US3858581A - Medication injection device - Google Patents

Medication injection device Download PDF

Info

Publication number
US3858581A
US3858581A US375955A US37595573A US3858581A US 3858581 A US3858581 A US 3858581A US 375955 A US375955 A US 375955A US 37595573 A US37595573 A US 37595573A US 3858581 A US3858581 A US 3858581A
Authority
US
United States
Prior art keywords
medication
motor
lead screw
pulse
syringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US375955A
Inventor
Dean Kamen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
Dean Kamen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dean Kamen filed Critical Dean Kamen
Priority to US375955A priority Critical patent/US3858581A/en
Priority to CA198,646A priority patent/CA1041394A/en
Priority to GB2233774A priority patent/GB1465797A/en
Priority to FR7429284A priority patent/FR2282912A1/en
Application granted granted Critical
Publication of US3858581A publication Critical patent/US3858581A/en
Assigned to BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DEL. reassignment BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DEL. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AUTO SYRINGE, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1456Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/01Motorized syringe

Definitions

  • the present invention relates to improvements in a medication injection device, and more particularly to an automatic medication-injecting or administering device readily capable of dispensing medication in accordance with any selected schedule of successive intervals of operation and non-operation of a syringedriving or powering motor.
  • a medication injection device demonstrating objects and advantages of the present invention includes a motor operated in rotation and operatively arranged to cause linear displacement, and thus a medicationinjection stroke, in a syringe plunger, a pulse generating means effective to emit a pulse each rotational traverse of the motor during which said syringe plunger partakes of a known, uniform movement in its said stroke, and a pulse-counting means electrically connected to receive the transmission of each aforesaid pulse and operatively connected to cause the commencement of the operation of said syringe-driving motor and the continued operation thereof for the duration of the transmission thereto of a selected number of said pulses, whereby medication-dispensing service of said device is controlled as a function of the number of rotational traverses of said motor as counted by said pulse-counting means.
  • FIG. 1 is a perspective view of a medication injection device according to the present invention
  • FIG. 2 is a plan view of the device illustrating further structural features thereof, and also illustrating how the volume of the medication to be dispensed is related to an operating parameter of the device, namely electrical pulses emitted during its operation;
  • FIG. 3 is a side elevational view, taken in longitudinal section, illustrating internal structural features
  • FIG. 4 is an end elevational view, in section taken on line 4-4 of FIG. 3, illustrating structural features of a pulse generator used in the device hereof;
  • FIG. 5 is a partial plan view, in section taken on line 5-5 of FIG. 3, illustrating further structural features.
  • FIG. 6 is a block diagram illustrating the electrical components used in controlling the operation of the mechanical components of the device hereof.
  • FIGS. 1-3 show the general organization of the mechanical parts of a medication injection device, generally designated 10, demonstrating objects and advantages of the present invention.
  • the contemplated use of the device 10 is to achieve the intravenous injection of selected volumes of medication, dispensed from a syringe 12, according to a selected schedule. That is, there are many drugs which cannot be administered to a patient slowly and uniformly over a prolonged period, but rather must be administered within a prescribed comparatively short period, followed by a longer period, when it is not administered and the patients body has an opportunity to react to the administered drug. For example, there are certain blood anti-coagulants that are best administered frequently, but at intermittant intervals, in order to produce the desired effect on the blood. Device 10 can be most advantageously used for this purpose.
  • any selected volume of medication can be dispensed from the syringe 12 through tubing 15 having at its end, although not shown, a syringe needle or other implement connected for intravenous delivery of the medication into the patient.
  • the time interval, during which a selected volume of the drug or medication, such as 1 cubic centimeter or cc" is to be delivered can be relatively short, e.g., in less than 1 minute, and the next administration of this same volume of medication can be arranged to occur in 2 hours, or after other such interval of time.
  • syringe 12 is filled with 6 ccs of medication which has to be delivered I cc at a time every 2 hours, this is readily easy to achieve by proper setting of the controls of the device 10.
  • the values selected in the previous example can be modified, and the invention is no way intended to be limited thereto, since it can be just as easily arranged that 2 ccs of medication be administered every 6 hours, et cetera.
  • the significance of the mode of operation of device 10 is that it is operational or effective to dispense medication in accordance with a selected schedule of successive intervals of operation and non-operation.
  • the same includes, as previously noted, a syringe 12 of the type having a plunger 14, the linear displacement of which dictates the amount of medication which is dispensed from the syringe chamber 12 through the tubing 15 to the patient.
  • a follower Arranged to cause linear displacement of the plunger 14 is an upstanding head 16 of a follower, generally designated 18, which, as best shown in FIG. 3, has a threaded member which is mounted, as at 20, on a lead screw 22 which is powered in rotation by a motor 24.
  • the motor 24 is operatively connected to power the lead screw 22 in rotation, said lead screw having threads 26 of of uniform pitch machined along its length and further being disposed substantially parallel .to the path of linear displacement of the plunger 14, in this instance being arranged below plunger 14 so that the pushing head 16 is readily adapted to be mounted on an upstanding rod 28 projected through a slot 30 in the top plate 32 of the device housing 34.
  • An elastomeric closure 36 with a central slit 38 is appropriately mounted across the slot 30 to prevent dust or other contamination of the interior of the housing box 34.
  • a body element 40 Completing the construction of the follower 18, and as is well understood to prevent rotation thereof simultaneously with rotation of the lead screw 22, is a body element 40, the forward end of which is prevented from partaking of rotative movement by being projected, as at 42, through a bore or opening in a stationary depending mounting member 44 which also assists in supporting the previously noted motor 24.
  • lead screw 22 is driven in rotation and the threaded member in meshing engagement therewith is therefore advanced along the length of the lead screw 22.
  • member 20 is advanced toward the motor 24, and in the opposite direction of rotation away from the motor 24.
  • a laterally extending lip 48 which normally functions as a finger grip, has a portion disposed in a holding recess 50 of a mounting plate 52 appropriately secured in place on the top plate 32.
  • An L-shaped rod 54 functions as a clamp to hold the syringe barrel against the mounting plate 52 and, in turn, is held in place by a lock screw 56 which, upon threaded adjustment, engages the flattened surface 58 of the clamp 54.
  • a prior art motor will cause the delivery of a greater volume of a less viscous medication than one with a greater viscosity, and thus to achieve uniform dispensing of medication with such a prior art device, it is necessary to make an adjustment in the control to account for the different viscosities of the medication being dispensed.
  • the bearings or other moving parts of a prior art device would experience wear that would in turn effect its operation during an interval of operation, and this variation in frictional resistance would also-result in nonuniform volumes of medication being dispensed.
  • the interval of operation of the powering motor 24 is related to the number of rotational traverses that occur in the lead screw 22, irrespective of the time that it takes to achieve these number of rotational traverses.
  • member 20 is advanced a uniform amount dictated by the pitch of the uniform threads 26, and this uniform advancement of member 20 also occurs in the pushing head 16 and thus must, of necessity, also result in a uniform linear displacement in the syringe plunger 14.
  • a scale As illustrated in FIG. 2, marked along one edge of the top plate 32, as along edge 60, is a scale, generally designated 62, which is laid out, starting from 0, in ascending numbers such that said numbers are located at distances from the starting point 0 which correspond to the distances of advancement that is produced by the uniform advance or thread pitch 26, that results from that number of rotational traverses in the lead screw 22.
  • member 20 will move the pitch of each thread 26 thereon, it follows that the linear distance 64 will be achieved with 10 rotational traverses, and twice that distance with 20 rotational traverses, and so on. Further, assuming that it is desired to dispense 2 ccs of medication during each injection period, as clearly illustrated in FIG. 2, this will require approximately 27 rotational traverses since, by laying the syringe barrel l2 alongside the scale 62, a 2-cc volume as laid out on the barrel l2 spans the distance from the 0 point on the scale 62 to a point therealong, designated 65, which corresponds to point 27 of the scale.
  • the motoron timer includes, as best illustrated in FIG. 2, two control knobs or selectors 68 and 70, each being related to a circumferential display of numbers 72 from l to 10.
  • the other timing device is the one which controls or times the motor-off interval, this timer also including a selector 76 within a circumferential arrangement 78 of numbers from 1 to 10.
  • this timer also including a selector 76 within a circumferential arrangement 78 of numbers from 1 to 10.
  • selector 76 is moved in proper relation to numeral 2 to provide this result. The manner in which this result is achieved will be explained subsequently.
  • a radially oriented striker 80 which is driven in rotation simultaneously with the lead screw 22.
  • a switch contact arm against which actual physical contact is made by the striker 80 during each rotational traverse is a switch contact arm against which actual physical contact is made by the striker 80 during each rotational traverse. This physical contact or abuttment against the switch contact 82 results in actuation of the switch 84.
  • switch 84 is part of a pulse-generating circuit in that the actuation thereof is effective to complete this circuit and, in turn, cause the production and transmission of an electric pulse to a pulse-counting circuit which may be embodied on a printed circuit board 86 (see FIG. 3).
  • the pulse-counting circuit 86 will be understood to be effective in causing the commencement of the operation of the powering motor 24 and in causing the continued operation thereof for the duration of the transmission to it of a selected number of said pulses, which in the example being discussed would amount to 27 pulses.
  • This number of pulses or rotational traverses of the lead screw 22 will result, as already noted, in linear displacement of the syringe plunger 14 which will force out of the syringe barrel l2 2 ccs of medication.
  • the electrical control components of the device 10 are effective in causing three conditions of operation.
  • the first is the resetting of the motor-on timer 66 at the 0 setting.
  • the second is the termination of the operation of the powering motor 24.
  • the third is the starting of the timing operation of the motor-off timer 74.
  • the timer 74 is also operated by the transmission to it of pulses and, in accordance with the example being discussed, will therefore receive whatever number of pulses generated, not by the rotation ofthe lead screw 22, but by an oscillator of some other source, but which corresponds to the passage of 2 hours of time, this being the time interval selected for non-operation of the motor 24.
  • the motor 24 will again commence its operation, and at that time striker 80, by virtue of actuating switch 84, will again cause a pulse-generating activity as a function of the rotational traverses of the lead screw 22 being powered in rotation by the motor 24.
  • the operation of motor 24 which results in a medicine-injecting stroke in the syringe plunger 14 is again terminated.
  • the final 2 ccs of medication is dispensed from the syringe barrel 12, thus requiring the refilling thereof.
  • the follower body 40 has a laterally extending contact 88 which is arranged to actuate the limit switch 91 by physically abutting against the contact 92 thereof, thus indicating that the end of the medicine-injecting stroke 94 is reached.
  • device 10 In addition to the timing controls consisting of the motor-on timer 66 and motor-off timer 74, device 10 also includes a control which overrides these timing devices and which results in the injection of medicine, even if not in accordance with the selective schedule. This permits the injection of medicine or medication in emergency situations.
  • the control itself includes an accessible push-button 96 which, when depressed, is electrically effective to immediately start operation of the powering motor 24, even if at that time the device 10 is under the control of the motor-off timer 74.
  • Device 10 also includes an off-on master switch 98.
  • a visual signal in the form of a blinking light 100.
  • Light 100 is energized by each pulse successively transmitted to the timers 66 and 78, and thus is effective in indicating operation of the device 10 dur ing both motor-on and motor-off intervals.
  • Completing the device 10, and as best illustrated in FIG. 3, is a safety device feature which disconnects the drive between the motor 24 and lead screw 22 in the event of successive buildup of pressure which is transmitted in a reverse direction through the tube 15 into the barrel chamber 12 and against the syringe plunger 14.
  • This buildup of resistance pressure will of course be transmitted against the pushing head 16 and thus is manifested as a force tending to push lead screw 22 in a direction away from the motor 24.
  • a clutch 136 of a shaft coupling 90 will break its driving connection between its driving and driven elements and thus result in discontinuation of the driving connection between the motor 24 and the lead screw 22.
  • FIG. 6 there is illustrated, in diagramatic form, an exemplary electronic circuit which will be understood to be laid out and otherwise appropriately embodied on the printed circuit board 86.
  • Thecircuit of FIG. 6 will further be understood to function as the motor-on timer 66 and also as the motor-off timer 74, in both instances providing a timing function which utilizes and appropriately reacts to the transmission to it of an electronic pulse.
  • this portion of the circuit of FIG. 6, generally designated 110 provides the pulse-counting service or function for the device 10 in the manner previously described.
  • This function could be powered by batteries or by line voltage. That is, the device 10 can be used in strapped position on the arm of the patient, in which instance it will be portable and operated by batteries (not shown).
  • the power fed into the unit operates an electric oscillator or pulse generator 112.
  • This generator may be any one of several types, being generally a unit which reaches a selected peak voltage on a selected time basis and which emits a pulse.
  • the output or pulse from the generator 112 is fed into the counting circuit 110.
  • This counting circuit also could be any one of several socalled decade counting circuits readily available from major firms such as RCA or the like.
  • operation of a decade counter such as that denominated First Pulse Counter and designaged 114 in FIG. 6, has 10 or more outputs identified by the numbering from to 10.
  • the operation of the pulse counter 114 contemplates activation of each of these outputs in succession with each cycle of operation, and then a repeat of this cycle of operation. Accordingly, output 0 is first activated, then output 1, then output 2, et cetera. When output is activated, this completes an electrical connection to a second decade counter, designated Second Pulse Counter and identified by reference numeral 116, which experiences the same mode of operation just described in connection with counter 114. Meanwhile, the cycle of operation of counter 114 is repeated.
  • the selection of 27 pulses for the interval of operation of the powering motor 24 is thus achieved by arranging the selector 68 so that the wiper 120 thereof is electrically connected to output 2 of the second pulse counter 116 and that the selector 70, and more particularly the wiper 122 thereof, is electrically connected to the output 7 of the first pulse counter 114. While this may appear to be reversed, such arrangement provides for motor-on operation for an interval of 27 pulses.
  • pulse generator 112 also transmits a pulse via conductor 132 to a reset control circuit 134 which is effective to reset to 0 the motor-off timer 74 at the end of each interval of nonoperation of motor 24.
  • a reset control circuit 134 which is effective to reset to 0 the motor-off timer 74 at the end of each interval of nonoperation of motor 24.
  • This may be done in any number of ways.
  • One way, for example, is to have the last pulse of this interval operate a flip-flop switch.
  • Such switch is a standard part readily purchased in the open market from such firms as RCA and the like and operates, as generally noted, such that upon activation by said last pulse, it completes the circuit to the motor and at the same time resets the counting circuit at its original 0 setting.
  • the counting circuit 110 is in condition to start counting from 0 again.
  • the pulse generator 112 during the interval of operation of the motor 24, is controlled in its pulse-emitting function by the striker which, upon physical contact with the switch 84 during each rotational traverse of the lead screw 22, produces a pulse which is counted by the motor-on timer 66.
  • the pulse generator 112 is operated as an oscillator and transmits pulses also to a counting circuit, such as 110, which performs the same function during non-operation of the motor as was performed during its operation. Since the time of nonoperation of the powering motor 24 is considerably longer than the typical interval required for administration of medication, the pulse-counting circuit will include more than just two pulse counters 114 and 116. But at least the first two counters of an enlarged arrangement thereof can be counters 114, 116 to avoid duplication.
  • the primary use of the device 10 is, of course, for administering a predetermined volume of medication on a timed schedule. However, it is not strictly limited to this use, but also may be operated by monitoring equipment separate and apart from the timing devices 66 and 74 described herein. In other words, assume a cardiac patient has monitoring equipment to indicate when he is in medical difficulty. Such monitoring equipment could be used to provide a pulse which starts the motor 24 in operation and which causes the injection of the predetermined volume of medication to counteract the condition sensed by the monitoring equipment as requiring said medication.
  • a unique medication injection device 10 which is capable of administering medication in accordance with a selected schedule of successive intervals of operation and non-operation of the powering motor 24. Moreover, these intervals are controlled as a function of each rotational traverse, rather than strictly on a manually timed basis, as is the practice in the prior art.
  • the device 10 hereof is not vulnerable to variations which affect performance during any selected unit of time, such as variations in voltage, in viscosity of the medication being dispensed, variations in the frictional resistance within the motor itself, to mention just a few, and other such factors which adversely affect and produce nonuniformity in the functioning of devices of the class herein described.
  • a medication injection device comprising a syringe for dispensing medication in accordance with linear displacement of a plunger thereof, means secured to said syringe for connection to a patient for dispensing said medication to said patient, a rotatively mounted lead screw with threads of uniform pitch disposed in substantially parallel relation to the linear displacement path of said syringer plunger, pushing means mounted on said lead screw for advancement therealong in pushing engagement with said syringe plunger, a motor operatively arranged to power said lead screw in rotation to cause advancement of said pushing means and corresponding linear displacement of said syringe plunger, a radially oriented striker mounted on said lead screw, a pulse-emitting switch located adjacent said lead screw in the path of the rotational traverse of said striker so as to be engaged thereby to cause an emission of an electrical pulse during each rotation of said lead screw, and a pulse-counting means electrically connected to receive the transmission of each aforesaid pulse and operatively connected to permit the operation of
  • a medication injection device as defined in claim 1 including an additional timing means operatively connected to said motor to cause the commencement of the operation thereof after a selected interval of nonoperation, whereby said medication is dispensed by said device in accordance with a selected schedule of successive intervals of operation and non-operation of said motor.
  • a medication injection device as defined in claim 2 including a clutch interposed in the drive connection between said motor and said lead screw, and including means mounting said lead screw for selected limited linear movement for disengaging the same from said clutch to thereby terminate the powering rotation of said lead screw by said motor, whereby said dispensing of medication by said device is capable of being terminated in an emergency situation.
  • a medication injection device as defined in claim 4 including a scale calibrating linear displacement of said syringe plunger with an ascending number of pulses produced during said rotational operation of said motor, whereby the volume of medication to be dispensed can be readily related to a selected number of pulses as counted by said pulse-counting means.

