US20110245911A1 - Transcatheter Valve with Torsion Spring Fixation and Related Systems and Methods - Google Patents

Transcatheter Valve with Torsion Spring Fixation and Related Systems and Methods Download PDF

Info

Publication number
US20110245911A1
US20110245911A1 US12/846,962 US84696210A US2011245911A1 US 20110245911 A1 US20110245911 A1 US 20110245911A1 US 84696210 A US84696210 A US 84696210A US 2011245911 A1 US2011245911 A1 US 2011245911A1
Authority
US
United States
Prior art keywords
valve
prosthetic valve
spring
expandable stent
prosthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/846,962
Other versions
US8652204B2 (en
Inventor
Jason Quill
Cynthia T. Clague
Paul T. Rothstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US12/846,962 priority Critical patent/US8652204B2/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLAGUE, CYNTHIA T., QUILL, JASON, ROTHSTEIN, PAUL T.
Publication of US20110245911A1 publication Critical patent/US20110245911A1/en
Priority to US14/156,076 priority patent/US9925044B2/en
Application granted granted Critical
Publication of US8652204B2 publication Critical patent/US8652204B2/en
Priority to US15/903,642 priority patent/US10716665B2/en
Priority to US16/908,974 priority patent/US11554010B2/en
Priority to US18/067,272 priority patent/US11833041B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0091Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements connected by a hinged linkage mechanism, e.g. of the single-bar or multi-bar linkage type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped

Definitions

  • the invention relates generally to medical devices, systems and methods for use in a body (e.g., in a cardiac system), and more particularly, to devices, systems and methods for minimally invasive native heart valve replacement.
  • Natural heart valves such as aortic valves, mitral valves, pulmonary valves and tricuspid valves, can become damaged by disease in such a manner that they fail to maintain blood flow in a single direction.
  • a malfunctioning heart valve may be stenotic (i.e., heart leaflets are closed down) or regurgitant (i.e., heart leaflets are wide open).
  • stenotic i.e., heart leaflets are closed down
  • regurgitant i.e., heart leaflets are wide open.
  • Maintenance of blood flow in a single direction through the heart valve is important for proper flow, pressure and perfusion of blood through the body. Hence, a heart valve that does not function properly may noticeably impair the function of the heart.
  • Cardiac valve prostheses are well known in the treatment of heart disease to replace malfunctioning heart valves.
  • Heart valve replacement previously required open-heart surgery with its attendant risk, expense, and extended recovery time.
  • Open-heart surgery also requires cardiopulmonary bypass with risk of thrombosis, stroke and infarction.
  • open-heart surgery is not even an option because of a critical condition, advanced age, co-existing infection, or other physical limitations.
  • a catheter is used to insert a valve in a lumen of a blood vessel via percutaneous entry through a distal blood vessel.
  • percutaneous prosthetic valve devices comprise an expandable stent segment, a stent anchoring segment and a flow-regulation segment, such as a biological valve.
  • the expandable stent portion is either self-expandable or expanded using a balloon that is part of a transcatheter delivery system.
  • a drawback of using a stented valve is that the stent can be difficult to properly position, resulting in a misplaced valve. Additionally, stented valves may also lack sufficient radial strength, which could cause migration after implantation due to forces applied by the blood surrounding the valve in the heart. Therefore, there is a need for improved heart valve prostheses that may be implanted using minimally invasive techniques.
  • the invention has advantages over prior devices, systems and methods.
  • the invention mitigates the potential complications of invasive surgery, by applying minimally invasive techniques to replace a damaged or malfunctioning heart valve with a replacement prosthetic heart valve.
  • the invention allows for proper placement of the prosthetic heart valve.
  • the inventive prosthetic heart valve is configured to include an amount of radial force in order to keep the prosthetic heart valve in contact with a body lumen into which the valve is implanted.
  • the inventive prosthetic heart valve also reduces or eliminates sliding or migration of the prosthetic heart valve.
  • One benefit to reducing migration of the prosthetic heart valve is that the device is able to perform its intended function, which allows the heart to function properly.
  • Another benefit of eliminating migration of the prosthetic heart valve is that additional surgeries are not required to repair or replace the valve.
  • the prosthetic valve may comprise: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen.
  • the prosthetic valve may further comprise a valvular element disposed in the inner lumen of the expandable stent.
  • the valvular element may comprise at least one leaflet.
  • the prosthetic valve may further comprise a plurality of support arms that arc used to attach the spring to the first end of the expandable stent.
  • Each of the plurality of support arms may comprise at least one loop through which the spring extends and is attached to the support arm.
  • the support arms may comprise a material that is more stiff than a material comprising the spring.
  • the support arms may limit the amount of radial expansion of the spring in order to result in a desired diametric configuration of the spring.
  • the spring may comprise a torsion spring.
  • the expandable stent may be sized to fit in a heart valve selected from a group consisting of an aortic valve, a mitral valve, a tricuspid valve, and a pulmonary valve.
  • the spring and the expandable stent may be compressed into a collapsed position for insertion into a sheath for delivery to the implantation position.
  • the prosthetic valve may further comprise a second spring attached to the second end of the expandable stent.
  • a second aspect of the invention is a prosthetic valve delivery system.
  • the system may comprise: a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; a valvular element disposed in the inner lumen of the expandable stent; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic valve at an implantation position in a body lumen; and a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position.
  • the sheath may be retractable in order to deploy the prosthetic valve.
  • a third aspect of the invention is a method of implanting a prosthetic valve.
  • the method may comprise the steps of: inserting a system into a body, the system comprising: a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; a valvular element disposed in the inner lumen of the expandable stent; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic valve at an implantation position in a body lumen; and a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position; advancing the system to the implantation position; and deploying the prosthetic valve to the desired diametric configuration to anchor the prosthetic valve at the implantation position.
  • the sheath may be retractable in order to deploy the prosthetic valve.
  • the method may further comprise the step of pulling proximally on the system when the prosthetic valve is partially deployed.
  • the method may further comprise the step of removing the remainder of the system and leaving the prosthetic valve, once deployed, in place.
  • FIG. 1 illustrates a perspective view of an embodiment of a prosthetic heart valve, in accordance with the invention
  • FIG. 2 illustrates a side view of the prosthetic heart valve of FIG. 1 ;
  • FIG. 3 illustrates a side view of a system, in accordance with the invention
  • FIG. 4 illustrates a perspective view of distal end portion A of the system shown in FIG. 3 ;
  • FIG. 5 illustrates a side view of distal end portion A of the system shown in FIG. 3 , with interior shown in shadow;
  • FIG. 6 illustrates a side view of the system of FIG. 3 at a later stage in delivery of a prosthetic heart valve of the system
  • FIG. 7 illustrates a perspective view of distal end portion B of the system shown in FIG. 6 ;
  • FIG. 8 illustrates a side view of distal end portion B of the system shown in FIG. 6 ;
  • FIG. 9 illustrates a side view of the system of FIGS. 3 and 6 at a later stage in delivery of the prosthetic heart valve of the system
  • FIG. 10 illustrates a perspective view of distal end portion C of the system shown in FIG. 9 ;
  • FIG. 11 illustrates a side view of distal end portion C of the system shown in FIG. 9 , with interior shown in shadow;
  • FIG. 12 illustrates a side view of the system of FIGS. 3 , 6 and 9 at a later stage in delivery of the prosthetic heart valve of the system;
  • FIG. 13 illustrates a perspective view of distal end portion D of the system shown in FIG. 12 ;
  • FIG. 14 illustrates a side view of distal end portion D of the system shown in FIG. 12 ;
  • FIG. 15 illustrates a side view of the system of FIGS. 3 , 6 , 9 , and 12 at a later stage in delivery of the prosthetic heart valve of the system;
  • FIG. 16 illustrates a perspective view of distal end portion E of the system shown in FIG. 15 ;
  • FIG. 17 illustrates a side view of distal end portion E of the system shown in FIG. 15 ;
  • FIG. 18 illustrates a heart with the inventive system being inserted into the apex of the heart
  • FIG. 19 schematically illustrates a top view of a heart with left atrium partially cut-away in order to view the inventive system being inserted through a mitral valve annulus;
  • FIG. 20 is the heart and system shown in FIG. 19 with the prosthetic valve device of the system being partially deployed;
  • FIG. 21 illustrates a perspective view of an embodiment of a prosthetic valve, of the invention, including two springs
  • FIG. 22 illustrates a perspective view of an expandable stent portion of an embodiment of a prosthetic valve, in accordance with the invention, including an anchor;
  • FIG. 23 illustrates a perspective view of an expandable stent portion of an embodiment of a prosthetic valve, in accordance with the invention.
  • FIG. 24 illustrates a perspective view of a distal end portion of an embodiment of a system, in accordance with the invention.
  • FIGS. 1-20 wherein like numbers refer to like structures.
  • Those skilled in the art will appreciate that the description herein with respect to the figures is for exemplary purposes only and is not intended in any way to limit the scope of the invention.
  • the invention discloses devices, systems and methods for minimally invasive surgical placement (e.g., via percutaneous catheter placement) of prosthetic heart valves, such as those shown in FIGS. 1 and 2 .
  • the invention contemplates that the inventive prosthetic heart valves, systems and methods described herein may be used for replacement of several different heart valves (e.g., mitral valve, tricuspid valve, aortic valve, etc.). More generally, the prosthetic heart valve of the invention may be implanted within a fluid passageway of a body lumen, for example, for replacement or augmentation of a valve structure (e.g., mitral valve), to regulate flow of bodily fluid preferably in a single direction.
  • the invention also contemplates prosthetic valves, in general, that may be used in other suitable locations in the body other than in and near the heart.
  • One challenge in implanting a prosthetic heart valve within the heart and at a particular annulus is correct placement of the device. Improper placement may cause malfunctioning of the prosthetic heart valve and may require a patient to undergo an additional surgery.
  • the invention addresses this problem by allowing for proper placement of the prosthetic heart valve.
  • the inclusion of an expandable torsion spring within a prosthetic valve improves the ability to properly place the prosthetic heart valve.
