US20140148246A1 - Multi-player game state backup and restoration across multiple devices - Google Patents

Multi-player game state backup and restoration across multiple devices Download PDF

Info

Publication number
US20140148246A1
US20140148246A1 US14/167,834 US201414167834A US2014148246A1 US 20140148246 A1 US20140148246 A1 US 20140148246A1 US 201414167834 A US201414167834 A US 201414167834A US 2014148246 A1 US2014148246 A1 US 2014148246A1
Authority
US
United States
Prior art keywords
electronic device
application
game application
state data
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/167,834
Other versions
US8747232B1 (en
Inventor
Justin Quan
Michael A. Chan
Tom Moss
Michael K. Fleming
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Razer Asia Pacific Pte Ltd
Original Assignee
NextBit Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/772,163 external-priority patent/US9106721B2/en
Application filed by NextBit Systems Inc filed Critical NextBit Systems Inc
Priority to US14/167,834 priority Critical patent/US8747232B1/en
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAN, Michael A., FLEMING, MICHAEL K., MOSS, Tom, QUAN, Justin
Publication of US20140148246A1 publication Critical patent/US20140148246A1/en
Application granted granted Critical
Publication of US8747232B1 publication Critical patent/US8747232B1/en
Assigned to PINNACLE VENTURES, L.L.C., AS AGENT reassignment PINNACLE VENTURES, L.L.C., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Assigned to NEXTBIT SYSTEMS INC. reassignment NEXTBIT SYSTEMS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PINNACLE VENTURES, L.L.C., AS AGENT
Assigned to RAZER (ASIA-PACIFIC) PTE. LTD. reassignment RAZER (ASIA-PACIFIC) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEXTBIT SYSTEMS INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • A63F13/10
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/40Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/23Input arrangements for video game devices for interfacing with the game device, e.g. specific interfaces between game controller and console
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/45Controlling the progress of the video game
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/50Controlling the output signals based on the game progress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/461Saving or restoring of program or task context
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/485Task life-cycle, e.g. stopping, restarting, resuming execution
    • G06F9/4856Task life-cycle, e.g. stopping, restarting, resuming execution resumption being on a different machine, e.g. task migration, virtual machine migration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits

