US3916270A - Electrostatic holddown apparatus - Google Patents

Electrostatic holddown apparatus Download PDF

Info

Publication number
US3916270A
US3916270A US466437A US46643774A US3916270A US 3916270 A US3916270 A US 3916270A US 466437 A US466437 A US 466437A US 46643774 A US46643774 A US 46643774A US 3916270 A US3916270 A US 3916270A
Authority
US
United States
Prior art keywords
sheet
electrostatic
holddown
electrodes
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US466437A
Inventor
Ingrid Jean Wachtler
Jonathan Moses Marshall
William Arno Vetanen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Inc
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Priority to US466437A priority Critical patent/US3916270A/en
Priority to JP5198275A priority patent/JPS5439773B2/ja
Application granted granted Critical
Publication of US3916270A publication Critical patent/US3916270A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43LARTICLES FOR WRITING OR DRAWING UPON; WRITING OR DRAWING AIDS; ACCESSORIES FOR WRITING OR DRAWING
    • B43L5/00Drawing boards
    • B43L5/02Drawing boards having means for clamping sheets of paper thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • G01D15/28Holding means for recording surfaces; Guiding means for recording surfaces; Exchanging means for recording surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/02Exposure apparatus for contact printing
    • G03B27/14Details
    • G03B27/18Maintaining or producing contact pressure between original and light-sensitive material

Definitions

  • ABSTRACT A flexible sheet providing a surface to which articles are adhered by electrostatic forces.
  • a thin film of insulating material has a two-conductor electrode pattern etched or painted on the bottom surface thereof, so that the distance between the electrodes and the top surface of the film depends only on the thickness of the film.
  • the electrostatic force developed on the top surface of the film can be optimized for a given thin film sheet.
  • the flexible thin film sheet ' can be adhered to a variety of surfaces of arcuate or planar configurations.
  • This invention relates to an improved electrostatic holddown apparatus for use in applications such as on graphic plotters and drafting tables where it is desirable to adhere one material, such aspaper, to another surface without clamps, vacuum, or adhesives, and more particularly relates to a method of fabricating such a holddown apparatus.
  • Coulombs Inverse Square Law states that the force between two electrostatically charged bodies is proportional to the product of the magnitude of the charges on the bodies and inversely proportional to the square of the distance between them, expressed mathematically as F KQ Q )2, where F is the resultant electrostatic force between the charged bodies, K is a proportionality factor representing the ratio of the absolute dielectric constant for the homogeneous dielectric me dium separating the charged bodies to the dielectric constant for free space, Q and Q are the magnitudes of the charges on the surfaces of the two bodies, and r is the distance between them.
  • the paper has two primary sources of charged particles that can be attracted.
  • the first source comprises the free charged particles which are available within the papers environment.
  • the second source comprises the bound charge concentrations which are a result of the papers polar characteristics.
  • This protective layer is several mils in thickness, and it is difficult to control the distance r between the electrodes and the top surface of the protective layer because of irregularities in electrode thickness and the adhesives used to bond the materials. :Consequently,'a potential of 2000 volts is required to develop a suitable electrostatic field.
  • an improved electrostatic holddown apparatus relying on the principles of Coulombs Inverse Square Law in its application is provided.
  • Two individual sets of conductors arranged in an intermeshed pattern are disposed on one side of a thin film sheet of insulating material, the other side of which provides the surface to which non-conductive materials such as paper may be adhered by electrostatic force when a difference in electrical potential is applied to the conductors.
  • the distance between the conducting paths and the holddown surface is dependent only on the thickness of the insulating material, which can be as little as one-half mil and still provide the required insulation.
  • the holddown apparatus thus provided can be adhered to a variety of conductive or non-conductive base surfaces of either planar or arcuate configurations. Additionally, if no base surface is required, the insulating material including the conductor electrodes can be heat sealed to another sheet of the material to form a complete flexible holddown apparatus.
  • FIG. 1 shows a typical graphical plotter which utilizes an electrostatic holddown apparatus according to the present invention
  • FIG. 2 shows a basic intermeshed electrode pattern for producing an electrostatic force field
  • FIG. 3 shows an exploded view section of the holddown apparatus according to one embodiment of the present invention
  • FIG. 4 shows an exploded view section of the holddown apparatus according to an alternative embodiment of the present invention.
  • FIG. shows a cross-sectional view taken along the line 5-5 of FIG. 2.
  • FIG. 1 shows a graphical plotter 1 having a platen 2 which has a planar plotting surface over which a pen 3 is passed to produce a graphical display in X-Y coordinates.
  • the pen 3 is mounted in a pen holder 5 which moves along a bar assembly 7 in the Y-coordinate direction in accordance with electrical signals applied to the Y input channel of plotter l.
  • the bar assembly 7 including the pen holder 5 moves across the plotter 1 in the X-coordinate direction in accordance with electrical signals applied to the X-input channel of plotter l.
  • a sheet of paper 10 is positioned on the platen 2 to provide a record of the graphical display drawn by pen 3, and it is imperative that paper 10 be adhered entirely smooth to the plotting surface without wrinkles to prevent display aberrations.
  • the paper 10 is adhered to the surface of the platen 2 by electrostatic forces.
  • Two individual sets of conductive electrodes and 21 respectively are alternately intermeshed and evenly spaced so that an electrical potential may be applied therebetween to produce an electrostatic field.
  • a suitable DC voltage source 25 may be connected to and disconnected from the electrodes by switch 26.
  • a DC. voltage in the range of 400 to 900 volts applied between the electrodes 20 and 21 will develop an effective electrostatic force.
  • the platen 2 including the holddown apparatus according to the present invention is constructed as illustrated by the enlarged, exploded view of a section of the platen shown in FIG. 3.
  • a thin insulative sheet 15 having a thickness of from 0.5 mils to 2 mils has electrodes 20 and 21 disposed in intimate contact with the bottom surface thereof in accordance with the grid pattern shown in FIG. 2.
  • the electrodes may be applied using conventional photoprocessing techniques or using conductive paint.
  • the holddown assembly thus constructed may then be adhered to a rigid base surface by an adhesive to provide a rigid holddown board, or may be adhered to another sheet of insulative material 15 to provide a flexible holddown apparatus as shown in FIG. 4.
  • a polyvinyl flouride film such as Tedlar
  • Tedlar has excellent properties for use as the insulative sheet 15.
  • dielectric characteristics and availability in thicknesses from 0.5 mils to 2 mils, it is smooth, durable, light in color, stain resistant, and readily cleaned with available cleansers.
  • a thin metal film is evaporated onto the lower surface of a sheet of polyvinyl flouride film.
  • the metal film which may be for example aluminum, copper, silver, etc., may vary from about 100 Angstroms to many thousands of Angstroms in thickness. For this process, a good rule of thumb in determining the thickness desired is to build up the metal film until it is substantially smooth to the touch. The desired electrode pattern is then etched, removing the undesired metal by conventional photoprocessing techniques.
  • the holddown apparatus thus constructed can be adhered to a variety of base surfaces because it is completely flexible.
  • the base surfaces can be flat, cylindrical, or rectangular, and therefore provides an excellent electrostatic holddown surface for drum-type recorders and the like. Additionally, the base surfaces can be either rigid or flexible.
  • a non-conductive glue may be used to adhere the holddown apparatus to a nonconductive surface.
  • Mylar tape having adhesive on both sides can be used to adhere it to conductive surfaces such as aluminum. If no adhesive or base surface "is required, polyvinyl flouride film can be heat sealed Since the thickness t is known and uniform, the hold ing force can be increased for a given voltage. More significantly, a lower voltage can be utilized to produce a sufficient electrostatic field, lower the shock hazard.
  • An electrostatic sheet holddown apparatus comprising:
  • a sheet of insulating material of substantially uniform thickness having a top surface and a bottom surface

