US3825379A - Melt-blowing die using capillary tubes - Google Patents

Melt-blowing die using capillary tubes Download PDF

Info

Publication number
US3825379A
US3825379A US00242504A US24250472A US3825379A US 3825379 A US3825379 A US 3825379A US 00242504 A US00242504 A US 00242504A US 24250472 A US24250472 A US 24250472A US 3825379 A US3825379 A US 3825379A
Authority
US
United States
Prior art keywords
die
tube means
melt
tip
capillary tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00242504A
Inventor
D Lohkamp
J Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US00242504A priority Critical patent/US3825379A/en
Priority to JP48040748A priority patent/JPS5844470B2/en
Application granted granted Critical
Publication of US3825379A publication Critical patent/US3825379A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/025Melt-blowing or solution-blowing dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2566Die parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2568Inserts
    • B29C48/25686Inserts for dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/75Processes of uniting two or more fibers

Definitions

  • ABSTRACT A melt-blowing die which has capillary tubes rather than drilled orifices is more easily fabricated and operates more effectually.
  • one end of each capillary tube is machined so as to terminate in an apex having an included angle within the range of 30 to- 90.
  • the tubes can have conical ends with the same angle.
  • the inside diameter of these tubes range from 0.010 to 0.025 inch and they connect with a chamber in the die.
  • the die is a two-piece assembly and is fabricated by bolting the two pieces and including the capillary tubes in a solder layer.
  • a die apparatus for melt-blowing thermoplastic materials having a plurality of capillary tubes as the die openings.
  • the die is a two piece assembly and the capillary tubes are included in the solder layer between the two pieces to form the die apparatus.
  • FIG. 5 is a sectional view taken across 5-5 of FIG. 4 showing a top view of one portion of the die with the capillary tubes in position before soldering;
  • FIG. 6 is a cross sectional view taken across 66 of FIG. 4 showing one capillary tube in position before soldering on one piece of the die;
  • FIG. 7 is a view in cross section similar to FIG. 6 wherein the two pieces making up the die are bolted together and packed in preparation for heating the solder;
  • FIG. 8 is a view in cross section of the die as the die would be positioned in the oven or being heated, with a reservoir for the solder attached;
  • FIG. 9 is a top view of the die with the reservoir for the solder attached before machining
  • FIG. 10 is a cross sectional view of thedie after machining whereby a preferred embodiment of the present invention is produced.
  • FIG. 11 is a cross sectional view of another embodiment of a die of the present invention.
  • a method has been found of fabricating this type of die which overcomes some of the above difficulties and reduces the cost of the die.
  • This method uses capillary tubes to replace drilled holes in the die.
  • capillary tubes By using capillary tubes, the problems associated with precise drilling or electrical discharge machining of very small holes are avoided. Of greater importance, it is possible to align the row of capillary tubes very precisely so that the holes follow a straight line accurately.
  • capillary die Other methods of soldering can also be used.
  • advantages of using a capillary die include the following:
  • a 2-inch die has been made using the capillary tube method. This die has performed satisfactorily on the melt-blowing process.
  • a melt-blowing process is carried out by introducing into hopper l pellets of one or more thermoplastic materials, i.e. resins, and which may include dyes, additives or other modifiers with the thennoplastic resins. These are conveyed into extruder 2.
  • thermoplastic materials i.e. resins, and which may include dyes, additives or other modifiers with the thennoplastic resins.
  • thermoplastic resins it is necessary to degrade them to a considerably lower viscosity by either thermally treating the resin before introducing the resin into the extruder 2, or thermally treating the resin in the extruder 2 and/or die assembly 3.
  • the polypropylene is added into hopper 1 and heated in extruder 2 at temperatures in excess of 550 F., and preferably within the range of 620 to 800 F.
  • the degree of thermal treatment necessary varies with the molecular weight of the polypropylene.
  • Resin is forced through extruder 2 into die head 3 by drive 4 which turns the extruder screw (not shown).
  • Die head 3 usually contains heating plate 5 which may also be used in the thermal treatment of the thermoplastic resin before it is melt-blown.
  • the fluid resin is then forced out of a row of capillary tubes 6 rigidly mounted within die assembly 3, where it is impinged by a gas stream which attenuates the resin into continuous fibers 7 which are collected ona moving collecting device 8 such as drum 9 to form a continuous mat 10.
  • the hot gas stream preferably air, which attenuates block 16.
  • the dimensions of troughs l9 and 20 are selected so that when in operating position they just hold the desired number of capillary tubes 6 as determined by the outer diameter (O.D.) of capillary tubes 6.
  • Troughs 19 and 20 extend into the upper and lower die blocks and 16 ending near shoulder 29 in upper die block 15 and near shoulder 30 in lower die block 16.
  • the height of shoulders 29 and 30 should preferably not exceed the outer diameter tubes 6.
  • FIG. 4 illustrates the relationship of the various parts prior to final assembly and prior to the actual soldering operation.
  • Solder reservoirs 31 and 32 are seen in cross sectional view.
  • a solder reservoir 31 is in the upper block plate 15 and a solder reservoir 32 is in the lower block 15 where die reservoir 31 and slot 31a are milled.
  • solder reservoirs 31 and 32 are filled with solder 21. After it has hardened the solder is machined flat so that it does not extend out of the reservolts.
  • the desired number of capillary tubes are then the thermoplastic resin-is supplied through gas jets or The resin is forced into chamber 18 between the upper and lower die blocks 15 and 16, respectively.
  • upper and lower die blocks 15 and 16 have been milled beyond chamber 18 to form troughs 19 and 20 to provide a seating cavity for capillary tubes 6.
  • Capillary tubes are rigidly positioned in troughs 19 and 20between die blocks 15 and 16 by solder 21.
  • the tubes 6 terminate exterior to chamber 18 in a sharp-angled point indicated as A.
  • Die nose 22 is of generally triangular cross section and can be formed by machining the exterior surfaces of die blocks 15 and 16 as will be described in more detail hereinafter.
  • the point A of the tubes 6 are formed in the machining operation.
  • the angle of the point is within the range of 30 to 90, preferably 55 to 65, most preferably 60.
  • An upper gas cover plate 23 and a lower gas cover plate 24 are connected to upper and lower die blocks 15 and 16. Hot gas is supplied by inlet 25 in gas plate 23 and inlet 26 in gas plate 24. Suitable baffling means (not shown) can be provided in both upper gas chamber 27 and lower gas chamber 28 to provide a uniform flow of gas through the gas slot 11 and 12.
  • FIG. 3 shows the relationship of the tubes 6 to each other after having been aligned and soldered into a preferred configuration.
  • An identical groove or trough 19 is machined in die blocks 15 and 16 and a groove or trough 20 is machined in lower die 'placed in trough 20 of lower die block 16.
  • Upper die block 15 and lower die block 16 are then bolted together. I
  • insulating packing 34 Prior to the heating operation for heating the-solder 21 and introducing more solder 21 to securely hold the capillary tube 6, insulating packing 34 (shown in FIG. 7) is packed in the chamber 18 so that solder 21 will not flow into chamber 18 while the die is heated for soldering.
  • solder reservoir 35 is shown attached to die blocks 15 and 16 which is bolted to said blocks with screws 36 and 37.
  • the solder reservoir 35 serves to provide a pressure head of solder to replenish solder.
  • die assembly 3 is placed in an oven to heat the solder 21.
  • solder 21 melts and flows through solder reservoirs 31 and 32 completely contacting the capillary tubes 6 and filling the space between the capillary tubes 6 in the trough 19 and 20, as shown in FIG. 3.
  • tubes 6 are rigidly placed between die blocks 15 and 16. It is preferred that the position of the die blocks 15 and 16 be that as shown in FIG. 8 while in the oven or while being heated. Insulating packing 34 prevents flow of solder 21 into the capillary tubes 6 or chamber 18.
  • tubes 6 have a length that permits one end of each tube to extend exteriorly past the ends of the die blocks 15 and 16 and lower die block 16 before they are machined.
  • die blocks 15 and 16 are machined to provide a die nose 22 of a triangular cross section which terminates in an angular cross sectional tip A.
  • the angle or as shown in FIG. 10 is between 30 and 90, preferably between 55 and 65, and
  • die blocks and 16, and tubes 6 are machined so that tubes 6 have surfaces which are integral with surface 38 of upper die block 15 and 39 of lower die block 16, to form the included angle a. See FIG. 10.
  • trough extends into the lower die block 16 for about A inch to about 1 inch, preferably about 7% inch (as indicated by the dimension x).
  • the capillary tubes 6 have internal diameters of between about 0.010 to about 0.025 inch, and may have outside diameters of between 0.025 and 0.050 inch, preferably 0.03 to 0.04 inch.
  • Capillary tubes 6 actually used to construct an embodiment of the invention were 316 stainless steel seamless tubes. This type of steel has the ability to resist the temperatures used in the soldering operation.
  • the tubes were 0.015 t 0.0005 inside diameter x .031 inch outside diameter by 1.0 inch long.
  • cross section may be square or rectangular, or any other shape.
  • outside diameter (O.D.) of the capillary tubes controls the spacing of the die openings. This distance is preferably within the range of to 40 mil from center to center.
  • the dimensions of the shoulder 30 and depth of the trough 20 in the lower die block 16 will vary depending on the size and shape of the capillary tubes 6 used.
  • the dimensions are such that die block 15 and die block 16 when in operating position will snugly hold the capillary tubes in the troughs 19 and 20.
  • depth Z will be one-half the CD. of the capillary tube used, and-the height Y of the shoulder will be equal to or less than the wall thickness of the capillary tube used.
  • a suitable solder when capillary tubes of 316 stainless steel are used is Eutectic 1801 silver solder having a composition of 51 percent silver, 22 percent copper, 19 percent zinc, 7 percent cadmium, and 1 percent tin.
  • the flux used with such a solder is Eutectic 1801-8 flux. This particular solder melts at l,l00 F. and bonds at l,l F., according to the manufacturer. While other solder and fluxes may be utilized, if such a solder is used, the clamped upper die block 15 and lower die block 16 would be placed in an oven or otherwise suitably heated to temperatures in excess of the bonding temperature of the solder used. Accordingly, a temperature of at least l,l35 F. is used when Eutectic 1801 solder is employed.
  • FIG. 11 illustrated a die head embodiment which does not require machining of the die block or capillaries to obtain the desired angular cross sectional tip of each of the capillaries. In contrast it utilizes capillary tubes with conical shaped tips.
  • die head 40 is made up of an upper die block 42 and a lower die block 43.
  • Upper die block 42 has'a groove or trough 44 and die block 43 also has a groove or trough machined therein for receiving capillary tubes 41.
  • Troughs 44 and 45 end in shoulders 46 and 47.
  • Capillary tubes 41 abut these shoulders.
  • thermoplastic resin is introduced into the back of the die head 40 through an inlet 48 which enters into a chamber 49 which supplies the resin to the capillaries of the capillary tubes 41.
  • capillary tubes 41 project outwardly from the die blocks 42 and 43 at a distance up to about half the length of the tube without requiring any external support other than said die blocks.
  • Upper gas cover plate 50 and a lower gas cover plate 51 forms an upper air or gas chamber 52 and a lower gas chamber 53.
  • the capillary tubes 41 have a conically formed apex A having an included angle within the range of 30 to 90, and preferably within the range of to 65.
  • Tips 54 and 55 of the upper air plate 50 and lower air plate 51 have an angle which is the same as that of the apex A of the capillary tubes 41. Furthermore, tips 54 and 55 of the air plate can be positioned so that they are positioned essentially opposite the taper of capillary tubes 41 within the range of l to 5 mils.
  • the die of the present invention has several fabrication and operational advantages over other dies which are in the art or have been developed for the meltblowing process. Since the tolerances in dimensions are critical in a melt-blowing die, the dies of the present invention allow melt-blowing dies to be made having the uniform small die openings which extend for large widths (40 inches to inches or more, i.e., requiring 500 to 2,000 or more capillary tubes) without the high fabrication cost of the methods before suggested.
  • a novel die apparatus is produced wherein the machining operations are all relatively simple, can be carried out to very close tolerances, and still provide a die having the tolerances necessary for use in the melt-blowing process. Still further, the dies of the present invention are more readily cleaned and can be used to produce larger outputs of melt-blown materials.
  • a melt-blowing die having a generally triangular cross-section which comprises in combination:
  • a die block having a chamber for thermoplastic material, and g a plurality of discrete smooth bore, uniform diameter, capillary tube means, having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge,
  • said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30 to 90 in fluid communication with the exterior of said die, and
  • a die according to claim 1 wherein said die block comprises an upper die block and a lower die block.
  • tube means are stainless steel capillary tubes aligned in a bed of solder.
  • the die of claim 1 which is at least 40 inches-long and has at least 500 tube means.
  • melt-blowing apparatus comprising:
  • extruder means in combination with die means
  • said die means having gas attenuating means and fiber collecting means the improvement which comprises said die means having a generally triangular cross-section which comprises in combination:
  • thermoplastic material a die block having a chamber for thermoplastic material
  • a plurality of discrete smooth bore, uniform diameter, capillary tube means having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having a one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge.
  • said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30 to in fluid communication with the exterior of said die, and

