US20120265220A1 - Articulating Steerable Clip Applier for Laparoscopic Procedures - Google Patents

Articulating Steerable Clip Applier for Laparoscopic Procedures Download PDF

Info

Publication number
US20120265220A1
US20120265220A1 US13/080,998 US201113080998A US2012265220A1 US 20120265220 A1 US20120265220 A1 US 20120265220A1 US 201113080998 A US201113080998 A US 201113080998A US 2012265220 A1 US2012265220 A1 US 2012265220A1
Authority
US
United States
Prior art keywords
phalanx
proximal
distal end
distal
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/080,998
Inventor
Pavel Menn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conmed Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/080,998 priority Critical patent/US20120265220A1/en
Publication of US20120265220A1 publication Critical patent/US20120265220A1/en
Assigned to ENDODYNAMIX, INC. reassignment ENDODYNAMIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MENN, PAVEL
Priority to US14/339,021 priority patent/US9918715B2/en
Assigned to CONMED CORPORTATION reassignment CONMED CORPORTATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENDODYNAMIX, INC.
Priority to US15/852,037 priority patent/US10792040B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/128Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips
    • A61B17/1285Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord for applying or removing clamps or clips for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00314Separate linked members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods

Definitions

  • This invention relates to a novel articulating steerable clip applier for laparoscopic or endoscopic procedures.
  • Laparoscopic and endoscopic procedures are conducted through a small incision in the skin or natural body orifices.
  • Surgical clip appliers are used in these surgeries for the application of hemostatic clips to ligate vessels.
  • Clip appliers hold a surgical clip in an open position in a pair of specially adapted jaws. Once these jaws, containing clips, are positioned over a vessel, the clip is manually released over the vessel to ligate it. Inaccuracies in movement or failure to securely occlude the clip to the vessel can result damage to vessels or tissues, internal bleeding, lethal drops in blood pressure, infections, or longer recovery periods
  • Instruments need to provide precise and accurate movement in order to ligate vessels within the body that are difficult to access. Instruments are needed that are narrow enough to be inserted through a small opening (such as an incision, trocar or natural body orifice), long enough to reach the desired internal tissues, and flexible enough to provide a wide range of motion to navigate the distal end of a clip applier with jaws containing loaded clips around body tissues to advance towards the internal operation site.
  • a small opening such as an incision, trocar or natural body orifice
  • the subject invention discloses an improved steerable articulating surgical clip applier. It contains a long, narrow, distal articulating disposable portion that is inserted into a patient during surgery. This distal articulating portion is removably attached to a proximal non-disposable control unit for moving the long disposable portion within the patient and operating actuators to control the articulation and ligation of the clip applier.
  • the non-disposable control unit does not enter the patient and the contaminated long and narrow component is simply disposed after each surgical procedure is completed. In addition, costs are saved since medical providers only need to replace the disposable component between surgical procedures.
  • the subject invention discloses an endoscopic surgical tool having a handle and a shaft member coupled to the handle and extending along a shaft axis from a proximal end to a distal end, wherein the distal end of the shaft member is adapted to receive an end effector, comprising: A.
  • n is an integer greater than 2
  • the linear array includes a sequentially aligned proximal phalanx section, n ⁇ 2 intermediate phalanx sections, and a distal phalanx section, wherein the ith phalanx section, wherein i is greater than or equal to 1 and less than or equal to n, extends along an associated central axis CAi between a proximal end PEi and a distal end DEL and includes: a tubular member TMi defining a. a central void region CVRi extending along the central axis CAi between the proximal end PEi and the distal end DEL and b.
  • an exterior surface ESi disposed about the central void region CVRi and extending along the central axis CAi from the proximal end PEi to the distal end DEL wherein the n phalanx sections are aligned whereby the central axis CAi of each phalanx section intersects with the central axis of phalanx sections adjacent thereto in the linear array, B. an end effector coupler EEC disposed at the distal end of the distal phalanx section and adapted for coupling the distal end to an end effector, C.
  • a base coupling assembly BC disposed at the proximal end of the proximal phalanx section and adapted to couple to the proximal end of the proximal phalanx section to the distal end of the shaft member, whereby the shaft axis intersects the central axis of the proximal phalanx section and whereby the proximal phalanx section is movable with respect to the distal end of the shaft member substantially only in rotational motion about a transverse axis TA 0 perpendicular to the central axis of the proximal phalanx section, D.
  • each phalanx section coupling assembly is associated with an intermediate phalanx section and wherein the coupling assembly PCi associated with the ith phalanx section couples a distal end of the ith phalanx section to the proximal end of the adjacent i+1th phalanx section whereby the proximal end of the i+1th phalanx section is movable with respect to the distal end of the ith phalanx section substantially only in rotational motion about a transverse axis TAi perpendicular to the central axis of the ith phalanx section, wherein TAi and TA 0 are mutually parallel, and wherein each of the base coupling assembly and the n ⁇ 1 phalanx coupling assemblies are operative whereby a torque applied to the proximal end of the proximal phalanx section about an axis parallel to transverse axis TA 0 , effects a same-direction
  • the base coupling assembly BC may be adapted to detachably couple the proximal end of the proximal phalanx section to the distal end of the shaft member.
  • the end effector coupling assembly EEC may be adapted to detachably couple the end effector to the distal end of the distal phalanx section.
  • the ith phalanx section coupling assembly Ci may include: i. a coupling cam surface CCSi disposed about a cam central axis CCAi affixed to the distal end of the ith phalanx section, wherein the cam central axis CCAi is substantially coaxial with the transverse axis TAi, a substantially non-stretchable link coupling a point on the coupling cam surface of the ith phalanx section CCSPi with a point EPi+2 on the proximal end of the i+2th phalanx section, wherein point CCSPi and point EPi are disposed in a plane including CAi+1 and perpendicular to the transverse axes TAi and TAi+2 and on opposite sides central axis of the i+1 phalanx section CAi+1.
  • the link of coupling assembly Ci may be a cable extending between point CCSPi and point EPi+2.
  • the cable extends in a helical path about the central axis CAi+1 between point CCSPi and point EPi+2.
  • the exterior surface ESi includes an open-faced helical channel HCi+1 disposed about the central axis CAi+1, and the cable of coupling assembly Ci extends through the helical channel HCi+1.
  • the same-direction angular rotational displacement of each of the ith phalanx sections with respect to the adjacent phalanx sections are equi-angle.
  • tubular members TMi may be characterized by the same distance between the proximal end PEi and the distal end Dei.
  • At least two of the tubular members TMi may be characterized by different distances between their respective proximal ends PEi and distal ends Dei.
  • cam surfaces CCSi may be circular segments.
  • the subject invention also discloses an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a tensioning system selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, wherein each pivotable vertebrae comprises a set of opposing spiral-shaped grooves on the exterior surface such that the elongated articulating section has contiguous set of opposing spiral-shaped grooves, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of tension wires inserted into the contiguous spiral-shaped grooves, wherein the plurality of tension wire are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal
  • An additional embodiment of the subject invention is an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, wherein each pivotable vertebrae comprises a set of opposing spiral-shaped grooves on the exterior surface such that the elongated articulating section has contiguous set of opposing spiral-shaped grooves, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of tension wires inserted into the contiguous spiral-shaped grooves, wherein the plurality of tension wire are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the prox
  • a further embodiment of the subject invention discloses an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of semi-circular ligaments placed over the plurality of pivotable vertebrae, wherein the plurality of semi-circular ligaments are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member coupled with the handle; an elongated articulating shaft coupled to the handle with a base coupling assembly and extending distally from the front end of said handle from a proximal end to a distal end, wherein the distal end of the articulating shaft is adapted to receive an end effector, the articulating shaft comprising a linear array of phalanx sections, wherein the linear array includes a sequentially aligned proximal phalanx section coupled on a distal end to the base coupling assembly, intermediate phalanx sections, and a distal phalanx section adapted to receive the end effector on the distal end, wherein each phalanx section comprises i) a proximal end and a distal end; ii) a central cavity extending along a central axis between the proximal end and the distal end;
  • an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member coupled with the handle; an elongated articulating shaft coupled to the handle with a base coupling assembly and extending distally from the front end of said handle from a proximal end to a distal end, wherein the distal end of the articulating shaft is adapted to receive an end effector, the articulating shaft comprising a linear array of phalanx sections, wherein the linear array includes a sequentially aligned proximal phalanx section coupled on a distal end to the base coupling assembly, intermediate phalanx sections, and a distal phalanx section adapted to receive the end effector on the distal end, wherein each phalanx section comprises i) a proximal end and a distal end; ii) a central cavity extending along a central axis between the proximal end and the distal end;
  • each phalanx or pivotable vertebrae may comprise a substantially cylindrical configuration.
  • each phalanx or pivotable vertebrae may comprise a single piece.
  • each phalanx or pivotable vertebrae may comprise two substantially half-cylindrical pieces.
  • the elongated articulating section may further comprise a distally attached surgical jaws assembly.
  • the end effector may comprise a distally attached surgical jaws assembly.
  • each pivotable vertebrae may project a first pivot member from the proximal end and project a second pivot member from the distal end, wherein the first pivot member of each pivotable vertebrae pivotably couples about a rotational axis to the second pivot member of a proximally adjacent pivotable vertebrae.
  • the first pivot member may comprise a substantially cylindrical protrusion and the second pivot member may comprise a substantially cylindrical bore adapted for receiving the substantially cylindrical protrusion.
  • each pivotable vertebrae may project a plurality of first pivot members from the proximal end and project a plurality of second pivot members from the distal end, wherein the plurality of first pivot members of each pivotable vertebrae pivotably couples about a rotational axis to the plurality of second pivot members of proximally adjacent pivotable vertebrae.
  • each phalanx section or pivotable vertebrae may be composed of injected-molded plastic.
  • the plurality of pivotable vertebrae fits within 3 mm to 10 mm envelope of MIS instrumentation.
  • the plurality of tension wire may comprise a material selected from the group consisting of nickel titanium alloy, braided stainless steel, a single stainless steel wire, Kevlar, a high tensile strength monofilament thread, or combinations thereof.
  • each tension wire attaches on a proximal end to a pivotable vertebrae proximate to the handle, extends through the spiral shaped grooves on a first subsequent adjacent distal pivotable vertebrae, and attaches on a distal end to a second subsequent adjacent distal pivotable vertebrae.
  • each tension wire proximally attaches on one side of the elongated articulating section to a pivotable vertebrae proximate to the handle, extends through the spiral shaped grooves on a subsequent adjacent distal pivotable vertebrae, and distally attaches on the opposing side of elongated articulating section to an opposing side of second subsequent adjacent distal pivotable vertebrae.
  • applying force in the proximal direction to the proximal end of each tension wire rotates the second subsequent adjacent distal pivotable vertebrae, further wherein the direction of rotation is away from the side on the elongated articulating section that attaches to the proximal end of the tension wire.
  • applying force in the proximal direction to the proximal end of each tension wire rotates the second subsequent adjacent distal pivotable vertebrae, further wherein the direction of rotation is toward the side on the elongated articulating section that attaches to the distal end of the tension wire.
  • FIG. 1 illustrates a top view of the articulating steerable clip applier showing the separate angles of movement by different phalanges with covers.
  • FIG. 2 illustrates a side view of the articulating steerable clip applier showing the separate angles of movement by different phalanges within a cover.
  • FIG. 3 illustrates a cross-sectional top view of the articulating steerable clip applier along the line 8 of FIG. 2 .
  • FIG. 4 illustrates an enlarged cross-sectional top view of line 15 of FIG. 3 showing the pivotable connection between two phalanges on the articulating steerable clip applier.
  • FIG. 5 illustrates another top view of the articulating steerable clip applier showing the separate angles of movement by individual phalanges guided by tension wires connected from a first phalange traversing through opposing spiraled grooves on the next distal phalange to attach to a second distal phalange.
  • FIG. 6 illustrates another top view of the articulating steerable clip applier showing the separate angles of movement by individual phalanges with opposing spiraled grooves for holding the tension wires.
  • FIG. 7 illustrates a top view of connected adjacent phalanges of the articulating steerable clip applier without covers showing the separate angles of movement by different adjacent phalanges by flexible tension wires.
  • FIG. 8 illustrates the attachments of separate flexible tension wires on the separate phalanges of the articulating steerable clip applier, wherein each tension wire connects on its proximal end to one side of a first phalange, traverses through opposing spiraled grooves on the next distal phalange and attaches on its distal end to the opposing side of a second distal phalange.
