package for shipment and storage. The seeds are ready for implantation without further handling. Just prior to implantation, the removable means, e.g., a paper tab, for preventing one end of the string-like carrier from entering the tube is removed, and the carrier is pulled from the other end of the tube into the tissue along the path determined by the surgeon. Maximum shielding of operating room personnel from radiation is accomplished since the seeds remain in the shielding tube up to the very time of implantation.
DESCRIPTION OF THE DRAWINGS
The invention may be further understood by reference to the accompanying drawings wherein like numerals refer to like elements and:
FIG. 1 is a top plan view of the handling device of the invention; and
FIG. 2 is an enlarged transverse sectional view of one end of the device.
Referring now to the drawings, the device 10 comprises a curved tube having two open ends 14 and 16. The tube is preferably circular as illustrated with the two open ends opposing one another. The tube may be formed of any dense material which will prevent penetration of radiation from the radioactive seeds inside the tube. Stainless steel is the material of choice because it is easily formable, readily available, resistant to corrosion and of low toxicity. Lead, lead-filled plastic and other dense materials such as tungsten, silver, copper, nickel and iron can be used, but are less preferred. Contained within tube 12 is a plurality of radioactive seeds 18 (only one is illustrated in FIG. 2) which are arranged consecutively and spaced apart on a string-like carrier 20. The radioactive seeds useful in the practice of the invention are preferrably those described in U.S. Pat. No. 3,351,049. The seeds contain radioactive isotopes which emit radiation principally limited to low energy X-rays and which have half-lives sufficiently short that they decay predictably, i.e., with a known radioactive half-life, to a negligible output level and therefore can be left permanently implanted in the tissue. Iodine-125 is the preferred radioactive isotope for use in the seeds. Iodine-125 seeds are available commercially from the Medical Products Division of 3M, St. Paul, Minn.
String-like carrier 20 is preferably an absorbable suture such as Vicryl® (Polyglactin 910) manufactured by Ethicon Inc., Summerville, N.J. A method for inserting the seeds into the suture is described in Int. J. Radiation Oncology Biol. Phys., Vol. 6, supra. Basically, the method involves the following steps:
(1) The waxed end of the suture is cut off.
(2) The inner core is exposed and the sheath pressed back from the inner core as far as possible.
(3) The core is cut and the sheath allowed to spring back to its full length.
(4) A stylet is placed in a vise so that it is held horizontally facing away from the operator.
(5) The hollow sheath is slipped over the stylet and bunched together to expand the sheath to its maximum diameter.
(6) The sheath is pushed back off the stylet. (It should not be pulled off as this causes the sheath to tighten up and cling to the stylet.)
(7) Using forceps, the first seed is inserted into the sheath and worked one centimeter down.
(8) The sheath is slipped onto the stylet using rubber tipped forceps until the stylet is in contact with the seed.
(9) Using rubber tip forceps, the sheath is gripped close to the tip of the stylet. The sheath is then drawn one-half centimeter down onto the stylet. This pushes the seed one-half centimeter into the sheath. This is repeated at one-half centimeter per draw until the seed is at the desired depth into the sheath.
(10) The sheath is pulled off the stylet and steps 7-9 are repeated for the rest of the seeds.
Typically 2 to 20 seeds are loaded in a single suture for insertion into tube 12. The end of carrier 20 protruding through end 16 of tube 12 is fitted with a cardboard tab 22 or other removable means for preventing the end of carrier 20 from entering the open end of the tube. The other end of carrier 20 protruding through open end 14 of the tube 12 is preferably attached to a needle 24. Needle 24 is used to draw carrier 20 into the tissue and deposit seeds 18 at the desired locations. The seeds in the carrier 20 may be inspected by pulling the carrier from tube 12 at one end by means of tab 22. Carrier 20 may be removed through open end 14 of tube 12 by first removing tab 22.
An excess length of suture is generally provided between needle 24 (when present) and open end 14 of tube 12. For convenient packaging, the tube is preferrably mounted on a support (not shown) such as a stiff paper card having slots therein to secure the tube to the support. Additional anchoring means are provided on the support around which the excess suture may be wound.
The preferred embodiment of tube 12 is made of type 304 stainless steel tubing having an outside diameter of 0.188 inch and an inside diameter of 0.058 inch. These tubing dimensions provide 99.99 percent shielding for photons and X-rays emitted from iodine-125. The preferred tube is 24 centimeters long and is bent into a circular shape having a diameter of 8.5 centimeters. As illustrated in FIG. 2, the terminal seed 18 on carrier 20 is located far enough from the open end of the tube that straight line radiation emissions from the seed (shown as dotted lines 26 and 28) strike the interior walls of tube 12 and do not escape nor are scattered through the ends of the tube.
Tube 12 containing the seeds in the suture carrier is positioned near the implant site. When the needle end of the carrier is sewn into the tissue, tab 22 is removed. The needle end is then pulled and the seeds exit the tube and are positioned in the tissue. The extra length of suture is cut off.
The device of the invention effectively minimizes radiation exposure to handlers of the seeds before and during the implantation procedure.

