US3846382A - Sterile medical dusting powder - Google Patents

Sterile medical dusting powder Download PDF

Info

Publication number
US3846382A
US3846382A US00383236A US38323673A US3846382A US 3846382 A US3846382 A US 3846382A US 00383236 A US00383236 A US 00383236A US 38323673 A US38323673 A US 38323673A US 3846382 A US3846382 A US 3846382A
Authority
US
United States
Prior art keywords
polyglycolic acid
weight
microns
powder
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00383236A
Inventor
W Ramsey
Lapp D De
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US00383236A priority Critical patent/US3846382A/en
Application granted granted Critical
Publication of US3846382A publication Critical patent/US3846382A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/285Polyhydroxy dicarboxylic acids having five or more carbon atoms, e.g. saccharic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • This invention relates to a sterile medical dusting powder comprising a finely divided polyglycolic acid powdery material having more than 80%, by weight, of a particle size in the range of 1.5 to about 8 microns, less than 15%, by weight, of a particle size within the range of about 10 to 15 microns, and less than 1%, by weight, of the size of about 30 microns.
  • This invention relates to a finely divided synthetic biodegradable medical dusting powder suitable for a years with a prime use meaning to facilitate insertion of the hands of operating room personnel into rubber or latex gloves worn during surgery.
  • a usable glove powder should at least meet the following requirements:
  • the powder should have no adverse effect within the body such as the creation of lesions (i.e. adhesions granulomas, or such).
  • the glove powder must be capable of sterilization by conventional hospital techniques such as gaseous ethylene oxide sterilization.
  • the powder must possess sufficient lubricity to permit rapid insertion of hand into the glove and must be of sufficiently fine particle size to permit such -lubricity.
  • Talc was among the earliest surgical glove powders used by the medical profession. However, since the report by Antopol .(lycopodiumgranuloma Arch. Path. 16, pg. 326 (1933)) that talc caused granulomas in the body, the use of talc as a glove powder was rapidly abandoned. Talc was replaced by starch glove powders since starch was known to be biodegradable and was not believed to cause granulomas or other aggravating conditions within the body. Currently, a widely used commercial surgical glove powder is specially treated homogeneous amylose which contains about 2% magnesium oxide to prevent clumping of the powder.
  • starch glove powders have a number of disadvantages. They offer high resistance to flow and they tend to gelatinize or agglutinate in the presence of hot water thereby creating problems when they are sterilized in a steam autoclave. Ordinarily, the starch must be treated in some way to minimize these properties.
  • Starch is also an excellent nutrient medium for virtually all vegetative bacteria such as various pathogenic microorganisms and is objectionable for that reason.
  • This invention relates to a finely divided polyglycolic acid which can be used as a sterile medical dusting powder and which can be prepared by dissolving said polyglycolic acid in an inert solvent by heating the solvent containing the polyglycolic acid, cooling the solution to room temperature, adding a non-solvent for the polyglycolic acid to the solution, filtering the solid finely divided particles of polyglycolic acid from the supernatant liquid, washing the polyglycolic acid particles with a non-solvent, drying and grinding the polyglycolic acid to break up the agglomerates.
  • Polyglycolic acid can be prepared according to the process of the first three of the above cited references and may then be dissolved in an inert solvent by heating the solvent to a temperature not in excess of its boiling temperature.
  • Polyglycolic acid is insoluble in a substantial number of liquids which are normally solvents for other materials but there are a few solvents in which polyglycolic acid can be dissolved such as dimethyl sul foxide, hexafluoroacetone sesquihydrate, dimethyl formamide, hexafluoroisopropyl alcohol.
  • the preferred solvent for the polyglycolic acid is dimethyl sulfoxide.
  • the amount of the polyglycolic acid dissolved in the selected solvent is not critical and may be varied from a few parts to the amount required to saturate the solution at the temperature selected for dissolving the polyglycolic acid therein.
  • Certain solvents, such as the fluorinated solvents will dissolve the polyglycolic acid without heating but others may require heating to make the slurry.
