US3632754A - Use of chitin for promoting wound healing - Google Patents

Use of chitin for promoting wound healing Download PDF

Info

Publication number
US3632754A
US3632754A US704538A US3632754DA US3632754A US 3632754 A US3632754 A US 3632754A US 704538 A US704538 A US 704538A US 3632754D A US3632754D A US 3632754DA US 3632754 A US3632754 A US 3632754A
Authority
US
United States
Prior art keywords
chitin
wound healing
healing
wound
rats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US704538A
Inventor
Leslie L Balassa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lescarden Ltd
Original Assignee
Lescarden Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lescarden Ltd filed Critical Lescarden Ltd
Application granted granted Critical
Publication of US3632754A publication Critical patent/US3632754A/en
Assigned to LESCARDEN INC., reassignment LESCARDEN INC., CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE JAN. 12,1983 Assignors: LESCARDEN LTD.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives

Definitions

  • This invention relates to methods of promoting the healing of wounds and compositions therefor comprising chitin, and/ or chitin derivatives and/or partially depolymerized chitin.
  • one aspect of the present invention relates to novel methods of promoting and assisting the healing of wounds as, for example, damaged mammalian tissue, open ulcers, etc., and to compositions therefor.
  • Another aspect of the invention relates to significant improvements in wound healing strength achieved by the administration of finely divided chitin, partially depolymerized chitin or chitin derivatives to a patient.
  • An additional aspect of the present invention is concerned with articles of manufacture such as surgical bandages, surgical sutures, etc., containing the wound healing materials of the present invention.
  • Chitin is a polysaccharide, believed to be poly (N-acetylglucosamine) which forms the cell walls of fungi and the hard shell of insects and crustaceans.
  • the term chitin embraces naturally occurring chitin, synthetic chitin, as well as poly (N-acetylglucosamine) and its epimer poly (N-acetylgalactosamine).
  • the partially depolymerized chitin e.g. chitotriose, chitobiose, is a substance which retains its polymeric nature but has undergone a reduction in molecular weight (i.e. chain length) as a result of (1) enzymatic action such as by a chitinase enzyme, (2) chemical treatment such as acid hydrolysis or alkaline treatment, and (3) physical treatment.
  • the chitin derivatives contemplated are materials such as ethers formed with pharmaceutically-acceptable radi cals and esters or salts with pharmaceutically-acceptable acids.
  • suitable derivatives include hydroxy lower alkyl chitin such as hydroxyethyl chitin, carboxy alkyl chitin such as carboxymethyl chitin, salts of carboxy lower alkyl chitin such as the zinc salt, lower alkyl chitin such as methyl chitin and ethyl chitin, chitin acetate, chitin nitrate, chitin citrate, chitin phosphate, N-acyl derivatives derived from monocarboxylic aliphatic acids such as N-formyl, N-acetyl, N-propionyl, N-caproyl, etc.
  • the naturally occurring chitin is preferably chitin of fungal origin, both by reason of its ready availability and its high degree of effectiveness.
  • the degree of improvement in wound healing obtained with the chitin materials is at least equal to and in many instances greater than that derived from the cartilage materials of the prior art.
  • the substantial improvement in rate of healing which is obtained from the use of poly (l I- acetylglucosamine), i.e., chitin, as compared to monomeric N-acetylglucosamine is particularly surprising.
  • chitin, particularly chitin of fungal origin is a relatively uniform and easily obtained material.
  • compositions of the present invention are applied using the same techniques and processes developed for cartilage, and N-acetylglucosamine.
  • tablets, capsules or pellets of chitin may be prepared from mixtures of chitin, partially depolymerized chitin or chitin derivatives with wellknown pharmaceutical excipients such as starch, sugar, certain forms of clay, etc. Such tablets, capsules or pellets may be taken orally or implanted near the situs of the wound.
  • a colloidal solution may be prepared from chitin, preferably in isotonic saline, or a watersoluble derivative of chitin may be dissolved preferably in isotonic saline solution, and the solution administered intramuscularly, parenterally or intravenously.
  • a powder or solution of chitin or of a chitin derivative may also be used to impregnate a surgical gauze or pad which is applied to the wound.
  • Chitin may also be dissolved as the alkali chitin xanthate, spun into fibers and regenerated as the virtually undegraded polymer in accordance with the procedures described the prior art by Thor et a1.
  • Partially deacetylated chitin filaments and fibers may be prepared in accordance with the procedure described in US. Pat. No. 2,040,880. These chitin fibers may then be used as surgical sutures or included in bandages or other support base for surgical dressings either in a woven or nonwoven fabric structure in the manner described in US. Pat.
  • Chitin or chitin derivative may also be made up into an ointment or salve.
  • the use of nonactive carriers for the chitin is not preferred as the presence of extraneous matter in a wound frequently tends to interfere with the healing process due to the interposition effect.
  • chitin is to be applied by injection, i.e., either intramuscularly, parenterally or intravenously, it is first necessary to prepare a dispersion or a solution of the material in a pharmaceutically acceptable liquid.
  • Colloidal solutions of chitin may be prepared using the method described by Lingappa and Lockwood in Nature, 189, page 158 (1961).
  • isotonic solution such as isotonic saline.
  • the chitin or chitin derivatives may be used alone, in admixture with each other, with cartilage, or may be coadministered with other therapeutically eifective agents such as ascorbic acid, ascorbyl palmitate, pharmaceutically acceptable zinc salts such as zinc oxide, zinc ascorbate, zinc sulfate and zinc stearate; antiseptics such as thimerosol and benzalkonium chloride; local anesthetics such as lidocaine and procaine; antibiotics such as chloramphenicol, sulfanilamide and ampicilline. Combinations of the therapeutically effective agents described above with chitin and/ or chitin derivatives may be used.
