US3023750A - Self-generating pressure device for infusion administration systems - Google Patents

Self-generating pressure device for infusion administration systems Download PDF

Info

Publication number
US3023750A
US3023750A US797194A US79719459A US3023750A US 3023750 A US3023750 A US 3023750A US 797194 A US797194 A US 797194A US 79719459 A US79719459 A US 79719459A US 3023750 A US3023750 A US 3023750A
Authority
US
United States
Prior art keywords
container
bag
infusion
fluid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US797194A
Inventor
Howard C Baron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US797194A priority Critical patent/US3023750A/en
Application granted granted Critical
Publication of US3023750A publication Critical patent/US3023750A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/148Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons flexible, e.g. independent bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/12Pressure infusion

Definitions

  • the gravity flow method which at the present time is in general use, requires a cumbersome infusion stand for purposes of elevating the infusion bottles at least several feet above the level of the patient.
  • the rate of flow is then determined by :the diameter of the infusion needle, the height of the infusion bottle, and the intravenous pressure.
  • the intravenous administration of fluid by hand pumps requires the constant cr intermittent presence of an attendant to maintain the pressure in the infusion bottle and prevent any possible massive air embolus at the conclusion of the infusion operation.
  • the use of mechanical pumps minimizes the necessity of constant supervision by an attendant, but in this instance, the pumps are bulky and heavy and require a power source for their operation.
  • a self-contained infusion pump for feeding the 3,023,750 Patented Mar. 6, 1962 intravenous fluid to a patient under a steady pressure
  • the infusion pump being in the nature of an expandible bag or envelope contained within the infusion container and having means for filling the expandible bag or envelope with gas in such a manner as to expand the bag within the container and force the intravenous fluid out of the container.
  • the expandible hag contains chemical ingredients which, when mixed, generate a gas which fills the bag and causes the latter to expand.
  • An object of the present invention is the provision of pressure-operated infusion assembly of the character described which will provide a steady flow of intravenous fluid to the patient under a steady pressure and with a minimum of manual attendance, and which can also be used, when desired, in the usual manner for gravity-flow administration.
  • Another object of the present invention is to provide a pressure-operated infusion assembly of the character described which is of small, compact size, is light in weight,
  • Still another object of the present invention is to provide a pressure-operated infusion assembly of the character described which acts automatically to prevent air embolus, and at the same time acts as a check valve at the conclusion of the infusion.
  • FIG. 1 is a plan view of an infusion container shown in inverted position and incorporating a flexible bag in accordance with the invention, portions of the container and bag being broken away to reveal inner constructional details;
  • FIG. 2 is a section taken along line 22 of FIG. 1;
  • FIG. 3 is a sectional view corresponding to FIG. 2, but showing the flexible bag in an expanded position, and also showing a portion of the administration assembly connected to the container;
  • FIG. 4 is a plan view of an infusion container incorporating a modified form of the invention.
  • FIG. 5 is a perspective view of the administration assembly used with the infusion containers.
  • the self-generating pressure system of the instant invention may be applied to any type of infusion container, for purposes of illustration there is shown in the drawings the well-known type of flexible container having walls made of a soft and bendable plastic. This container communicates with a feeding tube which terminates in a hollow needle for injection into the patients blood stream.
  • FIG. 1 an infusion fluid container of the conventional and well-known flexible type in the nature of a pliable plastic bag made of transparent polyvinyl chloride or the like.
  • the container 10 is completely sealed, as by marginal heat sealing 12 at its top and bottom ends, except for an open neck portion formed by a hollow tube 14 which is open at its ends and is sealed in a position extending through the bottom wall of the container 10.
  • the outer end of the tube 14 is closed off by a soft rubber cap 16 having a bottom wall 18 and a peripheral flange 29 which encircles and grasps the lower end of the hollow tube 14.
  • the container 10 is partially filled with a measured amount of infusion fluid 22 to be administered, the fluid being, for example blood plasma, blood mixed with an anti-coagulant, etc.
  • the air therein Prior to the sealing of the container 10, the air therein is wholly evacuated, so that a vacuum is created in the space above the fluid 22.
  • a flexible infusion fluid container such as the container is conventionally provided with an-administration assembly which is used to transfer the fluid in the container to the patient requiring such fluid.
  • an administration assembly 24 includes a flexible tube 26, normally made of a transparent plastic, to one end of which a hollow needle 28 is afiixed, and to the other end of which a longer hollow needle 30 is affixed.
  • the needle 28 is sized to puncture the bottom wall 18 of the tube cap 16 and to extend upwardly through the tube 14, in the manner shown in FIG. 3, with the hollow interior of the needle 28 in communication with the fluid 22 within the container 10.
  • the fluid thus may flow through the hollow needle 28 and through the flexible tube 26.
  • a metal disc or flange 32 may be affixed at the base of the needle 28 to serve as stop means to prevent the needle 28 from being inserted' too far within the tube 14.
  • the flexible container 10 is conventionally provided with an aperture or slot 34 in the heat-sealed marginal area 12 opposite the neck 14, by means of which the container may be hung in an inverted position from an infusion stand or other support.
  • the needle 28 is inserted through the cap wall 18 into the hollow tube 14 and the other needle 30 is inserted into a vein of the patient, the fluid 22 within the container 19 is fed by gravity through the tube 26 to the patient.
  • a pinch clamp 36 may also be mounted on the flexible pipe 26 to control the flow of fluid therethrough.
  • the apparatus thus far described is conventional and well-known, and provides an inexpensive and easily portable assembly for storing and administering blood and other intravenous fluids.
  • the invention herein resides in self-expanding means placed within the container for creating a pressure Within the container whereby the fluid therein is forced out and through the flexible tube 26 in a steady, positive flow without relying on gravity, as is usual.
  • a small expandible bag within the container 10 the bag containing a supply of gas or containing means for generating gas.
  • the bag thus continually expands during use of the infusion apparatus, forcing the liquid under pressure out of the container.
  • the gas generating means may be in the form of a small container of compressed gas which can be ruptured or otherwise opened to re lease the gas within the expandible bag.
  • the gas generating means is in the form of two or more chemical agents which may be mixed or dissolved in a liquid to generate the gas.
  • FIGS. 1 and 2 illustrate one example of the preferred gas generating means.
  • a small flexible and resilient bag 40 is located within the container 10.
  • the bag 40 may be made of soft rubber or a plastic which is capable of stretching, and is in the form of a hollow envelope which is completely sealed around all of its edges.
  • the bag 40 contains a capsule or ampule 42 which is capable of being crushed or ruptured from the exterior of the container 10.
  • the member 42 may be a thin-walled glass ampule or may be a conventional medicinal capsule, both of which may be crushed by squeezing through the flexible walls of the container 10 and of the bag 40-.