  • a non-solvent is selected for addition to the polyglycolic acid solution in order to cause the polyglycolic acid to precipitate from the solution in finely divided form.
  • the non-solvents which may be used in the practice in the process of the present invention is water, lower aliphatic monohydric alcohols such as methanol, ethanol, propanol, isopropanol, and the like.
  • the non-solvent is added to the solution of the polyglycolic acid after it has been cooled down to about room temperature by use of an ice bath in order to get a slurry of the finely dispersed polyglycolic acid. It would be preferred to stir the cooling solution so as to distribute the polyglycolic acid uniformly throughout the slurry.
  • the nonsolvent is added to the slurry the nonsolvent and the precipitated polyglycolic acid is filtered under vacuum from the slurry. It is then desired to wash the filtered material with a suitable non-solvent and to vacuum dry the material at a slightly elevated temperature. The thus dried and washed material is placed in a suitable attritor such as a micro-pulverizer and ground for a few moments in order to break up any agglomerates that may be present.
  • the non-solvent should be at least partially soluble in the solvent and preferably miscible with the solvent.
  • EXAMPLE 1 Into a suitable mixing vessel containing 2,000 parts of dimethyl sulfoxide there is added 40 parts of a polyglycolic acid such as that prepared by one of the references set forth hereinabove. The dispersion is heated to 150C. in order to dissolve the polyglycolic acid. Thereupon the solution is cooled to room temperature by use of an ice bath to get a slurry of finely dispersed polyglycolic acid. There is then added 400 parts of the slurry to a Waring blendor. There is then added quickly 400 parts of water with constant stirring for about onehalf of a minute. The slurry is then filtered under vacuum and washed with isopropanol and vacuum dried overnight at 60C.
  • a polyglycolic acid such as that prepared by one of the references set forth hereinabove.
  • the dispersion is heated to 150C. in order to dissolve the polyglycolic acid. Thereupon the solution is cooled to room temperature by use of an ice bath to get
  • the thus washed and dried material is placed in a micro-pulverizer and ground for about 30 seconds in order to break up the agglomerates.
  • the resulting powdery material had less than 1%, by weight, that was of the size of about 30 microns and has less than 15%, by weight, that was within the range of about 10 to 15 microns and had more than by weight, that was in the range of 1.5 to about 8 microns.
  • the thus produced powder is then sterilized by conventional hospital techniques such as gaseous ethylene oxide sterilization.
  • EXAMPLE 2 A slurry of the polyglycolic acid is prepared in dimethyl sulfoxide as in Example 1 but the slurry is centrifuged and the solvent is decanted and replaced with a non-solvent namely benzene. The mixture of the benzene and the polyglycolic acid is then centrifuged and the procedure is repeated 5 times. Finally additional benzene is added and mix is freeze dried and when dry the powdery material is ground briefly in the micropulverizer as in the first example in order to break up the agglomerates. A comparable finely divided powdery polyglycolic acid material is produced. This powdery material is then sterilized as in Example 1.
  • Example 1 is repeated in all essential details except that in the place of the dimethyl sulfoxide there is substituted an equivalent amount of hexafluoroisopropanol and because of the solubility characteristics of said solvent no heating is necessary or used.
  • Example 3 is repeated in all essential details except that in the place of the hexafluoroisopropanol there is substituted an equivalent amount of hexafluoroacetone sesquihydrate and again because of the fluorinated characteristic of the solvent no heating is necessary.
  • High molecular weight polyglycolic acid is so strong and tough that it cannot be readily pulverized to the particle sizes shown in Example 1 by ordinary grinding techniques.
  • This polyglycolic acid powder material when used in this form as a surgeons dusting powder for his surgical gloves if introduced into the body will be completely dissolved causing no adverse effect whether used as a lubricant filler, hemostat or wound treatment.
  • the US. Pat. No. 3,297,033 teaches that polyglycolic acid is absorbable in living tissue.
  • a sterile medical dusting powder comprising a finely divided polyglycolic acid powdery material having more than 80%, by weight, of a particle size in the range of 1.5 to about 8 microns, less than 15%, by weight, of a particle size within the range of about 10 to 15 microns, and less than 1%, by weight, of the size of about 30 microns.