Abstract

A medication-administering device controlled for repetitive delivery, by intravenous injection or otherwise, of predetermined syringe volumes of said medication at present time intervals, wherein the syringe plunger medication injection stroke is achieved using a powering motor, and the control exercised over the mode of operation of the device is related to the rotational traverses of said motor. This minimizes non-uniform performance and other shortcomings which characterize prior art medication injection devices in which the performance of the powering motors are vulnerable to variances due to varying line voltage, changing work loads (i.e. medication with different viscosities) and the like.

Description

United States Patent 11 Kamen Jan. 7, 1975 MEDICATION INJECTION DEVICE Primary ExaminerDalton L. Truluck [76] Inventor: Dean Kamen, 99 Bulsar Rd., Attorney Agent or F'rm Bauer & Amer Rockville Centre, NY. 11570 221 Filed: July 2, 1973 AB TRACT [2l] Appl. No.: 375,955 A medication-administering device controlled for repetitive delivery, by intravenous injection or otherwise, of predetermined syringe volumes of said medi- [52] US. Cl. 128/218 A, l28/DIG. l cation at present time intervals, wherein the Syringe [51] hit. Cl A6lm 5/20 plunger medication injection Stroke is achieved using [58] Fleld of Search 128/2 218 R a powering motor, and the control exercised over the 128/218 214 214 236 mode of operation of the device is related to the rotational traverses of said motor. This minimizes non- [56] References C'ted uniform performance and other shortcomings which UNITED STAT S PA NTS characterize prior art medication injection devices in 2,602,446 7/1952 Glass etal. 128/218 A hich the performance of the powering motors are 2,627,270 2/1953 Glass l28/2l8 A vulnerable to variances due to varying line voltage, 3,091,239 5/1963 Moeller 128/214 F changing work loads (i.e. medication with different HObbS A viscosities) and the 3,701,345 10/1972 Heilman et al 128/2 R 5 Claims, 6 Drawing Figures MEDICATION INJECTION DEVICE The present invention relates to improvements in a medication injection device, and more particularly to an automatic medication-injecting or administering device readily capable of dispensing medication in accordance with any selected schedule of successive intervals of operation and non-operation of a syringedriving or powering motor.
Motor driven syringes for medication injection service are already known, being described and illustrated in U.S. Pat. Nos. 3,456,649 and 3,623,474, as well as in other patents. None of these prior art devices are readily capable of repetitive deliveries of selected volumes of medication, i.e., of delivering 2 ccs of a medication every 2 hours for an 8-hour period, thereby performing four such deliveries, or otherwise operating on a schedule requiring repetition. Instead, each such prior art device is limited in-service to a one-time delivery of a seclected volume of medication, during which a motor merely drives the syringe plunger entirely through a selected linear displacement causing exiting flow of the medication from the syringe barrel.
Moreover, any attempt to achieve repetitive performance from any of the aforesaid prior art devices would be extremely difficult because of the limited controls that they can accommodate. In the syringe device of U.S Pat. No. 3,456,649, for example, the mechanical components partake of linear movement during its operation and thus, to achieve repetitive service, there would be required limit switches or the like, adjustable in position along the path of said linear movement, to start and stop operation of the device as a function of engagement or physical contact that is established with these limit switches. This concept of control is expensive and complicated, and also vulnerable to malfunction in the event of failure to establish operating contact between a moving part and a control switch. This, in turn, could result in the delivery or administration of an overdose of medication, thereby endangering the patients health.
Broadly, it is an object of the present invention to provide an improved medication injection device overcoming the foregoing and other shortcomings of the prior art. Specifically, it is an object to provide a motor driven syringe for medication injection or other delivery to a patient which is readily capable of repetitive service, is characterized by uniform performance in each said repeated cycle, and has a high degree of reliability in achieving these performance requirements.
A medication injection device demonstrating objects and advantages of the present invention includes a motor operated in rotation and operatively arranged to cause linear displacement, and thus a medicationinjection stroke, in a syringe plunger, a pulse generating means effective to emit a pulse each rotational traverse of the motor during which said syringe plunger partakes of a known, uniform movement in its said stroke, and a pulse-counting means electrically connected to receive the transmission of each aforesaid pulse and operatively connected to cause the commencement of the operation of said syringe-driving motor and the continued operation thereof for the duration of the transmission thereto of a selected number of said pulses, whereby medication-dispensing service of said device is controlled as a function of the number of rotational traverses of said motor as counted by said pulse-counting means.
The above brief description, as well as further objects, features and advantages of the present invention, will be more fully appreciated by reference to the following detailed description of a presently preferred, but nonetheless illustrative embodiment in accordance with the present invention, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a perspective view of a medication injection device according to the present invention;
FIG. 2 is a plan view of the device illustrating further structural features thereof, and also illustrating how the volume of the medication to be dispensed is related to an operating parameter of the device, namely electrical pulses emitted during its operation;
FIG. 3 is a side elevational view, taken in longitudinal section, illustrating internal structural features;
FIG. 4 is an end elevational view, in section taken on line 4-4 of FIG. 3, illustrating structural features of a pulse generator used in the device hereof;
FIG. 5 is a partial plan view, in section taken on line 5-5 of FIG. 3, illustrating further structural features; and
FIG. 6 is a block diagram illustrating the electrical components used in controlling the operation of the mechanical components of the device hereof.
Reference is now made to the drawings, and in particular to FIGS. 1-3, which show the general organization of the mechanical parts of a medication injection device, generally designated 10, demonstrating objects and advantages of the present invention. As the name implies, the contemplated use of the device 10 is to achieve the intravenous injection of selected volumes of medication, dispensed from a syringe 12, according to a selected schedule. That is, there are many drugs which cannot be administered to a patient slowly and uniformly over a prolonged period, but rather must be administered within a prescribed comparatively short period, followed by a longer period, when it is not administered and the patients body has an opportunity to react to the administered drug. For example, there are certain blood anti-coagulants that are best administered frequently, but at intermittant intervals, in order to produce the desired effect on the blood. Device 10 can be most advantageously used for this purpose.
As will be described in detail herein, any selected volume of medication can be dispensed from the syringe 12 through tubing 15 having at its end, although not shown, a syringe needle or other implement connected for intravenous delivery of the medication into the patient. Moreover, as just noted, the time interval, during which a selected volume of the drug or medication, such as 1 cubic centimeter or cc", is to be delivered can be relatively short, e.g., in less than 1 minute, and the next administration of this same volume of medication can be arranged to occur in 2 hours, or after other such interval of time. Thus, assuming that syringe 12 is filled with 6 ccs of medication which has to be delivered I cc at a time every 2 hours, this is readily easy to achieve by proper setting of the controls of the device 10. Naturally, the values selected in the previous example can be modified, and the invention is no way intended to be limited thereto, since it can be just as easily arranged that 2 ccs of medication be administered every 6 hours, et cetera. The significance of the mode of operation of device 10 is that it is operational or effective to dispense medication in accordance with a selected schedule of successive intervals of operation and non-operation.
In the preferred form of device as illustrated in FIGS. 15, the same includes, as previously noted, a syringe 12 of the type having a plunger 14, the linear displacement of which dictates the amount of medication which is dispensed from the syringe chamber 12 through the tubing 15 to the patient. Arranged to cause linear displacement of the plunger 14 is an upstanding head 16 of a follower, generally designated 18, which, as best shown in FIG. 3, has a threaded member which is mounted, as at 20, on a lead screw 22 which is powered in rotation by a motor 24. That is, the motor 24 is operatively connected to power the lead screw 22 in rotation, said lead screw having threads 26 of of uniform pitch machined along its length and further being disposed substantially parallel .to the path of linear displacement of the plunger 14, in this instance being arranged below plunger 14 so that the pushing head 16 is readily adapted to be mounted on an upstanding rod 28 projected through a slot 30 in the top plate 32 of the device housing 34. An elastomeric closure 36 with a central slit 38 is appropriately mounted across the slot 30 to prevent dust or other contamination of the interior of the housing box 34.
Completing the construction of the follower 18, and as is well understood to prevent rotation thereof simultaneously with rotation of the lead screw 22, is a body element 40, the forward end of which is prevented from partaking of rotative movement by being projected, as at 42, through a bore or opening in a stationary depending mounting member 44 which also assists in supporting the previously noted motor 24. In operation, lead screw 22 is driven in rotation and the threaded member in meshing engagement therewith is therefore advanced along the length of the lead screw 22. Naturally, in one direction of rotation of lead screw 22 member 20 is advanced toward the motor 24, and in the opposite direction of rotation away from the motor 24. Head 16 has movements corresponding to the member 20, and one said direction of movement causes it, because of its pushing engagement as at 46 with the end of the plunger 14, to cause linear displacement of this plunger within the syringe barrel 12 which, in an obvious manner, results in the dispensing of medication in accordance with said linear displacement from the internal chamber of the syringe 12. To hold the syringe 12 against displacement while the plunger thereof is being operated by the follower head 16, a laterally extending lip 48, which normally functions as a finger grip, has a portion disposed in a holding recess 50 of a mounting plate 52 appropriately secured in place on the top plate 32. An L-shaped rod 54 functions as a clamp to hold the syringe barrel against the mounting plate 52 and, in turn, is held in place by a lock screw 56 which, upon threaded adjustment, engages the flattened surface 58 of the clamp 54.
Although the lead screw and follower drive arrangement has been used heretofore in producing linear displacement of a syringe plunger in automatic medication injection devices, in the device 10 hereof, the manner in which control is exercised over the operation of the lead screw and follower 22, 28, respectively, is unique and is not known in the prior art nor is it suggested therein. Specifically, this control consists of using the rotational traverses of the lead screw 22 as the measure of the duration that the powering motor 24 is operational. As a consequence, serious prior art shortcomings are overcome. For example, if the powering motor in a prior art device is permitted to operate for a selected interval of time, this still would result in non-uniform volumes of medication being dispensed since, during the selected interval of time of motor operation, there could be variations in the line voltage utilized to energize the motor 24. Also, the work load on the powering motor could be variable and this also would result in non-uniform volumes of medication being dispensed. Within any specified time interval, a prior art motor will cause the delivery of a greater volume of a less viscous medication than one with a greater viscosity, and thus to achieve uniform dispensing of medication with such a prior art device, it is necessary to make an adjustment in the control to account for the different viscosities of the medication being dispensed. Still further, after a prolonged period of use the bearings or other moving parts of a prior art device would experience wear that would in turn effect its operation during an interval of operation, and this variation in frictional resistance would also-result in nonuniform volumes of medication being dispensed. In sharp contrast to the foregoing, it is therefore one of the unique aspects of the device 10 hereof that the interval of operation of the powering motor 24 is related to the number of rotational traverses that occur in the lead screw 22, irrespective of the time that it takes to achieve these number of rotational traverses. Naturally, with each rotational traverse of the lead screw 22, member 20 is advanced a uniform amount dictated by the pitch of the uniform threads 26, and this uniform advancement of member 20 also occurs in the pushing head 16 and thus must, of necessity, also result in a uniform linear displacement in the syringe plunger 14.
At this point in the description, it is appropriate to indicate how the volume of medication to be dispensed during each application is related to the number of rotational traverses of the lead screw 22. As illustrated in FIG. 2, marked along one edge of the top plate 32, as along edge 60, is a scale, generally designated 62, which is laid out, starting from 0, in ascending numbers such that said numbers are located at distances from the starting point 0 which correspond to the distances of advancement that is produced by the uniform advance or thread pitch 26, that results from that number of rotational traverses in the lead screw 22. Thus, taking into account that with each rotational traverse of the lead screw 22, member 20 will move the pitch of each thread 26 thereon, it follows that the linear distance 64 will be achieved with 10 rotational traverses, and twice that distance with 20 rotational traverses, and so on. Further, assuming that it is desired to dispense 2 ccs of medication during each injection period, as clearly illustrated in FIG. 2, this will require approximately 27 rotational traverses since, by laying the syringe barrel l2 alongside the scale 62, a 2-cc volume as laid out on the barrel l2 spans the distance from the 0 point on the scale 62 to a point therealong, designated 65, which corresponds to point 27 of the scale. Assuming further that it is desired to dispense these 2 ccs of medication every 2 hours, there are two timing controls embodied in the device 10 which are appropriately set to provide the schedule of medication administration indicated. From what has already been described, it should be readily appreciated that medication is administered or delivered to the patient only during operation of the powering motor 24. The motoron timer, generally designated 66, includes, as best illustrated in FIG. 2, two control knobs or selectors 68 and 70, each being related to a circumferential display of numbers 72 from l to 10. In a manner which will be better understood subsequently, the 2 ccs of medication previously discussed which also, as previously discussed, is dispensed by 27 rotational traverses of the lead screw 22, as thus imposed on the mode of operation of the device by setting the selector 68 at numeral2 and selector 70 at numeral 7, the combined effect being a selection of 27 as the number of rotational traverses which will occur in the lead screw 22 during each interval of operation of the powering motor 24.
The other timing device, generally designated 74, is the one which controls or times the motor-off interval, this timer also including a selector 76 within a circumferential arrangement 78 of numbers from 1 to 10. In the example being used to illustrate the mode of operation of device 10, the interval of non-operation of the powering motor 24 is to be 2 hours between injections of the medication, and thus selector 76 is moved in proper relation to numeral 2 to provide this result. The manner in which this result is achieved will be explained subsequently.