  • the capsule or ampule 40 may contain a liquid or chemical, while an additional chemical (in FIG. 1 being shown as a powder 44), is contained within the bag 40 outside the ampule or capsule' 42.
  • the chemical agents are such that upon mixing they will generate gas to cause the bag 40 to expand in size.
  • the aforementioned chemical agents may be any suitable ingredients which will generate gas when mixed or when dissolved in water; there being a large number of well-known materials suitable for this purpose.
  • the powdered chemical 44 within the bag 40 may be a measured amount of dry, baking soda, while the capsule 42 may contain water. When the capsule 42 is broken, the water will mix the baking soda, generating carbon dioxide gas.
  • the chemical ingredient 44 in the bag 40 may be calcium carbonate and the capsule 42 may contain dilute hydrochlon'c acid.
  • the bag 46 may be secured within the container 10 or may be loosely contained therein.
  • the material therein will mix with the chemical agent 44, generating gas which will cause the walls of the bag 49 to stretch and the bag 40 to expand until it fills the interior of the container 10 above the infusion fluid 22.
  • the bag 40 expands sufliciently to press downwardly upon the infusion fillld 22, it exerts a positive pressure upon the fluid, forcing the fluid out through the tube 14, the hollow needle 28 and the flexible tube 26, to the vein of the patient.
  • the use of the expandible bag 40 eliminates the danger of an air embolus almost completely.
  • the bag 44 expands until it completely .fills the interior of the container 10, as shown in FIG. 3.
  • the outlet tube 14 is therefore completely sealed oif when the last of the infusion fluid 22 leaves the container 10, and there is no possibility for air within the system to be fed to the veins of the patient.
  • the fully-ex anded bag 48 acts as a check valve in sealing off the outlet tube 14, preventing the return of blood or infusion fluid to the container.
  • the outlet tube 14 is open at its top to permit the passage of infusion fluid therethrough.
  • An exarnination of FIG. 3 will reveal that when the bag 40 is almost fully expanded, it will engage and seal off the open top of the outlet tube 14, with the result that the container 10 will be sealed off from the outlet flow of fluid before all of the intravenous fluid has been fed to the patient.
  • a series of apertures 46 there is provided in the side walls of the outlet tube 14, a series of apertures 46, the bottom edges of which register with the bottom wall of the container 10, as is best seen in FIG. 3.
  • the apertures 46 insure that all of the contained infusion fluid 22 is discharged from the container 10. At the same time the apertures 46, are sealed off by the fully-expanded flexible bag 40 at the completion of the transfusion operation, to prevent air embolus.
  • FIG. 4 illustrates an alternate manner of constructing the expandible bag.
  • the bag 50 is made of the same material as the container 10, that is to say of a flexible plastic sheet material which need not be stretchable.
  • the bag 50 is in the form of a completely sealed envelope which is of slightly larger size than the container 10.
  • the bag 50 is sealed at its top end to the top heatsealed edge portion 12' of the container 10.
  • the free lower portion of the bag 50 is folded up in a number of staggered folds 52, so that in the unexpanded condition, the lower folded portion of the bag 50 is located above the level of the intravenous fluid 22.
  • the bag 50 contains chemicals for the rapid generation of gas, as was previously described, or contains a small cylinder of compressed gas. When gas is generated or released therein, the bag 50 will expand and unfold, forcing the intravenous liquid from the container 10', until the bag 50 entirely fills the interior of the container and its bottom end seals off the outlet tube 14.
  • the expandible bag may also be used within a container of the glass bottle type also commonly used for blood infusion.
  • the glass bottle type also commonly used for blood infusion.
  • expandible bag could be pre-filled with suflicient compressed air or other gas to permit the bag to expand to an extent to fill the interior of the bottle after the intravenous fluid has been fed to the patient.
  • the capsule or ampule can be broken by means of a needle puncture through a rubber stopper, to permit mixing of the chemical agents.
  • an expandible bag within the infusion container presents the advantages of providing a readily transportable pressure system in which constant attendance is unnecessary.
  • all that is necessary is to attach the administration assembly 24, inject the patient, and release or generate the gas.
  • the system is entirely independent of gravity and the infusion bottle or container, can be placed at body level or below.
  • the container can be suspended between the legs of a patient on a litter, suspended from the patients belt, hung from the neck of a transported patient, etc.
  • the container In hospitals it may be placed on a bed stand next to the patient or on the anesthesia machine at the head of the operating table. No cumbersome infusion stands are re quired as in gravity administration.
  • Sufiicient pressure may be generated to overcome the venous pressure of the patient, and, if necessary, the systolic blood pressure of the patient where intra-arterial transfusions are required. With the assembly of the invention, as many transfusions may be given as are needed without depleting the available manpower in a mass emergency or even in routine hospital Work.
  • Infusion apparatus comprising a flexible-walled container for storing a supply of fluid to be fed intravenously and having a fluid outlet opening, an expandible bag within said container, said bag being completely sealed and having a normal collapsed position in which it occupies a portion of the container, and means within said bag for generating a supply of gas therein in sufficient volume to cause said bag to expand to an extended position in which it substantially fills the interior of said container, said gas-generating means comprising a plurality of chemical ingredients capable of generating gas when mixed, and a frangible member normally separating said chemical ingredients, said frangible member being accessible from the exterior of said container through the flexible walls of the latter, whereby the frangible member may be selectively and manually ruptured to mix said chemical ingredients.
  • said frangible member comprises a capsule containing one of said chemical ingredients.
  • said expandible bag comprises an envelope having stretchable walls.
  • said expandible bag comprises an envelope of an expanded size at least equal to the internal volume of said container said envelope being normally folded to occupy only a portion of said container.
  • fusion apparatus comprising a flexible container having a fluid outlet opening, a completely sealed expandible bag within said container, and chemical means within said bag for generating a supply of gas to expand said bag to substantially fill said container, said chemical means comprising a plurality of chemical ingredients capable of generating gas when mixed, and a frangible member normally separating said chemical ingredients, said frangible member being selectively and manually ruptured to mix said chemical ingredients.
  • a flexible container for storing a supply of fluid to be fed intravenously and having a fluid outlet opening
  • an expandible bag contained within said container, said bag being completely sealed and having a normal collapsed position in which it occupies a portion of the container
  • means including a frangible member within said bag for generating a supply of gas therein in suflicient volume to cause said bag to expand to an extended position in which it substantially fills the interior of said container so that said bag in expanding acts to exert pressure upon said fluid to force the latter out of the container, said frangible member being selectively and manually ruptured through said flexible container and through said expandible bag manually from outwardly of said container.