Abstract

A flexible sheet providing a surface to which articles are adhered by electrostatic forces. A thin film of insulating material has a two-conductor electrode pattern etched or painted on the bottom surface thereof, so that the distance between the electrodes and the top surface of the film depends only on the thickness of the film. In accordance with Coulomb''s Inverse Square Law, the electrostatic force developed on the top surface of the film can be optimized for a given thin film sheet. The flexible thin film sheet can be adhered to a variety of surfaces of arcuate or planar configurations.

Description

Wachtler et al.
[ Oct. 28, 1975 FOREIGN PATENTS OR APPLICATIONS i,O43,298
ELECTROSTATIC HOLDDOWN APPARATUS Inventors: Ingrid Jean Wachtler, Beaverton';
Jonathan Moses Marshall, Portland; William Arno Vetanen, Beaverton, all of Oreg.
Assignee: Tektronix, Inc., Beaverton, Oreg. Filed: May 2, 1974 Appl. No.: 466,437
US. Cl 317/262 E; 317/262 E Int. Cl. HOIN 13/00 Field of Search 317/262 E, 262 R References Cited UNITED STATES PATENTS 1/1972 Stevko 317/262 E 9/1966 United Kingdom Primary Examiner-L. T. Hix Attorney, Agent, or FirmGeorge T. Noe
[57] ABSTRACT A flexible sheet providing a surface to which articles are adhered by electrostatic forces. A thin film of insulating material has a two-conductor electrode pattern etched or painted on the bottom surface thereof, so that the distance between the electrodes and the top surface of the film depends only on the thickness of the film. In accordance with Coulombs Inverse Square Law, the electrostatic force developed on the top surface of the film can be optimized for a given thin film sheet. The flexible thin film sheet 'can be adhered to a variety of surfaces of arcuate or planar configurations.
5 Claims, 5 Drawing Figures ----1 l l------ I\G U.S. Patent Oct. 28, 1975 3,916,270
ELECTROSTATIC HOLDDOWNAPPARATUS BACKGROUND OF THE INVENTION This invention relates to an improved electrostatic holddown apparatus for use in applications such as on graphic plotters and drafting tables where it is desirable to adhere one material, such aspaper, to another surface without clamps, vacuum, or adhesives, and more particularly relates to a method of fabricating such a holddown apparatus.
It is well publicized in the literature of the art that the principle of electrostatic attraction in accordance with Coulombs Inverse Square Law can be utilized for attracting and retaining non-conductive articles and sheets to semiconductor or insulating surfaces. Coulombs Inverse Square Law states that the force between two electrostatically charged bodies is proportional to the product of the magnitude of the charges on the bodies and inversely proportional to the square of the distance between them, expressed mathematically as F KQ Q )2, where F is the resultant electrostatic force between the charged bodies, K is a proportionality factor representing the ratio of the absolute dielectric constant for the homogeneous dielectric me dium separating the charged bodies to the dielectric constant for free space, Q and Q are the magnitudes of the charges on the surfaces of the two bodies, and r is the distance between them.
In order to hold material such as paper to a holddown surface by electrostatic forces, a concentration of charges of one polarity is required in the holddown apparatus and a concentration of charges of opposite polarity is required in the paper. The paper has two primary sources of charged particles that can be attracted. The first source comprises the free charged particles which are available within the papers environment. The second source comprises the bound charge concentrations which are a result of the papers polar characteristics.
It has been a common practice to provide a charge in a holddown surface, or a holddown board, by apply ing a difference in voltage potential across a pair of conductive electrodes which are intermeshed in a pattern chosen to provide a maximum stored charge without arcing between the conductors.
One prior art reference, a U.S. Pat. application, Ser. No. 302,544, filed Aug. 16, I963 corresponding to British Patent Specification No. 1,043,298, teaches the use of two individual setsof conductors alternately intermeshed to which voltages are applied to provide the holddown board with areas of concentrated positive charge and areas of concentrated negative charge. The conductors may be fabricated by etching a conductive sheet which has been affixed to an insulating base layer, then a thin sheet of insulating material, such as fiberglass, is placed over the base layer and conductors to provide a protective layer. This protective layer is several mils in thickness, and it is difficult to control the distance r between the electrodes and the top surface of the protective layer because of irregularities in electrode thickness and the adhesives used to bond the materials. :Consequently,'a potential of 2000 volts is required to develop a suitable electrostatic field.
Another prior art device, U.S. Pat. No. 3,634,740,
discloses an interdigitated electrode grid affixed to a base material, which is covered by a sheet of semiconductor material to permit the electrostatic field to quickly decay when the voltage is removed. This patent teaches that the top coating should be at least 10 mils thick as a practical limitation to minimize shock hazard, and that electrostatic holding action is created by applying an electrical potential between the electrodes of from 1,000 to 4,000 volts.
SUMMARY OF THE INVENTION According to the present invention, an improved electrostatic holddown apparatus relying on the principles of Coulombs Inverse Square Law in its application is provided. Two individual sets of conductors arranged in an intermeshed pattern are disposed on one side of a thin film sheet of insulating material, the other side of which provides the surface to which non-conductive materials such as paper may be adhered by electrostatic force when a difference in electrical potential is applied to the conductors. The distance between the conducting paths and the holddown surface is dependent only on the thickness of the insulating material, which can be as little as one-half mil and still provide the required insulation. Since the force of attraction between unlike charges will vary inversely with the square of the distance, a higher holding force can be developed for a given difference in voltage potential than was capable in prior art devices. Irregularities in conductor thickness are therefore not critical because the conductor-to-surface distance is uniform. Also, there is no adhesive between the conductors and the insulating material to increase the conductor-tosurface distance.
The holddown apparatus thus provided can be adhered to a variety of conductive or non-conductive base surfaces of either planar or arcuate configurations. Additionally, if no base surface is required, the insulating material including the conductor electrodes can be heat sealed to another sheet of the material to form a complete flexible holddown apparatus.