  • therapeutically eifective agents such as ascorbic acid, ascorbyl palmitate, pharmaceutically acceptable zinc salts such as zinc oxide, zinc ascorbate, zinc sulfate and zinc stearate
  • antiseptics such as thimerosol and benzalkonium chloride
  • Suitable sources of chitin are from lobsters, shrimp and other crustacea. To utilize chitin from such sources, it is necessary to reduce the chitin in particle size to less than about 150 microns and preferably less than about 50 microns. Due to the tough and rather fibrous nature of chitin from such sources, this grinding is difficult and expensive. Accordingly, it is preferred to use chitin of fungal origin. The cell walls of fungi are made of chitin. It has been found that it is not necessary to extract the chitin from the remaining cell material.
  • the entire fungal mat produced by fermentation of a fungus in a suitable nutrient medium may be ground and used to promote healing of wounds.
  • the fungal mat is treated to remove the extraneous materials leaving only the chitin skeletons. Purifying the material in this manner eliminates the nonchitinous materials, thus substantially reducing the possibility of an allergic reaction and eliminating any interference with the healing process which might be cause by such materials.
  • Finely divided chitin or chitin derivatives may be ap plied topically by blowing a metered amount of the material onto the wound using a hand atomizer. Alternatively, it may be applied by dusting as from a hand shaker or may be placed together with an inert gas under increased pressure (i.e., above atmospheric pressure) in a pressure vessel.
  • the finely divided chitin or chitin derivative may be packaged as a dry aerosol powder as de scribed in Dutch patent application 6,415,252, published July 5, 1965 (this patent application is directed to a medicament for bovine mastitis but the method of aerosol packaging described is applicable to powdered medicament having the described particle size) or as an aerosol foam.
  • the wound healing efliciency of the various chitinous materials is determined by using the method of Prudden et a1. as described above.
  • EXAMPLE 1 Commercial lobster shell chitin is ground to a fine powder in a laboratory four-quart size porcelain jar mill loaded with one-inch size (average) flint pebbles in a weight ratio of 1 chitin to 2 pebbles. Dry Ice is then put on top of the mill charge and the mill is kept open for 5 minutes to allow the CO to displace the air in the mill. The lid of the mill is then clamped on tight and the grinding carried out for 96 hours. Approximately 50% of the powdered chitin passed through a 40 micron screen.
  • the whole powdered chitin so produced is then applied to the 45 test rats of 45 pairs of rats used in the Prudden et al. assay method described above.
  • the percent of wound healing for the treated rats, stating the control rats as 100%, is 122%, i.e., the use of chitin results in an average 22% increase in wound healing activity.
  • EXAMPLES 2-5 Various fungi are grown on either brain-heart infusion (200 gm. calf brain, 250 gm. beef heart, 10 gm. proteose peptone, 2 gm. dextrose, 5 gm. sodium chloride and 2.5 gm. disodium phosphate) called BHI or on Sabourauds broth (40 gm. dextrose and 10 gm. bacto-peptone) called SAB.
  • the cultures are grown in shallow layers of media contained in flasks and held stationary until good growth and extensive sporulation occurs. Prior to collection of the growth mats, the cultures are killed by placing the flasks into a closed oven under CO at 127 C. for three hours.
  • the flasks are then cooled in the oven for an additional one hour and fifteen minutes.
  • Culture broths are removed by filtration through Buchner funnels and the growth mats washed with distilled water.
  • the mats are then frozen and lyophilized and the dry products ground in a mortar with a pestle under CO No attempt is made to purify the chiten. Twelve pairs of rats are used for each test. Some inflammation is observed on all treated wounds and infection on several. The increases in wound healing obtained may be all the more significant in view of those adverse factors.
  • 100 grams of dried fungus material (obtained from Penicillium fungus of Example 4, cultured on a BHI medium, sterilized by boiling the fungus with the medium and then filtering, washing with distilled water and drying the fungus material) is defatted by extracting the solventsoluble fatty materials with 1000 ml. chloroform at room temperature. The chloroform is removed by filtering and then drying at reduced pressure in a vacuum desiccator.
  • the defatted fungus material is treated with 2000 ml. 1.0 N-NaOH solution for 18 hours at room temperature. The material is then acidified with HCl. Thereafter the material is dialyzed in distilled water unitl the wash water is free from chlorine ions. This procedure is repeated until a substantially purified material is obtained. The material is dried in a vacuum below 50 C. and is a gray, friable mass.
  • the dried material is ground in a laboratory mortar and screened through a 400 mesh standard screen.
  • the screened material is applied to 20 test rats of 20 pairs of rats there is obtained an average of about 25% increase in the wound healing of the treated rats over the untreated control rats.
  • Lobster shell chitin is purified by first sl-urrying it in 10% aqueous NaOH for minutes at 80 C., then it is washed, drained and slurried in HCl for 5 minutes at 80 C., drained, slurried in water, the pH of the water adjusted to 6 with dilute aqueous NaOH, and finally drained and dried.
  • the dried chitin material is pulverized to a fineness of about 40 microns.
  • the material shows an average 25% increase in the wound healing over the untreated control rats.
  • a process for facilitating healing of a wound in a mammal which comprises administering to said mammal a therapeutically effective amount of chitin.
  • said material of fungal origin is a sterilized, defatted material selected 6 from the class consisting of Mucor spinosus, Aspergillus niger, Penicillium and Cryptococcus.
  • a process for facilitating healing of a wound in a mammal which comprises topically applying to said Wound in said mammal a therapeutically effective amount of chitin.