Definitions

  • At least one embodiment of the present invention pertains to cloud computing, and more particularly, to automatic backup and restoration of application states across multiple devices using cloud storage.
  • Application state data are data used to record the running status of a computer application.
  • One example of application state data is a game save for a game application.
  • a game save is a piece of digitally stored information about the progress of a user operating the game application. The game save can be reloaded later, so that the user can continue where he stopped. The user instructs the game application to generate a game save (i.e. save the game) to prevent the loss of progress in the game, especially when he is interrupted or ending a game session.
  • Sharing and backing up game saves among users have been common for many years. Originally by swapping memory cards with game saves, users could help each other to unlock features in a game application. With the growing popularity of the Internet, users start to upload their game saves from their devices to Internet servers. By downloading a game save from an Internet server, a user can continue the progress of the game on the device on which he played the game or another device such as a computer, game console, or smart phone. However, to achieve the goal of continuing the progress on another device, the user needs to deliberately instruct the device to save the game progress (i.e. game save) and to upload the game save to a server or a memory card.
  • game save i.e. game save
  • a method includes running an instance of a computer application at a first electronic device, and determining a backup event that occurs in the first electronic device.
  • the backup event suggests a backup of application state data and the application state data represent an application state of the computer application at the backup event.
  • the method further includes transmitting the application state data of the computer application to a remote storage service, in response to the backup event.
  • Another electronic device can retrieve the application state data of the computer application from the remote storage service, and restore the computer application to the application state using the application state data.
  • the backup proceeds automatically on the background of the operating system of the device and is transparent to the user as well as the application.
  • the user can restore the application state of the application running on the same device or on another device at where the state of the application has been backed up.
  • the application state backup and restore can be achieved at the operating system level of the devices. There is no special treatment or design needed for the computer application itself. Any computer application capable of running on such an operating system can take advantage of the application state backup and restore functionality.
  • FIG. 1 illustrates an example system for application state synchronization between electronic devices.
  • FIG. 2 illustrates an example of a multi-player game states synchronization process across multiple electronic devices registered to multiple users.
  • FIG. 3 illustrates an example operating system of an electronic device.
  • FIG. 4 illustrates an example of an application state data of a computer application collected by an operating system.
  • FIG. 5 illustrates an example of an application state synchronization process based on a user defined synchronization scheme.
  • FIG. 6 illustrates an example of an application state backup and restoration process.
  • FIG. 7 is a high-level block diagram showing an example of the architecture of a computer server, which may represent any computer running the database management system described herein.
  • a method of application state synchronization across devices is described herein.
  • a user plays a game on his smart phone, and stops playing and turns off the screen of his smart phone.
  • the state of the game application is synchronized between his smart phone and other electronic devices via a cloud system. He can pick up his tablet computer and continue to play the game from where he left off.
  • the synchronization is not necessarily directly triggered by a user intervention. For instance, the synchronization can be automatically triggered when the screen of the smart phone is turned off, or the user closes the game on his smart phone.
  • the synchronization proceeds automatically on the background and is transparent to the user.
  • the cloud system can analyze various information, including device profile, user profile and user history, to determine state of which application is to be synchronized and which device the state is synchronized to.
  • FIG. 1 illustrates an example system for application state synchronization between electronic devices.
  • the system includes a cloud storage service 110 configured to store state data for applications.
  • the cloud storage service 110 can be a storage cluster having computer nodes interconnected with each other by a network.
  • the storage cluster can communicate with other electronic devices via the Internet.
  • the cloud storage service 110 contains storage nodes 112 .
  • Each of the storage nodes 112 contains one or more processors 114 and storage devices 116 .
  • the storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage or any other computer storage medium which can be used to store the desired information.
  • a cloud synchronization interface 120 can also be included to receive data to be stored in the cloud storage service.
  • the cloud synchronization interface 120 can include network communication hardware and network connection logic to receive the information from electronic devices.
  • the network can be a local area network (LAN), wide area network (WAN) or the Internet.
  • the cloud synchronization interface 120 may include a queuing mechanism to organize the received synchronization data to be stored in the cloud storage service 110 .
  • the cloud synchronization interface 120 can communicate with the cloud storage service 110 to send requests to the cloud storage service 110 for storing application state data and retrieving data.
  • An electronic device 130 includes an operating system 132 to manage the hardware resources of the electronic device 130 and provide services for running computer applications 134 .
  • the computer application 134 stored in the electronic device 130 require the operating system 132 to properly run on the device 130 .
  • the electronic device 130 can backup application states of the computer applications 134 to the cloud storage service 110 .
  • the electronic device 130 includes at least one local storage device 138 to store the computer applications, application data, and user data.
  • the electronic device 130 can synchronize the application state data with the cloud storage service 110 via the cloud synchronization interface 120 .
  • the electronic device 130 or 140 can be a desktop computer, a laptop computer, a tablet computer, an automobile computer, a game console, a smart phone, a personal digital assistant, or other electronic devices capable of running computer applications, as contemplated by a person having ordinary skill in the art.
  • the computer applications 134 stored in the electronic device 130 can include applications for general productivity and information retrieval, including email, calendar, contacts, and stock market and weather information.
  • the computer applications 134 can also include applications in other categories, such as mobile games, factory automation, GPS and location-based services, banking, order-tracking, ticket purchases or any other categories as contemplated by a person having ordinary skill in the art.
  • the operating system 132 of the electronic device 130 includes a state synchronization module 136 to backup application state information from the local storage.
  • the state synchronization module 136 can operate to keep the application state data from the electronic device 130 in synchronization with the cloud storage service 110 and other devices.
  • another electronic device 140 can also synchronize the application state with the cloud storage service 110 .
  • the electronic devices 130 and 140 can synchronize the application states between each other via the cloud storage service 110 .
  • the electronic device 130 can synchronize the application state of a computer application to the cloud storage service 110 .
  • the cloud storage service 110 communicates with the electronic device 140 to know that the electronic device 140 also contain this computer application and the application state of this computer application is not updated on the electronic device 140 .
  • the cloud storage service 110 sends the application state data to the electronic device 140 .
  • the application state of this computer application is synchronized between the electronic devices 130 and 140 .
  • the synchronization for backups from the electronic devices 130 and 140 to the cloud storage service 110 may take place on a configurable periodic basis, such as an hour or a day. In other words, the synchronization is scheduled to take place on a periodic basis. The scheduled synchronization can also check for updates that can be sent from the cloud storage service 110 to the electronic devices 130 and 140 .
  • Another type of synchronization can be a triggered when an event occurs on the electronic device 130 or 140 , and then the state synchronization module can initialize the application state data synchronization with the cloud storage service 110 .
  • the triggered synchronization does not need the intervention from the user. For instance, a user turns off the screen of the electronic device 130 .
  • the screen turning off event can trigger an application state data synchronization with the cloud storage service 110 as well as other electronic devices.
  • the user does not need to specifically instruct the device to synchronize; the user does not even need to realize that the synchronization occurs.
  • the backup event can be any of the following events: the screen of the electronic device being turned off, the instance of the computer application being closed, the instance of the computer application being paused, the instance of the computer application having been run continuously for a preconfigured period of time, the instance of the computer application being switched by another application, the instance of the computer application being switched from the foreground to a background of the operating system, a battery level of the electronic device being below a preconfigured value, the electronic device turning off, the electronic device switching to standby mode, a clock of the electronic device reaching a preconfigured time of day, and the electronic device being in a preconfigured location
  • the synchronization can be a delta synchronization where the electronic device 130 or 140 detects a change (i.e. delta) of application state data and only the changed data or difference are synchronized to the cloud storage device 110 .
  • Any electronic device running an operating system having the state synchronization module can initialize the application state synchronization.
  • the cloud storage service 110 can also initialize the application state synchronization.
  • the cloud storage service 110 may analyze the electronic devices to determine which device is to be synchronized and state data of which application are to be synchronized.
  • FIG. 2 illustrates an example of an application states synchronization process across multiple electronic devices.
  • a cloud storage system identifies a plurality of electronic devices registered to two users capable of synchronizing game state data with the cloud storage system.
  • the electronic devices may be capable of communicating with the cloud storage system via a network, such as the Internet, a WiFi Network, or a cellular phone network.
  • two of the identified electronic devices runs an multiplayer game involving two users.
  • the multiplayer game can be multiplayer mobile games.
  • the game can be at least one of MINECRAFT, MODERN COMBAT, CHESS TIME.
  • the multiplayer game can be multiplayer game running on computer, tablet or consoles.
  • the game can be at least one of WARCRAFT, STARWARS.
  • user A and user B can play CHESS TIME against each other.
  • User A is using a first smart phone registered to user A.
  • User B is using a second smart phone registered to user B.
  • CHESS TIME are running on two smart phones. Each user can see and response to the other user's move.
  • a backup event is determined to occur at the electronic device.
  • the operating system of the electronic device automatically determines the backup event, without the intervention from the user.
  • the user does not specifically instruct the backup event.
  • the user does not even need to realize the backup event.
  • the operating system of the device makes the determination of a backup event.
  • the operating system may recognize an event of the screen being turned off as a backup event.
  • the operating system may also recognize an event of a running application being closed or being switched by another application as a backup event.
  • the operating system may further recognize an event of a system standby as a backup event.
  • the operating system of the device can determine other types of backup events, as contemplated by a person having ordinary skill in the art.
  • the operating system of both electronic devices uploads the game state data of the computer application onto the cloud storage system at step 220 .
  • the operating systems of the devices may decide to immediately start uploading the game state data after the backup event, or start the upload a certain amount of time after the backup event. For instance, if the electronic devices detect that there are electronic devices registered to either user of the two users in a very close proximity, the operating system of the device may decide to start the upload immediately because of a high possibility that either user of the two users will start using the other device soon.
  • the electronic devices may decide to start the upload at a certain time of day or at certain location. For instance, the electronic devices may decide to start the upload at midnight 12 AM and at the user's home (determined by GPS location or WiFi location), so that the upload of the application state data does not intervene with normal operation of the devices.
  • the developer of the computer application does not need to specifically write any implementation for uploading the application state data. For example, there are no API calls embedded in the computer application for the application state data.
  • the state synchronization module of the operating system is responsible for monitoring, collecting and uploading the application state data. In some embodiments, the state synchronization module compares the current application state on the device and the application state already stored in the cloud storage service. If the current application state is newer than the application state stored in the cloud storage service, the state synchronization module determines a difference (i.e. delta) between the current application state data and the application state data stored in the cloud storage service. In this way, the state synchronization module only needs to upload the difference to the cloud storage service.
  • the cloud storage service is responsible for incorporating the difference into the application state data already stored.
  • the cloud storage system performs an analysis on the devices profile, users profile and users history, to determine which devices the state is synchronized to. For instance, in one embodiment, the cloud storage system determines the devices that both users are using (e.g. the devices which have established the two users' account). In another embodiment, the analysis is based on usage pattern. For example, the cloud storage service can determine to synchronize the application state to devices that the users have been frequently used during a specific time period, e.g. a week. Or the cloud storage service can determine to synchronize the application state to devices on which the users have been running that computer application. In yet another embodiment, the analysis is based on a proximity algorithm.
  • the cloud storage service can determine to synchronize the application state to devices that are physically close to the devices in step 210 .
  • the proximity may be determined by GPS locations, WiFi network locations, cellular networking locations or the combination thereof.
  • the analysis is based on the types of applications installed on the devices.
  • the cloud storage service can determine to synchronize the application state to devices that have instances of that application installed, or devices that have similar applications installed.
  • the analysis can be determined by a combination of the above techniques, as well as any other device or user information as contemplated by a person having ordinary skill in the art.
  • the same types of analysis disclosed in the previous paragraph are used in determining the priority of synchronization. For instance, if there are application state data for multiple applications in the cloud storage service to be synchronized.
  • the cloud storage service may determine to synchronize the state data for one application because the user has been frequently using that application during a recent time period, e.g. a week.
  • the cloud storage service decides a priority list including a reference to the application state data for the computer application, wherein the priority list regulates the order of transmitting the application state data for the computer application and data for other applications based on the analyzing of the user profile and the hardware profiles of electronic devices.
  • the analysis is performed after the cloud storage system receives application state data from a device. In some other embodiments, the analysis can be performed before the cloud storage system receives any application state data or before the backup event occurs.
  • the cloud storage system sends the game state data to one or more devices that are identified by the analysis.
  • the identified devices receive the game state data. Therefore, the instances of the game running on the devices are synchronized with the most up-to-date state. Users can run an instance of the application on any of these devices and the instance of the application resumes from the most up-to-date state.
  • the cloud storage system further sends an instruction to each of the identified devices to run an instance of the computer application by resuming the game state at the backup event at step 235 .
  • the application state data of a computer application may include application memory data, application local storage data, hardware configuration data, and user account configuration data.
  • the state synchronization module of the operating system is capable of collecting these data and uploading the data as included in the application state data to the cloud storage service. Based on the application state data, an operating system of another electronic device can recreate the same environment and status of the application on the other electronic device.
  • the electronic devices are capable of synchronizing application state data between each other via a network, such as a WiFi network, Bluetooth network, or a cellular phone network.
  • a network such as a WiFi network, Bluetooth network, or a cellular phone network.
  • Each of the electronic devices contains a network component configured to directly synchronize the application state data with another electronic device.
  • a game application is executed at a first electronic device and a second electronic device.
  • the game application is a multiplayer game application.
  • the first electronic device is registered to a first user and the second electronic device is registered to a second user.
  • the first user plays against the second user.
  • the first electronic device and the second electronic device transmits state data of the game application to a storage server, in response to the sync event.
  • the transmission can be done via a network.
  • a third device connected with the storage system can be detected and can be verified that the third device has the game application installed.
  • the storage server can send the state data of the game application to the third device and an instance of the game application can be initialized at the third device by resuming game application state recorded in synchronized state data of the game application.
  • FIG. 3 illustrates an example operating system of an electronic device, according to one embodiment.
  • the operating system 300 includes a kernel 304 .
  • the kernel 304 provides interfaces to hardware of the electronic device for the computer applications running on top of the kernel 304 , and supervises and controls the computer applications.
  • the kernel 304 isolates the computer applications from the hardware.
  • the kernel 304 may include one or more intervening sources that can affect execution of a computer application.
  • the kernel 304 includes a network I/O module 306 , a file I/O module 308 , multi-threading module 310 , user input 314 , system interrupts 316 , and shared memory access 318 .
  • a state synchronization module 330 runs on top of the kernel 304 .
  • the state synchronization module 330 monitors the information from the intervening sources of the kernel 304 and records state data according the information.
  • a computer application 340 includes a binary executable code 342 that can run on top of the operating system 300 .
  • the computer application 340 can further include static and dynamic libraries 344 that are referenced by the binary executable code 342 during application running.
  • the state synchronization module 330 runs in a user space file system (e.g. FUSE) on top of a Linux kernel.
  • the state synchronization module 330 runs in a kernel file system.
  • FIG. 4 illustrates an example of an application state data of a computer application collected by an operating system according to one embodiment.
  • the application state data 400 of a computer application may include application memory data 402 , application local storage data 404 , hardware configuration data 406 , and user account configuration data 408 .
  • the application state data can be all of or any combination of some of the fields 402 , 404 , 406 and 408 .
  • the state information in memory section i.e. the application memory data 402
  • the state synchronization module of the operating system monitors the application memory data 402 , and uploads the data to a cloud storage service in response to the backup event.
  • the computer application can update certain data on a local storage of the electronic device.
  • the state synchronization module of the operating system can include the application local storage data 404 into the application state data 400 .
  • the electronic device includes a memory device, e.g. flash memory, as both the memory and the local storage. Therefore, the application memory data 402 and application local storage data 404 can be one section of data that exists on the memory device of the electronic device.
  • the application state data 400 may further include hardware configuration data 406 .
  • the state synchronization module may record the current device sound volume level and the screen brightness level when the application is running. These device sound volume level and the screen brightness level are recorded as part of the hardware configuration data 405 and will be uploaded to the cloud storage service. Therefore, after another device is synchronized with the application state data and starts to resume running the application, the other device automatically adjusts the sound volume level and screen brightness level as on the previous device.
  • the application state data 400 may include user account configuration data 408 .
  • the user account configuration data 408 may include the user's preferences and choices regarding the computer application and the operating system environment for running the computer application. For instance, the user account configuration data 408 may include information about the user's language preference.
  • the state synchronization module records the user's language preference as a part of the user account configuration data 408 .
  • the user account configuration data 408 is synchronized to another device via the cloud storage service. When the other device starts to resume running the application, the application will use the English language for the game interface, as indicated by the user account configuration data 408 .
  • a user can define a synchronization scheme to control the way how and when the synchronization process performs.
  • FIG. 5 illustrates an example of an application state synchronization process based on a user defined synchronization scheme.
  • a cloud storage service receives an instruction of a synchronization scheme from a user.
  • the synchronization scheme includes rules of how and when the synchronization process performs.
  • the synchronization scheme can define a synchronization rule between two electronic devices, a smart phone and a tablet computer, for application state of a game application.
  • the synchronization rule specifies that one of the electronic devices start attempting to synchronize application state to the other device, as soon as the game application is closed or the screen of the device being turned off.
  • step 510 the operating system of the smart phone checks whether the game application is closed by the user. If the game application is closed, the process continues to step 520 . Otherwise, at step 515 the operating system of the smart phone continues to check whether the screen of the smart phone is turned off. If the screen is turned off, the process continues to step 520 . Otherwise, the process goes back to check the status as in steps 510 and 520 in a predetermined time period.
  • the smart phone uploads application state data of the game application to the cloud storage system.
  • the schedule of the uploading can depend on a type and a speed of a connection between the smart phone and the cloud storage system. For instance the schedule can be determined so that the uploading is delayed to use a WiFi connection, to avoid the uploading using a cellular data connection (e.g. 3G or LTE).
  • the cloud storage system reads the synchronization scheme defined by the user.
  • the cloud storage system checks whether the other device, i.e. the tablet computer, is currently being connected with the cloud storage system. If the tablet computer is connected with the cloud storage system, the system sends the application state data to the tablet computer according to the synchronization scheme at 535 . Otherwise, the cloud storage system continues to check the connection with the tablet computer on a periodic basis.
  • the tablet computer starts to run an instance of the game application by resuming the application state recorded in the synchronized application state data.
  • an electronic device can automatically back up the application state data to a cloud storage service and restore the application state be retrieving the application state data from the cloud storage service.
  • FIG. 6 illustrates an example of an application backup and restore process.
  • an first electronic device runs an instance of a computer application.
  • the first electronic device determines a backup event that occurs in the first electronic device.
  • the backup event suggests a backup of application state data and the application state data represent an application state of the computer application at the backup event.
  • the backup event can be automatic and does not need to be instructed by a user who is operating the instance of the computer application.
  • the first electronic device transmits the application state data of the computer application to a remote storage service, in response to the backup event.
  • the remote storage service can be a cloud computing service.
  • the remote storage service can belong to a cloud storage service cluster.
  • the first electronic device is capable of transmitting the application state data to the remote storage service via a network, which can include the Internet, a WiFi network, or a cellular phone network.
  • the first electronic device can immediately transmit the application state data of the computer application to a remote storage service in real time without substantial delay, in response to the backup event.
  • the application state data of the computer application can be transmitted to the remote storage service at a preconfigured time of day or when the first electronic device is at a preconfigured location, in response to the backup event.
  • the application state data of the computer application can be transmitted to the remote storage service at a schedule depending on a type and a speed of a connection between the first electronic device and the remote storage service, in response to the backup event.
  • the schedule can be determined so that the transmitting is delayed to use a WiFi connection, to avoid the transmitting using a cellular data connection.
  • the backup can be incremental. For instance, a difference between the application state data of the computer application and previously transmitted application state data can be transmitted to a remote storage service, in response to the backup event.
  • the first electronic device may further determine a restore event that occurs in the electronic device, wherein the restore event suggests a restore of the application state of the computer application at the second electronic device; and instructs the remote storage service to transmit the application state data of the computer application to the second electronic, in response to the restore event.
  • a second electronic device can perform the process of restoring the application state.
  • the second electronic device determines a restore event that occurs in a second electronic device.
  • the restore event suggests a restore of the application state of the computer application at the second electronic device.
  • the second electronic device can further instruct the remote storage service to transmit the application state data of the computer application to the second electronic device, in response to the restore event.
  • the second electronic device restores the computer application to the application state using the application state data.
  • FIG. 7 is a high-level block diagram showing an example of the architecture of a computer, which may represent any electronic device or any server within a cloud storage service as described herein.
  • the server 700 includes one or more processors 710 and memory 720 coupled to an interconnect 730 .
  • the interconnect 730 shown in FIG. 7 is an abstraction that represents any one or more separate physical buses, point to point connections, or both connected by appropriate bridges, adapters, or controllers.
  • the interconnect 730 may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
  • PCI Peripheral Component Interconnect
  • ISA industry standard architecture
  • SCSI small computer system interface
  • USB universal serial bus
  • IIC I2
  • IEEE Institute of Electrical and Electronics Engineers
  • the processor(s) 710 is/are the central processing unit (CPU) of the server 700 and, thus, control the overall operation of the server 700 . In certain embodiments, the processor(s) 710 accomplish this by executing software or firmware stored in memory 720 .
  • the processor(s) 710 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
  • the memory 720 is or includes the main memory of the server 700 .
  • the memory 720 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices.
  • the memory 720 may contain a code 770 containing instructions according to the techniques disclosed herein.
  • the network adapter 740 provides the server 700 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter.
  • the network adapter 740 may also provide the server 700 with the ability to communicate with other computers.
  • the storage adapter 750 allows the server 700 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
  • the code 770 stored in memory 720 may be implemented as software and/or firmware to program the processor(s) 710 to carry out actions described above.
  • such software or firmware may be initially provided to the server 700 by downloading it from a remote system through the server 700 (e.g., via network adapter 740 ).
  • programmable circuitry e.g., one or more microprocessors
  • Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
  • ASICs application-specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field-programmable gate arrays
  • Machine-readable storage medium includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.).
  • a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
  • logic can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.