It is therefore one object of the present invention to provide an electrostatic holddown apparatus in which the electrical conductor-to-holddown surface is minimized.
It is another object of the present invention to provide an electrostatic holddown apparatus in which the holding force is increased for a given voltage.
It is a further object of the present invention to provide an electrostatic holddown apparatus in which the voltage required to produce a given electrostatic holding force is substantially lower than previous devices.
It is yet another object to provide a flexible electrostatic holddown apparatus which can be operated as a flexible unit or can be adhered to a variety of conductive and non-conductive base surfaces of arcuate and planar configurations.
Further objects, features, and advantages will be apparent from consideration of the following description taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows a typical graphical plotter which utilizes an electrostatic holddown apparatus according to the present invention;
FIG. 2 shows a basic intermeshed electrode pattern for producing an electrostatic force field;
FIG. 3 shows an exploded view section of the holddown apparatus according to one embodiment of the present invention;
FIG. 4 shows an exploded view section of the holddown apparatus according to an alternative embodiment of the present invention; and
FIG. shows a cross-sectional view taken along the line 5-5 of FIG. 2.
DETAILED DESCRIPTION Turning now to the drawings, FIG. 1 shows a graphical plotter 1 having a platen 2 which has a planar plotting surface over which a pen 3 is passed to produce a graphical display in X-Y coordinates. The pen 3 is mounted in a pen holder 5 which moves along a bar assembly 7 in the Y-coordinate direction in accordance with electrical signals applied to the Y input channel of plotter l. The bar assembly 7 including the pen holder 5 moves across the plotter 1 in the X-coordinate direction in accordance with electrical signals applied to the X-input channel of plotter l. A sheet of paper 10 is positioned on the platen 2 to provide a record of the graphical display drawn by pen 3, and it is imperative that paper 10 be adhered entirely smooth to the plotting surface without wrinkles to prevent display aberrations.
According to the present invention, the paper 10 is adhered to the surface of the platen 2 by electrostatic forces. Beneath the insulative surface of the platen 2, which is to be described in detail later, is an electrode grid such as the configuration shown in FIG. 2. Two individual sets of conductive electrodes and 21 respectively are alternately intermeshed and evenly spaced so that an electrical potential may be applied therebetween to produce an electrostatic field. A suitable DC voltage source 25 may be connected to and disconnected from the electrodes by switch 26. In accordance with the novel construction of the holddown apparatus comprising the platen 2, a DC. voltage in the range of 400 to 900 volts applied between the electrodes 20 and 21 will develop an effective electrostatic force.
The platen 2 including the holddown apparatus according to the present invention is constructed as illustrated by the enlarged, exploded view of a section of the platen shown in FIG. 3. A thin insulative sheet 15 having a thickness of from 0.5 mils to 2 mils has electrodes 20 and 21 disposed in intimate contact with the bottom surface thereof in accordance with the grid pattern shown in FIG. 2. Depending on the material used for insulative sheet 15, the electrodes may be applied using conventional photoprocessing techniques or using conductive paint. The holddown assembly thus constructed may then be adhered to a rigid base surface by an adhesive to provide a rigid holddown board, or may be adhered to another sheet of insulative material 15 to provide a flexible holddown apparatus as shown in FIG. 4.
It has been determined that a polyvinyl flouride film, such as Tedlar, has excellent properties for use as the insulative sheet 15. In addition to excellent dielectric characteristics and availability in thicknesses from 0.5 mils to 2 mils, it is smooth, durable, light in color, stain resistant, and readily cleaned with available cleansers.
In the preferred embodiment, a thin metal film is evaporated onto the lower surface of a sheet of polyvinyl flouride film. The metal film, which may be for example aluminum, copper, silver, etc., may vary from about 100 Angstroms to many thousands of Angstroms in thickness. For this process, a good rule of thumb in determining the thickness desired is to build up the metal film until it is substantially smooth to the touch. The desired electrode pattern is then etched, removing the undesired metal by conventional photoprocessing techniques. V
The holddown apparatus thus constructed can be adhered to a variety of base surfaces because it is completely flexible. The base surfaces can be flat, cylindrical, or rectangular, and therefore provides an excellent electrostatic holddown surface for drum-type recorders and the like. Additionally, the base surfaces can be either rigid or flexible. A non-conductive glue may be used to adhere the holddown apparatus to a nonconductive surface. Mylar tape having adhesive on both sides can be used to adhere it to conductive surfaces such as aluminum. If no adhesive or base surface "is required, polyvinyl flouride film can be heat sealed Since the thickness t is known and uniform, the hold ing force can be increased for a given voltage. More significantly, a lower voltage can be utilized to produce a sufficient electrostatic field, lower the shock hazard.
While we have shown and described the preferred and alternative embodiments of our invention, it will be apparent to those skilled in the art that many changes and substitutions may be made without departing from our invention in its broader aspects.
We claim:
1. An electrostatic sheet holddown apparatus, comprising:
a sheet of insulating material of substantially uniform thickness having a top surface and a bottom surface;
a plurality of intermeshed electrodes superposed on said bottom surface of said sheet in intimate contact with said sheet, said electrodes connected in two individual sets which are insulated from each other;
a base member; and
means for applying a difference in electrical potential between said two sets of electrodes so as to develop a uniform electrostatic field adjacent said top surface of said sheet of insulating material to electrostatically attract a sheet article thereto.
2. The apparatus according to claim 1 wherein said sheet of insulating material is from 0.5 mil to 2 mils thick, and said difference in electrical potential is from 400 volts to 900 volts.
3. The apparatus according to claim 1 wherein said sheet of insulative material is polyvinylflouride.
4. The apparatus according to claim 1 wherein said base member is substantially rigid and the surface thereof describes one of planar and arcuate shapes.
5. The apparatus according to claim 1 wherein said base member is substantially flexible.