Abstract

WOUND HEALING COMPOSITION AND THE PROCESS OF HEALING WOUNDS WITH SUCH COMPOSITIONS ARE DESCRIBED, THE COMPOSITIONS CONTAINING CHITIN, PARTIALLY DEPOLYMERIZED CHITIN OR A CHITIN DERIVATIVE.

Description

UnitedStates Patent 3,632,754 USE OF CHITIN FOR PROMOTING WOUND HEALING Leslie L. Balassa, Blooming Grove, N.Y., assignor t0 Lescarden Ltd., Goshen, N.Y.
N0 Drawing. Continuation-impart of application Ser. No. 619,007, Feb. 27, 1967. This application Feb. 12, 1968, Ser. No. 704,538
Int. Cl. A61k 17/00 US. Cl. 424-180 6 Claims ABSTRACT OF THE DISCLOSURE Wound healing compositions and the process of healing wounds with such compositions are described, the compositions containing chitin, partially depolymerized chitin or a chitin derivative.
This application is a continuation-in-part of my copending application Ser. No. 619,007 filed Feb. 27, 1967.
This invention relates to methods of promoting the healing of wounds and compositions therefor comprising chitin, and/ or chitin derivatives and/or partially depolymerized chitin.
Medicine has long been interested in improving the healing of wounds. Patients suffering from diabetes or undergoing extensive cortisone treatment show extremely slow rates of healing of any wounds which they receive. Thus, surgery on such patients involves additional risks not present with other patients. Moreover, rapid healing of wounds is particularly desired for patients in tropical countries where the risk of infection is high. Rapid healing is also desired in the case of soldiers who have been wounded in a battle zone and cannot easily and quickly be removed therefrom. Acceleration of wound healing is highly desirable in the case of patients who cannot readily be immobilized, such as farm animals.
In evaluating the utility of a material to promote wound healing, a reproducible test is necessary to give comparative data. Such a test method has been described by Prudden et al. in: The Acceleration of Wound Healing With Cartilage, Surgery, Gynecology and Obstetrics, 105 2283 (1957). In this method, rats are tested in pairs, each pair receiving an identical surgical incision, only the one rat of the pair receiving a measured dose of the material whose wound healing properties is to be determined. The pair is then kept in the same cage and the tensile strength of the wounds in the two rats is determined in millimeters of mercury. The difference in the tensile strengths between the treated rat and the control rat is expressed as the percentage improvement obtained. Considering biological variance it is believed that only differences of about 10% or more are significant.
There have been several recent developments reported concerning materials which promote wound healing. In this connection US. Pat. No. 3,232,836 describes the parenteral administration of N-acetylglucosamine as a wound healing material. Utilizing the test method of Prudden et al. referred to in the preceding paragraph, N-acetylglucosamine showed improvement in tensile strength of only about 10% whereas Prudden and his co-workers have reported significantly larger increases in wound healing by the use of cartilage preparations from various animals. Depending on the age and species of animal and the fineness of the cartilage powder, improvements ranging from to 40% in wound healing tensile strength have been reported by Prudden.
Now it has been discovered that finely divided chitin, partially depolymerized chitin, and chitin derivatives possess the ability to promote the healing of wounds.
3,632,754 Patented Jan. 4, 1972 ice Accordingly, one aspect of the present invention relates to novel methods of promoting and assisting the healing of wounds as, for example, damaged mammalian tissue, open ulcers, etc., and to compositions therefor.
Another aspect of the invention relates to significant improvements in wound healing strength achieved by the administration of finely divided chitin, partially depolymerized chitin or chitin derivatives to a patient.
An additional aspect of the present invention is concerned with articles of manufacture such as surgical bandages, surgical sutures, etc., containing the wound healing materials of the present invention.
These and other aspects of the present invention will be apparent from the following description.
Chitin is a polysaccharide, believed to be poly (N-acetylglucosamine) which forms the cell walls of fungi and the hard shell of insects and crustaceans. As used herein, the term chitin embraces naturally occurring chitin, synthetic chitin, as well as poly (N-acetylglucosamine) and its epimer poly (N-acetylgalactosamine). The partially depolymerized chitin, e.g. chitotriose, chitobiose, is a substance which retains its polymeric nature but has undergone a reduction in molecular weight (i.e. chain length) as a result of (1) enzymatic action such as by a chitinase enzyme, (2) chemical treatment such as acid hydrolysis or alkaline treatment, and (3) physical treatment.
The chitin derivatives contemplated are materials such as ethers formed with pharmaceutically-acceptable radi cals and esters or salts with pharmaceutically-acceptable acids. Examples of suitable derivatives include hydroxy lower alkyl chitin such as hydroxyethyl chitin, carboxy alkyl chitin such as carboxymethyl chitin, salts of carboxy lower alkyl chitin such as the zinc salt, lower alkyl chitin such as methyl chitin and ethyl chitin, chitin acetate, chitin nitrate, chitin citrate, chitin phosphate, N-acyl derivatives derived from monocarboxylic aliphatic acids such as N-formyl, N-acetyl, N-propionyl, N-caproyl, etc.
It is preferred to use natural chitin as the wound healing accelerator. The naturally occurring chitin is preferably chitin of fungal origin, both by reason of its ready availability and its high degree of effectiveness.
The degree of improvement in wound healing obtained with the chitin materials is at least equal to and in many instances greater than that derived from the cartilage materials of the prior art. The substantial improvement in rate of healing which is obtained from the use of poly (l I- acetylglucosamine), i.e., chitin, as compared to monomeric N-acetylglucosamine is particularly surprising. As compared to the great variability in cartilage depending on the animal, its age and the method of collecting the cartilage, chitin, particularly chitin of fungal origin, is a relatively uniform and easily obtained material.
The compositions of the present invention are applied using the same techniques and processes developed for cartilage, and N-acetylglucosamine. Thus, it is preferred to topically apply finely divided chitin directly to the wound surface. However, tablets, capsules or pellets of chitin may be prepared from mixtures of chitin, partially depolymerized chitin or chitin derivatives with wellknown pharmaceutical excipients such as starch, sugar, certain forms of clay, etc. Such tablets, capsules or pellets may be taken orally or implanted near the situs of the wound. Alternatively, a colloidal solution may be prepared from chitin, preferably in isotonic saline, or a watersoluble derivative of chitin may be dissolved preferably in isotonic saline solution, and the solution administered intramuscularly, parenterally or intravenously.
A powder or solution of chitin or of a chitin derivative may also be used to impregnate a surgical gauze or pad which is applied to the wound. Chitin may also be dissolved as the alkali chitin xanthate, spun into fibers and regenerated as the virtually undegraded polymer in accordance with the procedures described the prior art by Thor et a1. Partially deacetylated chitin filaments and fibers may be prepared in accordance with the procedure described in US. Pat. No. 2,040,880. These chitin fibers may then be used as surgical sutures or included in bandages or other support base for surgical dressings either in a woven or nonwoven fabric structure in the manner described in US. Pat. 3,196,075. Chitin or chitin derivative may also be made up into an ointment or salve. The use of nonactive carriers for the chitin is not preferred as the presence of extraneous matter in a wound frequently tends to interfere with the healing process due to the interposition effect.