Claims (6)

What is claimed is:
1. A device for handling radioactive seeds comprising:
a. a curved tube of dense material open at both ends, said tube having an interior diameter larger than said seeds to allow said seeds to be moved freely therein and side walls of sufficient thickness to prevent radiation from penetrating therethrough;
b. a length of suture material located within said tube and not protruding through at least one of said open ends;
c. removable stop means attached to at least end of said suture material for preventing said end of said suture material from entering said tube; and
d. a plurality of surgically-implantable radioactive seeds within said tube arranged consecutively and spaced apart in said suture material, said seeds being spaced from said open ends so as to prevent radiation from escaping from said open ends.
2. A device for handling radioactive seeds comprising:
a. a curved tube of dense material open at both ends, said tube having an interior diameter larger than said seeds to allow said seeds to be moved freely therein and side walls of sufficient thickness to prevent radiation from penetrating therethrough;
b. a length of suture material located within said tube having a first end protruding through one of said open ends of said tube and a second end protruding through the other of said open ends;
c. removable means attached to said first end of said suture material for preventing said first end from entering said tube;
d. needle means attached to said second end of said suture material for penetrating body tissue; and
e. a plurality of surgically-implantable radioactive seeds within said tube arranged consecutively and spaced apart in said suture material, said seeds being spaced from said open ends so as to prevent radiation from escaping from said open ends.
3. The device according to claim 2, wherein said tube is stainless steel.
4. The device according to claim 2, where said tube is circular in shape with said open ends opposing one another.
5. The device according to claim 2, wherein said seeds contain iodine-125.
6. The device according to claim 2, wherein said suture material is absorbable.
US06/262,760 1981-05-11 1981-05-11 Shielding device for radioactive seed Expired - Lifetime US4509506A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/262,760 US4509506A (en) 1981-05-11 1981-05-11 Shielding device for radioactive seed
EP82302287A EP0064860B1 (en) 1981-05-11 1982-05-05 Shielding device for radioactive seed
DE8282302287T DE3272289D1 (en) 1981-05-11 1982-05-05 Shielding device for radioactive seed
JP57076751A JPS57192568A (en) 1981-05-11 1982-05-10 Apparatus for conveying radioactive seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/262,760 US4509506A (en) 1981-05-11 1981-05-11 Shielding device for radioactive seed

Publications (1)

Publication Number Publication Date
US4509506A true US4509506A (en) 1985-04-09

Family

ID=22998909

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/262,760 Expired - Lifetime US4509506A (en) 1981-05-11 1981-05-11 Shielding device for radioactive seed

Country Status (4)