Abstract

Technology for a method for backing up and restoring multiplayer game state across multiple devices that are registered to multiple users is disclosed herein. The method includes running instances of a multiplayer game application at multiple electronic devices, determining a backup event that occurs in any of the multiple electronic devices, wherein the backup event suggests a backup of game state data and the game state data represent a game state of the game application at the backup event, and transmitting the game state data of the game application to a remote storage service, in response to the backup event. Other electronic devices registered to any of the multiple users can retrieve the application state data from the remote storage service and restore the game application state.

Description

    PRIORITY CLAIM
  • This application is a continuation of U.S. patent application Ser. No. 14/043,034, entitled “APPLICATION STATE BACKUP AND RESTORATION ACROSS MULTIPLE DEVICES”, which was filed on Oct. 1, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/772,163, entitled “APPLICATION STATE SYNCHRONIZATION ACROSS MULTIPLE DEVICES”, which was filed on Feb. 20, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/708,794, entitled “CLOUD COMPUTING INTEGRATED OPERATING SYSTEM”, which was filed on Oct. 2, 2012, all of which are incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • At least one embodiment of the present invention pertains to cloud computing, and more particularly, to automatic backup and restoration of application states across multiple devices using cloud storage.
  • BACKGROUND
  • Application state data are data used to record the running status of a computer application. One example of application state data is a game save for a game application. A game save is a piece of digitally stored information about the progress of a user operating the game application. The game save can be reloaded later, so that the user can continue where he stopped. The user instructs the game application to generate a game save (i.e. save the game) to prevent the loss of progress in the game, especially when he is interrupted or ending a game session.
  • Sharing and backing up game saves among users have been common for many years. Originally by swapping memory cards with game saves, users could help each other to unlock features in a game application. With the growing popularity of the Internet, users start to upload their game saves from their devices to Internet servers. By downloading a game save from an Internet server, a user can continue the progress of the game on the device on which he played the game or another device such as a computer, game console, or smart phone. However, to achieve the goal of continuing the progress on another device, the user needs to deliberately instruct the device to save the game progress (i.e. game save) and to upload the game save to a server or a memory card. Then the user needs to download the game from the server or the memory card to the other device, and then instructs the other device to load the game save. The whole process is tedious and requires many user interventions. Furthermore, the process only works for game applications that are specifically designed with game saving functionalities.
  • SUMMARY
  • Techniques introduced here provide an automatic mechanism for backing up and restoring application state across multiple devices. In accordance with the techniques introduced here, a method includes running an instance of a computer application at a first electronic device, and determining a backup event that occurs in the first electronic device. The backup event suggests a backup of application state data and the application state data represent an application state of the computer application at the backup event. The method further includes transmitting the application state data of the computer application to a remote storage service, in response to the backup event. Another electronic device can retrieve the application state data of the computer application from the remote storage service, and restore the computer application to the application state using the application state data.
  • The backup proceeds automatically on the background of the operating system of the device and is transparent to the user as well as the application. The user can restore the application state of the application running on the same device or on another device at where the state of the application has been backed up. The application state backup and restore can be achieved at the operating system level of the devices. There is no special treatment or design needed for the computer application itself. Any computer application capable of running on such an operating system can take advantage of the application state backup and restore functionality.
  • Other aspects of the technology introduced here will be apparent from the accompanying figures and from the detailed description which follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other objects, features and characteristics of the present invention will become more apparent to those skilled in the art from a study of the following detailed description in conjunction with the appended claims and drawings, all of which form a part of this specification. In the drawings:
  • FIG. 1 illustrates an example system for application state synchronization between electronic devices.
  • FIG. 2 illustrates an example of a multi-player game states synchronization process across multiple electronic devices registered to multiple users.
  • FIG. 3 illustrates an example operating system of an electronic device.
  • FIG. 4 illustrates an example of an application state data of a computer application collected by an operating system.
  • FIG. 5 illustrates an example of an application state synchronization process based on a user defined synchronization scheme.
  • FIG. 6 illustrates an example of an application state backup and restoration process.
  • FIG. 7 is a high-level block diagram showing an example of the architecture of a computer server, which may represent any computer running the database management system described herein.
  • DETAILED DESCRIPTION
  • References in this specification to “an embodiment,” “one embodiment,” or the like, mean that the particular feature, structure, or characteristic being described is included in at least one embodiment of the present invention. Occurrences of such phrases in this specification do not all necessarily refer to the same embodiment, however.
  • A method of application state synchronization across devices is described herein. For example, a user plays a game on his smart phone, and stops playing and turns off the screen of his smart phone. The state of the game application is synchronized between his smart phone and other electronic devices via a cloud system. He can pick up his tablet computer and continue to play the game from where he left off. The synchronization is not necessarily directly triggered by a user intervention. For instance, the synchronization can be automatically triggered when the screen of the smart phone is turned off, or the user closes the game on his smart phone. The synchronization proceeds automatically on the background and is transparent to the user. Furthermore, the cloud system can analyze various information, including device profile, user profile and user history, to determine state of which application is to be synchronized and which device the state is synchronized to.
  • FIG. 1 illustrates an example system for application state synchronization between electronic devices. The system includes a cloud storage service 110 configured to store state data for applications. In one embodiment, the cloud storage service 110 can be a storage cluster having computer nodes interconnected with each other by a network. The storage cluster can communicate with other electronic devices via the Internet. The cloud storage service 110 contains storage nodes 112. Each of the storage nodes 112 contains one or more processors 114 and storage devices 116. The storage devices can include optical disk storage, RAM, ROM, EEPROM, flash memory, phase change memory, magnetic cassettes, magnetic tapes, magnetic disk storage or any other computer storage medium which can be used to store the desired information.
  • A cloud synchronization interface 120 can also be included to receive data to be stored in the cloud storage service. The cloud synchronization interface 120 can include network communication hardware and network connection logic to receive the information from electronic devices. The network can be a local area network (LAN), wide area network (WAN) or the Internet. The cloud synchronization interface 120 may include a queuing mechanism to organize the received synchronization data to be stored in the cloud storage service 110. The cloud synchronization interface 120 can communicate with the cloud storage service 110 to send requests to the cloud storage service 110 for storing application state data and retrieving data.
  • An electronic device 130 includes an operating system 132 to manage the hardware resources of the electronic device 130 and provide services for running computer applications 134. The computer application 134 stored in the electronic device 130 require the operating system 132 to properly run on the device 130. The electronic device 130 can backup application states of the computer applications 134 to the cloud storage service 110. The electronic device 130 includes at least one local storage device 138 to store the computer applications, application data, and user data. The electronic device 130 can synchronize the application state data with the cloud storage service 110 via the cloud synchronization interface 120. The electronic device 130 or 140 can be a desktop computer, a laptop computer, a tablet computer, an automobile computer, a game console, a smart phone, a personal digital assistant, or other electronic devices capable of running computer applications, as contemplated by a person having ordinary skill in the art.
  • The computer applications 134 stored in the electronic device 130 can include applications for general productivity and information retrieval, including email, calendar, contacts, and stock market and weather information. The computer applications 134 can also include applications in other categories, such as mobile games, factory automation, GPS and location-based services, banking, order-tracking, ticket purchases or any other categories as contemplated by a person having ordinary skill in the art.
  • The operating system 132 of the electronic device 130 includes a state synchronization module 136 to backup application state information from the local storage. The state synchronization module 136 can operate to keep the application state data from the electronic device 130 in synchronization with the cloud storage service 110 and other devices.
  • Similarly, another electronic device 140 can also synchronize the application state with the cloud storage service 110. The electronic devices 130 and 140 can synchronize the application states between each other via the cloud storage service 110. For instance, the electronic device 130 can synchronize the application state of a computer application to the cloud storage service 110. The cloud storage service 110 communicates with the electronic device 140 to know that the electronic device 140 also contain this computer application and the application state of this computer application is not updated on the electronic device 140. In turn, the cloud storage service 110 sends the application state data to the electronic device 140. Thus, the application state of this computer application is synchronized between the electronic devices 130 and 140.
  • In one embodiment, the synchronization for backups from the electronic devices 130 and 140 to the cloud storage service 110 may take place on a configurable periodic basis, such as an hour or a day. In other words, the synchronization is scheduled to take place on a periodic basis. The scheduled synchronization can also check for updates that can be sent from the cloud storage service 110 to the electronic devices 130 and 140.
  • Another type of synchronization can be a triggered when an event occurs on the electronic device 130 or 140, and then the state synchronization module can initialize the application state data synchronization with the cloud storage service 110. The triggered synchronization does not need the intervention from the user. For instance, a user turns off the screen of the electronic device 130. The screen turning off event can trigger an application state data synchronization with the cloud storage service 110 as well as other electronic devices. However, the user does not need to specifically instruct the device to synchronize; the user does not even need to realize that the synchronization occurs.
  • In one embodiment, the backup event can be any of the following events: the screen of the electronic device being turned off, the instance of the computer application being closed, the instance of the computer application being paused, the instance of the computer application having been run continuously for a preconfigured period of time, the instance of the computer application being switched by another application, the instance of the computer application being switched from the foreground to a background of the operating system, a battery level of the electronic device being below a preconfigured value, the electronic device turning off, the electronic device switching to standby mode, a clock of the electronic device reaching a preconfigured time of day, and the electronic device being in a preconfigured location
  • In one embodiment, the synchronization can be a delta synchronization where the electronic device 130 or 140 detects a change (i.e. delta) of application state data and only the changed data or difference are synchronized to the cloud storage device 110.
  • Any electronic device running an operating system having the state synchronization module can initialize the application state synchronization. In addition, the cloud storage service 110 can also initialize the application state synchronization. In one embodiment, the cloud storage service 110 may analyze the electronic devices to determine which device is to be synchronized and state data of which application are to be synchronized.
  • FIG. 2 illustrates an example of an application states synchronization process across multiple electronic devices. At step 205, a cloud storage system identifies a plurality of electronic devices registered to two users capable of synchronizing game state data with the cloud storage system. The electronic devices may be capable of communicating with the cloud storage system via a network, such as the Internet, a WiFi Network, or a cellular phone network. At step 210, two of the identified electronic devices runs an multiplayer game involving two users. The multiplayer game can be multiplayer mobile games. For example, the game can be at least one of MINECRAFT, MODERN COMBAT, CHESS TIME. The multiplayer game can be multiplayer game running on computer, tablet or consoles. For example, the game can be at least one of WARCRAFT, STARWARS. In one embodiment, user A and user B can play CHESS TIME against each other. User A is using a first smart phone registered to user A. User B is using a second smart phone registered to user B. One instance of CHESS TIME are running on two smart phones. Each user can see and response to the other user's move.
  • At step 215, a backup event is determined to occur at the electronic device. The operating system of the electronic device automatically determines the backup event, without the intervention from the user. The user does not specifically instruct the backup event. The user does not even need to realize the backup event. There is no need for a sync button, a sync gesture, a sync menu item, or a sync command. In other words, the operating system of the device makes the determination of a backup event. For instance, the operating system may recognize an event of the screen being turned off as a backup event. The operating system may also recognize an event of a running application being closed or being switched by another application as a backup event. The operating system may further recognize an event of a system standby as a backup event. The operating system of the device can determine other types of backup events, as contemplated by a person having ordinary skill in the art.
  • Once the operating detects a backup event, the operating system of both electronic devices uploads the game state data of the computer application onto the cloud storage system at step 220. The operating systems of the devices may decide to immediately start uploading the game state data after the backup event, or start the upload a certain amount of time after the backup event. For instance, if the electronic devices detect that there are electronic devices registered to either user of the two users in a very close proximity, the operating system of the device may decide to start the upload immediately because of a high possibility that either user of the two users will start using the other device soon. In another embodiment, the electronic devices may decide to start the upload at a certain time of day or at certain location. For instance, the electronic devices may decide to start the upload at midnight 12 AM and at the user's home (determined by GPS location or WiFi location), so that the upload of the application state data does not intervene with normal operation of the devices.
  • In one embodiment, the developer of the computer application does not need to specifically write any implementation for uploading the application state data. For example, there are no API calls embedded in the computer application for the application state data. The state synchronization module of the operating system is responsible for monitoring, collecting and uploading the application state data. In some embodiments, the state synchronization module compares the current application state on the device and the application state already stored in the cloud storage service. If the current application state is newer than the application state stored in the cloud storage service, the state synchronization module determines a difference (i.e. delta) between the current application state data and the application state data stored in the cloud storage service. In this way, the state synchronization module only needs to upload the difference to the cloud storage service. The cloud storage service is responsible for incorporating the difference into the application state data already stored.