As previously stated, where the chitin is to be applied by injection, i.e., either intramuscularly, parenterally or intravenously, it is first necessary to prepare a dispersion or a solution of the material in a pharmaceutically acceptable liquid. Colloidal solutions of chitin may be prepared using the method described by Lingappa and Lockwood in Nature, 189, page 158 (1961). When administered intravenously it is preferred to administer the compound in isotonic solution such as isotonic saline.
The chitin or chitin derivatives may be used alone, in admixture with each other, with cartilage, or may be coadministered with other therapeutically eifective agents such as ascorbic acid, ascorbyl palmitate, pharmaceutically acceptable zinc salts such as zinc oxide, zinc ascorbate, zinc sulfate and zinc stearate; antiseptics such as thimerosol and benzalkonium chloride; local anesthetics such as lidocaine and procaine; antibiotics such as chloramphenicol, sulfanilamide and ampicilline. Combinations of the therapeutically effective agents described above with chitin and/ or chitin derivatives may be used.
Suitable sources of chitin are from lobsters, shrimp and other crustacea. To utilize chitin from such sources, it is necessary to reduce the chitin in particle size to less than about 150 microns and preferably less than about 50 microns. Due to the tough and rather fibrous nature of chitin from such sources, this grinding is difficult and expensive. Accordingly, it is preferred to use chitin of fungal origin. The cell walls of fungi are made of chitin. It has been found that it is not necessary to extract the chitin from the remaining cell material. Thus, if desired, after suitable sterilization as by heat or gas (i.e., ethylene oxide), the entire fungal mat produced by fermentation of a fungus in a suitable nutrient medium may be ground and used to promote healing of wounds. Preferably, however, the fungal mat is treated to remove the extraneous materials leaving only the chitin skeletons. Purifying the material in this manner eliminates the nonchitinous materials, thus substantially reducing the possibility of an allergic reaction and eliminating any interference with the healing process which might be cause by such materials.
Finely divided chitin or chitin derivatives may be ap plied topically by blowing a metered amount of the material onto the wound using a hand atomizer. Alternatively, it may be applied by dusting as from a hand shaker or may be placed together with an inert gas under increased pressure (i.e., above atmospheric pressure) in a pressure vessel. In this latter means of application, termed aerosol application, the finely divided chitin or chitin derivative, optionally with other medicaments as indicated, may be packaged as a dry aerosol powder as de scribed in Dutch patent application 6,415,252, published July 5, 1965 (this patent application is directed to a medicament for bovine mastitis but the method of aerosol packaging described is applicable to powdered medicament having the described particle size) or as an aerosol foam.
In the following examples, the wound healing efliciency of the various chitinous materials is determined by using the method of Prudden et a1. as described above.
4 In general, at least 10 pairs of rats are used to obtain a meaningful average for each material tested. In each of these examples a powder insufliator is used to apply 2 to 10 mg./cm. of wound surface of the material tested.
EXAMPLE 1 Commercial lobster shell chitin is ground to a fine powder in a laboratory four-quart size porcelain jar mill loaded with one-inch size (average) flint pebbles in a weight ratio of 1 chitin to 2 pebbles. Dry Ice is then put on top of the mill charge and the mill is kept open for 5 minutes to allow the CO to displace the air in the mill. The lid of the mill is then clamped on tight and the grinding carried out for 96 hours. Approximately 50% of the powdered chitin passed through a 40 micron screen.
The whole powdered chitin so produced is then applied to the 45 test rats of 45 pairs of rats used in the Prudden et al. assay method described above. The percent of wound healing for the treated rats, stating the control rats as 100%, is 122%, i.e., the use of chitin results in an average 22% increase in wound healing activity.
EXAMPLES 2-5 Various fungi are grown on either brain-heart infusion (200 gm. calf brain, 250 gm. beef heart, 10 gm. proteose peptone, 2 gm. dextrose, 5 gm. sodium chloride and 2.5 gm. disodium phosphate) called BHI or on Sabourauds broth (40 gm. dextrose and 10 gm. bacto-peptone) called SAB. The cultures are grown in shallow layers of media contained in flasks and held stationary until good growth and extensive sporulation occurs. Prior to collection of the growth mats, the cultures are killed by placing the flasks into a closed oven under CO at 127 C. for three hours. The flasks are then cooled in the oven for an additional one hour and fifteen minutes. Culture broths are removed by filtration through Buchner funnels and the growth mats washed with distilled water. The mats are then frozen and lyophilized and the dry products ground in a mortar with a pestle under CO No attempt is made to purify the chiten. Twelve pairs of rats are used for each test. Some inflammation is observed on all treated wounds and infection on several. The increases in wound healing obtained may be all the more significant in view of those adverse factors.
100 grams of dried fungus material (obtained from Penicillium fungus of Example 4, cultured on a BHI medium, sterilized by boiling the fungus with the medium and then filtering, washing with distilled water and drying the fungus material) is defatted by extracting the solventsoluble fatty materials with 1000 ml. chloroform at room temperature. The chloroform is removed by filtering and then drying at reduced pressure in a vacuum desiccator.
The defatted fungus material is treated with 2000 ml. 1.0 N-NaOH solution for 18 hours at room temperature. The material is then acidified with HCl. Thereafter the material is dialyzed in distilled water unitl the wash water is free from chlorine ions. This procedure is repeated until a substantially purified material is obtained. The material is dried in a vacuum below 50 C. and is a gray, friable mass.
The dried material is ground in a laboratory mortar and screened through a 400 mesh standard screen. When the screened material is applied to 20 test rats of 20 pairs of rats there is obtained an average of about 25% increase in the wound healing of the treated rats over the untreated control rats.
EXAMPLE 7 Lobster shell chitin is purified by first sl-urrying it in 10% aqueous NaOH for minutes at 80 C., then it is washed, drained and slurried in HCl for 5 minutes at 80 C., drained, slurried in water, the pH of the water adjusted to 6 with dilute aqueous NaOH, and finally drained and dried.
The dried chitin material is pulverized to a fineness of about 40 microns. The material shows an average 25% increase in the wound healing over the untreated control rats.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope thereof, as those skilled in the art will readily understand.
What is claimed is:
1. A process for facilitating healing of a wound in a mammal which comprises administering to said mammal a therapeutically effective amount of chitin.
2. A process according to claim 1, wherein said chitin is of fungal origin.
3. A process according to claim 1 wherein said chitin is of crustacea origin.
4. A process according to claim 2 wherein said material of fungal origin is a sterilized, defatted material selected 6 from the class consisting of Mucor spinosus, Aspergillus niger, Penicillium and Cryptococcus.
5. A process according to claim 2, wherein the chitin consists of the purified cell walls of fungi.
6. A process for facilitating healing of a wound in a mammal which comprises topically applying to said Wound in said mammal a therapeutically effective amount of chitin.
References Cited UNITED STATES PATENTS ALBERT T. MEYERS, Primary Examiner D. M. STEPHENS, Assistant Examiner US. Cl. X.R. 424
US704538A 1968-02-12 1968-02-12 Use of chitin for promoting wound healing Expired - Lifetime US3632754A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US70453868A 1968-02-12 1968-02-12