Abstract

A melt-blowing die which has capillary tubes rather than drilled orifices is more easily fabricated and operates more effectually. Preferably, one end of each capillary tube is machined so as to terminate in an apex having an included angle within the range of 30* to 90*. Or the tubes can have conical ends with the same angle. The inside diameter of these tubes range from 0.010 to 0.025 inch and they connect with a chamber in the die. Preferably the die is a two-piece assembly and is fabricated by bolting the two pieces and including the capillary tubes in a solder layer.

Description

United States Patent Lohkamp et al.
[ MELT-BLOWING DIE USING CAPILLARY TUBES [75] Inventors: Dwight T. Lohkamp; James P. Keller, both of Baytown, Tex.
[73] Assignee: Exxon Research and Engineering Company, Linden, NJ.
[22] Filed: Apr. 10, 1972 21 Appl. No.: 242,504
[52] US. Cl. 425/72, 425/464 [51] Int. Cl. D0ld 3/00, D01d 7/00 [58] Field of Search 425/464, 72; 264/176 F,
[56] References Cited UNITED STATES PATENTS 1,310,509 7/1919 Specht ..425/464 [111- 3,825,379 [451 July 23,1974
Ladisch 264/176 F Hartmann et al 425/464 X Primary Examiner-Robert D. Baldwin Attorney, Agent, or Firm-David A. Roth [5 7] ABSTRACT A melt-blowing die which has capillary tubes rather than drilled orifices is more easily fabricated and operates more effectually. Preferably, one end of each capillary tube is machined so as to terminate in an apex having an included angle within the range of 30 to- 90. Or the tubes can have conical ends with the same angle. The inside diameter of these tubes range from 0.010 to 0.025 inch and they connect with a chamber in the die. Preferably the die is a two-piece assembly and is fabricated by bolting the two pieces and including the capillary tubes in a solder layer.
16 Claims, 11 Drawing Figures SHEET 2 BF 2 gain FIG. 4.
1 MELT-BLOWING DIE USING CAPILLARY TUBES BACKGROUND OF THE INVENTION DESCRIPTION OF THE PREFERRED EMBODIMENTS During the course of the research project leading to this invention, it was found that dies for use in a meltblowing process require very close tolerances. This has ent invention relates to a die having a plurality of capill lary tubes to produce a line of die openings having internal diameters which are uniform and are precisely aligned as required for the melt-blowing process. 2. Prior Art Melt-blowing and suitable dies therefor are disclosed in the following publications and patents:
l. Naval Research Laboratory Report 4364, Manufacture of Superfine Organic Fibers, Apr. '15, 1954.
2. Wente, Van A., Industrial and Engineering Chemistry, 48, No. 8 (1956, PP. 1342-1346).
3. Naval Research Laboratory Report 5265, An Im- I proved Device for the Formation of Superfine, Thermoplastic Fibers, Feb. 11, 1959.
4. British Pat. No. 1,055,187.
5. US. Pat. No. 3,379,811.
6. Japanese Pat. 25871/69, published Oct. 30, 1969.
SUMMARY OF THE INVENTION A die apparatus for melt-blowing thermoplastic materials having a plurality of capillary tubes as the die openings. The die is a two piece assembly and the capillary tubes are included in the solder layer between the two pieces to form the die apparatus.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a sectional view taken across 5-5 of FIG. 4 showing a top view of one portion of the die with the capillary tubes in position before soldering;
FIG. 6 is a cross sectional view taken across 66 of FIG. 4 showing one capillary tube in position before soldering on one piece of the die;
FIG. 7 is a view in cross section similar to FIG. 6 wherein the two pieces making up the die are bolted together and packed in preparation for heating the solder;
FIG. 8 is a view in cross section of the die as the die would be positioned in the oven or being heated, with a reservoir for the solder attached;
FIG. 9 is a top view of the die with the reservoir for the solder attached before machining;
FIG. 10 is a cross sectional view of thedie after machining whereby a preferred embodiment of the present invention is produced; and
FIG. 11 is a cross sectional view of another embodiment of a die of the present invention.
made their fabrication very difficult and costly. One requirement which is responsible for the high cost is the large number of very small holes which must be drilled. A second requirement which was'found, that fabricators have difficulty adhering to, is that all holes must emerge on a sharp (chisel) edge and that this line of holes must be accurately in line over long distances. The center of each tube must not be offset from a straight line by more than 3 mils.
A method has been found of fabricating this type of die which overcomes some of the above difficulties and reduces the cost of the die. This method uses capillary tubes to replace drilled holes in the die. By using capillary tubes, the problems associated with precise drilling or electrical discharge machining of very small holes are avoided. Of greater importance, it is possible to align the row of capillary tubes very precisely so that the holes follow a straight line accurately.
In general the method used to demonstrate the principles of using capillary tubes follows. Two metal blocks which will each form one-half of the die are machined with the desired melt cavity. The melt cavity distributes the flow of thermoplastic fluid to. the inlets of the orifices. Slots are then milled accurately in the areas where the capillaries are to be packaged. Each block has an identical slot with a depth equal to or slightly less than the radius of a capillary tube. Channels are then milled in the end blocks (outside of the area which will contain holes) and along the slots at the mid-point of the tube location. These channels are filled with solder and then the solder is machined smooth. The capillary tubes are then packed into one slot and the two halves are matched and carefully aligned. The clamped halves are placed in a nitrogen oven where the soldering is completed. The soldered die is then finally machined.
Other methods of soldering can also be used. The advantages of using a capillary die include the following:
1. Holes can be longer since they do not have to be drilled.
2. Hole diameters are very uniform.
3. Holes do not have burrs or jagged interiors.
4. It is easier to achieve the precise alignment required to make superior webs by the melt-blowing process.
5. Machining of a melt channel is easier since this can be done on split halves, as compared to a single piece assembly.
6. Fabrication costs are greatly reduced.
A 2-inch die has been made using the capillary tube method. This die has performed satisfactorily on the melt-blowing process.
Since melt-blowing in general and dies therefore have been described as indicated above this specification will be devoted to the details of the novel die apparatus of the invention. 9
This can be best accomplished with the aid of the drawings.
Referring to FIG. 1 of the drawings, a melt-blowing process is carried out by introducing into hopper l pellets of one or more thermoplastic materials, i.e. resins, and which may include dyes, additives or other modifiers with the thennoplastic resins. These are conveyed into extruder 2.
With some thermoplastic resins it is necessary to degrade them to a considerably lower viscosity by either thermally treating the resin before introducing the resin into the extruder 2, or thermally treating the resin in the extruder 2 and/or die assembly 3.
For example, if polypropylene is to be melt-blown, the polypropylene is added into hopper 1 and heated in extruder 2 at temperatures in excess of 550 F., and preferably within the range of 620 to 800 F. The degree of thermal treatment necessary varies with the molecular weight of the polypropylene.
Resin is forced through extruder 2 into die head 3 by drive 4 which turns the extruder screw (not shown). Die head 3 usually contains heating plate 5 which may also be used in the thermal treatment of the thermoplastic resin before it is melt-blown.
The fluid resin is then forced out of a row of capillary tubes 6 rigidly mounted within die assembly 3, where it is impinged by a gas stream which attenuates the resin into continuous fibers 7 which are collected ona moving collecting device 8 such as drum 9 to form a continuous mat 10.
The hot gas stream, preferably air, which attenuates block 16. The dimensions of troughs l9 and 20 are selected so that when in operating position they just hold the desired number of capillary tubes 6 as determined by the outer diameter (O.D.) of capillary tubes 6.
Troughs 19 and 20 extend into the upper and lower die blocks and 16 ending near shoulder 29 in upper die block 15 and near shoulder 30 in lower die block 16. The height of shoulders 29 and 30 should preferably not exceed the outer diameter tubes 6.
FIG. 4 illustrates the relationship of the various parts prior to final assembly and prior to the actual soldering operation. Solder reservoirs 31 and 32 are seen in cross sectional view. A solder reservoir 31 is in the upper block plate 15 and a solder reservoir 32 is in the lower block 15 where die reservoir 31 and slot 31a are milled.
- For assembly, solder reservoirs 31 and 32 are filled with solder 21. After it has hardened the solder is machined flat so that it does not extend out of the reservolts. The desired number of capillary tubes are then the thermoplastic resin-is supplied through gas jets or The resin is forced into chamber 18 between the upper and lower die blocks 15 and 16, respectively.
According to the present invention, upper and lower die blocks 15 and 16 have been milled beyond chamber 18 to form troughs 19 and 20 to provide a seating cavity for capillary tubes 6. Capillary tubes are rigidly positioned in troughs 19 and 20between die blocks 15 and 16 by solder 21.
In this embodiment, the tubes 6 terminate exterior to chamber 18 in a sharp-angled point indicated as A. Die nose 22 is of generally triangular cross section and can be formed by machining the exterior surfaces of die blocks 15 and 16 as will be described in more detail hereinafter. The point A of the tubes 6 are formed in the machining operation. The angle of the point is within the range of 30 to 90, preferably 55 to 65, most preferably 60.
An upper gas cover plate 23 and a lower gas cover plate 24 are connected to upper and lower die blocks 15 and 16. Hot gas is supplied by inlet 25 in gas plate 23 and inlet 26 in gas plate 24. Suitable baffling means (not shown) can be provided in both upper gas chamber 27 and lower gas chamber 28 to provide a uniform flow of gas through the gas slot 11 and 12.
FIG. 3 shows the relationship of the tubes 6 to each other after having been aligned and soldered into a preferred configuration.
Referring to FIGS. 4-10, inclusive, there isillustrated a technique for making the inventive die. An identical groove or trough 19 is machined in die blocks 15 and 16 and a groove or trough 20 is machined in lower die 'placed in trough 20 of lower die block 16. Upper die block 15 and lower die block 16 are then bolted together. I
As shown in FIG. 7, the two are bolted together by bolts 33 so as to hold capillary tubes 6 firmly within troughs 19 and 20 with the inner ends of capillarytubes 6 abutting shoulders 29 and 30 of the upper die block 15 and lower die block 16. Die blocks 15 and 16 are usually machined to provide the chamber 18 necessary for the introduction of thermoplastic resin to the capillary tubes 6.-
Prior to the heating operation for heating the-solder 21 and introducing more solder 21 to securely hold the capillary tube 6, insulating packing 34 (shown in FIG. 7) is packed in the chamber 18 so that solder 21 will not flow into chamber 18 while the die is heated for soldering. I
In FIGS. 8 and 9, external solder reservoir 35 is shown attached to die blocks 15 and 16 which is bolted to said blocks with screws 36 and 37. The solder reservoir 35 serves to provide a pressure head of solder to replenish solder.
After die blocks 15 and 16 are securely clamped with bolts 33 and tubes 6 are firmly in troughs 19 and 20 and one end of each tube abuts shoulders 29 and 30, die assembly 3 is placed in an oven to heat the solder 21.
When die assembly 3 is placed in the oven, solder 21 melts and flows through solder reservoirs 31 and 32 completely contacting the capillary tubes 6 and filling the space between the capillary tubes 6 in the trough 19 and 20, as shown in FIG. 3. Upon cooling, tubes 6 are rigidly placed between die blocks 15 and 16. It is preferred that the position of the die blocks 15 and 16 be that as shown in FIG. 8 while in the oven or while being heated. Insulating packing 34 prevents flow of solder 21 into the capillary tubes 6 or chamber 18.
It is apparent that the heating must allow solder 21 to completely fill the space around the capillary tubes 6 and provide a complete barricade in troughs 19 and 20 to any possible flow of thermoplastic resin.
Preferably tubes 6 have a length that permits one end of each tube to extend exteriorly past the ends of the die blocks 15 and 16 and lower die block 16 before they are machined.
In the final machining operation, die blocks 15 and 16 are machined to provide a die nose 22 of a triangular cross section which terminates in an angular cross sectional tip A. The angle or as shown in FIG. 10 is between 30 and 90, preferably between 55 and 65, and
most preferably about 60.
In one embodiment, die blocks and 16, and tubes 6 are machined so that tubes 6 have surfaces which are integral with surface 38 of upper die block 15 and 39 of lower die block 16, to form the included angle a. See FIG. 10.
Some even more specific details of preferred embodiments follow. In FIG. 6, trough extends into the lower die block 16 for about A inch to about 1 inch, preferably about 7% inch (as indicated by the dimension x).
The capillary tubes 6 have internal diameters of between about 0.010 to about 0.025 inch, and may have outside diameters of between 0.025 and 0.050 inch, preferably 0.03 to 0.04 inch.
Capillary tubes 6 actually used to construct an embodiment of the invention were 316 stainless steel seamless tubes. This type of steel has the ability to resist the temperatures used in the soldering operation. The tubes were 0.015 t 0.0005 inside diameter x .031 inch outside diameter by 1.0 inch long.
Although capillary tubes having circular cross sections are illustrated, the cross section may be square or rectangular, or any other shape.
It is to be understood that the outside diameter (O.D.) of the capillary tubes controls the spacing of the die openings. This distance is preferably within the range of to 40 mil from center to center.
. The dimensions of the shoulder 30 and depth of the trough 20 in the lower die block 16 will vary depending on the size and shape of the capillary tubes 6 used.
Usually, the dimensions are such that die block 15 and die block 16 when in operating position will snugly hold the capillary tubes in the troughs 19 and 20. Hence, if the dimensions of troughs 19 and 20 are identical, depth Z will be one-half the CD. of the capillary tube used, and-the height Y of the shoulder will be equal to or less than the wall thickness of the capillary tube used.
A suitable solder when capillary tubes of 316 stainless steel are used is Eutectic 1801 silver solder having a composition of 51 percent silver, 22 percent copper, 19 percent zinc, 7 percent cadmium, and 1 percent tin. The flux used with such a solder is Eutectic 1801-8 flux. This particular solder melts at l,l00 F. and bonds at l,l F., according to the manufacturer. While other solder and fluxes may be utilized, if such a solder is used, the clamped upper die block 15 and lower die block 16 would be placed in an oven or otherwise suitably heated to temperatures in excess of the bonding temperature of the solder used. Accordingly, a temperature of at least l,l35 F. is used when Eutectic 1801 solder is employed.
FIG. 11 illustrated a die head embodiment which does not require machining of the die block or capillaries to obtain the desired angular cross sectional tip of each of the capillaries. In contrast it utilizes capillary tubes with conical shaped tips.
Thus, die head 40 is made up of an upper die block 42 and a lower die block 43. Upper die block 42has'a groove or trough 44 and die block 43 also has a groove or trough machined therein for receiving capillary tubes 41. Troughs 44 and 45 end in shoulders 46 and 47. Capillary tubes 41 abut these shoulders.
In operation thermoplastic resin is introduced into the back of the die head 40 through an inlet 48 which enters into a chamber 49 which supplies the resin to the capillaries of the capillary tubes 41.
In this embodiment, capillary tubes 41 project outwardly from the die blocks 42 and 43 at a distance up to about half the length of the tube without requiring any external support other than said die blocks. Upper gas cover plate 50 and a lower gas cover plate 51 forms an upper air or gas chamber 52 and a lower gas chamber 53.
The capillary tubes 41 have a conically formed apex A having an included angle within the range of 30 to 90, and preferably within the range of to 65.
' Tips 54 and 55 of the upper air plate 50 and lower air plate 51, respectively, have an angle which is the same as that of the apex A of the capillary tubes 41. Furthermore, tips 54 and 55 of the air plate can be positioned so that they are positioned essentially opposite the taper of capillary tubes 41 within the range of l to 5 mils.
The die of the present invention has several fabrication and operational advantages over other dies which are in the art or have been developed for the meltblowing process. Since the tolerances in dimensions are critical in a melt-blowing die, the dies of the present invention allow melt-blowing dies to be made having the uniform small die openings which extend for large widths (40 inches to inches or more, i.e., requiring 500 to 2,000 or more capillary tubes) without the high fabrication cost of the methods before suggested.
Furthermore, as has been discovered by another in the research project the die openings must be in line over a long distance.
Accordingly, by the fabricating method of the present invention, a novel die apparatus is produced wherein the machining operations are all relatively simple, can be carried out to very close tolerances, and still provide a die having the tolerances necessary for use in the melt-blowing process. Still further, the dies of the present invention are more readily cleaned and can be used to produce larger outputs of melt-blown materials.
It is also an advantage of the apparatus of the present invention that the hole length can be much longer than those obtained by the drilling approach.
What is claimed is: l. A melt-blowing die having a generally triangular cross-section which comprises in combination:
a die block having a chamber for thermoplastic material, and g a plurality of discrete smooth bore, uniform diameter, capillary tube means, having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge,
said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30 to 90 in fluid communication with the exterior of said die, and
upper and lower gas slots defined by gas plates with tip means adjacent to said shaped tip in a spaced, parallel planar relationship to said shaped tip whereby said air plates form the same angle as said shaped tip.
2. A die according to claim 1 wherein said tip is triangular in cross section.
3. A die according to claim 1 wherein said tip is conical.
4. A die according to claim 1 wherein the centers of said tube means are aligned in substantially a single plane.
5. A die according to claim 1 wherein said angle is within the range of 55 to 65. l
6. A die according to claim 1 wherein said die block comprises an upper die block and a lower die block.
7. The die of claim 1 wherein said tube means are of circular cross section.
8. The die of claim 4 wherein the center of each tube means is offset from a straight line no more than 3 mils.
9. The die of claim 1 wherein said tube means are stainless steel capillary tubes aligned in a bed of solder.
10. The die of claim 9 wherein said die block has two discrete components and said tubes are rigidly mounted between said components.
11. The die of claim 1 wherein said gas plate tips are positioned essentially opposite said shaped tips.
12. The die of claim 1 which is at least 40 inches-long and has at least 500 tube means.
13. In a melt-blowing apparatus comprising:
extruder means in combination with die means,
said die means having gas attenuating means and fiber collecting means the improvement which comprises said die means having a generally triangular cross-section which comprises in combination:
a die block having a chamber for thermoplastic material, and
a plurality of discrete smooth bore, uniform diameter, capillary tube means, having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having a one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge.
said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30 to in fluid communication with the exterior of said die, and
upper and lower gas slots defined by gas plates with tip means adjacent to said shaped tip in a spaced, parallel planar relationship to said shaped tip whereby said air plates form the same angle as said shaped tip.
14. The melt-blowing apparatus of claim 13 wherein the die has an angle within the range of 55 to 65.
15. The melt-blowing apparatus of claim 13 wherein the tube means in said die are of circular cross-section.