  • At step 225, the cloud storage system performs an analysis on the devices profile, users profile and users history, to determine which devices the state is synchronized to. For instance, in one embodiment, the cloud storage system determines the devices that both users are using (e.g. the devices which have established the two users' account). In another embodiment, the analysis is based on usage pattern. For example, the cloud storage service can determine to synchronize the application state to devices that the users have been frequently used during a specific time period, e.g. a week. Or the cloud storage service can determine to synchronize the application state to devices on which the users have been running that computer application. In yet another embodiment, the analysis is based on a proximity algorithm. For example, the cloud storage service can determine to synchronize the application state to devices that are physically close to the devices in step 210. The proximity may be determined by GPS locations, WiFi network locations, cellular networking locations or the combination thereof. In still another embodiment, the analysis is based on the types of applications installed on the devices. For example, the cloud storage service can determine to synchronize the application state to devices that have instances of that application installed, or devices that have similar applications installed. Furthermore, the analysis can be determined by a combination of the above techniques, as well as any other device or user information as contemplated by a person having ordinary skill in the art.
  • The same types of analysis disclosed in the previous paragraph are used in determining the priority of synchronization. For instance, if there are application state data for multiple applications in the cloud storage service to be synchronized. The cloud storage service may determine to synchronize the state data for one application because the user has been frequently using that application during a recent time period, e.g. a week. In one embodiment, the cloud storage service decides a priority list including a reference to the application state data for the computer application, wherein the priority list regulates the order of transmitting the application state data for the computer application and data for other applications based on the analyzing of the user profile and the hardware profiles of electronic devices.
  • In some embodiments, the analysis is performed after the cloud storage system receives application state data from a device. In some other embodiments, the analysis can be performed before the cloud storage system receives any application state data or before the backup event occurs.
  • At step 230, the cloud storage system sends the game state data to one or more devices that are identified by the analysis. The identified devices receive the game state data. Therefore, the instances of the game running on the devices are synchronized with the most up-to-date state. Users can run an instance of the application on any of these devices and the instance of the application resumes from the most up-to-date state. In one embodiment, the cloud storage system further sends an instruction to each of the identified devices to run an instance of the computer application by resuming the game state at the backup event at step 235.
  • In one embodiment, the application state data of a computer application may include application memory data, application local storage data, hardware configuration data, and user account configuration data. The state synchronization module of the operating system is capable of collecting these data and uploading the data as included in the application state data to the cloud storage service. Based on the application state data, an operating system of another electronic device can recreate the same environment and status of the application on the other electronic device.
  • In some embodiments, the electronic devices are capable of synchronizing application state data between each other via a network, such as a WiFi network, Bluetooth network, or a cellular phone network. Each of the electronic devices contains a network component configured to directly synchronize the application state data with another electronic device.
  • In another embodiment, a game application is executed at a first electronic device and a second electronic device. The game application is a multiplayer game application. The first electronic device is registered to a first user and the second electronic device is registered to a second user. The first user plays against the second user.
  • After a sync event is detected, the first electronic device and the second electronic device transmits state data of the game application to a storage server, in response to the sync event. The transmission can be done via a network. A third device connected with the storage system can be detected and can be verified that the third device has the game application installed. The storage server can send the state data of the game application to the third device and an instance of the game application can be initialized at the third device by resuming game application state recorded in synchronized state data of the game application.
  • FIG. 3 illustrates an example operating system of an electronic device, according to one embodiment. The operating system 300 includes a kernel 304. The kernel 304 provides interfaces to hardware of the electronic device for the computer applications running on top of the kernel 304, and supervises and controls the computer applications. The kernel 304 isolates the computer applications from the hardware. The kernel 304 may include one or more intervening sources that can affect execution of a computer application. In one embodiment, the kernel 304 includes a network I/O module 306, a file I/O module 308, multi-threading module 310, user input 314, system interrupts 316, and shared memory access 318.
  • A state synchronization module 330 runs on top of the kernel 304. The state synchronization module 330 monitors the information from the intervening sources of the kernel 304 and records state data according the information. In the example of FIG. 3, a computer application 340 includes a binary executable code 342 that can run on top of the operating system 300. The computer application 340 can further include static and dynamic libraries 344 that are referenced by the binary executable code 342 during application running. In one embodiment, the state synchronization module 330 runs in a user space file system (e.g. FUSE) on top of a Linux kernel. In another embodiment, the state synchronization module 330 runs in a kernel file system.
  • FIG. 4 illustrates an example of an application state data of a computer application collected by an operating system according to one embodiment. The application state data 400 of a computer application may include application memory data 402, application local storage data 404, hardware configuration data 406, and user account configuration data 408. In some other embodiments, the application state data can be all of or any combination of some of the fields 402, 404, 406 and 408. When the computer application is running, the state information in memory section (i.e. the application memory data 402) allocated for the application is being updated by the running application. The state synchronization module of the operating system monitors the application memory data 402, and uploads the data to a cloud storage service in response to the backup event. Furthermore, the computer application can update certain data on a local storage of the electronic device. The state synchronization module of the operating system can include the application local storage data 404 into the application state data 400. In some embodiments, the electronic device includes a memory device, e.g. flash memory, as both the memory and the local storage. Therefore, the application memory data 402 and application local storage data 404 can be one section of data that exists on the memory device of the electronic device.
  • The application state data 400 may further include hardware configuration data 406. For instance, the state synchronization module may record the current device sound volume level and the screen brightness level when the application is running. These device sound volume level and the screen brightness level are recorded as part of the hardware configuration data 405 and will be uploaded to the cloud storage service. Therefore, after another device is synchronized with the application state data and starts to resume running the application, the other device automatically adjusts the sound volume level and screen brightness level as on the previous device. Moreover, the application state data 400 may include user account configuration data 408. The user account configuration data 408 may include the user's preferences and choices regarding the computer application and the operating system environment for running the computer application. For instance, the user account configuration data 408 may include information about the user's language preference. Assuming the computer application is a game supporting both English and Chinese languages for user interface in the game, the user has selected the English language as the preferred language. The state synchronization module records the user's language preference as a part of the user account configuration data 408. The user account configuration data 408 is synchronized to another device via the cloud storage service. When the other device starts to resume running the application, the application will use the English language for the game interface, as indicated by the user account configuration data 408.
  • In some embodiments, a user can define a synchronization scheme to control the way how and when the synchronization process performs. FIG. 5 illustrates an example of an application state synchronization process based on a user defined synchronization scheme. At step 505, a cloud storage service receives an instruction of a synchronization scheme from a user. The synchronization scheme includes rules of how and when the synchronization process performs. For example, in one embodiment, the synchronization scheme can define a synchronization rule between two electronic devices, a smart phone and a tablet computer, for application state of a game application. The synchronization rule specifies that one of the electronic devices start attempting to synchronize application state to the other device, as soon as the game application is closed or the screen of the device being turned off.
  • Assuming the smart phone is the current device running the game application, at step 510, the operating system of the smart phone checks whether the game application is closed by the user. If the game application is closed, the process continues to step 520. Otherwise, at step 515 the operating system of the smart phone continues to check whether the screen of the smart phone is turned off. If the screen is turned off, the process continues to step 520. Otherwise, the process goes back to check the status as in steps 510 and 520 in a predetermined time period.
  • At step 520, the smart phone uploads application state data of the game application to the cloud storage system. The schedule of the uploading can depend on a type and a speed of a connection between the smart phone and the cloud storage system. For instance the schedule can be determined so that the uploading is delayed to use a WiFi connection, to avoid the uploading using a cellular data connection (e.g. 3G or LTE). At step 525, the cloud storage system reads the synchronization scheme defined by the user. At step 530, the cloud storage system checks whether the other device, i.e. the tablet computer, is currently being connected with the cloud storage system. If the tablet computer is connected with the cloud storage system, the system sends the application state data to the tablet computer according to the synchronization scheme at 535. Otherwise, the cloud storage system continues to check the connection with the tablet computer on a periodic basis.
  • At step 540, when the user starts to use the tablet computer, the tablet computer starts to run an instance of the game application by resuming the application state recorded in the synchronized application state data.
  • In some embodiments, an electronic device can automatically back up the application state data to a cloud storage service and restore the application state be retrieving the application state data from the cloud storage service. FIG. 6 illustrates an example of an application backup and restore process. At step 605, an first electronic device runs an instance of a computer application. At step 610, the first electronic device determines a backup event that occurs in the first electronic device. The backup event suggests a backup of application state data and the application state data represent an application state of the computer application at the backup event. The backup event can be automatic and does not need to be instructed by a user who is operating the instance of the computer application.
  • At step 615, the first electronic device transmits the application state data of the computer application to a remote storage service, in response to the backup event. The remote storage service can be a cloud computing service. Alternatively, the remote storage service can belong to a cloud storage service cluster. The first electronic device is capable of transmitting the application state data to the remote storage service via a network, which can include the Internet, a WiFi network, or a cellular phone network. In one embodiment, the first electronic device can immediately transmit the application state data of the computer application to a remote storage service in real time without substantial delay, in response to the backup event.
  • The application state data of the computer application can be transmitted to the remote storage service at a preconfigured time of day or when the first electronic device is at a preconfigured location, in response to the backup event. Alternatively, the application state data of the computer application can be transmitted to the remote storage service at a schedule depending on a type and a speed of a connection between the first electronic device and the remote storage service, in response to the backup event. The schedule can be determined so that the transmitting is delayed to use a WiFi connection, to avoid the transmitting using a cellular data connection. The backup can be incremental. For instance, a difference between the application state data of the computer application and previously transmitted application state data can be transmitted to a remote storage service, in response to the backup event.
  • In some embodiments, the first electronic device may further determine a restore event that occurs in the electronic device, wherein the restore event suggests a restore of the application state of the computer application at the second electronic device; and instructs the remote storage service to transmit the application state data of the computer application to the second electronic, in response to the restore event.
  • Alternatively, a second electronic device can perform the process of restoring the application state. At step 620, the second electronic device determines a restore event that occurs in a second electronic device. The restore event suggests a restore of the application state of the computer application at the second electronic device. At step 625, the second electronic device can further instruct the remote storage service to transmit the application state data of the computer application to the second electronic device, in response to the restore event. At step 630, the second electronic device restores the computer application to the application state using the application state data.
  • FIG. 7 is a high-level block diagram showing an example of the architecture of a computer, which may represent any electronic device or any server within a cloud storage service as described herein. The server 700 includes one or more processors 710 and memory 720 coupled to an interconnect 730. The interconnect 730 shown in FIG. 7 is an abstraction that represents any one or more separate physical buses, point to point connections, or both connected by appropriate bridges, adapters, or controllers. The interconnect 730, therefore, may include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (I2) bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also called “Firewire”.
  • The processor(s) 710 is/are the central processing unit (CPU) of the server 700 and, thus, control the overall operation of the server 700. In certain embodiments, the processor(s) 710 accomplish this by executing software or firmware stored in memory 720. The processor(s) 710 may be, or may include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform modules (TPMs), or the like, or a combination of such devices.
  • The memory 720 is or includes the main memory of the server 700. The memory 720 represents any form of random access memory (RAM), read-only memory (ROM), flash memory, or the like, or a combination of such devices. In use, the memory 720 may contain a code 770 containing instructions according to the techniques disclosed herein.
  • Also connected to the processor(s) 710 through the interconnect 730 are a network adapter 740 and a storage adapter 750. The network adapter 740 provides the server 700 with the ability to communicate with remote devices, over a network and may be, for example, an Ethernet adapter or Fibre Channel adapter. The network adapter 740 may also provide the server 700 with the ability to communicate with other computers. The storage adapter 750 allows the server 700 to access a persistent storage, and may be, for example, a Fibre Channel adapter or SCSI adapter.
  • The code 770 stored in memory 720 may be implemented as software and/or firmware to program the processor(s) 710 to carry out actions described above. In certain embodiments, such software or firmware may be initially provided to the server 700 by downloading it from a remote system through the server 700 (e.g., via network adapter 740).
  • The techniques introduced herein can be implemented by, for example, programmable circuitry (e.g., one or more microprocessors) programmed with software and/or firmware, or entirely in special-purpose hardwired circuitry, or in a combination of such forms. Special-purpose hardwired circuitry may be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
  • Software or firmware for use in implementing the techniques introduced here may be stored on a machine-readable storage medium and may be executed by one or more general-purpose or special-purpose programmable microprocessors. A “machine-readable storage medium”, as the term is used herein, includes any mechanism that can store information in a form accessible by a machine (a machine may be, for example, a computer, network device, cellular phone, personal digital assistant (PDA), manufacturing tool, any device with one or more processors, etc.). For example, a machine-accessible storage medium includes recordable/non-recordable media (e.g., read-only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; etc.), etc.
  • The term “logic”, as used herein, can include, for example, programmable circuitry programmed with specific software and/or firmware, special-purpose hardwired circuitry, or a combination thereof.
  • In addition to the above mentioned examples, various other modifications and alterations of the invention may be made without departing from the invention. Accordingly, the above disclosure is not to be considered as limiting and the appended claims are to be interpreted as encompassing the true spirit and the entire scope of the invention.

