US20140350659A1 - Biodegradable endoprostheses and methods for their fabrication - Google Patents

Biodegradable endoprostheses and methods for their fabrication Download PDF

Info

Publication number
US20140350659A1
US20140350659A1 US14/450,137 US201414450137A US2014350659A1 US 20140350659 A1 US20140350659 A1 US 20140350659A1 US 201414450137 A US201414450137 A US 201414450137A US 2014350659 A1 US2014350659 A1 US 2014350659A1
Authority
US
United States
Prior art keywords
stent
biodegradable
polymer
poly
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/450,137
Inventor
Xiaoxia Zheng
John Yan
Vinayak Bhat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elixir Medical Corp
Original Assignee
Elixir Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39636746&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140350659(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Elixir Medical Corp filed Critical Elixir Medical Corp
Priority to US14/450,137 priority Critical patent/US20140350659A1/en
Publication of US20140350659A1 publication Critical patent/US20140350659A1/en
Assigned to ELIXIR MEDICAL CORPORATION reassignment ELIXIR MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BHAT, VINAYAK, YAN, JOHN, ZHENG, XIAOXIA
Priority to US14/945,253 priority patent/US20160067389A1/en
Assigned to ELIXIR MEDICAL CORPORATION reassignment ELIXIR MEDICAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELIXIR MEDICAL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/825Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having longitudinal struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article