Country Link
US (1) US4509506A (en)
EP (1) EP0064860B1 (en)
JP (1) JPS57192568A (en)
DE (1) DE3272289D1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697575A (en) * 1984-11-21 1987-10-06 Henry Ford Hospital Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4754745A (en) * 1984-11-21 1988-07-05 Horowitz Bruce S Conformable sheet material for use in brachytherapy
US4763642A (en) * 1986-04-07 1988-08-16 Horowitz Bruce S Intracavitational brachytherapy
US5906573A (en) * 1997-07-18 1999-05-25 Radiomed Corporation Radioactive surgical fastening devices and methods of making same
US6221003B1 (en) 1999-07-26 2001-04-24 Indigo Medical, Incorporated Brachytherapy cartridge including absorbable and autoclaveable spacer
US20030084988A1 (en) * 2001-11-02 2003-05-08 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
WO2003039655A2 (en) 2001-11-02 2003-05-15 Terwilliger Richard A Delivery system and method for interstitial radiation therapy
US6585633B2 (en) 1999-07-26 2003-07-01 C. R. Bard, Inc. Brachytherapy seed cartridge
US6723052B2 (en) 2001-06-07 2004-04-20 Stanley L. Mills Echogenic medical device
US20040102672A1 (en) * 2001-11-02 2004-05-27 Terwilliger Richard A. Delivery for interstitial radiotherapy using hollow seeds
US20040102671A1 (en) * 2001-11-02 2004-05-27 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing
US6749553B2 (en) 2000-05-18 2004-06-15 Theragenics Corporation Radiation delivery devices and methods for their manufacture
US20040116767A1 (en) * 2002-09-10 2004-06-17 Lebovic Gail S. Brachytherapy apparatus and methods of using same
US20040186340A1 (en) * 2003-03-17 2004-09-23 Jay Reed Products and methods for brachytherapy
US20040225176A1 (en) * 2003-05-05 2004-11-11 Flanagan Richard J. Brachytherapy seed transport devices and methods for using same
US20040230087A1 (en) * 2003-05-13 2004-11-18 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US6820318B2 (en) 2001-11-02 2004-11-23 Ideamatrix, Inc. System for manufacturing interstitial radiation therapy seed strands
US20050080314A1 (en) * 2003-10-09 2005-04-14 Terwilliger Richard A. Shielded transport for multiple brachytheapy implants with integrated measuring and cutting board
US6969344B2 (en) 2003-02-10 2005-11-29 Bard Brachytherapy, Inc. End portion of first implantation seed spacer that receives and holds any one of implantation seed and second implantation seed spacer
US20060076520A1 (en) * 2004-10-12 2006-04-13 Drobnik Christopher D Radiation shielding container that encloses a vial of one or more radioactive seeds
US20070021643A1 (en) * 2005-07-22 2007-01-25 World Wide Medical Technologies, Llc Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US20070135673A1 (en) * 2004-05-25 2007-06-14 Elliott Daniel M Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US20070265488A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US20070265487A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc Applicators for use in positioning implants for use in brachytherapy and other radiation therapy
US20080073601A1 (en) * 2006-08-24 2008-03-27 Temus Charles J Transportation container and assembly
US20080269540A1 (en) * 2007-04-27 2008-10-30 Worldwide Medical Technologies Llc Seed cartridge adaptor and methods for use therewith
US20090216063A1 (en) * 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands
US20100261946A1 (en) * 2000-11-16 2010-10-14 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US7874976B1 (en) 2006-09-07 2011-01-25 Biocompatibles Uk Limited Echogenic strands and spacers therein
US7878964B1 (en) 2006-09-07 2011-02-01 Biocompatibles Uk Limited Echogenic spacers and strands
US8187159B2 (en) 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
US11278736B2 (en) 2013-03-15 2022-03-22 Gt Medical Technologies, Inc. Dosimetrically customizable brachytherapy carriers and methods thereof in the treatment of tumors
US11413473B2 (en) * 2011-04-28 2022-08-16 Gt Medical Technologies, Inc. Customizable radioactive carriers and loading system
US11504546B2 (en) 2019-02-28 2022-11-22 Cowles Ventures, Llc Needle guidance device for brachytherapy and method of use
US11524176B2 (en) 2019-03-14 2022-12-13 Cowles Ventures, Llc Locator for placement of fiducial support device method
US11673002B2 (en) 2016-11-29 2023-06-13 Gt Medical Technologies, Inc. Transparent loading apparatus
US11679275B1 (en) 2015-02-06 2023-06-20 Gt Medical Technologies, Inc. Radioactive implant planning system and placement guide system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442762A1 (en) * 1984-11-23 1986-06-26 Anwer Dipl.-Ing. 8520 Erlangen Puthawala REMOTE CONTROLLED AFTERLOADING DEVICE FOR BRACHYCURIE THERAPY OF TUMORS
US5460592A (en) 1994-01-24 1995-10-24 Amersham Holdings, Inc. Apparatus and method for making carrier assembly for radioactive seed carrier
WO2000074073A1 (en) 1999-05-26 2000-12-07 Amersham Plc Sterile radioactive seeds
US9271817B2 (en) * 2005-07-05 2016-03-01 Cook Biotech Incorporated Tissue augmentation devices and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153889A (en) * 1937-07-20 1939-04-11 J A Deknatel & Son Inc Suture
US2862108A (en) * 1952-07-02 1958-11-25 Asea Ab Device for containing and exposing a radioactive material
US3669093A (en) * 1969-09-05 1972-06-13 Kurt Sauerwein Apparatus for giving medical treatment by irradiation from radioactive substances