Claims (20)

What is claimed is:
1. A computer-implemented method comprising:
running an instance of a game application at a first electronic device and a second electronic device, wherein the game application is a multiplayer game application, wherein the first electronic device is registered to a first user, wherein the second electronic device is registered to a second user, wherein the first user plays against the second user;
automatically determining a sync event that occurs in the first electronic device or the second electronic device, wherein the sync event is an event from events including the instance of the game application being closed, the instance of the game application being paused, the instance of the game application has been continuously running for a preconfigured period of time, the instance of the game application being switched by another application;
transmitting state data of the game application to a storage server, in response to the sync event, wherein the electronic device is capable of transmitting the state data of the game application to the storage server via a network, wherein the storage server belongs to a cloud storage service cluster;
detecting a third device connected with the storage system, wherein the third device is registered to either the first user or the second user;
verifying existence of the game application at the third device;
sending the state data of the game application to the third device; and
running an instance of the game application at the third device by resuming game application state recorded in synchronized state data of the game application.
2. The computer-implemented method of claim 1, wherein the step of transmitting includes:
transmitting a difference between the state data of the game application and previously transmitted state data to a storage server, in response to the sync event.
3. A computer-implemented method comprising:
running an instance of a game application at a first electronic device and a second electronic device, wherein the game application is a multiplayer game application, wherein the first electronic device is registered to a first user, wherein the second electronic device is registered to a second user;
determining a backup event that occurs in the first electronic device, wherein the backup event is an event from events including at least three of the instance of the game application being closed, the instance of the game application being paused, the instance of the game application has been continuously running for a preconfigured period of time, the instance of the game application being switched by another application, a battery level of the first electronic device being below a preconfigured value, a battery level of the second electronic device being below a preconfigured value;
transmitting the application state data of the game application to a remote storage service, in response to the backup event, wherein the first electronic device is capable of transmitting the application state data to the remote storage service via a network, wherein the second electronic device is capable of transmitting the application state data to the remote storage service via the network;
analyzing a first user profile for the first user and a second user profile of the second user;
determining a target electronic device from the at least one third electronic device, based on the analyzing of the first user profile and the second user profile; and
transmitting the application state data to the target electronic device, wherein the application state data enable another instance of the game application to resume the application state at the sync event at the target electronic device. running a second instance of the game application at the third electronic device by resuming game application state recorded in synchronized state data of the game application.
4. The computer-implemented method of claim 3, wherein the step of determining includes:
determining another electronic device other than the target electronic device, the another electronic device having established a user account of the first user who runs the game application at the first electronic device.
5. The computer-implemented method of claim 3, wherein the step of determining includes:
determining another electronic device other than the target electronic device, the another electronic device having established a user account of the second user who runs the game application at the second electronic device.
6. The computer-implemented method of claim 3, wherein the step of analyzing includes:
identifying an electronic device being in proximity of the first electronic device.
7. The computer-implemented method of claim 3, further comprising:
receiving a confirmation that the game application has been restored to the application state using the application state data.
8. The computer-implemented method of claim 3, wherein the first user competes against the second user in the multi-player game.
9. The computer-implemented method of claim 3, wherein the first user and the second user plays in a team.
10. An electronic device comprising:
a processor;
a memory storing instructions which, when executed by the processor, cause the electronic device to perform a process including:
running a multiplayer game application at the electronic device, wherein the multiplayer game application also runs at a second electronic devices, wherein a first user plays the multiplayer game application at the electronic device, wherein a second user plays the multiplayer game application at the second electronic device,
automatically determining a sync event that occurs in the electronic device, wherein the sync event is an event from events including at least four of the instance of the game application being closed, the instance of the game application being paused, the instance of the game application has been continuously running for a preconfigured period of time, the instance of the game application being switched by another application, a battery level of the electronic device being below a preconfigured value, the electronic device turning off, the electronic device switching to standby mode, a clock of the electronic device reaching a preconfigured time of day, and the electronic device being a preconfigured location;
transmitting state data of the game application to a storage server, in response to the sync event, wherein the electronic device is capable of transmitting the state data of the game application to the storage server via a network, wherein the storage server belongs to a cloud storage service cluster, wherein the state data of the game application includes application memory data, application local storage data, hardware configuration data, or user account configuration data;
a network component configured to transmit the state data of the game application to a storage server, in response to the sync event, wherein the application state data of the game application enable another instance of the game application to resume the application state at the sync event at another electronic device.
11. The electronic device of claim 10, wherein the state data of the game application includes game save data for the game application.
12. The electronic device of claim 10, wherein the step of determining includes:
automatically determining a sync event that occurs in the electronic device without user intervention, wherein the sync event suggests a synchronization of the state data of the game application and the state data of the game application represents an application state of the game application at the sync event.
13. The electronic device of claim 10, wherein the storage server belongs to a cloud storage service that is capable of synchronizing the application state data with another electronic device.
14. The electronic device of claim 10, wherein the multiplayer game is only played by a mobile device.
15. A computer-implemented method comprising:
running an instance of a game application at a first electronic device, wherein the game application is a multiplayer game application;
determining a backup event that occurs in the first electronic device, wherein the backup event is an event from events including the instance of the game application being closed, the instance of the game application being paused, the instance of the game application has been continuously running for a preconfigured period of time, the instance of the game application being switched by another application, a battery level of the electronic device being below a preconfigured value, the electronic device turning off, the electronic device switching to standby mode, a clock of the electronic device reaching a preconfigured time of day, and the electronic device being a preconfigured location;
transmitting the application state data of the game application to a remote storage service via a network, in response to the backup event, wherein the remote storage service is a cloud computing service or the remote storage service belongs to a cloud storage service cluster;
determining a restore event that occurs in a second electronic device, wherein the restore event suggests a restore of the application state of the game application at the second electronic device;
instructing the remote storage service to transmit the application state data of the game application to the second electronic device, in response to the restore event, so that the second electronic device is capable of restoring the game application to the application state using the application state data;
determining a restore event that occurs in the first electronic device, wherein the restore event suggests a restore of the application state of the game application at the first electronic device; and
retrieving the application state data of the game application from the remote storage service, in response to the restore event, so that the first electronic device can restore the game application to the application state using the application state data.
receiving a confirmation that the game application has been restored to the application state using the application state data.
16. The computer-implemented method of claim 15, wherein the network includes the Internet, a Wi-Fi network, or a cellular phone network.
17. The computer-implemented method of claim 15, wherein the first electronic device is a smart phone.
18. The computer-implemented method of claim 15, wherein the second electronic device is a tablet computer.
19. The computer-implemented method of claim 15, wherein the confirmation is sent via an email.
20. The computer-implemented method of claim 15, wherein the first electronic device belongs to a first user and the second electronic device belongs to a second user.
US14/167,834 2012-10-02 2014-01-29 Multi-player game state backup and restoration across multiple devices Active US8747232B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/167,834 US8747232B1 (en) 2012-10-02 2014-01-29 Multi-player game state backup and restoration across multiple devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261708794P 2012-10-02 2012-10-02
US13/772,163 US9106721B2 (en) 2012-10-02 2013-02-20 Application state synchronization across multiple devices
US14/043,034 US9776078B2 (en) 2012-10-02 2013-10-01 Application state backup and restoration across multiple devices
US14/167,834 US8747232B1 (en) 2012-10-02 2014-01-29 Multi-player game state backup and restoration across multiple devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/043,034 Continuation US9776078B2 (en) 2012-10-02 2013-10-01 Application state backup and restoration across multiple devices