Reference will now be had to FIGS. 4, 5, in conjunction with FIGS. l-3, to best explain how the operation of device 10 is controlled in accordance with the rotational traverses of the lead screw 22. Specifically, mounted on the end of the lead screw 22 remote from the powering motor 24 is a radially oriented striker 80 which is driven in rotation simultaneously with the lead screw 22. As illustrated best in FIG. 4, mounted adjacent the striker 80, and more particularly, in the path of the rotational traverse thereof, is a switch contact arm against which actual physical contact is made by the striker 80 during each rotational traverse. This physical contact or abuttment against the switch contact 82 results in actuation of the switch 84. More particularly, it will be understood that switch 84 is part of a pulse-generating circuit in that the actuation thereof is effective to complete this circuit and, in turn, cause the production and transmission of an electric pulse to a pulse-counting circuit which may be embodied on a printed circuit board 86 (see FIG. 3).
As will be explained in greater detail in connection with the circuit diagram of FIG. 6, the pulse-counting circuit 86 will be understood to be effective in causing the commencement of the operation of the powering motor 24 and in causing the continued operation thereof for the duration of the transmission to it of a selected number of said pulses, which in the example being discussed would amount to 27 pulses. This number of pulses or rotational traverses of the lead screw 22 will result, as already noted, in linear displacement of the syringe plunger 14 which will force out of the syringe barrel l2 2 ccs of medication.
On the 27th rotational traverse of the lead screw 22, the electrical control components of the device 10 are effective in causing three conditions of operation. The first is the resetting of the motor-on timer 66 at the 0 setting. The second is the termination of the operation of the powering motor 24. The third is the starting of the timing operation of the motor-off timer 74. As in the case of the motor-on timer 66, the timer 74 is also operated by the transmission to it of pulses and, in accordance with the example being discussed, will therefore receive whatever number of pulses generated, not by the rotation ofthe lead screw 22, but by an oscillator of some other source, but which corresponds to the passage of 2 hours of time, this being the time interval selected for non-operation of the motor 24.
At the expiration of this 2-hour time interval, the motor 24 will again commence its operation, and at that time striker 80, by virtue of actuating switch 84, will again cause a pulse-generating activity as a function of the rotational traverses of the lead screw 22 being powered in rotation by the motor 24. When 27 pulses are again transmitted or counted by the pulsecounting circuit 26, the operation of motor 24 which results in a medicine-injecting stroke in the syringe plunger 14 is again terminated. Ultimately, the final 2 ccs of medication is dispensed from the syringe barrel 12, thus requiring the refilling thereof. To signal this condition, and as best illustrated in FIG. 5, the follower body 40 has a laterally extending contact 88 which is arranged to actuate the limit switch 91 by physically abutting against the contact 92 thereof, thus indicating that the end of the medicine-injecting stroke 94 is reached.
In addition to the timing controls consisting of the motor-on timer 66 and motor-off timer 74, device 10 also includes a control which overrides these timing devices and which results in the injection of medicine, even if not in accordance with the selective schedule. This permits the injection of medicine or medication in emergency situations. The control itself includes an accessible push-button 96 which, when depressed, is electrically effective to immediately start operation of the powering motor 24, even if at that time the device 10 is under the control of the motor-off timer 74. Device 10 also includes an off-on master switch 98.
Also advantageously included as part of the controls for the device 10 is a visual signal in the form of a blinking light 100. Light 100 is energized by each pulse successively transmitted to the timers 66 and 78, and thus is effective in indicating operation of the device 10 dur ing both motor-on and motor-off intervals.
Completing the device 10, and as best illustrated in FIG. 3, is a safety device feature which disconnects the drive between the motor 24 and lead screw 22 in the event of successive buildup of pressure which is transmitted in a reverse direction through the tube 15 into the barrel chamber 12 and against the syringe plunger 14. This buildup of resistance pressure will of course be transmitted against the pushing head 16 and thus is manifested as a force tending to push lead screw 22 in a direction away from the motor 24. In response to this force, a clutch 136 of a shaft coupling 90 will break its driving connection between its driving and driven elements and thus result in discontinuation of the driving connection between the motor 24 and the lead screw 22. Clearance for this slight rearward movement of lead screw 22 is provided by compression of an internal spring 138 as a driving notch 140 in the end of the lead screw 22 moves relative to a driving pin 142. The notch and pin drive 140, 142 will be recognized as providing simultaneous driving rotation of the striker 80 as powering motor 24 drives lead screw 22 in rotation.
Reference is now made to FIG. 6 in which there is illustrated, in diagramatic form, an exemplary electronic circuit which will be understood to be laid out and otherwise appropriately embodied on the printed circuit board 86. Thecircuit of FIG. 6 will further be understood to function as the motor-on timer 66 and also as the motor-off timer 74, in both instances providing a timing function which utilizes and appropriately reacts to the transmission to it of an electronic pulse. In effect, this portion of the circuit of FIG. 6, generally designated 110, provides the pulse-counting service or function for the device 10 in the manner previously described. This function, in turn, could be powered by batteries or by line voltage. That is, the device 10 can be used in strapped position on the arm of the patient, in which instance it will be portable and operated by batteries (not shown). Alternatively, it can be used at bedside, in which instance it would be powered by an ordinary electrical source. Assuming the latter, the power fed into the unit operates an electric oscillator or pulse generator 112. This generator may be any one of several types, being generally a unit which reaches a selected peak voltage on a selected time basis and which emits a pulse. The output or pulse from the generator 112 is fed into the counting circuit 110. This counting circuit also could be any one of several socalled decade counting circuits readily available from major firms such as RCA or the like.
For present purposes, it is suffice to note that operation of a decade counter, such as that denominated First Pulse Counter and designaged 114 in FIG. 6, has 10 or more outputs identified by the numbering from to 10. The operation of the pulse counter 114 contemplates activation of each of these outputs in succession with each cycle of operation, and then a repeat of this cycle of operation. Accordingly, output 0 is first activated, then output 1, then output 2, et cetera. When output is activated, this completes an electrical connection to a second decade counter, designated Second Pulse Counter and identified by reference numeral 116, which experiences the same mode of operation just described in connection with counter 114. Meanwhile, the cycle of operation of counter 114 is repeated. In effect, therefore, it takes the completion of the succession of pulses through all of the 10 outputs of the first counter 114 to produce one pulse which is sent via conductor 118 to the succeeding counter 116. In this manner, any number of pulses can be counted, it being understood that any selected number of counters 114, 116 and the like can be electrically connected to each other so as to function as a timing device, the two units 114, 116 being used as the motor-on timer 66 to measure the interval of time during which the powering motor 24 of the injection device 10 is operative. Naturally, a greater number of these units would be used in cooperative relation to provide the motor-off timer 74.
Continuing with the illustrative example previously referred to, the selection of 27 pulses for the interval of operation of the powering motor 24 is thus achieved by arranging the selector 68 so that the wiper 120 thereof is electrically connected to output 2 of the second pulse counter 116 and that the selector 70, and more particularly the wiper 122 thereof, is electrically connected to the output 7 of the first pulse counter 114. While this may appear to be reversed, such arrangement provides for motor-on operation for an interval of 27 pulses. As already explained, to achieve energization of output 2 of the second pulse counter 116 requires the transmission to this counter of two pulses, each one of which, however, requires the energization or pulsing of all ten outputs of the first pulse counter 114, or in other words 20 pulses. Thus. when the first pulse counter 114 starts on its third successive cycle of counting operation and when output 7 is energized on the seventh transmitted pulse, this results in electrical connection to the two outputs 2 and 7 electrically connected to the selectors 68 and 70. This, in turn, completes a control circuit 124 which results in the transmission of a pulse to a motor-off switch 126 which results in termination of the powering operation of the motor 24. It also results in the transmission of a pulse via a conductor 128 to a starter circuit 131 for the motor-off timer 74 which results in the start in operation of this timer.
It will of course be understood that the wipers associated with the selectors 68 and 70 could have been rotated to make electrical connection with other outputs other than the specific outputs indicated. This is illustrated in FIG. 6 wherein the range of wiper location is diagramatically illustrated by the path of wiper movement 130.
It is also illustrated in FIG. 6 that pulse generator 112 also transmits a pulse via conductor 132 to a reset control circuit 134 which is effective to reset to 0 the motor-off timer 74 at the end of each interval of nonoperation of motor 24. This may be done in any number of ways. One way, for example, is to have the last pulse of this interval operate a flip-flop switch. Such switch is a standard part readily purchased in the open market from such firms as RCA and the like and operates, as generally noted, such that upon activation by said last pulse, it completes the circuit to the motor and at the same time resets the counting circuit at its original 0 setting. As a result, when the motor operation is terminated, the counting circuit 110 is in condition to start counting from 0 again.
It should be readily appreciated from the description of the mechanical components of the device 10 that the pulse generator 112 during the interval of operation of the motor 24, is controlled in its pulse-emitting function by the striker which, upon physical contact with the switch 84 during each rotational traverse of the lead screw 22, produces a pulse which is counted by the motor-on timer 66. However, during non-operation of the powering motor 24, the pulse generator 112 is operated as an oscillator and transmits pulses also to a counting circuit, such as 110, which performs the same function during non-operation of the motor as was performed during its operation. Since the time of nonoperation of the powering motor 24 is considerably longer than the typical interval required for administration of medication, the pulse-counting circuit will include more than just two pulse counters 114 and 116. But at least the first two counters of an enlarged arrangement thereof can be counters 114, 116 to avoid duplication.
The primary use of the device 10 is, of course, for administering a predetermined volume of medication on a timed schedule. However, it is not strictly limited to this use, but also may be operated by monitoring equipment separate and apart from the timing devices 66 and 74 described herein. In other words, assume a cardiac patient has monitoring equipment to indicate when he is in medical difficulty. Such monitoring equipment could be used to provide a pulse which starts the motor 24 in operation and which causes the injection of the predetermined volume of medication to counteract the condition sensed by the monitoring equipment as requiring said medication.
From the foregoing description, it should be readily appreciated that there has been described herein a unique medication injection device 10 which is capable of administering medication in accordance with a selected schedule of successive intervals of operation and non-operation of the powering motor 24. Moreover, these intervals are controlled as a function of each rotational traverse, rather than strictly on a manually timed basis, as is the practice in the prior art. Thus, the device 10 hereof is not vulnerable to variations which affect performance during any selected unit of time, such as variations in voltage, in viscosity of the medication being dispensed, variations in the frictional resistance within the motor itself, to mention just a few, and other such factors which adversely affect and produce nonuniformity in the functioning of devices of the class herein described.
A latitude of modification, change and substitution is intended in the foregoing disclosure, and in some instances some features of the invention will be employed without a corresponding use of other features. Accordingly, it is appropriate that the appended claims be con trued broadly and in a manner consistent with the spirit and scope of the invention herein.
What is claimed is:
l. A medication injection device comprising a syringe for dispensing medication in accordance with linear displacement of a plunger thereof, means secured to said syringe for connection to a patient for dispensing said medication to said patient, a rotatively mounted lead screw with threads of uniform pitch disposed in substantially parallel relation to the linear displacement path of said syringer plunger, pushing means mounted on said lead screw for advancement therealong in pushing engagement with said syringe plunger, a motor operatively arranged to power said lead screw in rotation to cause advancement of said pushing means and corresponding linear displacement of said syringe plunger, a radially oriented striker mounted on said lead screw, a pulse-emitting switch located adjacent said lead screw in the path of the rotational traverse of said striker so as to be engaged thereby to cause an emission of an electrical pulse during each rotation of said lead screw, and a pulse-counting means electrically connected to receive the transmission of each aforesaid pulse and operatively connected to permit the operation of said motor for the duration of the transmission thereto of a selected number of said ppulses, whereby medication is dispensed in accordance with the linear displacement of said syringe plunger as a function of the number of rotational traverses of said lead screw as counted by said pulsecounting means.
2. A medication injection device as defined in claim 1 including an additional timing means operatively connected to said motor to cause the commencement of the operation thereof after a selected interval of nonoperation, whereby said medication is dispensed by said device in accordance with a selected schedule of successive intervals of operation and non-operation of said motor.
3. A medication injection device as defined in claim 2 including a clutch interposed in the drive connection between said motor and said lead screw, and including means mounting said lead screw for selected limited linear movement for disengaging the same from said clutch to thereby terminate the powering rotation of said lead screw by said motor, whereby said dispensing of medication by said device is capable of being terminated in an emergency situation.
4. A medication injection device as defined in claim 2 wherein said additional timing means is of the type operated by pulses transmitted to it as is also said pulsecounting means, and further including a visual signaling device connected to be operated by each pulse being transmitted to said additional timing means and to said pulse-counting means, whereby the operation of said visual signal device is effective in indicating the working condition of said medication injection device.
5. A medication injection device as defined in claim 4 including a scale calibrating linear displacement of said syringe plunger with an ascending number of pulses produced during said rotational operation of said motor, whereby the volume of medication to be dispensed can be readily related to a selected number of pulses as counted by said pulse-counting means.