  • a prosthetic heart valve may migrate or move after implantation or throughout the life of the prosthetic heart valve due to the forces relating to inflow and backflow of blood flow to and through the prosthetic heart valve. Migration can result in an inadequate seal between the prosthetic heart valve and the wall of the conduit, lumen or vessel, which can further lead to loss of the ability to function effectively.
  • the invention also addresses this problem by inhibiting such migration. Inclusion of an expandable torsion spring within a prosthetic valve for fixation purposes decreases the chances that the prosthetic heart valve will migrate.
  • FIGS. 1 and 2 show a perspective and a side view, respectively, of an embodiment of a prosthetic heart valve of the invention.
  • Prosthetic heart valve 100 comprises: an expandable stent 110 including an inner lumen 119 and having a first end 112 and a second end 114 ; and a spring 130 attached to the first end 112 of the expandable stent 110 .
  • the expandable stent 110 and the spring 130 can expand radially to a desired diametric configuration in order to anchor the prosthetic valve 100 at an implantation position in a body lumen.
  • FIG. 1 shows the expanded prosthetic valve 100 including a valvular element 120 .
  • the expandable stent 110 preferably defines a generally cylindrical body having first end 112 and second end 114 .
  • the expandable stent 110 can have any geometric shape (e.g., cylindrical, conical, spherical, or barrel-like) that is compatible with the placement of the expandable stent 110 within a body lumen.
  • the expandable stent 110 once deployed, expands to at least the dimension or diameter of a body lumen into which the expandable stent 110 is implanted.
  • the expandable stent when being used in a mitral valve, can have a diameter or diameters from about five (5) millimeters (mm) to about twenty-five (25) millimeters (mm) based upon typical heart anatomical dimensions.
  • mm millimeters
  • mm millimeters
  • other dimensions are also contemplated based upon atypical heart anatomical dimensions as well as based upon different valve annuli (e.g., tricuspid, etc.) into which the prosthetic valve may be implanted.
  • the expandable stent 110 preferably comprises a mesh.
  • the mesh preferably comprises a plurality of wires 116 or strips that comprise a flexible, biocompatible material.
  • Examples of possible materials for the mesh of the expandable stent 110 include those formed from temperature-sensitive memory alloys, which change shape at a designated temperature or temperature range.
  • the expandable stent 110 can be made from a material having a spring bias. Examples of suitable materials include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate or combinations thereof.
  • Examples of shape-memory materials include shape memory plastics, polymers, and thermoplastic materials, which are inert in the body. Shape memory alloys having superelastic properties generally made from ratios of nickel and titanium, commonly known as NitinolTM, are preferred materials
  • the preferred material for the plurality of wires 116 will have an adequate amount of stiffness to ensure that the expandable stent 110 maintains a desired shape.
  • the stiffness also needs to be adequate so that the expandable stent 110 maintains a desired shape that ensures that leaflets (as discussed below) in the device 100 close and open properly.
  • Sufficient stiffness also can ensure that there will be no paravalvular leakage; in other words, no leaking between the prosthetic heart valve 100 and the body lumen into which it is implanted.
  • Portions of the expandable stent 110 may be made of different materials and may have different amounts of stiffness.
  • Various patterns of the plurality of wires 116 in the mesh of the expandable stent 110 are possible.
  • the invention is not limited to the patterns shown herein.
  • the preferred pattern will accommodate the shape of the body lumen or annulus into which the expandable stent 110 will be implanted, as well allow for proper expansion of the expandable stent 110 in the body lumen or annulus.
  • the plurality of wires 116 of the expandable stent 110 can also have a variety of possible cross-sectional geometries.
  • cross-sectional geometries include, but are not limited to, rectangular, non-planar configurations, round (e.g., circular, oval and/or elliptical), polygonal, arced and tubular.
  • the expandable stent 110 of the device 100 is able to be reduced in diameter, mounted in a catheter and advanced through the circulatory system or through other ports or incisions into a patient.
  • the expandable stent 110 is preferably self-expanding. However, it is also possible that the expandable stent 110 may be expanded using a balloon or some other suitable method.
  • the expandable stent 110 defines a lumen 119 or other housing in which valvular element 120 may be disposed.
  • the valvular element 120 preferably comprises valve leaflets 122 coupled to a valve support 124 that fits in the stent 110 , with both components being made of any suitable biocompatible material.
  • the leaflets 122 and support 124 can be derived from autologous, allogenic, or xenograft material.
  • sources for xenograft materials e.g., cardiac valves
  • sources for xenograft materials include, but are not limited to, mammalian sources, such as porcine, equine, bovine and sheep.
  • Additional biologic materials from which to form the valve leaflets include, but are not limited to, explanted veins, pericardium, fascia lata, harvested cardiac valves, bladder, vein wall, various collagen types, elastin, intestinal submucosa, and decellularized basement membrane materials, such as small intestine submucosa (SIS), amniotic tissue, or umbilical vein.
  • SIS small intestine submucosa
  • the leaflets 122 and support 124 can be formed from a synthetic material.
  • Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-poly-isobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), polyester, polyethylene (PE), polyethylene terephthalate (PET), silk, urethane, rayon, silicone, or the like.
  • the synthetic material can also includes metals, such as stainless steel (e.g., 316L), and NitinolTM.
  • These synthetic materials can be in a woven, a knit, a cast, or other known physical fluid-impermeable or permeable configuration.
  • plated metals e.g., gold, platinum, rhodium
  • the leaflet material e.g., a sandwich configuration
  • the leaflets 122 and support 124 can also be formed of any combination of these exemplary materials, or these materials in combination with other materials, as are known in the art. A variety of known treatments and/or coatings can also be included in/on the leaflets 122 and support 124 .
  • the leaflets 122 may comprise a supple and reinforced tissue which is a thickness to be thin enough to occupy the least possible space in the compressed form of the valve, is pliable, and also is strong enough to withstand the unceasing movement under the blood pressure changes during heart beats.
  • the leaflets 122 are capable of moving from a closed position to an open position under the action of the force exerted by the movement of the blood during systole and disastole, without having any significant resistance to blood displacements.
  • the valve leaflets 122 have surfaces defining a reversibly sealable opening for unidirectional flow of a liquid through the prosthetic heart valve 100 .
  • the number of leaflets 122 in the valvular element 120 may be dependent upon the body lumen or annulus into which the prosthetic heart valve 100 is intended to be implanted.
  • the valvular element 120 shown in FIG. 1 includes three leaflets 122 for a tri-leaflet configuration.
  • Other configurations including different numbers of leaflets are, however, also contemplated.
  • mono-leaflet, bi-leaflet and/or multi-leaflet configurations are also possible.
  • the leaflets 122 and the support 124 may be operably attached to the expandable stent 110 by any means known in the art, such that the leaflets 122 can preferably repeatedly move between an open state and a closed state for unidirectional flow of a liquid (e.g., blood) though a lumen of the prosthetic heart valve 100 .
  • the support 124 of the valvular element 120 may be attached to the expandable stent 110 by suturing. Other means for attachment are, however, contemplated by the invention.
  • the support 124 may be eliminated from the device 100 , and the leaflets 122 may be directly attached to the expandable stent 110 .
  • the valvular element 120 may be attached to the expandable stent 120 at any location along its length, as desired for a particular application. In the device shown in FIG. 1 , the valvular element 120 is located at or near the middle of the expandable stent 110 (along its length), but other locations are also possible.
  • an undeployed state of the prosthetic heart valve 100 is the state of the prosthetic heart valve 100 at the time the valve is outside the body and as may be provided on a delivery device (e.g., on a catheter or a sheath), and a deployed state is the state of the prosthetic heart valve 100 at the time the prosthetic heart valve 100 is to be left in the body.
  • a prosthetic heart valve implanted to replace, for example, a mitral valve can be difficult to place properly in a mitral valve annulus.
  • a prosthetic heart valve can move or migrate due to the forces acted upon the valve by surrounding blood.
  • Spring 130 is attached to the first end 112 of the expandable stent 110 thereby to assist in proper placement and to reduce the likelihood that the prosthetic heart valve 100 will migrate after the prosthetic heart valve 100 is delivered and implanted at a delivery site, as well as throughout the life of the prosthetic heart valve 100 .
  • the spring 130 shown in FIGS. 1 and 2 , comprises a wire that is wound or coiled such that the spring 130 , when expanded, has a generally circular shape.
  • Other numbers of wires and other configurations of the spring 130 are, however, also contemplated by the invention. For example, there may be a different number of times that the spring 130 coils or is wound around a central axis 117 .
  • the distance between individual coils (or times the wire is wound around the central axis) of the spring 130 may be varied.
  • the individual coils or times the spring 130 is wound are shown in FIG. 1 as being in direct or close contact to each other. However, alternative configurations are also contemplated in which more space between the individual coils is found in an expanded configuration of the spring 130 (not shown).
  • the preferred spring 130 is a torsion spring. While not wishing to be bound by theory, a torsion spring is a spring that works by torsion or twisting; that is, a flexible, elastic object that stores mechanical energy when it is twisted. The amount of force (torque) it exerts is proportional to the amount it is twisted. The spring 130 is able to exert force radially against a body lumen into which it is implanted, in order to hold the prosthetic heart valve 100 in place inside the body lumen.
  • the spring 130 preferably comprises a shape memory material, as those described above with regard to the expandable stent 110 . However, other materials are also contemplated by the invention.
  • the spring 130 is preferably provided as a coil and is wound and radially compressed when the prosthetic heart valve 100 is undeployed and located within a delivery device (e.g., a sheath or catheter). Winding the spring 130 up allows the diameter of the spring 130 to be reduced in order to fit in a delivery device. When the prosthetic heart valve 100 is deployed, the spring 130 will expand to a predetermined diameter in order to contact tissue, or an inner surface of a body lumen, and hold the device 100 in place. While not wishing to be bound by theory, compressed torsional energy in the undeployed device is used to change the diameter of the spring 130 from a small diameter state (during delivery) to a large delivery state (following delivery).
  • the preferred diameter of the small diameter state is less than about 9.3 mm (28 French) and the preferred diameter of the large delivery state of the spring 130 is about 2 cm to about 5 cm, depending upon the expansion of the expandable stent portion 120 or the valve support 124 or frame.
  • the diameter of the larger delivery state can be determined based upon the diameter of the expandable stent portion in its expanded configuration.