Abstract

This invention relates to a sterile medical dusting powder comprising a finely divided polyglycolic acid powdery material having more than 80%, by weight, of a particle size in the range of 1.5 to about 8 microns, less than 15%, by weight, of a particle size within the range of about 10 to 15 microns, and less than 1%, by weight, of the size of about 30 microns.

Description

United States Patent [1 1 Ramsey et a1.
[ Nov. 5, 1974 STERILE MEDICAL DUSTING POWDER [75] Inventors: Wallace Burton Ramsey, Pittsburgh,
Pa.; Darwin Fiske DeLapp, New Canaan, Conn.
[73] Assignee: American Cyanamid Company,
Stamford, Conn.
[22] Filed: July 27, 1973 [21] Appl. No.: 383,236
Related U.S. Application Data [62] Division of Ser. No. 118,974, Feb, 25, 1971, Pat. No.
2,668,162 Lowe 260/783 2,676,945 4/1954 Higgins 1 260/457 3,565,869 2/1971 DcProspero 260/783 3,632,669 1/1972 Lundberg 260/874 3,773,726 11/1973 Volkommer et a1. 260/783 R Primary Examiner-Harold D. Anderson Assistant Examiner-E. A. Nielsen 1571 ABSTRACT This invention relates to a sterile medical dusting powder comprising a finely divided polyglycolic acid powdery material having more than 80%, by weight, of a particle size in the range of 1.5 to about 8 microns, less than 15%, by weight, of a particle size within the range of about 10 to 15 microns, and less than 1%, by weight, of the size of about 30 microns.
1 Claim, N0 Drawings STERILE MEDICAL DUSTING POWDER CROSS REFERENCES TO RELATED APPLICATIONS This application is a division to our parent application Ser. No. 118,974, filed Feb. 25, 1971 now US. Pat. No. 3,781,349, issued Dec. 25, 1973. Reference is also made to the US. Pat. No. 3,728,739 issued Apr. 24, 1973 which was copending with our said parent ap plication.
BACKGROUND OF THE INVENTION This invention relates to a finely divided synthetic biodegradable medical dusting powder suitable for a years with a prime use meaning to facilitate insertion of the hands of operating room personnel into rubber or latex gloves worn during surgery. A usable glove powder should at least meet the following requirements:
1. It should be non-toxic to living tissue.
2. It should be biodegradable, i.e. absorbed by living tissue. This is most important since, during a surgical procedure, powder may fall from the surgeons gloved hand into an exposed body cavity or it may be carried from other areas of the operating room into the exposed body cavity by air currents.
3. The powder should have no adverse effect within the body such as the creation of lesions (i.e. adhesions granulomas, or such).
4. The glove powder must be capable of sterilization by conventional hospital techniques such as gaseous ethylene oxide sterilization.
5. The powder must possess sufficient lubricity to permit rapid insertion of hand into the glove and must be of sufficiently fine particle size to permit such -lubricity.
6. It must be inexpensive and readily available.
7. It must be non-irritating to skin.
Talc was among the earliest surgical glove powders used by the medical profession. However, since the report by Antopol .(lycopodiumgranuloma Arch. Path. 16, pg. 326 (1933)) that talc caused granulomas in the body, the use of talc as a glove powder was rapidly abandoned. Talc was replaced by starch glove powders since starch was known to be biodegradable and was not believed to cause granulomas or other aggravating conditions within the body. Currently, a widely used commercial surgical glove powder is specially treated homogeneous amylose which contains about 2% magnesium oxide to prevent clumping of the powder.
However, starch glove powders have a number of disadvantages. They offer high resistance to flow and they tend to gelatinize or agglutinate in the presence of hot water thereby creating problems when they are sterilized in a steam autoclave. Ordinarily, the starch must be treated in some way to minimize these properties.
make the powder free flowing after steam sterilization.
Starch is also an excellent nutrient medium for virtually all vegetative bacteria such as various pathogenic microorganisms and is objectionable for that reason.