Publications (1)

Publication Number Publication Date
US3632754A true US3632754A (en) 1972-01-04

Family

ID=24829928

Family Applications (1)

Application Number Title Priority Date Filing Date
US704538A Expired - Lifetime US3632754A (en) 1968-02-12 1968-02-12 Use of chitin for promoting wound healing

Country Status (1)

Country Link
US (1) US3632754A (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911098A (en) * 1974-02-11 1975-10-07 American Cyanamid Co Medicament carrier
US3982537A (en) * 1974-12-30 1976-09-28 Louis Bucalo Dynamic implants and method for implanting the same
US3988411A (en) * 1974-02-11 1976-10-26 American Cyanamid Company Spinning and shaping poly-(N-acetyl-D-glucosamine)
US3989535A (en) * 1974-02-11 1976-11-02 American Cyanamid Company Solution of poly(N-acetyl-D-glucosamine)
US4074713A (en) * 1975-03-14 1978-02-21 American Cyanamid Company Poly(N-acetyl-D-glucosamine) products
US4086335A (en) * 1975-10-29 1978-04-25 Bruscato Frank N Pharmaceutical tablets containing chitin as a disintegrant
US4120527A (en) * 1977-04-15 1978-10-17 Caterpillar Tractor Co. Cab design
EP0002506A1 (en) * 1977-12-09 1979-06-27 Wella Aktiengesellschaft Use of compositions for conditioning as well as washing hair
US4486416A (en) * 1981-03-02 1984-12-04 Soll David B Protection of human and animal cells subject to exposure to trauma
DE3342886A1 (en) * 1983-11-26 1985-06-05 The University of Delaware, Newark, Del. Wound healing agent, its composition and use
US4532267A (en) * 1984-02-15 1985-07-30 Board Of Regents, University Of Washington Vision correction lens made from an aminopolysaccharide compound or an ether or ester thereof
US4532134A (en) * 1981-04-06 1985-07-30 Malette William Graham Method of achieving hemostasis, inhibiting fibroplasia, and promoting tissue regeneration in a tissue wound
US4572906A (en) * 1983-11-21 1986-02-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Chitosan based wound dressing materials
DE3437184A1 (en) * 1984-10-10 1986-04-17 Eduard Iwan Composition for the treatment of skin burns and a process for the preparation of this composition
WO1986005789A1 (en) * 1985-04-01 1986-10-09 Biocarb Ab Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use
US4623539A (en) * 1983-02-04 1986-11-18 Tunc Deger C Nutrient barrier polysaccharide compositions and method of use
US4920158A (en) * 1989-10-11 1990-04-24 Medipro Sciences Limited Hydrogel-forming wound dressing or skin coating material
US4938950A (en) * 1986-12-23 1990-07-03 Wella Aktiengesellschaft Cosmetic composition based upon chitosan and ampholytic copolymerizates, as well as new chitosan/polyampholyte salts
EP0412744A1 (en) * 1989-08-08 1991-02-13 Unilever Plc Hair treatment composition
EP0412745A1 (en) * 1989-08-08 1991-02-13 Unilever Plc Hair setting composition
US4994277A (en) * 1989-10-31 1991-02-19 Pfizer Hospital Products Group, Inc. Use of xanthan gum for preventing adhesions
US5013769A (en) * 1988-08-22 1991-05-07 Medipro Sciences Limited Method of making a hydrogel-forming wound dressing or skin coating material
US5093319A (en) * 1989-10-31 1992-03-03 Pfizer Hospital Products Group, Inc. Use of derivatives of chitin soluble in aqueous solutions for preventing adhesions
US5141925A (en) * 1990-04-23 1992-08-25 Trustees Of Tufts College Vivo methods for treating coccidiosis
US5300494A (en) * 1986-06-06 1994-04-05 Union Carbide Chemicals & Plastics Technology Corporation Delivery systems for quaternary and related compounds
US5605938A (en) * 1991-05-31 1997-02-25 Gliatech, Inc. Methods and compositions for inhibition of cell invasion and fibrosis using dextran sulfate
US5705178A (en) * 1991-05-31 1998-01-06 Gliatech, Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US5733884A (en) * 1995-11-07 1998-03-31 Nestec Ltd. Enteral formulation designed for optimized wound healing
EP0957925A1 (en) * 1996-12-13 1999-11-24 Lescarden, Inc. Treatment of osteoarthritis by administering poly-n-acetyl-d-glucosamine
US6150581A (en) * 1995-06-07 2000-11-21 United States Surgical Corporation Chitosan/alginate anti-adhesion barrier
US20030093114A1 (en) * 2001-11-13 2003-05-15 Melvin Levinson Method for effecting hemostasis
US20030148998A1 (en) * 2001-02-16 2003-08-07 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US6693188B2 (en) 2001-08-08 2004-02-17 Cargill Incorporated N-acetyl-D-glucosamine and process for producing N-acetyl-D-glucosamine
US20040077055A1 (en) * 2001-02-16 2004-04-22 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US20040243043A1 (en) * 2002-06-14 2004-12-02 Mccarthy Simon J, Wound dressing and method for controlling severe, life-threatening bleeding
US20050038369A1 (en) * 2001-06-14 2005-02-17 Gregory Kenton W. Wound dressing and method for controlling severe, life-threatening bleeding
US20050215774A1 (en) * 2002-04-02 2005-09-29 Trinkle Jamea R Chitosan production
US20050245482A1 (en) * 2000-03-15 2005-11-03 Weiyu Fan Chitosan and method of preparing chitosan
US20060003965A1 (en) * 2002-11-01 2006-01-05 Fosdick Lawrence D N-acetyl-d-glucosamine (nag) supplemented food products and beverages
US20060004314A1 (en) * 2001-06-14 2006-01-05 Hemcon, Inc. Antimicrobial barriers, systems, and methods formed from hydrophilic polymer structures such as chistosan
US20060058263A1 (en) * 2002-11-01 2006-03-16 Rogers Brent D Heat pasturized liquids containing glucosamine
US20060134220A1 (en) * 2002-06-20 2006-06-22 Bioalliance Pharma Vectorization system comprising nanoparticles of homogenous size of at least one polymer and at least one positively charged polysaccharide and method for the preparation thereof
US20060172392A1 (en) * 2001-02-16 2006-08-03 Cargill, Incorporated Water soluble beta-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US20060178344A1 (en) * 2001-02-16 2006-08-10 Cargill, Incorporated Glucosamine and N-acetylglucosamine and methods of making the same fungal biomass
US20060211973A1 (en) * 2005-03-17 2006-09-21 Gregory Kenton W Systems and methods for hemorrhage control and or tissue repair
US20060246114A1 (en) * 2002-11-01 2006-11-02 Rogers Brent D Multiple component food product useful for delivering glucosamine and/or nacetyl-d-glucosamine
US20080146984A1 (en) * 2002-06-14 2008-06-19 Hemcon Medical Technologies, Inc. Method for preparing a compressed wound dressing
US20080287907A1 (en) * 2006-05-23 2008-11-20 Providence Health System-Oregan D/B/A Providence St. Vincent Medical Center Systems and methods for introducing and applying a bandage structure within a body lumen or hollow body organ
US20090018479A1 (en) * 2002-06-14 2009-01-15 Hemcon Medical Technologies, Inc. Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chistosan
US20090048210A1 (en) * 2004-05-21 2009-02-19 Saburo Minami Agent for therapy or treatment of wound
US20090104284A1 (en) * 2007-10-19 2009-04-23 Gunn Jr Herbert Harrell Topically Applied Chitosan Composition for Pain Relief and Boosting Immune System
US20100172958A1 (en) * 2008-05-02 2010-07-08 Hemcon Medical Technologies, Inc. Wound dressing devices and methods
US20100228185A1 (en) * 2008-12-22 2010-09-09 Abbott Laboratories Carriers for hemostatic tract treatment
US20100323986A1 (en) * 2001-02-12 2010-12-23 Marine Polymer Technologies, Inc., Compositions and methods for modulation of vascular structure and/or function
WO2011026869A2 (en) 2009-09-01 2011-03-10 Medovent Gmbh Tissue dressing kit
WO2013109004A1 (en) 2012-01-19 2013-07-25 주식회사 시지바이오 Antimicrobial wound-covering material and method for manufacturing same
US8715719B2 (en) 2010-06-16 2014-05-06 Abbott Vascular, Inc. Stable chitosan hemostatic implant and methods of manufacture
US8741335B2 (en) 2002-06-14 2014-06-03 Hemcon Medical Technologies, Inc. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as Chitosan
US8992453B2 (en) 2003-09-12 2015-03-31 Marine Polymer Technologies, Inc. Vascular access preservation in hemodialysis patients
US10086105B2 (en) 2008-10-06 2018-10-02 Providence Health System—Oregon Chitosan foam medical devices and methods