  • the larger delivery state of the spring 130 could then have a diameter that is between about 0 cm to about 1 cm larger than the larger delivery state diameter of the expandable stent portion.
  • the material comprising the spring 130 and the configuration of the spring 130 preferably ensures adequate radial stiffness of the spring 130 for a given application.
  • the spring 130 is configured to ensure that there will be sufficient contact between the prosthetic heart valve 100 and the body lumen (i.e., a sufficient fit) into which the prosthetic heart valve 100 fits (e.g., a mitral valve annulus). The fit minimizes the chance of migration of the prosthetic heart valve 100 as forces are applied to the prosthetic heart valve 100 by surrounding blood.
  • the presence of the spring 130 also may eliminate the need to anchor the device 100 into tissue by using, for example, barbs or hooks. Beneficially, the prosthetic heart valve 100 may be used without penetrating tissue of the heart in order to hold the valve 100 in place.
  • FIG. 21 illustrates this alternative prosthetic heart valve 500 .
  • the device 500 preferably includes corresponding features, e.g., expandable stent portion 510 with first end 512 and second end 514 , valvular element 520 and first spring 530 with support arms 540 .
  • a second spring 580 is attached to the second end 514 of the expandable stent portion 510 using support arms 590 .
  • the addition of the second spring 580 may provide additional resistance against migration of the prosthetic heart valve 500 , or resistance against migration in a different direction from that provided by the first spring 530 . Therefore, it is contemplated that the prosthetic heart valve of the invention may include more than one spring.
  • the spring 130 is preferably implanted on the atrial side of the mitral valve annulus, and the remainder of the expandable stent 110 extends through the annulus and into the left ventricle.
  • the prosthetic heart valve 100 upon implantation, prevents migration of the prosthetic heart valve 100 from the left atrium and into the left ventricle.
  • a second spring would be included and implanted on the ventricular side of the mitral valve annulus, then migration of the prosthetic heart valve from the left ventricle and into the left atrium would also be prevented.
  • a flare or anchor may be, optionally included on the opposite end of the expandable stent portion 110 from the spring 130 .
  • the purpose of such flares or such anchors would be to preferably anchor the second end 114 of the expandable stent portion 110 (but also could anchor the first end 112 ) into tissue opposite (or adjacent) the spring 130 .
  • anchoring into tissue e.g., by using barbs
  • the entire end of the stent could be flared, as shown by 615 in FIG. 22 , to a larger diameter.
  • the flare 615 could, however, be on the second end 614 of the stent portion 610 alternatively.
  • Any suitable type of flare, in addition to the flare 620 shown in FIG. 22 is contemplated for use with prosthetic heart valve 100 .
  • FIG. 22 shows an alternative expandable stent portion 610 .
  • the anchor 618 is actually a flared portion of one of the plurality of wires 616 or members that make up for the expendable stent portion 610 .
  • there are at least three of these anchors 618 per expandable stent portion 610 but any suitable number is contemplated.
  • the anchor 618 shown in FIG. 22 is, however, only one exemplary anchor.
  • anchors are contemplated, which may, for example, include a separate anchoring system that is not part of the stent portion. If the anchoring system is separate, the system may be employed during deployment of the prosthetic heart valve of the invention or may be included post-implant. Some additional examples of such anchors include, but are not limited to, U-clips and sutures.
  • a plurality of support arms 140 are preferably used, although other suitable means for attachment are also contemplated.
  • the support arms 140 are preferably pivotable, rotatable, or otherwise moveable or maneuverable in order to allow the spring 130 and expandable stent 110 to expand to its desired diametric configuration without restriction.
  • the length of the support arms 140 can control the amount of diametric or radial expansion of the spring 130 due to their length.
  • the length of the support arms 140 will be dependent upon the use of the prosthetic heart valve and desired deployed diameter of the spring 130 .
  • Shorter support arms 140 will limit the amount of unwinding of the spring 130 and longer support arms 140 will allow for more expansion of the spring 130 .
  • the amount of expansion of the spring 130 therefore, can relate to the length of the supports arms 130 as well as other factors.
  • the support arms 140 are connected at a first end 142 of the support arms 140 to the expandable stent 110 by a loop or eyelet 146 formed by the wire comprising the support arm 140 itself.
  • a means for attaching the support arms 140 to the expandable stent 110 that allows the support arms 140 to pivot with respect to the expandable stent 100 is a possible embodiment.
  • the support arms 140 are attached to the expandable stent 110 around the circumference of the first end 112 of the expandable stent 110 .
  • the support arms 140 are generally evenly spaced around the circumference of the first end 112 of the expandable stent 110 , however other spacings are also contemplated.
  • the support arms 140 are attached to the spring 130 at a second end 144 of each support arm.
  • loops or eyelets 148 are located on the second ends 144 of the support arms 140 through which the spring 130 extends.
  • the spring 130 is preferably able to slide through the loops or eyelets 148 on the support arms 140 in order for the spring 130 to be deployed or expanded.
  • other suitable means for attachment to the spring 130 are also contemplated by the invention such that the spring 130 is able to unwind as needed.
  • the support arms 140 preferably comprise a shape memory material, such as those provided above with regard to the expandable stent 110 .
  • a preferred material is NitinolTM. However, other materials are also contemplated by the invention.
  • the stiffness or rigidity of the material used to form the support arms 140 is generally greater than the stiffness or rigidity of the material used to form the spring 130 .
  • the relative stiffnesses allows the support arms 140 to maintain a desired expanded diametric configuration of the spring 130 after the device 100 is deployed and undergoes forces within a beating heart, for example.
  • Other relative stiffnesses of the support arms 140 and spring 130 are also contemplated by the invention.
  • the number of support arms 140 may vary, according to the invention. Three support arms 140 are shown in the figures. However, it is contemplated that other numbers of support arms 140 are possible, such that the support arms 140 are able to sufficiently hold the spring 130 in its desired expanded diametric configuration.
  • the support arms 140 shown are generally linear in shape. However, other shapes are also contemplated that may control deployment of the spring 130 .
  • another possible embodiment of the prosthetic heart valve may include a plurality of support arms that when deployed are curved.
  • a deployed prosthetic heart valve may include a plurality of support arms that are all similarly curved. A potential benefit of using curved support arms is that if they collapse, the arms will collapse radially rather than axially.
  • Other shapes and configurations of the support arms are also contemplated.
  • the number of loops 148 and location of the loops 148 on the support arms 140 may be varied. For example, additional loops may be found along the length of the support arms 140 (not shown).
  • the spring 130 may also be extended through the additional loops. The addition of more loops may be for the purpose of preventing kinking, tangling or twisting of the spring or to better control expansion of the spring to its desired diametric configuration, for example.
  • the support arms 140 when the support arms 140 are fully extended and the spring 130 is released to its desired expanded diameter, the support arms 130 will extend generally or nearly perpendicular to a central, longitudinal axis 117 of the expandable stent 110 .
  • the support arms 140 do not extend exactly perpendicular to central axis 117 . It is contemplated that the support arms 140 may extend at various angles with respect to the central, longitudinal axis 117 of the expandable stent 110 , as desired for a particular application.
  • the prosthetic heart valve 100 can be treated and/or coated with any number of surface or material treatments.
  • treatments include, but are not limited to, bioactive agents, including those that modulate thrombosis, those that encourage cellular in-growth, through-growth, and endothelization, those that resist infection, and those that reduce calcification.
  • FIG. 3 illustrates an embodiment of such a system 300 of the invention.
  • the system 300 shown encloses the prosthetic heart valve 100 , as described above, or other such prosthetic heart valve in accordance with the invention, in order to deliver the valve to its desired location in a body lumen.
  • the system 300 shown is one embodiment, and other suitable systems are also contemplated.
  • FIGS. 4 and 5 illustrate a distal end portion of system 300 , with the distal end indicated in FIG. 3 by the circled portion that is labeled as A.
  • FIG. 4 illustrates a perspective view of distal end A
  • FIG. 5 illustrates a side view of distal end A, with a collapsed, or non-deployed prosthetic heart valve 100 shown in shadow in the interior of an elongate sheath 350 .
  • System 300 is exemplary, but includes elongate sheath 350 having an inner lumen 358 running along the length of the sheath 350 .
  • the sheath 350 is shown as having multiple portions 352 , 354 , 356 with different diameters. However, it is contemplated that the sheath 350 may have only one diameter, or other numbers of diameters along its length.
  • the sheath 350 or portions of the sheath will have a diameter of about five (5) millimeters (mm). Most preferably, the diameter of the sheath 350 is less than about 10 mm (30 French).
  • the sheath 350 is withdrawn or retracted, which allows the device 100 to expand.
  • the sheath 350 may have multiple portions, e.g., 352 , 354 , 356 .
  • One alternative embodiment provides for only sheath portion 352 to be withdrawn in order for the device 100 to be deployed.
  • Sheath portion 354 would remain stationary in that embodiment.
  • sheath portion 352 may be withdrawn using actuators that are linear or coaxial on the pushing rod or handle of the system 100 .
  • System 300 also includes a pushing rod 360 that extends into the inner lumen 358 of the sheath 350 .
  • the pushing rod 360 has a proximal end 362 that prevents the rod from completely extending into the inner lumen 358 .
  • the proximal end also is preferably able to be held by an operator of the system 300 .
  • At the opposite end of the pushing rod 360 is a distal end 364 .
  • the distal end 364 of the pushing rod 362 is preferably placed against the second end 114 of prosthetic heart valve 100 , for example.
  • the distal end 364 of the pushing rod 360 is held against the device 100 , and the sheath 350 is withdrawn or retracted, which results in the device 100 exiting the distal end 359 of sheath 350 , and, ultimately, being deployed from the system 300 (as shown in later figures).
  • the pushing rod 360 also preferably includes an inner lumen 366 ( FIG. 5 ) through which a guide wire or other guiding mechanism for the system 300 may extend.
  • a guide wire (not shown) with the system 300 is preferred, but is not required.
  • the guide wire may also be considered an elongate delivery catheter.
  • the system 300 also preferably includes a dilator 370 on or near the distal end 359 of sheath 350 .