According to Lee and Lehman (Surgery, Gynecology, and Obstetrics 84, pgs. 689-695 1947)), starch, unlike talc, was completely absorbed within the peritoneal cavity without causing adhesions. This conclusion was challenged by Snoierson and Woo (Annals of Surgery 132, pgs. 1045-1050 (1955)) who reported two cases of large granulomas occurring in surgical wounds as a result of starch powder contamination. McAdams (Surgery 39, pgs. 329-336 (1936)) reported three cases of intraperitoneal granulomas caused by starch glove powder. The Saxens (Acta Pathology Microbiology Scand. 64, pgs. 55-70 (1965)) postulated that the magnesium oxide which acts as an anti-clumping material was causing the lesions. Myllarniemi and Frilander (Journal of the International College of Surgeons 44, No. 6681, pgs. 677-681 (1965)) concluded that the harmful effects of starch glove powders containing magnesium oxide might be due to a combined effect of two irritating constituents. Other publications which indicate the serious concern of the medical profession over granulomas traced to starch glove powders are For example, as shown in US. Pat. No. 2,626,257, the
those of Lehman and Wilder (Journal of Abdominal Surgery 4, No. 3, pgs. 77-80 (1962)), Webb and Regan (Archives of Surgery 84, No. 3, pgs. 282-285 (1962)), and Walczak and .Collura (American Journal of Surgery 103, No. 5, pgs. 611-612 (1962)).
Despite the aforementioned disadvantages associated with starch glove powders, they are still used by the medical profession due to the unavailability of an improved substitute. It becomes apparent that a dusting powder which does not suffer these disadvantages of starch powders would be a welcome addition to the arsenal of the medical profession. It is an object of this invention to provide such a dusting powder. It is a further object to provide such a dusting powder which has all of the aforementioned desirable properties of a medical dusting powder.
FIELD OF THE INVENTION polyglycolic acid in an inert solvent by heating the solvent containing the ,polyglycolic acid and cooling the solution to room temperature and adding a non-solvent to the polyglycolic acid solution in order to precipitate the polyglycolic acid in finely divided form. The finely divided powdery material is filtered from the supernatant liquid, .washed, dried and ground up in order to breakup any agglomerates which may be present.
DESCRIPTION OF THE PRIOR ART The known prior art is represented by the US. Pat. Nos. 2,676,945, 2,668,162, 3,297,033 and 3,728,739. These references are each incorporated herein by reference.
SUMMARY OF THE INVENTION This invention relates to a finely divided polyglycolic acid which can be used as a sterile medical dusting powder and which can be prepared by dissolving said polyglycolic acid in an inert solvent by heating the solvent containing the polyglycolic acid, cooling the solution to room temperature, adding a non-solvent for the polyglycolic acid to the solution, filtering the solid finely divided particles of polyglycolic acid from the supernatant liquid, washing the polyglycolic acid particles with a non-solvent, drying and grinding the polyglycolic acid to break up the agglomerates.
Polyglycolic acid can be prepared according to the process of the first three of the above cited references and may then be dissolved in an inert solvent by heating the solvent to a temperature not in excess of its boiling temperature. Polyglycolic acid is insoluble in a substantial number of liquids which are normally solvents for other materials but there are a few solvents in which polyglycolic acid can be dissolved such as dimethyl sul foxide, hexafluoroacetone sesquihydrate, dimethyl formamide, hexafluoroisopropyl alcohol. The preferred solvent for the polyglycolic acid is dimethyl sulfoxide. The amount of the polyglycolic acid dissolved in the selected solvent is not critical and may be varied from a few parts to the amount required to saturate the solution at the temperature selected for dissolving the polyglycolic acid therein. Certain solvents, such as the fluorinated solvents will dissolve the polyglycolic acid without heating but others may require heating to make the slurry.
A non-solvent is selected for addition to the polyglycolic acid solution in order to cause the polyglycolic acid to precipitate from the solution in finely divided form. Among the non-solvents which may be used in the practice in the process of the present invention is water, lower aliphatic monohydric alcohols such as methanol, ethanol, propanol, isopropanol, and the like. The non-solvent is added to the solution of the polyglycolic acid after it has been cooled down to about room temperature by use of an ice bath in order to get a slurry of the finely dispersed polyglycolic acid. It would be preferred to stir the cooling solution so as to distribute the polyglycolic acid uniformly throughout the slurry. There is then added to the slurry the nonsolvent and the precipitated polyglycolic acid is filtered under vacuum from the slurry. It is then desired to wash the filtered material with a suitable non-solvent and to vacuum dry the material at a slightly elevated temperature. The thus dried and washed material is placed in a suitable attritor such as a micro-pulverizer and ground for a few moments in order to break up any agglomerates that may be present. The non-solvent should be at least partially soluble in the solvent and preferably miscible with the solvent.