  • FIG. 9 illustrates a side view of the articulating steerable clip applier showing the opposing spiraled grooves which contain the tension wires.
  • FIG. 10 illustrates a vertical cross-sectional view of an individual phalange at line 18 of FIG. 9 which contains a lumen that allows actuators, surgical clips, surgical clip carrying assemblies and other functional elements to pass through and operate to control clip movement, clip ligation or phalange articulation.
  • FIG. 11 illustrates a perspective view of the articulating steerable clip applier showing an individual phalange separated into the top and bottom half-phalanges.
  • FIG. 12 illustrates a perspective view of a top half-phalange and a bottom half phalange of the articulating steerable clip applier.
  • FIG. 13 illustrates a perspective view of a phalange comprising assembled top half and bottom half phalanges of the articulating steerable clip applier.
  • FIG. 14 illustrates a side view of a top and bottom semi-circular connecting ligaments of an individual phalange.
  • FIG. 15 illustrates a front view of a top and bottom semi-circular connecting ligaments of an individual phalange.
  • FIG. 16 illustrates a side view of a top semi-circular connecting ligament of an individual phalange.
  • FIG. 17 illustrates a side view of a substantially circular elongate tubing that covers each individual phalange.
  • FIG. 18 illustrates a front view of a substantially circular elongate tubing that covers each individual phalange.
  • FIG. 19 illustrates a side view of an articulating steerable clip applier operatively attached on the proximal end to a user-operated handle.
  • FIGS. 1-3 , 5 , 6 and 11 illustrate a distal end 2 of the articulating steerable clip applier 1 .
  • the clip applier 1 is a long, narrow structure with a free distal end 2 adapted for coupling to an end effector, such as a surgical jaw assembly 3 , and a proximal end 101 operatively coupled to a user-operated handle 100 (as shown in FIG. 19 ).
  • the clip applier 1 is composed of a plurality of relatively short articulating members or phalanges 4 that are connected end to end by pivoting links 5 and capable of angulations 6 relative to one another when subjected to a tensile force.
  • FIG. 1 is a long, narrow structure with a free distal end 2 adapted for coupling to an end effector, such as a surgical jaw assembly 3 , and a proximal end 101 operatively coupled to a user-operated handle 100 (as shown in FIG. 19 ).
  • the clip applier 1 is composed of
  • FIG. 3 illustrates a cross-sectional top view of the articulating steerable clip applier along the line 8 of FIG. 2 .
  • FIG. 4 illustrates an enlarged cross-sectional top view of pivoting point 5 showing the pivotable connection between two phalanges 4 on the articulating steerable clip applier 1 from line 15 of FIG. 3 .
  • a sheath of elongate tubing 7 covers each individual phalange 4 such that the flexible joints of the phalange 4 are exposed.
  • this tubing 7 is composed of flexible materials.
  • this tubing 7 is composed of inflexible materials. Accordingly, the plurality of phalanges 4 is covered with a plurality of tubings 7 .
  • One embodiment of the tubing 7 is shown in FIGS. 17 and 18 .
  • a single flexible tubing (not shown) may cover the entire plurality of phalanges of the clip applier 1 .
  • the distal end 2 of the articulating steerable clip applier 1 contains a final phalange 9 .
  • the final phalange 9 has a distal end 10 adapted for coupling to an end effector, such as a surgical jaw assembly 3 , and a proximal end 11 that is attached to an adjacent proximal phalange 12 .
  • the distal tip 13 of the jaw assembly 3 is a surgical clip applicator for applying a surgical clip to a blood vessel (not shown).
  • the proximal end of the articulating steerable clip applier 1 contains an initial phalange 14 .
  • the initial phalange 14 has a proximal end 101 operatively coupled to a user-operated handle 100 and a distal end 16 that is attached to an adjacent first distal phalange 17 .
  • Each phalange 4 has a generally cylindrical configuration and is symmetrical about a longitudinal axis. Each phalange 4 has an exterior surface 18 , described more fully below, and an interior surface 19 that defines a lumen 20 extending between the proximal end 21 and distal end 22 .
  • FIG. 10 illustrates a vertical cross-sectional view of an individual phalange 4 at line 18 of FIG. 9 .
  • the plurality of lumens 20 of each phalange 4 forms an internal longitudinal passage 23 in the articulating clip applier 1 . Longitudinal passage 23 permits actuators, surgical clips, surgical clip carrying assemblies and other functional elements to pass through clip applier 1 and to control the operation of clip movement, clip ligation or phalange articulation.
  • Each phalange 4 is composed of two half phalanges 24 . As shown in FIG. 12 , each half phalange 24 has the same structure: a curved exterior surface 18 and a generally planar interior surface 19 . Each half phalange 24 has a substantially half-round or half-elliptical cross-sectional configuration so that an assembled phalange 4 has a substantially cylindrical configuration. The interior surface 19 of each half phalange 24 contains a longitudinal channel 27 .
  • each half phalange 24 contains a substantially flat planar surface 37 that is lowered from the curved exterior surface 18 .
  • the substantially flat planar surface 37 has a substantially circular internal bore 38 with a diameter that is generally larger than the diameter of the cylindrical protrusion 35 .
  • a phalange 4 is assembled by attaching the interior surfaces 19 of two half phalanges 24 to one another so that the two longitudinal channels 27 on each interior surface 19 of each half phalange 24 form the lumen 20 .
  • An assembled phalange 4 will have two extensions 29 on the proximal end 21 , with their respective substantially cylindrical protrusions 35 facing each other.
  • the substantially flat planar surfaces 37 of the distal end 22 will be on opposing sides of the assembled phalange 4 .
  • the phalanges 4 are composed of injected-molded plastic.
  • the plurality of phalanges 4 is connected end to end by pivoting links 5 in the following manner:
  • the initial phalange 14 has a proximal end 101 attached to a user-operated handle 100 (shown in FIG. 19 ).
  • the distal end 16 of the initial phalange 14 has substantially flat planar surfaces 39 on the top and bottom of the exterior surface 18 .
  • the substantially flat planar surfaces 39 each have a substantially circular internal bore 41 with a diameter that is generally larger than the diameter of the cylindrical protrusion 35 .
  • the clip applier 1 is assembled by placing the two substantially cylindrical protrusions 35 on the proximal end 21 of the first distal phalange 17 into the internal bores 41 on opposing sides on the distal end 16 of the initial phalange 14 .
  • This pivoting link 5 attaches the first distal phalange 17 to the initial phalange 14 .
  • the proximal end 21 of the first distal phalange 17 may pivot with respect to the initial phalange 14 .
  • the two substantially cylindrical protrusions 35 may rotate within the internal bores 41 .
  • the substantially flat planar surfaces 34 of each extension 29 rotate freely on the substantially flat planar surfaces 39 on opposing sides of the initial phalange 14 .
  • third and subsequent distal phalanges 4 are added to the first distal phalange 17 as follows: the two substantially cylindrical protrusions 35 on the proximal end 21 of a subsequent phalange 4 are placed into the internal bores 38 on opposing sides on the distal end 22 of the preceding proximal phalange 4 .
  • the proximal ends 21 of all subsequent distal phalanges 4 may pivot with respect to distal ends 22 of their respective adjacent proximal phalanges 4 .
  • the protrusions 35 on the proximal end 21 of each subsequent distal phalange 4 may rotate within the internal bores 38 on the distal end 22 of the adjacent proximal phalange 4 .
  • the substantially flat planar surfaces 34 of each extension 29 rotate freely on the substantially flat planar surfaces 37 of the adjacent proximal phalange 4 .
  • the exterior surface 18 of each half phalange 24 contains at least one axially extending s-shaped groove 42 or channel.
  • the curve of the s-shaped groove 42 traverses the width and length of the exterior surface 18 of the half phalange 24 .
  • the s-shaped groove 42 begins on one side of the exterior surface 18 at the proximal end 21 of the half phalange 24 , axially extends and curves over the exterior surface 18 to the opposing side of the exterior surface on the distal end 22 of the half phalange 24 .
  • a phalange 4 Once a phalange 4 is assembled, it has two grooves 42 on both exterior surfaces 18 that axially extend in the phalange 4 in opposing s-shaped curves. Once the plurality of phalanges 4 is assembled, the two s-shaped grooves 42 form two continuous axially extending spiral shaped channels 43 that curve in opposing directions from each other.
  • a first set of two wires 45 a and 45 b are connected on their respective proximal ends 46 a and 46 b to the initial phalange 14 and connected on their respective distal ends 47 a and 47 b to the proximal end 21 of the adjacent first distal phalange 17 .
  • the proximal end 46 a of wire 45 a is attached to one side 14 a of the initial phalange 14 and the distal end 47 a of wire 45 a is attached to the side 17 a of the first distal phalange 17 on its proximal end 21 .
  • the proximal end 46 b of wire 45 b is attached to the opposing side 14 b of the initial phalange 14 and the distal end 47 b of wire 45 b is attached to the side 17 b of the first distal phalange 17 on its proximal end 21 .
  • this tensile force causes the first distal phalange 17 to pivot back and forth at its proximal end 21 towards side 17 a, away from side 14 b.
  • this tensile force causes the first distal phalange 17 to pivot back and forth at its proximal end 21 towards side 17 b, away from side 14 a.
  • each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 45 a or 45 b is pulled.
  • a second set of two wires 48 a and 48 b are connected on their respective proximal ends 49 a and 49 b to the initial phalange 14 and connected on their respective distal ends 50 a and 50 b to the proximal end 51 of the second distal phalange 52 , which is adjacent to phalange 17 .
  • the wires 48 a and 48 b are inserted into the two spiral shaped channels 43 that curve in opposing directions.
  • the proximal end 49 a of wire 48 a is attached to one side 14 a of the initial phalange 14 and the distal end 50 a of wire 48 a is attached to the opposing side 52 b of the second distal phalange 52 on its proximal end 51 .
  • the proximal end 49 b of wire 48 b is attached to the opposing side 14 b of the initial phalange 14 and the distal end 50 b of wire 48 b is attached to the opposing side 52 a of the second distal phalange 52 on its proximal end 51 .
  • this tensile force causes the second distal phalange 52 to pivot back and forth at its proximal end 51 towards side 52 b, away from side 14 a .
  • this tensile force causes the second distal phalange 52 to pivot back and forth at its proximal end 51 towards side 52 a, away from side 14 b .
  • each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 48 a or 48 b is pulled. Since the proximal end and the distal end of each wire 48 a or 48 b is attached to opposing sides of the initial phalange 14 and the second distal phalange 52 , pulling either wire 48 a or 48 b causes the second distal phalange 52 to pivot in the direction of the distal end of the wire and away from the proximal end of the wire.
  • a third set of two wires 53 a and 53 b are connected on their respective proximal ends 54 a and 54 b to the first distal phalange 17 and connected on their respective distal ends 55 a and 55 b to the proximal end 56 of the third distal phalange 57 , which is adjacent to second distal phalange 52 .
  • the wires 53 a and 53 b are inserted into the two spiral shaped channels 43 that curve in opposing directions.
  • the proximal end 54 a of wire 53 a is attached to one side 17 a of the first distal phalange 17 and the distal end 55 a of wire 53 a is attached to the opposing side 57 b of the third distal phalange 57 on its proximal end 56 .
  • the proximal end 54 b of wire 53 b is attached to the opposing side 17 b of the first distal phalange 17 and the distal end 55 b of wire 53 b is attached to the opposing side 57 a of the third distal phalange 57 on its proximal end 56 .
  • this tensile force causes the third distal phalange 57 to pivot back and forth at its proximal end 56 towards side 57 b , away from side 17 a.
  • this tensile force causes the third distal phalange 57 to pivot back and forth at its proximal end 56 towards side 57 a , away from side 17 b.
  • each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 53 a or 53 b is pulled. Since the proximal end and the distal end of each wire 53 a or 53 b is attached to opposing sides of the first distal phalange 17 and the third distal phalange 57 , pulling either wire 53 a or 53 b causes the third distal phalange 57 to pivot in the direction of the distal end of the wire and away from the proximal end of the wire.
  • Additional sets of two wires may be connected on their proximal ends to a proximal phalange and connected on their distal end to the proximal end of phalange that is two phalanges distal from the proximal phalange.
  • the wires are inserted into the two spiral shaped channels 43 that curve in opposing directions.
  • the proximal end of each wire is attached to one side of the proximal phalange.
  • the distal end of each wire is attached to the opposing side of the phalange that is two phalanges distal from the proximal phalange.
  • this tensile force causes the phalange that is two phalanges distal from the proximal phalange to pivot back and forth at its proximal end.
  • the direction of this pivoting is towards the distal end attachment of each wire and away from the proximal end attachment of each wire.
  • FIGS. 1 and 2 illustrate the separate, but identical, angles of movement 6 by individual phalanges 4 .
  • each individual phalange 4 pivots by an equivalent angle 6
  • the sum of these angles 6 causes the distal end 2 of the clip applier 1 to pivot by a large angle or a cascading actuation effect, as shown in FIG. 1 .
  • FIGS. 14-16 the tension wires above may be replaced by semi-circular connecting ligaments 61 .
  • Each individual phalange 4 may be substantially covered with two semi-circular connecting ligaments 61 .
  • FIGS. 14 and 15 illustrate two semi-circular connecting ligaments 61 in an opposing top-bottom configuration 61 a to cover an individual phalange (not shown).
  • Each semi-circular connecting ligament 61 has a flexible tip 62 on its proximal end and a flexible tip 63 on its distal end. Furthermore, flexible tips 62 and 63 are on opposing sides of each semi-circular connecting ligament 61 .
  • flexible tips 62 are attached to the distal end of a proximal phalange on opposing sides, an adjacent distal phalange is substantially covered by the two opposing semi-circular connecting ligaments 61 , and flexible tips 63 are attached to the proximal end of a second distal phalange on opposing sides.
  • Each flexible tip 62 is attached to one side of the proximal phalange and each flexible tip 63 is attached to the opposing side of the second distal phalange.
  • this force causes the second distal phalange to pivot at its proximal end. The direction of this pivoting is away from the flexible tip 62 that is pulled.
  • FIGS. 1 and 2 illustrate the separate, but identical, angles of movement 6 by individual phalanges 4 .
  • the narrow plurality of phalanges 4 may easily fit within respective envelopes of 10 mm and 3 mm MIS instrumentation, while retaining flexible movements within a patient.