  • the dilator 370 is used to dilate a body lumen or tissue through which the system 300 is desired to extend or penetrate.
  • the dilator 370 is not required, however, and the system 300 may not include one.
  • the preferred dilator 370 includes an inner lumen 372 such that the optional guide wire discussed above may also extend through dilator 370 and out an end opening 374 of the dilator 370 .
  • the pushing rod 360 preferably will include an extension 368 having a preferably narrower diameter that connects the pushing rod 360 to the dilator 370 , or the dilator may be otherwise attached to the pushing rod 360 .
  • the dilator 370 remains stationary with the pushing rod 360 while the sheath 350 is withdrawn or retracted, allowing the device 100 to exit the sheath 350 .
  • a dilator could actuate independent from the remainder of the delivery system.
  • FIG. 5 shows, in shadow, how the prosthetic heart valve 100 preferably looks prior to deployment.
  • the prosthetic heart valve 100 is shown in a folded, collapsed or undeployed position and inserted into sheath 350 for delivery to an implantation position in a body lumen or annulus.
  • the sheath 350 is positioned to releasably hold the prosthetic heart valve 100 in a delivery, or undeployed, state.
  • the spring 130 is shown more tightly coiled than when deployed.
  • the support arms 140 are extending generally parallel to a central axis 317 of the system 300 .
  • the prosthetic heart valve 100 is preferably loaded in the system 300 such that the extension 368 of the pushing rod 360 extends through the inner lumen 119 of the prosthetic heart valve 100 , as shown.
  • the length of pushing rod 360 is shown for purposes of illustration only. Depending upon the application of the system 300 , the length of the pushing rod 360 and sheath 350 may be varied. The invention contemplates other lengths.
  • the system 300 shown in FIG. 3 is one embodiment of the inventive system. Rather than a pushing rod and sheath configuration, it is contemplated that other means for deploying a prosthetic heart valve of the invention are possible. For example, a retractable sheath surrounding the prosthetic heart valve 100 may be used instead. Any suitable means for delivery of the prosthetic heart valve 100 is contemplated.
  • the sheath 350 can include an inner lining (not shown) on an inner surface of the sheath 350 .
  • An inner lining can decrease friction between the prosthetic heart valve device 100 and the sheath 350 while also sealing the sheath 350 .
  • the inner lining can be formed of, for example, nylon, DacronTM, expanded polytetrafluoroethylene (ePTFE), and/or other materials.
  • the sheath 350 can have many possible configurations.
  • the sheath 350 can be a flexible tube formed of a metal, metal-alloy, and/or polymers, such as polyvinyl chloride, polyethylene, polyethylene terephalate, polyamide, mixtures, and block-copolymers thereof.
  • the pushing rod 360 and dilator 370 may be formed, for example, by similar materials to those used for the sheath 350 .
  • the guide wire may be made of conventional materials. The invention does, however, contemplate that any suitable materials may be used for the components of the system 300 .
  • the valve replacement system 300 will be used in a description below of an inventive method for replacement of a heart valve. Specifically, the method described may be used to deliver prosthetic heart valve 100 to a mitral valve, for example. However, it will be understood from the following description that the invention could be used instead to replace any heart valve or other suitable valve in a body lumen or valve annulus.
  • the prosthetic heart valve 100 is compressed into its collapsed position and inserted into the sheath 350 that has a suitably sized lumen for accepting the compressed prosthetic heart valve 100 (as shown in FIG. 5 ).
  • the system 300 may be supplied with the prosthetic heart valve 100 , for example, already loaded, or instead may require that an operator load the device.
  • the sheath 350 including the prosthetic heart valve 100 , is then guided in the conventional fashion (with or without the use of a guide wire) or advanced to a position adjacent an implantation position in a patient's heart (for example, adjacent the mitral valve annulus).
  • the sheath 350 is preferably delivered to or deployed at a pre-selected position in an anatomical lumen of the heart.
  • the pre-selected position may be, for instance, in proximity to the original location of a natural heart valve.
  • One preferred method of delivering a prosthetic heart valve to a body lumen includes introducing a mitral valve prosthetic heart valve device, such as prosthetic heart valve 100 , to the mitral valve annulus using minimally invasive techniques.
  • a mitral valve prosthetic heart valve device such as prosthetic heart valve 100
  • the heart is off-pump.
  • a lower mini-sternotomy or thoracotomy is performed and a standard transapical approach is used for placement of a mitral valve prosthetic heart valve device.
  • other anatomical approaches and surgical methods are contemplated for the inventive system 300 .
  • FIG. 18 shows the system 300 inserted into a heart 400 via a transapical approach.
  • the system 300 is partially inserted into an opening 402 made in the apex of the heart 400 .
  • the opening 402 is made by puncturing the apex of the heart with the distal end of system 300 or using another instrument prior to introduction of the system 300 .
  • the initial step of inserting or introducing and advancing the system 300 to a desired location, such as into the apex of the heart, as described above, may preferably be done using the aid of a fluoroscope or some other image guidance, in order to view the placement within the body.
  • Imaging devices may be used to permit the surgeon (operator) to watch and guide the movement of the prosthetic heart valve device to the implantation position.
  • Some possible image guidance include, but are not limited to, fluoroscopy, ultrasonic means, magnetic resonance, X-ray, computer tomography, and combinations thereof.
  • the prosthetic heart valve 100 includes materials that are radiopaque so that the device can be viewed using imaging devices.
  • a plurality of radiopaque markers may be disposed on the stent and/or coil portions of the device.
  • Radiopaque markers may include radiopaque metals such as, for example, gold and platinum.
  • suitable radiopaque that may be added to polymeric materials in the device include, but are not limited to, barium sulfate and bismuth sub-carbonate.
  • FIG. 6 shows the system 300 as the prosthetic heart valve 100 is just beginning to be deployed from the distal end 359 of sheath 350 .
  • the spring 130 and support arms 140 have exited the sheath 350 and the spring 130 appears in its desired partially expanded configuration.
  • the support arms 140 are generally perpendicular to a central, longitudinal axis 317 extending though the system 300 .
  • the expandable stent 110 of the prosthetic heart valve 100 has not yet completely exited the sheath 450 .
  • FIGS. 7 and 8 illustrate a distal end portion (indicated as B) of system 300 , at the stage of deployment as in FIG. 6 .
  • FIG. 7 illustrates a perspective view of distal end B and
  • FIG. 8 illustrates a side view of distal end B.
  • FIG. 9 illustrates the system 300 after the pushing rod has been pushed even further distally than in FIG. 6 . As shown, the expandable stent portion 110 has partially exited the distal end 359 of the sheath 350 .
  • FIGS. 10 and 11 illustrate a distal end portion (indicated as C) of system 300 , at the stage of deployment as in FIG. 9 .
  • FIG. 10 illustrates a perspective view of distal end C
  • FIG. 11 illustrates a side view of distal end C.
  • FIG. 11 also shows, in shadow, the remainder of the prosthetic heart valve 100 that has not yet exited the sheath 350 , as well as the pushing rod 360 .
  • the surgeon or operator to pull the whole system 300 , including the prosthetic heart valve 100 , back proximally.
  • the proximal pull preferably enables the spring 130 to engage into the proper implantation position.
  • the system 300 is pulled back once the device 100 has partially exited sheath 350 , with sheath 350 being in the vicinity of the mitral valve annulus.
  • the spring 130 is seated in the left atrium adjacent the atrial side of the mitral valve annulus.
  • adjustments may be made in order to allow for proper placement of the prosthetic heart valve.
  • the embodiment of the inventive system shown and described herein may not allow the prosthetic heart valve 100 to be retracted back into the sheath 350 for possible re-positioning, it is contemplated that other embodiments of inventive systems may have such an ability.
  • the prosthetic heart valve may be configured such that the expandable stent, support arms and spring may be retracted back into the sheath after being either partially deployed or completely deployed. Retractability may be desired, for example, if during deployment the surgeon (or operator) recognizes by image guidance means that the prosthetic heart valve is not being deployed in a proper place.
  • FIG. 12 illustrates the system 300 once the pushing rod 360 has been pushed even further distally from the stage of deployment shown in FIG. 9 .
  • Prosthetic heart valve 100 is no longer enclosed in the sheath 350 , and is fully deployed.
  • FIGS. 13 and 14 illustrate a distal end portion (indicated as D) of system 300 , at the stage of deployment as in FIG. 12 .
  • FIG. 13 illustrates a perspective view of distal end D
  • FIG. 14 illustrates a side view of distal end D.
  • FIG. 15 illustrates the system 300 once the prosthetic heart valve 100 has been fully deployed.
  • the pushing rod 360 has been pulled proximally in order to pull the dilator 370 back in contact with the sheath 350 .
  • the sheath 350 , pushing rod 360 and dilator 370 will be retracted and removed from the body, leaving the prosthetic heart valve 100 behind.
  • FIGS. 16 and 17 illustrate a distal end portion (indicated as E) of system 300 , at the stage of deployment as in FIG. 15 .
  • FIG. 16 illustrates a perspective view of distal end E
  • FIG. 17 illustrates a side view of distal end E.
  • FIGS. 19 and 20 are schematic representations of a heart 400 with a view from above and including a view into a left atrium 404 (some of left atrium is cut-away in figure).
  • FIG. 19 shows the inventive system 300 inserted through the mitral valve annulus 406 , with its distal end, including dilator 370 (with opening 374 ) and sheath 350 , extending into the left atrium 404 .
  • FIG. 20 shows the inventive prosthetic valve 100 partially deployed, with the amount of deployment being approximately as in the system 300 shown in FIGS. 6-8 .
  • expandable stent portion 110 has partially exited or been partially deployed from the distal end of sheath 350 .
  • Three support arms 140 are extended and spring 130 is released or deployed, and is being held through loops (not visible) on ends of the support arms 140 .
  • the expandable stent portion in an alternative embodiment of the system of the invention, it may be desired to includes means for keeping the expandable stent portion inside a retractable sheath and compressed until the retractable sheath has been retracted enough to fully clear the expandable stent portion. Therefore, the expandable stent portion would not be in a partially deployed configuration as in earlier figures.