Claims (5)

1. An electrostatic sheet holddown apparatus, comprising: a sheet of insulating material of substantially uniform thickness having a top surface and a bottom surface; a plurality of intermeshed electrodes superposed on said bottom surface of said sheet in intimate contact with said sheet, said electrodes connected in two individual sets which are insulated from each other; a base member; and means for applying a difference in electrical potential between said two sets of electrodes so as to develop a uniform electrostatic field adjacent said top surface of said sheet of insulating material to electrostatically attract a sheet article thereto.
2. The apparatus according to claim 1 wherein said sheet of insulating material is from 0.5 mil to 2 mils thick, and said difference in electrical potential is from 400 volts to 900 volts.
3. The apparatus according to claim 1 wherein said sheet of insulative material is polyvinylflouride.
4. The apparatus according to claim 1 wherein said base member is substantially rigid and the surface thereof describes one of planar and arcuate shapes.
5. The apparatus according to claim 1 wherein said base member is substantially flexible.
US466437A 1974-05-02 1974-05-02 Electrostatic holddown apparatus Expired - Lifetime US3916270A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US466437A US3916270A (en) 1974-05-02 1974-05-02 Electrostatic holddown apparatus
JP5198275A JPS5439773B2 (en) 1974-05-02 1975-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US466437A US3916270A (en) 1974-05-02 1974-05-02 Electrostatic holddown apparatus

Publications (1)

Publication Number Publication Date
US3916270A true US3916270A (en) 1975-10-28

Family

ID=23851747

Family Applications (1)

Application Number Title Priority Date Filing Date
US466437A Expired - Lifetime US3916270A (en) 1974-05-02 1974-05-02 Electrostatic holddown apparatus

Country Status (2)

Country Link
US (1) US3916270A (en)
JP (1) JPS5439773B2 (en)