Claims (16)

1. A melt-blowing die having a generally triangular crosssection which comprises in combination: a die block having a chamber for thermoplastic material, and a plurality of discrete smooth bore, uniform diameter, capillary tube means, having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge, said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30* to 90* in fluid communication with the exterior of said die, and upper and lower gas slots defined by gas plates with tip means adjacent to said shaped tip in a spaced, parallel planar relationship to said shaped tip whereby said air plates form the same angle as said shaped tip.
2. A die according to claim 1 wherein said tip is triangular in cross section.
3. A die according to claim 1 wherein said tip is conical.
4. A die according to claim 1 wherein the centers of said tube means are aligned in substantially a single plane.
5. A die according to claim 1 wherein said angle is within the range of 55* to 65*.
6. A die according to claim 1 wherein said die block comprises an upper die block and a lower die block.
7. The die of claim 1 wherein said tube means are of circular cross section.
8. The die of claim 4 wherein the center of each tube means is offset from a straight line no more than 3 mils.
9. The die of claim 1 wherein said tube means are stainless steel capillary tubes aligned in a bed of solder.
10. The die of claim 9 wherein said die block has two discrete components and said tubes are rigidly mounted between said components.
11. The die of claim 1 wherein said gas plate tips are positioned essentially opposite said shaped tips.
12. The die of claim 1 which is at least 40 inches long and has at least 500 tube means.
13. In a melt-blowing apparatus comprising: extruder means in combination with die means, said die means having gas attenuating means and fiber collecting means the improvement which comprises said die means having a generally triangular cross-section which comprises in combination: a die block having a chamber for thermoplastic material, and a plurality of discrete smooth bore, uniform diameter, capillary tube means, having an internal diameter of from 0.010 to 0.025 inches and an external diameter of 0.025 to 0.050 inches each having a one end and another end, rigidly held within said die block, and each of said tube means in a touching essentially planar relationship with each of said another ends in a precise alignment defining a sharp edge. said one end of said tube means in fluid connection with said chamber and said another end of said tube means having a shaped tip with a cross sectional angle within the range of 30* to 90* in fluid communication with the exterior of said die, and upper and lower gas slots defined by gas plates with tip means adjacent to said shaped tip in a spaced, parallel planar relationship to said shaped tip whereby said air plates form the same angle as said shaped tip.
14. The melt-blowing apparatus of claim 13 wherein the die has an angle within the range of 55* to 65*.
15. The melt-blowing apparatus of claim 13 wherein the tube means IN said die are of circular cross-section.
16. The apparatus according to claim 13 wherein the die contains stainless steel capillary tubes aligned in a bed of solder.
US00242504A 1972-04-10 1972-04-10 Melt-blowing die using capillary tubes Expired - Lifetime US3825379A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00242504A US3825379A (en) 1972-04-10 1972-04-10 Melt-blowing die using capillary tubes
JP48040748A JPS5844470B2 (en) 1972-04-10 1973-04-10 Mousaikanshiyo Melt Blow - Yodai

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00242504A US3825379A (en) 1972-04-10 1972-04-10 Melt-blowing die using capillary tubes

Publications (1)

Publication Number Publication Date
US3825379A true US3825379A (en) 1974-07-23

Family

ID=22915036

Family Applications (1)

Application Number Title Priority Date Filing Date
US00242504A Expired - Lifetime US3825379A (en) 1972-04-10 1972-04-10 Melt-blowing die using capillary tubes

Country Status (2)

Country Link
US (1) US3825379A (en)
JP (1) JPS5844470B2 (en)