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954868A (en) * 1929-12-18 1934-04-17 Failla Gioacchino Method and means for treatment by radiations
US3393317A (en) * 1964-04-24 1968-07-16 Leo G. Spencer Radiological camera comprising a shielded container having a tortuous passageway
US3351049A (en) * 1965-04-12 1967-11-07 Hazleton Nuclear Science Corp Therapeutic metal seed containing within a radioactive isotope disposed on a carrier and method of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2153889A (en) * 1937-07-20 1939-04-11 J A Deknatel & Son Inc Suture
US2862108A (en) * 1952-07-02 1958-11-25 Asea Ab Device for containing and exposing a radioactive material
US3669093A (en) * 1969-09-05 1972-06-13 Kurt Sauerwein Apparatus for giving medical treatment by irradiation from radioactive substances

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Martinez et al., "International Journal of Radiation Oncology & Biological Physics", vol. 5, No. 3, Apr. 1979, pp. 411-413.
Martinez et al., International Journal of Radiation Oncology & Biological Physics , vol. 5, No. 3, Apr. 1979, pp. 411 413. *

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754745A (en) * 1984-11-21 1988-07-05 Horowitz Bruce S Conformable sheet material for use in brachytherapy
US4815449A (en) * 1984-11-21 1989-03-28 Horowitz Bruce S Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4697575A (en) * 1984-11-21 1987-10-06 Henry Ford Hospital Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4763642A (en) * 1986-04-07 1988-08-16 Horowitz Bruce S Intracavitational brachytherapy
US5906573A (en) * 1997-07-18 1999-05-25 Radiomed Corporation Radioactive surgical fastening devices and methods of making same
US6585633B2 (en) 1999-07-26 2003-07-01 C. R. Bard, Inc. Brachytherapy seed cartridge
US6221003B1 (en) 1999-07-26 2001-04-24 Indigo Medical, Incorporated Brachytherapy cartridge including absorbable and autoclaveable spacer
US6648811B2 (en) 1999-07-26 2003-11-18 C.R. Bard, Inc. Brachytherapy cartridge including absorbable and autoclaveable spacer
US6749553B2 (en) 2000-05-18 2004-06-15 Theragenics Corporation Radiation delivery devices and methods for their manufacture
US20040192998A1 (en) * 2000-05-18 2004-09-30 Brauckman Richard A. Radiation delivery devices and methods for their manufacture
US8470294B2 (en) 2000-11-16 2013-06-25 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US20100261946A1 (en) * 2000-11-16 2010-10-14 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US8821835B2 (en) 2000-11-16 2014-09-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US9636401B2 (en) 2000-11-16 2017-05-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US9636402B2 (en) 2000-11-16 2017-05-02 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US10493181B2 (en) 2000-11-16 2019-12-03 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
US10994058B2 (en) 2000-11-16 2021-05-04 Microspherix Llc Method for administering a flexible hormone rod
US8560052B2 (en) 2001-06-07 2013-10-15 Core Oncology, Inc. Echogenic medical device
US6723052B2 (en) 2001-06-07 2004-04-20 Stanley L. Mills Echogenic medical device
US20050049490A1 (en) * 2001-06-07 2005-03-03 Mills Stanley L. Echogenic medical device
US7252630B2 (en) 2001-11-02 2007-08-07 Worldwide Medical Technologies Llc Delivery for interstitial radiotherapy using hollow seeds
US20030092958A1 (en) * 2001-11-02 2003-05-15 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
US6820318B2 (en) 2001-11-02 2004-11-23 Ideamatrix, Inc. System for manufacturing interstitial radiation therapy seed strands
US20100121130A1 (en) * 2001-11-02 2010-05-13 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US20030084988A1 (en) * 2001-11-02 2003-05-08 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7874974B2 (en) 2001-11-02 2011-01-25 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US7942803B2 (en) 2001-11-02 2011-05-17 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy
US7008368B2 (en) 2001-11-02 2006-03-07 Ideamatrix, Inc. Method for making treatment strands
US20060069298A1 (en) * 2001-11-02 2006-03-30 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy
US7497818B2 (en) * 2001-11-02 2009-03-03 Terwilliger Richard A Delivery system and method for interstitial radiation therapy
US8066627B2 (en) 2001-11-02 2011-11-29 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7407477B2 (en) 2001-11-02 2008-08-05 Worldwide Medical Technologies Llc Strand with end plug