In order that the concept of the present invention may be more completely understood the following examples are set forth in which all parts are parts by weight unless otherwise indicated:
EXAMPLE 1 Into a suitable mixing vessel containing 2,000 parts of dimethyl sulfoxide there is added 40 parts of a polyglycolic acid such as that prepared by one of the references set forth hereinabove. The dispersion is heated to 150C. in order to dissolve the polyglycolic acid. Thereupon the solution is cooled to room temperature by use of an ice bath to get a slurry of finely dispersed polyglycolic acid. There is then added 400 parts of the slurry to a Waring blendor. There is then added quickly 400 parts of water with constant stirring for about onehalf of a minute. The slurry is then filtered under vacuum and washed with isopropanol and vacuum dried overnight at 60C. The thus washed and dried material is placed in a micro-pulverizer and ground for about 30 seconds in order to break up the agglomerates. The resulting powdery material had less than 1%, by weight, that was of the size of about 30 microns and has less than 15%, by weight, that was within the range of about 10 to 15 microns and had more than by weight, that was in the range of 1.5 to about 8 microns. The thus produced powder is then sterilized by conventional hospital techniques such as gaseous ethylene oxide sterilization.
EXAMPLE 2 A slurry of the polyglycolic acid is prepared in dimethyl sulfoxide as in Example 1 but the slurry is centrifuged and the solvent is decanted and replaced with a non-solvent namely benzene. The mixture of the benzene and the polyglycolic acid is then centrifuged and the procedure is repeated 5 times. Finally additional benzene is added and mix is freeze dried and when dry the powdery material is ground briefly in the micropulverizer as in the first example in order to break up the agglomerates. A comparable finely divided powdery polyglycolic acid material is produced. This powdery material is then sterilized as in Example 1.
EXAMPLE 3 Example 1 is repeated in all essential details except that in the place of the dimethyl sulfoxide there is substituted an equivalent amount of hexafluoroisopropanol and because of the solubility characteristics of said solvent no heating is necessary or used.
EXAMPLE 4 Example 3 is repeated in all essential details except that in the place of the hexafluoroisopropanol there is substituted an equivalent amount of hexafluoroacetone sesquihydrate and again because of the fluorinated characteristic of the solvent no heating is necessary.
High molecular weight polyglycolic acid is so strong and tough that it cannot be readily pulverized to the particle sizes shown in Example 1 by ordinary grinding techniques. This polyglycolic acid powder material when used in this form as a surgeons dusting powder for his surgical gloves if introduced into the body will be completely dissolved causing no adverse effect whether used as a lubricant filler, hemostat or wound treatment. The US. Pat. No. 3,297,033 teaches that polyglycolic acid is absorbable in living tissue.
We claim:
1. A sterile medical dusting powder comprising a finely divided polyglycolic acid powdery material having more than 80%, by weight, of a particle size in the range of 1.5 to about 8 microns, less than 15%, by weight, of a particle size within the range of about 10 to 15 microns, and less than 1%, by weight, of the size of about 30 microns.
UNITED sTATEs PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 5,846,582 Dated November 5, 197
Inventor(s) Wallace Burton Ramsey 8c Darwin Fiske DeLanp It is certified that error appears in the above-identified patent and that said'Letters Patent are hereby corrected as shown below:
1. In, the Title. Before the word "Sterile" insert the word 2. Column 2 line 50. After "157)" insert by 3. Column 2 line 50. After the word "weight" insert the following punctuation:
Signed and sealed this 18th day of March 1.975.
(SEAL) Attest:
C. MARSHALL DANN RUTH C. MASON Commissioner of Patents Attesting Officer and Trademarks po'wso uscomwoc 60376-P69 .5. GOVERNMENT 'IINTING OFFICE I 3'Ill