Description

March 6, 1962 H. c. BARON SELF-GENERATING PRESSURE DEVICE FOR INFUSION ADMINISTRATION SYSTEMS Flled March 4, 1959 m m m m HOWARD C. BARON FIG. 4. Y
United States Patent 3,023,750 SELF-GENERATING PRESSURE DEVICE FOR IN- FUSION ADMINISTRATION SYSTEMS Howard C. Baron, 36 E. 36th St., New Yer N.Y. Filed Mar. 4, 1959, Ser. No. 797,194 6 Claims. (Cl. 128-214) This invention relates to improvements in apparatus for intravenous infusion or transfusion, and in particular relates to a new and improved pressure-operated assembly for the infusion of blood or plasma to a patient requiring the same.
At the present time several conventional methods are employed for infusing blood or other fluids into the blood stream. The most common method is to hang a glass jar or plastic bag containing blood, blood plasma or the like on an infusion stand and allowing the fluid to flow by gravity to the veins of the patient. It is also known to employ hand pumps which are attached directly to the infusion bottle, these pumps requiring constant or intermittent manual manipulation and consequently an attendant present to operate the same. It is also known to employ mechanical pumps which are attached to the infusion bottle and result in the blood being fed under pressure to the patient. The mechanical pumps also require manual control and in addition must include a power source for the operation thereof. Most recently, the use of flexible plastic infusion containers has become prevalent, such infusion containers being capable of being manually squeezed by an attendant for the feeding of the contents under pressure to the patient.
All of the above conventional methods are subject to inherent disadvantages which limit the use thereof to particular applications. For example, the gravity flow method, which at the present time is in general use, requires a cumbersome infusion stand for purposes of elevating the infusion bottles at least several feet above the level of the patient. The rate of flow is then determined by :the diameter of the infusion needle, the height of the infusion bottle, and the intravenous pressure. The intravenous administration of fluid by hand pumps requires the constant cr intermittent presence of an attendant to maintain the pressure in the infusion bottle and prevent any possible massive air embolus at the conclusion of the infusion operation. The use of mechanical pumps minimizes the necessity of constant supervision by an attendant, but in this instance, the pumps are bulky and heavy and require a power source for their operation. Thus, they are not usually transportable and are not commercially practical for mass use due to the high cost of each individual unit. The present method of use of flexible plastic infusion containers requires the container to be suspended from an infusion stand for normal gravity flow operation, or in the alternative requires the container to be manually manipulated.
It will be appreciated that in places where mass transfusions are required in large numbers, such as on the battlefield or in disaster areas, it is often essential to pro vide a controlled flow of blood or plasma expanders in a large member of simultaneous transfusions, but the nature of the situation as such that it is impossible to'provide an attendant for each transfusion case. In addition, it is impossible to provide mechanical pumps or the like with each transfusion unit, and even if the provision of such pumps were possible, a power source for said pumps would not be readily available. In addition, it may be mentioned that the gravity flow method of infusion is often impossible to follow under battlefield conditions since the use of upright infusion stands or supports provides a ready target.
In accordance with the present invention, there is provided a self-contained infusion pump for feeding the 3,023,750 Patented Mar. 6, 1962 intravenous fluid to a patient under a steady pressure, the infusion pump being in the nature of an expandible bag or envelope contained within the infusion container and having means for filling the expandible bag or envelope with gas in such a manner as to expand the bag within the container and force the intravenous fluid out of the container. In the preferred form of the invention, the expandible hag contains chemical ingredients which, when mixed, generate a gas which fills the bag and causes the latter to expand.
An object of the present invention is the provision of pressure-operated infusion assembly of the character described which will provide a steady flow of intravenous fluid to the patient under a steady pressure and with a minimum of manual attendance, and which can also be used, when desired, in the usual manner for gravity-flow administration.
Another object of the present invention is to provide a pressure-operated infusion assembly of the character described which is of small, compact size, is light in weight,
. and is inexpensive in manufacture, so that it may be economically provided in quantity for mass use.
Still another object of the present invention is to provide a pressure-operated infusion assembly of the character described which acts automatically to prevent air embolus, and at the same time acts as a check valve at the conclusion of the infusion.
Additional objects and advantages of the present invention will become apparent during the course of the following specification when taken in connection with the accompanying drawings illustrating preferred embodiments thereof, and in which:
FIG. 1 is a plan view of an infusion container shown in inverted position and incorporating a flexible bag in accordance with the invention, portions of the container and bag being broken away to reveal inner constructional details;
FIG. 2 is a section taken along line 22 of FIG. 1;
FIG. 3 is a sectional view corresponding to FIG. 2, but showing the flexible bag in an expanded position, and also showing a portion of the administration assembly connected to the container;
FIG. 4 is a plan view of an infusion container incorporating a modified form of the invention; and
FIG. 5 is a perspective view of the administration assembly used with the infusion containers.
While the self-generating pressure system of the instant invention may be applied to any type of infusion container, for purposes of illustration there is shown in the drawings the well-known type of flexible container having walls made of a soft and bendable plastic. This container communicates with a feeding tube which terminates in a hollow needle for injection into the patients blood stream.
Referring in detail to the drawings, there is shown in FIG. 1, by way of example, an infusion fluid container of the conventional and well-known flexible type in the nature of a pliable plastic bag made of transparent polyvinyl chloride or the like. The container 10 is completely sealed, as by marginal heat sealing 12 at its top and bottom ends, except for an open neck portion formed by a hollow tube 14 which is open at its ends and is sealed in a position extending through the bottom wall of the container 10. The outer end of the tube 14 is closed off by a soft rubber cap 16 having a bottom wall 18 and a peripheral flange 29 which encircles and grasps the lower end of the hollow tube 14.