EP2462988A1 (en) 2001-11-02 2012-06-13 Biocompatibles UK Limited Delivery system and method for interstitial radiation therapy
US7060020B2 (en) 2001-11-02 2006-06-13 Ideamatrix, Inc. Delivery system and method for interstitial radiation therapy
US7074291B2 (en) 2001-11-02 2006-07-11 Worldwide Medical Technologies, L.L.C. Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US7094198B2 (en) * 2001-11-02 2006-08-22 Worldwide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed elements with ends having one of projections and indentations
US20060235365A1 (en) * 2001-11-02 2006-10-19 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using strands constructed with extruded strand housings
US20060264688A1 (en) * 2001-11-02 2006-11-23 World Wide Medical Technologies, Llc Strand with end plug
US6786858B2 (en) 2001-11-02 2004-09-07 Ideamatrix, Inc. Delivery system and method for interstitial radiotherapy using hollow seeds
WO2003039655A2 (en) 2001-11-02 2003-05-15 Terwilliger Richard A Delivery system and method for interstitial radiation therapy
US20040102671A1 (en) * 2001-11-02 2004-05-27 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed strands constructed with preformed strand housing
US7211039B2 (en) 2001-11-02 2007-05-01 Worldwide Medical Technologies Llc Strand with end plug
US20070135674A1 (en) * 2001-11-02 2007-06-14 Terwilliger Richard A Delivery for interstitial radiotherapy using hollow seeds
US20040102672A1 (en) * 2001-11-02 2004-05-27 Terwilliger Richard A. Delivery for interstitial radiotherapy using hollow seeds
US7244226B2 (en) 2001-11-02 2007-07-17 Worldwide MedicalTechnologies, LLC Methods for making therapeutic elements for implantation into patient tissue
US20030171637A1 (en) * 2001-11-02 2003-09-11 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy
US20070191669A1 (en) * 2001-11-02 2007-08-16 Worldwide Medical Technologies Llc Strand with end plug
US20040116767A1 (en) * 2002-09-10 2004-06-17 Lebovic Gail S. Brachytherapy apparatus and methods of using same
US7601113B2 (en) 2002-09-10 2009-10-13 Cianna Medical, Inc. Brachytherapy apparatus and methods of using same
US6969344B2 (en) 2003-02-10 2005-11-29 Bard Brachytherapy, Inc. End portion of first implantation seed spacer that receives and holds any one of implantation seed and second implantation seed spacer
US7322928B2 (en) * 2003-03-17 2008-01-29 Medi-Physics, Inc. Products and methods for brachytherapy
US20080097140A1 (en) * 2003-03-17 2008-04-24 Jay Reed Products and methods for Brachytherapy
US20040186340A1 (en) * 2003-03-17 2004-09-23 Jay Reed Products and methods for brachytherapy
US8007427B2 (en) 2003-03-17 2011-08-30 Medi-Physics, Inc. Products and methods for brachytherapy
US7037252B2 (en) * 2003-05-05 2006-05-02 Draxis Specialty Pharmaceuticals, Inc. Brachytherapy seed transport devices and methods for using same
US20040225176A1 (en) * 2003-05-05 2004-11-11 Flanagan Richard J. Brachytherapy seed transport devices and methods for using same
US20040230087A1 (en) * 2003-05-13 2004-11-18 Terwilliger Richard A. Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US6997862B2 (en) 2003-05-13 2006-02-14 Ideamatrix, Inc. Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US20060074270A1 (en) * 2003-05-13 2006-04-06 World Wide Medical Technologies, Llc Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US7736294B2 (en) 2003-05-13 2010-06-15 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using seed strands with custom end spacing
US7736295B2 (en) 2003-05-13 2010-06-15 Biocompatibles Uk Limited Delivery system and method for interstitial radiation therapy using custom end spacing
US20060089520A1 (en) * 2003-05-13 2006-04-27 Terwilliger Richard A Delivery system and method for interstitial radiation therapy using custom end spacing
US20050080314A1 (en) * 2003-10-09 2005-04-14 Terwilliger Richard A. Shielded transport for multiple brachytheapy implants with integrated measuring and cutting board
US7351192B2 (en) 2004-05-25 2008-04-01 Core Oncology, Inc. Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US20080207982A1 (en) * 2004-05-25 2008-08-28 Core Oncology, Inc. Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US20090193764A1 (en) * 2004-05-25 2009-08-06 Core Oncology, Inc. Selectively Loadable/Sealable Bioresorbable Carrier Assembly for Radioisotope Seeds