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888610A (en) * 1973-08-24 1975-06-10 Rothmans Of Pall Mall Formation of polymeric fibres
US3942723A (en) * 1974-04-24 1976-03-09 Beloit Corporation Twin chambered gas distribution system for melt blown microfiber production
US3954361A (en) * 1974-05-23 1976-05-04 Beloit Corporation Melt blowing apparatus with parallel air stream fiber attenuation
US3970417A (en) * 1974-04-24 1976-07-20 Beloit Corporation Twin triple chambered gas distribution system for melt blown microfiber production
US3981650A (en) * 1975-01-16 1976-09-21 Beloit Corporation Melt blowing intermixed filaments of two different polymers
US3985481A (en) * 1974-12-09 1976-10-12 Rothmans Of Pall Mall Canada Limited Extrusion head for producing polymeric material fibres
US4073850A (en) * 1974-12-09 1978-02-14 Rothmans Of Pall Mall Canada Limited Method of producing polymeric material
US4295809A (en) * 1979-09-12 1981-10-20 Toa Nenryo Kogyo Kabushiki Kaisha Die for a melt blowing process
US4380570A (en) * 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
FR2536094A1 (en) * 1982-11-17 1984-05-18 Kimberly Clark Co PROCESS FOR BLOWING FIBERS IN THE MELT AND FILTERED STATE FOR ITS IMPLEMENTATION
US4486161A (en) * 1983-05-12 1984-12-04 Kimberly-Clark Corporation Melt-blowing die tip with integral tie bars
US4631013A (en) * 1984-02-29 1986-12-23 General Electric Company Apparatus for atomization of unstable melt streams
US4774001A (en) * 1984-12-21 1988-09-27 Pall Corporation Supported microporous membrane
US4774109A (en) * 1987-07-21 1988-09-27 Nordson Corporation Method and apparatus for applying narrow, closely spaced beads of viscous liquid to a substrate
US4785996A (en) * 1987-04-23 1988-11-22 Nordson Corporation Adhesive spray gun and nozzle attachment
US4815660A (en) * 1987-06-16 1989-03-28 Nordson Corporation Method and apparatus for spraying hot melt adhesive elongated fibers in spiral patterns by two or more side-by-side spray devices
US4818463A (en) * 1986-04-26 1989-04-04 Buehning Peter G Process for preparing non-woven webs
US4826415A (en) * 1986-10-21 1989-05-02 Mitsui Petrochemical Industries, Ltd. Melt blow die
US4844004A (en) * 1987-07-21 1989-07-04 Nordson Corporation Method and apparatus for applying narrow, closely spaced beads of viscous liquid to a substrate
EP0334653A2 (en) * 1988-03-25 1989-09-27 Mitsui Petrochemical Industries, Ltd. Spinning method employing melt-blowing method and melt-blowing die
US4934433A (en) * 1988-11-15 1990-06-19 Polysar Financial Services S.A. Devolatilization
US4969602A (en) * 1988-11-07 1990-11-13 Nordson Corporation Nozzle attachment for an adhesive dispensing device
USRE33481E (en) * 1987-04-23 1990-12-11 Nordson Corporation Adhesive spray gun and nozzle attachment
US4983109A (en) * 1988-01-14 1991-01-08 Nordson Corporation Spray head attachment for metering gear head
US4987854A (en) * 1988-12-12 1991-01-29 Nordson Corporation Apparatus for gas-aided dispensing of liquid materials
US5026450A (en) * 1989-10-13 1991-06-25 Nordson Corporation Method of applying adhesive to the waist elastic material of disposable garments
US5030303A (en) * 1989-07-28 1991-07-09 Nordson Corporation Method for forming disposable garments with a waste containment pocket
US5065943A (en) * 1990-09-06 1991-11-19 Nordson Corporation Nozzle cap for an adhesive dispenser
US5075068A (en) * 1990-10-11 1991-12-24 Exxon Chemical Patents Inc. Method and apparatus for treating meltblown filaments
US5080569A (en) * 1990-08-29 1992-01-14 Chicopee Primary air system for a melt blown die apparatus
US5114752A (en) * 1988-12-12 1992-05-19 Nordson Corporation Method for gas-aided dispensing of liquid materials
US5143776A (en) * 1991-06-24 1992-09-01 The Procter & Gamble Company Tissue laminates having adhesively joined tissue laminae
US5169071A (en) * 1990-09-06 1992-12-08 Nordson Corporation Nozzle cap for an adhesive dispenser
US5171512A (en) * 1988-03-25 1992-12-15 Mitsui Petrochemical Industries, Ltd. Melt-blowing method having notches on the capillary tips
US5176952A (en) * 1991-09-30 1993-01-05 Minnesota Mining And Manufacturing Company Modulus nonwoven webs based on multi-layer blown microfibers
US5190812A (en) * 1991-09-30 1993-03-02 Minnesota Mining And Manufacturing Company Film materials based on multi-layer blown microfibers
US5196207A (en) * 1992-01-27 1993-03-23 Kimberly-Clark Corporation Meltblown die head
US5207970A (en) * 1991-09-30 1993-05-04 Minnesota Mining And Manufacturing Company Method of forming a web of melt blown layered fibers
US5232770A (en) * 1991-09-30 1993-08-03 Minnesota Mining And Manufacturing Company High temperature stable nonwoven webs based on multi-layer blown microfibers
US5238190A (en) * 1992-06-16 1993-08-24 Nordson Corporation Offset nozzle assembly
US5238733A (en) * 1991-09-30 1993-08-24 Minnesota Mining And Manufacturing Company Stretchable nonwoven webs based on multi-layer blown microfibers
US5240479A (en) * 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
US5248455A (en) * 1991-09-30 1993-09-28 Minnesota Mining And Manufacturing Company Method of making transparent film from multilayer blown microfibers
US5258220A (en) * 1991-09-30 1993-11-02 Minnesota Mining And Manufacturing Company Wipe materials based on multi-layer blown microfibers
US5286182A (en) * 1991-01-17 1994-02-15 Mitsubishi Kasei Corporation Spinning nozzle for preparing a fiber precursor
US5350624A (en) * 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5354378A (en) * 1992-07-08 1994-10-11 Nordson Corporation Slot nozzle apparatus for applying coatings to bottles
US5382312A (en) * 1992-04-08 1995-01-17 Nordson Corporation Dual format adhesive apparatus for intermittently disrupting parallel, straight lines of adhesive to form a band
US5409733A (en) * 1992-07-08 1995-04-25 Nordson Corporation Apparatus and methods for applying conformal coatings to electronic circuit boards
US5418009A (en) * 1992-07-08 1995-05-23 Nordson Corporation Apparatus and methods for intermittently applying discrete adhesive coatings
US5421921A (en) * 1992-07-08 1995-06-06 Nordson Corporation Segmented slot die for air spray of fibers
US5423783A (en) * 1991-09-30 1995-06-13 Minnesota Mining And Manufacturing Company Ostomy bag with elastic and heat sealable medical tapes
US5423935A (en) * 1992-07-08 1995-06-13 Nordson Corporation Methods for applying discrete coatings
US5429840A (en) * 1992-07-08 1995-07-04 Nordson Corporation Apparatus and methods for applying discrete foam coatings
US5478224A (en) * 1994-02-04 1995-12-26 Illinois Tool Works Inc. Apparatus for depositing a material on a substrate and an applicator head therefor
EP0701010A1 (en) 1990-10-17 1996-03-13 Exxon Chemical Patents Inc. Meltblowing Die
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
WO1996039054A1 (en) 1995-06-06 1996-12-12 Filtrona International Limited Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom
US5591335A (en) * 1995-05-02 1997-01-07 Memtec America Corporation Filter cartridges having nonwoven melt blown filtration media with integral co-located support and filtration
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
DE19609143C1 (en) * 1996-03-08 1997-11-13 Rhodia Ag Rhone Poulenc Melt-blown fleece, process for its production and its uses
US5711970A (en) * 1995-08-02 1998-01-27 Kimberly-Clark Worldwide, Inc. Apparatus for the production of fibers and materials having enhanced characteristics
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
US5863565A (en) * 1996-05-15 1999-01-26 Conoco Inc. Apparatus for forming a single layer batt from multiple curtains of fibers
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
WO1999027880A1 (en) 1997-12-01 1999-06-10 Minnesota Mining And Manufacturing Company Nasal dilator
US5911224A (en) * 1997-05-01 1999-06-15 Filtrona International Limited Biodegradable polyvinyl alcohol tobacco smoke filters, tobacco smoke products incorporating such filters, and methods and apparatus for making same
US5913329A (en) * 1995-12-15 1999-06-22 Kimberly-Clark Worldwide, Inc. High temperature, high speed rotary valve
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US6026819A (en) * 1998-02-18 2000-02-22 Filtrona International Limited Tobacco smoke filter incorporating sheath-core bicomponent fibers and tobacco smoke product made therefrom
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6074869A (en) * 1994-07-28 2000-06-13 Pall Corporation Fibrous web for processing a fluid
US6102039A (en) * 1997-12-01 2000-08-15 3M Innovative Properties Company Molded respirator containing sorbent particles
US6133173A (en) * 1997-12-01 2000-10-17 3M Innovative Properties Company Nonwoven cohesive wrap
US6171985B1 (en) 1997-12-01 2001-01-09 3M Innovative Properties Company Low trauma adhesive article
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US6198016B1 (en) 1998-12-01 2001-03-06 3M Innovative Properties Company Wet skin adhesive article
DE19956368A1 (en) * 1999-11-24 2001-06-13 Sandler C H Gmbh Melt blown thermoplastic plastic fiber fleece production involves blowing fiber flow leaving nozzle to form angle with nozzle axis
US6342561B1 (en) 1999-11-17 2002-01-29 3M Innovative Properties Company Organic particulate-filled adhesive
US6358417B1 (en) 1999-04-21 2002-03-19 Osmonics, Inc. Non-woven depth filter element
US6364647B1 (en) 1998-10-08 2002-04-02 David M. Sanborn Thermostatic melt blowing apparatus
US6383958B1 (en) 1999-06-18 2002-05-07 David P. Swanson Nonwoven sheets, adhesive articles, and methods for making the same
US20020125601A1 (en) * 2001-03-09 2002-09-12 Allen Martin A. Apparatus and method for extruding single-component liquid strands into multi-component filaments
US6454096B1 (en) 2000-06-01 2002-09-24 3M Innovative Properties Company Package for dispensing individual sheets
US20020144384A1 (en) * 2000-12-11 2002-10-10 The Dow Chemical Company Thermally bonded fabrics and method of making same
US6503855B1 (en) 1998-10-02 2003-01-07 3M Innovative Properties Company Laminated composites
US6533119B1 (en) 2000-05-08 2003-03-18 3M Innovative Properties Company BMF face oil remover film
US20030080051A1 (en) * 2001-10-23 2003-05-01 Osmonics, Inc. Three-dimensional non-woven media
US20030091617A1 (en) * 2001-06-07 2003-05-15 Mrozinski James S. Gel-coated oil absorbing skin wipes
US6565344B2 (en) 2001-03-09 2003-05-20 Nordson Corporation Apparatus for producing multi-component liquid filaments
US20030100236A1 (en) * 2001-11-15 2003-05-29 Jayshree Seth Disposable cleaning product
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
US6638611B2 (en) 2001-02-09 2003-10-28 3M Innovative Properties Company Multipurpose cosmetic wipes
US6645611B2 (en) 2001-02-09 2003-11-11 3M Innovative Properties Company Dispensable oil absorbing skin wipes
US6652800B2 (en) 1997-12-31 2003-11-25 Kimberly-Clark Worldwide, Inc. Method for producing fibers
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US20040024633A1 (en) * 2002-05-30 2004-02-05 Whymark Thomas J. Multi-market broadcast tracking, management and reporting method and system
US6756098B2 (en) 2001-01-17 2004-06-29 3M Innovative Properties Company Pressure sensitive adhesives with a fibrous reinforcing material
US20040201127A1 (en) * 2003-04-08 2004-10-14 The Procter & Gamble Company Apparatus and method for forming fibers
US6894204B2 (en) 2001-05-02 2005-05-17 3M Innovative Properties Company Tapered stretch removable adhesive articles and methods
US20050118917A1 (en) * 2002-01-03 2005-06-02 Ahamad Khan Breathable non-wettable melt-blown non-woven materials and products employing the same
US20050133971A1 (en) * 2003-12-23 2005-06-23 Haynes Bryan D. Meltblown die having a reduced size
US20050151805A1 (en) * 2002-12-23 2005-07-14 Ward Bennett C. Porous substrate for ink delivery systems
US20060141086A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Low turbulence die assembly for meltblowing apparatus
US7078582B2 (en) 2001-01-17 2006-07-18 3M Innovative Properties Company Stretch removable adhesive articles and methods
US20060240733A1 (en) * 2005-04-25 2006-10-26 Fina Technology, Inc. Fibers and fabrics prepared from blends of homopolymers and copolymers
US20060276095A1 (en) * 2005-06-02 2006-12-07 Nike, Inc. Article of footwear of nonwoven material and method of manufacturing same
US7157093B1 (en) 1997-12-05 2007-01-02 3M Innovative Properties Company Oil cleaning sheets for makeup
US20070125888A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Multi-component liquid spray systems
US20070125886A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Methods of spraying multi-component liquids
US20080145530A1 (en) * 2006-12-13 2008-06-19 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
US20080172840A1 (en) * 2007-01-19 2008-07-24 Smita Kacker Spunbond fibers and fabrics from polyolefin blends
WO2009026207A1 (en) 2007-08-21 2009-02-26 Exxonmobil Chemical Patents Inc. Soft and elastic nonwoven polypropylene compositions
EP2145695A1 (en) * 2008-07-14 2010-01-20 Sika Technology AG Device for applying an adhesive
US20100224702A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Pneumatic atomization nozzle for web moistening
US20100224665A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Thermally isolated liquid supply for web moistening
US20100224122A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Low pressure regulation for web moistening systems
US20100224703A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Pneumatic Atomization Nozzle for Web Moistening
US20110037194A1 (en) * 2009-08-14 2011-02-17 Michael David James Die assembly and method of using same
US20110067458A1 (en) * 2009-09-18 2011-03-24 Groz-Beckert Kg Nozzle bar for a textile processing machine
US20110067213A1 (en) * 2009-09-18 2011-03-24 Groz-Beckert Kg Nozzle foil for a nozzle bar with connectable foil segments
EP2302121A1 (en) 2009-09-15 2011-03-30 Groz-Beckert KG Felt body production method
US20110092076A1 (en) * 2008-05-19 2011-04-21 E.I. Du Pont De Nemours And Company Apparatus and method of vapor coating in an electronic device
US20110151738A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, melt blown fine fibers, and methods of making and using the same
US20110151737A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
US20110189463A1 (en) * 2008-06-12 2011-08-04 Moore Eric M Melt blown fine fibers and methods of manufacture
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
WO2012051479A1 (en) 2010-10-14 2012-04-19 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, and methods of making and using the same
WO2012078826A2 (en) 2010-12-08 2012-06-14 3M Innovative Properties Company Adhesive article for three-dimensional applications
CN103498202A (en) * 2013-09-29 2014-01-08 无锡众望四维科技有限公司 Melt-blown head of melt-blown machine
CN103507259A (en) * 2013-09-21 2014-01-15 北京化工大学 Efficient large pipe-extrusion forming device
US8858986B2 (en) 2008-06-12 2014-10-14 3M Innovative Properties Company Biocompatible hydrophilic compositions
TWI496625B (en) * 2012-06-29 2015-08-21 Univ Nat Taiwan Coating module
US20150266224A1 (en) * 2012-10-08 2015-09-24 Saipem S.P.A. Method, device and work station for applying protective sheeting of polymer material to a pipeline, and computer program for implementing such a method
US20160168774A1 (en) * 2014-12-16 2016-06-16 Nike, Inc. Nonwoven Material, Method Of Making Same, And Articles Incorporating The Nonwoven Material
US9382644B1 (en) 2015-04-26 2016-07-05 Thomas M. Tao Die tip for melt blowing micro- and nano-fibers
US9487893B2 (en) 2009-03-31 2016-11-08 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
WO2018102322A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article with bump
WO2018102521A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article with a strap
WO2018102272A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article
CN108716023A (en) * 2018-05-29 2018-10-30 丹阳市宇晟纺织新材料有限公司 A kind of meltblown beam prepared for nanofiber
US10174442B2 (en) 2012-12-03 2019-01-08 Exxonmobil Chemical Patents Inc. Polypropylene fibers and fabrics
US10179426B2 (en) 2013-11-06 2019-01-15 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
WO2020188438A1 (en) 2019-03-15 2020-09-24 3M Innovative Properties Company Tie layer chemistry to promote bonding with silicone adhesive
WO2021094122A1 (en) * 2019-11-13 2021-05-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Nozzle device and manufacturing method for a nozzle device
WO2021124200A1 (en) 2019-12-20 2021-06-24 3M Innovative Properties Company Adhesive primers and articles including the same
US11266936B2 (en) 2015-04-28 2022-03-08 Bl Technologies, Inc. Melt-blown depth filter element, method and machine of making it
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method
US11845019B2 (en) 2013-11-06 2023-12-19 Bl Technologies, Inc. Large format melt-blown depth filter cartridge