Publications (2)

Publication Number Publication Date
US20140148246A1 true US20140148246A1 (en) 2014-05-29
US8747232B1 US8747232B1 (en) 2014-06-10

Family

ID=50386267

Family Applications (7)

Application Number Title Priority Date Filing Date
US14/043,034 Active 2033-06-06 US9776078B2 (en) 2012-10-02 2013-10-01 Application state backup and restoration across multiple devices
US14/167,834 Active US8747232B1 (en) 2012-10-02 2014-01-29 Multi-player game state backup and restoration across multiple devices
US14/173,680 Active US8775449B2 (en) 2012-10-02 2014-02-05 Game state synchronization and restoration across multiple devices
US14/179,709 Active US8840461B2 (en) 2012-10-02 2014-02-13 Game state synchronization and restoration across multiple devices
US14/179,744 Active US8951127B2 (en) 2012-10-02 2014-02-13 Game state synchronization and restoration across multiple devices
US15/674,579 Active US10252159B2 (en) 2012-10-02 2017-08-11 Application state backup and restoration across multiple devices
US16/279,038 Active US10946276B2 (en) 2012-10-02 2019-02-19 Application state backup and restoration across multiple devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/043,034 Active 2033-06-06 US9776078B2 (en) 2012-10-02 2013-10-01 Application state backup and restoration across multiple devices

Family Applications After (5)

Application Number Title Priority Date Filing Date
US14/173,680 Active US8775449B2 (en) 2012-10-02 2014-02-05 Game state synchronization and restoration across multiple devices
US14/179,709 Active US8840461B2 (en) 2012-10-02 2014-02-13 Game state synchronization and restoration across multiple devices
US14/179,744 Active US8951127B2 (en) 2012-10-02 2014-02-13 Game state synchronization and restoration across multiple devices
US15/674,579 Active US10252159B2 (en) 2012-10-02 2017-08-11 Application state backup and restoration across multiple devices
US16/279,038 Active US10946276B2 (en) 2012-10-02 2019-02-19 Application state backup and restoration across multiple devices

Country Status (1)

Country Link
US (7) US9776078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140289195A1 (en) * 2013-03-21 2014-09-25 Nextbit Systems Inc. Configurable application state synchronization
US20150215425A1 (en) * 2014-01-29 2015-07-30 Sony Computer Entertainment Inc. Delivery system, delivery method, and delivery program
US9767318B1 (en) * 2015-08-28 2017-09-19 Frank Dropps Secure controller systems and associated methods thereof
CN107315658A (en) * 2017-06-26 2017-11-03 珠海市魅族科技有限公司 A kind of data back up method and device, computer installation and readable storage medium storing program for executing
US20190327303A1 (en) * 2018-04-20 2019-10-24 EMC IP Holding Company LLC Method, device and computer program product for scheduling multi-cloud system
US20220147616A1 (en) * 2020-11-11 2022-05-12 Red Hat, Inc. Implementing trusted clients using secure execution environments

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197345B2 (en) 2009-10-30 2012-06-12 At&T Intellectual Property I, L. P. Methods, systems, and products for centralized control of gaming applications
US10425471B2 (en) 2012-10-02 2019-09-24 Razer (Asia-Pacific) Pte. Ltd. Multi-tasker
US9112885B2 (en) 2012-10-02 2015-08-18 Nextbit Systems Inc. Interactive multi-tasker
US9600552B2 (en) 2012-10-02 2017-03-21 Nextbit Systems Inc. Proximity based application state synchronization
US9717985B2 (en) 2012-10-02 2017-08-01 Razer (Asia-Pacific) Pte. Ltd. Fragment-based mobile device application streaming utilizing crowd-sourcing
US8977723B2 (en) 2012-10-02 2015-03-10 Nextbit Systems Inc. Cloud based application fragmentation
US8892693B2 (en) 2012-10-02 2014-11-18 Nextbit Systems Inc. Enabling fragment-based mobile device application streaming
US9210203B2 (en) 2012-10-02 2015-12-08 Nextbit Systems Inc. Resource based mobile device application streaming
US9654556B2 (en) 2012-10-02 2017-05-16 Razer (Asia-Pacific) Pte. Ltd. Managing applications on an electronic device
US9268655B2 (en) 2012-10-02 2016-02-23 Nextbit Systems Inc. Interface for resolving synchronization conflicts of application states
US9776078B2 (en) 2012-10-02 2017-10-03 Razer (Asia-Pacific) Pte. Ltd. Application state backup and restoration across multiple devices
US9106721B2 (en) 2012-10-02 2015-08-11 Nextbit Systems Application state synchronization across multiple devices
US9747000B2 (en) 2012-10-02 2017-08-29 Razer (Asia-Pacific) Pte. Ltd. Launching applications on an electronic device
US8954611B2 (en) 2013-03-21 2015-02-10 Nextbit Systems Inc. Mechanism for sharing states of applications and devices across different user profiles
US10123189B2 (en) 2013-03-21 2018-11-06 Razer (Asia-Pacific) Pte. Ltd. Electronic device system restoration by tapping mechanism
US10044799B2 (en) 2013-05-28 2018-08-07 International Business Machines Corporation Implementing synchronization of state information betweeen instances of an application as well as between different applications in an efficient, scalable manner
US9854035B2 (en) 2013-05-28 2017-12-26 International Business Machines Corporation Maintaining state synchronization of an application between computing devices as well as maintaining state synchronization of common information between different applications without requiring periodic synchronization
US9742750B2 (en) * 2013-06-12 2017-08-22 Microsoft Technology Licensing, Llc Roaming internet-accessible application state across trusted and untrusted platforms
USD768162S1 (en) 2013-09-30 2016-10-04 Nextbit Systems Inc. Display screen or portion thereof with graphical user interface
US20150154080A1 (en) * 2013-12-04 2015-06-04 Wms Gaming Inc. Critical Memory Checkpointing for Downloadable OS
JP6121896B2 (en) * 2013-12-27 2017-04-26 株式会社ソニー・インタラクティブエンタテインメント Information processing apparatus and information processing system
JP2015127900A (en) 2013-12-27 2015-07-09 株式会社ソニー・コンピュータエンタテインメント Information processing device, server system, and information processing system
JP2015127899A (en) 2013-12-27 2015-07-09 株式会社ソニー・コンピュータエンタテインメント Information processing device and information processing system
JP2015127898A (en) 2013-12-27 2015-07-09 株式会社ソニー・コンピュータエンタテインメント Information processing device and information processing system
US9686077B2 (en) * 2014-03-06 2017-06-20 Microsoft Technology Licensing, Llc Secure hardware for cross-device trusted applications
WO2015157910A1 (en) * 2014-04-15 2015-10-22 华为技术有限公司 Application information sharing method and apparatus
US11516309B2 (en) 2014-07-16 2022-11-29 Tensera Networks Ltd. Transparent pre-loading of user applications
US11095743B2 (en) 2014-07-16 2021-08-17 Tensera Networks Ltd. Optimized content-delivery network (CDN) for the wireless last mile
US10235463B1 (en) * 2014-12-19 2019-03-19 EMC IP Holding Company LLC Restore request and data assembly processes
US9753814B1 (en) 2014-12-19 2017-09-05 EMC IP Holding Company LLC Application level support for selectively accessing files in cloud-based storage
US10095710B1 (en) 2014-12-19 2018-10-09 EMC IP Holding Company LLC Presenting cloud based storage as a virtual synthetic
US10120765B1 (en) 2014-12-19 2018-11-06 EMC IP Holding Company LLC Restore process using incremental inversion
US10095707B1 (en) * 2014-12-19 2018-10-09 EMC IP Holding Company LLC Nearline cloud storage based on FUSE framework
CN104580169A (en) * 2014-12-23 2015-04-29 惠州Tcl移动通信有限公司 File synchronization method and file synchronization system
US9948703B2 (en) * 2015-05-14 2018-04-17 Twilio, Inc. System and method for signaling through data storage
WO2016191152A1 (en) 2015-05-27 2016-12-01 Google Inc. System and method for automatic cloud-based full-data backup and restore on mobile devices
US10144269B2 (en) * 2015-10-28 2018-12-04 Ford Global Technologies, Llc Dual line register
US10742767B2 (en) * 2016-02-02 2020-08-11 Sony Interactive Entertainment LLC Systems and methods for downloading and updating save data to a data center
CN107436992A (en) * 2016-05-28 2017-12-05 杭州鸿富创新医疗科技有限公司 Health control terminal and health control method
CN106776727A (en) * 2016-11-16 2017-05-31 郑州云海信息技术有限公司 WAP ends access method and system based on WFS network file storage systems
US10423782B2 (en) * 2016-12-19 2019-09-24 Mcafee, Llc Intelligent backup and versioning
JP6592828B2 (en) * 2016-12-22 2019-10-23 京セラドキュメントソリューションズ株式会社 Authentication setting system and image forming apparatus
US10248355B2 (en) 2017-02-22 2019-04-02 International Business Machines Corporation Data migration for applications on a mobile device
US10831509B2 (en) 2017-02-23 2020-11-10 Ab Initio Technology Llc Dynamic execution of parameterized applications for the processing of keyed network data streams
US10467230B2 (en) 2017-02-24 2019-11-05 Microsoft Technology Licensing, Llc Collection and control of user activity information and activity user interface
US10732796B2 (en) 2017-03-29 2020-08-04 Microsoft Technology Licensing, Llc Control of displayed activity information using navigational mnemonics
US10671245B2 (en) 2017-03-29 2020-06-02 Microsoft Technology Licensing, Llc Collection and control of user activity set data and activity set user interface
US10853220B2 (en) 2017-04-12 2020-12-01 Microsoft Technology Licensing, Llc Determining user engagement with software applications
US10693748B2 (en) * 2017-04-12 2020-06-23 Microsoft Technology Licensing, Llc Activity feed service
US10623432B2 (en) * 2017-06-21 2020-04-14 International Business Machines Corporation Mitigating security risks utilizing continuous device image reload with data integrity
US11580088B2 (en) 2017-08-11 2023-02-14 Microsoft Technology Licensing, Llc Creation, management, and transfer of interaction representation sets
US11915012B2 (en) 2018-03-05 2024-02-27 Tensera Networks Ltd. Application preloading in the presence of user actions
US11922187B2 (en) 2018-03-05 2024-03-05 Tensera Networks Ltd. Robust application preloading with accurate user experience
CN108551477B (en) * 2018-03-28 2020-11-20 深圳市网心科技有限公司 Data transmission channel establishing system, network storage device, server and method
CN110324375B (en) * 2018-03-29 2020-12-04 华为技术有限公司 Information backup method and related equipment
CN108829720B (en) * 2018-05-07 2022-01-14 麒麟合盛网络技术股份有限公司 Data processing method and device
WO2019233602A1 (en) * 2018-06-08 2019-12-12 Sivantos Pte. Ltd. Method for transmitting a processing state in an audiological adaptation application for a hearing device
CN113170391B (en) * 2019-01-29 2022-10-21 深圳市欢太科技有限公司 Application processing method and device, storage medium, server and electronic equipment
WO2021019415A1 (en) 2019-07-30 2021-02-04 Tensera Networks Ltd. Pre-rendering of application user-interfaces in user devices
KR20210044606A (en) 2019-10-15 2021-04-23 삼성전자주식회사 Method of generating wakeup model and electronic device therefor
US11281543B2 (en) 2019-11-15 2022-03-22 International Business Machines Corporation Application-level recovery from an enterprise-level image copy
US20210247993A1 (en) * 2020-02-06 2021-08-12 EMC IP Holding Company LLC True zero rto eliminating os and app load times
WO2022118131A1 (en) * 2020-12-03 2022-06-09 Tensera Networks Preloading of applications having an existing task
US11762812B2 (en) 2021-12-10 2023-09-19 Microsoft Technology Licensing, Llc Detecting changes in a namespace using namespace enumeration endpoint response payloads
CN114598555B (en) * 2022-05-09 2022-07-29 飞天诚信科技股份有限公司 Broadcast implementation method and system with switchable different platforms
CN116701526A (en) * 2022-12-05 2023-09-05 荣耀终端有限公司 Data synchronization method and electronic equipment
CN115981828B (en) * 2023-02-09 2023-09-22 中国证券登记结算有限责任公司 Service message processing method and device