US20070135673A1 (en) * 2004-05-25 2007-06-14 Elliott Daniel M Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US8298129B2 (en) 2004-05-25 2012-10-30 Core Oncology, Inc. Selectively loadable/sealable bioresorbable carrier assembly for radioisotope seeds
US20060076520A1 (en) * 2004-10-12 2006-04-13 Drobnik Christopher D Radiation shielding container that encloses a vial of one or more radioactive seeds
US7199375B2 (en) * 2004-10-12 2007-04-03 Bard Brachytherapy, Inc. Radiation shielding container that encloses a vial of one or more radioactive seeds
US20090099402A1 (en) * 2005-07-22 2009-04-16 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US20070021642A1 (en) * 2005-07-22 2007-01-25 Worldwide Medical Technologies Llc Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US20070021643A1 (en) * 2005-07-22 2007-01-25 World Wide Medical Technologies, Llc Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US20090312594A1 (en) * 2005-07-22 2009-12-17 Biocompatibles Uk Limited Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US7972261B2 (en) 2005-07-22 2011-07-05 Biocompatibles Uk Limited Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US20090124894A1 (en) * 2005-07-22 2009-05-14 Biocompatibles Uk Limited Markers for use in brachytherapy and other radiation therapy that resist migration and rotation
US20090149692A1 (en) * 2005-07-22 2009-06-11 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US7736293B2 (en) 2005-07-22 2010-06-15 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8795146B2 (en) 2005-07-22 2014-08-05 Eckert & Ziegler Bebig S.A. Implants including spacers for use in brachytherapy and other radiation therapy that resist migration and rotation
US8021291B2 (en) 2005-07-22 2011-09-20 Biocompatibles Uk Limited Markers for use in brachytherapy and other radiation therapy that resist migration and rotation
US8790235B2 (en) 2005-07-22 2014-07-29 Eckert & Ziegler Debig S.A. Devices to resist migration and rotation of implants used in brachytherapy and other radiation therapy
US8114007B2 (en) 2005-07-22 2012-02-14 Biocompatibles Uk Limited Implants for use in brachytherapy and other radiation therapy that resist migration and rotation
US8187159B2 (en) 2005-07-22 2012-05-29 Biocompatibles, UK Therapeutic member including a rail used in brachytherapy and other radiation therapy
US8192345B2 (en) 2005-07-22 2012-06-05 Biocompatibles, UK Cartridge for use with brachytherapy applicator
US20090124846A1 (en) * 2005-07-22 2009-05-14 Biocompatibles Uk Limited Anchor seed cartridge for use with brachytherapy applicator
US20070265487A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc Applicators for use in positioning implants for use in brachytherapy and other radiation therapy
US20070265488A1 (en) * 2006-05-09 2007-11-15 Worldwide Medical Technologies Llc After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US7988611B2 (en) 2006-05-09 2011-08-02 Biocompatibles Uk Limited After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
US7985172B2 (en) 2006-05-09 2011-07-26 Biocompatibles Uk Limited After-loader devices and kits
US20080073601A1 (en) * 2006-08-24 2008-03-27 Temus Charles J Transportation container and assembly
US8003966B2 (en) * 2006-08-24 2011-08-23 Areva Federal Services Llc Transportation container and assembly
US7878964B1 (en) 2006-09-07 2011-02-01 Biocompatibles Uk Limited Echogenic spacers and strands
US7874976B1 (en) 2006-09-07 2011-01-25 Biocompatibles Uk Limited Echogenic strands and spacers therein
US20080269540A1 (en) * 2007-04-27 2008-10-30 Worldwide Medical Technologies Llc Seed cartridge adaptor and methods for use therewith
US20090216063A1 (en) * 2008-01-29 2009-08-27 Biocompatibles Uk Limited Bio-absorbable brachytherapy strands
US11413473B2 (en) * 2011-04-28 2022-08-16 Gt Medical Technologies, Inc. Customizable radioactive carriers and loading system
US11278736B2 (en) 2013-03-15 2022-03-22 Gt Medical Technologies, Inc. Dosimetrically customizable brachytherapy carriers and methods thereof in the treatment of tumors
US11679275B1 (en) 2015-02-06 2023-06-20 Gt Medical Technologies, Inc. Radioactive implant planning system and placement guide system
US11673002B2 (en) 2016-11-29 2023-06-13 Gt Medical Technologies, Inc. Transparent loading apparatus
US11504546B2 (en) 2019-02-28 2022-11-22 Cowles Ventures, Llc Needle guidance device for brachytherapy and method of use
US11524176B2 (en) 2019-03-14 2022-12-13 Cowles Ventures, Llc Locator for placement of fiducial support device method