Definitions

  • the present invention relates generally to medical devices and methods for their fabrication.
  • the present invention relates to the fabrication of biodegradable endoprostheses, such as stents, having enhanced strength and controlled persistence after implantation.
  • Stents are generally tubular-shaped devices which function to hold open or reinforce a segment of a blood vessel or other body lumen, such as a coronary artery, carotid artery, saphenous vein graft, or femoral artery. They also are suitable to support and hold back a dissected arterial lining that could occlude the body lumen, to stabilize plaque, or to support bioprosthetic valves. Stents can be formed from various materials, particularly polymeric and/or metallic materials, and may be non-degradable, biodegradable, or be formed from both degradable and non-degradable components. Stents are typically delivered to the target area within the body lumen using a catheter.
  • the stent With balloon-expandable stents, the stent is mounted to a balloon catheter, navigated to the appropriate area, and the stent is expanded by inflating the balloon. A self-expanding stent is delivered to the target area and released, expanding to the required diameter to treat the disease. Stents may also elute various drugs and pharmacological agents.
  • biodegradable stents and other endoprostheses are usually formed from polymers which degrade by hydrolysis and other reaction mechanisms in the vascular or other luminal environment over time.
  • endoprosthesis usually formed from polymers which degrade by hydrolysis and other reaction mechanisms in the vascular or other luminal environment over time.
  • complete degradation will be desired in less than two years, often less than one year, and frequently in a matter of months after implantation.
  • Many biodegradable endoprostheses are persistent for longer than needed, often remaining in place long after the supporting or drug delivery function has ended.
  • the extended persistence of many biodegradable endoprostheses often results from a desire to enhance their strength.
  • the polymer construction materials are often strengthened, such as by incorporating materials having a higher crystallinity, so that they provide desired support but take longer to degrade than would otherwise be desirable.
  • endoprostheses and methods for their fabrication, where the endoprostheses have a controlled strength and persistence.
  • the present invention provides improved biodegradable endoprostheses and methods for their fabrication.
  • the endoprostheses are formed from an amorphous, biodegradable polymer.
  • amorphous polymers is desirable since they provide relatively short periods of biodegradation, usually less than two years, often less than one year, frequently less than nine months, and sometimes shorter than six months, or even shorter.
  • the present invention relies on modifying the amorphous polymers to introduce a desired degree of crystallinity. It has been found by inventors herein that introducing crystallinity into the amorphous polymer increases the strength of the polymer so that it is suitable for use as an endoprosthesis without substantially lengthening the period of biodegradation after implantation.
  • crystallinity of a highly amorphous polymer as defined will be below 10% prior to modification. After modification, the crystallinity will usually be increased by at least 20% of the original crystallinity of the amorphous material, preferably by at least 100% of the original crystallinity of the amorphous material and more preferably by at least 1000% of the original crystallinity of the amorphous material.
  • Presently preferred polymer materials will have a crystallinity in the range from 10% to 20% after modification as described herein below.
  • crystallinity refers to a degree of structural order or perfection within a polymer matrix.
  • Crystallinity can be measured by differential scanning calorimetry (Reading, M. et al, Measurement of crystallinity in polymers using modulated temperature differential scanning calorimetry, in Material Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, Riga, A. T. et al. Ed, (2001) pp. 17-31.
  • Methods according to the present invention for fabricating biodegradable prostheses comprise providing a tubular body having an initial diameter, where the tubular body is composed at least partially of a substantially amorphous, biodegradable polymer.
  • the tubular body is heated to a temperature above its glass transition temperature and below its melting point.
  • the tubular body is then cooled to increase the crystallinity of the polymer.
  • the tubular body may be patterned into a structure capable of radial contraction and expansion in order to provide a stent or other endoprosthesis.
  • the tubular body will be fabricated as part of the method. Fabrication can be by a variety of conventional processes, such as extrusion, molding, dipping, and the like.
  • a preferred formation process comprises spraying a polymer dissolved in a solvent onto a cylindrical mandrel or other structure.
  • additives such as strength-enhancing materials, drugs, or the like, may be dissolved in the solvent together with the polymer so that the materials are integrally or monolithically formed with the endoprosthesis tube.
  • the methods could rely on obtaining a pre-formed polymer tube from a supplier or other outside source.
  • the polymeric tubular body is usually formed as a substantially continuous cylinder free from holes or other discontinuities.
  • the tubular body typically has an outside diameter in the range from 2 mm to 10 mm, a thickness in the range from 0.01 mm to 0.5 mm, and may be cut into lengths suitable for individual endoprostheses, typically in the range from 5 mm to 40 mm.
  • the tubular bodies may be formed from any amorphous polymer having desired degradation characteristics where the polymer may be modified to have the desired strength characteristics in accordance with the methods of the present invention.
  • exemplary amorphous polymers include poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like.
  • a particularly preferred polymer comprises a copolymer of L-lactide and glycolide, preferably with a weight ratio of 85% L-lactide to 15% glycolide.
  • the heating segment of the annealing process will typically be carried out for a period of from 1 minute to 3 hours, and the cooling will be typically to a temperature at or below ambient. Other suitable temperatures and times, however, are described in the Detailed Description of the Invention, below.
  • the tubular body will be patterned into a suitable endoprosthesis structure, typically by laser cutting or other conventional processes.
  • the patterning will usually be performed after the annealing process, but could be performed before the annealing process.
  • the tubular body will be patterned into a suitable endoprosthesis structure, typically by laser cutting or other conventional processes. The patterning will usually be performed after the annealing process, but could be performed before the annealing process.
  • the percentage residual monomer or oligomer of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • the endoprosthesis pattern can be any suitable pattern of the type employed in conventional endoprostheses.
  • a variety of exemplary patterns are set forth in commonly owned, co-pending application Ser. No. 12/016,077, filed on Jan. 17, 2008, the full disclosure of which is incorporated herein by reference.
  • the present invention also provides biodegradable prostheses comprising a tubular body composed at least partially of a substantially amorphous, biodegradable polymer.
  • the biodegradable polymer will have been treated to produce spherulite crystals in the amorphous polymer to increase crystallinity by at least 20% of the original crytallinity.
  • Other preferred aspects of the prosthesis have been described above with respect to the methods of fabrication.
  • FIG. 1 is a block diagram illustrating the principal steps of the methods of the present invention.
  • FIGS. 2A and 2B illustrate an exemplary stent structure which may be fabricated using the methods of the present invention.
  • FIG. 3 illustrates the stent of FIGS. 2A and 2B in a radially expanded configuration.
  • FIG. 4 illustrates a stent pattern utilized in an Example of the present application.
  • Amorphous biodegradable polymers (less than 10% crystallinity) degrade faster than crystalline polymers but are weaker than crystalline polymers and hence are not typically suitable for vascular implants, such as stents, which need sufficient strength to provide support to the blood vessel.
  • the present invention provides for the modification of amorphous polymeric materials to make them suitable for use as biodegradable stents and other endoprostheses.
  • Amorphous materials suitable for modification according to the present invention include but are not limited to poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like.
  • Amorphous biodegradable polymers (less than 10% crystallinity) degrade faster than crystalline polymers but are weaker than crystalline polymers and hence are not typically suitable for vascular implants, such as stents, which need sufficient strength to provide support to the blood vessel.
  • the present invention provides for the modification of amorphous polymeric materials to make them suitable for use as biodegradable stents and other endoprostheses.
  • Amorphous materials suitable for modification according to the present invention include but are not limited to poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like.
  • the biodegradable polymeric stent material in this invention can be homopolymers, copolymers, graft polymer, block polymers, polymers with special functional groups or end groups such as acidic or hydrophilic type or a blend of two or more homopolymers or copolymers.
  • An exemplary stent is made from amorphous material of a copolymer of 85/15 Poly(L-Lactide-co-Glycolide) and processed to increase crystallinity by at least 20% of original crystallinity, preferably by at least 100%, more preferably by at least 1000% of original crystallinity
  • the biodegradable stent substantially degrades in less than 2 years, preferable less than 1 year, more preferable less than 9 months.
  • An exemplary stent is made from amorphous material of a copolymer of 85/15 Poly(L-Lactide-co-Glycolide) and processed to increase crystallinity by at least 20% of original crystallinity, preferably by at least 100%, more preferably by at least 1000% of original crystallinity
  • the biodegradable stent substantially degrades in less than 2 years, preferable less than 1 year, more preferable less than 9 months.
  • the biodegradable polymeric stent material includes, but is not limited to, polyesters, polyanhydrides, polyamides, polyurethanes, poly(ester urethane), polyureas, polyethers, polyalkylene carbonates, polyacrylic acids, polyamines, polyester amides, polyester amines, polyvinylacetate, polyethylene imine, polycyanoacrylates, polyphosphazenes, polyphosphates, polyphosphonates, polyurethanes, polyureas, polysulfonates, polysulfonamides, polylactides, polyglycolides, regenerated cellulose, or biopolymers or blends, block polymers, copolymers or combinations thereof.
  • the biodegradable polymeric stent material in this invention can be homopolymers, copolymers, graft polymer, block polymers, polymers with special functional groups or end groups such as acidic or hydrophilic type, or a blend of two or more homopolymers or copolymers.
  • the amorphous biodegradable polymeric material is processed to increase its crystallinity, Increased crystallinity may increase the strength, storage shelf life, and hydrolytic stability of the polymer stent material.
  • the process initiates and/or enhances crystallinity in the polymeric material by nucleating and/or growing small size spherulite crystals in the material. Since the amorphous regions of the modified polymer are preferentially broken down by hydrolysis or enzymatic degradation in biological environment, the modified amorphous biodegradable polymer has increased crystallinity and increased material strength post processing.
  • the increase in crystallinity can be achieved by ‘Modifications’ described in present invention which include at least one of heating, cooling, pressurizing, addition of additives, crosslinking and other processes.
  • the polymer material can be made into a tube by spraying, extrusion, molding, dipping or other process from a selected amorphous copolymer.
  • the amorphous polymer tubing is optionally vacuumed to at least ⁇ 25 in. Hg., annealed, and quenched to increase crystallinity.
  • the tube is vacuumed at or below 1 torr at ambient temperature to remove water and solvent. It is then annealed by heating to a temperature above the glass transitional temperature but below melting temperature of the polymer material.
  • the annealing temperature is at least 10.degree. C. higher than the glass transitional temperature (Tg), more preferably being at least 20.degree. C. higher, and still more preferably being at least 30.degree.
  • the annealing temperature is usually at least 5.degree. C. below the melting point (Tm), preferably being at least 20.degree. C. lower, and more preferably being at least 30.degree. C. lower than the Tm of the polymer material.
  • the annealing time is between 1 minute to 10 days, preferably from 30 minutes to 3 hours, and more preferably from 1.5 hours to 2.5 hours.
  • the annealed tube is quenched by fast cooling from the annealing temperature to a temperature at or below ambient temperature over a period from 1 second to 1 hour, preferably 1 minute to 30 minutes, and more preferably 5 minutes to 15 minutes.
  • the annealed tune is quenched by slow cooling from the annealing temperature to at or below ambient temperature within 1 hour to 24 hours, preferably 4 hours to 12 hours, and more preferably 6 hours to 10 hours.
  • the heat treated tube is cooled to a temperature below ambient temperature for a period from 1 minute to 96 hours, more preferably 24 hours to 72 hours, to stabilize the crystals and/or terminate crystallization.
  • This annealing and quenching process initiates and promotes nucleation of crystals in the polymer and increases the mechanical strength of the material.
  • the initial annealing temperature and the cooling rate can be controlled to optimize the size of the crystals and strength of the material.
  • the unannealed and/or annealed tube is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • the wet glass transition temperature of the biodegradable stent material is greater than 37° C., preferably greater than 45° C., more preferably greater than 65° C.
  • the stent or other endoprosthesis is patterned from a tube of the stent material in an “expanded” diameter and subsequently crimped to a smaller diameter and fitted onto a balloon of a delivery catheter.
  • the stent is patterned, typically by laser cutting, with the tubing diameter about 1 to 1.3 times, preferably 1.1 to 1.5 times, more preferably 1.15 to 1.25 times, larger the intended deployed diameter. For example, a stent cut at a 3.5 mm.times.18 mm outer diameter is crimped on a 3.0 mm.times.18 mm stent delivery catheter.
  • the unannealed and/or annealed stent is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • the stent material may lose some crystallinity during stent cutting.
  • the stent annealed after cutting and/or a second time to re-crystallize the polymer to a higher crystallinity.
  • the cut stent may be annealed a second time as generally described above. Annealing followed by cooling as described above can be repeated one or more times to further increase crystallinity.
  • the heat treated stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • the treated stent or other endoprosthesis can be crimped onto a delivery balloon using mechanical crimpers comprising of wedges such as crimpers from Machine Solutions, Fortimedix, or others.
  • the stent can also be crimped by placing the stent in a shrink tube and stretching the shrink tube slowly at a rate of 0.1 to 2 inches/minutes, more preferably 0.2 to 0.5 inches/minutes until the stent is crimped to the desired crimped diameter.
  • the stent is heated to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C.
  • the ability for the stent to remain the crimped diameter can further be improved by fixing the stent in the crimped diameter while exposing it to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C. below the Tg to Tg, and most preferably at the Tg of the stent material, for 1 minute to 24 hours, more preferably 15 minutes to 1 hour.
  • the stent After holding at this crimping temperature, it is preferred to fix the stent in the crimped diameter while at or below ambient temperatures until further processing (i.e., sterilization).
  • the stent can either be crimped while it is on the balloon of the stent delivery catheter or first crimped alone and then slipped onto the balloon of the catheter.
  • the crimped stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • the final crimped stent on the catheter is sterilized by 25 to 30 kGy dose of ebeam, typically with a single dose of 30 kGy or with multiple smaller doses (eg. 3.times.10 kGy).
  • the stent system is usually kept below ambient temperature before, during and/or after multiple smaller doses of sterilization.
  • the stent that has been packaged and sterilized can also be exposed to heat treatment like that described above.
  • the biodegradable polymer stent is heated at about the Tg of the biodegradable stent material during expansion of the stent. The temperature during expansion can range from 10.degree. C. above Tg to 10.degree. C. below Tg.
  • the processes provide means to minimize stent recoil to less than 10% after expansion from the crimped state to an expanded state.
  • Additives can be added to the endoprosthesis to affect strength, recoil, or degradation rate, or combinations thereof. Additives can also affect processing of biodegradable stent material, radiopacity or surface roughness or others. Additives can be biodegradable or non-biodegradable. The additives can be incorporated in to the biodegradable stent or polymer material by blending, extrusion, injection molding, coating, surface treatment, chemical treatment, mechanical treatment, stamping, or others or combinations thereof. The additives can be chemically modified prior to incorporation in to the biodegradable stent material.
  • the percentage in weight of the additives can range from 0.01% to 25%, preferably 0.1% to 10%, more preferably 1% to 5%.
  • the additive includes at least nanoclay, nanotubes, nanoparticles, exfoliates, fibers, whiskers, platelets, nanopowders, fullerenes, nanosperes, zeolites, polymers or others or combination thereof.
  • the stent material may include pharmacological agents, such as immunomodulators, anti-cancer, anti-proliferative, anti-inflammatory, antithrombotic, antiplatelet, antifungal, antidiabetic, antihyperlipidimia, antiangiogenic, angiogenic, antihypertensive, healing promoting drugs, or other therapeutic classes of drugs or combination thereof.