  • This alternative embodiment may be desired because it is possible that stored energy in a compressed end of the prosthetic heart valve may force the expandable stent portion out of a distal end of a sheath prematurely and before the expandable stent portion is desired to be fully deployed. Such premature release of the prosthetic heart valve could result in improper placement of the device, for example. In order to avoid such premature release upon deployment, the invention contemplates using means to prevent such premature release.
  • FIGS. 23 and 24 show illustrative means for preventing premature release of the device from a delivery system.
  • retainers 113 are added to the second end 114 of the expandable stent portion 110 that prevent the expandable stent portion 110 from exiting the sheath 350 until the expandable stent portion 110 has fully cleared the sheath 350 .
  • the retainers 113 would mate, for example, with some portion of the pushing rod 360 .
  • FIG. 24 another alternative means for preventing premature release of the device from the delivery system 300 is shown as bosses 361 located on the pushing rod 360 .
  • the prosthetic heart valve would be enclosed in a retractable sheath (not shown) and surrounding extension 368 of pushing rod 360 .
  • the bosses 361 would hold a proximal end of a collapsed prosthetic heart device between the retractable sheath and pushing rod 360 until a proximal end of an expandable sheath portion of the prosthetic heart valve fully cleared the retractable sheath.
  • the bosses 361 and retainers 113 are examples of means for preventing premature release, however, and other means are also contemplated.

Abstract

Described is a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen. Related systems and methods.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/320,111, filed Apr. 1, 2010, which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The invention relates generally to medical devices, systems and methods for use in a body (e.g., in a cardiac system), and more particularly, to devices, systems and methods for minimally invasive native heart valve replacement.
  • BACKGROUND OF THE INVENTION
  • Natural heart valves, such as aortic valves, mitral valves, pulmonary valves and tricuspid valves, can become damaged by disease in such a manner that they fail to maintain blood flow in a single direction. A malfunctioning heart valve may be stenotic (i.e., heart leaflets are closed down) or regurgitant (i.e., heart leaflets are wide open). Maintenance of blood flow in a single direction through the heart valve is important for proper flow, pressure and perfusion of blood through the body. Hence, a heart valve that does not function properly may noticeably impair the function of the heart.
  • Cardiac valve prostheses are well known in the treatment of heart disease to replace malfunctioning heart valves. Heart valve replacement previously required open-heart surgery with its attendant risk, expense, and extended recovery time. Open-heart surgery also requires cardiopulmonary bypass with risk of thrombosis, stroke and infarction. For some patients, open-heart surgery is not even an option because of a critical condition, advanced age, co-existing infection, or other physical limitations.
  • Recently, there has been increasing interest in minimally invasive and percutaneous replacement of cardiac valves, typically by way of catheterization. In minimally invasive procedures, a catheter is used to insert a valve in a lumen of a blood vessel via percutaneous entry through a distal blood vessel. Typically, such percutaneous prosthetic valve devices comprise an expandable stent segment, a stent anchoring segment and a flow-regulation segment, such as a biological valve. The expandable stent portion is either self-expandable or expanded using a balloon that is part of a transcatheter delivery system.
  • A drawback of using a stented valve is that the stent can be difficult to properly position, resulting in a misplaced valve. Additionally, stented valves may also lack sufficient radial strength, which could cause migration after implantation due to forces applied by the blood surrounding the valve in the heart. Therefore, there is a need for improved heart valve prostheses that may be implanted using minimally invasive techniques.
  • SUMMARY OF THE INVENTION
  • The invention has advantages over prior devices, systems and methods. The invention mitigates the potential complications of invasive surgery, by applying minimally invasive techniques to replace a damaged or malfunctioning heart valve with a replacement prosthetic heart valve. The invention allows for proper placement of the prosthetic heart valve. The inventive prosthetic heart valve is configured to include an amount of radial force in order to keep the prosthetic heart valve in contact with a body lumen into which the valve is implanted. The inventive prosthetic heart valve also reduces or eliminates sliding or migration of the prosthetic heart valve. One benefit to reducing migration of the prosthetic heart valve is that the device is able to perform its intended function, which allows the heart to function properly. Another benefit of eliminating migration of the prosthetic heart valve is that additional surgeries are not required to repair or replace the valve.
  • One aspect of the invention is a prosthetic valve. The prosthetic valve may comprise: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen. The prosthetic valve may further comprise a valvular element disposed in the inner lumen of the expandable stent. The valvular element may comprise at least one leaflet. The prosthetic valve may further comprise a plurality of support arms that arc used to attach the spring to the first end of the expandable stent. Each of the plurality of support arms may comprise at least one loop through which the spring extends and is attached to the support arm. The support arms may comprise a material that is more stiff than a material comprising the spring. The support arms may limit the amount of radial expansion of the spring in order to result in a desired diametric configuration of the spring. The spring may comprise a torsion spring. The expandable stent may be sized to fit in a heart valve selected from a group consisting of an aortic valve, a mitral valve, a tricuspid valve, and a pulmonary valve. The spring and the expandable stent may be compressed into a collapsed position for insertion into a sheath for delivery to the implantation position. The prosthetic valve may further comprise a second spring attached to the second end of the expandable stent.
  • A second aspect of the invention is a prosthetic valve delivery system. The system may comprise: a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; a valvular element disposed in the inner lumen of the expandable stent; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic valve at an implantation position in a body lumen; and a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position. The sheath may be retractable in order to deploy the prosthetic valve.
  • A third aspect of the invention is a method of implanting a prosthetic valve. The method may comprise the steps of: inserting a system into a body, the system comprising: a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; a valvular element disposed in the inner lumen of the expandable stent; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic valve at an implantation position in a body lumen; and a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position; advancing the system to the implantation position; and deploying the prosthetic valve to the desired diametric configuration to anchor the prosthetic valve at the implantation position. The sheath may be retractable in order to deploy the prosthetic valve. The method may further comprise the step of pulling proximally on the system when the prosthetic valve is partially deployed. The method may further comprise the step of removing the remainder of the system and leaving the prosthetic valve, once deployed, in place.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be apparent from the following detailed description of the invention in conjunction with the accompanying drawings, of which:
  • FIG. 1 illustrates a perspective view of an embodiment of a prosthetic heart valve, in accordance with the invention;
  • FIG. 2 illustrates a side view of the prosthetic heart valve of FIG. 1;
  • FIG. 3 illustrates a side view of a system, in accordance with the invention;
  • FIG. 4 illustrates a perspective view of distal end portion A of the system shown in FIG. 3;
  • FIG. 5 illustrates a side view of distal end portion A of the system shown in FIG. 3, with interior shown in shadow;
  • FIG. 6 illustrates a side view of the system of FIG. 3 at a later stage in delivery of a prosthetic heart valve of the system;
  • FIG. 7 illustrates a perspective view of distal end portion B of the system shown in FIG. 6;
  • FIG. 8 illustrates a side view of distal end portion B of the system shown in FIG. 6;
  • FIG. 9 illustrates a side view of the system of FIGS. 3 and 6 at a later stage in delivery of the prosthetic heart valve of the system;
  • FIG. 10 illustrates a perspective view of distal end portion C of the system shown in FIG. 9;
  • FIG. 11 illustrates a side view of distal end portion C of the system shown in FIG. 9, with interior shown in shadow;
  • FIG. 12 illustrates a side view of the system of FIGS. 3, 6 and 9 at a later stage in delivery of the prosthetic heart valve of the system;
  • FIG. 13 illustrates a perspective view of distal end portion D of the system shown in FIG. 12;
  • FIG. 14 illustrates a side view of distal end portion D of the system shown in FIG. 12;
  • FIG. 15 illustrates a side view of the system of FIGS. 3, 6, 9, and 12 at a later stage in delivery of the prosthetic heart valve of the system;
  • FIG. 16 illustrates a perspective view of distal end portion E of the system shown in FIG. 15;
  • FIG. 17 illustrates a side view of distal end portion E of the system shown in FIG. 15;
  • FIG. 18 illustrates a heart with the inventive system being inserted into the apex of the heart;
  • FIG. 19 schematically illustrates a top view of a heart with left atrium partially cut-away in order to view the inventive system being inserted through a mitral valve annulus;
  • FIG. 20 is the heart and system shown in FIG. 19 with the prosthetic valve device of the system being partially deployed;
  • FIG. 21 illustrates a perspective view of an embodiment of a prosthetic valve, of the invention, including two springs;
  • FIG. 22 illustrates a perspective view of an expandable stent portion of an embodiment of a prosthetic valve, in accordance with the invention, including an anchor;
  • FIG. 23 illustrates a perspective view of an expandable stent portion of an embodiment of a prosthetic valve, in accordance with the invention; and
  • FIG. 24 illustrates a perspective view of a distal end portion of an embodiment of a system, in accordance with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention will be described with reference to FIGS. 1-20, wherein like numbers refer to like structures. Those skilled in the art will appreciate that the description herein with respect to the figures is for exemplary purposes only and is not intended in any way to limit the scope of the invention.
  • The invention discloses devices, systems and methods for minimally invasive surgical placement (e.g., via percutaneous catheter placement) of prosthetic heart valves, such as those shown in FIGS. 1 and 2. The invention contemplates that the inventive prosthetic heart valves, systems and methods described herein may be used for replacement of several different heart valves (e.g., mitral valve, tricuspid valve, aortic valve, etc.). More generally, the prosthetic heart valve of the invention may be implanted within a fluid passageway of a body lumen, for example, for replacement or augmentation of a valve structure (e.g., mitral valve), to regulate flow of bodily fluid preferably in a single direction. The invention also contemplates prosthetic valves, in general, that may be used in other suitable locations in the body other than in and near the heart.
  • One challenge in implanting a prosthetic heart valve within the heart and at a particular annulus is correct placement of the device. Improper placement may cause malfunctioning of the prosthetic heart valve and may require a patient to undergo an additional surgery. The invention addresses this problem by allowing for proper placement of the prosthetic heart valve. In particular, the inclusion of an expandable torsion spring within a prosthetic valve improves the ability to properly place the prosthetic heart valve.