Abstract

A long articulating steerable clip applier affixed to a user-operated handle. A surgical jaw assembly is attached to the other end of the clip applier. The clip applier is composed of articulating phalanges that are connected end to end by pivoting links and capable of angulations relative to one another when subjected to a tensile force. Each phalange has opposing s-shaped exterior grooves that form two continuous spiral-shaped channels for holding tension wires once the phalanges are assembled. Multiple tension wires are attached to opposite ends of adjacent phalanges. When each wire is pulled, this tensile force causes the phalanges to pivot at equivalent angles with each other. As each individual phalange pivots by an equivalent angle, the sum of these angles causes the free end of the clip applier to pivot by a large angle or a cascading actuation effect.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/321,233 filed on Apr. 6, 2010, the contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to a novel articulating steerable clip applier for laparoscopic or endoscopic procedures.
  • BACKGROUND OF INVENTION
  • Laparoscopic and endoscopic procedures are conducted through a small incision in the skin or natural body orifices.
  • In order to operate on a given tissue or a blood vessel, surgeons must ligate or occlude blood vessels to prevent patient blood loss. Surgical clip appliers are used in these surgeries for the application of hemostatic clips to ligate vessels. Clip appliers hold a surgical clip in an open position in a pair of specially adapted jaws. Once these jaws, containing clips, are positioned over a vessel, the clip is manually released over the vessel to ligate it. Inaccuracies in movement or failure to securely occlude the clip to the vessel can result damage to vessels or tissues, internal bleeding, lethal drops in blood pressure, infections, or longer recovery periods
  • These instruments need to provide precise and accurate movement in order to ligate vessels within the body that are difficult to access. Instruments are needed that are narrow enough to be inserted through a small opening (such as an incision, trocar or natural body orifice), long enough to reach the desired internal tissues, and flexible enough to provide a wide range of motion to navigate the distal end of a clip applier with jaws containing loaded clips around body tissues to advance towards the internal operation site.
  • Accordingly, the subject invention discloses an improved steerable articulating surgical clip applier. It contains a long, narrow, distal articulating disposable portion that is inserted into a patient during surgery. This distal articulating portion is removably attached to a proximal non-disposable control unit for moving the long disposable portion within the patient and operating actuators to control the articulation and ligation of the clip applier.
  • By separating these two components, the risk of cross contamination between separate patients or separate tissues on the same patient is reduced. The non-disposable control unit does not enter the patient and the contaminated long and narrow component is simply disposed after each surgical procedure is completed. In addition, costs are saved since medical providers only need to replace the disposable component between surgical procedures.
  • SUMMARY OF THE INVENTION
  • There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
  • The subject invention discloses an endoscopic surgical tool having a handle and a shaft member coupled to the handle and extending along a shaft axis from a proximal end to a distal end, wherein the distal end of the shaft member is adapted to receive an end effector, comprising: A. a linear array of n phalanx sections, where n is an integer greater than 2, wherein the linear array includes a sequentially aligned proximal phalanx section, n−2 intermediate phalanx sections, and a distal phalanx section, wherein the ith phalanx section, wherein i is greater than or equal to 1 and less than or equal to n, extends along an associated central axis CAi between a proximal end PEi and a distal end DEL and includes: a tubular member TMi defining a. a central void region CVRi extending along the central axis CAi between the proximal end PEi and the distal end DEL and b. an exterior surface ESi disposed about the central void region CVRi and extending along the central axis CAi from the proximal end PEi to the distal end DEL wherein the n phalanx sections are aligned whereby the central axis CAi of each phalanx section intersects with the central axis of phalanx sections adjacent thereto in the linear array, B. an end effector coupler EEC disposed at the distal end of the distal phalanx section and adapted for coupling the distal end to an end effector, C. a base coupling assembly BC disposed at the proximal end of the proximal phalanx section and adapted to couple to the proximal end of the proximal phalanx section to the distal end of the shaft member, whereby the shaft axis intersects the central axis of the proximal phalanx section and whereby the proximal phalanx section is movable with respect to the distal end of the shaft member substantially only in rotational motion about a transverse axis TA0 perpendicular to the central axis of the proximal phalanx section, D. n−1 phalanx section coupling assemblies PC, wherein each phalanx section coupling assembly is associated with an intermediate phalanx section and wherein the coupling assembly PCi associated with the ith phalanx section couples a distal end of the ith phalanx section to the proximal end of the adjacent i+1th phalanx section whereby the proximal end of the i+1th phalanx section is movable with respect to the distal end of the ith phalanx section substantially only in rotational motion about a transverse axis TAi perpendicular to the central axis of the ith phalanx section, wherein TAi and TA0 are mutually parallel, and wherein each of the base coupling assembly and the n−1 phalanx coupling assemblies are operative whereby a torque applied to the proximal end of the proximal phalanx section about an axis parallel to transverse axis TA0, effects a same-direction angular rotational displacement of each of the ith phalanx sections with respect to the adjacent phalanx sections about the respective transverse axes TAi.
  • In a further embodiment of the subject invention, the base coupling assembly BC may be adapted to detachably couple the proximal end of the proximal phalanx section to the distal end of the shaft member.
  • In another embodiment of the subject invention, the end effector coupling assembly EEC may be adapted to detachably couple the end effector to the distal end of the distal phalanx section.
  • In an additional embodiments of the subject invention, the ith phalanx section coupling assembly Ci may include: i. a coupling cam surface CCSi disposed about a cam central axis CCAi affixed to the distal end of the ith phalanx section, wherein the cam central axis CCAi is substantially coaxial with the transverse axis TAi, a substantially non-stretchable link coupling a point on the coupling cam surface of the ith phalanx section CCSPi with a point EPi+2 on the proximal end of the i+2th phalanx section, wherein point CCSPi and point EPi are disposed in a plane including CAi+1 and perpendicular to the transverse axes TAi and TAi+2 and on opposite sides central axis of the i+1 phalanx section CAi+1.
  • In a further embodiment of the subject invention, the link of coupling assembly Ci may be a cable extending between point CCSPi and point EPi+2.
  • In another embodiment of the subject invention, the cable extends in a helical path about the central axis CAi+1 between point CCSPi and point EPi+2.
  • In an additional embodiment of the subject invention, the exterior surface ESi includes an open-faced helical channel HCi+1 disposed about the central axis CAi+1, and the cable of coupling assembly Ci extends through the helical channel HCi+1.
  • In a further embodiment of the subject invention, the same-direction angular rotational displacement of each of the ith phalanx sections with respect to the adjacent phalanx sections are equi-angle.
  • In another embodiment of the subject invention, the tubular members TMi may be characterized by the same distance between the proximal end PEi and the distal end Dei.
  • In a further embodiment of the subject invention, at least two of the tubular members TMi may be characterized by different distances between their respective proximal ends PEi and distal ends Dei.
  • In an additional embodiment of the subject invention, the cam surfaces CCSi may be circular segments.
  • The subject invention also discloses an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a tensioning system selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • Another embodiment of the subject invention is an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, wherein each pivotable vertebrae comprises a set of opposing spiral-shaped grooves on the exterior surface such that the elongated articulating section has contiguous set of opposing spiral-shaped grooves, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of tension wires inserted into the contiguous spiral-shaped grooves, wherein the plurality of tension wire are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • An additional embodiment of the subject invention is an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, wherein each pivotable vertebrae comprises a set of opposing spiral-shaped grooves on the exterior surface such that the elongated articulating section has contiguous set of opposing spiral-shaped grooves, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of tension wires inserted into the contiguous spiral-shaped grooves, wherein the plurality of tension wire are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • A further embodiment of the subject invention discloses an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member associated with the handle; an elongated articulating section comprising a plurality of interconnected pivotable vertebrae extending distally from the front end of said handle, wherein the plurality of pivotable vertebrae comprises an exterior surface, further wherein the plurality of pivotable vertebrae comprises an interior surface that defines a channel extending distally from the front end of said handle to a distal end to permit passage of surgical clips; and a plurality of semi-circular ligaments placed over the plurality of pivotable vertebrae, wherein the plurality of semi-circular ligaments are selectively operable from the actuation member to apply tensioning force to the plurality of interconnected pivotable vertebrae such that the proximal end of each interconnected pivotable vertebrae pivots at a substantially equivalent angle.
  • Another embodiment of the subject invention is an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member coupled with the handle; an elongated articulating shaft coupled to the handle with a base coupling assembly and extending distally from the front end of said handle from a proximal end to a distal end, wherein the distal end of the articulating shaft is adapted to receive an end effector, the articulating shaft comprising a linear array of phalanx sections, wherein the linear array includes a sequentially aligned proximal phalanx section coupled on a distal end to the base coupling assembly, intermediate phalanx sections, and a distal phalanx section adapted to receive the end effector on the distal end, wherein each phalanx section comprises i) a proximal end and a distal end; ii) a central cavity extending along a central axis between the proximal end and the distal end; iii) an exterior surface; and iv) a set of opposing substantially spiral-shaped grooves on the exterior surface that extend along each phalanx from the proximal end to the distal end, wherein each the distal end of each phalanx section couples the proximal end of the adjacent phalanx section, whereby the proximal end of the phalanx section is movable with respect to the distal end of the phalanx section in rotational motion , and a plurality of tension wires inserted into the spiral-shaped grooves, wherein the plurality of tension wire are operable from the actuation member to apply tensioning force to the linear array of phalanx sections such that the proximal end of each phalanx section pivots at a substantially equivalent angle.