Cited By (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078851A (en) * 1977-02-22 1978-03-14 Bell Telephone Laboratories, Incorporated Electrostatic optical fiber holder
WO1979000510A1 (en) * 1978-01-16 1979-08-09 Veeco Instr Inc Substrate clamping techniques in ic fabrication processes
US4184188A (en) * 1978-01-16 1980-01-15 Veeco Instruments Inc. Substrate clamping technique in IC fabrication processes
US4234621A (en) * 1979-01-08 1980-11-18 Fieux Robert E Means and method of restoring documents, paintings and the like
US4257083A (en) * 1978-10-25 1981-03-17 Blyth Victoria S Process for preserving pastel works of art
EP0049588A2 (en) * 1980-09-30 1982-04-14 Fujitsu Limited Method and apparatus for dry etching and electrostatic chucking device used therein
EP0073439A2 (en) * 1981-08-24 1983-03-09 Nestler + Werder AG Device for holding sheet-like objects, in particular a drawing board or registration pad
US4520421A (en) * 1982-08-11 1985-05-28 Hitachi, Ltd. Specimen supporting device
EP0249717A1 (en) * 1986-06-13 1987-12-23 Wilde Membran Impuls Technik GmbH Changing support for an information medium
US4751609A (en) * 1987-04-14 1988-06-14 Kabushiki Kaisha Abisare Electrostatic holding apparatus
US4864461A (en) * 1987-04-14 1989-09-05 Kabushiki Kaisha Abisare Machine unit having retaining device using static electricity
US4975802A (en) * 1988-07-25 1990-12-04 Kabushiki Kaisha Abisare Electrostatic adsorbing apparatus having electrostatic adsorbing plate for adsorbing and laminating a plurality of objects to be adsorbed
EP0401489A2 (en) * 1989-05-20 1990-12-12 Abisare Co., Ltd. Electrostratic attracting sheet
US5001594A (en) * 1989-09-06 1991-03-19 Mcnc Electrostatic handling device
EP0478875A2 (en) * 1990-10-02 1992-04-08 Abisare Co., Ltd. Billboard device
US5173834A (en) * 1989-06-02 1992-12-22 Roland Dg Corporation Electrostatic attraction apparatus
US5207437A (en) * 1991-10-29 1993-05-04 International Business Machines Corporation Ceramic electrostatic wafer chuck
US5260849A (en) * 1990-03-06 1993-11-09 Abisare Co., Ltd. Electrostatic attracting sheet
US5325261A (en) * 1991-05-17 1994-06-28 Unisearch Limited Electrostatic chuck with improved release
US5442429A (en) * 1992-09-30 1995-08-15 Tr Systems Inc Precuring apparatus and method for reducing voltage required to electrostatically material to an arcuate surface
US5452177A (en) * 1990-06-08 1995-09-19 Varian Associates, Inc. Electrostatic wafer clamp
US5486974A (en) * 1992-12-03 1996-01-23 Abisare Co., Ltd. Electrostatic attraction board system
US5508086A (en) * 1992-07-29 1996-04-16 Abisare, Co., Ltd. Electrostatic notice board system
US5578040A (en) * 1994-06-14 1996-11-26 Smith; Albert C. Ocular repair system and apparatus
US5600530A (en) * 1992-08-04 1997-02-04 The Morgan Crucible Company Plc Electrostatic chuck
US5708556A (en) * 1995-07-10 1998-01-13 Watkins Johnson Company Electrostatic chuck assembly
US5838529A (en) * 1995-12-22 1998-11-17 Lam Research Corporation Low voltage electrostatic clamp for substrates such as dielectric substrates
US5986874A (en) * 1997-06-03 1999-11-16 Watkins-Johnson Company Electrostatic support assembly having an integral ion focus ring
US6375750B1 (en) 1995-07-10 2002-04-23 Applied Materials, Inc. Plasma enhanced chemical processing reactor and method
WO2002041083A2 (en) * 2000-11-17 2002-05-23 Herman Allison Electro-adhesion
US6687969B1 (en) * 1997-05-16 2004-02-10 Micron Technology, Inc. Methods of fixturing flexible substrates and methods of processing flexible substrates
US20040066601A1 (en) * 2002-10-04 2004-04-08 Varian Semiconductor Equipment Associates, Inc. Electrode configuration for retaining cooling gas on electrostatic wafer clamp
US20040179323A1 (en) * 2003-03-11 2004-09-16 Alon Litman Electrostatic chuck for wafer metrology and inspection equipment
US20040233264A1 (en) * 2003-05-24 2004-11-25 Smith David E. Media electrostatic hold down and conductive heating assembly
US20050190250A1 (en) * 2004-02-26 2005-09-01 Hewlett-Packard Development Company, L.P. Media hold down system
US20090297321A1 (en) * 2008-05-29 2009-12-03 Illinois Tool Works Inc. Method and device for holding together an electrically non-conductive stack of objects and an electrode unit thereof
US20100007240A1 (en) * 2004-03-12 2010-01-14 Sri International Mechanical meta-materials
US20100271746A1 (en) * 2006-06-05 2010-10-28 Sri International Electroadhesive devices
US20110110010A1 (en) * 2006-06-05 2011-05-12 Sri International Wall crawling robots
US8195082B1 (en) 2005-02-15 2012-06-05 Tuscarora Designs, Inc Collator system and method for copy machines
WO2012150028A1 (en) * 2011-05-03 2012-11-08 Johnson Controls Gmbh Apparatus for holding articles and a fixture equipped therewith for a vehicle
US9623679B1 (en) * 2015-11-18 2017-04-18 Xerox Corporation Electrostatic platen for conductive pet film printing
US10886861B2 (en) 2018-06-13 2021-01-05 Hcl Technologies Limited Generating a controlled static electricity in a propensity medium
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2021-08-31 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303079A (en) * 1988-05-30 1989-12-06 Abisare:Kk Electrostatic adsorbing plate having flexible plug-in terminal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634740A (en) * 1970-04-20 1972-01-11 Addressograph Multigraph Electrostatic holddown

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825465A (en) * 1971-08-04 1973-04-03
JPS523072B2 (en) * 1973-10-15 1977-01-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634740A (en) * 1970-04-20 1972-01-11 Addressograph Multigraph Electrostatic holddown