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825380A (en) * 1972-07-07 1974-07-23 Exxon Research Engineering Co Melt-blowing die for producing nonwoven mats
JPS5473916A (en) * 1977-11-25 1979-06-13 Asahi Chem Ind Co Ltd Melt blow spinning device
JPS6056825B2 (en) * 1978-05-01 1985-12-12 東亜燃料工業株式会社 Manufacturing method of nonwoven fabric
US4332759A (en) * 1980-07-15 1982-06-01 Celanese Corporation Process for extruding liquid crystal polymer
JPS57104146A (en) * 1980-12-22 1982-06-29 Shindengen Electric Mfg Co Ltd Electrophotographic receptor
JPS5859818A (en) * 1981-10-07 1983-04-09 Teijin Ltd Production of polyester film
US6790572B2 (en) 2000-11-08 2004-09-14 Ricoh Company Limited Electrophotographic photoreceptor, and image forming method and apparatus using the photoreceptor

Cited By (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888610A (en) * 1973-08-24 1975-06-10 Rothmans Of Pall Mall Formation of polymeric fibres
US3942723A (en) * 1974-04-24 1976-03-09 Beloit Corporation Twin chambered gas distribution system for melt blown microfiber production
US3970417A (en) * 1974-04-24 1976-07-20 Beloit Corporation Twin triple chambered gas distribution system for melt blown microfiber production
US3954361A (en) * 1974-05-23 1976-05-04 Beloit Corporation Melt blowing apparatus with parallel air stream fiber attenuation
US3985481A (en) * 1974-12-09 1976-10-12 Rothmans Of Pall Mall Canada Limited Extrusion head for producing polymeric material fibres
US4073850A (en) * 1974-12-09 1978-02-14 Rothmans Of Pall Mall Canada Limited Method of producing polymeric material
US3981650A (en) * 1975-01-16 1976-09-21 Beloit Corporation Melt blowing intermixed filaments of two different polymers
US4295809A (en) * 1979-09-12 1981-10-20 Toa Nenryo Kogyo Kabushiki Kaisha Die for a melt blowing process
US4380570A (en) * 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
FR2536094A1 (en) * 1982-11-17 1984-05-18 Kimberly Clark Co PROCESS FOR BLOWING FIBERS IN THE MELT AND FILTERED STATE FOR ITS IMPLEMENTATION
US4526733A (en) * 1982-11-17 1985-07-02 Kimberly-Clark Corporation Meltblown die and method
US4486161A (en) * 1983-05-12 1984-12-04 Kimberly-Clark Corporation Melt-blowing die tip with integral tie bars
US4631013A (en) * 1984-02-29 1986-12-23 General Electric Company Apparatus for atomization of unstable melt streams
US4774001A (en) * 1984-12-21 1988-09-27 Pall Corporation Supported microporous membrane
US4818463A (en) * 1986-04-26 1989-04-04 Buehning Peter G Process for preparing non-woven webs
US4826415A (en) * 1986-10-21 1989-05-02 Mitsui Petrochemical Industries, Ltd. Melt blow die
AU595998B2 (en) * 1987-04-23 1990-04-12 Nordson Corporation Adhesive spray gun and nozzle attachment
US4785996A (en) * 1987-04-23 1988-11-22 Nordson Corporation Adhesive spray gun and nozzle attachment
USRE33481E (en) * 1987-04-23 1990-12-11 Nordson Corporation Adhesive spray gun and nozzle attachment
US4815660A (en) * 1987-06-16 1989-03-28 Nordson Corporation Method and apparatus for spraying hot melt adhesive elongated fibers in spiral patterns by two or more side-by-side spray devices
US4844004A (en) * 1987-07-21 1989-07-04 Nordson Corporation Method and apparatus for applying narrow, closely spaced beads of viscous liquid to a substrate
US4774109A (en) * 1987-07-21 1988-09-27 Nordson Corporation Method and apparatus for applying narrow, closely spaced beads of viscous liquid to a substrate
US4983109A (en) * 1988-01-14 1991-01-08 Nordson Corporation Spray head attachment for metering gear head
EP0334653A2 (en) * 1988-03-25 1989-09-27 Mitsui Petrochemical Industries, Ltd. Spinning method employing melt-blowing method and melt-blowing die
US5171512A (en) * 1988-03-25 1992-12-15 Mitsui Petrochemical Industries, Ltd. Melt-blowing method having notches on the capillary tips
EP0334653A3 (en) * 1988-03-25 1990-08-29 Mitsui Petrochemical Industries, Ltd. Spinning method employing melt-blowing method and melt-blowing die
US5017112A (en) * 1988-03-25 1991-05-21 Mitsui Petrochemical Industries, Ltd. Melt-blowing die
US4969602A (en) * 1988-11-07 1990-11-13 Nordson Corporation Nozzle attachment for an adhesive dispensing device
US4934433A (en) * 1988-11-15 1990-06-19 Polysar Financial Services S.A. Devolatilization
US4987854A (en) * 1988-12-12 1991-01-29 Nordson Corporation Apparatus for gas-aided dispensing of liquid materials
US5114752A (en) * 1988-12-12 1992-05-19 Nordson Corporation Method for gas-aided dispensing of liquid materials
US5030303A (en) * 1989-07-28 1991-07-09 Nordson Corporation Method for forming disposable garments with a waste containment pocket
US5026450A (en) * 1989-10-13 1991-06-25 Nordson Corporation Method of applying adhesive to the waist elastic material of disposable garments
US5080569A (en) * 1990-08-29 1992-01-14 Chicopee Primary air system for a melt blown die apparatus
US5065943A (en) * 1990-09-06 1991-11-19 Nordson Corporation Nozzle cap for an adhesive dispenser
US5169071A (en) * 1990-09-06 1992-12-08 Nordson Corporation Nozzle cap for an adhesive dispenser
US5075068A (en) * 1990-10-11 1991-12-24 Exxon Chemical Patents Inc. Method and apparatus for treating meltblown filaments
EP0701010A1 (en) 1990-10-17 1996-03-13 Exxon Chemical Patents Inc. Meltblowing Die
US5286182A (en) * 1991-01-17 1994-02-15 Mitsubishi Kasei Corporation Spinning nozzle for preparing a fiber precursor
US5407619A (en) * 1991-01-17 1995-04-18 Mitsubishi Kasei Corporation Process for preparing a fiber precursor of metal compound, and a process for preparing a fiber of metal
US5240479A (en) * 1991-05-17 1993-08-31 Donaldson Company, Inc. Pleated filter media having a continuous bead of adhesive between layers of filtering material
US5143776A (en) * 1991-06-24 1992-09-01 The Procter & Gamble Company Tissue laminates having adhesively joined tissue laminae
US5629079A (en) * 1991-09-30 1997-05-13 Minnesota Mining And Manufacturing Company Elastic and heat sealable medical tapes
US5316838A (en) * 1991-09-30 1994-05-31 Minnesota Mining And Manufacturing Company Retroreflective sheet with nonwoven elastic backing
US5238733A (en) * 1991-09-30 1993-08-24 Minnesota Mining And Manufacturing Company Stretchable nonwoven webs based on multi-layer blown microfibers
US5232770A (en) * 1991-09-30 1993-08-03 Minnesota Mining And Manufacturing Company High temperature stable nonwoven webs based on multi-layer blown microfibers
US5248455A (en) * 1991-09-30 1993-09-28 Minnesota Mining And Manufacturing Company Method of making transparent film from multilayer blown microfibers
US5258220A (en) * 1991-09-30 1993-11-02 Minnesota Mining And Manufacturing Company Wipe materials based on multi-layer blown microfibers
US5176952A (en) * 1991-09-30 1993-01-05 Minnesota Mining And Manufacturing Company Modulus nonwoven webs based on multi-layer blown microfibers
US5207970A (en) * 1991-09-30 1993-05-04 Minnesota Mining And Manufacturing Company Method of forming a web of melt blown layered fibers
US5423783A (en) * 1991-09-30 1995-06-13 Minnesota Mining And Manufacturing Company Ostomy bag with elastic and heat sealable medical tapes
US5190812A (en) * 1991-09-30 1993-03-02 Minnesota Mining And Manufacturing Company Film materials based on multi-layer blown microfibers
US5196207A (en) * 1992-01-27 1993-03-23 Kimberly-Clark Corporation Meltblown die head
US5382312A (en) * 1992-04-08 1995-01-17 Nordson Corporation Dual format adhesive apparatus for intermittently disrupting parallel, straight lines of adhesive to form a band
US5540804A (en) * 1992-04-08 1996-07-30 Nordson Corporation Dual format adhesive apparatus, process and article
US5458721A (en) * 1992-04-08 1995-10-17 Nordson Corporation Dual format adhesive process for intermittently disrupting parallel lines of adhesive to form adhesive bands
US5238190A (en) * 1992-06-16 1993-08-24 Nordson Corporation Offset nozzle assembly
US5429840A (en) * 1992-07-08 1995-07-04 Nordson Corporation Apparatus and methods for applying discrete foam coatings
US5354378A (en) * 1992-07-08 1994-10-11 Nordson Corporation Slot nozzle apparatus for applying coatings to bottles
US5423935A (en) * 1992-07-08 1995-06-13 Nordson Corporation Methods for applying discrete coatings
US5421921A (en) * 1992-07-08 1995-06-06 Nordson Corporation Segmented slot die for air spray of fibers
AU663960B2 (en) * 1992-07-08 1995-10-26 Nordson Corporation Apparatus and methods for intermittently applying discrete adhesive coatings
US5685911A (en) * 1992-07-08 1997-11-11 Nordson Corporation Apparatus for intermittently applying discrete adhesive coatings
US5418009A (en) * 1992-07-08 1995-05-23 Nordson Corporation Apparatus and methods for intermittently applying discrete adhesive coatings
US5683036A (en) * 1992-07-08 1997-11-04 Nordson Corporation Apparatus for applying discrete coatings
US5524828A (en) * 1992-07-08 1996-06-11 Nordson Corporation Apparatus for applying discrete foam coatings
US5533675A (en) * 1992-07-08 1996-07-09 Nordson Corporation Apparatus for applying discrete coatings
US5409733A (en) * 1992-07-08 1995-04-25 Nordson Corporation Apparatus and methods for applying conformal coatings to electronic circuit boards