  • Under certain conditions or due to an improper fit, for example, a prosthetic heart valve may migrate or move after implantation or throughout the life of the prosthetic heart valve due to the forces relating to inflow and backflow of blood flow to and through the prosthetic heart valve. Migration can result in an inadequate seal between the prosthetic heart valve and the wall of the conduit, lumen or vessel, which can further lead to loss of the ability to function effectively. The invention also addresses this problem by inhibiting such migration. Inclusion of an expandable torsion spring within a prosthetic valve for fixation purposes decreases the chances that the prosthetic heart valve will migrate.
  • Referring to the drawings, FIGS. 1 and 2 show a perspective and a side view, respectively, of an embodiment of a prosthetic heart valve of the invention. Prosthetic heart valve 100, as shown, comprises: an expandable stent 110 including an inner lumen 119 and having a first end 112 and a second end 114; and a spring 130 attached to the first end 112 of the expandable stent 110. The expandable stent 110 and the spring 130 can expand radially to a desired diametric configuration in order to anchor the prosthetic valve 100 at an implantation position in a body lumen. FIG. 1 shows the expanded prosthetic valve 100 including a valvular element 120.
  • The expandable stent 110 preferably defines a generally cylindrical body having first end 112 and second end 114. However, it is contemplated that the expandable stent 110 can have any geometric shape (e.g., cylindrical, conical, spherical, or barrel-like) that is compatible with the placement of the expandable stent 110 within a body lumen. The expandable stent 110, once deployed, expands to at least the dimension or diameter of a body lumen into which the expandable stent 110 is implanted. Preferably, the expandable stent, when being used in a mitral valve, can have a diameter or diameters from about five (5) millimeters (mm) to about twenty-five (25) millimeters (mm) based upon typical heart anatomical dimensions. However, other dimensions are also contemplated based upon atypical heart anatomical dimensions as well as based upon different valve annuli (e.g., tricuspid, etc.) into which the prosthetic valve may be implanted.
  • The expandable stent 110 preferably comprises a mesh. The mesh preferably comprises a plurality of wires 116 or strips that comprise a flexible, biocompatible material. Examples of possible materials for the mesh of the expandable stent 110 include those formed from temperature-sensitive memory alloys, which change shape at a designated temperature or temperature range. Alternatively, the expandable stent 110 can be made from a material having a spring bias. Examples of suitable materials include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate or combinations thereof. Examples of shape-memory materials include shape memory plastics, polymers, and thermoplastic materials, which are inert in the body. Shape memory alloys having superelastic properties generally made from ratios of nickel and titanium, commonly known as Nitinol™, are preferred materials
  • The preferred material for the plurality of wires 116 will have an adequate amount of stiffness to ensure that the expandable stent 110 maintains a desired shape. The stiffness also needs to be adequate so that the expandable stent 110 maintains a desired shape that ensures that leaflets (as discussed below) in the device 100 close and open properly. Sufficient stiffness also can ensure that there will be no paravalvular leakage; in other words, no leaking between the prosthetic heart valve 100 and the body lumen into which it is implanted. Portions of the expandable stent 110 may be made of different materials and may have different amounts of stiffness.
  • Various patterns of the plurality of wires 116 in the mesh of the expandable stent 110 are possible. The invention is not limited to the patterns shown herein. The preferred pattern will accommodate the shape of the body lumen or annulus into which the expandable stent 110 will be implanted, as well allow for proper expansion of the expandable stent 110 in the body lumen or annulus.
  • The plurality of wires 116 of the expandable stent 110 can also have a variety of possible cross-sectional geometries. Examples of cross-sectional geometries include, but are not limited to, rectangular, non-planar configurations, round (e.g., circular, oval and/or elliptical), polygonal, arced and tubular.
  • The expandable stent 110 of the device 100 is able to be reduced in diameter, mounted in a catheter and advanced through the circulatory system or through other ports or incisions into a patient. The expandable stent 110 is preferably self-expanding. However, it is also possible that the expandable stent 110 may be expanded using a balloon or some other suitable method.
  • The expandable stent 110 defines a lumen 119 or other housing in which valvular element 120 may be disposed. The valvular element 120 preferably comprises valve leaflets 122 coupled to a valve support 124 that fits in the stent 110, with both components being made of any suitable biocompatible material.
  • The leaflets 122 and support 124 can be derived from autologous, allogenic, or xenograft material. As will be appreciated, sources for xenograft materials (e.g., cardiac valves) include, but are not limited to, mammalian sources, such as porcine, equine, bovine and sheep. Additional biologic materials from which to form the valve leaflets include, but are not limited to, explanted veins, pericardium, fascia lata, harvested cardiac valves, bladder, vein wall, various collagen types, elastin, intestinal submucosa, and decellularized basement membrane materials, such as small intestine submucosa (SIS), amniotic tissue, or umbilical vein.
  • Alternatively, the leaflets 122 and support 124 can be formed from a synthetic material. Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-poly-isobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), polyester, polyethylene (PE), polyethylene terephthalate (PET), silk, urethane, rayon, silicone, or the like. In an additional embodiment, the synthetic material can also includes metals, such as stainless steel (e.g., 316L), and Nitinol™. These synthetic materials can be in a woven, a knit, a cast, or other known physical fluid-impermeable or permeable configuration. In addition, plated metals (e.g., gold, platinum, rhodium) can be embedded in the leaflet material (e.g., a sandwich configuration) to allow for visualization of the leaflets 122 post placement.
  • The leaflets 122 and support 124 can also be formed of any combination of these exemplary materials, or these materials in combination with other materials, as are known in the art. A variety of known treatments and/or coatings can also be included in/on the leaflets 122 and support 124.
  • The leaflets 122 may comprise a supple and reinforced tissue which is a thickness to be thin enough to occupy the least possible space in the compressed form of the valve, is pliable, and also is strong enough to withstand the unceasing movement under the blood pressure changes during heart beats. The leaflets 122 are capable of moving from a closed position to an open position under the action of the force exerted by the movement of the blood during systole and disastole, without having any significant resistance to blood displacements. The valve leaflets 122 have surfaces defining a reversibly sealable opening for unidirectional flow of a liquid through the prosthetic heart valve 100.
  • The number of leaflets 122 in the valvular element 120 may be dependent upon the body lumen or annulus into which the prosthetic heart valve 100 is intended to be implanted. For the exemplary embodiment, the valvular element 120 shown in FIG. 1 includes three leaflets 122 for a tri-leaflet configuration. Other configurations including different numbers of leaflets are, however, also contemplated. For example, mono-leaflet, bi-leaflet and/or multi-leaflet configurations are also possible.
  • The leaflets 122 and the support 124 may be operably attached to the expandable stent 110 by any means known in the art, such that the leaflets 122 can preferably repeatedly move between an open state and a closed state for unidirectional flow of a liquid (e.g., blood) though a lumen of the prosthetic heart valve 100. In one embodiment, the support 124 of the valvular element 120 may be attached to the expandable stent 110 by suturing. Other means for attachment are, however, contemplated by the invention. As one option, the support 124 may be eliminated from the device 100, and the leaflets 122 may be directly attached to the expandable stent 110.
  • The valvular element 120 may be attached to the expandable stent 120 at any location along its length, as desired for a particular application. In the device shown in FIG. 1, the valvular element 120 is located at or near the middle of the expandable stent 110 (along its length), but other locations are also possible.
  • As used herein, an undeployed state of the prosthetic heart valve 100 is the state of the prosthetic heart valve 100 at the time the valve is outside the body and as may be provided on a delivery device (e.g., on a catheter or a sheath), and a deployed state is the state of the prosthetic heart valve 100 at the time the prosthetic heart valve 100 is to be left in the body.
  • As discussed herein, a prosthetic heart valve implanted to replace, for example, a mitral valve, can be difficult to place properly in a mitral valve annulus. In addition, if improperly positioned or sized, a prosthetic heart valve can move or migrate due to the forces acted upon the valve by surrounding blood. Spring 130 is attached to the first end 112 of the expandable stent 110 thereby to assist in proper placement and to reduce the likelihood that the prosthetic heart valve 100 will migrate after the prosthetic heart valve 100 is delivered and implanted at a delivery site, as well as throughout the life of the prosthetic heart valve 100.
  • The spring 130, shown in FIGS. 1 and 2, comprises a wire that is wound or coiled such that the spring 130, when expanded, has a generally circular shape. Other numbers of wires and other configurations of the spring 130 are, however, also contemplated by the invention. For example, there may be a different number of times that the spring 130 coils or is wound around a central axis 117. In addition, the distance between individual coils (or times the wire is wound around the central axis) of the spring 130 may be varied. The individual coils or times the spring 130 is wound are shown in FIG. 1 as being in direct or close contact to each other. However, alternative configurations are also contemplated in which more space between the individual coils is found in an expanded configuration of the spring 130 (not shown).
  • The preferred spring 130 is a torsion spring. While not wishing to be bound by theory, a torsion spring is a spring that works by torsion or twisting; that is, a flexible, elastic object that stores mechanical energy when it is twisted. The amount of force (torque) it exerts is proportional to the amount it is twisted. The spring 130 is able to exert force radially against a body lumen into which it is implanted, in order to hold the prosthetic heart valve 100 in place inside the body lumen.
  • The spring 130 preferably comprises a shape memory material, as those described above with regard to the expandable stent 110. However, other materials are also contemplated by the invention.
  • The spring 130 is preferably provided as a coil and is wound and radially compressed when the prosthetic heart valve 100 is undeployed and located within a delivery device (e.g., a sheath or catheter). Winding the spring 130 up allows the diameter of the spring 130 to be reduced in order to fit in a delivery device. When the prosthetic heart valve 100 is deployed, the spring 130 will expand to a predetermined diameter in order to contact tissue, or an inner surface of a body lumen, and hold the device 100 in place. While not wishing to be bound by theory, compressed torsional energy in the undeployed device is used to change the diameter of the spring 130 from a small diameter state (during delivery) to a large delivery state (following delivery). The preferred diameter of the small diameter state is less than about 9.3 mm (28 French) and the preferred diameter of the large delivery state of the spring 130 is about 2 cm to about 5 cm, depending upon the expansion of the expandable stent portion 120 or the valve support 124 or frame. Alternatively, the diameter of the larger delivery state can be determined based upon the diameter of the expandable stent portion in its expanded configuration. Preferably, the larger delivery state of the spring 130 could then have a diameter that is between about 0 cm to about 1 cm larger than the larger delivery state diameter of the expandable stent portion.