Cited By (260)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078851A (en) * 1977-02-22 1978-03-14 Bell Telephone Laboratories, Incorporated Electrostatic optical fiber holder
WO1979000510A1 (en) * 1978-01-16 1979-08-09 Veeco Instr Inc Substrate clamping techniques in ic fabrication processes
US4184188A (en) * 1978-01-16 1980-01-15 Veeco Instruments Inc. Substrate clamping technique in IC fabrication processes
JPS55500049A (en) * 1978-01-16 1980-01-31
US4257083A (en) * 1978-10-25 1981-03-17 Blyth Victoria S Process for preserving pastel works of art
US4234621A (en) * 1979-01-08 1980-11-18 Fieux Robert E Means and method of restoring documents, paintings and the like
EP0049588A2 (en) * 1980-09-30 1982-04-14 Fujitsu Limited Method and apparatus for dry etching and electrostatic chucking device used therein
EP0049588A3 (en) * 1980-09-30 1983-03-23 Fujitsu Limited Method and apparatus for dry etching and electrostatic chucking device used therein
US4384918A (en) * 1980-09-30 1983-05-24 Fujitsu Limited Method and apparatus for dry etching and electrostatic chucking device used therein
EP0073439A2 (en) * 1981-08-24 1983-03-09 Nestler + Werder AG Device for holding sheet-like objects, in particular a drawing board or registration pad
EP0073439A3 (en) * 1981-08-24 1985-11-13 Nestler + Werder AG Device for holding sheet-like objects, in particular a drawing board or registration pad
US4520421A (en) * 1982-08-11 1985-05-28 Hitachi, Ltd. Specimen supporting device
EP0249717A1 (en) * 1986-06-13 1987-12-23 Wilde Membran Impuls Technik GmbH Changing support for an information medium
US4751609A (en) * 1987-04-14 1988-06-14 Kabushiki Kaisha Abisare Electrostatic holding apparatus
US4864461A (en) * 1987-04-14 1989-09-05 Kabushiki Kaisha Abisare Machine unit having retaining device using static electricity
US4975802A (en) * 1988-07-25 1990-12-04 Kabushiki Kaisha Abisare Electrostatic adsorbing apparatus having electrostatic adsorbing plate for adsorbing and laminating a plurality of objects to be adsorbed
US5202179A (en) * 1989-05-20 1993-04-13 Keiji Kasahara Electrostatic attracting sheet
EP0401489A3 (en) * 1989-05-20 1992-02-12 Abisare Co., Ltd. Electrostratic attracting sheet
EP0401489A2 (en) * 1989-05-20 1990-12-12 Abisare Co., Ltd. Electrostratic attracting sheet
US5173834A (en) * 1989-06-02 1992-12-22 Roland Dg Corporation Electrostatic attraction apparatus
US5001594A (en) * 1989-09-06 1991-03-19 Mcnc Electrostatic handling device
US5260849A (en) * 1990-03-06 1993-11-09 Abisare Co., Ltd. Electrostatic attracting sheet
US5452177A (en) * 1990-06-08 1995-09-19 Varian Associates, Inc. Electrostatic wafer clamp
US6388861B1 (en) 1990-06-08 2002-05-14 Varian Semiconductor Equipment Associates, Inc. Electrostatic wafer clamp
EP0478875A2 (en) * 1990-10-02 1992-04-08 Abisare Co., Ltd. Billboard device
EP0478875A3 (en) * 1990-10-02 1992-06-03 Abisare Co., Ltd. Billboard device
US5229910A (en) * 1990-10-02 1993-07-20 Abisare Co., Ltd. Billboard device
US5325261A (en) * 1991-05-17 1994-06-28 Unisearch Limited Electrostatic chuck with improved release
US5207437A (en) * 1991-10-29 1993-05-04 International Business Machines Corporation Ceramic electrostatic wafer chuck
US5508086A (en) * 1992-07-29 1996-04-16 Abisare, Co., Ltd. Electrostatic notice board system
US5600530A (en) * 1992-08-04 1997-02-04 The Morgan Crucible Company Plc Electrostatic chuck
US5442429A (en) * 1992-09-30 1995-08-15 Tr Systems Inc Precuring apparatus and method for reducing voltage required to electrostatically material to an arcuate surface