  • Another embodiment of the subject invention is an endoscopic surgical apparatus comprising: a handle having a front end and defining a longitudinal axis; an actuation member coupled with the handle; an elongated articulating shaft coupled to the handle with a base coupling assembly and extending distally from the front end of said handle from a proximal end to a distal end, wherein the distal end of the articulating shaft is adapted to receive an end effector, the articulating shaft comprising a linear array of phalanx sections, wherein the linear array includes a sequentially aligned proximal phalanx section coupled on a distal end to the base coupling assembly, intermediate phalanx sections, and a distal phalanx section adapted to receive the end effector on the distal end, wherein each phalanx section comprises i) a proximal end and a distal end; ii) a central cavity extending along a central axis between the proximal end and the distal end; iii) an exterior surface; wherein each the distal end of each phalanx section couples the proximal end of the adjacent phalanx section, whereby the proximal end of the phalanx section is movable with respect to the distal end of the phalanx section in rotational motion, and a plurality of semi-cylindrical ligaments placed over the plurality of phalanx sections, wherein the plurality of semi-cylindrical ligaments are selectively operable from the actuation member to apply tensioning force to the plurality of phalanx sections such that the proximal end of each phalanx section pivots at a substantially equivalent angle.
  • In embodiments of the subject invention, each phalanx or pivotable vertebrae may comprise a substantially cylindrical configuration.
  • In other embodiments of the subject invention, each phalanx or pivotable vertebrae may comprise a single piece.
  • In further embodiments of the subject invention, each phalanx or pivotable vertebrae may comprise two substantially half-cylindrical pieces.
  • In additional embodiments of the subject invention, the elongated articulating section may further comprise a distally attached surgical jaws assembly. In another embodiment the subject invention, the end effector may comprise a distally attached surgical jaws assembly.
  • In other embodiments of the subject invention, each pivotable vertebrae may project a first pivot member from the proximal end and project a second pivot member from the distal end, wherein the first pivot member of each pivotable vertebrae pivotably couples about a rotational axis to the second pivot member of a proximally adjacent pivotable vertebrae.
  • In further embodiments of the subject invention, the first pivot member may comprise a substantially cylindrical protrusion and the second pivot member may comprise a substantially cylindrical bore adapted for receiving the substantially cylindrical protrusion.
  • In other embodiments of the subject invention, each pivotable vertebrae may project a plurality of first pivot members from the proximal end and project a plurality of second pivot members from the distal end, wherein the plurality of first pivot members of each pivotable vertebrae pivotably couples about a rotational axis to the plurality of second pivot members of proximally adjacent pivotable vertebrae.
  • In additional embodiments of the subject invention, each phalanx section or pivotable vertebrae may be composed of injected-molded plastic.
  • In embodiments of the subject invention, the plurality of pivotable vertebrae fits within 3 mm to 10 mm envelope of MIS instrumentation.
  • In other embodiments of the subject invention, the plurality of tension wire may comprise a material selected from the group consisting of nickel titanium alloy, braided stainless steel, a single stainless steel wire, Kevlar, a high tensile strength monofilament thread, or combinations thereof.
  • In further embodiments of the subject invention, each tension wire attaches on a proximal end to a pivotable vertebrae proximate to the handle, extends through the spiral shaped grooves on a first subsequent adjacent distal pivotable vertebrae, and attaches on a distal end to a second subsequent adjacent distal pivotable vertebrae.
  • In additional embodiments of the subject invention, each tension wire proximally attaches on one side of the elongated articulating section to a pivotable vertebrae proximate to the handle, extends through the spiral shaped grooves on a subsequent adjacent distal pivotable vertebrae, and distally attaches on the opposing side of elongated articulating section to an opposing side of second subsequent adjacent distal pivotable vertebrae.
  • In other embodiments of the subject invention, applying force in the proximal direction to the proximal end of each tension wire rotates the second subsequent adjacent distal pivotable vertebrae, further wherein the direction of rotation is away from the side on the elongated articulating section that attaches to the proximal end of the tension wire.
  • In embodiments of the subject invention, applying force in the proximal direction to the proximal end of each tension wire rotates the second subsequent adjacent distal pivotable vertebrae, further wherein the direction of rotation is toward the side on the elongated articulating section that attaches to the distal end of the tension wire.
  • There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
  • These together with other objects of the invention, along with the various features of novelty, which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Advantages of the present invention will be apparent from the following detailed description of embodiments thereof, which description should be considered in conjunction with the accompanying drawings, in which:
  • FIG. 1 illustrates a top view of the articulating steerable clip applier showing the separate angles of movement by different phalanges with covers.
  • FIG. 2 illustrates a side view of the articulating steerable clip applier showing the separate angles of movement by different phalanges within a cover.
  • FIG. 3 illustrates a cross-sectional top view of the articulating steerable clip applier along the line 8 of FIG. 2.
  • FIG. 4 illustrates an enlarged cross-sectional top view of line 15 of FIG. 3 showing the pivotable connection between two phalanges on the articulating steerable clip applier.
  • FIG. 5 illustrates another top view of the articulating steerable clip applier showing the separate angles of movement by individual phalanges guided by tension wires connected from a first phalange traversing through opposing spiraled grooves on the next distal phalange to attach to a second distal phalange.
  • FIG. 6 illustrates another top view of the articulating steerable clip applier showing the separate angles of movement by individual phalanges with opposing spiraled grooves for holding the tension wires.
  • FIG. 7 illustrates a top view of connected adjacent phalanges of the articulating steerable clip applier without covers showing the separate angles of movement by different adjacent phalanges by flexible tension wires.
  • FIG. 8 illustrates the attachments of separate flexible tension wires on the separate phalanges of the articulating steerable clip applier, wherein each tension wire connects on its proximal end to one side of a first phalange, traverses through opposing spiraled grooves on the next distal phalange and attaches on its distal end to the opposing side of a second distal phalange.
  • FIG. 9 illustrates a side view of the articulating steerable clip applier showing the opposing spiraled grooves which contain the tension wires.
  • FIG. 10 illustrates a vertical cross-sectional view of an individual phalange at line 18 of FIG. 9 which contains a lumen that allows actuators, surgical clips, surgical clip carrying assemblies and other functional elements to pass through and operate to control clip movement, clip ligation or phalange articulation.
  • FIG. 11 illustrates a perspective view of the articulating steerable clip applier showing an individual phalange separated into the top and bottom half-phalanges.
  • FIG. 12 illustrates a perspective view of a top half-phalange and a bottom half phalange of the articulating steerable clip applier.
  • FIG. 13 illustrates a perspective view of a phalange comprising assembled top half and bottom half phalanges of the articulating steerable clip applier.
  • FIG. 14 illustrates a side view of a top and bottom semi-circular connecting ligaments of an individual phalange.
  • FIG. 15 illustrates a front view of a top and bottom semi-circular connecting ligaments of an individual phalange.
  • FIG. 16 illustrates a side view of a top semi-circular connecting ligament of an individual phalange.
  • FIG. 17 illustrates a side view of a substantially circular elongate tubing that covers each individual phalange.
  • FIG. 18 illustrates a front view of a substantially circular elongate tubing that covers each individual phalange.
  • FIG. 19 illustrates a side view of an articulating steerable clip applier operatively attached on the proximal end to a user-operated handle.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • While several variations of the present invention have been illustrated by way of example in particular embodiments, it is apparent that further embodiments could be developed within the spirit and scope of the present invention, or the inventive concept thereof. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, and are inclusive, but not limited to the following appended claims as set forth.
  • FIGS. 1-3, 5, 6 and 11 illustrate a distal end 2 of the articulating steerable clip applier 1. The clip applier 1 is a long, narrow structure with a free distal end 2 adapted for coupling to an end effector, such as a surgical jaw assembly 3, and a proximal end 101 operatively coupled to a user-operated handle 100 (as shown in FIG. 19). The clip applier 1 is composed of a plurality of relatively short articulating members or phalanges 4 that are connected end to end by pivoting links 5 and capable of angulations 6 relative to one another when subjected to a tensile force. FIG. 3 illustrates a cross-sectional top view of the articulating steerable clip applier along the line 8 of FIG. 2. FIG. 4 illustrates an enlarged cross-sectional top view of pivoting point 5 showing the pivotable connection between two phalanges 4 on the articulating steerable clip applier 1 from line 15 of FIG. 3.
  • A sheath of elongate tubing 7 covers each individual phalange 4 such that the flexible joints of the phalange 4 are exposed. In one embodiment of the subject invention, this tubing 7 is composed of flexible materials. In another embodiment of the subject invention, this tubing 7 is composed of inflexible materials. Accordingly, the plurality of phalanges 4 is covered with a plurality of tubings 7. One embodiment of the tubing 7 is shown in FIGS. 17 and 18. A single flexible tubing (not shown) may cover the entire plurality of phalanges of the clip applier 1.
  • The distal end 2 of the articulating steerable clip applier 1 contains a final phalange 9. The final phalange 9 has a distal end 10 adapted for coupling to an end effector, such as a surgical jaw assembly 3, and a proximal end 11 that is attached to an adjacent proximal phalange 12. The distal tip 13 of the jaw assembly 3 is a surgical clip applicator for applying a surgical clip to a blood vessel (not shown).
  • The proximal end of the articulating steerable clip applier 1 contains an initial phalange 14. The initial phalange 14 has a proximal end 101 operatively coupled to a user-operated handle 100 and a distal end 16 that is attached to an adjacent first distal phalange 17.
  • FIGS. 11-13 illustrate individual phalanges 4 spaced apart, but the phalanges 4 are disposed in the articulating clip applier 1 so that the distal end of each proximal phalange 4 co-acts with the proximal end of the adjacent distal phalange 4.
  • Each phalange 4 has a generally cylindrical configuration and is symmetrical about a longitudinal axis. Each phalange 4 has an exterior surface 18, described more fully below, and an interior surface 19 that defines a lumen 20 extending between the proximal end 21 and distal end 22. FIG. 10 illustrates a vertical cross-sectional view of an individual phalange 4 at line 18 of FIG. 9. The plurality of lumens 20 of each phalange 4 forms an internal longitudinal passage 23 in the articulating clip applier 1. Longitudinal passage 23 permits actuators, surgical clips, surgical clip carrying assemblies and other functional elements to pass through clip applier 1 and to control the operation of clip movement, clip ligation or phalange articulation. Each phalange 4 is composed of two half phalanges 24. As shown in FIG. 12, each half phalange 24 has the same structure: a curved exterior surface 18 and a generally planar interior surface 19. Each half phalange 24 has a substantially half-round or half-elliptical cross-sectional configuration so that an assembled phalange 4 has a substantially cylindrical configuration. The interior surface 19 of each half phalange 24 contains a longitudinal channel 27.