The container 10 is partially filled with a measured amount of infusion fluid 22 to be administered, the fluid being, for example blood plasma, blood mixed with an anti-coagulant, etc. Prior to the sealing of the container 10, the air therein is wholly evacuated, so that a vacuum is created in the space above the fluid 22.
A flexible infusion fluid container such as the container is conventionally provided with an-administration assembly which is used to transfer the fluid in the container to the patient requiring such fluid. Such an administration assembly 24 includes a flexible tube 26, normally made of a transparent plastic, to one end of which a hollow needle 28 is afiixed, and to the other end of which a longer hollow needle 30 is affixed.
The needle 28 is sized to puncture the bottom wall 18 of the tube cap 16 and to extend upwardly through the tube 14, in the manner shown in FIG. 3, with the hollow interior of the needle 28 in communication with the fluid 22 within the container 10. The fluid thus may flow through the hollow needle 28 and through the flexible tube 26. As is conventional, a metal disc or flange 32 may be affixed at the base of the needle 28 to serve as stop means to prevent the needle 28 from being inserted' too far within the tube 14.
The flexible container 10 is conventionally provided with an aperture or slot 34 in the heat-sealed marginal area 12 opposite the neck 14, by means of which the container may be hung in an inverted position from an infusion stand or other support. When the needle 28 is inserted through the cap wall 18 into the hollow tube 14 and the other needle 30 is inserted into a vein of the patient, the fluid 22 within the container 19 is fed by gravity through the tube 26 to the patient. In those cases where the patient requires a pressure feed of the fluid, it is customary to provide an attendant to manual- 1y squeeze the flexible container 10 in order to force the fluid from the container. A pinch clamp 36 may also be mounted on the flexible pipe 26 to control the flow of fluid therethrough.
The apparatus thus far described is conventional and well-known, and provides an inexpensive and easily portable assembly for storing and administering blood and other intravenous fluids. The invention herein resides in self-expanding means placed within the container for creating a pressure Within the container whereby the fluid therein is forced out and through the flexible tube 26 in a steady, positive flow without relying on gravity, as is usual.
In accordance with the invention, there is provided a small expandible bag within the container 10, the bag containing a supply of gas or containing means for generating gas. The bag thus continually expands during use of the infusion apparatus, forcing the liquid under pressure out of the container. The gas generating means may be in the form of a small container of compressed gas which can be ruptured or otherwise opened to re lease the gas within the expandible bag. Preferably, however, the gas generating means is in the form of two or more chemical agents which may be mixed or dissolved in a liquid to generate the gas.
FIGS. 1 and 2 illustrate one example of the preferred gas generating means. In these views, a small flexible and resilient bag 40 is located within the container 10. The bag 40 may be made of soft rubber or a plastic which is capable of stretching, and is in the form of a hollow envelope which is completely sealed around all of its edges.
The bag 40 contains a capsule or ampule 42 which is capable of being crushed or ruptured from the exterior of the container 10. 'For this purpose, the member 42 may be a thin-walled glass ampule or may be a conventional medicinal capsule, both of which may be crushed by squeezing through the flexible walls of the container 10 and of the bag 40-. The capsule or ampule 40 may contain a liquid or chemical, while an additional chemical (in FIG. 1 being shown as a powder 44), is contained within the bag 40 outside the ampule or capsule' 42. The chemical agents are such that upon mixing they will generate gas to cause the bag 40 to expand in size.
The aforementioned chemical agents may be any suitable ingredients which will generate gas when mixed or when dissolved in water; there being a large number of well-known materials suitable for this purpose. For example, the powdered chemical 44 within the bag 40 may be a measured amount of dry, baking soda, while the capsule 42 may contain water. When the capsule 42 is broken, the water will mix the baking soda, generating carbon dioxide gas. As another example, the chemical ingredient 44 in the bag 40 may be calcium carbonate and the capsule 42 may contain dilute hydrochlon'c acid.
The bag 46 may be secured within the container 10 or may be loosely contained therein. When the capsule or ampule 42 is ruptured or crushed, the material therein will mix with the chemical agent 44, generating gas which will cause the walls of the bag 49 to stretch and the bag 40 to expand until it fills the interior of the container 10 above the infusion fluid 22. When the bag 40 expands sufliciently to press downwardly upon the infusion fillld 22, it exerts a positive pressure upon the fluid, forcing the fluid out through the tube 14, the hollow needle 28 and the flexible tube 26, to the vein of the patient.
The use of the expandible bag 40 eliminates the danger of an air embolus almost completely. In the final stages of the infusion, the bag 44 expands until it completely .fills the interior of the container 10, as shown in FIG. 3.
The outlet tube 14 is therefore completely sealed oif when the last of the infusion fluid 22 leaves the container 10, and there is no possibility for air within the system to be fed to the veins of the patient. At the same time, the fully-ex anded bag 48 acts as a check valve in sealing off the outlet tube 14, preventing the return of blood or infusion fluid to the container.
In conventional transfusion arrangements of the type shown herein, the outlet tube 14 is open at its top to permit the passage of infusion fluid therethrough. An exarnination of FIG. 3 will reveal that when the bag 40 is almost fully expanded, it will engage and seal off the open top of the outlet tube 14, with the result that the container 10 will be sealed off from the outlet flow of fluid before all of the intravenous fluid has been fed to the patient. As a result there is provided in the side walls of the outlet tube 14, a series of apertures 46, the bottom edges of which register with the bottom wall of the container 10, as is best seen in FIG. 3. The apertures 46 insure that all of the contained infusion fluid 22 is discharged from the container 10. At the same time the apertures 46, are sealed off by the fully-expanded flexible bag 40 at the completion of the transfusion operation, to prevent air embolus.