US5486974A (en) * 1992-12-03 1996-01-23 Abisare Co., Ltd. Electrostatic attraction board system
US5578040A (en) * 1994-06-14 1996-11-26 Smith; Albert C. Ocular repair system and apparatus
US5708556A (en) * 1995-07-10 1998-01-13 Watkins Johnson Company Electrostatic chuck assembly
US6375750B1 (en) 1995-07-10 2002-04-23 Applied Materials, Inc. Plasma enhanced chemical processing reactor and method
US5838529A (en) * 1995-12-22 1998-11-17 Lam Research Corporation Low voltage electrostatic clamp for substrates such as dielectric substrates
US6687969B1 (en) * 1997-05-16 2004-02-10 Micron Technology, Inc. Methods of fixturing flexible substrates and methods of processing flexible substrates
US5986874A (en) * 1997-06-03 1999-11-16 Watkins-Johnson Company Electrostatic support assembly having an integral ion focus ring
WO2002041083A2 (en) * 2000-11-17 2002-05-23 Herman Allison Electro-adhesion
WO2002041083A3 (en) * 2000-11-17 2003-01-30 Herman Allison Electro-adhesion
US20040066601A1 (en) * 2002-10-04 2004-04-08 Varian Semiconductor Equipment Associates, Inc. Electrode configuration for retaining cooling gas on electrostatic wafer clamp
US7430104B2 (en) 2003-03-11 2008-09-30 Appiled Materials, Inc. Electrostatic chuck for wafer metrology and inspection equipment
US20040179323A1 (en) * 2003-03-11 2004-09-16 Alon Litman Electrostatic chuck for wafer metrology and inspection equipment
US20040233264A1 (en) * 2003-05-24 2004-11-25 Smith David E. Media electrostatic hold down and conductive heating assembly
US7216968B2 (en) 2003-05-24 2007-05-15 Hewlett-Packard Development Company, L.P. Media electrostatic hold down and conductive heating assembly
US20050190250A1 (en) * 2004-02-26 2005-09-01 Hewlett-Packard Development Company, L.P. Media hold down system
US6997549B2 (en) 2004-02-26 2006-02-14 Hewlett-Packard Development Company, L.P. Media hold down system
US8164232B2 (en) 2004-03-12 2012-04-24 Sri International Mechanical meta-materials
US20100007240A1 (en) * 2004-03-12 2010-01-14 Sri International Mechanical meta-materials
US8436508B2 (en) 2004-03-12 2013-05-07 Sri International Mechanical meta-materials
US8195082B1 (en) 2005-02-15 2012-06-05 Tuscarora Designs, Inc Collator system and method for copy machines
US8111500B2 (en) 2006-06-05 2012-02-07 Sri International Wall crawling robots
US20110110010A1 (en) * 2006-06-05 2011-05-12 Sri International Wall crawling robots
US20100271746A1 (en) * 2006-06-05 2010-10-28 Sri International Electroadhesive devices
US8665578B2 (en) 2006-06-05 2014-03-04 Sri International Electroadhesive devices
US8125758B2 (en) * 2006-06-05 2012-02-28 Sri International Electroadhesive devices
US20090297321A1 (en) * 2008-05-29 2009-12-03 Illinois Tool Works Inc. Method and device for holding together an electrically non-conductive stack of objects and an electrode unit thereof
WO2012150028A1 (en) * 2011-05-03 2012-11-08 Johnson Controls Gmbh Apparatus for holding articles and a fixture equipped therewith for a vehicle
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US9623679B1 (en) * 2015-11-18 2017-04-18 Xerox Corporation Electrostatic platen for conductive pet film printing
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10886861B2 (en) 2018-06-13 2021-01-05 Hcl Technologies Limited Generating a controlled static electricity in a propensity medium
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11956977B2 (en) 2021-08-31 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11952658B2 (en) 2022-10-24 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material