Claims (5)

1. A medication injection device comprising a syringe for dispensing medication in accordance with linear displacement of a plunger thereof, means secured to said syringe for connection to a patient for dispensing said medication to said patient, a rotatively mounted lead screw with threads of uniform pitch disposed in substantially parallel relation to the linear displacement path of said syringer plunger, pushing means mounted on said lead screw for advancement therealong in pushing engagement with said syringe plunger, a motor operatively arranged to power said lead screw in rotation to cause advancement oF said pushing means and corresponding linear displacement of said syringe plunger, a radially oriented striker mounted on said lead screw, a pulse-emitting switch located adjacent said lead screw in the path of the rotational traverse of said striker so as to be engaged thereby to cause an emission of an electrical pulse during each rotation of said lead screw, and a pulse-counting means electrically connected to receive the transmission of each aforesaid pulse and operatively connected to permit the operation of said motor for the duration of the transmission thereto of a selected number of said ppulses, whereby medication is dispensed in accordance with the linear displacement of said syringe plunger as a function of the number of rotational traverses of said lead screw as counted by said pulse-counting means.
2. A medication injection device as defined in claim 1 including an additional timing means operatively connected to said motor to cause the commencement of the operation thereof after a selected interval of non-operation, whereby said medication is dispensed by said device in accordance with a selected schedule of successive intervals of operation and non-operation of said motor.
3. A medication injection device as defined in claim 2 including a clutch interposed in the drive connection between said motor and said lead screw, and including means mounting said lead screw for selected limited linear movement for disengaging the same from said clutch to thereby terminate the powering rotation of said lead screw by said motor, whereby said dispensing of medication by said device is capable of being terminated in an emergency situation.
4. A medication injection device as defined in claim 2 wherein said additional timing means is of the type operated by pulses transmitted to it as is also said pulse-counting means, and further including a visual signaling device connected to be operated by each pulse being transmitted to said additional timing means and to said pulse-counting means, whereby the operation of said visual signal device is effective in indicating the working condition of said medication injection device.
5. A medication injection device as defined in claim 4 including a scale calibrating linear displacement of said syringe plunger with an ascending number of pulses produced during said rotational operation of said motor, whereby the volume of medication to be dispensed can be readily related to a selected number of pulses as counted by said pulse-counting means.
US375955A 1973-07-02 1973-07-02 Medication injection device Expired - Lifetime US3858581A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US375955A US3858581A (en) 1973-07-02 1973-07-02 Medication injection device
CA198,646A CA1041394A (en) 1973-07-02 1974-05-01 Medication injection device
GB2233774A GB1465797A (en) 1973-07-02 1974-05-20 Medication injection devices
FR7429284A FR2282912A1 (en) 1973-07-02 1974-08-27 DEVICE FOR INJECTING MEDICINES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US375955A US3858581A (en) 1973-07-02 1973-07-02 Medication injection device

Publications (1)

Publication Number Publication Date
US3858581A true US3858581A (en) 1975-01-07

Family

ID=23483067

Family Applications (1)

Application Number Title Priority Date Filing Date
US375955A Expired - Lifetime US3858581A (en) 1973-07-02 1973-07-02 Medication injection device

Country Status (4)

Country Link
US (1) US3858581A (en)
CA (1) CA1041394A (en)
FR (1) FR2282912A1 (en)
GB (1) GB1465797A (en)