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911098A (en) * 1974-02-11 1975-10-07 American Cyanamid Co Medicament carrier
US3988411A (en) * 1974-02-11 1976-10-26 American Cyanamid Company Spinning and shaping poly-(N-acetyl-D-glucosamine)
US3989535A (en) * 1974-02-11 1976-11-02 American Cyanamid Company Solution of poly(N-acetyl-D-glucosamine)
US3982537A (en) * 1974-12-30 1976-09-28 Louis Bucalo Dynamic implants and method for implanting the same
US4074713A (en) * 1975-03-14 1978-02-21 American Cyanamid Company Poly(N-acetyl-D-glucosamine) products
US4074366A (en) * 1975-03-14 1978-02-21 American Cyanamid Company Poly(N-acetyl-D-glucosamine) products
US4086335A (en) * 1975-10-29 1978-04-25 Bruscato Frank N Pharmaceutical tablets containing chitin as a disintegrant
US4120527A (en) * 1977-04-15 1978-10-17 Caterpillar Tractor Co. Cab design
EP0002506A1 (en) * 1977-12-09 1979-06-27 Wella Aktiengesellschaft Use of compositions for conditioning as well as washing hair
US4486416A (en) * 1981-03-02 1984-12-04 Soll David B Protection of human and animal cells subject to exposure to trauma
US4532134A (en) * 1981-04-06 1985-07-30 Malette William Graham Method of achieving hemostasis, inhibiting fibroplasia, and promoting tissue regeneration in a tissue wound
US4623539A (en) * 1983-02-04 1986-11-18 Tunc Deger C Nutrient barrier polysaccharide compositions and method of use
US4572906A (en) * 1983-11-21 1986-02-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Chitosan based wound dressing materials
DE3342886A1 (en) * 1983-11-26 1985-06-05 The University of Delaware, Newark, Del. Wound healing agent, its composition and use
WO1985003716A1 (en) * 1984-02-15 1985-08-29 Washington Research Foundation Vision correction lens made from an aminopolysaccharide compound or an ether or ester thereof
US4532267A (en) * 1984-02-15 1985-07-30 Board Of Regents, University Of Washington Vision correction lens made from an aminopolysaccharide compound or an ether or ester thereof
DE3437184A1 (en) * 1984-10-10 1986-04-17 Eduard Iwan Composition for the treatment of skin burns and a process for the preparation of this composition
WO1986005789A1 (en) * 1985-04-01 1986-10-09 Biocarb Ab Carbohydrate derivatives and compositions thereof for therapeutic or diagnostic use, and methods for their use
US5300494A (en) * 1986-06-06 1994-04-05 Union Carbide Chemicals & Plastics Technology Corporation Delivery systems for quaternary and related compounds
US4938950A (en) * 1986-12-23 1990-07-03 Wella Aktiengesellschaft Cosmetic composition based upon chitosan and ampholytic copolymerizates, as well as new chitosan/polyampholyte salts
US5013769A (en) * 1988-08-22 1991-05-07 Medipro Sciences Limited Method of making a hydrogel-forming wound dressing or skin coating material
JPH0460964B2 (en) * 1989-08-08 1992-09-29 Unilever Nv
JPH0377812A (en) * 1989-08-08 1991-04-03 Unilever Nv Hair tonic compound
JPH0377811A (en) * 1989-08-08 1991-04-03 Unilever Nv Hair treatment compound
EP0412745A1 (en) * 1989-08-08 1991-02-13 Unilever Plc Hair setting composition
JPH0460578B2 (en) * 1989-08-08 1992-09-28 Unilever Nv
EP0412744A1 (en) * 1989-08-08 1991-02-13 Unilever Plc Hair treatment composition
US4920158A (en) * 1989-10-11 1990-04-24 Medipro Sciences Limited Hydrogel-forming wound dressing or skin coating material
US4994277A (en) * 1989-10-31 1991-02-19 Pfizer Hospital Products Group, Inc. Use of xanthan gum for preventing adhesions
US5093319A (en) * 1989-10-31 1992-03-03 Pfizer Hospital Products Group, Inc. Use of derivatives of chitin soluble in aqueous solutions for preventing adhesions
US5141925A (en) * 1990-04-23 1992-08-25 Trustees Of Tufts College Vivo methods for treating coccidiosis
US6083930A (en) * 1991-05-31 2000-07-04 Gliatech Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US5705178A (en) * 1991-05-31 1998-01-06 Gliatech, Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US5705177A (en) * 1991-05-31 1998-01-06 Gliatech Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US5994325A (en) * 1991-05-31 1999-11-30 Gliatech Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US6020326A (en) * 1991-05-31 2000-02-01 Gliatech Inc. Method for inhibition of bone growth by anionic polymers
US5605938A (en) * 1991-05-31 1997-02-25 Gliatech, Inc. Methods and compositions for inhibition of cell invasion and fibrosis using dextran sulfate
US6127348A (en) * 1991-05-31 2000-10-03 Gliatech, Inc. Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers
US6150581A (en) * 1995-06-07 2000-11-21 United States Surgical Corporation Chitosan/alginate anti-adhesion barrier
US5733884A (en) * 1995-11-07 1998-03-31 Nestec Ltd. Enteral formulation designed for optimized wound healing
EP0957925A1 (en) * 1996-12-13 1999-11-24 Lescarden, Inc. Treatment of osteoarthritis by administering poly-n-acetyl-d-glucosamine
US6117851A (en) * 1996-12-13 2000-09-12 Lescarden Inc. Treatment of osteoarthritis by administering poly-N-acetyl-D-glucosamine
EP0957925A4 (en) * 1996-12-13 2002-07-24 Lescarden Inc Treatment of osteoarthritis by administering poly-n-acetyl-d-glucosamine
US20050245482A1 (en) * 2000-03-15 2005-11-03 Weiyu Fan Chitosan and method of preparing chitosan
US7413881B2 (en) 2000-03-15 2008-08-19 Cargill, Incorporated Chitosan and method of preparing chitosan
US8481512B2 (en) 2001-02-12 2013-07-09 Marine Polymer Technologies, Inc. Compositions and methods for modulation of vascular structure and/or function
US8859528B2 (en) 2001-02-12 2014-10-14 Marine Polymer Technologies, Inc. Compositions and methods for modulation of vascular structure and/or function
US20100323986A1 (en) * 2001-02-12 2010-12-23 Marine Polymer Technologies, Inc., Compositions and methods for modulation of vascular structure and/or function
US20030148998A1 (en) * 2001-02-16 2003-08-07 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US20040077055A1 (en) * 2001-02-16 2004-04-22 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US8222232B2 (en) 2001-02-16 2012-07-17 Cargill, Incorporated Glucosamine and N-acetylglucosamine compositions and methods of making the same fungal biomass
US8034925B2 (en) 2001-02-16 2011-10-11 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US20060178344A1 (en) * 2001-02-16 2006-08-10 Cargill, Incorporated Glucosamine and N-acetylglucosamine and methods of making the same fungal biomass