Claims (1)

1. A STERILE MEDICAL DUSTING POWDER COMPRISING A FINELY DIVIDED POLYGLYCOLIC ACID POWDERY MATERIAL HAVING MORE THAN 80%, BY WEIGHT, OF A PARTICLE SIZE IN THE RANGE OF 1.5 TO ABOUT 8 MICRONS, LESS THAN 15%, BY WEIGHT, OF A PARTICLE SIZE WITHIN THE RANGE OF ABOUT 10 TO 15 MICRONS, AND LESS THAN 1%, BY WEIGHT, OF THE SIZE OF ABOUT 20 MICRONS.
US00383236A 1971-02-25 1973-07-27 Sterile medical dusting powder Expired - Lifetime US3846382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00383236A US3846382A (en) 1971-02-25 1973-07-27 Sterile medical dusting powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11897471A 1971-02-25 1971-02-25
US00383236A US3846382A (en) 1971-02-25 1973-07-27 Sterile medical dusting powder

Publications (1)

Publication Number Publication Date
US3846382A true US3846382A (en) 1974-11-05

Family

ID=26816932

Family Applications (1)

Application Number Title Priority Date Filing Date
US00383236A Expired - Lifetime US3846382A (en) 1971-02-25 1973-07-27 Sterile medical dusting powder

Country Status (1)

Country Link
US (1) US3846382A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059097A (en) * 1976-11-03 1977-11-22 American Cyanamid Company Method of minimizing tissue reaction during surgery with chitin
US4064564A (en) * 1976-11-03 1977-12-27 American Cyanamid Company Chitin derived surgical glove powder
US4068757A (en) * 1976-11-03 1978-01-17 American Cyanamid Company Chitin derived powder in sterile surgical element package
US4152783A (en) * 1977-10-19 1979-05-08 American Hospital Supply Corporation Lubricant for surgeon's gloves and method of applying same
US4382919A (en) * 1980-09-15 1983-05-10 Bristol-Myers Company Composition for treatment and prevention of malodorous generating skin conditions
US4744365A (en) * 1986-07-17 1988-05-17 United States Surgical Corporation Two-phase compositions for absorbable surgical devices
US5124103A (en) * 1984-03-06 1992-06-23 United States Surgical Corporation Two phase compositions for absorbable surgical devices
US5403347A (en) * 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5431679A (en) * 1994-03-10 1995-07-11 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5475063A (en) * 1991-02-12 1995-12-12 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made
EP0701823A2 (en) 1994-09-16 1996-03-20 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US5522841A (en) * 1993-05-27 1996-06-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5618313A (en) * 1994-10-11 1997-04-08 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
EP0786259A2 (en) 1996-01-19 1997-07-30 United States Surgical Corporation Absorbable polymer blends and surgical articles fabricated therefrom
US6007565A (en) * 1997-09-05 1999-12-28 United States Surgical Absorbable block copolymers and surgical articles fabricated therefrom
US6191236B1 (en) 1996-10-11 2001-02-20 United States Surgical Corporation Bioabsorbable suture and method of its manufacture
US6206908B1 (en) 1994-09-16 2001-03-27 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US6228954B1 (en) 1991-02-12 2001-05-08 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorabable surgical devices made therefrom
US6277927B1 (en) 1997-11-26 2001-08-21 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US6387363B1 (en) 1992-12-31 2002-05-14 United States Surgical Corporation Biocompatible medical devices
US6546188B1 (en) 1998-01-16 2003-04-08 Sony Corporation Editing system and editing method
US20040058164A1 (en) * 1994-07-22 2004-03-25 Bennett Steven L. Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US20070254005A1 (en) * 2004-08-26 2007-11-01 Pathak Chandraskekhar P Implantable Tissue Compositions and Method
EP2036582A1 (en) 1994-07-22 2009-03-18 United States Surgical Corporation Biobsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
WO2012160258A1 (en) * 2011-05-23 2012-11-29 Teknologian Tutkimuskeskus Vtt A method for preparing glycolide polyester by ring opening polymerization