  • Illustrative immunomodulators agents include but are not limited to rapamycin, everolimus, ABT 578, AP20840, AP23841, AP23573, CCI-779, deuterated rapamycin, TAFA93, tacrolimus, cyclosporine, TKB662, myriocin, their analogues, pro-drug, metabolites, slats, or others or combination thereof.
  • Illustrative anticancer agents include acivicin, aclarubicin, acodazole, acronycine, adozelesin, alanosine, aldesleukin, allopurinol sodium, altretamine, aminoglutethimide, amonafide, ampligen, amsacrine, androgens, anguidine, aphidicolin glycinate, asaley, asparaginase, 5-azacitidine, azathioprine, Bacillus calmette-guerin (BCG), Baker's Antifol (soluble), beta-2′-deoxythioguanosine, bisantrene hcl, bleomycin sulfate, busulfan, buthionine sulfoximine, BWA 773U82, BW 502U83.HCl, BW 7U85 mesylate, ceracemide, carbetimer, carboplatin, carmustine, chlorambucil,
  • nanoclay examples includes Montmorillonite, Smectites, Talc, or platelet-shaped particles, modified clay or others or combination thereof.
  • Clays can be intercalated or exfoliated.
  • Example of clays include Cloisite NA, 93A, 30B, 25A, 15A, 10A or others or combination thereof.
  • fibers examples include cellulose fibers such as Linen, cotton, rayon, acetate; proteins fibers such as wool or silk; plant fiber; glass fiber; carbon fiber; metallic fibers; ceramic fibers; absorbable fibers such as polyglycolic acid, polylactic acid, polyglyconate or others.
  • the additive can induce degradation of non-degradable polymeric stent material.
  • pro-degradant such as D2W (from Symphony Plastic Technologies)
  • photodegradative additives such as UV-H (from Willow Ridge Plastics)
  • oxidative additives such as PDQ (from Willow Ridge Plastics)
  • TDPA TDPA
  • non degradable stent materials such as polyethylene, polypropylene, polyethylene terephthalate or others.
  • additives can be incorporated into the biodegradable polymer stent material to resist oxidative degradation, photodegradation, high energy exposure degradation, thermal degradation, hydrolytic degradation, acid buildup or other degradation means.
  • additives which resist degradation include antioxidants such as vitamin C, peroxides; stabilizers such as xanthum gum, succinoglycan, carrageenan, propylene glycol alginate; getters such as titanium containing beads, aluminium oxide; anhydrous calcium chloride, anhydrous sodium bicarbonate, anhydrous sodium sulphate, anhydrous magnesium sulphate.
  • whiskers examples include hydroxyapetite whiskers, tricalcium phosphate whiskers or others.
  • the additives includes at least modified starch, soybean, hyaluronic acid, hydroxyapatite, tricarbonate phosphate, anionic and cationic surfactants such as sodium docecyl sulphate, triethylene benzylammonium chloride, pro-degradant such as D2W (from Symphony Plastic Technologies), photodegradative additives such as UV-H (from Willow Ridge Plastics), oxidative additives such as PDQ (from Willow Ridge Plastics), TDPA, family of polylactic acid and its random or block copolymers or others.
  • pro-degradant such as D2W (from Symphony Plastic Technologies)
  • photodegradative additives such as UV-H (from Willow Ridge Plastics), oxidative additives such as PDQ (from Willow Ridge Plastics), TDPA, family of polylactic acid and its random or block copolymers or others.
  • the additives include electroactive or electrolyte polymers, hydroscopic polymers, dessicants, or others.
  • the additive is an oxidizer such an acids, perchlorates, nitrates, permanganates, salts or other or combination thereof.
  • the additive is a monomer of the biodegradable polymeric stent material.
  • glycolic acid is an additive to polyglycolic acid or its copolymer stent material.
  • the additive can be water repellent monomers, oligomers or polymers such as bees wax, low MW polyethylene or others.
  • the additive can be water attractant monomers, oligomers or polymers such as polyvinyl alcohol, polyethylene oxide, glycerol, caffeine, lidocaine or other.
  • the additive can affect crystallinity of the biodegradable polymeric stent material.
  • Example of additive of nanoclay to PLLA affects its crystallinity.
  • the stent material may include pharmacological agents, such as immunomodulators, anti-cancer, anti-proliferative, anti-inflammatory, antithrombotic, antiplatelet, antifungal, antidiabetic, antihyperlipidmia, antiangiogenic, angiogenic, antihypertensive, healing promoting drugs, or other therapeutic classes of drugs or combination thereof.
  • pharmacological agents such as immunomodulators, anti-cancer, anti-proliferative, anti-inflammatory, antithrombotic, antiplatelet, antifungal, antidiabetic, antihyperlipidmia, antiangiogenic, angiogenic, antihypertensive, healing promoting drugs, or other therapeutic classes of drugs or combination thereof.
  • Illustrative immunomodulators agents include but are not limited to rapamycin, everolimus, ABT 578, AP20840, AP23841, AP23573, CCI-779, deuterated rapamycin, TAFA93, tacrolimus, cyclosporine, TKB662, myriocin, their analogues, pro-drug, metabolites, salts, or others or combination thereof.
  • Illustrative anticancer agents include acivicin, aclarubicin, acodazole, acronycine, adozelesin, alanosine, aldesleukin, allopurinol sodium, altretamine, aminoglutethimide, amonafide, ampligen, amsacrine, androgens, anguidine, aphidicolin glycinate, asaley, asparaginase, 5-azacitidine, azathioprine, Bacillus calmette-guerin (BCG), Baker's Antifol (soluble), beta-2′-deoxythioguanosine, bisantrene HCl, bleomycin sulfate, busulfan, buthionine sulfoximine, BWA 773U82, BW 502U83.HCl, BW 7U85 mesylate, ceracemide, carbetimer, carboplatin, carmustine, chlorambucil, chlor
  • Illustrative antifungal agents include caspofungin, farnesylated dibenzodiazepinone, ECO-4601, fluconazole, and others.
  • Illustrative angiogenesis drugs include follistatin, leptin, midkine, angiogenin, angiopoietin-1, becaplermin, Regranex®, and others.
  • Illustrative anti-angiogenesis drugs include canstatin, angiostatin, endostatin, retinoids, tumistatin, vasculostatin, angioarrestin, vasostatin, bevacizumab, prinomastat, and others.
  • Illustrative antidiabetic drugs include metformin and others.
  • Illustrative anti-hypertension drugs include candesartan, diovan, diltiazem, atenolol, adalat and others.
  • Illustrative anti-ischemia drugs include ranolazine, isosorbide dinitrate, and others.
  • Illustrative antiinflammatory agents include classic non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin, diclofenac, indomethacin, sulindac, ketoprofen, flurbiprofen, ibuprofen, naproxen, piroxicam, tenoxicam, tolmetin, ketorolac, oxaprosin, mefenamic acid, fenoprofen, nabumetone (Relafen®), acetaminophen (Tylenol®), and others; COX-2 inhibitors, such as nimesulide, NS-398, flosulid, L-745337, celecoxib, rofecoxib, SC-57666, DuP-697, parecoxib sodium, JTE-522, valdecoxib, SC-58125, etoricoxib, RS-57067, L-748780, L-761066, APHS, etod
  • Analogs, derivatives, prodrugs, salts, or synthetic or biologic equivalents of these pharmaceutical agents can be released from the stents depending on the type of treatment needed, such as hyperproliferative diseases, stenosis, wound healing, cancer, aneurysm, diabetic disease, abdominal aortic aneurysm, angiogenesis, hypercalcemia, ischemia, fibrillation, arrhythmia or others.
  • the agents can be released from the implant using non-degradable, partially degradable or fully degradable coatings, or a combination thereof.
  • the agents can be incorporated as a matrix with the coating or applied on the stent and covered with the coating as a rate limiting barrier, or the agents can be directly coated onto the stent surface.
  • the solvent used to incorporate the agent and the coating on a stent can be an organic solvent such as dichloromethane, tetrahydrofuran, ethanol, or other solvents.
  • the solvent used to coat the agent and/or agent-polymer matrix does not affect the chemical or mechanical properties of the polymeric stent material.
  • supercritical fluids such as supercritical carbon dioxide is used as a carrier solvent for the agent and/or the polymer and coats the stent with the agent and/or agent-polymer matrix.
  • non-reactive gas such as carbon dioxide removes the need to use other organic solvents which can alter chemical and physical properties of the pharmacological agent.
  • the crystallinity of the pharmaceutical agent on the stent material is greater than 90%, preferably greater than 93%, more preferably greater than 95%.
  • the pharmacological agent can be incorporated in the biodegradable polymeric stent material and extruded into stent tubing prior to laser cutting of the stent from the tubes.
  • the agent is incorporated in a protective coating to prevent degradation of the agent during extrusion or laser cutting.
  • the rate of agent release can be configured to release the agent at certain times and for certain durations corresponding to the degradation rate of the stent material or biological response events within the stent material environment.
  • an anti-inflammatory, antiproliferative, or immunomodulator drug or a combination of these can be made to be released during the entire degradation period.
  • Multiple drugs can be released to match the degradation rate of the coating and/or degradation rate of the implant.
  • Antiplatelet or anti-thrombotic agents can be released in the initial phase and anti-inflammatory, antiproliferative or immunosuppressants can be released concurrently or at a later phase.
  • the biodegradable polymeric stent material can have increased crystallinity by cross-linking such as exposure to radiation such as gamma or ebeam.
  • the cumulative radiation dose can range from 1 kGray to 1000 KGray, preferably 5 to 100 KGray, more preferably 10 to 30 KGray.
  • An aspect of the invention provides for degradable materials having sufficient strength and low recoil for stent applications.
  • yield strength for the biodegradable polymeric stent material is at least 50% of ultimate strength, preferably at least 75% of ultimate strength, more preferably at least 90% of ultimate strength, in water at 37.degree. C.
  • the elastic modulus for the biodegradable metallic stent material is at least 50 GPa, preferably at least 100 GPa, more preferably at least 150 GPa.
  • the elastic modulus for the biodegradable polymeric stent material is at least 0.5 GPa, preferably at least 0.75 GPa, more preferably at least 1 GPa, in water at 37.degree. C.
  • the yield strain for the biodegradable polymeric stent material is at most 10%, preferably at most 5%, more preferably at most 3%, in water at 37.degree. C.
  • the plastic strain for the biodegradable polymeric stent material is at least 20%, preferably at least 30%, more preferably at least 40%, in water at 37.degree. C.
  • the elastic recovery of the strained biodegradable polymeric stent material is at most 15%, preferably at most 10%, more preferably at most 5%, in water at 37.degree. C.
  • the biodegradable stent material degrades substantially within 2 years, preferably within 1 year, more preferably within 9 months.
  • the expanded biodegradable stent in physiological conditions at least after 1 month retains at least 25%, preferably at least 40%, more preferably at least 70% of the strength or recoil.
  • the biodegradable polymeric stent materials degrades by at least bulk erosion, surface erosion, or combination thereof.
  • the biodegradable polymeric stent material degrades by at least hydrolytic degradation, enzymatic degradation, oxidative degradation, photo degradation, degradation under physiological environment or combination thereof.
  • the biodegradable polymeric stent material can have varying molecular architecture such as linear, branched, crosslinked, hyperbranched or dendritic.
  • the biodegradable polymeric stent material in this invention can range from 10 KDa to 10,000 KDa in molecular weight, preferably from 100 KDa to 1000 KDa, more preferably 300 KDa to 600 KDa.
  • the biodegradable polymeric stent material is a polymer with a molecular weight equal or greater than the threshold molecular weight of the polymer. In one embodiment, the biodegradable polymeric stent material with molecular weight equal to or greater than the threshold molecular weight provide strength greater than a biodegradable polymeric stent with molecular weight lower than the threshold molecular weight.
  • the biodegradable stent material has increased crystallinity by increasing orientation of polymer chains with in the biodegradable stent material in radial and/or longitudinal direction by drawing, pressurizing and/or heating the stent material.
  • drawing, pressurizing and/or heating the stent material occurs simultaneously or sequentially.
  • the biodegradable stent material is placed with at least one surface against a non deformable surface and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • the biodegradable stent material tube is placed within a larger diameter non deformable tube and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material tube is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • the biodegradable stent material has increased crystallinity by increasing the orientation of the polymer chains by at least heating the biodegradable stent material above its glass transition temperature (Tg) and below its melting temperature.
  • Tg glass transition temperature
  • the biodegradable stent material has increased crystallinity by heating the material to a temperature at least 10.degree. C. higher than its Tg, preferably at least 20.degree. C. higher, more preferably at least 30.degree. C. higher than the Tg of the biodegradable stent material.
  • biodegradable stent material has increased crystallinity after drawing, heat and/or pressurizing and annealing at elevated temperature with or without vacuum.
  • the annealing temperature is below the temperature used for orientation of the polymer chains of the biodegradable stent material. In another embodiment, the annealing temperature is at most 20.degree. C. below, preferably at most 15.degree. C. below, more preferably at most 10.degree. C. below the temperature for orientation of the polymer chains of the biodegradable stent material.
  • the biodegradable stent material after annealing is quenched below Tg of the biodegradable stent material, preferably at least 25.degree. C. below Tg, more preferably at least 50.degree. C. below Tg of the biodegradable stent material.
  • the biodegradable polymeric stent material has increased crystallinity by using a combination of solvents, with one solvent having solubility parameter with in 10% of the solubility parameter of the polymer and the second solvent having solubility parameter at least 10% different than the solubility parameter of the polymer in the solvent.
  • the biodegradable polymer stent material has a crystallinity of greater than 10%, preferably greater than 25%, more preferably greater than 50%.
  • the biodegradable polymer stent material has a crystallinity of greater than 20%, preferably greater than 40%, more preferably greater than 60%.
  • the invention also provides means to improve consistency of strength, recoil or degradation rate of a biodegradable polymer stent material
  • the percentage impurity of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • the percentage residual monomer or oligomer of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • the invention also provides means to improve shelf life of a biodegradable polymer stent material.
  • the shelf life of the biodegradable stent material is extended by packaging in an environment of at least low moisture, low oxygen, low UV, low temperature, nitrogen, vacuum or other, or a combination thereof.
  • a tube is made by spraying an amorphous copolymer poly(L-lactide-co-glycolide) with 85% lactide and 15% glycolide.
  • the polymer and rapamycin analog can be dissolved in a solvent and can be sprayed together to incorporate the rapamycin into the polymer stent.
  • a mandrel is placed underneath an ultrasonic spray nozzle (Micromist System with Ultrasonic Atomizing Nozzle Sprayer, Sono-Tek, NY) which is rotating at 80 rpm and move longitudinally at a rate of 0.050 inches/minutes.
  • An ultrasonic spray nozzle Melist System with Ultrasonic Atomizing Nozzle Sprayer, Sono-Tek, NY
  • the resulting tube has a thickness of 0.17 mm.
  • the tube is heated at 45.degree. C. for about 60 hours, annealed at 90.degree. C. for 2 hours, and cooled to ambient or room temperature with in 10 seconds.
  • the annealed tube is then cut with a UV laser to the design shown in FIG. 4 (shown in its crimped state).
  • the cut stent is annealed at 90.degree. C. and slowly cooled from the annealing temperature to ambient temperature within eight hours.
  • the stent delivery system is then packaged in a pouch and sterilized by gamma radiation.
  • the heat treated stent has higher radial strength than the non-treated stent (Table 1). TABLE-US-00001 TABLE 1 Comparison of Radial Strength of Treated and Non-treated Stent. No Heat Heat Type Treatment Treatment Radial Strength After Laser Cutting Stent 7 Psi 14 Psi Radial Strength After Crimping Stent 6 Psi 9 Psi Radial Strength After 30 kGy Ebeam Sterilization 3 Psi 8 Psi Radial Strength when expanded at Tg n/a 12.5 Psi.
  • methods according to the present invention initially provide for a tubular body composed of an amorphous polymer, where the tubular body may be formed by extrusion, molding, dipping, or the like, but is preferably formed by spraying onto a mandrel.
  • the tubular body is annealed to increased crystallinity and strength, usually by the heating and cooling processes described above.
  • the tubular body is then patterned to form a stent or other endoprosthesis, typically by laser cutting, usually after at least one annealing treatment.
  • the tubular body may be treated both before and after patterning, and may be treated by annealing more than once both before and after the patterning.
  • a stent 10 suitable for modification by the present invention has base pattern including a plurality of adjacent serpentine rings 12 joined by axial links 14 .
  • the stent 10 includes six adjacent serpentine rings 12 , where each ring includes six serpentine segments comprising a pair of axial struts 16 joined by a hinge-like crown 18 at one end.
  • the number of rings and segments may vary widely depending on the size of the desired size of the stent.
  • a supporting feature 20 is disposed between adjacent axial struts 16 and connected so that it will expand, usually elongate, circumferentially with the struts, as shown in FIG. 3 .
  • the supporting features 20 are in a generally closed U-shaped configuration prior to expansion, as shown in FIGS. 2A and 2B , and open into a shallow V-shape along with the opening of the axial struts 16 about the crowns 18 during radial expansion of the serpentine rings 12 , as shown in FIG. 3 .
  • Supporting features 20 enhance the hoop strength of the stent after radial expansion, help resist recoil after expansion is completed, and provide additional area for supporting the vascular or other luminal wall and optionally for delivering drugs into the luminal wall.