Family Cites Families (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205527B1 (en) * 1998-02-24 2001-03-20 Adaptec, Inc. Intelligent backup and restoring system and method for implementing the same
US8620286B2 (en) 2004-02-27 2013-12-31 Synchronoss Technologies, Inc. Method and system for promoting and transferring licensed content and applications
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
JP2002011250A (en) 2000-04-25 2002-01-15 Nintendo Co Ltd Game system and portable game machine
US7062567B2 (en) 2000-11-06 2006-06-13 Endeavors Technology, Inc. Intelligent network streaming and execution system for conventionally coded applications
US6811486B1 (en) 2000-12-20 2004-11-02 Sierra Design Group Method and apparatus for enhancing game play through savable game play state
US6966837B1 (en) 2001-05-10 2005-11-22 Best Robert M Linked portable and video game systems
US7490045B1 (en) 2001-06-04 2009-02-10 Palmsource, Inc. Automatic collection and updating of application usage
JP2003116162A (en) 2001-10-05 2003-04-18 Toshiba Corp Mobile communication terminal and system selection method
JP3495032B1 (en) * 2002-07-24 2004-02-09 コナミ株式会社 Game progress management device, game server device, terminal device, game progress management method, and game progress management program
US9138644B2 (en) * 2002-12-10 2015-09-22 Sony Computer Entertainment America Llc System and method for accelerated machine switching
US20040203381A1 (en) 2002-12-31 2004-10-14 Cahn Janet E. Method and apparatus for data transfer
US7848935B2 (en) 2003-01-31 2010-12-07 I.M.D. Soft Ltd. Medical information event manager
DE10333583A1 (en) 2003-02-18 2004-09-30 Textilforschungsinstitut Thüringen-Vogtland e.V. (TITV e.V.) Textile surface structure of an array of a plurality of conductive or conductive properties having threads and methods for their preparation
US7167705B2 (en) 2003-06-27 2007-01-23 Oracle International Corporation Roaming across different access mechanisms and network technologies
US20050147130A1 (en) 2003-12-23 2005-07-07 Intel Corporation Priority based synchronization of data in a personal area network
US8606891B2 (en) 2004-09-10 2013-12-10 Freestyle Technology Pty Ltd Client processor device for building application files from file fragments for different versions of an application
US20060030408A1 (en) 2004-07-19 2006-02-09 Nokia Corporation Game play with mobile communications device synchronization
US20060075075A1 (en) 2004-10-01 2006-04-06 Malinen Jouni I Method and system to contextually initiate synchronization services on mobile terminals in an enterprise environment
US7657583B2 (en) * 2004-12-29 2010-02-02 International Business Machines Corporation Calculating recovery time of an application system
TW200625083A (en) * 2005-01-14 2006-07-16 Farstone Tech Inc Backup/recovery system and method thereof
US7774457B1 (en) 2005-03-25 2010-08-10 Hewlett-Packard Development Company, L.P. Resource evaluation for a batch job and an interactive session concurrently executed in a grid computing environment
US8589140B1 (en) 2005-06-10 2013-11-19 Wapp Tech Corp. System and method for emulating and profiling a frame-based application playing on a mobile device
US20070130217A1 (en) 2005-10-13 2007-06-07 Unwired Software, Inc. Many to many data synchronization
US20080055311A1 (en) 2006-08-31 2008-03-06 Ati Technologies Inc. Portable device with run-time based rendering quality control and method thereof
USD611494S1 (en) 2007-01-15 2010-03-09 Microsoft Corporation Icon for a portion of a display screen
US20080220878A1 (en) 2007-02-23 2008-09-11 Oliver Michaelis Method and Apparatus to Create or Join Gaming Sessions Based on Proximity
CA2687883C (en) 2007-06-19 2014-07-08 Qualcomm Incorporated Methods and apparatus for dataset synchronization in a wireless environment
JP4359855B2 (en) 2007-07-09 2009-11-11 Smc株式会社 Solenoid valve drive circuit and solenoid valve
US20090063690A1 (en) 2007-09-05 2009-03-05 Motorola, Inc. Continuing an application session using a different device from one that originally initiated the application session while preserving session while preserving session state and data
US20090144341A1 (en) * 2007-12-03 2009-06-04 Apple Inc. Ad Hoc Data Storage Network
US8005956B2 (en) 2008-01-22 2011-08-23 Raytheon Company System for allocating resources in a distributed computing system
US20090204966A1 (en) 2008-02-12 2009-08-13 Johnson Conrad J Utility for tasks to follow a user from device to device
US8019863B2 (en) 2008-03-28 2011-09-13 Ianywhere Solutions, Inc. Synchronizing events between mobile devices and servers
US8157653B2 (en) 2009-01-08 2012-04-17 Sony Computer Entertainment America Inc. Automatic player information generation for interactive entertainment
WO2010083486A1 (en) 2009-01-19 2010-07-22 Wms Gaming, Inc. Transporting and using wagering game data
JP5627187B2 (en) 2009-03-13 2014-11-19 新日鉄住金ソリューションズ株式会社 Information processing apparatus, information processing method, and program
USD646695S1 (en) 2009-03-18 2011-10-11 Gn Netcom A/S Computer display with a set of icons
US20100257403A1 (en) * 2009-04-03 2010-10-07 Microsoft Corporation Restoration of a system from a set of full and partial delta system snapshots across a distributed system
EP2422559A4 (en) * 2009-04-24 2015-07-22 Skullcandy Inc Wireless synchronization mechanism
US8112066B2 (en) 2009-06-22 2012-02-07 Mourad Ben Ayed System for NFC authentication based on BLUETOOTH proximity
US20100333116A1 (en) 2009-06-30 2010-12-30 Anand Prahlad Cloud gateway system for managing data storage to cloud storage sites
JP5444995B2 (en) 2009-09-25 2014-03-19 沖電気工業株式会社 Session sharing system, method and program, and user terminal
US8290920B2 (en) 2009-09-30 2012-10-16 Zynga Inc. System and method for remote updates
US20110076941A1 (en) 2009-09-30 2011-03-31 Ebay Inc. Near field communication and network data/product transfer
KR101263217B1 (en) 2009-10-15 2013-05-10 한국전자통신연구원 Mobile terminal for providing mobile cloud service and operating method of the same
US8805787B2 (en) 2009-10-30 2014-08-12 Verizon Patent And Licensing Inc. Network architecture for content backup, restoring, and sharing
US8308570B2 (en) 2009-11-18 2012-11-13 Sony Computer Entertainment America Inc. Synchronizing mission progress in peer-to-peer cooperative games
US20110126168A1 (en) 2009-11-25 2011-05-26 Crowdsource Technologies Ltd. Cloud plarform for managing software as a service (saas) resources
US8577292B2 (en) 2010-02-03 2013-11-05 Google Inc. Bump validation
US8527549B2 (en) 2010-02-22 2013-09-03 Sookasa Inc. Cloud based operating and virtual file system
US8315977B2 (en) 2010-02-22 2012-11-20 Netflix, Inc. Data synchronization between a data center environment and a cloud computing environment
US20110219105A1 (en) 2010-03-04 2011-09-08 Panasonic Corporation System and method for application session continuity
US8495129B2 (en) 2010-03-16 2013-07-23 Microsoft Corporation Energy-aware code offload for mobile devices
US8224246B2 (en) 2010-05-10 2012-07-17 Nokia Corporation Device to device connection setup using near-field communication
JP2011244354A (en) 2010-05-20 2011-12-01 Canon Inc Job history information auditing system, information processing apparatus, printer, and auditing method
US9814977B2 (en) 2010-07-13 2017-11-14 Sony Interactive Entertainment Inc. Supplemental video content on a mobile device
US8930562B2 (en) 2010-07-20 2015-01-06 Qualcomm Incorporated Arranging sub-track fragments for streaming video data
US8913056B2 (en) 2010-08-04 2014-12-16 Apple Inc. Three dimensional user interface effects on a display by using properties of motion
KR20120014318A (en) 2010-08-09 2012-02-17 주식회사 팬택 Apparatus and method for sharing application between portable terminal
JP5635957B2 (en) 2010-09-09 2014-12-03 日本碍子株式会社 Polishing method of polishing object and polishing pad
US8606948B2 (en) 2010-09-24 2013-12-10 Amazon Technologies, Inc. Cloud-based device interaction
US20120079095A1 (en) 2010-09-24 2012-03-29 Amazon Technologies, Inc. Cloud-based device synchronization
US20150195340A1 (en) 2010-09-30 2015-07-09 Google Inc. Determining if an Application is Cached
US9277260B2 (en) 2010-10-01 2016-03-01 Mobitv, Inc. Media convergence platform
US8473577B2 (en) 2010-10-13 2013-06-25 Google Inc. Continuous application execution between multiple devices
US9645839B2 (en) * 2010-10-27 2017-05-09 Microsoft Technology Licensing, Llc Stateful applications operating in a stateless cloud computing environment
US9703539B2 (en) 2010-10-29 2017-07-11 Microsoft Technology Licensing, Llc Viral application distribution
US8886128B2 (en) 2010-12-10 2014-11-11 Verizon Patent And Licensing Inc. Method and system for providing proximity-relationship group creation
US8200868B1 (en) 2010-12-30 2012-06-12 Google Inc. Peripheral device detection with short-range communication
US20120203932A1 (en) 2011-02-08 2012-08-09 Microsoft Corporation Multi-master media metadata synchronization
US8789086B2 (en) 2011-02-11 2014-07-22 Sony Corporation Method and apparatus for content playback using multiple IPTV devices
USD683737S1 (en) 2011-03-23 2013-06-04 Htc Corporation Display screen with graphical user interface
WO2012146985A2 (en) 2011-04-28 2012-11-01 Approxy Inc. Ltd. Adaptive cloud-based application streaming
US8812601B2 (en) 2011-05-09 2014-08-19 Google Inc. Transferring application state across devices with checkpoints
US8171137B1 (en) 2011-05-09 2012-05-01 Google Inc. Transferring application state across devices
GB201107978D0 (en) * 2011-05-13 2011-06-29 Antix Labs Ltd Method of distibuting a multi-user software application
US8868859B2 (en) 2011-06-03 2014-10-21 Apple Inc. Methods and apparatus for multi-source restore
US20120311820A1 (en) 2011-06-09 2012-12-13 Po-Han Chang Knob and process of manufacturing same
USD672366S1 (en) 2011-06-10 2012-12-11 Apple Inc. Display screen or portion thereof with icon
TW201301118A (en) 2011-06-30 2013-01-01 Gcca Inc Cloud-based communication device and smart mobile device using cloud-based communication device
US20130008611A1 (en) 2011-07-05 2013-01-10 Rob Marcus Multi-Piece Sealing Sleeve
US8423511B1 (en) 2011-07-07 2013-04-16 Symantec Corporation Systems and methods for securing data on mobile devices
JP6101267B2 (en) 2011-08-18 2017-03-22 アザーヴァース デジタル インコーポレーテッドUtherverse Digital, Inc. Virtual world interaction system and method
US8972448B2 (en) 2011-09-30 2015-03-03 Google Inc. Cloud storage of game state
US8515902B2 (en) 2011-10-14 2013-08-20 Box, Inc. Automatic and semi-automatic tagging features of work items in a shared workspace for metadata tracking in a cloud-based content management system with selective or optional user contribution
USD730383S1 (en) 2011-11-01 2015-05-26 Htc Corporation Display screen with an animated graphical user interface
US20130117806A1 (en) 2011-11-09 2013-05-09 Microsoft Corporation Network based provisioning
USD682874S1 (en) 2011-11-18 2013-05-21 Microsoft Corporation Display screen with animated graphical user interface
US8688768B2 (en) * 2011-11-18 2014-04-01 Ca, Inc. System and method for hand-offs in cloud environments
US9195572B2 (en) 2011-12-16 2015-11-24 Sap Se Systems and methods for identifying user interface (UI) elements
USD732549S1 (en) 2012-01-06 2015-06-23 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
USD710878S1 (en) 2012-01-06 2014-08-12 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US10031737B2 (en) 2012-02-16 2018-07-24 Microsoft Technology Licensing, Llc Downloading and distribution of applications and updates to multiple devices
KR101383529B1 (en) 2012-02-29 2014-04-08 주식회사 팬택 Mobile terminal device for application sharing and method for sharing application in mobile terminal device
US9014027B2 (en) 2012-02-29 2015-04-21 Cisco Technology, Inc. Multi-interface adaptive bit rate session management
US8666938B1 (en) 2012-03-28 2014-03-04 Vmware, Inc. Installed application cloning and failover to virtual server
US8494576B1 (en) 2012-05-03 2013-07-23 Sprint Communications Company L.P. Near field communication authentication and validation to access corporate data
US8769003B2 (en) 2012-05-09 2014-07-01 Qualcomm Innovation Center, Inc. Method for proximity determination between mobile peers while maintaining privacy
CA148539S (en) 2012-05-15 2014-03-27 Fujitsu Ltd Handheld electronic device with graphical user interface
EP2680207A1 (en) 2012-06-29 2014-01-01 Orange Secured cloud data storage, distribution and restoration among multiple devices of a user
US20140040239A1 (en) 2012-08-03 2014-02-06 Cbs, Interactive, Inc. Live event information management system
US9721036B2 (en) 2012-08-14 2017-08-01 Microsoft Technology Licensing, Llc Cooperative web browsing using multiple devices
USD689505S1 (en) 2012-08-22 2013-09-10 Nike, Inc. Display screen with animated graphical user interface
US8539567B1 (en) 2012-09-22 2013-09-17 Nest Labs, Inc. Multi-tiered authentication methods for facilitating communications amongst smart home devices and cloud-based servers
US9776078B2 (en) 2012-10-02 2017-10-03 Razer (Asia-Pacific) Pte. Ltd. Application state backup and restoration across multiple devices
US8764555B2 (en) 2012-10-02 2014-07-01 Nextbit Systems Inc. Video game application state synchronization across multiple devices
US9712402B2 (en) 2012-10-10 2017-07-18 Alcatel Lucent Method and apparatus for automated deployment of geographically distributed applications within a cloud
US9936335B2 (en) 2012-12-13 2018-04-03 Microsoft Technology Licensing, Llc Mobile computing device application sharing
USD731537S1 (en) 2013-01-05 2015-06-09 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9569294B2 (en) 2013-01-30 2017-02-14 Dell Products L.P. Information handling system physical component inventory to aid operational management through near field communication device interaction
USD726753S1 (en) 2013-02-22 2015-04-14 Livongo Health, Inc. Glucometer with a pedometer check screen graphical user interface
KR102155708B1 (en) 2013-02-26 2020-09-14 삼성전자 주식회사 Portable terminal and method for operating multi-application thereof
USD736822S1 (en) 2013-05-29 2015-08-18 Microsoft Corporation Display screen with icon group and display screen with icon set
USD737852S1 (en) 2013-08-27 2015-09-01 W.W. Grainger, Inc. Display screen or portion thereof with graphical user interface for entering an order quantity
KR102231092B1 (en) 2013-09-05 2021-03-24 삼성전자주식회사 Control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140289195A1 (en) * 2013-03-21 2014-09-25 Nextbit Systems Inc. Configurable application state synchronization
US9563413B2 (en) * 2013-03-21 2017-02-07 Nextbit Systems Inc. Configurable application state synchronization
US20150215425A1 (en) * 2014-01-29 2015-07-30 Sony Computer Entertainment Inc. Delivery system, delivery method, and delivery program
US10560548B2 (en) * 2014-01-29 2020-02-11 Sony Interactive Entertainment Inc. Delivery system, delivery method, and delivery program
US9767318B1 (en) * 2015-08-28 2017-09-19 Frank Dropps Secure controller systems and associated methods thereof
US10664621B1 (en) * 2015-08-28 2020-05-26 Frank R. Dropps Secure controller systems and associated methods thereof
US11200347B1 (en) 2015-08-28 2021-12-14 Frank R. Dropps Secure controller systems and associated methods thereof
CN107315658A (en) * 2017-06-26 2017-11-03 珠海市魅族科技有限公司 A kind of data back up method and device, computer installation and readable storage medium storing program for executing
US20190327303A1 (en) * 2018-04-20 2019-10-24 EMC IP Holding Company LLC Method, device and computer program product for scheduling multi-cloud system
US10757190B2 (en) * 2018-04-20 2020-08-25 EMC IP Holding Company LLC Method, device and computer program product for scheduling multi-cloud system
US20220147616A1 (en) * 2020-11-11 2022-05-12 Red Hat, Inc. Implementing trusted clients using secure execution environments