  • The proximal end 21 of the exterior surface 18 of each half phalange 24 contains an extension 29. The extension 29 may have angled sides 30 that form a curved end 31. The top surface 32 of each extension 29 has a curvature that is substantially the same as the curvature of the exterior surface 18. The bottom 33 of each extension 29 has a substantially flat planar surface 34. The bottom 34 of each extension 29 further has a substantially cylindrical protrusion 35.
  • The distal end 22 of each half phalange 24 contains a substantially flat planar surface 37 that is lowered from the curved exterior surface 18. The substantially flat planar surface 37 has a substantially circular internal bore 38 with a diameter that is generally larger than the diameter of the cylindrical protrusion 35.
  • A phalange 4 is assembled by attaching the interior surfaces 19 of two half phalanges 24 to one another so that the two longitudinal channels 27 on each interior surface 19 of each half phalange 24 form the lumen 20. An assembled phalange 4 will have two extensions 29 on the proximal end 21, with their respective substantially cylindrical protrusions 35 facing each other. The substantially flat planar surfaces 37 of the distal end 22 will be on opposing sides of the assembled phalange 4.
  • In one embodiment of the subject invention, the phalanges 4 are composed of injected-molded plastic.
  • As shown in FIGS. 3 and 11, the plurality of phalanges 4 is connected end to end by pivoting links 5 in the following manner:
  • The initial phalange 14 has a proximal end 101 attached to a user-operated handle 100 (shown in FIG. 19). The distal end 16 of the initial phalange 14 has substantially flat planar surfaces 39 on the top and bottom of the exterior surface 18. The substantially flat planar surfaces 39 each have a substantially circular internal bore 41 with a diameter that is generally larger than the diameter of the cylindrical protrusion 35.
  • The clip applier 1 is assembled by placing the two substantially cylindrical protrusions 35 on the proximal end 21 of the first distal phalange 17 into the internal bores 41 on opposing sides on the distal end 16 of the initial phalange 14. This pivoting link 5 attaches the first distal phalange 17 to the initial phalange 14.
  • The proximal end 21 of the first distal phalange 17 may pivot with respect to the initial phalange 14. The two substantially cylindrical protrusions 35 may rotate within the internal bores 41. The substantially flat planar surfaces 34 of each extension 29 rotate freely on the substantially flat planar surfaces 39 on opposing sides of the initial phalange 14.
  • Second, third and subsequent distal phalanges 4, as desired, are added to the first distal phalange 17 as follows: the two substantially cylindrical protrusions 35 on the proximal end 21 of a subsequent phalange 4 are placed into the internal bores 38 on opposing sides on the distal end 22 of the preceding proximal phalange 4.
  • As shown in FIGS. 1, 3, 5, 6 and 7, the proximal ends 21 of all subsequent distal phalanges 4 may pivot with respect to distal ends 22 of their respective adjacent proximal phalanges 4. The protrusions 35 on the proximal end 21 of each subsequent distal phalange 4 may rotate within the internal bores 38 on the distal end 22 of the adjacent proximal phalange 4. The substantially flat planar surfaces 34 of each extension 29 rotate freely on the substantially flat planar surfaces 37 of the adjacent proximal phalange 4.
  • As shown in FIGS. 9, 12 and 13, the exterior surface 18 of each half phalange 24 contains at least one axially extending s-shaped groove 42 or channel. The curve of the s-shaped groove 42 traverses the width and length of the exterior surface 18 of the half phalange 24. The s-shaped groove 42 begins on one side of the exterior surface 18 at the proximal end 21 of the half phalange 24, axially extends and curves over the exterior surface 18 to the opposing side of the exterior surface on the distal end 22 of the half phalange 24.
  • Once a phalange 4 is assembled, it has two grooves 42 on both exterior surfaces 18 that axially extend in the phalange 4 in opposing s-shaped curves. Once the plurality of phalanges 4 is assembled, the two s-shaped grooves 42 form two continuous axially extending spiral shaped channels 43 that curve in opposing directions from each other.
  • A tension cable or wire is inserted into each spiral shaped channel 43, to provide steering control for the plurality of phalanges 4. Tension wire is preferably made from a superelastic material, e.g., nickel titanium alloy, braided stainless steel, a single stainless steel wire, Kevlar, a high tensile strength monofilament thread, or combinations thereof.
  • As shown in FIGS. 5, 7 and 8 a first set of two wires 45 a and 45 b are connected on their respective proximal ends 46 a and 46 b to the initial phalange 14 and connected on their respective distal ends 47 a and 47 b to the proximal end 21 of the adjacent first distal phalange 17. The proximal end 46 a of wire 45 a is attached to one side 14 a of the initial phalange 14 and the distal end 47 a of wire 45 a is attached to the side 17 a of the first distal phalange 17 on its proximal end 21. The proximal end 46 b of wire 45 b is attached to the opposing side 14 b of the initial phalange 14 and the distal end 47 b of wire 45 b is attached to the side 17 b of the first distal phalange 17 on its proximal end 21. When wire 45 a is pulled, this tensile force causes the first distal phalange 17 to pivot back and forth at its proximal end 21 towards side 17 a, away from side 14 b. When wire 45 b is pulled, this tensile force causes the first distal phalange 17 to pivot back and forth at its proximal end 21 towards side 17 b, away from side 14 a. Furthermore, each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 45 a or 45 b is pulled.
  • A second set of two wires 48 a and 48 b are connected on their respective proximal ends 49 a and 49 b to the initial phalange 14 and connected on their respective distal ends 50 a and 50 b to the proximal end 51 of the second distal phalange 52, which is adjacent to phalange 17. The wires 48 a and 48 b are inserted into the two spiral shaped channels 43 that curve in opposing directions. The proximal end 49 a of wire 48 a is attached to one side 14 a of the initial phalange 14 and the distal end 50 a of wire 48 a is attached to the opposing side 52 b of the second distal phalange 52 on its proximal end 51. The proximal end 49 b of wire 48 b is attached to the opposing side 14 b of the initial phalange 14 and the distal end 50 b of wire 48 b is attached to the opposing side 52 a of the second distal phalange 52 on its proximal end 51. When wire 48 a is pulled, this tensile force causes the second distal phalange 52 to pivot back and forth at its proximal end 51 towards side 52 b, away from side 14 a. When wire 48 b is pulled, this tensile force causes the second distal phalange 52 to pivot back and forth at its proximal end 51 towards side 52 a, away from side 14 b. Furthermore, each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 48 a or 48 b is pulled. Since the proximal end and the distal end of each wire 48 a or 48 b is attached to opposing sides of the initial phalange 14 and the second distal phalange 52, pulling either wire 48 a or 48 b causes the second distal phalange 52 to pivot in the direction of the distal end of the wire and away from the proximal end of the wire.
  • A third set of two wires 53 a and 53 b are connected on their respective proximal ends 54 a and 54 b to the first distal phalange 17 and connected on their respective distal ends 55 a and 55 b to the proximal end 56 of the third distal phalange 57, which is adjacent to second distal phalange 52. The wires 53 a and 53 b are inserted into the two spiral shaped channels 43 that curve in opposing directions. The proximal end 54 a of wire 53 a is attached to one side 17 a of the first distal phalange 17 and the distal end 55 a of wire 53 a is attached to the opposing side 57 b of the third distal phalange 57 on its proximal end 56. The proximal end 54 b of wire 53 b is attached to the opposing side 17 b of the first distal phalange 17 and the distal end 55 b of wire 53 b is attached to the opposing side 57 a of the third distal phalange 57 on its proximal end 56. When wire 53 a is pulled, this tensile force causes the third distal phalange 57 to pivot back and forth at its proximal end 56 towards side 57 b, away from side 17 a. When wire 53 b is pulled, this tensile force causes the third distal phalange 57 to pivot back and forth at its proximal end 56 towards side 57 a, away from side 17 b. Furthermore, each subsequently attached phalange 4 is moved by the same pivoted angle above, when either wire 53 a or 53 b is pulled. Since the proximal end and the distal end of each wire 53 a or 53 b is attached to opposing sides of the first distal phalange 17 and the third distal phalange 57, pulling either wire 53 a or 53 b causes the third distal phalange 57 to pivot in the direction of the distal end of the wire and away from the proximal end of the wire.
  • Additional sets of two wires may be connected on their proximal ends to a proximal phalange and connected on their distal end to the proximal end of phalange that is two phalanges distal from the proximal phalange. The wires are inserted into the two spiral shaped channels 43 that curve in opposing directions. The proximal end of each wire is attached to one side of the proximal phalange. The distal end of each wire is attached to the opposing side of the phalange that is two phalanges distal from the proximal phalange. When each wire is pulled, this tensile force causes the phalange that is two phalanges distal from the proximal phalange to pivot back and forth at its proximal end. The direction of this pivoting is towards the distal end attachment of each wire and away from the proximal end attachment of each wire.
  • A user may actuate the wires above to pivot all the remaining phalanges 4 such that the angle 6 between the distal end of a preceding phalange and the proximal end of the subsequent phalange in the clip applier is substantially equivalent. FIGS. 1 and 2 illustrate the separate, but identical, angles of movement 6 by individual phalanges 4.
  • As each individual phalange 4 pivots by an equivalent angle 6, the sum of these angles 6 causes the distal end 2 of the clip applier 1 to pivot by a large angle or a cascading actuation effect, as shown in FIG. 1.
  • In another embodiment of the subject invention, as shown in FIGS. 14-16, the tension wires above may be replaced by semi-circular connecting ligaments 61. Each individual phalange 4 may be substantially covered with two semi-circular connecting ligaments 61. FIGS. 14 and 15 illustrate two semi-circular connecting ligaments 61 in an opposing top-bottom configuration 61 a to cover an individual phalange (not shown).
  • Each semi-circular connecting ligament 61 has a flexible tip 62 on its proximal end and a flexible tip 63 on its distal end. Furthermore, flexible tips 62 and 63 are on opposing sides of each semi-circular connecting ligament 61.
  • In the opposing top-bottom configuration 61 a, flexible tips 62 are attached to the distal end of a proximal phalange on opposing sides, an adjacent distal phalange is substantially covered by the two opposing semi-circular connecting ligaments 61, and flexible tips 63 are attached to the proximal end of a second distal phalange on opposing sides.
  • Each flexible tip 62 is attached to one side of the proximal phalange and each flexible tip 63 is attached to the opposing side of the second distal phalange. When a flexible tip 62 is pulled, this force causes the second distal phalange to pivot at its proximal end. The direction of this pivoting is away from the flexible tip 62 that is pulled.
  • A user may actuate the flexible tips 62 above to pivot all the remaining phalanges 4 such that the angle 6 between the distal end of a preceding phalange and the proximal end of the subsequent phalange in the clip applier is substantially equivalent. FIGS. 1 and 2 illustrate the separate, but identical, angles of movement 6 by individual phalanges 4.
  • In one embodiment of the subject invention, the narrow plurality of phalanges 4 may easily fit within respective envelopes of 10 mm and 3 mm MIS instrumentation, while retaining flexible movements within a patient.