US5350624A (en) * 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5508102A (en) * 1992-10-05 1996-04-16 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5607766A (en) * 1993-03-30 1997-03-04 American Filtrona Corporation Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom
US5478224A (en) * 1994-02-04 1995-12-26 Illinois Tool Works Inc. Apparatus for depositing a material on a substrate and an applicator head therefor
US5846438A (en) * 1994-07-28 1998-12-08 Pall Corporation Fibrous web for processing a fluid
US5586997A (en) * 1994-07-28 1996-12-24 Pall Corporation Bag filter
US6074869A (en) * 1994-07-28 2000-06-13 Pall Corporation Fibrous web for processing a fluid
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
US5652050A (en) * 1994-07-28 1997-07-29 Pall Corporation Fibrous web for processing a fluid
US5733581A (en) * 1995-05-02 1998-03-31 Memtec America Corporation Apparatus for making melt-blown filtration media having integrally co-located support and filtration fibers
US5591335A (en) * 1995-05-02 1997-01-07 Memtec America Corporation Filter cartridges having nonwoven melt blown filtration media with integral co-located support and filtration
US5681469A (en) * 1995-05-02 1997-10-28 Memtec America Corporation Melt-blown filtration media having integrally co-located support and filtration fibers
US5620641A (en) * 1995-06-06 1997-04-15 American Filtrona Corporation Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom
US5633082A (en) * 1995-06-06 1997-05-27 American Filtrona Corporation Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom
WO1996039054A1 (en) 1995-06-06 1996-12-12 Filtrona International Limited Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom
US6022818A (en) * 1995-06-07 2000-02-08 Kimberly-Clark Worldwide, Inc. Hydroentangled nonwoven composites
US5667749A (en) * 1995-08-02 1997-09-16 Kimberly-Clark Worldwide, Inc. Method for the production of fibers and materials having enhanced characteristics
US5711970A (en) * 1995-08-02 1998-01-27 Kimberly-Clark Worldwide, Inc. Apparatus for the production of fibers and materials having enhanced characteristics
US5807795A (en) * 1995-08-02 1998-09-15 Kimberly-Clark Worldwide, Inc. Method for producing fibers and materials having enhanced characteristics
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
US5913329A (en) * 1995-12-15 1999-06-22 Kimberly-Clark Worldwide, Inc. High temperature, high speed rotary valve
DE19609143C1 (en) * 1996-03-08 1997-11-13 Rhodia Ag Rhone Poulenc Melt-blown fleece, process for its production and its uses
US5863565A (en) * 1996-05-15 1999-01-26 Conoco Inc. Apparatus for forming a single layer batt from multiple curtains of fibers
US5951942A (en) * 1996-05-15 1999-09-14 Conoco Inc. Process for forming a single layer batt from multiple curtains of fibers
US6680021B1 (en) 1996-07-16 2004-01-20 Illinois Toolworks Inc. Meltblowing method and system
US5902540A (en) * 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US6074597A (en) * 1996-10-08 2000-06-13 Illinois Tool Works Inc. Meltblowing method and apparatus
US6890167B1 (en) 1996-10-08 2005-05-10 Illinois Tool Works Inc. Meltblowing apparatus
US5904298A (en) * 1996-10-08 1999-05-18 Illinois Tool Works Inc. Meltblowing method and system
US5911224A (en) * 1997-05-01 1999-06-15 Filtrona International Limited Biodegradable polyvinyl alcohol tobacco smoke filters, tobacco smoke products incorporating such filters, and methods and apparatus for making same
US5882573A (en) * 1997-09-29 1999-03-16 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
US6102039A (en) * 1997-12-01 2000-08-15 3M Innovative Properties Company Molded respirator containing sorbent particles
US6133173A (en) * 1997-12-01 2000-10-17 3M Innovative Properties Company Nonwoven cohesive wrap
US6171985B1 (en) 1997-12-01 2001-01-09 3M Innovative Properties Company Low trauma adhesive article
US6368687B1 (en) 1997-12-01 2002-04-09 3M Innovative Properties Company Low trauma adhesive article
US6234171B1 (en) 1997-12-01 2001-05-22 3M Innovative Properties Company Molded respirator containing sorbent particles
WO1999027880A1 (en) 1997-12-01 1999-06-10 Minnesota Mining And Manufacturing Company Nasal dilator
US7157093B1 (en) 1997-12-05 2007-01-02 3M Innovative Properties Company Oil cleaning sheets for makeup
US6652800B2 (en) 1997-12-31 2003-11-25 Kimberly-Clark Worldwide, Inc. Method for producing fibers
US6026819A (en) * 1998-02-18 2000-02-22 Filtrona International Limited Tobacco smoke filter incorporating sheath-core bicomponent fibers and tobacco smoke product made therefrom
US6174603B1 (en) 1998-02-18 2001-01-16 Filtrona International Limited Sheath-core bicomponent fibers with blended ethylene-vinyl acetate polymer sheath, tobacco smoke filter products incorporating such fibers and tobacco smoke products made therefrom
US6051180A (en) * 1998-08-13 2000-04-18 Illinois Tool Works Inc. Extruding nozzle for producing non-wovens and method therefor
US6200635B1 (en) 1998-08-31 2001-03-13 Illinois Tool Works Inc. Omega spray pattern and method therefor
US6461430B1 (en) 1998-08-31 2002-10-08 Illinois Tool Works Inc. Omega spray pattern and method therefor
US6197406B1 (en) 1998-08-31 2001-03-06 Illinois Tool Works Inc. Omega spray pattern
US20050084647A1 (en) * 1998-10-02 2005-04-21 3M Innovative Properties Company Laminated composites
US6835256B2 (en) 1998-10-02 2004-12-28 3M Innovative Properties Company Laminated composites
US20030104746A1 (en) * 1998-10-02 2003-06-05 3M Innovative Properties Company Laminated composites
US6503855B1 (en) 1998-10-02 2003-01-07 3M Innovative Properties Company Laminated composites
US6364647B1 (en) 1998-10-08 2002-04-02 David M. Sanborn Thermostatic melt blowing apparatus
US6198016B1 (en) 1998-12-01 2001-03-06 3M Innovative Properties Company Wet skin adhesive article
US6358417B1 (en) 1999-04-21 2002-03-19 Osmonics, Inc. Non-woven depth filter element
US6383958B1 (en) 1999-06-18 2002-05-07 David P. Swanson Nonwoven sheets, adhesive articles, and methods for making the same
US6342561B1 (en) 1999-11-17 2002-01-29 3M Innovative Properties Company Organic particulate-filled adhesive
US6635704B2 (en) 1999-11-17 2003-10-21 3M Innovative Properties Company Organic particulate-filled adhesive
DE19956368A1 (en) * 1999-11-24 2001-06-13 Sandler C H Gmbh Melt blown thermoplastic plastic fiber fleece production involves blowing fiber flow leaving nozzle to form angle with nozzle axis
DE19956368C2 (en) * 1999-11-24 2002-01-03 Sandler C H Gmbh Process for the production of meltblown nonwovens, meltblown nonwovens produced therefrom and use of the meltblown nonwovens
US6602554B1 (en) 2000-01-14 2003-08-05 Illinois Tool Works Inc. Liquid atomization method and system
US6533119B1 (en) 2000-05-08 2003-03-18 3M Innovative Properties Company BMF face oil remover film
US6454096B1 (en) 2000-06-01 2002-09-24 3M Innovative Properties Company Package for dispensing individual sheets
US20020144384A1 (en) * 2000-12-11 2002-10-10 The Dow Chemical Company Thermally bonded fabrics and method of making same
US6756098B2 (en) 2001-01-17 2004-06-29 3M Innovative Properties Company Pressure sensitive adhesives with a fibrous reinforcing material
US7078582B2 (en) 2001-01-17 2006-07-18 3M Innovative Properties Company Stretch removable adhesive articles and methods
US6638611B2 (en) 2001-02-09 2003-10-28 3M Innovative Properties Company Multipurpose cosmetic wipes
US6645611B2 (en) 2001-02-09 2003-11-11 3M Innovative Properties Company Dispensable oil absorbing skin wipes
US6565344B2 (en) 2001-03-09 2003-05-20 Nordson Corporation Apparatus for producing multi-component liquid filaments
US20030180407A1 (en) * 2001-03-09 2003-09-25 Nordson Corporation Apparatus for producing multi-component liquid filaments
US6814555B2 (en) 2001-03-09 2004-11-09 Nordson Corporation Apparatus and method for extruding single-component liquid strands into multi-component filaments
US7001555B2 (en) 2001-03-09 2006-02-21 Nordson Corporation Apparatus for producing multi-component liquid filaments
US20020125601A1 (en) * 2001-03-09 2002-09-12 Allen Martin A. Apparatus and method for extruding single-component liquid strands into multi-component filaments
US6894204B2 (en) 2001-05-02 2005-05-17 3M Innovative Properties Company Tapered stretch removable adhesive articles and methods
US20030091617A1 (en) * 2001-06-07 2003-05-15 Mrozinski James S. Gel-coated oil absorbing skin wipes
US20030080051A1 (en) * 2001-10-23 2003-05-01 Osmonics, Inc. Three-dimensional non-woven media
US6986427B2 (en) 2001-10-23 2006-01-17 Ge Osmonics, Inc. Three-dimensional non-woven media
US6916395B2 (en) 2001-10-23 2005-07-12 Osmonics, Inc. Process for making three-dimensional non-woven media
US20030080464A1 (en) * 2001-10-23 2003-05-01 Osmonics, Inc. Process for making three-dimensional non-woven media
US6938781B2 (en) 2001-10-23 2005-09-06 Osmonics, Incorporated Three-dimensional non-woven filter
US20030080050A1 (en) * 2001-10-23 2003-05-01 Osmonics, Inc. Three-dimensional non-woven filter
US7192896B2 (en) 2001-11-15 2007-03-20 3M Innovative Properties Company Disposable cleaning product
US20030100236A1 (en) * 2001-11-15 2003-05-29 Jayshree Seth Disposable cleaning product