Abstract

Biodegradable endoprostheses are formed from amorphous polymers having desirable biodegradation characteristics. The strength of such amorphous polymers is enhanced by annealing to increase crystallinity without substantially increasing the biodegradation time.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/434,555 (Attorney Docket No. 32016-706.401), filed Mar. 29, 2012, which is a divisional of U.S. application Ser. No. 12/016,085 (Attorney Docket No. 32016-706.202, now U.S. Pat. No. 8,182,890), filed Jan. 17, 2008, which claims the benefit of Provisional Application No. 60/885,700 (Attorney Docket No. 32016-706.101), filed on Jan. 19, 2007, the full disclosures of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to medical devices and methods for their fabrication. In particular, the present invention relates to the fabrication of biodegradable endoprostheses, such as stents, having enhanced strength and controlled persistence after implantation.
  • Stents are generally tubular-shaped devices which function to hold open or reinforce a segment of a blood vessel or other body lumen, such as a coronary artery, carotid artery, saphenous vein graft, or femoral artery. They also are suitable to support and hold back a dissected arterial lining that could occlude the body lumen, to stabilize plaque, or to support bioprosthetic valves. Stents can be formed from various materials, particularly polymeric and/or metallic materials, and may be non-degradable, biodegradable, or be formed from both degradable and non-degradable components. Stents are typically delivered to the target area within the body lumen using a catheter. With balloon-expandable stents, the stent is mounted to a balloon catheter, navigated to the appropriate area, and the stent is expanded by inflating the balloon. A self-expanding stent is delivered to the target area and released, expanding to the required diameter to treat the disease. Stents may also elute various drugs and pharmacological agents.
  • Of particular interest to the present invention, biodegradable stents and other endoprostheses are usually formed from polymers which degrade by hydrolysis and other reaction mechanisms in the vascular or other luminal environment over time. Usually, it will be desirable to have the endoprosthesis completely degrade after it has served its needed supporting function in the body lumen. Typically, complete degradation will be desired in less than two years, often less than one year, and frequently in a matter of months after implantation. Many biodegradable endoprostheses, however, are persistent for longer than needed, often remaining in place long after the supporting or drug delivery function has ended. The extended persistence of many biodegradable endoprostheses often results from a desire to enhance their strength. The polymer construction materials are often strengthened, such as by incorporating materials having a higher crystallinity, so that they provide desired support but take longer to degrade than would otherwise be desirable.
  • For these reasons, it would be desirable to provide improved endoprostheses and methods for their fabrication, where the endoprostheses have a controlled strength and persistence. In particular, it would be desirable to be able to enhance the strength of certain biodegradable materials so that they have an improved strength when incorporated into stents and other endoprostheses without substantially lengthening their degradation periods. Moreover, it would be desirable to allow for control of the degradation period in the fabrication process so that an endoprosthesis can be made with different degradation periods while retaining an enhanced strength. At least some of these objectives will be met by the inventions described below.
  • 2. Description of the Background Art
  • Heat annealing and other treatments of filaments and other components used in stents are described in U.S. Pat. No. 5,980,564, U.S. Pat. No. 6,245,103, and U.S. Pat. No. 6,626,939. Heat treatment of polymeric stent coatings is described in commonly owned, copending application no. PCT/US07/81996, which designates the United States.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides improved biodegradable endoprostheses and methods for their fabrication. The endoprostheses are formed from an amorphous, biodegradable polymer. The use of amorphous polymers is desirable since they provide relatively short periods of biodegradation, usually less than two years, often less than one year, frequently less than nine months, and sometimes shorter than six months, or even shorter. The present invention relies on modifying the amorphous polymers to introduce a desired degree of crystallinity. It has been found by inventors herein that introducing crystallinity into the amorphous polymer increases the strength of the polymer so that it is suitable for use as an endoprosthesis without substantially lengthening the period of biodegradation after implantation.
  • The crystallinity of a highly amorphous polymer as defined will be below 10% prior to modification. After modification, the crystallinity will usually be increased by at least 20% of the original crystallinity of the amorphous material, preferably by at least 100% of the original crystallinity of the amorphous material and more preferably by at least 1000% of the original crystallinity of the amorphous material. Presently preferred polymer materials will have a crystallinity in the range from 10% to 20% after modification as described herein below. As used herein, “crystallinity” refers to a degree of structural order or perfection within a polymer matrix.
  • Crystallinity can be measured by differential scanning calorimetry (Reading, M. et al, Measurement of crystallinity in polymers using modulated temperature differential scanning calorimetry, in Material Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, Riga, A. T. et al. Ed, (2001) pp. 17-31.
  • Methods according to the present invention for fabricating biodegradable prostheses comprise providing a tubular body having an initial diameter, where the tubular body is composed at least partially of a substantially amorphous, biodegradable polymer. The tubular body is heated to a temperature above its glass transition temperature and below its melting point. The tubular body is then cooled to increase the crystallinity of the polymer. Either before or after this annealing process, the tubular body may be patterned into a structure capable of radial contraction and expansion in order to provide a stent or other endoprosthesis.
  • Usually, the tubular body will be fabricated as part of the method. Fabrication can be by a variety of conventional processes, such as extrusion, molding, dipping, and the like. A preferred formation process comprises spraying a polymer dissolved in a solvent onto a cylindrical mandrel or other structure. Optionally, additives, such as strength-enhancing materials, drugs, or the like, may be dissolved in the solvent together with the polymer so that the materials are integrally or monolithically formed with the endoprosthesis tube. Alternatively, the methods could rely on obtaining a pre-formed polymer tube from a supplier or other outside source.
  • The polymeric tubular body is usually formed as a substantially continuous cylinder free from holes or other discontinuities. The tubular body typically has an outside diameter in the range from 2 mm to 10 mm, a thickness in the range from 0.01 mm to 0.5 mm, and may be cut into lengths suitable for individual endoprostheses, typically in the range from 5 mm to 40 mm.
  • The tubular bodies may be formed from any amorphous polymer having desired degradation characteristics where the polymer may be modified to have the desired strength characteristics in accordance with the methods of the present invention. Exemplary amorphous polymers include poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like. A particularly preferred polymer comprises a copolymer of L-lactide and glycolide, preferably with a weight ratio of 85% L-lactide to 15% glycolide.
  • The heating segment of the annealing process will typically be carried out for a period of from 1 minute to 3 hours, and the cooling will be typically to a temperature at or below ambient. Other suitable temperatures and times, however, are described in the Detailed Description of the Invention, below.
  • The tubular body will be patterned into a suitable endoprosthesis structure, typically by laser cutting or other conventional processes. The patterning will usually be performed after the annealing process, but could be performed before the annealing process. As a further alternative, it may be desirable to anneal the tubular body both before and after the patterning, and in some instances additional annealing steps may be performed so that the stent could be subjected to three, four, or even more annealing steps during the fabrication process. The tubular body will be patterned into a suitable endoprosthesis structure, typically by laser cutting or other conventional processes. The patterning will usually be performed after the annealing process, but could be performed before the annealing process. As a further alternative, it may be desirable to anneal the tubular body both before and after the patterning, and in some instances additional annealing steps may be performed so that the stent could be subjected to three, four, or even more annealing steps during the fabrication process. In another embodiment, the percentage residual monomer or oligomer of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • The endoprosthesis pattern can be any suitable pattern of the type employed in conventional endoprostheses. A variety of exemplary patterns are set forth in commonly owned, co-pending application Ser. No. 12/016,077, filed on Jan. 17, 2008, the full disclosure of which is incorporated herein by reference.
  • In addition to the fabrication methods, the present invention also provides biodegradable prostheses comprising a tubular body composed at least partially of a substantially amorphous, biodegradable polymer. The biodegradable polymer will have been treated to produce spherulite crystals in the amorphous polymer to increase crystallinity by at least 20% of the original crytallinity. Other preferred aspects of the prosthesis have been described above with respect to the methods of fabrication.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram illustrating the principal steps of the methods of the present invention.
  • FIGS. 2A and 2B illustrate an exemplary stent structure which may be fabricated using the methods of the present invention.
  • FIG. 3 illustrates the stent of FIGS. 2A and 2B in a radially expanded configuration.
  • FIG. 4 illustrates a stent pattern utilized in an Example of the present application.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Amorphous biodegradable polymers (less than 10% crystallinity) degrade faster than crystalline polymers but are weaker than crystalline polymers and hence are not typically suitable for vascular implants, such as stents, which need sufficient strength to provide support to the blood vessel. The present invention provides for the modification of amorphous polymeric materials to make them suitable for use as biodegradable stents and other endoprostheses. Amorphous materials suitable for modification according to the present invention include but are not limited to poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like. Amorphous biodegradable polymers (less than 10% crystallinity) degrade faster than crystalline polymers but are weaker than crystalline polymers and hence are not typically suitable for vascular implants, such as stents, which need sufficient strength to provide support to the blood vessel. The present invention provides for the modification of amorphous polymeric materials to make them suitable for use as biodegradable stents and other endoprostheses. Amorphous materials suitable for modification according to the present invention include but are not limited to poly-DL-Lactide, polylactide-co-glycolactide; polylactide-co-polycaprolactone, poly (L-lactide-co-trimethylene carbonate), polytrimethylene carbonate and copolymers; polyhydroxybutyrate and copolymers; polyhydroxyvalerate and copolymers, poly orthoesters and copolymers, poly anhydrides and copolymers, polyiminocarbonates and copolymers and the like. The biodegradable polymeric stent material in this invention can be homopolymers, copolymers, graft polymer, block polymers, polymers with special functional groups or end groups such as acidic or hydrophilic type or a blend of two or more homopolymers or copolymers. An exemplary stent is made from amorphous material of a copolymer of 85/15 Poly(L-Lactide-co-Glycolide) and processed to increase crystallinity by at least 20% of original crystallinity, preferably by at least 100%, more preferably by at least 1000% of original crystallinity In one embodiment, the biodegradable stent substantially degrades in less than 2 years, preferable less than 1 year, more preferable less than 9 months. An exemplary stent is made from amorphous material of a copolymer of 85/15 Poly(L-Lactide-co-Glycolide) and processed to increase crystallinity by at least 20% of original crystallinity, preferably by at least 100%, more preferably by at least 1000% of original crystallinity In one embodiment, the biodegradable stent substantially degrades in less than 2 years, preferable less than 1 year, more preferable less than 9 months.
  • In one embodiment, the biodegradable polymeric stent material includes, but is not limited to, polyesters, polyanhydrides, polyamides, polyurethanes, poly(ester urethane), polyureas, polyethers, polyalkylene carbonates, polyacrylic acids, polyamines, polyester amides, polyester amines, polyvinylacetate, polyethylene imine, polycyanoacrylates, polyphosphazenes, polyphosphates, polyphosphonates, polyurethanes, polyureas, polysulfonates, polysulfonamides, polylactides, polyglycolides, regenerated cellulose, or biopolymers or blends, block polymers, copolymers or combinations thereof. Examples of these polymers include but are not limited to poly(L-lactic acid), poly(L/D-lactic acid), poly(L/DL-lactic acid), poly(glycolic acid), poly(lactide-co-glycolide), and copolymers and isomers, polydioxanone, poly(ethyl glutamate), poly(hydroxybutyrate), polyhydroxyvalerate and copolymer poly(3-hydroxy butyrate-co-hydroxy valerate), polycaprolactone, polyanhydride, poly(ortho esters); poly(ether esters), poly(trimethyl carbonate), poly(L-lactic acid-co-trimethylene carbonate), poly(L/D-lactic acid-co-trimethylene carbonate), poly(L/DL-lactic acid-co-trimethylene carbonate), poly(caprolactone-co-trimethylene carbonate), poly(glycolic acid-co-trimethylene carbonate), poly(glycolic acid-co-trimethylene carbonate-co-dioxanone), polyethylene carbonate, copolymers of polyethylene carbonate and poly(trimethylene carbonate), polypropylene carbonate, poly(iminocarbonates), poly(malic acid), modified poly(ethylene terephthalate), poly(butylene succinate), poly(butylene succinate adipate), poly(butylene succinate terephthalate), poly(butylene adipate-co-terephthalate), starch based polymers, hylaronic acid, oxidized or non-oxidized regenerated cellulose copolymers and other aliphatic polyesters, or suitable copolymers thereof. The biodegradable polymeric stent material in this invention can be homopolymers, copolymers, graft polymer, block polymers, polymers with special functional groups or end groups such as acidic or hydrophilic type, or a blend of two or more homopolymers or copolymers.
  • In accordance with the present invention, the amorphous biodegradable polymeric material is processed to increase its crystallinity, Increased crystallinity may increase the strength, storage shelf life, and hydrolytic stability of the polymer stent material. The process initiates and/or enhances crystallinity in the polymeric material by nucleating and/or growing small size spherulite crystals in the material. Since the amorphous regions of the modified polymer are preferentially broken down by hydrolysis or enzymatic degradation in biological environment, the modified amorphous biodegradable polymer has increased crystallinity and increased material strength post processing. The increase in crystallinity can be achieved by ‘Modifications’ described in present invention which include at least one of heating, cooling, pressurizing, addition of additives, crosslinking and other processes.
  • The polymer material can be made into a tube by spraying, extrusion, molding, dipping or other process from a selected amorphous copolymer. The amorphous polymer tubing is optionally vacuumed to at least −25 in. Hg., annealed, and quenched to increase crystallinity. In one embodiment, the tube is vacuumed at or below 1 torr at ambient temperature to remove water and solvent. It is then annealed by heating to a temperature above the glass transitional temperature but below melting temperature of the polymer material. Preferably, the annealing temperature is at least 10.degree. C. higher than the glass transitional temperature (Tg), more preferably being at least 20.degree. C. higher, and still more preferably being at least 30.degree. C. higher than the Tg. The annealing temperature is usually at least 5.degree. C. below the melting point (Tm), preferably being at least 20.degree. C. lower, and more preferably being at least 30.degree. C. lower than the Tm of the polymer material. The annealing time is between 1 minute to 10 days, preferably from 30 minutes to 3 hours, and more preferably from 1.5 hours to 2.5 hours.
  • In one embodiment, the annealed tube is quenched by fast cooling from the annealing temperature to a temperature at or below ambient temperature over a period from 1 second to 1 hour, preferably 1 minute to 30 minutes, and more preferably 5 minutes to 15 minutes. In another embodiment the annealed tune is quenched by slow cooling from the annealing temperature to at or below ambient temperature within 1 hour to 24 hours, preferably 4 hours to 12 hours, and more preferably 6 hours to 10 hours. In some instances the heat treated tube is cooled to a temperature below ambient temperature for a period from 1 minute to 96 hours, more preferably 24 hours to 72 hours, to stabilize the crystals and/or terminate crystallization. This annealing and quenching process initiates and promotes nucleation of crystals in the polymer and increases the mechanical strength of the material. The initial annealing temperature and the cooling rate can be controlled to optimize the size of the crystals and strength of the material. In a further embodiment, the unannealed and/or annealed tube is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • In one embodiment, the wet glass transition temperature of the biodegradable stent material is greater than 37° C., preferably greater than 45° C., more preferably greater than 65° C.
  • The stent or other endoprosthesis is patterned from a tube of the stent material in an “expanded” diameter and subsequently crimped to a smaller diameter and fitted onto a balloon of a delivery catheter. The stent is patterned, typically by laser cutting, with the tubing diameter about 1 to 1.3 times, preferably 1.1 to 1.5 times, more preferably 1.15 to 1.25 times, larger the intended deployed diameter. For example, a stent cut at a 3.5 mm.times.18 mm outer diameter is crimped on a 3.0 mm.times.18 mm stent delivery catheter. In a further embodiment, the unannealed and/or annealed stent is exposed to ebeam or gamma radiation, with single or multiple doses of radiation ranging from 5 kGy to 100 kGy, more preferably from 10 kGy to 50 kGy.
  • The stent material may lose some crystallinity during stent cutting. In such cases, the stent annealed after cutting and/or a second time to re-crystallize the polymer to a higher crystallinity. Thus, the cut stent may be annealed a second time as generally described above. Annealing followed by cooling as described above can be repeated one or more times to further increase crystallinity. In a further embodiment, the heat treated stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • The treated stent or other endoprosthesis can be crimped onto a delivery balloon using mechanical crimpers comprising of wedges such as crimpers from Machine Solutions, Fortimedix, or others. The stent can also be crimped by placing the stent in a shrink tube and stretching the shrink tube slowly at a rate of 0.1 to 2 inches/minutes, more preferably 0.2 to 0.5 inches/minutes until the stent is crimped to the desired crimped diameter. During crimping, the stent is heated to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C. below the Tg to Tg, and most preferably at the Tg of the stent material. This process facilitates or enables the stent to maintain the final crimped diameter. After crimping, the ability for the stent to remain the crimped diameter can further be improved by fixing the stent in the crimped diameter while exposing it to a temperature of 20.degree. C. below the Tg to 10.degree. C. above the Tg for 30 minutes, more preferably to 10.degree. C. below the Tg to Tg, and most preferably at the Tg of the stent material, for 1 minute to 24 hours, more preferably 15 minutes to 1 hour. After holding at this crimping temperature, it is preferred to fix the stent in the crimped diameter while at or below ambient temperatures until further processing (i.e., sterilization). The stent can either be crimped while it is on the balloon of the stent delivery catheter or first crimped alone and then slipped onto the balloon of the catheter. In a further embodiment, the crimped stent is cooled below ambient temperature to lock in the crystals or terminate crystallization for 1 minute to 96 hours, more preferably 24 hours to 72 hours.
  • In a preferred embodiment, the final crimped stent on the catheter is sterilized by 25 to 30 kGy dose of ebeam, typically with a single dose of 30 kGy or with multiple smaller doses (eg. 3.times.10 kGy). The stent system is usually kept below ambient temperature before, during and/or after multiple smaller doses of sterilization. The stent that has been packaged and sterilized can also be exposed to heat treatment like that described above. In one embodiment, the biodegradable polymer stent is heated at about the Tg of the biodegradable stent material during expansion of the stent. The temperature during expansion can range from 10.degree. C. above Tg to 10.degree. C. below Tg.
  • Upon deployment of such stent, the processes provide means to minimize stent recoil to less than 10% after expansion from the crimped state to an expanded state.
  • Additives can be added to the endoprosthesis to affect strength, recoil, or degradation rate, or combinations thereof. Additives can also affect processing of biodegradable stent material, radiopacity or surface roughness or others. Additives can be biodegradable or non-biodegradable. The additives can be incorporated in to the biodegradable stent or polymer material by blending, extrusion, injection molding, coating, surface treatment, chemical treatment, mechanical treatment, stamping, or others or combinations thereof. The additives can be chemically modified prior to incorporation in to the biodegradable stent material.
  • In one embodiment, the percentage in weight of the additives can range from 0.01% to 25%, preferably 0.1% to 10%, more preferably 1% to 5%.