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912127A (en) * 1974-10-29 1975-10-14 Graco Inc Precision metering system
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
US4044764A (en) * 1975-10-30 1977-08-30 Szabo Anthony W Fluid infusion apparatus
US4059110A (en) * 1976-10-07 1977-11-22 Timex Corporation Clockwork driven hypodermic syringe
US4140117A (en) * 1975-05-12 1979-02-20 Alza Corporation Cartridge for liquid infusion apparatus
US4157716A (en) * 1977-03-07 1979-06-12 Contraves Ag Apparatus for the dosed dispensing of a liquid
US4191187A (en) * 1977-03-09 1980-03-04 National Research Development Corporation Medical apparatus
EP0009013A1 (en) * 1978-09-04 1980-03-19 Lkb Clinicon Aktiebolag A pipetting and dosing device
US4196730A (en) * 1977-08-01 1980-04-08 Wilson Dennis R Liquid drug dispenser
FR2486403A1 (en) * 1980-06-03 1982-01-15 Albisser Anthony PORTABLE DEVICE FOR SUBCUTANEOUS INJECTION OF A MEDICINAL PRODUCT
WO1982001998A1 (en) * 1980-12-15 1982-06-24 Corp Ivac Mechanism for screw drive and syringe plunger engagement/disengagement
US4345483A (en) * 1979-09-13 1982-08-24 Clinicon International Gmbh Metering apparatus
EP0123836A2 (en) * 1983-04-22 1984-11-07 B. Braun-SSC AG Method of delivering an early alarm signal to a syringe pump
EP0140622A1 (en) * 1983-10-13 1985-05-08 Corning Glass Works Friction drive for fluid metering system
WO1986001117A1 (en) * 1984-08-03 1986-02-27 Fresenius Ag Spray pump
EP0204977A1 (en) * 1985-05-14 1986-12-17 Ivion Corporation Syringe drive apparatus
FR2585252A1 (en) * 1985-07-26 1987-01-30 Gazuit Ste Nle Electronique Syringe pusher
US4648872A (en) * 1983-11-15 1987-03-10 Kamen Dean L Volumetric pump with replaceable reservoir assembly
US4652260A (en) * 1985-03-11 1987-03-24 Strato Medical Corporation Infusion device
FR2600258A1 (en) * 1986-06-18 1987-12-24 Hazon Bernard PUSH-SYRINGE DEVICE FOR AUTOMATIC PARENTERAL INJECTION WITH SERVICING AND PROGRAMMING
US4731058A (en) * 1986-05-22 1988-03-15 Pharmacia Deltec, Inc. Drug delivery system
EP0265536A1 (en) * 1986-10-27 1988-05-04 Elda Marinoni Device for dilating the neck of the uterus for medical use
US4767406A (en) * 1985-10-11 1988-08-30 Vickers Plc. Syringe pumps
US4833384A (en) * 1987-07-20 1989-05-23 Syntex (U.S.A.) Inc. Syringe drive assembly
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
WO1989011883A1 (en) * 1988-06-09 1989-12-14 Dell Orti Massimo Automatic aspiration and/or injection device for medical purposes
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
EP0388102A2 (en) * 1989-03-16 1990-09-19 The BOC Group plc Improvements in infusion pumps
WO1990010468A1 (en) * 1989-03-10 1990-09-20 Graseby Medical Limited Infusion pump
EP0398394A2 (en) * 1983-11-15 1990-11-22 KAMEN, Dean L. Reservoir assembly for removable engagement with a motor drive
US4976696A (en) * 1987-08-10 1990-12-11 Becton, Dickinson And Company Syringe pump and the like for delivering medication
US5101679A (en) * 1990-01-08 1992-04-07 Ivac Corporation Screw drive engagement/disengagement and decoupling mechanism
US5106375A (en) * 1991-05-23 1992-04-21 Ivac Corporation Dynamic lead screw engagement and indicator
US5147311A (en) * 1987-09-09 1992-09-15 Ewald Pickhard Injection device for use with a deformable ampoule
US5236416A (en) * 1991-05-23 1993-08-17 Ivac Corporation Syringe plunger position detection and alarm generation
EP0567945A1 (en) * 1992-04-29 1993-11-03 Becton, Dickinson and Company Syringe pump with biased lockable syringe clamp
EP0567962A1 (en) * 1992-04-29 1993-11-03 Becton, Dickinson and Company Syringe pump control system
US5269762A (en) * 1992-04-21 1993-12-14 Sterling Winthrop, Inc. Portable hand-held power assister device
US5273537A (en) * 1992-03-06 1993-12-28 Scimed Life Systems, Inc. Power-assisted inflation apparatus
US5322511A (en) * 1992-04-21 1994-06-21 Sterling Winthrop Inc. Portable hand-held power injector
WO1994014487A1 (en) * 1992-12-21 1994-07-07 John Elvin Teasdale Improved pulsed infusion system
US5347998A (en) * 1990-07-09 1994-09-20 Minnesota Mining And Manufacturing Company Breath actuated inhaler having an electromechanical priming mechanism
WO1995020410A1 (en) * 1994-01-28 1995-08-03 Mallinckrodt Medical, Inc. A conversion kit for a machine for automatic intravascular injection of solutions
US5533981A (en) * 1994-10-06 1996-07-09 Baxter International Inc. Syringe infusion pump having a syringe plunger sensor
US5545140A (en) * 1991-05-23 1996-08-13 Ivac Corporation Syringe plunger driver
US5647853A (en) * 1995-03-03 1997-07-15 Minimed Inc. Rapid response occlusion detector for a medication infusion pump
US5672155A (en) * 1996-06-14 1997-09-30 Riley; Robert Q. Fluid transfer apparatus
US5695464A (en) * 1993-12-29 1997-12-09 Zambon Group Spa Method of injection controlled by an infusion pump
US5814015A (en) * 1995-02-24 1998-09-29 Harvard Clinical Technology, Inc. Infusion pump for at least one syringe
USRE35979E (en) * 1984-06-06 1998-12-01 Mtfp, Inc. Angiographic injector and angiographic syringe for use therewith
US5925018A (en) * 1994-11-14 1999-07-20 Cma/Microdialysis Ab Infusion and microdialysis pump
US5954697A (en) * 1998-03-02 1999-09-21 Srisathapat; Chad Threaded nut syringe plunger for use with a medication infusion pump
US6042565A (en) * 1996-10-18 2000-03-28 Medrad, Inc. Syringe, injector and injector system
USD426884S (en) * 1998-07-08 2000-06-20 Chad Srisathapat Syringe plunger
WO2002051476A1 (en) * 2000-12-22 2002-07-04 Dca Design International Limited Pen-type injector having an electronic control unit
US6428509B1 (en) 1999-07-29 2002-08-06 Alaris Medical Systems, Inc. Syringe plunger driver system and method
US6482186B1 (en) 1999-09-29 2002-11-19 Sterling Medivations, Inc. Reusable medication delivery device
US6575936B1 (en) * 1997-01-10 2003-06-10 Japan Servo Co., Ltd. Liquid infusion apparatus
US20030114801A1 (en) * 2001-12-18 2003-06-19 Dca Design International Limited Medicament injection apparatus
US20040006310A1 (en) * 2000-10-17 2004-01-08 Simone Geiser Device for administering an injectable product in doses
US20040019313A1 (en) * 2002-07-19 2004-01-29 Childers Robert W. Systems, methods and apparatuses for pumping cassette-based therapies
US20050182355A1 (en) * 2002-01-03 2005-08-18 Tuan Bui Method and apparatus for providing medical treatment therapy based on calculated demand
US20050209563A1 (en) * 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US20070060887A1 (en) * 2005-08-22 2007-03-15 Marsh David A Ophthalmic injector
US20070074596A1 (en) * 2005-07-22 2007-04-05 Cardinal Health 303, Inc. Dynamic lead screw thread engagement system and method
US20070135758A1 (en) * 2000-02-10 2007-06-14 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US20070270744A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Limited Reuse Assembly For Ophthalmic Injection Device
US20070270750A1 (en) * 2006-05-17 2007-11-22 Alcon, Inc. Drug delivery device
US20080015406A1 (en) * 2005-02-24 2008-01-17 Dlugos Daniel F External Mechanical Pressure Sensor for Gastric Band Pressure Measurements
US20080200865A1 (en) * 2007-02-15 2008-08-21 Baxter International Inc. Dialysis system having optical flowrate detection
US20080200869A1 (en) * 2007-02-15 2008-08-21 Baxter International Inc. Dialysis system with efficient battery back-up
US20080200868A1 (en) * 2007-02-15 2008-08-21 One Baxter Parkway Dialysis system having video display with ambient light adjustment
WO2008106805A1 (en) * 2007-03-02 2008-09-12 Tecpharma Licensing Ag Administration appliance with occlusion identification
US20080249806A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc Data Analysis for an Implantable Restriction Device and a Data Logger
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US20080250341A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger
US20080281292A1 (en) * 2006-10-16 2008-11-13 Hickingbotham Dyson W Retractable Injection Port
US20090036846A1 (en) * 2006-05-17 2009-02-05 Bruno Dacquay Ophthalmic Injection System
US20090093789A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Method of Delivering A Rate And Temperature - Dependent Substance Into The Eye
US20090093788A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Thermal Coefficient Driven Drug Pellet Size For Ophthalmic Injection
US20090149874A1 (en) * 2007-12-10 2009-06-11 Ethicon Endo-Surgery. Inc. Methods for implanting a gastric restriction device
US20090171379A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Fluid logic for regulating restriction devices
US20090171375A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090204141A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US20090202387A1 (en) * 2008-02-08 2009-08-13 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US20090204179A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using temperature
US20090204131A1 (en) * 2008-02-12 2009-08-13 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with mems pump
US20090216255A1 (en) * 2008-02-26 2009-08-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090222065A1 (en) * 2006-04-06 2009-09-03 Ethicon Endo-Surgery, Inc. Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger
US20090228028A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. Reorientation port
US20090228063A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of communicating with an implantable antenna
US20090259180A1 (en) * 2008-04-11 2009-10-15 Jong Soo Choi Injection method using injector with length-adjustable needle and injection apparatus using the same
US20090287150A1 (en) * 2006-10-16 2009-11-19 Bruno Dacquay Universal Rechargeable Limited Reuse Assembly For Ophthalmic Hand Piece
US20100030136A1 (en) * 2006-10-16 2010-02-04 Bruno Dacquay Ophthalmic Injection Device Including Dosage Control Device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
GB2463051A (en) * 2008-08-29 2010-03-03 Eric Lawes A syringe actuation device
US20100106083A1 (en) * 2006-10-16 2010-04-29 Alcon Research, Ltd. Method of Operating Ophthalmic Hand Piece with Disposable End
US20100130932A1 (en) * 2007-05-11 2010-05-27 Ofer Yodfat Positive displacement pump
US7731689B2 (en) 2007-02-15 2010-06-08 Baxter International Inc. Dialysis system having inductive heating
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US20100211044A1 (en) * 2006-05-17 2010-08-19 Alcon Manufacturing, Lted. Battery operated surgical hand piece with disposable end
US20100286632A1 (en) * 2009-05-06 2010-11-11 Cesario Pereira Dos Santos Multi-Layer Heat Assembly For A Drug Delivery Device
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US20110152767A1 (en) * 2009-12-22 2011-06-23 Pinedjian Raffi S Method and Apparatus for Drug Delivery
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US20120083760A1 (en) * 2010-10-01 2012-04-05 Smiths Medical Asd, Inc. Flushing a Fluid Line From a Medical Pump
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8523827B2 (en) 2001-12-18 2013-09-03 Dca Design International Limited Medicament injection apparatus
US8558964B2 (en) 2007-02-15 2013-10-15 Baxter International Inc. Dialysis system having display with electromagnetic compliance (“EMC”) seal
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US20150196452A1 (en) * 2014-01-10 2015-07-16 Sebacia, Inc. Particle containers and delivery applicators
US20190175821A1 (en) * 2011-12-21 2019-06-13 Deka Products Limited Partnership Syringe Pump
US20190307960A1 (en) * 2018-04-10 2019-10-10 Beyoung Scientific Co., Ltd. Automatic Jet Injector for Administering Tissue
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US11224692B2 (en) 2010-10-01 2022-01-18 Smiths Medical Asd, Inc. Flushing a fluid line from a medical pump
WO2023037163A1 (en) * 2021-09-10 2023-03-16 Takeda Pharmaceutical Company, Limited Infusion pump

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2922037A1 (en) * 1979-05-30 1980-12-11 Birk Michael PNEUMATICALLY OPERATED INJECTION DEVICE
FR2544987B1 (en) * 1983-04-27 1990-05-25 Hyco Et Aulas SEMI-AUTOMATIC INSULIN PUMP FOR SICK LAYER
ES277095Y (en) * 1984-01-25 1985-02-16 Fernandez-Tresguerres Hernandez Jesus A. SUPPLIER-DISPENSER OF INJECTABLE PRODUCTS
FR2601252B1 (en) 1986-05-14 1990-06-08 Piani Jean MEDICATION INJECTION PUMP.
US5259732A (en) * 1992-04-29 1993-11-09 Becton, Dickinson And Company Syringe pump with syringe barrel position detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602446A (en) * 1950-02-27 1952-07-08 Antonina S Glass Automatic medical injection apparatus
US2627270A (en) * 1946-02-09 1953-02-03 Antonina S Glass Self-propelled automatic syringe
US3091239A (en) * 1958-08-25 1963-05-28 Moeller Wilhelm Apparatus for intravasal injection of gaseous and liquid media
US3631847A (en) * 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US3701345A (en) * 1970-09-29 1972-10-31 Medrad Inc Angiographic injector equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627270A (en) * 1946-02-09 1953-02-03 Antonina S Glass Self-propelled automatic syringe
US2602446A (en) * 1950-02-27 1952-07-08 Antonina S Glass Automatic medical injection apparatus
US3091239A (en) * 1958-08-25 1963-05-28 Moeller Wilhelm Apparatus for intravasal injection of gaseous and liquid media
US3631847A (en) * 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US3701345A (en) * 1970-09-29 1972-10-31 Medrad Inc Angiographic injector equipment