US20050118917A1 (en) * 2002-01-03 2005-06-02 Ahamad Khan Breathable non-wettable melt-blown non-woven materials and products employing the same
US20060031111A9 (en) * 2002-05-30 2006-02-09 Whymark Thomas J Multi-market broadcast tracking, management and reporting method and system
US20040024633A1 (en) * 2002-05-30 2004-02-05 Whymark Thomas J. Multi-market broadcast tracking, management and reporting method and system
US7018031B2 (en) 2002-12-23 2006-03-28 Filtrona Richmond, Inc. Porous substrate for ink delivery systems
US20050151805A1 (en) * 2002-12-23 2005-07-14 Ward Bennett C. Porous substrate for ink delivery systems
US7018188B2 (en) 2003-04-08 2006-03-28 The Procter & Gamble Company Apparatus for forming fibers
US7939010B2 (en) 2003-04-08 2011-05-10 The Procter & Gamble Company Method for forming fibers
US20040201127A1 (en) * 2003-04-08 2004-10-14 The Procter & Gamble Company Apparatus and method for forming fibers
US6972104B2 (en) 2003-12-23 2005-12-06 Kimberly-Clark Worldwide, Inc. Meltblown die having a reduced size
US20050133971A1 (en) * 2003-12-23 2005-06-23 Haynes Bryan D. Meltblown die having a reduced size
US7316552B2 (en) 2004-12-23 2008-01-08 Kimberly-Clark Worldwide, Inc. Low turbulence die assembly for meltblowing apparatus
US20060141086A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Low turbulence die assembly for meltblowing apparatus
US20060240733A1 (en) * 2005-04-25 2006-10-26 Fina Technology, Inc. Fibers and fabrics prepared from blends of homopolymers and copolymers
US20060276095A1 (en) * 2005-06-02 2006-12-07 Nike, Inc. Article of footwear of nonwoven material and method of manufacturing same
US20070125888A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Multi-component liquid spray systems
US20070125886A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Methods of spraying multi-component liquids
US20080145530A1 (en) * 2006-12-13 2008-06-19 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
US7798434B2 (en) 2006-12-13 2010-09-21 Nordson Corporation Multi-plate nozzle and method for dispensing random pattern of adhesive filaments
WO2008091432A2 (en) 2007-01-19 2008-07-31 Exxonmobil Chemical Patents Inc. Spunbond fibers and fabrics from polyolefin blends
US8728960B2 (en) 2007-01-19 2014-05-20 Exxonmobil Chemical Patents Inc. Spunbond fibers and fabrics from polyolefin blends
US20080172840A1 (en) * 2007-01-19 2008-07-24 Smita Kacker Spunbond fibers and fabrics from polyolefin blends
WO2009026207A1 (en) 2007-08-21 2009-02-26 Exxonmobil Chemical Patents Inc. Soft and elastic nonwoven polypropylene compositions
US8435600B2 (en) 2008-04-14 2013-05-07 Nordson Corporation Method for dispensing random pattern of adhesive filaments
US8074902B2 (en) 2008-04-14 2011-12-13 Nordson Corporation Nozzle and method for dispensing random pattern of adhesive filaments
US20110092076A1 (en) * 2008-05-19 2011-04-21 E.I. Du Pont De Nemours And Company Apparatus and method of vapor coating in an electronic device
US10138576B2 (en) 2008-06-12 2018-11-27 3M Innovative Properties Company Biocompatible hydrophilic compositions
US8858986B2 (en) 2008-06-12 2014-10-14 3M Innovative Properties Company Biocompatible hydrophilic compositions
US20110189463A1 (en) * 2008-06-12 2011-08-04 Moore Eric M Melt blown fine fibers and methods of manufacture
EP2145695A1 (en) * 2008-07-14 2010-01-20 Sika Technology AG Device for applying an adhesive
US20100224703A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Pneumatic Atomization Nozzle for Web Moistening
US8979004B2 (en) * 2009-03-09 2015-03-17 Illinois Tool Works Inc. Pneumatic atomization nozzle for web moistening
US20100224665A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Thermally isolated liquid supply for web moistening
US20100224702A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Pneumatic atomization nozzle for web moistening
US20100224123A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Modular nozzle unit for web moistening
US20100224122A1 (en) * 2009-03-09 2010-09-09 Illinois Tool Works Inc. Low pressure regulation for web moistening systems
US9186881B2 (en) 2009-03-09 2015-11-17 Illinois Tool Works Inc. Thermally isolated liquid supply for web moistening
US9487893B2 (en) 2009-03-31 2016-11-08 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
US11739444B2 (en) 2009-08-14 2023-08-29 The Procter & Gamble Company Die assembly and methods of using same
US11414787B2 (en) 2009-08-14 2022-08-16 The Procter & Gamble Company Die assembly and methods of using same
US20110037194A1 (en) * 2009-08-14 2011-02-17 Michael David James Die assembly and method of using same
US10704166B2 (en) 2009-08-14 2020-07-07 The Procter & Gamble Company Die assembly and method of using same
EP2302121A1 (en) 2009-09-15 2011-03-30 Groz-Beckert KG Felt body production method
US8257626B2 (en) 2009-09-15 2012-09-04 Groz-Beckert Kg Felt body manufacturing method
US9816216B2 (en) 2009-09-18 2017-11-14 Groz-Beckert Kg Nozzle foil for a nozzle bar with connectable foil segments
US20110067458A1 (en) * 2009-09-18 2011-03-24 Groz-Beckert Kg Nozzle bar for a textile processing machine
US8882005B2 (en) 2009-09-18 2014-11-11 Groz-Beckert Kg Nozzle bar for a textile processing machine
US20110067213A1 (en) * 2009-09-18 2011-03-24 Groz-Beckert Kg Nozzle foil for a nozzle bar with connectable foil segments
US9416485B2 (en) 2009-12-17 2016-08-16 3M Innovative Properties Company Process of making dimensionally stable nonwoven fibrous webs
US20110151738A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, melt blown fine fibers, and methods of making and using the same
US9194065B2 (en) 2009-12-17 2015-11-24 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
US20110151737A1 (en) * 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
US8721943B2 (en) 2009-12-17 2014-05-13 3M Innovative Properties Company Process of making dimensionally stable nonwoven fibrous webs
WO2012051479A1 (en) 2010-10-14 2012-04-19 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, and methods of making and using the same
US9611572B2 (en) 2010-10-14 2017-04-04 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, and methods of making and using the same
WO2012078826A2 (en) 2010-12-08 2012-06-14 3M Innovative Properties Company Adhesive article for three-dimensional applications
US9492836B2 (en) 2012-06-29 2016-11-15 National Taiwan University Coating module
TWI496625B (en) * 2012-06-29 2015-08-21 Univ Nat Taiwan Coating module
US20150266224A1 (en) * 2012-10-08 2015-09-24 Saipem S.P.A. Method, device and work station for applying protective sheeting of polymer material to a pipeline, and computer program for implementing such a method
US10889041B2 (en) * 2012-10-08 2021-01-12 Saipem S.P.A. Method, device and work station for applying protective sheeting of polymer material to a pipeline, and computer program for implementing such a method
US10174442B2 (en) 2012-12-03 2019-01-08 Exxonmobil Chemical Patents Inc. Polypropylene fibers and fabrics
CN103507259B (en) * 2013-09-21 2015-06-17 北京化工大学 Efficient large pipe-extrusion forming device
CN103507259A (en) * 2013-09-21 2014-01-15 北京化工大学 Efficient large pipe-extrusion forming device
CN103498202A (en) * 2013-09-29 2014-01-08 无锡众望四维科技有限公司 Melt-blown head of melt-blown machine
US11845019B2 (en) 2013-11-06 2023-12-19 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
US10179426B2 (en) 2013-11-06 2019-01-15 Bl Technologies, Inc. Large format melt-blown depth filter cartridge
US20160168774A1 (en) * 2014-12-16 2016-06-16 Nike, Inc. Nonwoven Material, Method Of Making Same, And Articles Incorporating The Nonwoven Material
US9382644B1 (en) 2015-04-26 2016-07-05 Thomas M. Tao Die tip for melt blowing micro- and nano-fibers
US11266936B2 (en) 2015-04-28 2022-03-08 Bl Technologies, Inc. Melt-blown depth filter element, method and machine of making it
US11446185B2 (en) 2016-12-02 2022-09-20 3M Innovative Properties Company Muscle or joint support article
WO2018102322A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article with bump
WO2018102521A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article with a strap
US11510804B2 (en) 2016-12-02 2022-11-29 3M Innovative Properties Company Muscle or joint support article with a strap
WO2018102272A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article
US11447893B2 (en) 2017-11-22 2022-09-20 Extrusion Group, LLC Meltblown die tip assembly and method
CN108716023B (en) * 2018-05-29 2021-04-02 丹阳市宇晟纺织新材料有限公司 Melt-blown die head for preparing nano fibers
CN108716023A (en) * 2018-05-29 2018-10-30 丹阳市宇晟纺织新材料有限公司 A kind of meltblown beam prepared for nanofiber
WO2020188438A1 (en) 2019-03-15 2020-09-24 3M Innovative Properties Company Tie layer chemistry to promote bonding with silicone adhesive
WO2021094122A1 (en) * 2019-11-13 2021-05-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Nozzle device and manufacturing method for a nozzle device
DE102019130565A1 (en) * 2019-11-13 2021-05-20 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Nozzle device
WO2021124200A1 (en) 2019-12-20 2021-06-24 3M Innovative Properties Company Adhesive primers and articles including the same