Also Published As

Publication number Publication date
DE3272289D1 (en) 1986-09-04
EP0064860A2 (en) 1982-11-17
EP0064860B1 (en) 1986-07-30
JPH0326051B2 (en) 1991-04-09
JPS57192568A (en) 1982-11-26
EP0064860A3 (en) 1982-12-22

Similar Documents

Publication Publication Date Title
US4509506A (en) Shielding device for radioactive seed
US4763642A (en) Intracavitational brachytherapy
US5460592A (en) Apparatus and method for making carrier assembly for radioactive seed carrier
US6949064B2 (en) Brachytherapy seed deployment system
US5030195A (en) Radioactive seed patch for prophylactic therapy
US7131942B2 (en) Brachytherapy seed deployment system
US4697575A (en) Delivery system for interstitial radiation therapy including substantially non-deflecting elongated member
US4706652A (en) Temporary radiation therapy
JP4693066B2 (en) Device for loading radioactive seeds
US4754745A (en) Conformable sheet material for use in brachytherapy
US5084002A (en) Ultra-thin high dose iridium source for remote afterloader
JP4929167B2 (en) Selectable loadable / sealable bioabsorbable carrier assembly for radioactive seeds
US8641593B2 (en) Brachytherapy element transfer system
US7988611B2 (en) After-loader for positioning implants for needle delivery in brachytherapy and other radiation therapy
CA2624952C (en) Packaging system for brachytherapy devices
US20080004483A1 (en) Biodegradable seed placement device and method
US7037252B2 (en) Brachytherapy seed transport devices and methods for using same
US10328278B2 (en) Device for loading brachytherapy seeds into implantation sleeves
CA2530876A1 (en) Methods and systems of preparing preloaded needles for brachytherapy

Legal Events

Date Code Title Description
AS Assignment

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, ST. PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WINDORSKI, DAVID C.;KUBIATOWICZ, DAVID O.;REEL/FRAME:003892/0645

Effective date: 19810508

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MINNESOTA MINING AND MANUFACTURING COMPANY, 3M CEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEDI-PHYSICS, INC.;REEL/FRAME:005682/0150

Effective date: 19910215

AS Assignment

Owner name: MEDI-PHYSICS, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MINNESOTA MINING AND MANUFACTURING COMPANY;REEL/FRAME:005808/0092

Effective date: 19910326

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MEDI-PHYSICS, INC.

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MINNESOTA MINING AND MANUFACTURING COMPANY;REEL/FRAME:006627/0553

Effective date: 19930716

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12