  • The material comprising the spring 130 and the configuration of the spring 130 preferably ensures adequate radial stiffness of the spring 130 for a given application. In the embodiment shown, the spring 130 is configured to ensure that there will be sufficient contact between the prosthetic heart valve 100 and the body lumen (i.e., a sufficient fit) into which the prosthetic heart valve 100 fits (e.g., a mitral valve annulus). The fit minimizes the chance of migration of the prosthetic heart valve 100 as forces are applied to the prosthetic heart valve 100 by surrounding blood. The presence of the spring 130 also may eliminate the need to anchor the device 100 into tissue by using, for example, barbs or hooks. Beneficially, the prosthetic heart valve 100 may be used without penetrating tissue of the heart in order to hold the valve 100 in place.
  • As an alternative, in another embodiment, there may be springs located on both the first and the second end of the expandable stent. FIG. 21 illustrates this alternative prosthetic heart valve 500. The device 500 preferably includes corresponding features, e.g., expandable stent portion 510 with first end 512 and second end 514, valvular element 520 and first spring 530 with support arms 540. However, a second spring 580 is attached to the second end 514 of the expandable stent portion 510 using support arms 590. The addition of the second spring 580 may provide additional resistance against migration of the prosthetic heart valve 500, or resistance against migration in a different direction from that provided by the first spring 530. Therefore, it is contemplated that the prosthetic heart valve of the invention may include more than one spring.
  • Depending upon the location of the spring or springs in the prosthetic heart valve of the invention, migration in one or more directions may be prevented. For example, in the embodiment shown in FIGS. 1 and 2, the spring 130 is preferably implanted on the atrial side of the mitral valve annulus, and the remainder of the expandable stent 110 extends through the annulus and into the left ventricle. As a result, the prosthetic heart valve 100, upon implantation, prevents migration of the prosthetic heart valve 100 from the left atrium and into the left ventricle. However, if a second spring would be included and implanted on the ventricular side of the mitral valve annulus, then migration of the prosthetic heart valve from the left ventricle and into the left atrium would also be prevented.
  • If one spring 130 is used on the prosthetic heart valve 100, as in FIGS. 1 and 2, a flare or anchor (not shown) may be, optionally included on the opposite end of the expandable stent portion 110 from the spring 130. The purpose of such flares or such anchors would be to preferably anchor the second end 114 of the expandable stent portion 110 (but also could anchor the first end 112) into tissue opposite (or adjacent) the spring 130. Instead of anchoring into tissue (e.g., by using barbs), it may be possible that the location and design of the anchors would contact the side of the valve annulus opposite the side including the spring 130 without penetrating tissue.
  • In one example of anchoring the stent, the entire end of the stent could be flared, as shown by 615 in FIG. 22, to a larger diameter. The flare 615 could, however, be on the second end 614 of the stent portion 610 alternatively. Any suitable type of flare, in addition to the flare 620 shown in FIG. 22, is contemplated for use with prosthetic heart valve 100.
  • One example of a type of anchor that may be used is also illustrated in FIG. 22. FIG. 22 shows an alternative expandable stent portion 610. At or near the second end 614 of the stent portion 610, which will be opposite the first end 612 that is intended to be attached to a spring, one or more anchors 619 will be present. In the embodiment shown, the anchor 618 is actually a flared portion of one of the plurality of wires 616 or members that make up for the expendable stent portion 610. Preferably, there are at least three of these anchors 618 per expandable stent portion 610, but any suitable number is contemplated. The anchor 618 shown in FIG. 22 is, however, only one exemplary anchor. Other anchors are contemplated, which may, for example, include a separate anchoring system that is not part of the stent portion. If the anchoring system is separate, the system may be employed during deployment of the prosthetic heart valve of the invention or may be included post-implant. Some additional examples of such anchors include, but are not limited to, U-clips and sutures.
  • In the preferred embodiment, shown in FIG. 1, in order to connect the spring 130 to the expandable stent 110, a plurality of support arms 140 are preferably used, although other suitable means for attachment are also contemplated. The support arms 140 are preferably pivotable, rotatable, or otherwise moveable or maneuverable in order to allow the spring 130 and expandable stent 110 to expand to its desired diametric configuration without restriction. The length of the support arms 140 can control the amount of diametric or radial expansion of the spring 130 due to their length. Thus, the length of the support arms 140 will be dependent upon the use of the prosthetic heart valve and desired deployed diameter of the spring 130. Shorter support arms 140 will limit the amount of unwinding of the spring 130 and longer support arms 140 will allow for more expansion of the spring 130. The amount of expansion of the spring 130, therefore, can relate to the length of the supports arms 130 as well as other factors.
  • As shown in FIG. 1, the support arms 140 are connected at a first end 142 of the support arms 140 to the expandable stent 110 by a loop or eyelet 146 formed by the wire comprising the support arm 140 itself. However, other means for attaching the support arms 140 to the expandable stent 110 are also contemplated. For example, a means for attaching the support arms 140 to the expandable stent 110 that allows the support arms 140 to pivot with respect to the expandable stent 100 is a possible embodiment. Preferably, the support arms 140 are attached to the expandable stent 110 around the circumference of the first end 112 of the expandable stent 110. Preferably, the support arms 140 are generally evenly spaced around the circumference of the first end 112 of the expandable stent 110, however other spacings are also contemplated.
  • The support arms 140 are attached to the spring 130 at a second end 144 of each support arm. Preferably, and as shown, loops or eyelets 148 are located on the second ends 144 of the support arms 140 through which the spring 130 extends. The spring 130 is preferably able to slide through the loops or eyelets 148 on the support arms 140 in order for the spring 130 to be deployed or expanded. However, other suitable means for attachment to the spring 130 are also contemplated by the invention such that the spring 130 is able to unwind as needed.
  • The support arms 140 preferably comprise a shape memory material, such as those provided above with regard to the expandable stent 110. A preferred material is Nitinol™. However, other materials are also contemplated by the invention.
  • Preferably, the stiffness or rigidity of the material used to form the support arms 140 is generally greater than the stiffness or rigidity of the material used to form the spring 130. The relative stiffnesses allows the support arms 140 to maintain a desired expanded diametric configuration of the spring 130 after the device 100 is deployed and undergoes forces within a beating heart, for example. Other relative stiffnesses of the support arms 140 and spring 130, however, are also contemplated by the invention.
  • The number of support arms 140 may vary, according to the invention. Three support arms 140 are shown in the figures. However, it is contemplated that other numbers of support arms 140 are possible, such that the support arms 140 are able to sufficiently hold the spring 130 in its desired expanded diametric configuration.
  • The support arms 140 shown are generally linear in shape. However, other shapes are also contemplated that may control deployment of the spring 130. For example, another possible embodiment of the prosthetic heart valve may include a plurality of support arms that when deployed are curved. For example, a deployed prosthetic heart valve may include a plurality of support arms that are all similarly curved. A potential benefit of using curved support arms is that if they collapse, the arms will collapse radially rather than axially. Other shapes and configurations of the support arms are also contemplated.
  • The number of loops 148 and location of the loops 148 on the support arms 140 may be varied. For example, additional loops may be found along the length of the support arms 140 (not shown). The spring 130 may also be extended through the additional loops. The addition of more loops may be for the purpose of preventing kinking, tangling or twisting of the spring or to better control expansion of the spring to its desired diametric configuration, for example.
  • Preferably, when the support arms 140 are fully extended and the spring 130 is released to its desired expanded diameter, the support arms 130 will extend generally or nearly perpendicular to a central, longitudinal axis 117 of the expandable stent 110. In FIGS. 1 and 2, the support arms 140 do not extend exactly perpendicular to central axis 117. It is contemplated that the support arms 140 may extend at various angles with respect to the central, longitudinal axis 117 of the expandable stent 110, as desired for a particular application.
  • As will be appreciated, the prosthetic heart valve 100 can be treated and/or coated with any number of surface or material treatments. Examples of such treatments include, but are not limited to, bioactive agents, including those that modulate thrombosis, those that encourage cellular in-growth, through-growth, and endothelization, those that resist infection, and those that reduce calcification.
  • The prosthetic heart valve 100 described above, or other embodiments of the invention, may be a part of a system for replacement of a native valve with a prosthetic heart valve. FIG. 3 illustrates an embodiment of such a system 300 of the invention. The system 300 shown encloses the prosthetic heart valve 100, as described above, or other such prosthetic heart valve in accordance with the invention, in order to deliver the valve to its desired location in a body lumen. The system 300 shown is one embodiment, and other suitable systems are also contemplated. FIGS. 4 and 5 illustrate a distal end portion of system 300, with the distal end indicated in FIG. 3 by the circled portion that is labeled as A. FIG. 4 illustrates a perspective view of distal end A and FIG. 5 illustrates a side view of distal end A, with a collapsed, or non-deployed prosthetic heart valve 100 shown in shadow in the interior of an elongate sheath 350.
  • System 300 is exemplary, but includes elongate sheath 350 having an inner lumen 358 running along the length of the sheath 350. The sheath 350 is shown as having multiple portions 352, 354, 356 with different diameters. However, it is contemplated that the sheath 350 may have only one diameter, or other numbers of diameters along its length. Preferably, the sheath 350 or portions of the sheath will have a diameter of about five (5) millimeters (mm). Most preferably, the diameter of the sheath 350 is less than about 10 mm (30 French).
  • In order to deploy the device, preferably the sheath 350 is withdrawn or retracted, which allows the device 100 to expand. As described above, the sheath 350 may have multiple portions, e.g., 352, 354, 356. One alternative embodiment provides for only sheath portion 352 to be withdrawn in order for the device 100 to be deployed. Sheath portion 354 would remain stationary in that embodiment. For example, sheath portion 352 may be withdrawn using actuators that are linear or coaxial on the pushing rod or handle of the system 100.