  • In one embodiment, the additive includes at least nanoclay, nanotubes, nanoparticles, exfoliates, fibers, whiskers, platelets, nanopowders, fullerenes, nanosperes, zeolites, polymers or others or combination thereof. In the present invention, the stent material may include pharmacological agents, such as immunomodulators, anti-cancer, anti-proliferative, anti-inflammatory, antithrombotic, antiplatelet, antifungal, antidiabetic, antihyperlipidimia, antiangiogenic, angiogenic, antihypertensive, healing promoting drugs, or other therapeutic classes of drugs or combination thereof. Illustrative immunomodulators agents include but are not limited to rapamycin, everolimus, ABT 578, AP20840, AP23841, AP23573, CCI-779, deuterated rapamycin, TAFA93, tacrolimus, cyclosporine, TKB662, myriocin, their analogues, pro-drug, metabolites, slats, or others or combination thereof. Illustrative anticancer agents include acivicin, aclarubicin, acodazole, acronycine, adozelesin, alanosine, aldesleukin, allopurinol sodium, altretamine, aminoglutethimide, amonafide, ampligen, amsacrine, androgens, anguidine, aphidicolin glycinate, asaley, asparaginase, 5-azacitidine, azathioprine, Bacillus calmette-guerin (BCG), Baker's Antifol (soluble), beta-2′-deoxythioguanosine, bisantrene hcl, bleomycin sulfate, busulfan, buthionine sulfoximine, BWA 773U82, BW 502U83.HCl, BW 7U85 mesylate, ceracemide, carbetimer, carboplatin, carmustine, chlorambucil, chloroquinoxaline-sulfonamide, chlorozotocin, chromomycin A3, cisplatin, cladribine, corticosteroids, Corynebacterium parvum, CPT-11, crisnatol, cyclocytidine, cyclophosphamide, cytarabine, cytembena, dabis maleate, dacarbazine, dactinomycin, daunorubicin HCl, deazauridine, dexrazoxane, dianhydrogalactitol, diaziquone, dibromodulcitol, didemnin B, diethyldithiocarbamate, diglycoaldehyde, dihydro-5-azacytidine, doxorubicin, echinomycin, edatrexate, edelfosine, eflomithine, Elliott's solution, elsamitrucin, epirubicin, esorubicin, estramustine phosphate, estrogens, etanidazole, ethiofos, etoposide, fadrazole, fazarabine, fenretinide, filgrastim, finasteride, flavone acetic acid, floxuridine, fludarabine phosphate, 5-fluorouracil, Fluosol®, flutamide, gallium nitrate, gemcitabine, goserelin acetate, hepsulfam, hexamethylene bisacetamide, homoharringtonine, hydrazine sulfate, 4-hydroxyandrostenedione, hydrozyurea, idarubicin HCl, ifosfamide, interferon alfa, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6, 4-ipomeanol, iproplatin, isotretinoin, leucovorin calcium, leuprolide acetate, levamisole, liposomal daunorubicin, liposome encapsulated doxorubicin, lomustine, lonidamine, maytansine, mechlorethamine hydrochloride, melphalan, menogaril, merbarone, 6-mercaptopurine, mesna, methanol extraction residue of Bacillus calmette-guerin, methotrexate, N-methylformamide, mifepristone, mitoguazone, mitomycin-C, mitotane, mitoxantrone hydrochloride, monocyte/macrophage colony-stimulating factor, nabilone, nafoxidine, neocarzinostatin, octreotide acetate, ormaplatin, oxaliplatin, paclitaxel, pala, pentostatin, piperazinedione, pipobroman, pirarubicin, piritrexim, piroxantrone hydrochloride, PIXY-321, plicamycin, porfimer sodium, prednimustine, procarbazine, progestins, pyrazofurin, razoxane, sargramostim, semustine, spirogermanium, spiromustine, streptonigrin, streptozocin, sulofenur, suramin sodium, tamoxifen, taxotere, tegafur, teniposide, terephthalamidine, teroxirone, thioguanine, thiotepa, thymidine injection, tiazofurin, topotecan, toremifene, tretinoin, trifluoperazine hydrochloride, trifluridine, trimetrexate, tumor necrosis factor, uracil mustard, vinblastine sulfate, vincristine sulfate, vindesine, vinorelbine, vinzolidine, Yoshi 864, zorubicin, QP-2, epothilone D, epothilone C Taxol, such as, paclitaxel, docetaxel, ABJ879, patupilone, MN-029, BMS247550, ecteinascidins such as ET-743, tetrahydroisoquinoline alkaloid, sirolimus, actinomycin, methotrexate, antiopeptin, vincristine, mitomycin, 2-chlorodeoxyadenosine or others, antifungal agents such as caspofungin, farnesylated dibenzodiazepinone, ECO-4601, fluconazole, or others, angiogenesis drugs such as follistatin, leptin, midkine, angiogenin, angiopoietin-1, becaplermin, Regranex, anti-angiogenesis drugs such as canstatin, angiostatin, endostatin, retinoids, tumistatin, vasculostatin, angioarrestin, vasostatin, bevacizumab, prinomastat, or others, antidiabetic drugs such as metformin, hypertension drugs such as candesartan, diovan, diltiazem, atenolol, adalat or others, anti-ischemia drugs such as ranolazine, isosorbide dinitrate, or others.
  • Examples of nanoclay includes Montmorillonite, Smectites, Talc, or platelet-shaped particles, modified clay or others or combination thereof. Clays can be intercalated or exfoliated. Example of clays include Cloisite NA, 93A, 30B, 25A, 15A, 10A or others or combination thereof.
  • Examples of fibers include cellulose fibers such as Linen, cotton, rayon, acetate; proteins fibers such as wool or silk; plant fiber; glass fiber; carbon fiber; metallic fibers; ceramic fibers; absorbable fibers such as polyglycolic acid, polylactic acid, polyglyconate or others.
  • In another embodiment, the additive can induce degradation of non-degradable polymeric stent material. For example, pro-degradant such as D2W (from Symphony Plastic Technologies), photodegradative additives such as UV-H (from Willow Ridge Plastics), oxidative additives such as PDQ (from Willow Ridge Plastics), TDPA or others or combination thereof can initiate degradation of non degradable stent materials such as polyethylene, polypropylene, polyethylene terephthalate or others.
  • In one embodiment, additives can be incorporated into the biodegradable polymer stent material to resist oxidative degradation, photodegradation, high energy exposure degradation, thermal degradation, hydrolytic degradation, acid buildup or other degradation means. Examples of additives which resist degradation include antioxidants such as vitamin C, peroxides; stabilizers such as xanthum gum, succinoglycan, carrageenan, propylene glycol alginate; getters such as titanium containing beads, aluminium oxide; anhydrous calcium chloride, anhydrous sodium bicarbonate, anhydrous sodium sulphate, anhydrous magnesium sulphate.
  • Examples of whiskers include hydroxyapetite whiskers, tricalcium phosphate whiskers or others.
  • In another embodiment, the additives includes at least modified starch, soybean, hyaluronic acid, hydroxyapatite, tricarbonate phosphate, anionic and cationic surfactants such as sodium docecyl sulphate, triethylene benzylammonium chloride, pro-degradant such as D2W (from Symphony Plastic Technologies), photodegradative additives such as UV-H (from Willow Ridge Plastics), oxidative additives such as PDQ (from Willow Ridge Plastics), TDPA, family of polylactic acid and its random or block copolymers or others.
  • In another embodiment, the additives include electroactive or electrolyte polymers, hydroscopic polymers, dessicants, or others.
  • In one embodiment, the additive is an oxidizer such an acids, perchlorates, nitrates, permanganates, salts or other or combination thereof.
  • In one embodiment, the additive is a monomer of the biodegradable polymeric stent material. For example glycolic acid is an additive to polyglycolic acid or its copolymer stent material.
  • In one embodiment, the additive can be water repellent monomers, oligomers or polymers such as bees wax, low MW polyethylene or others.
  • In another embodiment, the additive can be water attractant monomers, oligomers or polymers such as polyvinyl alcohol, polyethylene oxide, glycerol, caffeine, lidocaine or other.
  • In one embodiment, the additive can affect crystallinity of the biodegradable polymeric stent material. Example of additive of nanoclay to PLLA affects its crystallinity. In the present invention, the stent material may include pharmacological agents, such as immunomodulators, anti-cancer, anti-proliferative, anti-inflammatory, antithrombotic, antiplatelet, antifungal, antidiabetic, antihyperlipidmia, antiangiogenic, angiogenic, antihypertensive, healing promoting drugs, or other therapeutic classes of drugs or combination thereof. Use of analogues, prodrugs, derivatives, precursors, fragments, salts, or other modifications or variations of pharmaceutical agents are all included.
  • Illustrative immunomodulators agents include but are not limited to rapamycin, everolimus, ABT 578, AP20840, AP23841, AP23573, CCI-779, deuterated rapamycin, TAFA93, tacrolimus, cyclosporine, TKB662, myriocin, their analogues, pro-drug, metabolites, salts, or others or combination thereof.
  • Illustrative anticancer agents include acivicin, aclarubicin, acodazole, acronycine, adozelesin, alanosine, aldesleukin, allopurinol sodium, altretamine, aminoglutethimide, amonafide, ampligen, amsacrine, androgens, anguidine, aphidicolin glycinate, asaley, asparaginase, 5-azacitidine, azathioprine, Bacillus calmette-guerin (BCG), Baker's Antifol (soluble), beta-2′-deoxythioguanosine, bisantrene HCl, bleomycin sulfate, busulfan, buthionine sulfoximine, BWA 773U82, BW 502U83.HCl, BW 7U85 mesylate, ceracemide, carbetimer, carboplatin, carmustine, chlorambucil, chloroquinoxaline-sulfonamide, chlorozotocin, chromomycin A3, cisplatin, cladribine, corticosteroids, Corynebacterium parvum, CPT-11, crisnatol, cyclocytidine, cyclophosphamide, cytarabine, cytembena, dabis maleate, dacarbazine, dactinomycin, daunorubicin HCl, deazauridine, dexrazoxane, dianhydrogalactitol, diaziquone, dibromodulcitol, didemnin B, diethyldithiocarbamate, diglycoaldehyde, dihydro-5-azacytidine, doxorubicin, echinomycin, edatrexate, edelfosine, eflomithine, Elliott's® solution, elsamitrucin, epirubicin, esorubicin, estramustine phosphate, estrogens, etanidazole, ethiofos, etoposide, fadrazole, fazarabine, fenretinide, filgrastim, finasteride, flavone acetic acid, floxuridine, fludarabine phosphate, 5-fluorouracil, Fluosol®, flutamide, gallium nitrate, gemcitabine, goserelin acetate, hepsulfam, hexamethylene bisacetamide, homoharringtonine, hydrazine sulfate, 4-hydroxyandrostenedione, hydrozyurea, idarubicin HCl, ifosfamide, interferon alfa, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6,4-ipomeanol, iproplatin, isotretinoin, leucovorin calcium, leuprolide acetate, levamisole, liposomal daunorubicin, liposome encapsulated doxorubicin, lomustine, lonidamine, maytansine, mechlorethamine hydrochloride, melphalan, menogaril, merbarone, 6-mercaptopurine, mesna, methanol extraction residue of Bacillus calmette-guerin, methotrexate, N-methylformamide, mifepristone, mitoguazone, mitomycin-C, mitotane, mitoxantrone hydrochloride, monocyte/macrophage colony-stimulating factor, nabilone, nafoxidine, neocarzinostatin, octreotide acetate, ormaplatin, oxaliplatin, paclitaxel, PALA (N-(phosphonacetyl)-L-aspartic acid), pentostatin, piperazinedione, pipobroman, pirarubicin, piritrexim, piroxantrone hydrochloride, PIXY-321, plicamycin, porfimer sodium, prednimustine, procarbazine, progestins, pyrazofurin, razoxane, sargramostim, semustine, spirogermanium, spiromustine, streptonigrin, streptozocin, sulofenur, suramin sodium, tamoxifen, taxotere, tegafur, teniposide, terephthalamidine, teroxirone, thioguanine, thiotepa, thymidine injection, tiazofurin, topotecan, toremifene, tretinoin, trifluoperazine hydrochloride, trifluridine, trimetrexate, tumor necrosis factor, uracil mustard, vinblastine sulfate, vincristine sulfate, vindesine, vinorelbine, vinzolidine, Yoshi 864, zorubicin, QP-2, epothilone D, epothilone C, Taxol®, such as, paclitaxel, docetaxel, ABJ879, patupilone, MN-029, BMS247550, ecteinascidins such as ET-743, tetrahydroisoquinoline alkaloid, sirolimus, actinomycin, methotrexate, antiopeptin, vincristine, mitomycin, 2-chlorodeoxyadenosine and others.
  • Illustrative antifungal agents include caspofungin, farnesylated dibenzodiazepinone, ECO-4601, fluconazole, and others. Illustrative angiogenesis drugs include follistatin, leptin, midkine, angiogenin, angiopoietin-1, becaplermin, Regranex®, and others. Illustrative anti-angiogenesis drugs include canstatin, angiostatin, endostatin, retinoids, tumistatin, vasculostatin, angioarrestin, vasostatin, bevacizumab, prinomastat, and others. Illustrative antidiabetic drugs include metformin and others. Illustrative anti-hypertension drugs include candesartan, diovan, diltiazem, atenolol, adalat and others. Illustrative anti-ischemia drugs include ranolazine, isosorbide dinitrate, and others.
  • Illustrative antiinflammatory agents include classic non-steroidal anti-inflammatory drugs (NSAIDS), such as aspirin, diclofenac, indomethacin, sulindac, ketoprofen, flurbiprofen, ibuprofen, naproxen, piroxicam, tenoxicam, tolmetin, ketorolac, oxaprosin, mefenamic acid, fenoprofen, nabumetone (Relafen®), acetaminophen (Tylenol®), and others; COX-2 inhibitors, such as nimesulide, NS-398, flosulid, L-745337, celecoxib, rofecoxib, SC-57666, DuP-697, parecoxib sodium, JTE-522, valdecoxib, SC-58125, etoricoxib, RS-57067, L-748780, L-761066, APHS, etodolac, meloxicam, S-2474, and others; glucocorticoids, such as hydrocortisone, cortisone, prednisone, prednisolone, methylprednisolone, meprednisone, triamcinolone, paramethasone, fluprednisolone, betamethasone, dexamethasone, fludrocortisone, desoxycorticosterone, fluticasone propionate, piroxicam, celeoxib, mefenamic acid, tramadol, meloxicam, methyl prednisone, pseudopterosin, and others; anti-hypercalcemia drugs, such as zoledronic acid, alendronate and others; antithrombosis drugs, such as Plavix®, heparin, Arixtra®, Fraxiparine®, and others.
  • Use of analogues, prodrugs, derivatives, precursors, fragments, salts, or other modifications or variations of pharmaceutical agents are all included.
  • Analogs, derivatives, prodrugs, salts, or synthetic or biologic equivalents of these pharmaceutical agents can be released from the stents depending on the type of treatment needed, such as hyperproliferative diseases, stenosis, wound healing, cancer, aneurysm, diabetic disease, abdominal aortic aneurysm, angiogenesis, hypercalcemia, ischemia, fibrillation, arrhythmia or others.
  • The agents can be released from the implant using non-degradable, partially degradable or fully degradable coatings, or a combination thereof. The agents can be incorporated as a matrix with the coating or applied on the stent and covered with the coating as a rate limiting barrier, or the agents can be directly coated onto the stent surface.
  • The solvent used to incorporate the agent and the coating on a stent can be an organic solvent such as dichloromethane, tetrahydrofuran, ethanol, or other solvents. In one embodiment, the solvent used to coat the agent and/or agent-polymer matrix does not affect the chemical or mechanical properties of the polymeric stent material.
  • In one embodiment, supercritical fluids such as supercritical carbon dioxide is used as a carrier solvent for the agent and/or the polymer and coats the stent with the agent and/or agent-polymer matrix. The use of non-reactive gas such as carbon dioxide removes the need to use other organic solvents which can alter chemical and physical properties of the pharmacological agent.
  • In one embodiment the crystallinity of the pharmaceutical agent on the stent material is greater than 90%, preferably greater than 93%, more preferably greater than 95%.
  • In one embodiment, the pharmacological agent can be incorporated in the biodegradable polymeric stent material and extruded into stent tubing prior to laser cutting of the stent from the tubes. In another embodiment the agent is incorporated in a protective coating to prevent degradation of the agent during extrusion or laser cutting.
  • In one embodiment, the rate of agent release can be configured to release the agent at certain times and for certain durations corresponding to the degradation rate of the stent material or biological response events within the stent material environment. For example, an anti-inflammatory, antiproliferative, or immunomodulator drug or a combination of these can be made to be released during the entire degradation period. Multiple drugs can be released to match the degradation rate of the coating and/or degradation rate of the implant. Antiplatelet or anti-thrombotic agents can be released in the initial phase and anti-inflammatory, antiproliferative or immunosuppressants can be released concurrently or at a later phase.
  • In another embodiment, the biodegradable polymeric stent material can have increased crystallinity by cross-linking such as exposure to radiation such as gamma or ebeam. The cumulative radiation dose can range from 1 kGray to 1000 KGray, preferably 5 to 100 KGray, more preferably 10 to 30 KGray.
  • An aspect of the invention provides for degradable materials having sufficient strength and low recoil for stent applications.
  • In one embodiment, yield strength for the biodegradable polymeric stent material is at least 50% of ultimate strength, preferably at least 75% of ultimate strength, more preferably at least 90% of ultimate strength, in water at 37.degree. C.
  • In one embodiment, the elastic modulus for the biodegradable metallic stent material is at least 50 GPa, preferably at least 100 GPa, more preferably at least 150 GPa.
  • In another embodiment, the elastic modulus for the biodegradable polymeric stent material is at least 0.5 GPa, preferably at least 0.75 GPa, more preferably at least 1 GPa, in water at 37.degree. C.
  • In one embodiment, the yield strain for the biodegradable polymeric stent material is at most 10%, preferably at most 5%, more preferably at most 3%, in water at 37.degree. C.
  • In one embodiment, the plastic strain for the biodegradable polymeric stent material is at least 20%, preferably at least 30%, more preferably at least 40%, in water at 37.degree. C.
  • In one embodiment, the elastic recovery of the strained biodegradable polymeric stent material is at most 15%, preferably at most 10%, more preferably at most 5%, in water at 37.degree. C.
  • In one embodiment, the biodegradable stent material degrades substantially within 2 years, preferably within 1 year, more preferably within 9 months.
  • In one embodiment, the expanded biodegradable stent in physiological conditions at least after 1 month retains at least 25%, preferably at least 40%, more preferably at least 70% of the strength or recoil.
  • In one embodiment, the biodegradable polymeric stent materials degrades by at least bulk erosion, surface erosion, or combination thereof.
  • In one embodiment, the biodegradable polymeric stent material degrades by at least hydrolytic degradation, enzymatic degradation, oxidative degradation, photo degradation, degradation under physiological environment or combination thereof.
  • The biodegradable polymeric stent material can have varying molecular architecture such as linear, branched, crosslinked, hyperbranched or dendritic.
  • The biodegradable polymeric stent material in this invention can range from 10 KDa to 10,000 KDa in molecular weight, preferably from 100 KDa to 1000 KDa, more preferably 300 KDa to 600 KDa.
  • In one embodiment, the biodegradable polymeric stent material is a polymer with a molecular weight equal or greater than the threshold molecular weight of the polymer. In one embodiment, the biodegradable polymeric stent material with molecular weight equal to or greater than the threshold molecular weight provide strength greater than a biodegradable polymeric stent with molecular weight lower than the threshold molecular weight.
  • In another embodiment, the biodegradable stent material has increased crystallinity by increasing orientation of polymer chains with in the biodegradable stent material in radial and/or longitudinal direction by drawing, pressurizing and/or heating the stent material. In another embodiment, the drawing, pressurizing and/or heating the stent material occurs simultaneously or sequentially.
  • In one embodiment, the biodegradable stent material is placed with at least one surface against a non deformable surface and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • In one embodiment, the biodegradable stent material tube is placed within a larger diameter non deformable tube and is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi. In another embodiment, the biodegradable stent material tube is pressurized to at least 200 psi, preferably to at least 300 psi, more preferably to at least 500 psi.
  • In one embodiment, the biodegradable stent material has increased crystallinity by increasing the orientation of the polymer chains by at least heating the biodegradable stent material above its glass transition temperature (Tg) and below its melting temperature.
  • In one embodiment, the biodegradable stent material has increased crystallinity by heating the material to a temperature at least 10.degree. C. higher than its Tg, preferably at least 20.degree. C. higher, more preferably at least 30.degree. C. higher than the Tg of the biodegradable stent material.
  • In one embodiment, biodegradable stent material has increased crystallinity after drawing, heat and/or pressurizing and annealing at elevated temperature with or without vacuum. In one embodiment, the annealing temperature is below the temperature used for orientation of the polymer chains of the biodegradable stent material. In another embodiment, the annealing temperature is at most 20.degree. C. below, preferably at most 15.degree. C. below, more preferably at most 10.degree. C. below the temperature for orientation of the polymer chains of the biodegradable stent material.
  • In one embodiment, the biodegradable stent material after annealing is quenched below Tg of the biodegradable stent material, preferably at least 25.degree. C. below Tg, more preferably at least 50.degree. C. below Tg of the biodegradable stent material.
  • In one embodiment, the biodegradable polymeric stent material has increased crystallinity by using a combination of solvents, with one solvent having solubility parameter with in 10% of the solubility parameter of the polymer and the second solvent having solubility parameter at least 10% different than the solubility parameter of the polymer in the solvent.
  • In one embodiment the biodegradable polymer stent material has a crystallinity of greater than 10%, preferably greater than 25%, more preferably greater than 50%.
  • In another embodiment the biodegradable polymer stent material has a crystallinity of greater than 20%, preferably greater than 40%, more preferably greater than 60%.
  • The invention also provides means to improve consistency of strength, recoil or degradation rate of a biodegradable polymer stent material
  • In another embodiment, the percentage impurity of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • In another embodiment, the percentage residual monomer or oligomer of the biodegradable polymer stent material is equal or less than 3%, preferably less than 1%, more preferably less than 0.1%.
  • The invention also provides means to improve shelf life of a biodegradable polymer stent material. In one embodiment, the shelf life of the biodegradable stent material is extended by packaging in an environment of at least low moisture, low oxygen, low UV, low temperature, nitrogen, vacuum or other, or a combination thereof.
  • Example
  • A tube is made by spraying an amorphous copolymer poly(L-lactide-co-glycolide) with 85% lactide and 15% glycolide. The polymer and rapamycin analog can be dissolved in a solvent and can be sprayed together to incorporate the rapamycin into the polymer stent. A mandrel is placed underneath an ultrasonic spray nozzle (Micromist System with Ultrasonic Atomizing Nozzle Sprayer, Sono-Tek, NY) which is rotating at 80 rpm and move longitudinally at a rate of 0.050 inches/minutes. A solution of 11 to 1 ratio of poly(L-lactide-co-glycolide) and rapamycin analog on the mandrel. The resulting tube has a thickness of 0.17 mm. The tube is heated at 45.degree. C. for about 60 hours, annealed at 90.degree. C. for 2 hours, and cooled to ambient or room temperature with in 10 seconds. The annealed tube is then cut with a UV laser to the design shown in FIG. 4 (shown in its crimped state). The cut stent is annealed at 90.degree. C. and slowly cooled from the annealing temperature to ambient temperature within eight hours. The stent delivery system is then packaged in a pouch and sterilized by gamma radiation.
  • The heat treated stent has higher radial strength than the non-treated stent (Table 1). TABLE-US-00001 TABLE 1 Comparison of Radial Strength of Treated and Non-treated Stent. No Heat Heat Type Treatment Treatment Radial Strength After Laser Cutting Stent 7 Psi 14 Psi Radial Strength After Crimping Stent 6 Psi 9 Psi Radial Strength After 30 kGy Ebeam Sterilization 3 Psi 8 Psi Radial Strength when expanded at Tg n/a 12.5 Psi.
  • Thus, as shown in FIG. 1, methods according to the present invention initially provide for a tubular body composed of an amorphous polymer, where the tubular body may be formed by extrusion, molding, dipping, or the like, but is preferably formed by spraying onto a mandrel. The tubular body is annealed to increased crystallinity and strength, usually by the heating and cooling processes described above. The tubular body is then patterned to form a stent or other endoprosthesis, typically by laser cutting, usually after at least one annealing treatment. Optionally, the tubular body may be treated both before and after patterning, and may be treated by annealing more than once both before and after the patterning.
  • Referring now to FIGS. 2A and 2B, a stent 10 suitable for modification by the present invention has base pattern including a plurality of adjacent serpentine rings 12 joined by axial links 14. As illustrated, the stent 10 includes six adjacent serpentine rings 12, where each ring includes six serpentine segments comprising a pair of axial struts 16 joined by a hinge-like crown 18 at one end. The number of rings and segments may vary widely depending on the size of the desired size of the stent. According to the present invention, a supporting feature 20 is disposed between adjacent axial struts 16 and connected so that it will expand, usually elongate, circumferentially with the struts, as shown in FIG. 3. The supporting features 20 are in a generally closed U-shaped configuration prior to expansion, as shown in FIGS. 2A and 2B, and open into a shallow V-shape along with the opening of the axial struts 16 about the crowns 18 during radial expansion of the serpentine rings 12, as shown in FIG. 3. Supporting features 20 enhance the hoop strength of the stent after radial expansion, help resist recoil after expansion is completed, and provide additional area for supporting the vascular or other luminal wall and optionally for delivering drugs into the luminal wall.
  • While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