Cited By (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
US3912127A (en) * 1974-10-29 1975-10-14 Graco Inc Precision metering system
US4140117A (en) * 1975-05-12 1979-02-20 Alza Corporation Cartridge for liquid infusion apparatus
US4044764A (en) * 1975-10-30 1977-08-30 Szabo Anthony W Fluid infusion apparatus
US4059110A (en) * 1976-10-07 1977-11-22 Timex Corporation Clockwork driven hypodermic syringe
US4157716A (en) * 1977-03-07 1979-06-12 Contraves Ag Apparatus for the dosed dispensing of a liquid
US4191187A (en) * 1977-03-09 1980-03-04 National Research Development Corporation Medical apparatus
US4196730A (en) * 1977-08-01 1980-04-08 Wilson Dennis R Liquid drug dispenser
US4298575A (en) * 1978-09-04 1981-11-03 Lkb Clinicon Aktiebolag Pipetting and dosing device
EP0009013A1 (en) * 1978-09-04 1980-03-19 Lkb Clinicon Aktiebolag A pipetting and dosing device
US4345483A (en) * 1979-09-13 1982-08-24 Clinicon International Gmbh Metering apparatus
US4601707A (en) * 1980-06-03 1986-07-22 Albisser Anthony M Insulin infusion device
FR2486403A1 (en) * 1980-06-03 1982-01-15 Albisser Anthony PORTABLE DEVICE FOR SUBCUTANEOUS INJECTION OF A MEDICINAL PRODUCT
WO1982001998A1 (en) * 1980-12-15 1982-06-24 Corp Ivac Mechanism for screw drive and syringe plunger engagement/disengagement
EP0123836A2 (en) * 1983-04-22 1984-11-07 B. Braun-SSC AG Method of delivering an early alarm signal to a syringe pump
EP0123836A3 (en) * 1983-04-22 1985-05-22 Intermedicat Gmbh Method of delivering an early alarm signal to a syringe pump
EP0140622A1 (en) * 1983-10-13 1985-05-08 Corning Glass Works Friction drive for fluid metering system
US4648872A (en) * 1983-11-15 1987-03-10 Kamen Dean L Volumetric pump with replaceable reservoir assembly
EP0398394A3 (en) * 1983-11-15 1990-12-27 Dean L. Kamen Reservoir assembly for removable engagement with a motor drive
EP0398394A2 (en) * 1983-11-15 1990-11-22 KAMEN, Dean L. Reservoir assembly for removable engagement with a motor drive
USRE35979E (en) * 1984-06-06 1998-12-01 Mtfp, Inc. Angiographic injector and angiographic syringe for use therewith
WO1986001117A1 (en) * 1984-08-03 1986-02-27 Fresenius Ag Spray pump
US4652260A (en) * 1985-03-11 1987-03-24 Strato Medical Corporation Infusion device
EP0204977A1 (en) * 1985-05-14 1986-12-17 Ivion Corporation Syringe drive apparatus
FR2585252A1 (en) * 1985-07-26 1987-01-30 Gazuit Ste Nle Electronique Syringe pusher
US4767406A (en) * 1985-10-11 1988-08-30 Vickers Plc. Syringe pumps
US4731058A (en) * 1986-05-22 1988-03-15 Pharmacia Deltec, Inc. Drug delivery system
WO1987007843A1 (en) * 1986-06-18 1987-12-30 Bernard Hazon Monostroke syringe pusher for automatic parenteral injections with servo-control and programming
AU613871B2 (en) * 1986-06-18 1991-08-15 Bernard Hazon Monostroke syringe pusher for automatic parenteral injections with servo-control and programming
FR2600258A1 (en) * 1986-06-18 1987-12-24 Hazon Bernard PUSH-SYRINGE DEVICE FOR AUTOMATIC PARENTERAL INJECTION WITH SERVICING AND PROGRAMMING
EP0265536A1 (en) * 1986-10-27 1988-05-04 Elda Marinoni Device for dilating the neck of the uterus for medical use
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US4833384A (en) * 1987-07-20 1989-05-23 Syntex (U.S.A.) Inc. Syringe drive assembly
US4976696A (en) * 1987-08-10 1990-12-11 Becton, Dickinson And Company Syringe pump and the like for delivering medication
US5147311A (en) * 1987-09-09 1992-09-15 Ewald Pickhard Injection device for use with a deformable ampoule
WO1989011883A1 (en) * 1988-06-09 1989-12-14 Dell Orti Massimo Automatic aspiration and/or injection device for medical purposes
GB2229497B (en) * 1989-03-10 1992-06-03 Graseby Medical Ltd Infusion pump
GB2229497A (en) * 1989-03-10 1990-09-26 Graseby Medical Ltd Infusion pump safety device
AU635526B2 (en) * 1989-03-10 1993-03-25 Graseby Medical Limited Infusion pump
US5244461A (en) * 1989-03-10 1993-09-14 Graseby Medical Limited Infusion pump with occlusion sensitive shutoff
WO1990010468A1 (en) * 1989-03-10 1990-09-20 Graseby Medical Limited Infusion pump
EP0388102A3 (en) * 1989-03-16 1991-07-24 The BOC Group plc Improvements in infusion pumps
EP0388102A2 (en) * 1989-03-16 1990-09-19 The BOC Group plc Improvements in infusion pumps
US5101679A (en) * 1990-01-08 1992-04-07 Ivac Corporation Screw drive engagement/disengagement and decoupling mechanism
US5347998A (en) * 1990-07-09 1994-09-20 Minnesota Mining And Manufacturing Company Breath actuated inhaler having an electromechanical priming mechanism
US5106375A (en) * 1991-05-23 1992-04-21 Ivac Corporation Dynamic lead screw engagement and indicator
US5236416A (en) * 1991-05-23 1993-08-17 Ivac Corporation Syringe plunger position detection and alarm generation
US5545140A (en) * 1991-05-23 1996-08-13 Ivac Corporation Syringe plunger driver
US5273537A (en) * 1992-03-06 1993-12-28 Scimed Life Systems, Inc. Power-assisted inflation apparatus
US5322511A (en) * 1992-04-21 1994-06-21 Sterling Winthrop Inc. Portable hand-held power injector
US5269762A (en) * 1992-04-21 1993-12-14 Sterling Winthrop, Inc. Portable hand-held power assister device
EP0567962A1 (en) * 1992-04-29 1993-11-03 Becton, Dickinson and Company Syringe pump control system
EP0567945A1 (en) * 1992-04-29 1993-11-03 Becton, Dickinson and Company Syringe pump with biased lockable syringe clamp
WO1994014487A1 (en) * 1992-12-21 1994-07-07 John Elvin Teasdale Improved pulsed infusion system
US5695464A (en) * 1993-12-29 1997-12-09 Zambon Group Spa Method of injection controlled by an infusion pump
WO1995020410A1 (en) * 1994-01-28 1995-08-03 Mallinckrodt Medical, Inc. A conversion kit for a machine for automatic intravascular injection of solutions
US5792102A (en) * 1994-01-28 1998-08-11 Mallinckrodt Medical, Inc. Conversion kit for a machine for automatic intravascular injection of solutions
US5533981A (en) * 1994-10-06 1996-07-09 Baxter International Inc. Syringe infusion pump having a syringe plunger sensor
US5925018A (en) * 1994-11-14 1999-07-20 Cma/Microdialysis Ab Infusion and microdialysis pump
US5814015A (en) * 1995-02-24 1998-09-29 Harvard Clinical Technology, Inc. Infusion pump for at least one syringe
US5647853A (en) * 1995-03-03 1997-07-15 Minimed Inc. Rapid response occlusion detector for a medication infusion pump
US5672155A (en) * 1996-06-14 1997-09-30 Riley; Robert Q. Fluid transfer apparatus
US6042565A (en) * 1996-10-18 2000-03-28 Medrad, Inc. Syringe, injector and injector system
US6048334A (en) * 1996-10-18 2000-04-11 Medrad, Inc. Syringe, injector and injector system
US6575936B1 (en) * 1997-01-10 2003-06-10 Japan Servo Co., Ltd. Liquid infusion apparatus
US5954697A (en) * 1998-03-02 1999-09-21 Srisathapat; Chad Threaded nut syringe plunger for use with a medication infusion pump
USD426884S (en) * 1998-07-08 2000-06-20 Chad Srisathapat Syringe plunger
US6428509B1 (en) 1999-07-29 2002-08-06 Alaris Medical Systems, Inc. Syringe plunger driver system and method
US6482186B1 (en) 1999-09-29 2002-11-19 Sterling Medivations, Inc. Reusable medication delivery device
US8323231B2 (en) 2000-02-10 2012-12-04 Baxter International, Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US20070135758A1 (en) * 2000-02-10 2007-06-14 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US9474842B2 (en) 2000-02-10 2016-10-25 Baxter International Inc. Method and apparatus for monitoring and controlling peritoneal dialysis therapy
US10322224B2 (en) 2000-02-10 2019-06-18 Baxter International Inc. Apparatus and method for monitoring and controlling a peritoneal dialysis therapy
US7494480B2 (en) * 2000-10-17 2009-02-24 Disetronic Licensing Ag Device for administering an injectable product in doses
US20040006310A1 (en) * 2000-10-17 2004-01-08 Simone Geiser Device for administering an injectable product in doses
US20040054328A1 (en) * 2000-12-22 2004-03-18 Langley Christopher Nigel Pen-type injector having an electronic control unit
US20040054318A1 (en) * 2000-12-22 2004-03-18 Langley Christopher Nigel Pen-type injector having an electronic control unit
AU2002216232B2 (en) * 2000-12-22 2005-08-18 Dca Design International Limited Pen-type injector having an electronic control unit
WO2002051476A1 (en) * 2000-12-22 2002-07-04 Dca Design International Limited Pen-type injector having an electronic control unit
US8926553B2 (en) 2000-12-22 2015-01-06 Christopher Nigel Langley Pen-type injector having an electronic control unit
CN1292809C (en) * 2000-12-22 2007-01-03 Dca设计国际有限公司 Pen-type injector having an electronic control unit
US8523827B2 (en) 2001-12-18 2013-09-03 Dca Design International Limited Medicament injection apparatus
US20030114801A1 (en) * 2001-12-18 2003-06-19 Dca Design International Limited Medicament injection apparatus
US8617127B2 (en) 2001-12-18 2013-12-31 Dca Design International Limited Medicament injection apparatus
US20050182355A1 (en) * 2002-01-03 2005-08-18 Tuan Bui Method and apparatus for providing medical treatment therapy based on calculated demand
US8545435B2 (en) 2002-01-03 2013-10-01 Baxter International, Inc. Method and apparatus for providing medical treatment therapy based on calculated demand
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
US20040019313A1 (en) * 2002-07-19 2004-01-29 Childers Robert W. Systems, methods and apparatuses for pumping cassette-based therapies
US8206338B2 (en) 2002-12-31 2012-06-26 Baxter International Inc. Pumping systems for cassette-based dialysis