FIG. 4 illustrates an alternate manner of constructing the expandible bag. In this view, the bag 50 is made of the same material as the container 10, that is to say of a flexible plastic sheet material which need not be stretchable. The bag 50 is in the form of a completely sealed envelope which is of slightly larger size than the container 10. The bag 50 is sealed at its top end to the top heatsealed edge portion 12' of the container 10. The free lower portion of the bag 50 is folded up in a number of staggered folds 52, so that in the unexpanded condition, the lower folded portion of the bag 50 is located above the level of the intravenous fluid 22. The bag 50 contains chemicals for the rapid generation of gas, as was previously described, or contains a small cylinder of compressed gas. When gas is generated or released therein, the bag 50 will expand and unfold, forcing the intravenous liquid from the container 10', until the bag 50 entirely fills the interior of the container and its bottom end seals off the outlet tube 14.
It is to be understood that the expandible bag may also be used within a container of the glass bottle type also commonly used for blood infusion. In this instance, the
expandible bag could be pre-filled with suflicient compressed air or other gas to permit the bag to expand to an extent to fill the interior of the bottle after the intravenous fluid has been fed to the patient. In the event that an expandible bag containing a capsule or ampule is used Within a glass bottle, the capsule or ampule can be broken by means of a needle puncture through a rubber stopper, to permit mixing of the chemical agents.
The use of an expandible bag within the infusion container, as described above, presents the advantages of providing a readily transportable pressure system in which constant attendance is unnecessary. In operation, all that is necessary is to attach the administration assembly 24, inject the patient, and release or generate the gas. The system is entirely independent of gravity and the infusion bottle or container, can be placed at body level or below. For example, the container can be suspended between the legs of a patient on a litter, suspended from the patients belt, hung from the neck of a transported patient, etc. In hospitals it may be placed on a bed stand next to the patient or on the anesthesia machine at the head of the operating table. No cumbersome infusion stands are re quired as in gravity administration. Sufiicient pressure may be generated to overcome the venous pressure of the patient, and, if necessary, the systolic blood pressure of the patient where intra-arterial transfusions are required. With the assembly of the invention, as many transfusions may be given as are needed without depleting the available manpower in a mass emergency or even in routine hospital Work.
While preferred embodiments of the invention have been shown and described herein, it is obvious that numerous omissions, changes, and additions may be made in such embodiments without departing from the spirit and scope of the invention.
What I claim is:
1. Infusion apparatus comprising a flexible-walled container for storing a supply of fluid to be fed intravenously and having a fluid outlet opening, an expandible bag within said container, said bag being completely sealed and having a normal collapsed position in which it occupies a portion of the container, and means within said bag for generating a supply of gas therein in sufficient volume to cause said bag to expand to an extended position in which it substantially fills the interior of said container, said gas-generating means comprising a plurality of chemical ingredients capable of generating gas when mixed, and a frangible member normally separating said chemical ingredients, said frangible member being accessible from the exterior of said container through the flexible walls of the latter, whereby the frangible member may be selectively and manually ruptured to mix said chemical ingredients.
2. Infusion apparatus according to claim 1 in which said frangible member comprises a capsule containing one of said chemical ingredients.
3. Infusion apparatus according to claim 1 in which said expandible bag comprises an envelope having stretchable walls.
4. Infusion apparatus according to claim 1 in which said expandible bag comprises an envelope of an expanded size at least equal to the internal volume of said container said envelope being normally folded to occupy only a portion of said container.
5. Infusion apparatus comprising a flexible container having a fluid outlet opening, a completely sealed expandible bag within said container, and chemical means within said bag for generating a supply of gas to expand said bag to substantially fill said container, said chemical means comprising a plurality of chemical ingredients capable of generating gas when mixed, and a frangible member normally separating said chemical ingredients, said frangible member being selectively and manually ruptured to mix said chemical ingredients.
6. Infusion apparatus comprising a flexible container for storing a supply of fluid to be fed intravenously and having a fluid outlet opening, an expandible bag contained within said container, said bag being completely sealed and having a normal collapsed position in which it occupies a portion of the container, and means including a frangible member within said bag for generating a supply of gas therein in suflicient volume to cause said bag to expand to an extended position in which it substantially fills the interior of said container so that said bag in expanding acts to exert pressure upon said fluid to force the latter out of the container, said frangible member being selectively and manually ruptured through said flexible container and through said expandible bag manually from outwardly of said container.
References Cited in the file of this patent UNITED STATES PATENTS 921,130 Lockwood May 11, 1909 2,074,223 Horiuchi Mar. 16, 1937 2,409,734 Bucher Oct. 22, 1946 2,615,447 Cohen Oct. 28, 1952 2,725,056 Tash Nov. 29, 1955 2,794,437 Tash June 4, 1957 2,815,152 Mills Dec. 3, 1957 2,847,007 Fox Aug. 12, 1958 2,876,768 Schultz Mar. 10, 1959 2,876,771 Dunmire Mar. 10, 1959 FOREIGN PATENTS 733,993 Germany Apr. 7, 1943
US797194A 1959-03-04 1959-03-04 Self-generating pressure device for infusion administration systems Expired - Lifetime US3023750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US797194A US3023750A (en) 1959-03-04 1959-03-04 Self-generating pressure device for infusion administration systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US797194A US3023750A (en) 1959-03-04 1959-03-04 Self-generating pressure device for infusion administration systems