Also Published As

Publication number Publication date
JPS5844470B2 (en) 1983-10-03
JPS4910258A (en) 1974-01-29

Similar Documents

Publication Publication Date Title
US3825379A (en) Melt-blowing die using capillary tubes
US4373895A (en) Extrusion die and method for producing extrusion die for forming a honeycomb structure
CA1180208A (en) Monolith extrusion die construction method
US4354820A (en) Extrusion die and method for producing extrusion die for forming a honeycomb structure
FI57621C (en) MUNSTYCKSANORDNING FOER SMAELTSPINNING AV FIBER
CA1053446A (en) Method and apparatus for forming thin-walled honeycomb structures
US6641385B2 (en) Metal mold for molding a honeycomb structure
JPS6090963A (en) Production of small orifice fuel injector
EP0290632B1 (en) Die and process
US3598952A (en) Method and apparatus for producing a stream feeder
US4847464A (en) Tool for forming a spinneret capillary
EP0336335B1 (en) Process for manufacturing amorphous ceramic substances and amorphous alloys
US2933590A (en) Stream feeder and method of making same
US3802857A (en) Jet plate for fibers and the like particuarly of glass
EP0839918B1 (en) Method and apparatus for cooling an object
DE3630323C1 (en)
DE2717459A1 (en) Metal body made of stacked metal plates - is brazed as clamped assembly in vacuum or shielding gas furnace
WO2000077899A2 (en) Electrically conductive connection between a terminal electrode and a connecting wire
EP0369460B1 (en) Spinneret
US3741460A (en) Apparatus for producing a stream feeder
JPS6116220B2 (en)
DE2404013A1 (en) High-speed oxygen flame-cutting/welding - by a very accurate method involving the undercooling of the active and/or inert gas component
JP3516238B2 (en) Manufacturing method of bushing plate
DE3115969A1 (en) BLAST MOLD BLOW MOLD AND METHOD FOR THEIR PRODUCTION
DE10140667C1 (en) Fireproof blow lance and process for its manufacture