US20080103429A1 (en) * 2002-12-31 2008-05-01 Baxter International Inc. Pumping material for cassette based dialysis and pumping mechanism using same
US20080132828A1 (en) * 2002-12-31 2008-06-05 Baxter International Inc. Cassette alignment and integrity testing for dialysis systems
US7744554B2 (en) 2002-12-31 2010-06-29 Baxter International Inc. Cassette alignment and integrity testing for dialysis systems
US20110218487A1 (en) * 2002-12-31 2011-09-08 Baxter International Inc. Pumping material for cassette based dialysis and pumping mechanism using same
US20050209563A1 (en) * 2004-03-19 2005-09-22 Peter Hopping Cassette-based dialysis medical fluid therapy systems, apparatuses and methods
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8016745B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. Monitoring of a food intake restriction device
US20060211912A1 (en) * 2005-02-24 2006-09-21 Dlugos Daniel F External pressure-based gastric band adjustment system and method
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US20080015406A1 (en) * 2005-02-24 2008-01-17 Dlugos Daniel F External Mechanical Pressure Sensor for Gastric Band Pressure Measurements
US20070074596A1 (en) * 2005-07-22 2007-04-05 Cardinal Health 303, Inc. Dynamic lead screw thread engagement system and method
US7543516B2 (en) * 2005-07-22 2009-06-09 Cardinal Health 303, Inc. Dynamic lead screw thread engagement system and method
US20070060887A1 (en) * 2005-08-22 2007-03-15 Marsh David A Ophthalmic injector
US20080250340A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. GUI for an Implantable Restriction Device and a Data Logger
US20080249806A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc Data Analysis for an Implantable Restriction Device and a Data Logger
US20080250341A1 (en) * 2006-04-06 2008-10-09 Ethicon Endo-Surgery, Inc. Gui With Trend Analysis for an Implantable Restriction Device and a Data Logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US20090222065A1 (en) * 2006-04-06 2009-09-03 Ethicon Endo-Surgery, Inc. Physiological Parameter Analysis for an Implantable Restriction Device and a Data Logger
US7871399B2 (en) 2006-05-17 2011-01-18 Alcon Research, Ltd. Disposable ophthalmic injection device
US20070293820A1 (en) * 2006-05-17 2007-12-20 Bruno Dacquay Disposable Ophthalmic Injection Device
US20070270750A1 (en) * 2006-05-17 2007-11-22 Alcon, Inc. Drug delivery device
US20080021438A1 (en) * 2006-05-17 2008-01-24 Bruno Dacquay Ophthalmic Injection Method
US7815603B2 (en) 2006-05-17 2010-10-19 Alcon Research, Ltd. Ophthalmic injection method
US20100211044A1 (en) * 2006-05-17 2010-08-19 Alcon Manufacturing, Lted. Battery operated surgical hand piece with disposable end
US7887521B2 (en) 2006-05-17 2011-02-15 Alcon Research, Ltd. Ophthalmic injection system
US8118790B2 (en) 2006-05-17 2012-02-21 Alcon Research, Ltd. Battery operated surgical hand piece with disposable end
US20090036846A1 (en) * 2006-05-17 2009-02-05 Bruno Dacquay Ophthalmic Injection System
US20070270744A1 (en) * 2006-05-17 2007-11-22 Bruno Dacquay Limited Reuse Assembly For Ophthalmic Injection Device
US20100106089A1 (en) * 2006-10-16 2010-04-29 Cesario Dos Santos Temperature control device and thermal sensor assembly for medical device
US20100106083A1 (en) * 2006-10-16 2010-04-29 Alcon Research, Ltd. Method of Operating Ophthalmic Hand Piece with Disposable End
US20080281292A1 (en) * 2006-10-16 2008-11-13 Hickingbotham Dyson W Retractable Injection Port
US9022970B2 (en) 2006-10-16 2015-05-05 Alcon Research, Ltd. Ophthalmic injection device including dosage control device
US9782541B2 (en) 2006-10-16 2017-10-10 Alcon Research, Ltd. Temperature control device and thermal sensor assembly for medical device
US20100030136A1 (en) * 2006-10-16 2010-02-04 Bruno Dacquay Ophthalmic Injection Device Including Dosage Control Device
US20090287150A1 (en) * 2006-10-16 2009-11-19 Bruno Dacquay Universal Rechargeable Limited Reuse Assembly For Ophthalmic Hand Piece
US8870812B2 (en) 2007-02-15 2014-10-28 Baxter International Inc. Dialysis system having video display with ambient light adjustment
US7731689B2 (en) 2007-02-15 2010-06-08 Baxter International Inc. Dialysis system having inductive heating
US20080200868A1 (en) * 2007-02-15 2008-08-21 One Baxter Parkway Dialysis system having video display with ambient light adjustment
US20080200869A1 (en) * 2007-02-15 2008-08-21 Baxter International Inc. Dialysis system with efficient battery back-up
US20080200865A1 (en) * 2007-02-15 2008-08-21 Baxter International Inc. Dialysis system having optical flowrate detection
US8558964B2 (en) 2007-02-15 2013-10-15 Baxter International Inc. Dialysis system having display with electromagnetic compliance (“EMC”) seal
US7998115B2 (en) 2007-02-15 2011-08-16 Baxter International Inc. Dialysis system having optical flowrate detection
US8361023B2 (en) 2007-02-15 2013-01-29 Baxter International Inc. Dialysis system with efficient battery back-up
US9799274B2 (en) 2007-02-15 2017-10-24 Baxter International Inc. Method of controlling medical fluid therapy machine brightness
WO2008106805A1 (en) * 2007-03-02 2008-09-12 Tecpharma Licensing Ag Administration appliance with occlusion identification
US9138534B2 (en) 2007-05-11 2015-09-22 Roche Diabetes Care, Inc. Positive displacement pump
EP3388096A1 (en) 2007-05-11 2018-10-17 Roche Diabetes Care GmbH A positive displacement pump
US10398831B2 (en) 2007-05-11 2019-09-03 Roche Diabetes Care, Inc. Positive displacement pump
US20100130932A1 (en) * 2007-05-11 2010-05-27 Ofer Yodfat Positive displacement pump
US20090093788A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Thermal Coefficient Driven Drug Pellet Size For Ophthalmic Injection
US20090093789A1 (en) * 2007-10-09 2009-04-09 Alcon Research, Ltd. Method of Delivering A Rate And Temperature - Dependent Substance Into The Eye
US20090149874A1 (en) * 2007-12-10 2009-06-11 Ethicon Endo-Surgery. Inc. Methods for implanting a gastric restriction device
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US20090171375A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090171379A1 (en) * 2007-12-27 2009-07-02 Ethicon Endo-Surgery, Inc. Fluid logic for regulating restriction devices
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US20090204141A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US20090204179A1 (en) * 2008-02-07 2009-08-13 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using temperature
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US20090202387A1 (en) * 2008-02-08 2009-08-13 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US20090204131A1 (en) * 2008-02-12 2009-08-13 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with mems pump
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090216255A1 (en) * 2008-02-26 2009-08-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US20090228063A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. System and method of communicating with an implantable antenna
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
US20090228028A1 (en) * 2008-03-06 2009-09-10 Ethicon Endo-Surgery, Inc. Reorientation port
US20090259180A1 (en) * 2008-04-11 2009-10-15 Jong Soo Choi Injection method using injector with length-adjustable needle and injection apparatus using the same
GB2463051B (en) * 2008-08-29 2012-06-20 Eric Lawes Syringe actuation devices
GB2463051A (en) * 2008-08-29 2010-03-03 Eric Lawes A syringe actuation device
US20100286632A1 (en) * 2009-05-06 2010-11-11 Cesario Pereira Dos Santos Multi-Layer Heat Assembly For A Drug Delivery Device
US8632511B2 (en) 2009-05-06 2014-01-21 Alcon Research, Ltd. Multiple thermal sensors in a multiple processor environment for temperature control in a drug delivery device
US20100286654A1 (en) * 2009-05-06 2010-11-11 Cesario Pereira Dos Santos Multiple Thermal Sensors in a Multiple Processor Environment for Temperature Control in a Drug Delivery Device
US8372036B2 (en) 2009-05-06 2013-02-12 Alcon Research, Ltd. Multi-layer heat assembly for a drug delivery device
US8177747B2 (en) 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
US20110152767A1 (en) * 2009-12-22 2011-06-23 Pinedjian Raffi S Method and Apparatus for Drug Delivery
US10143800B2 (en) 2010-10-01 2018-12-04 Smiths Medical Asd, Inc. Flushing a fluid line from a medical pump
US20120083760A1 (en) * 2010-10-01 2012-04-05 Smiths Medical Asd, Inc. Flushing a Fluid Line From a Medical Pump
AU2011307499B2 (en) * 2010-10-01 2014-06-12 Smiths Medical Asd, Inc. Flushing a fluid line from a medical pump
US8876793B2 (en) * 2010-10-01 2014-11-04 Smiths Medical Asd, Inc. Flushing a fluid line from a medical pump
US11224692B2 (en) 2010-10-01 2022-01-18 Smiths Medical Asd, Inc. Flushing a fluid line from a medical pump
US20190175821A1 (en) * 2011-12-21 2019-06-13 Deka Products Limited Partnership Syringe Pump
US11664106B2 (en) * 2011-12-21 2023-05-30 Deka Products Limited Partnership Syringe pump
US20150196452A1 (en) * 2014-01-10 2015-07-16 Sebacia, Inc. Particle containers and delivery applicators
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery
US20190307960A1 (en) * 2018-04-10 2019-10-10 Beyoung Scientific Co., Ltd. Automatic Jet Injector for Administering Tissue
US11097056B2 (en) * 2018-04-10 2021-08-24 Beyoung Scientific Co., Ltd. Automatic jet injector for administering tissue
WO2023037163A1 (en) * 2021-09-10 2023-03-16 Takeda Pharmaceutical Company, Limited Infusion pump