Claims (2)

1.-30. (canceled)
31. An expandable stent, comprising:
a biodegradable polymeric material having an initial configuration, said expandable stent being expandable to a larger configuration without fracture.
US14/450,137 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication Abandoned US20140350659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/450,137 US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication
US14/945,253 US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88570007P 2007-01-19 2007-01-19
US12/016,085 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US13/434,555 US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication
US14/450,137 US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/434,555 Continuation US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/945,253 Continuation US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Publications (1)

Publication Number Publication Date
US20140350659A1 true US20140350659A1 (en) 2014-11-27

Family

ID=39636746

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/016,077 Abandoned US20080177373A1 (en) 2007-01-19 2008-01-17 Endoprosthesis structures having supporting features
US12/016,085 Active 2030-12-21 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US13/434,555 Abandoned US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication
US13/473,354 Active US8323760B2 (en) 2007-01-19 2012-05-16 Biodegradable endoprostheses and methods for their fabrication
US14/450,137 Abandoned US20140350659A1 (en) 2007-01-19 2014-08-01 Biodegradable endoprostheses and methods for their fabrication
US14/945,253 Abandoned US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/016,077 Abandoned US20080177373A1 (en) 2007-01-19 2008-01-17 Endoprosthesis structures having supporting features
US12/016,085 Active 2030-12-21 US8182890B2 (en) 2007-01-19 2008-01-17 Biodegradable endoprostheses and methods for their fabrication
US13/434,555 Abandoned US20120187606A1 (en) 2007-01-19 2012-03-29 Biodegradable endoprostheses and methods for their fabrication
US13/473,354 Active US8323760B2 (en) 2007-01-19 2012-05-16 Biodegradable endoprostheses and methods for their fabrication