Claims (11)

1. An endoscopic surgical tool having a handle and a shaft member coupled to the handle and extending along a shaft axis from a proximal end to a distal end, wherein the distal end of the shaft member is adapted to receive an end effector, comprising:
A. a linear array of n phalanx sections, where n is an integer greater than 2, wherein the linear array includes a sequentially aligned proximal phalanx section, n−2 intermediate phalanx sections, and a distal phalanx section, wherein the ith phalanx section, wherein i is greater than or equal to 1 and less than or equal to n, extends along an associated central axis CAi between a proximal end PEi and a distal end DEL and includes:
a tubular member TMi defining
a. a central void region CVRi extending along the central axis CAi between the proximal end PEi and the distal end DEi,
b. an exterior surface ESi disposed about the central void region CVRi and extending along the central axis CAi from the proximal end PEi to the distal end DEi,
wherein the n phalanx sections are aligned whereby the central axis CAi of each phalanx section intersects with the central axis of phalanx sections adjacent thereto in the linear array,
B. an end effector coupler EEC disposed at the distal end of the distal phalanx section and adapted for coupling the distal end to an end effector,
C. a base coupling assembly BC disposed at the proximal end of the proximal phalanx section and adapted to couple to the proximal end of the proximal phalanx section to the distal end of the shaft member, whereby the shaft axis intersects the central axis of the proximal phalanx section and whereby the proximal phalanx section is movable with respect to the distal end of the shaft member substantially only in rotational motion about a transverse axis TA0 perpendicular to the central axis of the proximal phalanx section,
D. n−1 phalanx section coupling assemblies PC, wherein each phalanx section coupling assembly is associated with an intermediate phalanx section and wherein the coupling assembly PCi associated with the ith phalanx section couples a distal end of the ith phalanx section to the proximal end of the adjacent i+1th phalanx section whereby the proximal end of the i+1th phalanx section is movable with respect to the distal end of the ith phalanx section substantially only in rotational motion about a transverse axis TAi perpendicular to the central axis of the ith phalanx section, wherein TAi and TA0 are mutually parallel, and
wherein each of the base coupling assembly and the n−1 phalanx coupling assemblies are operative whereby a torque applied to the proximal end of the proximal phalanx section about an axis parallel to transverse axis TA0, effects a same-direction angular rotational displacement of each of the ith phalanx sections with respect to the adjacent phalanx sections about the respective transverse axes TAi.
2. An endoscopic surgical tool according to claim 1, wherein the base coupling assembly BC is adapted to detachably couple the proximal end of the proximal phalanx section to the distal end of the shaft member.
3. An endoscopic surgical tool according to claim 1, wherein the end effector coupling assembly EEC is adapted to detachably couple the end effector to the distal end of the distal phalanx section.
4. An endoscopic surgical tool according to claim 1, wherein at least the ith phalanx section coupling assembly Ci includes:
i. a coupling cam surface CCSi disposed about a cam central axis CCAi affixed to the distal end of the ith phalanx section, wherein the cam central axis CCAi is substantially coaxial with the transverse axis TAi,
ii. a substantially non-stretchable link coupling a point on the coupling cam surface of the ith phalanx section CCSPi with a point EPi+2 on the proximal end of the i+2th phalanx section, wherein point CCSPi and point EPi are disposed in a plane including CAi+1 and perpendicular to the transverse axes TAi and TAi+2 and on opposite sides central axis of the i+1 phalanx section CAi+1.
5. An endoscopic surgical tool according to claim 4, wherein the link of coupling assembly Ci is a cable extending between point CCSPi and point EPi+2.
6. An endoscopic surgical tool according to claim 5, wherein the cable extends in a helical path about the central axis CAi+1 between point CCSPi and point EPi+2.
7. An endoscope surgical tool according to claim 6, wherein the exterior surface ESi includes an open-faced helical channel HCi+1 disposed about the central axis CAi+1, and the cable of coupling assembly Ci extends through the helical channel HCi+1.
8. An endoscope surgical tool according to claim 1, wherein the same-direction angular rotational displacement of each of the ith phalanx sections with respect to the adjacent phalanx sections are equi-angle.
9. An endoscope surgical tool according to claim 1, wherein the tubular members TMi are characterized by the same distance between the proximal end PEi and the distal end Dei.
10. An endoscope surgical tool according to claim 1, wherein at least two of the tubular members TMi are characterized by different distances between their respective proximal ends PEi and distal ends Dei.
11. An endoscope surgical tool according to claim 1, wherein the cam surfaces CCSi are circular segments.
US13/080,998 2010-04-06 2011-04-06 Articulating Steerable Clip Applier for Laparoscopic Procedures Abandoned US20120265220A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/080,998 US20120265220A1 (en) 2010-04-06 2011-04-06 Articulating Steerable Clip Applier for Laparoscopic Procedures
US14/339,021 US9918715B2 (en) 2010-04-06 2014-07-23 Articulating steerable clip applier for laparoscopic procedures
US15/852,037 US10792040B2 (en) 2010-04-06 2017-12-22 Articulating steerable clip applier for laparoscopic procedures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32123310P 2010-04-06 2010-04-06
US13/080,998 US20120265220A1 (en) 2010-04-06 2011-04-06 Articulating Steerable Clip Applier for Laparoscopic Procedures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/339,021 Continuation US9918715B2 (en) 2010-04-06 2014-07-23 Articulating steerable clip applier for laparoscopic procedures

Publications (1)

Publication Number Publication Date
US20120265220A1 true US20120265220A1 (en) 2012-10-18

Family

ID=44763259

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/080,998 Abandoned US20120265220A1 (en) 2010-04-06 2011-04-06 Articulating Steerable Clip Applier for Laparoscopic Procedures
US14/339,021 Active 2033-09-25 US9918715B2 (en) 2010-04-06 2014-07-23 Articulating steerable clip applier for laparoscopic procedures
US15/852,037 Active 2031-11-06 US10792040B2 (en) 2010-04-06 2017-12-22 Articulating steerable clip applier for laparoscopic procedures

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/339,021 Active 2033-09-25 US9918715B2 (en) 2010-04-06 2014-07-23 Articulating steerable clip applier for laparoscopic procedures
US15/852,037 Active 2031-11-06 US10792040B2 (en) 2010-04-06 2017-12-22 Articulating steerable clip applier for laparoscopic procedures

Country Status (2)

Country Link
US (3) US20120265220A1 (en)
WO (1) WO2011127137A1 (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734469B2 (en) 2009-10-13 2014-05-27 Covidien Lp Suture clip applier
US8747423B2 (en) 2007-03-26 2014-06-10 Covidien Lp Endoscopic surgical clip applier
US8845659B2 (en) 2010-02-25 2014-09-30 Covidien Lp Articulating endoscopic surgical clip applier
US8894665B2 (en) 2008-08-29 2014-11-25 Covidien Lp Endoscopic surgical clip applier
US8920438B2 (en) 2004-10-08 2014-12-30 Covidien Lp Apparatus for applying surgical clips
US8961542B2 (en) 2010-07-28 2015-02-24 Covidien Lp Articulating clip applier cartridge
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US20150088161A1 (en) * 2013-09-20 2015-03-26 Canon U.S.A., Inc. Control apparatus and tendon-driven device
US9011465B2 (en) 2004-10-08 2015-04-21 Covidien Lp Endoscopic surgical clip applier
US9011464B2 (en) 2010-11-02 2015-04-21 Covidien Lp Self-centering clip and jaw
US9113892B2 (en) 2013-01-08 2015-08-25 Covidien Lp Surgical clip applier
US9186136B2 (en) 2009-12-09 2015-11-17 Covidien Lp Surgical clip applier
US9186153B2 (en) 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US9364239B2 (en) 2011-12-19 2016-06-14 Covidien Lp Jaw closure mechanism for a surgical clip applier
US9364216B2 (en) 2011-12-29 2016-06-14 Covidien Lp Surgical clip applier with integrated clip counter
US9408610B2 (en) 2012-05-04 2016-08-09 Covidien Lp Surgical clip applier with dissector
US9414844B2 (en) 2008-08-25 2016-08-16 Covidien Lp Surgical clip appliers
US9439654B2 (en) 2008-08-29 2016-09-13 Covidien Lp Endoscopic surgical clip applier
US9480477B2 (en) 2006-10-17 2016-11-01 Covidien Lp Apparatus for applying surgical clips
US9498227B2 (en) 2007-04-11 2016-11-22 Covidien Lp Surgical clip applier
US9517059B2 (en) 2013-05-20 2016-12-13 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
US9526501B2 (en) 2009-12-15 2016-12-27 Covidien Lp Surgical clip applier
US9532787B2 (en) 2012-05-31 2017-01-03 Covidien Lp Endoscopic clip applier
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
US9775623B2 (en) 2011-04-29 2017-10-03 Covidien Lp Surgical clip applier including clip relief feature
US9775624B2 (en) 2013-08-27 2017-10-03 Covidien Lp Surgical clip applier
US9918715B2 (en) 2010-04-06 2018-03-20 Conmed Corporation Articulating steerable clip applier for laparoscopic procedures
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US9962179B2 (en) 2011-04-06 2018-05-08 Medrobotics Corporation Articulating surgical tools and tool sheaths, and methods of deploying the same
US9968362B2 (en) 2013-01-08 2018-05-15 Covidien Lp Surgical clip applier
US10159491B2 (en) 2015-03-10 2018-12-25 Covidien Lp Endoscopic reposable surgical clip applier
US10292712B2 (en) 2015-01-28 2019-05-21 Covidien Lp Surgical clip applier with integrated cutter
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
US10426489B2 (en) 2016-11-01 2019-10-01 Covidien Lp Endoscopic reposable surgical clip applier
US10492795B2 (en) 2016-11-01 2019-12-03 Covidien Lp Endoscopic surgical clip applier
WO2019244147A1 (en) * 2018-06-17 2019-12-26 Memic Innovative Surgery Ltd. Surgical articulated arm
US10548602B2 (en) 2017-02-23 2020-02-04 Covidien Lp Endoscopic surgical clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
US10603038B2 (en) 2017-02-22 2020-03-31 Covidien Lp Surgical clip applier including inserts for jaw assembly
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10639032B2 (en) 2017-06-30 2020-05-05 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10653429B2 (en) 2017-09-13 2020-05-19 Covidien Lp Endoscopic surgical clip applier
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10660725B2 (en) 2017-02-14 2020-05-26 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10660723B2 (en) 2017-06-30 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10675043B2 (en) 2017-05-04 2020-06-09 Covidien Lp Reposable multi-fire surgical clip applier
US10675112B2 (en) 2017-08-07 2020-06-09 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702278B2 (en) 2014-12-02 2020-07-07 Covidien Lp Laparoscopic surgical ligation clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10709455B2 (en) 2017-02-02 2020-07-14 Covidien Lp Endoscopic surgical clip applier
US10722235B2 (en) 2017-05-11 2020-07-28 Covidien Lp Spring-release surgical clip
US10722236B2 (en) 2017-12-12 2020-07-28 Covidien Lp Endoscopic reposable surgical clip applier
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US10758245B2 (en) 2017-09-13 2020-09-01 Covidien Lp Clip counting mechanism for surgical clip applier
US10758244B2 (en) 2017-02-06 2020-09-01 Covidien Lp Endoscopic surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10828036B2 (en) 2017-11-03 2020-11-10 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10835260B2 (en) 2017-09-13 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10932791B2 (en) 2017-11-03 2021-03-02 Covidien Lp Reposable multi-fire surgical clip applier
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10959737B2 (en) 2017-12-13 2021-03-30 Covidien Lp Reposable multi-fire surgical clip applier
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US11071553B2 (en) 2016-08-25 2021-07-27 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US11116514B2 (en) 2017-02-06 2021-09-14 Covidien Lp Surgical clip applier with user feedback feature
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11219463B2 (en) 2018-08-13 2022-01-11 Covidien Lp Bilateral spring for surgical instruments and surgical instruments including the same
US11246601B2 (en) 2018-08-13 2022-02-15 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11344316B2 (en) 2018-08-13 2022-05-31 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11510682B2 (en) 2008-08-25 2022-11-29 Covidien Lp Surgical clip applier and method of assembly
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US11583291B2 (en) 2017-02-23 2023-02-21 Covidien Lp Endoscopic surgical clip applier
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device