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2585427A (en) * 1951-01-11 1952-02-12 Process fob preparing condensation
US2668162A (en) * 1952-03-20 1954-02-02 Du Pont Preparation of high molecular weight polyhydroxyacetic ester
US2676945A (en) * 1950-10-18 1954-04-27 Du Pont Condensation polymers of hydroxyacetic acid
US3565869A (en) * 1968-12-23 1971-02-23 American Cyanamid Co Extrudable and stretchable polyglycolic acid and process for preparing same
US3632669A (en) * 1969-04-01 1972-01-04 Union Carbide Corp Particulate polymers of cyclic esters
US3773726A (en) * 1970-07-11 1973-11-20 Dynamit Nobel Ag Method for polymerizing alpha,alphadialkyl-beta-propiolactones in powder form

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676945A (en) * 1950-10-18 1954-04-27 Du Pont Condensation polymers of hydroxyacetic acid
US2585427A (en) * 1951-01-11 1952-02-12 Process fob preparing condensation
US2668162A (en) * 1952-03-20 1954-02-02 Du Pont Preparation of high molecular weight polyhydroxyacetic ester
US3565869A (en) * 1968-12-23 1971-02-23 American Cyanamid Co Extrudable and stretchable polyglycolic acid and process for preparing same
US3632669A (en) * 1969-04-01 1972-01-04 Union Carbide Corp Particulate polymers of cyclic esters
US3773726A (en) * 1970-07-11 1973-11-20 Dynamit Nobel Ag Method for polymerizing alpha,alphadialkyl-beta-propiolactones in powder form