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/945,253 Abandoned US20160067389A1 (en) 2007-01-19 2015-11-18 Biodegradable endoprostheses and methods for their fabrication

Country Status (7)

Country Link
US (6) US20080177373A1 (en)
EP (3) EP2783710B1 (en)
JP (8) JP5489725B2 (en)
CN (7) CN104127270A (en)
BR (2) BRPI0806617A2 (en)
ES (1) ES2605731T3 (en)
WO (2) WO2008089434A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150025619A1 (en) * 2007-01-19 2015-01-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9730819B2 (en) 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US8597716B2 (en) 2009-06-23 2013-12-03 Abbott Cardiovascular Systems Inc. Methods to increase fracture resistance of a drug-eluting medical device
US20140107761A1 (en) 2004-07-26 2014-04-17 Abbott Cardiovascular Systems Inc. Biodegradable stent with enhanced fracture toughness
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US20150174864A1 (en) * 2011-10-14 2015-06-25 Midsun Group Inc. Self-fusing carbon fiber silicone perforated tape
EP1834606B1 (en) * 2006-03-16 2013-04-24 CID S.p.A. Stents
EP3009477B1 (en) 2006-07-20 2024-01-24 Orbusneich Medical Pte. Ltd Bioabsorbable polymeric composition for a medical device
US8460364B2 (en) 2006-07-20 2013-06-11 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
US20130150943A1 (en) 2007-01-19 2013-06-13 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20080177373A1 (en) 2007-01-19 2008-07-24 Elixir Medical Corporation Endoprosthesis structures having supporting features
US8002817B2 (en) * 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
EP2190389A1 (en) * 2007-08-01 2010-06-02 Prescient Medical, Inc. Expandable prostheses for treating atherosclerotic lesions including vulnerable plaques
US8252215B2 (en) * 2008-03-31 2012-08-28 Abbott Cardiovascular Systems Inc. Method for fabricating a stent with nucleating agent
US20090269480A1 (en) * 2008-04-24 2009-10-29 Medtronic Vascular, Inc. Supercritical Fluid Loading of Porous Medical Devices With Bioactive Agents
US8206635B2 (en) * 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8372332B2 (en) * 2008-08-11 2013-02-12 Abbott Cardiovascular Systems Inc. Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct
US8765040B2 (en) * 2008-08-11 2014-07-01 Abbott Cardiovascular Systems Inc. Medical device fabrication process including strain induced crystallization with enhanced crystallization
US8394317B2 (en) 2008-08-11 2013-03-12 Abbott Cardiovascular Systems Inc. Method of improving fracture toughness of implantable medical devices through annealing
US8337739B2 (en) * 2008-08-12 2012-12-25 Abbott Cardiovascular Systems Inc. Improving fracture toughness of medical devices with a stereocomplex nucleating agent
US9572692B2 (en) * 2009-02-02 2017-02-21 Abbott Cardiovascular Systems Inc. Bioabsorbable stent that modulates plaque geometric morphology and chemical composition
AU2010215936B2 (en) 2009-02-21 2015-03-05 Covidien Lp Medical devices having activated surfaces
US8147744B2 (en) 2009-04-10 2012-04-03 Abbott Cardiovascular Systems Inc. Method of making a stent formed from crosslinked bioabsorbable polymer
WO2010132899A1 (en) * 2009-05-15 2010-11-18 Orbusneich Medical, Inc. Bioabsorbable polymeric compositions and medical devices
US9265633B2 (en) * 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
US9889238B2 (en) * 2009-07-21 2018-02-13 Abbott Cardiovascular Systems Inc. Biodegradable stent with adjustable degradation rate
US8119704B2 (en) * 2009-07-21 2012-02-21 Abbott Cardiovascular Systems Inc. Implantable medical device comprising copolymer of L-lactide with improved fracture toughness
US8889823B2 (en) 2009-07-21 2014-11-18 Abbott Cardiovascular Systems Inc. Method to make poly(L-lactide) stent with tunable degradation rate
US8207240B2 (en) 2009-09-14 2012-06-26 Abbott Cardiovascular Systems Inc Method to minimize molecular weight drop of poly(L-lactide) stent during processing
CN102655825B (en) * 2009-09-16 2015-07-08 本特利因诺美有限责任公司 Stent having expandable elements
US8729171B2 (en) 2010-01-22 2014-05-20 Wayne State University Supercritical carbon-dioxide processed biodegradable polymer nanocomposites
US8808353B2 (en) * 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
TWI407942B (en) * 2010-02-09 2013-09-11 Univ Nat Taiwan Preventing vascular stenosis of cardiovascular stent
US20130211489A1 (en) * 2010-02-10 2013-08-15 Apertomed L.L.C. Methods, Systems and Devices for Treatment of Cerebrospinal Venous Insufficiency and Multiple Sclerosis
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
US8613880B2 (en) 2010-04-21 2013-12-24 Abbott Cardiovascular Systems Inc. Post electron beam conditioning of polymeric medical devices
US20120130468A1 (en) 2010-07-27 2012-05-24 Fred Khosravi Methods and apparatus for treating neurovascular venous outflow obstruction
EP2415489B1 (en) 2010-08-03 2016-07-06 Biotronik AG Polylactide-coated implant composed of a biocorrodible magnesium alloy
US8539663B2 (en) 2010-08-23 2013-09-24 Abbott Cardiovascular Systems Inc. Reducing crimping damage to polymer scaffold
US20120059451A1 (en) 2010-09-08 2012-03-08 Qiang Zhang Method of Manufacturing a Polymeric Stent Having Reduced Recoil
US8920867B2 (en) * 2010-10-19 2014-12-30 Covidien Lp Methods of forming self-supporting films for delivery of therapeutic agents
US20120158123A1 (en) * 2010-12-15 2012-06-21 Biotronik Ag Polymer stent
ES2680620T3 (en) 2011-01-12 2018-09-10 Companie Chomarat Laminated structures of composite material and methods of manufacturing and using them
US8545546B2 (en) * 2011-05-13 2013-10-01 Abbott Cardiovascular Systems Inc. Bioabsorbable scaffolds made from composites
US8487017B2 (en) 2011-06-27 2013-07-16 Covidien Lp Biodegradable materials for orthopedic devices based on polymer stereocomplexes
EP2726015B1 (en) * 2011-06-30 2019-06-19 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9839537B2 (en) 2012-03-07 2017-12-12 Abbott Cardiovascular Systems Inc. Bioresorbable polymer scaffold treatment of coronary and peripheral artery disease in diabetic patients
WO2013136965A1 (en) * 2012-03-15 2013-09-19 テルモ株式会社 In vivo indwelling stent and stent delivery system
KR101231197B1 (en) * 2012-09-20 2013-02-07 썬텍 주식회사 Polymeric stent
GB2512016A (en) 2012-09-24 2014-09-24 Arterius Ltd Methods
US9724219B2 (en) 2012-10-04 2017-08-08 Abbott Cardiovascular Systems Inc. Method of uniform crimping and expansion of medical devices
JP2016512751A (en) * 2013-03-14 2016-05-09 パルマズ サイエンティフィック, インコーポレイテッドPalmaz Scientific, Inc. Integrated medical device, method for manufacturing the same, and method for using the same
TWI510225B (en) * 2013-06-25 2015-12-01 Univ Nat Cheng Kung Stent
US9364350B2 (en) 2013-07-09 2016-06-14 Abbott Cardiovascular Systems Inc. Stent with eased corner feature
EP2994175A1 (en) 2014-02-04 2016-03-16 Abbott Cardiovascular Systems, Inc. Drug delivery scaffold or stent with a novolimus and lactide based coating such that novolimus has a minimum amount of bonding to the coating
CN103948459B (en) * 2014-05-27 2016-05-25 辽宁生物医学材料研发中心有限公司 The high coronary artery biodegradable stent that supports of a kind of low resilience
US9381103B2 (en) * 2014-10-06 2016-07-05 Abbott Cardiovascular Systems Inc. Stent with elongating struts
JP2016077354A (en) 2014-10-10 2016-05-16 住友ゴム工業株式会社 Gasket for pre-filled syringe
US10617847B2 (en) 2014-11-04 2020-04-14 Orbusneich Medical Pte. Ltd. Variable flexibility catheter support frame
CN111375116A (en) 2014-11-04 2020-07-07 祥丰医疗私人有限公司 Duct support frame with gradually changed flexibility
US9931231B2 (en) 2014-12-29 2018-04-03 Cook Medical Technologies Llc Support structures for prostheses with branching portions
CN105641751B (en) * 2016-03-09 2018-11-30 山东中恒碳纤维科技发展有限公司 A kind of D braided composites artificial limb and preparation method thereof
WO2019033121A1 (en) 2017-08-11 2019-02-14 Elixir Medical Corporation Uncaging stent
CA3027591C (en) * 2016-06-23 2023-08-01 Poly-Med, Inc. Medical implants having managed biodegradation
US20190175326A1 (en) * 2016-08-25 2019-06-13 Mico Innovations, Llc Neurovascular Stent
US10660773B2 (en) 2017-02-14 2020-05-26 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
US10966849B2 (en) 2017-03-08 2021-04-06 Yamaguchi University Indwelling medical device having bistable structure in lumen organ
RU2669352C9 (en) * 2017-03-09 2018-11-21 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Implant for substitution of bone defects
RU2668132C9 (en) * 2017-03-09 2018-11-19 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Hip implant cup
RU2668131C9 (en) * 2017-03-09 2018-11-21 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Hip stem
RU2668130C2 (en) * 2017-03-09 2018-09-26 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Pelvis joint arthroplasty cup
WO2018192370A1 (en) * 2017-04-17 2018-10-25 Oppo广东移动通信有限公司 Display device, electronic equipment, and display device manufacturing method
CN107137168B (en) * 2017-06-21 2019-07-05 青岛容商天下网络有限公司 Degradable recoverable 4D prints the organic human body support of line style and its application method
US10555825B2 (en) 2017-11-09 2020-02-11 Abbott Cardiovascular Systems Inc. Rotation of a medical device during crimping
EP3720390A2 (en) 2018-01-25 2020-10-14 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
US10500078B2 (en) * 2018-03-09 2019-12-10 Vesper Medical, Inc. Implantable stent
KR102328579B1 (en) * 2018-06-11 2021-11-18 주식회사 삼양홀딩스 Biodegradable surgical device for implantation with improved heat resistance and method for preparing the same
US10967556B2 (en) 2018-06-11 2021-04-06 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds
US10702407B1 (en) * 2019-02-28 2020-07-07 Renata Medical, Inc. Growth stent for congenital narrowings
WO2020185851A1 (en) * 2019-03-11 2020-09-17 The Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Anastomosing stent and methods of use
WO2020220958A1 (en) * 2019-04-29 2020-11-05 Medical And Pharmaceutical Industry Technology And Development Center Medical implant
RU2707551C1 (en) * 2019-08-02 2019-11-28 Федеральное государственное бюджетное учреждение науки Институт органического синтеза им. И.Я. Постовского Уральского отделения Российской академии наук Method of making biodegradable lacoprothesis
CN117618160B (en) * 2024-01-11 2024-04-09 北京迈迪顶峰医疗科技股份有限公司 Valve stent, processing method of valve stent and artificial valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867190A (en) * 1971-10-18 1975-02-18 American Cyanamid Co Reducing capillarity of polyglycolic acid sutures
AU7998091A (en) 1990-05-17 1991-12-10 Harbor Medical Devices, Inc. Medical device polymer
NL9001984A (en) 1990-09-10 1992-04-01 Stamicarbon METHOD FOR PRODUCING AN ARTICLE OF A COPOLYMER OF LACTIDE AND EPSILON CAPROLACTONE FOR MEDICAL APPLICATIONS.
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5741329A (en) 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
FI98136C (en) * 1995-09-27 1997-04-25 Biocon Oy A tissue-soluble material and process for its manufacture
US6241760B1 (en) * 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US5922020A (en) * 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US20030093143A1 (en) 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US5911732A (en) 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
DE29825178U1 (en) * 1997-04-25 2005-10-06 Boston Scientific Ltd., St. Michael Expendable stent in form of tubular body - includes several coiled elements included in stent body and being at ends of stent
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
DE19722384A1 (en) * 1997-05-28 1998-12-03 Gfe Ges Fuer Forschung Und Ent Flexible expandable stent
CA2241558A1 (en) * 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
US5980564A (en) * 1997-08-01 1999-11-09 Schneider (Usa) Inc. Bioabsorbable implantable endoprosthesis with reservoir
US6245103B1 (en) * 1997-08-01 2001-06-12 Schneider (Usa) Inc Bioabsorbable self-expanding stent
US5964798A (en) * 1997-12-16 1999-10-12 Cardiovasc, Inc. Stent having high radial strength
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
US6293967B1 (en) * 1998-10-29 2001-09-25 Conor Medsystems, Inc. Expandable medical device with ductile hinges
EP1020166A1 (en) * 1999-01-12 2000-07-19 Orbus Medical Technologies, Inc. Expandable intraluminal endoprosthesis
US6248363B1 (en) * 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US6224803B1 (en) 1999-04-28 2001-05-01 Advanced Cardiovascular Systems, Inc. Method of forming a thin walled member by extrusion and medical device produced thereby
US6540774B1 (en) * 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
ATE331487T1 (en) * 2000-03-09 2006-07-15 Design & Performance Cyprus Lt STENT WITH SHEATH ATTACHMENTS
CA2373961C (en) * 2000-03-13 2009-06-02 Keiji Igaki Wire rods for vascular stents and vascular stents with the use of the same
DE10012460A1 (en) * 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6527801B1 (en) 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US6602282B1 (en) 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
WO2001095834A1 (en) * 2000-06-13 2001-12-20 Scimed Life Systems, Inc. Disintegrating stent and method of making same
US20020161168A1 (en) * 2000-10-27 2002-10-31 Shalaby Shalaby W. Amorphous polymeric polyaxial initiators and compliant crystalline copolymers therefrom
US20030033007A1 (en) 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US6607548B2 (en) 2001-05-17 2003-08-19 Inion Ltd. Resorbable polymer compositions
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
CN2517403Y (en) * 2001-07-27 2002-10-23 微创医疗器械(上海)有限公司 Coronary artery stand with non-homogeneous waveform structure
CN1131074C (en) 2001-08-10 2003-12-17 中国人民解放军总医院 Preparation method for quick-dissolving support for microtraumatic quick vascular anastomosis technique
US6997944B2 (en) * 2001-08-13 2006-02-14 Advanced Cardiovascular Systems, Inc. Apparatus and method for decreasing stent gap size
IL161335A0 (en) * 2001-10-15 2004-09-27 Hemoteq Gmbh Coating of stents for preventing restenosis
US7572287B2 (en) * 2001-10-25 2009-08-11 Boston Scientific Scimed, Inc. Balloon expandable polymer stent with reduced elastic recoil
US20030088307A1 (en) * 2001-11-05 2003-05-08 Shulze John E. Potent coatings for stents
US6866805B2 (en) * 2001-12-27 2005-03-15 Advanced Cardiovascular Systems, Inc. Hybrid intravascular stent
US7029493B2 (en) 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7354450B2 (en) 2002-01-30 2008-04-08 Boston Scientific Scimed, Inc. Stent with wishbone connectors and serpentine bands
CN2532867Y (en) * 2002-03-22 2003-01-29 维科医疗器械(苏州)有限公司 Curonary artery dilation supporter with zero shortening structure
US8303625B2 (en) 2002-04-18 2012-11-06 Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- Und Kuestenforschung Gmbh Biodegradable shape memory polymeric sutures
US7261734B2 (en) 2002-04-23 2007-08-28 Boston Scientific Scimed, Inc. Resorption-controllable medical implants
US20060100695A1 (en) * 2002-09-27 2006-05-11 Peacock James C Iii Implantable stent with modified ends
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
JP3988619B2 (en) * 2002-10-31 2007-10-10 東レ株式会社 Polylactic acid resin composition and molded article comprising the same
US20040098090A1 (en) * 2002-11-14 2004-05-20 Williams Michael S. Polymeric endoprosthesis and method of manufacture
US20050187615A1 (en) 2004-02-23 2005-08-25 Williams Michael S. Polymeric endoprostheses with enhanced strength and flexibility and methods of manufacture
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US6863757B1 (en) 2002-12-19 2005-03-08 Advanced Cardiovascular Systems, Inc. Method of making an expandable medical device formed of a compacted porous polymeric material
US7316710B1 (en) * 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6932930B2 (en) * 2003-03-10 2005-08-23 Synecor, Llc Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same
GB0310300D0 (en) * 2003-05-06 2003-06-11 Univ Belfast Nanocomposite drug delivery composition
US7112216B2 (en) * 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US6979348B2 (en) * 2003-06-04 2005-12-27 Medtronic Vascular, Inc. Reflowed drug-polymer coated stent and method thereof
BRPI0411431B8 (en) * 2003-06-13 2021-06-22 Gkss Forschungszentrum Geesthacht Gmbh biodegradable stents
CN100558321C (en) * 2003-06-16 2009-11-11 南洋理工大学 Polymer Scaffold And Its Manufacturing Methods
CA2530032C (en) 2003-06-16 2015-11-24 Loma Linda University Medical Center Deployable multifunctional hemostatic agent
EP1648548B1 (en) * 2003-07-18 2008-06-11 Boston Scientific Limited Medical devices
US8029755B2 (en) * 2003-08-06 2011-10-04 Angstrom Medica Tricalcium phosphates, their composites, implants incorporating them, and method for their production
US7247166B2 (en) 2003-09-29 2007-07-24 Advanced Cardiovascular Systems, Inc. Intravascular stent with extendible end rings
US7377939B2 (en) 2003-11-19 2008-05-27 Synecor, Llc Highly convertible endolumenal prostheses and methods of manufacture
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
CN1242818C (en) * 2003-12-08 2006-02-22 华中科技大学 Degradable composite support frame and its preparing process
US7258697B1 (en) * 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
DE10361940A1 (en) 2003-12-24 2005-07-28 Restate Patent Ag Degradation control of biodegradable implants by coating
US7709570B2 (en) 2004-04-02 2010-05-04 Alps South, LLC Surface modification of triblock copolymer elastomers
ATE442822T1 (en) * 2004-04-02 2009-10-15 Arterial Remodelling Technolog POLYMER-BASED STENT ARRANGEMENT
JP2005298617A (en) * 2004-04-09 2005-10-27 Mitsubishi Plastics Ind Ltd Injection molded product
US8007737B2 (en) 2004-04-14 2011-08-30 Wyeth Use of antioxidants to prevent oxidation and reduce drug degradation in drug eluting medical devices
CN1569270B (en) 2004-04-29 2011-06-29 上海瑞邦生物材料有限公司 Method for preparing cardiovascular drug eluting stent
US20050261757A1 (en) * 2004-05-21 2005-11-24 Conor Medsystems, Inc. Stent with contoured bridging element
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8268228B2 (en) 2007-12-11 2012-09-18 Abbott Cardiovascular Systems Inc. Method of fabricating stents from blow molded tubing
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
CN2768714Y (en) * 2004-11-22 2006-04-05 微创医疗器械(上海)有限公司 Flexible blood vessel stent
JP4820551B2 (en) * 2005-01-14 2011-11-24 テルモ株式会社 In vivo indwelling
EP2361630A1 (en) * 2005-02-03 2011-08-31 Intarcia Therapeutics, Inc Implantable drug delivery device comprising particles and an osmotic pump
CA2535938C (en) * 2005-02-10 2014-11-25 Cordis Corporation Biodegradable medical devices with enhanced mechanical strength and pharmacological functions
US20060193891A1 (en) * 2005-02-25 2006-08-31 Robert Richard Medical devices and therapeutic delivery devices composed of bioabsorbable polymers produced at room temperature, method of making the devices, and a system for making the devices
US7291166B2 (en) * 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7622070B2 (en) 2005-06-20 2009-11-24 Advanced Cardiovascular Systems, Inc. Method of manufacturing an implantable polymeric medical device
US20070043427A1 (en) * 2005-08-19 2007-02-22 Medlogics Device Corporation Lumen-supporting stents
US20070132155A1 (en) 2005-12-13 2007-06-14 Robert Burgermeister Polymeric stent having modified molecular structures in selected regions of the hoops and method for increasing elongation at break
US20070200271A1 (en) 2006-02-24 2007-08-30 Vipul Dave Implantable device prepared from melt processing
US20070225798A1 (en) * 2006-03-23 2007-09-27 Daniel Gregorich Side branch stent
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
US7594928B2 (en) * 2006-05-17 2009-09-29 Boston Scientific Scimed, Inc. Bioabsorbable stents with reinforced filaments
US20070290412A1 (en) 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
EP2051673A2 (en) * 2006-06-23 2009-04-29 Boston Scientific Limited Bifurcated stent with twisted hinges
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US20080001330A1 (en) 2006-06-28 2008-01-03 Bin Huang Fabricating polymer stents with injection molding
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US9089627B2 (en) 2006-07-11 2015-07-28 Abbott Cardiovascular Systems Inc. Stent fabricated from polymer composite toughened by a dispersed phase
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US9265866B2 (en) 2006-08-01 2016-02-23 Abbott Cardiovascular Systems Inc. Composite polymeric and metallic stent with radiopacity
US20080033540A1 (en) 2006-08-01 2008-02-07 Yunbing Wang Methods to prepare polymer blend implantable medical devices
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
EP2076211A4 (en) 2006-10-20 2015-07-22 Elixir Medical Corp Luminal prostheses and methods for coating thereof
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using
US20080177373A1 (en) 2007-01-19 2008-07-24 Elixir Medical Corporation Endoprosthesis structures having supporting features
US8002817B2 (en) 2007-05-04 2011-08-23 Abbott Cardiovascular Systems Inc. Stents with high radial strength and methods of manufacturing same
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7666342B2 (en) 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US7824601B1 (en) 2007-11-14 2010-11-02 Abbott Cardiovascular Systems Inc. Process of making a tubular implantable medical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670161A (en) * 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9566371B2 (en) 2007-01-19 2017-02-14 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US9119905B2 (en) * 2007-01-19 2015-09-01 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US20150025619A1 (en) * 2007-01-19 2015-01-22 Elixir Medical Corporation Biodegradable endoprostheses and methods for their fabrication
US9855156B2 (en) 2014-08-15 2018-01-02 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9480588B2 (en) 2014-08-15 2016-11-01 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9730819B2 (en) 2014-08-15 2017-08-15 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9259339B1 (en) 2014-08-15 2016-02-16 Elixir Medical Corporation Biodegradable endoprostheses and methods of their fabrication
US9943426B2 (en) 2015-07-15 2018-04-17 Elixir Medical Corporation Uncaging stent
US10076431B2 (en) 2016-05-16 2018-09-18 Elixir Medical Corporation Uncaging stent
US10271976B2 (en) 2016-05-16 2019-04-30 Elixir Medical Corporation Uncaging stent
US10383750B1 (en) 2016-05-16 2019-08-20 Elixir Medical Corporation Uncaging stent
US10786374B2 (en) 2016-05-16 2020-09-29 Elixir Medical Corporation Uncaging stent
US10918505B2 (en) 2016-05-16 2021-02-16 Elixir Medical Corporation Uncaging stent
US11622872B2 (en) 2016-05-16 2023-04-11 Elixir Medical Corporation Uncaging stent