Families Citing this family (414)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
KR20190054191A (en) * 2012-06-07 2019-05-21 메드로보틱스 코포레이션 Articulating surgical instruments and methods of deploying the same
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
IN2014DN11033A (en) * 2012-06-28 2015-09-25 Ethicon Endo Surgery Inc
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
BR112018009251A2 (en) * 2016-02-05 2019-04-09 Board Of Regents Of The University Of Texas System surgical apparatus and customized main controller for a surgical apparatus
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10610345B2 (en) 2016-09-21 2020-04-07 Ethicon, Inc. Applicator instruments for dispensing surgical fasteners having articulating shafts
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
CN110559037A (en) * 2019-09-26 2019-12-13 无锡东峰怡和科技发展有限公司 Multifunctional blood vessel clamping device
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US5174277A (en) * 1990-01-24 1992-12-29 Kabushiki Kaisha Toshiba Endoscope
US5681263A (en) * 1994-02-25 1997-10-28 Vermon Endoscope for ultrasonic echography
US20100010512A1 (en) * 2006-10-05 2010-01-14 Taylor Eric J Flexible endoscopic stitching devices

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556370A (en) 1993-07-28 1996-09-17 The Board Of Trustees Of The Leland Stanford Junior University Electrically activated multi-jointed manipulator
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
CA2143560C (en) 1994-03-02 2007-01-16 Mark Fogelberg Sterile occlusion fasteners and instrument and method for their placement
US5454827A (en) * 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5626585A (en) 1994-09-16 1997-05-06 United States Surgical Corporation Ligating clip advance
US5749828A (en) 1995-12-22 1998-05-12 Hewlett-Packard Company Bending neck for use with invasive medical devices
US5833696A (en) 1996-10-03 1998-11-10 United States Surgical Corporation Apparatus for applying surgical clips
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
DE19920869A1 (en) * 1999-05-06 2000-12-07 Storz Karl Gmbh & Co Kg Retractor for use in endoscopic surgery, medical instrument for inserting a retractor, and method for using a retractor in endoscopic surgery
US6364828B1 (en) 2000-01-06 2002-04-02 Hubert K. Yeung Elongated flexible inspection neck
US6248062B1 (en) * 2000-11-09 2001-06-19 Flexbar Machine Corp. Laparoscopic retractor
US6716226B2 (en) 2001-06-25 2004-04-06 Inscope Development, Llc Surgical clip
US6869435B2 (en) 2002-01-17 2005-03-22 Blake, Iii John W Repeating multi-clip applier
US7250027B2 (en) 2002-05-30 2007-07-31 Karl Storz Endovision, Inc. Articulating vertebrae with asymmetrical and variable radius of curvature
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20040249367A1 (en) 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US7578786B2 (en) 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US7585304B2 (en) 2004-02-02 2009-09-08 Teleflex Medical Incorporated Endoscopic clip applying apparatus with improved aperture for clip release and related method
DE102004027850A1 (en) 2004-06-08 2006-01-05 Henke-Sass Wolf Gmbh Bendable section of an introducer tube of an endoscope and method for its manufacture
IL164260A0 (en) 2004-09-23 2005-12-18 Medigus Ltd An improved articulation section
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US8465420B2 (en) 2007-05-18 2013-06-18 Boston Scientific Scimed, Inc. Articulating torqueable hollow device
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
WO2011127137A1 (en) * 2010-04-06 2011-10-13 Pavel Menn Articulating steerable clip applier for laparoscopic procedures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266059A (en) * 1963-06-19 1966-08-16 North American Aviation Inc Prestressed flexible joint for mechanical arms and the like
US5174277A (en) * 1990-01-24 1992-12-29 Kabushiki Kaisha Toshiba Endoscope
US5681263A (en) * 1994-02-25 1997-10-28 Vermon Endoscope for ultrasonic echography
US20100010512A1 (en) * 2006-10-05 2010-01-14 Taylor Eric J Flexible endoscopic stitching devices