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059097A (en) * 1976-11-03 1977-11-22 American Cyanamid Company Method of minimizing tissue reaction during surgery with chitin
US4064564A (en) * 1976-11-03 1977-12-27 American Cyanamid Company Chitin derived surgical glove powder
US4068757A (en) * 1976-11-03 1978-01-17 American Cyanamid Company Chitin derived powder in sterile surgical element package
US4152783A (en) * 1977-10-19 1979-05-08 American Hospital Supply Corporation Lubricant for surgeon's gloves and method of applying same
US4382919A (en) * 1980-09-15 1983-05-10 Bristol-Myers Company Composition for treatment and prevention of malodorous generating skin conditions
US5124103A (en) * 1984-03-06 1992-06-23 United States Surgical Corporation Two phase compositions for absorbable surgical devices
US4744365A (en) * 1986-07-17 1988-05-17 United States Surgical Corporation Two-phase compositions for absorbable surgical devices
US6228954B1 (en) 1991-02-12 2001-05-08 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorabable surgical devices made therefrom
US5475063A (en) * 1991-02-12 1995-12-12 United States Surgical Corporation Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made
US6387363B1 (en) 1992-12-31 2002-05-14 United States Surgical Corporation Biocompatible medical devices
US5403347A (en) * 1993-05-27 1995-04-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5522841A (en) * 1993-05-27 1996-06-04 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5554170A (en) * 1993-05-27 1996-09-10 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US5431679A (en) * 1994-03-10 1995-07-11 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US20060293406A1 (en) * 1994-07-22 2006-12-28 Bennett Steven L Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
EP2036582A1 (en) 1994-07-22 2009-03-18 United States Surgical Corporation Biobsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
EP2301597A1 (en) 1994-07-22 2011-03-30 United States Surgical Corporation Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US7321008B2 (en) 1994-07-22 2008-01-22 United States Surgical Corporation Bioabsorbable branched polymers end-capped with diketene acetals
US7097907B2 (en) 1994-07-22 2006-08-29 United States Surgical Corporation Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US20060014023A9 (en) * 1994-07-22 2006-01-19 Bennett Steven L Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
US20040058164A1 (en) * 1994-07-22 2004-03-25 Bennett Steven L. Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
EP0701823A2 (en) 1994-09-16 1996-03-20 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US6206908B1 (en) 1994-09-16 2001-03-27 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US5618313A (en) * 1994-10-11 1997-04-08 United States Surgical Corporation Absorbable polymer and surgical articles fabricated therefrom
US5997568A (en) * 1996-01-19 1999-12-07 United States Surgical Corporation Absorbable polymer blends and surgical articles fabricated therefrom
EP0786259A2 (en) 1996-01-19 1997-07-30 United States Surgical Corporation Absorbable polymer blends and surgical articles fabricated therefrom
US6191236B1 (en) 1996-10-11 2001-02-20 United States Surgical Corporation Bioabsorbable suture and method of its manufacture
US6136018A (en) * 1997-09-05 2000-10-24 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US6007565A (en) * 1997-09-05 1999-12-28 United States Surgical Absorbable block copolymers and surgical articles fabricated therefrom
US6277927B1 (en) 1997-11-26 2001-08-21 United States Surgical Corporation Absorbable block copolymers and surgical articles fabricated therefrom
US6546188B1 (en) 1998-01-16 2003-04-08 Sony Corporation Editing system and editing method
US20070254005A1 (en) * 2004-08-26 2007-11-01 Pathak Chandraskekhar P Implantable Tissue Compositions and Method
US20090130162A2 (en) * 2004-08-26 2009-05-21 Chandraskekhar Pathak Implantable tissue compositions and method
US7919112B2 (en) * 2004-08-26 2011-04-05 Pathak Holdings, Llc Implantable tissue compositions and method
US20110177150A1 (en) * 2004-08-26 2011-07-21 Pathak Holdings, Llc Implantable tissue compositions and method
WO2012160258A1 (en) * 2011-05-23 2012-11-29 Teknologian Tutkimuskeskus Vtt A method for preparing glycolide polyester by ring opening polymerization
US9657147B2 (en) 2011-05-23 2017-05-23 Teknologian Tutkimuskeskus Vtt Oy Method for preparing glycolide polyester by ring opening polymerization

Similar Documents

Publication Publication Date Title
US3846382A (en) Sterile medical dusting powder
US3781349A (en) Preparation of polyglycolic acid in finely divided form
DE69738462T2 (en) Bioresorbable medical devices of oxidized polysaccharides
DE69206407T3 (en) WOUND DRESSING.
US3728739A (en) Sterile surgical gloves
US6869938B1 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
KR950003695B1 (en) Cross-linked hydrogels and their use as wound dressings
US4068757A (en) Chitin derived powder in sterile surgical element package
US20050074495A1 (en) Compositions of polyacids and methods for their use in reducing adhesions
US3892314A (en) Sterile rubber glove or catheter package
AU778853B2 (en) Compositions of polyacids and polyethers and methods for their use in reducing adhesions
Waresindo et al. A freeze–thaw PVA hydrogel loaded with guava leaf extract: Physical and antibacterial properties
CN107261193B (en) Hemostatic material and preparation method thereof
US10736786B2 (en) Hemostatic paste and methods of making thereof
US4064564A (en) Chitin derived surgical glove powder
CN114514043A (en) Temperature-sensitive hydrogel composition for preventing tissue adhesion and preparation method thereof
WO2021179495A1 (en) Amphiphilic block copolymer, absorbable bone wax and preparation method therefor
US3810458A (en) Minimizing tissue reaction to glove powder
JP3796165B2 (en) Anti-adhesive material
JP6916353B1 (en) Polymer composition for preventing adhesions
McCallum et al. Umbilical granulomata—with particular reference to talc granuloma
US3325366A (en) Biologically absorbable foam packing bandage and process therefor
Turnbull Jr et al. Occult invasive cancer in polypoid adenomas of the colon and rectum
US4059097A (en) Method of minimizing tissue reaction during surgery with chitin
KR20220147938A (en) Hydrogel for vascular embolization with adjustable decomposition time and manufacturing method thereof