Also Published As

Publication number Publication date
EP2124816A2 (en) 2009-12-02
CN101621971A (en) 2010-01-06
CN104096271A (en) 2014-10-15
JP5489725B2 (en) 2014-05-14
JP5355420B2 (en) 2013-11-27
EP2109416A4 (en) 2014-06-11
CN105616044A (en) 2016-06-01
BRPI0806617A2 (en) 2011-09-20
CN104042375B (en) 2016-08-24
CN105534627A (en) 2016-05-04
CN104042375A (en) 2014-09-17
EP2124816B1 (en) 2016-09-28
CN101636126A (en) 2010-01-27
JP2016221352A (en) 2016-12-28
US8323760B2 (en) 2012-12-04
CN104127270A (en) 2014-11-05
BRPI0806623A2 (en) 2011-09-13
JP2015071056A (en) 2015-04-16
US8182890B2 (en) 2012-05-22
CN104096271B (en) 2015-12-30
JP2014195734A (en) 2014-10-16
CN101636126B (en) 2014-06-04
US20120187606A1 (en) 2012-07-26
JP2010516347A (en) 2010-05-20
US20120226345A1 (en) 2012-09-06
WO2008089446A3 (en) 2008-10-09
US20080177374A1 (en) 2008-07-24
JP2017035511A (en) 2017-02-16
EP2124816A4 (en) 2013-01-23
EP2783710A1 (en) 2014-10-01
WO2008089434A2 (en) 2008-07-24
JP2010516348A (en) 2010-05-20
JP2013188588A (en) 2013-09-26
WO2008089434A3 (en) 2008-10-09
EP2124816B2 (en) 2019-08-14
JP5762486B2 (en) 2015-08-12
JP2014014698A (en) 2014-01-30
ES2605731T3 (en) 2017-03-16
JP5749296B2 (en) 2015-07-15
US20080177373A1 (en) 2008-07-24
WO2008089446A2 (en) 2008-07-24
EP2783710B1 (en) 2018-08-29
EP2109416A2 (en) 2009-10-21
US20160067389A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
US8323760B2 (en) Biodegradable endoprostheses and methods for their fabrication
US20240074882A1 (en) Biodegradable endoprostheses and methods for their fabrication
EP2726015B1 (en) Biodegradable endoprostheses and methods for their fabrication
US8636792B2 (en) Biodegradable endoprostheses and methods for their fabrication
US20160278953A1 (en) Biodegradable endoprostheses and methods for their fabrication
US20160213499A1 (en) Biodegradable endoprostheses and methods for their fabrication
WO2015112915A1 (en) Biodegradable endoprostheses and methods for their fabrication
WO2014186777A1 (en) Biodegradable endoprostheses and methods for their fabrication

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELIXIR MEDICAL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHENG, XIAOXIA;YAN, JOHN;BHAT, VINAYAK;REEL/FRAME:035905/0552

Effective date: 20080304

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ELIXIR MEDICAL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELIXIR MEDICAL CORPORATION;REEL/FRAME:065299/0522

Effective date: 20140502