Publications (1)

Publication Number Publication Date
US3023750A true US3023750A (en) 1962-03-06

Family

ID=25170170

Family Applications (1)

Application Number Title Priority Date Filing Date
US797194A Expired - Lifetime US3023750A (en) 1959-03-04 1959-03-04 Self-generating pressure device for infusion administration systems

Country Status (1)

Country Link
US (1) US3023750A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086525A (en) * 1961-04-21 1963-04-23 John G Whitcomb Device for intra-cavitary infusion of local anesthetic agent or other medicinal solutions
US3152592A (en) * 1961-09-13 1964-10-13 Frederic E B Foley Self-inflating bag catheter
US3308818A (en) * 1964-07-24 1967-03-14 Eugene V Rutkowski Injection cartridge
US3373744A (en) * 1965-04-02 1968-03-19 Dynapower Systems Corp Of Cali Body cavity irrigating apparatus having a medicament additive chamber with means to induce a mixing bubble
US3375824A (en) * 1965-07-08 1968-04-02 Air Force Usa Self-contained plasma administration pack
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device
FR2091189A5 (en) * 1970-05-18 1972-01-14 Regents University Minne
US3726276A (en) * 1971-03-22 1973-04-10 Trionics Inc Disposable syringe
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
US3739947A (en) * 1969-08-01 1973-06-19 E Baumann Storing and mixing receptacle
US3814097A (en) * 1972-02-14 1974-06-04 Ici Ltd Dressing
DE2308315A1 (en) * 1969-12-04 1974-08-29 Ellis M Reyner PRESSURE TANK IMPROVEMENTS
US3833013A (en) * 1972-04-06 1974-09-03 Baxter Laboratories Inc Self-valving fluid reservoir and bubble trap
US3840009A (en) * 1971-12-27 1974-10-08 Alza Corp Self-powered vapor pressure delivery device
US3894538A (en) * 1972-08-10 1975-07-15 Siemens Ag Device for supplying medicines
US3949911A (en) * 1973-05-07 1976-04-13 Societe Anonyme Dite: L'oreal Pressurizable container by heat activation
US4077405A (en) * 1975-03-26 1978-03-07 Siemens Aktiengesellschaft Apparatus for infusing liquids into human or animal bodies
US4203441A (en) * 1978-12-18 1980-05-20 Alza Corporation Osmotically triggered device with gas generating means
US4259952A (en) * 1978-06-22 1981-04-07 Avoy Donald R Blood diluting method and apparatus
US4376500A (en) * 1980-07-25 1983-03-15 Enviro-Spray Systems, Inc. Expandable bag
US4379453A (en) * 1978-12-28 1983-04-12 Baron Howard C Infusion system with self-generating pressure assembly
EP0077189A1 (en) * 1981-10-09 1983-04-20 Biofusion (Proprietary) Limited An infusion unit
JPS5892361A (en) * 1981-11-26 1983-06-01 日機装株式会社 Liquid transporting method
US4468220A (en) * 1982-04-05 1984-08-28 Milliken Research Corporation Low flow constant rate pump
US4491250A (en) * 1982-07-23 1985-01-01 Grow Group, Inc. Pressurized dispensing pouch
US4510734A (en) * 1980-07-25 1985-04-16 Enviro-Spray Systems Incorporated Expandable bag and method of manufacture
US4513884A (en) * 1982-04-05 1985-04-30 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4553685A (en) * 1982-04-05 1985-11-19 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4640445A (en) * 1983-12-22 1987-02-03 Nikkiso Co., Ltd. Portable and wearable injector of mini size
USRE32383E (en) * 1980-07-25 1987-03-31 Enviro-Spray Systems Incorporated Expandable bag and method of manufacture
US4718893A (en) * 1986-02-03 1988-01-12 University Of Minnesota Pressure regulated implantable infusion pump
US4772263A (en) * 1986-02-03 1988-09-20 Regents Of The University Of Minnesota Spring driven infusion pump
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5009340A (en) * 1987-10-30 1991-04-23 L'oreal Packaging container using a system of fermentation to produce a propulsive gas
US5263929A (en) * 1991-08-28 1993-11-23 Normothermic Technologies, Inc. Portable fluid administration container with integral heat exchanger
WO1994010065A1 (en) * 1992-10-30 1994-05-11 Quoin Industrial, Inc. Pressure activation device
US5318540A (en) * 1990-04-02 1994-06-07 Pharmetrix Corporation Controlled release infusion device
WO1995004691A1 (en) * 1993-08-06 1995-02-16 River Medical, Inc. Liquid delivery device
US5398851A (en) * 1993-08-06 1995-03-21 River Medical, Inc. Liquid delivery device
US5398850A (en) * 1993-08-06 1995-03-21 River Medical, Inc. Gas delivery apparatus for infusion
US5425706A (en) * 1989-02-24 1995-06-20 S. I. Scientific Innovations Ltd. Dispensing device particularly useful for dispensing nutritional liquids
US5492534A (en) * 1990-04-02 1996-02-20 Pharmetrix Corporation Controlled release portable pump
US5571261A (en) * 1993-08-06 1996-11-05 River Medical, Inc Liquid delivery device
US5578005A (en) * 1993-08-06 1996-11-26 River Medical, Inc. Apparatus and methods for multiple fluid infusion
US5700245A (en) * 1995-07-13 1997-12-23 Winfield Medical Apparatus for the generation of gas pressure for controlled fluid delivery
US5738657A (en) * 1992-06-15 1998-04-14 Abbott Laboratories Ambulatory energized container system
WO1998053866A1 (en) 1997-05-28 1998-12-03 Apex Medical Technologies, Inc. Controlled gas generation for gas-driven infusion devices
US6056724A (en) * 1997-01-06 2000-05-02 Medex Device for injection of medical liquid
US6458102B1 (en) * 1999-05-28 2002-10-01 Medtronic Minimed, Inc. External gas powered programmable infusion device
US20070250008A1 (en) * 2006-04-20 2007-10-25 Gelblum Eugene A Fluid injection apparatus and adaptor pump therefor
US20100008795A1 (en) * 2008-01-25 2010-01-14 Diperna Paul M Two chamber pumps and related methods
US20110152824A1 (en) * 2009-07-30 2011-06-23 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US20120043352A1 (en) * 2009-04-15 2012-02-23 Jan Norager Rasmussen method and a system for pressurising and dispensing fluid products stored in a bottle, can, container or similar device
US20150096358A1 (en) * 2013-10-08 2015-04-09 David Putnam Filter-Cartridge Based Fluid-Sample Preparation and Assay System
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US20160331893A1 (en) * 2015-05-14 2016-11-17 Carefusion 303, Inc. Priming apparatus and method
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10258736B2 (en) 2012-05-17 2019-04-16 Tandem Diabetes Care, Inc. Systems including vial adapter for fluid transfer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US921130A (en) * 1908-05-02 1909-05-11 Benjamin F Lockwood Syringe.
US2074223A (en) * 1935-11-05 1937-03-16 Fred T Horiuchi Blood transfusion apparatus
DE733993C (en) * 1938-10-27 1943-04-07 Robert Hilgenberg Injection ampoule
US2409734A (en) * 1941-09-20 1946-10-22 Swiss Firm Of G Laubscher & Co Instrument for blood transfusion
US2615447A (en) * 1951-09-20 1952-10-28 Milton J Cohen Applicator for wax and waxlike substances
US2725056A (en) * 1954-10-26 1955-11-29 Joseph A Rosenberg Transfusion apparatus
US2794437A (en) * 1954-06-01 1957-06-04 Joseph A Rosenberg Sealed package
US2815152A (en) * 1949-10-07 1957-12-03 Lindley E Mills Dispensing package and method
US2847007A (en) * 1954-07-19 1958-08-12 Fox Dorothy Brown Fluid handling unit and apparatus
US2876771A (en) * 1951-09-28 1959-03-10 Dunmire Russell Paul Hypodermic syringes
US2876768A (en) * 1952-12-26 1959-03-10 Howard C Schultz Pressure-vacuum clysis unit