Also Published As

Publication number Publication date
JPS50152830A (en) 1975-12-09
JPS5439773B2 (en) 1979-11-29

Similar Documents

Publication Publication Date Title
US3916270A (en) Electrostatic holddown apparatus
EP0294556B1 (en) Electrostatic holding apparatus
US4071689A (en) Lucent electrographic sensor for determining planar coordinates
US4444998A (en) Touch controlled membrane for multi axis voltage selection
EP0360529A3 (en) Electrostatic chuck
JP2535663B2 (en) Bulletin board
EP1295385B1 (en) Electro-adhesion device
JPS5856190A (en) Handwriting input equipment
JPS5764950A (en) Electrostatically attracting device and method therefor
JPS62153034A (en) Statical electricity retaining device
GB2136207A (en) Manufacture of electrets
GB2132359A (en) Determining co-ordinates of a point electrically
JPS59114690A (en) Coordinate input device
JPS58219686A (en) Device for detecting two-dimensional coordinate
JP2542724B2 (en) Sheet electrostatic adsorption method
JPS56129583A (en) Electrostatic attracting device for drawing paper and the like
JPS6489977A (en) Electrostatic motor
JPS62147520A (en) Input device
GB1057461A (en) Improvements in or relating to electrostatic recording
JPH0351237A (en) Electrostatic attracting device
JPS60196838A (en) Input device of coordinate
JPS5835679A (en) Coordinate input device due to switching of switch
KR820001912Y1 (en) The dielectric of electrostatic display device
JPS61279919A (en) Input switch for handwritten coordinate detector
KR820001913Y1 (en) The variable electrode of electrostatic display device