Also Published As

Publication number Publication date
US20140156599A1 (en) 2014-06-05
US10252159B2 (en) 2019-04-09
US10946276B2 (en) 2021-03-16
US8747232B1 (en) 2014-06-10
US8775449B2 (en) 2014-07-08
US9776078B2 (en) 2017-10-03
US20140162760A1 (en) 2014-06-12
US20140162793A1 (en) 2014-06-12
US20170340966A1 (en) 2017-11-30
US20140095625A1 (en) 2014-04-03
US8951127B2 (en) 2015-02-10
US20190176038A1 (en) 2019-06-13
US8840461B2 (en) 2014-09-23

Similar Documents

Publication Publication Date Title
US10946276B2 (en) Application state backup and restoration across multiple devices
US10146790B2 (en) Game state synchronization and restoration across multiple devices
US8764555B2 (en) Video game application state synchronization across multiple devices
US9600552B2 (en) Proximity based application state synchronization
US9106721B2 (en) Application state synchronization across multiple devices
US9061210B2 (en) Synchronizing an instance of an application between multiple devices
US9095779B2 (en) Gaming application state transfer amongst user profiles
US9268655B2 (en) Interface for resolving synchronization conflicts of application states
US9002992B2 (en) Location based game state synchronization
US9003173B2 (en) Multi-OS (operating system) boot via mobile device
US9662567B2 (en) Optimizing gaming applications accessed by electronic devices
US20120144392A1 (en) Resource Manager for Managing Hardware Resources
US20230135295A1 (en) Electronic device which prefetches application and method therefor
CA2710416C (en) Method and device for application archiving
US20160170774A1 (en) Mobile computing device reconfiguration in response to environmental factors
US20190156017A1 (en) Terminal and method for managing launch of an application of a terminal
US20200026523A1 (en) System and method for limiting maximum run time for an application

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QUAN, JUSTIN;CHAN, MICHAEL A.;MOSS, TOM;AND OTHERS;REEL/FRAME:032285/0696

Effective date: 20140203

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: PINNACLE VENTURES, L.L.C., AS AGENT, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:037184/0762

Effective date: 20151201

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: NEXTBIT SYSTEMS INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PINNACLE VENTURES, L.L.C., AS AGENT;REEL/FRAME:041519/0146

Effective date: 20170126

AS Assignment

Owner name: RAZER (ASIA-PACIFIC) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXTBIT SYSTEMS INC.;REEL/FRAME:041980/0254

Effective date: 20170126

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.)

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8