US7923437B2 (en) 2001-02-16 2011-04-12 Cargill, Incorporated Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US7816514B2 (en) 2001-02-16 2010-10-19 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
US20060172392A1 (en) * 2001-02-16 2006-08-03 Cargill, Incorporated Water soluble beta-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US20110143312A1 (en) * 2001-06-14 2011-06-16 Hemcon Medical Technologies, Inc. Compositions, assemblies, and methods applied during or after a dental procedure to ameliorate fluid loss and/or promote healing, using a hydrophilic polymer sponge structure such as chitosan
US9132206B2 (en) 2001-06-14 2015-09-15 Hemcon Medical Technologies, Inc. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as chitosan
US9004918B2 (en) 2001-06-14 2015-04-14 Hemcon Medical Technologies, Inc. Compositions, assemblies, and methods applied during or after a dental procedure to ameliorate fluid loss and/or promote healing, using a hydrophilic polymer sponge structure such as chitosan
US20050038369A1 (en) * 2001-06-14 2005-02-17 Gregory Kenton W. Wound dressing and method for controlling severe, life-threatening bleeding
US20060004314A1 (en) * 2001-06-14 2006-01-05 Hemcon, Inc. Antimicrobial barriers, systems, and methods formed from hydrophilic polymer structures such as chistosan
US7482503B2 (en) 2001-06-14 2009-01-27 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
US6693188B2 (en) 2001-08-08 2004-02-17 Cargill Incorporated N-acetyl-D-glucosamine and process for producing N-acetyl-D-glucosamine
US20030093114A1 (en) * 2001-11-13 2003-05-15 Melvin Levinson Method for effecting hemostasis
US20090099347A1 (en) * 2002-04-02 2009-04-16 Cargill, Incorporated Chitosan production
US20050215774A1 (en) * 2002-04-02 2005-09-29 Trinkle Jamea R Chitosan production
US7488812B2 (en) 2002-04-02 2009-02-10 Cargill, Incorporated Chitosan production
US8741335B2 (en) 2002-06-14 2014-06-03 Hemcon Medical Technologies, Inc. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as Chitosan
US8668924B2 (en) 2002-06-14 2014-03-11 Providence Health System—Oregon Wound dressing and method for controlling severe, life-threatening bleeding
US20080146984A1 (en) * 2002-06-14 2008-06-19 Hemcon Medical Technologies, Inc. Method for preparing a compressed wound dressing
US7371403B2 (en) * 2002-06-14 2008-05-13 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
US20090018479A1 (en) * 2002-06-14 2009-01-15 Hemcon Medical Technologies, Inc. Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chistosan
US8313474B2 (en) 2002-06-14 2012-11-20 Hemcon Medical Technologies, Inc. Method for preparing a compressed wound dressing
US8269058B2 (en) 2002-06-14 2012-09-18 Hemcon Medical Technologies, Inc. Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chitosan
US20040243043A1 (en) * 2002-06-14 2004-12-02 Mccarthy Simon J, Wound dressing and method for controlling severe, life-threatening bleeding
US20080213344A1 (en) * 2002-06-14 2008-09-04 Providence Health System- Oregon Wound dressing and method for controlling severe, life-threatening bleeding
US8062669B2 (en) 2002-06-20 2011-11-22 Bioalliance Pharma Vectorization system comprising nanoparticles of homogenous size of at least one polymer and at least one positively charged polysaccharide and method for the preparation thereof
US20060134220A1 (en) * 2002-06-20 2006-06-22 Bioalliance Pharma Vectorization system comprising nanoparticles of homogenous size of at least one polymer and at least one positively charged polysaccharide and method for the preparation thereof
US20060058263A1 (en) * 2002-11-01 2006-03-16 Rogers Brent D Heat pasturized liquids containing glucosamine
US20060003965A1 (en) * 2002-11-01 2006-01-05 Fosdick Lawrence D N-acetyl-d-glucosamine (nag) supplemented food products and beverages
US20060246114A1 (en) * 2002-11-01 2006-11-02 Rogers Brent D Multiple component food product useful for delivering glucosamine and/or nacetyl-d-glucosamine
US8992453B2 (en) 2003-09-12 2015-03-31 Marine Polymer Technologies, Inc. Vascular access preservation in hemodialysis patients
US8951565B2 (en) 2003-12-23 2015-02-10 Hemcon Medical Technologies, Inc. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as chitosan
US20090048210A1 (en) * 2004-05-21 2009-02-19 Saburo Minami Agent for therapy or treatment of wound
US20060211973A1 (en) * 2005-03-17 2006-09-21 Gregory Kenton W Systems and methods for hemorrhage control and or tissue repair
US9204957B2 (en) 2005-03-17 2015-12-08 Hemcon Medical Technologies, Inc. Systems and methods for hemorrhage control and or tissue repair
US20080287907A1 (en) * 2006-05-23 2008-11-20 Providence Health System-Oregan D/B/A Providence St. Vincent Medical Center Systems and methods for introducing and applying a bandage structure within a body lumen or hollow body organ
US8920514B2 (en) 2006-05-23 2014-12-30 Providence Health System—Oregon Systems and methods for introducing and applying a bandage structure within a body lumen or hollow body organ
US20090104284A1 (en) * 2007-10-19 2009-04-23 Gunn Jr Herbert Harrell Topically Applied Chitosan Composition for Pain Relief and Boosting Immune System
US20100172958A1 (en) * 2008-05-02 2010-07-08 Hemcon Medical Technologies, Inc. Wound dressing devices and methods
US9205170B2 (en) 2008-05-02 2015-12-08 Hemcon Medical Technologies, Inc. Wound dressing devices and methods
US10086105B2 (en) 2008-10-06 2018-10-02 Providence Health System—Oregon Chitosan foam medical devices and methods
US9533076B2 (en) 2008-12-22 2017-01-03 Abbott Laboratories Carriers for hemostatic tract treatment
US20100228185A1 (en) * 2008-12-22 2010-09-09 Abbott Laboratories Carriers for hemostatic tract treatment
US8517979B2 (en) 2008-12-22 2013-08-27 Abbott Laboratories Carriers for hemostatic tract treatment
WO2011026869A2 (en) 2009-09-01 2011-03-10 Medovent Gmbh Tissue dressing kit
EP3117842A1 (en) 2009-09-01 2017-01-18 Medovent GmbH Tissue dressing material
US8715719B2 (en) 2010-06-16 2014-05-06 Abbott Vascular, Inc. Stable chitosan hemostatic implant and methods of manufacture
WO2013109004A1 (en) 2012-01-19 2013-07-25 주식회사 시지바이오 Antimicrobial wound-covering material and method for manufacturing same
US9610378B2 (en) 2012-01-19 2017-04-04 Cg Bio Co., Ltd. Antimicrobial wound-covering material and method for manufacturing same