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US921130A (en) * 1908-05-02 1909-05-11 Benjamin F Lockwood Syringe.
US2074223A (en) * 1935-11-05 1937-03-16 Fred T Horiuchi Blood transfusion apparatus
DE733993C (en) * 1938-10-27 1943-04-07 Robert Hilgenberg Injection ampoule
US2409734A (en) * 1941-09-20 1946-10-22 Swiss Firm Of G Laubscher & Co Instrument for blood transfusion
US2815152A (en) * 1949-10-07 1957-12-03 Lindley E Mills Dispensing package and method
US2615447A (en) * 1951-09-20 1952-10-28 Milton J Cohen Applicator for wax and waxlike substances
US2876771A (en) * 1951-09-28 1959-03-10 Dunmire Russell Paul Hypodermic syringes
US2876768A (en) * 1952-12-26 1959-03-10 Howard C Schultz Pressure-vacuum clysis unit
US2794437A (en) * 1954-06-01 1957-06-04 Joseph A Rosenberg Sealed package
US2847007A (en) * 1954-07-19 1958-08-12 Fox Dorothy Brown Fluid handling unit and apparatus
US2725056A (en) * 1954-10-26 1955-11-29 Joseph A Rosenberg Transfusion apparatus

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3086525A (en) * 1961-04-21 1963-04-23 John G Whitcomb Device for intra-cavitary infusion of local anesthetic agent or other medicinal solutions
US3152592A (en) * 1961-09-13 1964-10-13 Frederic E B Foley Self-inflating bag catheter
US3308818A (en) * 1964-07-24 1967-03-14 Eugene V Rutkowski Injection cartridge
US3373744A (en) * 1965-04-02 1968-03-19 Dynapower Systems Corp Of Cali Body cavity irrigating apparatus having a medicament additive chamber with means to induce a mixing bubble
US3375824A (en) * 1965-07-08 1968-04-02 Air Force Usa Self-contained plasma administration pack
US3739947A (en) * 1969-08-01 1973-06-19 E Baumann Storing and mixing receptacle
DE2308315A1 (en) * 1969-12-04 1974-08-29 Ellis M Reyner PRESSURE TANK IMPROVEMENTS
US3604417A (en) * 1970-03-31 1971-09-14 Wayne Henry Linkenheimer Osmotic fluid reservoir for osmotically activated long-term continuous injector device
US3731681A (en) * 1970-05-18 1973-05-08 Univ Minnesota Implantable indusion pump
FR2091189A5 (en) * 1970-05-18 1972-01-14 Regents University Minne
US3726276A (en) * 1971-03-22 1973-04-10 Trionics Inc Disposable syringe
US3840009A (en) * 1971-12-27 1974-10-08 Alza Corp Self-powered vapor pressure delivery device
US3814097A (en) * 1972-02-14 1974-06-04 Ici Ltd Dressing
US3833013A (en) * 1972-04-06 1974-09-03 Baxter Laboratories Inc Self-valving fluid reservoir and bubble trap
US3894538A (en) * 1972-08-10 1975-07-15 Siemens Ag Device for supplying medicines
US3949911A (en) * 1973-05-07 1976-04-13 Societe Anonyme Dite: L'oreal Pressurizable container by heat activation
US4077405A (en) * 1975-03-26 1978-03-07 Siemens Aktiengesellschaft Apparatus for infusing liquids into human or animal bodies
US4259952A (en) * 1978-06-22 1981-04-07 Avoy Donald R Blood diluting method and apparatus
US4203441A (en) * 1978-12-18 1980-05-20 Alza Corporation Osmotically triggered device with gas generating means
US4379453A (en) * 1978-12-28 1983-04-12 Baron Howard C Infusion system with self-generating pressure assembly
US4376500A (en) * 1980-07-25 1983-03-15 Enviro-Spray Systems, Inc. Expandable bag
US4510734A (en) * 1980-07-25 1985-04-16 Enviro-Spray Systems Incorporated Expandable bag and method of manufacture
USRE32383E (en) * 1980-07-25 1987-03-31 Enviro-Spray Systems Incorporated Expandable bag and method of manufacture
EP0077189A1 (en) * 1981-10-09 1983-04-20 Biofusion (Proprietary) Limited An infusion unit
JPS5892361A (en) * 1981-11-26 1983-06-01 日機装株式会社 Liquid transporting method
US4468220A (en) * 1982-04-05 1984-08-28 Milliken Research Corporation Low flow constant rate pump
US4513884A (en) * 1982-04-05 1985-04-30 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4553685A (en) * 1982-04-05 1985-11-19 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4491250A (en) * 1982-07-23 1985-01-01 Grow Group, Inc. Pressurized dispensing pouch
US4640445A (en) * 1983-12-22 1987-02-03 Nikkiso Co., Ltd. Portable and wearable injector of mini size
US4718893A (en) * 1986-02-03 1988-01-12 University Of Minnesota Pressure regulated implantable infusion pump
US4772263A (en) * 1986-02-03 1988-09-20 Regents Of The University Of Minnesota Spring driven infusion pump
US5009340A (en) * 1987-10-30 1991-04-23 L'oreal Packaging container using a system of fermentation to produce a propulsive gas
US5054651A (en) * 1987-10-30 1991-10-08 L'oreal Method of packaging under pressure of a fluid, using a system of fermentation creating a propulsive gas
US4968301A (en) * 1989-02-02 1990-11-06 Imed Corporation Disposable infusion device
US5425706A (en) * 1989-02-24 1995-06-20 S. I. Scientific Innovations Ltd. Dispensing device particularly useful for dispensing nutritional liquids
US5318540A (en) * 1990-04-02 1994-06-07 Pharmetrix Corporation Controlled release infusion device
WO1995015191A1 (en) * 1990-04-02 1995-06-08 Flora Inc. Controlled release infusion device
US5492534A (en) * 1990-04-02 1996-02-20 Pharmetrix Corporation Controlled release portable pump
US5263929A (en) * 1991-08-28 1993-11-23 Normothermic Technologies, Inc. Portable fluid administration container with integral heat exchanger