Also Published As

Publication number Publication date
GB1465797A (en) 1977-03-02
FR2282912B1 (en) 1979-08-24
FR2282912A1 (en) 1976-03-26
CA1041394A (en) 1978-10-31

Similar Documents

Publication Publication Date Title
US3858581A (en) Medication injection device
US5176502A (en) Syringe pump and the like for delivering medication
US5509905A (en) Injector display
US4405318A (en) Injector with ratchet drive and reproducing system
US4529401A (en) Ambulatory infusion pump having programmable parameters
US4634431A (en) Syringe injector
US4435173A (en) Variable rate syringe pump for insulin delivery
US4417889A (en) Device for a portable automatic syringe
US2602446A (en) Automatic medical injection apparatus
EP0927058B1 (en) Syringe
US4662872A (en) Insulin administrating apparatus
US6514230B1 (en) Air shot mechanism for electronic injection devices
EP1223998B1 (en) Air shot mechanism for electronic injection devices
EP1465689B1 (en) Medical injection device with timer
US4275727A (en) Device for monitoring and controlling self-administered intravenous drug dosage
PT1353712E (en) Drive mechanism for an injection device
DE8217879U1 (en) DEVICE, IN PARTICULAR FOR SUBCUTANEOUS INFUSION OF MEDICINES
US20220409809A1 (en) Drug delivery device with an improved mechanism for controlling the delivery rate
GB2094628A (en) Infusion apparatus
CN219814897U (en) Adjustable injection pen
JPS5816903B2 (en) Iyakuchiyuushiyasouchi
DE2439269C2 (en) Drug injection device
GB1111382A (en) Improvements in and relating to the administration of medicaments
KR910004325B1 (en) Control device for drug injection
ZA200202638B (en) Air shot mechanism for electronic injection devices.

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAXTER TRAVENOL LABORATORIES, INC., ONE BAXTER PAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUTO SYRINGE, INC.;REEL/FRAME:004088/0422

Effective date: 19820927

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)