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9687247B2 (en) 2004-10-08 2017-06-27 Covidien Lp Apparatus for applying surgical clips
US10485538B2 (en) 2004-10-08 2019-11-26 Covidien Lp Endoscopic surgical clip applier
US9364240B2 (en) 2004-10-08 2016-06-14 Covidien Lp Endoscopic surgical clip applier
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
US9011465B2 (en) 2004-10-08 2015-04-21 Covidien Lp Endoscopic surgical clip applier
US8920438B2 (en) 2004-10-08 2014-12-30 Covidien Lp Apparatus for applying surgical clips
US10349950B2 (en) 2004-10-08 2019-07-16 Covidien Lp Apparatus for applying surgical clips
US10166027B2 (en) 2006-10-17 2019-01-01 Covidien Lp Apparatus for applying surgical clips
US9480477B2 (en) 2006-10-17 2016-11-01 Covidien Lp Apparatus for applying surgical clips
US8814884B2 (en) 2007-03-26 2014-08-26 Covidien Lp Endoscopic surgical clip applier
US8747423B2 (en) 2007-03-26 2014-06-10 Covidien Lp Endoscopic surgical clip applier
US10363045B2 (en) 2007-03-26 2019-07-30 Covidien Lp Endoscopic surgical clip applier
US9398917B2 (en) 2007-03-26 2016-07-26 Covidien Lp Endoscopic surgical clip applier
US10258346B2 (en) 2007-04-11 2019-04-16 Covidien Lp Surgical clip applier
US9498227B2 (en) 2007-04-11 2016-11-22 Covidien Lp Surgical clip applier
US11510682B2 (en) 2008-08-25 2022-11-29 Covidien Lp Surgical clip applier and method of assembly
US9414844B2 (en) 2008-08-25 2016-08-16 Covidien Lp Surgical clip appliers
US10231738B2 (en) 2008-08-29 2019-03-19 Covidien Lp Endoscopic surgical clip applier with wedge plate
US9113893B2 (en) 2008-08-29 2015-08-25 Covidien Lp Endoscopic surgical clip applier with clip retention
US9358011B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with connector plate
US10159484B2 (en) 2008-08-29 2018-12-25 Covidien Lp Endoscopic surgical clip applier with connector plate
US10682135B2 (en) 2008-08-29 2020-06-16 Covidien Lp Endoscopic surgical clip applier
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US11213298B2 (en) 2008-08-29 2022-01-04 Covidien Lp Endoscopic surgical clip applier with wedge plate
US9089334B2 (en) 2008-08-29 2015-07-28 Covidien Lp Endoscopic surgical clip applier with connector plate
US9439654B2 (en) 2008-08-29 2016-09-13 Covidien Lp Endoscopic surgical clip applier
US10231735B2 (en) 2008-08-29 2019-03-19 Covidien Lp Endoscopic surgical clip applier
US9545254B2 (en) 2008-08-29 2017-01-17 Covidien Lp Endoscopic surgical clip applier with connector plate
US11806021B2 (en) 2008-08-29 2023-11-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8894665B2 (en) 2008-08-29 2014-11-25 Covidien Lp Endoscopic surgical clip applier
US8734469B2 (en) 2009-10-13 2014-05-27 Covidien Lp Suture clip applier
US10758234B2 (en) 2009-12-09 2020-09-01 Covidien Lp Surgical clip applier
US9186136B2 (en) 2009-12-09 2015-11-17 Covidien Lp Surgical clip applier
US10004502B2 (en) 2009-12-09 2018-06-26 Covidien Lp Surgical clip applier
US9526501B2 (en) 2009-12-15 2016-12-27 Covidien Lp Surgical clip applier
US10470765B2 (en) 2009-12-15 2019-11-12 Covidien Lp Surgical clip applier
US10271854B2 (en) 2010-02-25 2019-04-30 Covidien Lp Articulating endoscopic surgical clip applier
US11213299B2 (en) 2010-02-25 2022-01-04 Covidien Lp Articulating endoscopic surgical clip applier
US11918231B2 (en) 2010-02-25 2024-03-05 Covidien Lp Articulating endoscopic surgical clip applier
US8845659B2 (en) 2010-02-25 2014-09-30 Covidien Lp Articulating endoscopic surgical clip applier
US9393024B2 (en) 2010-02-25 2016-07-19 Covidien Lp Articulating endoscopic surgical clip applier
US9918715B2 (en) 2010-04-06 2018-03-20 Conmed Corporation Articulating steerable clip applier for laparoscopic procedures
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8961542B2 (en) 2010-07-28 2015-02-24 Covidien Lp Articulating clip applier cartridge
US9737310B2 (en) 2010-07-28 2017-08-22 Covidien Lp Articulating clip applier
US9717505B2 (en) 2010-07-28 2017-08-01 Covidien Lp Articulating clip applier cartridge
US11517322B2 (en) 2010-07-28 2022-12-06 Covidien Lp Articulating clip applier
US10568635B2 (en) 2010-07-28 2020-02-25 Covidien Lp Articulating clip applier
US9642627B2 (en) 2010-11-02 2017-05-09 Covidien Lp Self-centering clip and jaw
US9011464B2 (en) 2010-11-02 2015-04-21 Covidien Lp Self-centering clip and jaw
US10357250B2 (en) 2011-01-31 2019-07-23 Covidien Lp Locking cam driver and jaw assembly for clip applier
US9186153B2 (en) 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
US9962179B2 (en) 2011-04-06 2018-05-08 Medrobotics Corporation Articulating surgical tools and tool sheaths, and methods of deploying the same
US10342559B2 (en) 2011-04-06 2019-07-09 Medrobotics Corporation Articulating surgical tools and tool sheaths, and methods of deploying the same
US9775623B2 (en) 2011-04-29 2017-10-03 Covidien Lp Surgical clip applier including clip relief feature
US10806463B2 (en) 2011-11-21 2020-10-20 Covidien Lp Surgical clip applier
US9364239B2 (en) 2011-12-19 2016-06-14 Covidien Lp Jaw closure mechanism for a surgical clip applier
US9855043B2 (en) 2011-12-19 2018-01-02 Covidien Lp Jaw closure mechanism for a surgical clip applier
US11278287B2 (en) 2011-12-29 2022-03-22 Covidien Lp Surgical clip applier with integrated clip counter
US10349936B2 (en) 2011-12-29 2019-07-16 Covidien Lp Surgical clip applier with integrated clip counter
US9364216B2 (en) 2011-12-29 2016-06-14 Covidien Lp Surgical clip applier with integrated clip counter
US9408610B2 (en) 2012-05-04 2016-08-09 Covidien Lp Surgical clip applier with dissector
US10660639B2 (en) 2012-05-04 2020-05-26 Covidien Lp Surgical clip applier with dissector
US11026696B2 (en) 2012-05-31 2021-06-08 Covidien Lp Endoscopic clip applier
US9532787B2 (en) 2012-05-31 2017-01-03 Covidien Lp Endoscopic clip applier
US10159492B2 (en) 2012-05-31 2018-12-25 Covidien Lp Endoscopic clip applier
US10743886B2 (en) 2013-01-08 2020-08-18 Covidien Lp Surgical clip applier
US9113892B2 (en) 2013-01-08 2015-08-25 Covidien Lp Surgical clip applier
US9848886B2 (en) 2013-01-08 2017-12-26 Covidien Lp Surgical clip applier
US9968362B2 (en) 2013-01-08 2018-05-15 Covidien Lp Surgical clip applier
US9750500B2 (en) 2013-01-18 2017-09-05 Covidien Lp Surgical clip applier
US10537329B2 (en) 2013-01-18 2020-01-21 Covidien Lp Surgical clip applier
US10016187B2 (en) 2013-05-20 2018-07-10 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
US9517059B2 (en) 2013-05-20 2016-12-13 Medrobotics Corporation Articulating surgical instruments and method of deploying the same
US9775624B2 (en) 2013-08-27 2017-10-03 Covidien Lp Surgical clip applier
US10682146B2 (en) 2013-08-27 2020-06-16 Covidien Lp Surgical clip applier
US11051892B2 (en) * 2013-09-20 2021-07-06 Canon U.S.A., Inc. Control apparatus and tendon-driven device
US20150088161A1 (en) * 2013-09-20 2015-03-26 Canon U.S.A., Inc. Control apparatus and tendon-driven device
US10702278B2 (en) 2014-12-02 2020-07-07 Covidien Lp Laparoscopic surgical ligation clip applier
US10765435B2 (en) 2015-01-07 2020-09-08 Covidien Lp Reposable clip applier
US9931124B2 (en) 2015-01-07 2018-04-03 Covidien Lp Reposable clip applier
US11058432B2 (en) 2015-01-15 2021-07-13 Covidien Lp Endoscopic reposable surgical clip applier
US10292712B2 (en) 2015-01-28 2019-05-21 Covidien Lp Surgical clip applier with integrated cutter
US11134956B2 (en) 2015-01-28 2021-10-05 Covidien Lp Surgical clip applier with integrated cutter
US10159491B2 (en) 2015-03-10 2018-12-25 Covidien Lp Endoscopic reposable surgical clip applier
US10828044B2 (en) 2015-03-10 2020-11-10 Covidien Lp Endoscopic reposable surgical clip applier
US10702279B2 (en) 2015-11-03 2020-07-07 Covidien Lp Endoscopic surgical clip applier
US10702280B2 (en) 2015-11-10 2020-07-07 Covidien Lp Endoscopic reposable surgical clip applier
US10390831B2 (en) 2015-11-10 2019-08-27 Covidien Lp Endoscopic reposable surgical clip applier
US10905425B2 (en) 2015-11-10 2021-02-02 Covidien Lp Endoscopic reposable surgical clip applier
US11298135B2 (en) 2015-11-10 2022-04-12 Covidien Lp Endoscopic reposable surgical clip applier
US10932793B2 (en) 2016-01-11 2021-03-02 Covidien Lp Endoscopic reposable surgical clip applier
US10765431B2 (en) 2016-01-18 2020-09-08 Covidien Lp Endoscopic surgical clip applier
US11478252B2 (en) 2016-02-24 2022-10-25 Covidien Lp Endoscopic reposable surgical clip applier
US10582931B2 (en) 2016-02-24 2020-03-10 Covidien Lp Endoscopic reposable surgical clip applier
US10806464B2 (en) 2016-08-11 2020-10-20 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US11071553B2 (en) 2016-08-25 2021-07-27 Covidien Lp Endoscopic surgical clip applier and clip applying systems
US10660651B2 (en) 2016-10-31 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10639044B2 (en) 2016-10-31 2020-05-05 Covidien Lp Ligation clip module and clip applier
US10610236B2 (en) 2016-11-01 2020-04-07 Covidien Lp Endoscopic reposable surgical clip applier
US10426489B2 (en) 2016-11-01 2019-10-01 Covidien Lp Endoscopic reposable surgical clip applier
US10492795B2 (en) 2016-11-01 2019-12-03 Covidien Lp Endoscopic surgical clip applier
US11399846B2 (en) 2016-11-01 2022-08-02 Covidien Lp Endoscopic surgical clip applier
US10709455B2 (en) 2017-02-02 2020-07-14 Covidien Lp Endoscopic surgical clip applier
US11116514B2 (en) 2017-02-06 2021-09-14 Covidien Lp Surgical clip applier with user feedback feature
US10758244B2 (en) 2017-02-06 2020-09-01 Covidien Lp Endoscopic surgical clip applier
US10660725B2 (en) 2017-02-14 2020-05-26 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10603038B2 (en) 2017-02-22 2020-03-31 Covidien Lp Surgical clip applier including inserts for jaw assembly
US11583291B2 (en) 2017-02-23 2023-02-21 Covidien Lp Endoscopic surgical clip applier
US10548602B2 (en) 2017-02-23 2020-02-04 Covidien Lp Endoscopic surgical clip applier
US10675043B2 (en) 2017-05-04 2020-06-09 Covidien Lp Reposable multi-fire surgical clip applier
US11464521B2 (en) 2017-05-04 2022-10-11 Covidien Lp Reposable multi-fire surgical clip applier
US10722235B2 (en) 2017-05-11 2020-07-28 Covidien Lp Spring-release surgical clip
US10639032B2 (en) 2017-06-30 2020-05-05 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10660723B2 (en) 2017-06-30 2020-05-26 Covidien Lp Endoscopic reposable surgical clip applier
US10675112B2 (en) 2017-08-07 2020-06-09 Covidien Lp Endoscopic surgical clip applier including counter assembly
US10932790B2 (en) 2017-08-08 2021-03-02 Covidien Lp Geared actuation mechanism and surgical clip applier including the same
US10863992B2 (en) 2017-08-08 2020-12-15 Covidien Lp Endoscopic surgical clip applier
US10786262B2 (en) 2017-08-09 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10786263B2 (en) 2017-08-15 2020-09-29 Covidien Lp Endoscopic reposable surgical clip applier
US10835341B2 (en) 2017-09-12 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10758245B2 (en) 2017-09-13 2020-09-01 Covidien Lp Clip counting mechanism for surgical clip applier
US10653429B2 (en) 2017-09-13 2020-05-19 Covidien Lp Endoscopic surgical clip applier
US10835260B2 (en) 2017-09-13 2020-11-17 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US11116513B2 (en) 2017-11-03 2021-09-14 Covidien Lp Modular surgical clip cartridge
US11376015B2 (en) 2017-11-03 2022-07-05 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10828036B2 (en) 2017-11-03 2020-11-10 Covidien Lp Endoscopic surgical clip applier and handle assemblies for use therewith
US10932791B2 (en) 2017-11-03 2021-03-02 Covidien Lp Reposable multi-fire surgical clip applier
US10945734B2 (en) 2017-11-03 2021-03-16 Covidien Lp Rotation knob assemblies and surgical instruments including the same
US10722236B2 (en) 2017-12-12 2020-07-28 Covidien Lp Endoscopic reposable surgical clip applier
US10849630B2 (en) 2017-12-13 2020-12-01 Covidien Lp Reposable multi-fire surgical clip applier
US10959737B2 (en) 2017-12-13 2021-03-30 Covidien Lp Reposable multi-fire surgical clip applier
US10743887B2 (en) 2017-12-13 2020-08-18 Covidien Lp Reposable multi-fire surgical clip applier
US11051827B2 (en) 2018-01-16 2021-07-06 Covidien Lp Endoscopic surgical instrument and handle assemblies for use therewith
US10993721B2 (en) 2018-04-25 2021-05-04 Covidien Lp Surgical clip applier
CN112367897A (en) * 2018-06-17 2021-02-12 迈米克创新手术有限公司 Surgical articulated arm
EP3806708A4 (en) * 2018-06-17 2022-07-13 Memic Innovative Surgery Ltd. Surgical articulated arm
WO2019244147A1 (en) * 2018-06-17 2019-12-26 Memic Innovative Surgery Ltd. Surgical articulated arm
US10786273B2 (en) 2018-07-13 2020-09-29 Covidien Lp Rotation knob assemblies for handle assemblies
US11246601B2 (en) 2018-08-13 2022-02-15 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11051828B2 (en) 2018-08-13 2021-07-06 Covidien Lp Rotation knob assemblies and surgical instruments including same
US11219463B2 (en) 2018-08-13 2022-01-11 Covidien Lp Bilateral spring for surgical instruments and surgical instruments including the same
US11344316B2 (en) 2018-08-13 2022-05-31 Covidien Lp Elongated assemblies for surgical clip appliers and surgical clip appliers incorporating the same
US11278267B2 (en) 2018-08-13 2022-03-22 Covidien Lp Latch assemblies and surgical instruments including the same
US11147566B2 (en) 2018-10-01 2021-10-19 Covidien Lp Endoscopic surgical clip applier
US11812972B2 (en) 2018-10-01 2023-11-14 Covidien Lp Endoscopic surgical clip applier
US11524398B2 (en) 2019-03-19 2022-12-13 Covidien Lp Gear drive mechanisms for surgical instruments
US11779340B2 (en) 2020-01-02 2023-10-10 Covidien Lp Ligation clip loading device
US11723669B2 (en) 2020-01-08 2023-08-15 Covidien Lp Clip applier with clip cartridge interface

Also Published As

Publication number Publication date
US20180116664A1 (en) 2018-05-03
US20140336675A1 (en) 2014-11-13
US10792040B2 (en) 2020-10-06
WO2011127137A1 (en) 2011-10-13
US9918715B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
US10792040B2 (en) Articulating steerable clip applier for laparoscopic procedures
US10188372B2 (en) Surgical instrument guide device
AU2016218285B2 (en) System for a minimally-invasive, operative gastrointestinal treatment
US8142473B2 (en) Method of transferring rotational motion in an articulating surgical instrument
US20110276083A1 (en) Bendable shaft for handle positioning
JP2021069952A (en) Multi-lumen-catheter retractor system for minimally-invasive, operative gastrointestinal treatment
US8409175B2 (en) Surgical instrument guide device
US9017314B2 (en) Surgical articulation assembly
US9211125B2 (en) Flexible clip applier
KR101531659B1 (en) Devices for minimally invasive suturing
JP5831931B2 (en) Wire spool that passes the wire through the rotary coupler
US20030135204A1 (en) Robotically controlled medical instrument with a flexible section
JP2022093690A (en) Surgical loading unit including articulating end effector
JP5392934B2 (en) Endoscopic clipping device
US20050043582A1 (en) Surgical instrument having an increased range of motion
CN107249499B (en) Surgical assembly and method of use

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENDODYNAMIX, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MENN, PAVEL;REEL/FRAME:032244/0158

Effective date: 20140116

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CONMED CORPORTATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENDODYNAMIX, INC.;REEL/FRAME:037187/0719

Effective date: 20150108