US5738657A (en) * 1992-06-15 1998-04-14 Abbott Laboratories Ambulatory energized container system
US5333763A (en) * 1992-10-30 1994-08-02 Quoin Industrial Inc. Pressure activation device
AU680454B2 (en) * 1992-10-30 1997-07-31 Quoin Industrial, Inc. Pressure activation device
WO1994010065A1 (en) * 1992-10-30 1994-05-11 Quoin Industrial, Inc. Pressure activation device
US5558255A (en) * 1993-08-06 1996-09-24 River Medical, Inc. Liquid delivery device
US5398850A (en) * 1993-08-06 1995-03-21 River Medical, Inc. Gas delivery apparatus for infusion
US5571261A (en) * 1993-08-06 1996-11-05 River Medical, Inc Liquid delivery device
US5578005A (en) * 1993-08-06 1996-11-26 River Medical, Inc. Apparatus and methods for multiple fluid infusion
US5588556A (en) * 1993-08-06 1996-12-31 River Medical, Inc. Method for generating gas to deliver liquid from a container
WO1995004691A1 (en) * 1993-08-06 1995-02-16 River Medical, Inc. Liquid delivery device
US5398851A (en) * 1993-08-06 1995-03-21 River Medical, Inc. Liquid delivery device
US5553741A (en) * 1993-08-06 1996-09-10 River Medical, Inc. Liquid delivery device
US5700245A (en) * 1995-07-13 1997-12-23 Winfield Medical Apparatus for the generation of gas pressure for controlled fluid delivery
US6056724A (en) * 1997-01-06 2000-05-02 Medex Device for injection of medical liquid
WO1998053866A1 (en) 1997-05-28 1998-12-03 Apex Medical Technologies, Inc. Controlled gas generation for gas-driven infusion devices
US6458102B1 (en) * 1999-05-28 2002-10-01 Medtronic Minimed, Inc. External gas powered programmable infusion device
US20070250008A1 (en) * 2006-04-20 2007-10-25 Gelblum Eugene A Fluid injection apparatus and adaptor pump therefor
US20100008795A1 (en) * 2008-01-25 2010-01-14 Diperna Paul M Two chamber pumps and related methods
US8986253B2 (en) * 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US20120043352A1 (en) * 2009-04-15 2012-02-23 Jan Norager Rasmussen method and a system for pressurising and dispensing fluid products stored in a bottle, can, container or similar device
US9114971B2 (en) * 2009-04-15 2015-08-25 Carlsberg Breweries A/S Method and a system for pressurising and dispensing fluid products stored in a bottle, can, container or similar device
US20110152824A1 (en) * 2009-07-30 2011-06-23 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US11285263B2 (en) 2009-07-30 2022-03-29 Tandem Diabetes Care, Inc. Infusion pump systems and methods
US8758323B2 (en) 2009-07-30 2014-06-24 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8926561B2 (en) 2009-07-30 2015-01-06 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9211377B2 (en) 2009-07-30 2015-12-15 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US11135362B2 (en) 2009-07-30 2021-10-05 Tandem Diabetes Care, Inc. Infusion pump systems and methods
US10258736B2 (en) 2012-05-17 2019-04-16 Tandem Diabetes Care, Inc. Systems including vial adapter for fluid transfer
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US10495555B2 (en) * 2013-10-08 2019-12-03 David Putnam Filter-cartridge based fluid-sample preparation and assay system
US20150096358A1 (en) * 2013-10-08 2015-04-09 David Putnam Filter-Cartridge Based Fluid-Sample Preparation and Assay System
US10413662B2 (en) * 2015-05-14 2019-09-17 Carefusion 303, Inc. Priming apparatus and method
US20160331893A1 (en) * 2015-05-14 2016-11-17 Carefusion 303, Inc. Priming apparatus and method
US11419981B2 (en) 2015-05-14 2022-08-23 Carefusion 303, Inc. Priming apparatus and method
US11944782B2 (en) 2015-05-14 2024-04-02 Carefusion 303, Inc. Priming apparatus and method

Similar Documents

Publication Publication Date Title
US3023750A (en) Self-generating pressure device for infusion administration systems
US4379453A (en) Infusion system with self-generating pressure assembly
US3001525A (en) Parenteral equipment
US5553741A (en) Liquid delivery device
US3872867A (en) Wet-dry additive assembly
US3788369A (en) Apparatus for transferring liquid between a container and a flexible bag
US4114615A (en) Aerosol inhalation device
KR100262292B1 (en) Disposable dispenser for drugs
US3064652A (en) Transfusion equipment
US4270533A (en) Multiple chamber container for delivering liquid under pressure
US3895741A (en) Intravenous fluids administration apparatus
AU700372B2 (en) Apparatus and methods for multiple fluid infusion
US4468220A (en) Low flow constant rate pump
US2663298A (en) Apparatus and method for administering parenteral solutions
US5810202A (en) Disposable self-dispensing pressurized package for delivery of sterile fluids and solutions
US2698619A (en) Flexible bag having self-sealing entryway
US3854484A (en) Endotracheal tube with liquid fillable cuff
US3857392A (en) Intravenous container with dislodgeable septum and dislodging piercer
US5257986A (en) Container for the separate sterile storage of at least two substances and for mixing said substances
EP0711243B1 (en) Liquid delivery device
US5571261A (en) Liquid delivery device
US3375824A (en) Self-contained plasma administration pack
US3380449A (en) Cartridge with burstable seal
US4872872A (en) Medicament container/dispenser assembly
US3543753A (en) Intra-venous infusion device