Similar Documents

Publication Publication Date Title
US3632754A (en) Use of chitin for promoting wound healing
US3911116A (en) Process for promoting wound healing with chitin derivatives
US3914413A (en) Process for facilitating wound healing with N-acetylated partially depolymerized chitin materials
US3903268A (en) Chitin and chitin derivatives for promoting wound healing
JP3993633B2 (en) Poly-β-1 → 4-N-acetylglucosamine
US6649599B2 (en) Methods and compositions for poly-β-1-4-N-acetylglucosamine cell therapy system
EP1483299B1 (en) Cell wall derivatives from biomass and preparation thereof
US20090247738A1 (en) Biocompatible poly-beta-1-4-n-acetylglucosamine
CN106496357B (en) A kind of O- quaternary ammonium salt-N- alkylated chitosan and the preparation method and application thereof
WO1996002260A1 (en) Wound healing agent
US3624201A (en) Compositions containing calcium and magnesium salts of citric, phosphoric and lactic acid and method of promoting healing of wounds therewith
US5624679A (en) Methods and compositions for poly-β-1-4-N-acetylglucosamine biological barriers
CN113769150B (en) Composite material with rapid blood coagulation effect and preparation method thereof
US20220378974A1 (en) Hemostatic material and wound dressing containing same
CN110152055B (en) Functional drug sustained-release medical dressing constructed by alginic acid aminated derivative/bacterial cellulose nanocrystalline composite gel
US3804949A (en) Process of promoting healing of wounds
DE1906159A1 (en) Chitin and egg-shell prepns for cicatrising wounds
Takamori et al. Biodegradation of chitin with enzymes and vital components
Cabral et al. Chitin-and chitosan-based strategies in wound healing
WO1990006124A1 (en) Formulations for treating slow and non-healing wounds
CN110772660A (en) Preparation method of guanidinated chitosan dressing
CN117659521A (en) Extracellular polysaccharide-based hydrogel and preparation method and application thereof
CN116212095A (en) Preparation method of molybdenum disulfide nanofiber membrane dressing
CA2372026A1 (en) Poly-beta-1->4-n-acetylglucosamine
CA2604073A1 (en) Poly-.beta.-1.fwdarw.4-n-acetylglucosamine

Legal Events

Date Code Title Description
AS Assignment

Owner name: LESCARDEN INC.,

Free format text: CHANGE OF NAME;ASSIGNOR:LESCARDEN LTD.;REEL/FRAME:004123/0510

Effective date: 19830105