  • System 300 also includes a pushing rod 360 that extends into the inner lumen 358 of the sheath 350. The pushing rod 360 has a proximal end 362 that prevents the rod from completely extending into the inner lumen 358. The proximal end also is preferably able to be held by an operator of the system 300. At the opposite end of the pushing rod 360, is a distal end 364. The distal end 364 of the pushing rod 362 is preferably placed against the second end 114 of prosthetic heart valve 100, for example. In order for the prosthetic heart valve 100 to be deployed from sheath 350, the distal end 364 of the pushing rod 360 is held against the device 100, and the sheath 350 is withdrawn or retracted, which results in the device 100 exiting the distal end 359 of sheath 350, and, ultimately, being deployed from the system 300 (as shown in later figures).
  • The pushing rod 360 also preferably includes an inner lumen 366 (FIG. 5) through which a guide wire or other guiding mechanism for the system 300 may extend. The use of a guide wire (not shown) with the system 300 is preferred, but is not required. The guide wire may also be considered an elongate delivery catheter.
  • The system 300 also preferably includes a dilator 370 on or near the distal end 359 of sheath 350. The dilator 370 is used to dilate a body lumen or tissue through which the system 300 is desired to extend or penetrate. The dilator 370 is not required, however, and the system 300 may not include one. The preferred dilator 370, however, includes an inner lumen 372 such that the optional guide wire discussed above may also extend through dilator 370 and out an end opening 374 of the dilator 370. If the dilator 370 is included, the pushing rod 360 preferably will include an extension 368 having a preferably narrower diameter that connects the pushing rod 360 to the dilator 370, or the dilator may be otherwise attached to the pushing rod 360. Preferably, the dilator 370 remains stationary with the pushing rod 360 while the sheath 350 is withdrawn or retracted, allowing the device 100 to exit the sheath 350. In another alternative embodiment, a dilator could actuate independent from the remainder of the delivery system.
  • FIG. 5 shows, in shadow, how the prosthetic heart valve 100 preferably looks prior to deployment. The prosthetic heart valve 100 is shown in a folded, collapsed or undeployed position and inserted into sheath 350 for delivery to an implantation position in a body lumen or annulus. The sheath 350 is positioned to releasably hold the prosthetic heart valve 100 in a delivery, or undeployed, state. The spring 130 is shown more tightly coiled than when deployed. The support arms 140 are extending generally parallel to a central axis 317 of the system 300. The prosthetic heart valve 100 is preferably loaded in the system 300 such that the extension 368 of the pushing rod 360 extends through the inner lumen 119 of the prosthetic heart valve 100, as shown.
  • The length of pushing rod 360 is shown for purposes of illustration only. Depending upon the application of the system 300, the length of the pushing rod 360 and sheath 350 may be varied. The invention contemplates other lengths.
  • The system 300 shown in FIG. 3 is one embodiment of the inventive system. Rather than a pushing rod and sheath configuration, it is contemplated that other means for deploying a prosthetic heart valve of the invention are possible. For example, a retractable sheath surrounding the prosthetic heart valve 100 may be used instead. Any suitable means for delivery of the prosthetic heart valve 100 is contemplated.
  • The sheath 350 can include an inner lining (not shown) on an inner surface of the sheath 350. An inner lining can decrease friction between the prosthetic heart valve device 100 and the sheath 350 while also sealing the sheath 350. The inner lining can be formed of, for example, nylon, Dacron™, expanded polytetrafluoroethylene (ePTFE), and/or other materials.
  • The sheath 350 can have many possible configurations. For example, in some embodiments, the sheath 350 can be a flexible tube formed of a metal, metal-alloy, and/or polymers, such as polyvinyl chloride, polyethylene, polyethylene terephalate, polyamide, mixtures, and block-copolymers thereof.
  • The pushing rod 360 and dilator 370 may be formed, for example, by similar materials to those used for the sheath 350. The guide wire may be made of conventional materials. The invention does, however, contemplate that any suitable materials may be used for the components of the system 300.
  • The valve replacement system 300 will be used in a description below of an inventive method for replacement of a heart valve. Specifically, the method described may be used to deliver prosthetic heart valve 100 to a mitral valve, for example. However, it will be understood from the following description that the invention could be used instead to replace any heart valve or other suitable valve in a body lumen or valve annulus.
  • To implant the prosthetic heart valve 100, for example, the prosthetic heart valve 100, as described above, is compressed into its collapsed position and inserted into the sheath 350 that has a suitably sized lumen for accepting the compressed prosthetic heart valve 100 (as shown in FIG. 5). The system 300 may be supplied with the prosthetic heart valve 100, for example, already loaded, or instead may require that an operator load the device.
  • The sheath 350, including the prosthetic heart valve 100, is then guided in the conventional fashion (with or without the use of a guide wire) or advanced to a position adjacent an implantation position in a patient's heart (for example, adjacent the mitral valve annulus). The sheath 350 is preferably delivered to or deployed at a pre-selected position in an anatomical lumen of the heart. The pre-selected position may be, for instance, in proximity to the original location of a natural heart valve.
  • One preferred method of delivering a prosthetic heart valve to a body lumen includes introducing a mitral valve prosthetic heart valve device, such as prosthetic heart valve 100, to the mitral valve annulus using minimally invasive techniques. Preferably, the heart is off-pump. Preferably, a lower mini-sternotomy or thoracotomy is performed and a standard transapical approach is used for placement of a mitral valve prosthetic heart valve device. However, other anatomical approaches and surgical methods are contemplated for the inventive system 300.
  • FIG. 18 shows the system 300 inserted into a heart 400 via a transapical approach. In the figure, the system 300 is partially inserted into an opening 402 made in the apex of the heart 400. The opening 402 is made by puncturing the apex of the heart with the distal end of system 300 or using another instrument prior to introduction of the system 300.
  • The initial step of inserting or introducing and advancing the system 300 to a desired location, such as into the apex of the heart, as described above, may preferably be done using the aid of a fluoroscope or some other image guidance, in order to view the placement within the body. Imaging devices (not shown) may be used to permit the surgeon (operator) to watch and guide the movement of the prosthetic heart valve device to the implantation position. Some possible image guidance include, but are not limited to, fluoroscopy, ultrasonic means, magnetic resonance, X-ray, computer tomography, and combinations thereof.
  • Preferably, the prosthetic heart valve 100 includes materials that are radiopaque so that the device can be viewed using imaging devices. For example, a plurality of radiopaque markers may be disposed on the stent and/or coil portions of the device. Radiopaque markers may include radiopaque metals such as, for example, gold and platinum. Examples of suitable radiopaque that may be added to polymeric materials in the device include, but are not limited to, barium sulfate and bismuth sub-carbonate.
  • Next, once the system 300 is in its desired location in the body, the pushing rod 360 is pushed in a distal direction. FIG. 6 shows the system 300 as the prosthetic heart valve 100 is just beginning to be deployed from the distal end 359 of sheath 350. As illustrated, the spring 130 and support arms 140 have exited the sheath 350 and the spring 130 appears in its desired partially expanded configuration. The support arms 140 are generally perpendicular to a central, longitudinal axis 317 extending though the system 300. The expandable stent 110 of the prosthetic heart valve 100 has not yet completely exited the sheath 450.
  • FIGS. 7 and 8 illustrate a distal end portion (indicated as B) of system 300, at the stage of deployment as in FIG. 6. FIG. 7 illustrates a perspective view of distal end B and FIG. 8 illustrates a side view of distal end B.
  • FIG. 9 illustrates the system 300 after the pushing rod has been pushed even further distally than in FIG. 6. As shown, the expandable stent portion 110 has partially exited the distal end 359 of the sheath 350.
  • FIGS. 10 and 11 illustrate a distal end portion (indicated as C) of system 300, at the stage of deployment as in FIG. 9. FIG. 10 illustrates a perspective view of distal end C and FIG. 11 illustrates a side view of distal end C. FIG. 11 also shows, in shadow, the remainder of the prosthetic heart valve 100 that has not yet exited the sheath 350, as well as the pushing rod 360.
  • At this point in the delivery of the prosthetic heart valve 100, it is preferred for the surgeon (or operator) to pull the whole system 300, including the prosthetic heart valve 100, back proximally. The proximal pull preferably enables the spring 130 to engage into the proper implantation position. For the mitral valve, for example, the system 300 is pulled back once the device 100 has partially exited sheath 350, with sheath 350 being in the vicinity of the mitral valve annulus. Preferably, in the mitral valve application, the spring 130 is seated in the left atrium adjacent the atrial side of the mitral valve annulus. Depending upon the desired location and purpose for the prosthetic heart valve, however, adjustments may be made in order to allow for proper placement of the prosthetic heart valve.
  • Although the embodiment of the inventive system shown and described herein may not allow the prosthetic heart valve 100 to be retracted back into the sheath 350 for possible re-positioning, it is contemplated that other embodiments of inventive systems may have such an ability. For example, the prosthetic heart valve may be configured such that the expandable stent, support arms and spring may be retracted back into the sheath after being either partially deployed or completely deployed. Retractability may be desired, for example, if during deployment the surgeon (or operator) recognizes by image guidance means that the prosthetic heart valve is not being deployed in a proper place.
  • FIG. 12 illustrates the system 300 once the pushing rod 360 has been pushed even further distally from the stage of deployment shown in FIG. 9. Prosthetic heart valve 100 is no longer enclosed in the sheath 350, and is fully deployed.
  • FIGS. 13 and 14 illustrate a distal end portion (indicated as D) of system 300, at the stage of deployment as in FIG. 12. FIG. 13 illustrates a perspective view of distal end D and FIG. 14 illustrates a side view of distal end D.
  • FIG. 15 illustrates the system 300 once the prosthetic heart valve 100 has been fully deployed. The pushing rod 360 has been pulled proximally in order to pull the dilator 370 back in contact with the sheath 350. Next, the sheath 350, pushing rod 360 and dilator 370 will be retracted and removed from the body, leaving the prosthetic heart valve 100 behind.
  • FIGS. 16 and 17 illustrate a distal end portion (indicated as E) of system 300, at the stage of deployment as in FIG. 15. FIG. 16 illustrates a perspective view of distal end E and FIG. 17 illustrates a side view of distal end E.
  • FIGS. 19 and 20 are schematic representations of a heart 400 with a view from above and including a view into a left atrium 404 (some of left atrium is cut-away in figure). FIG. 19 shows the inventive system 300 inserted through the mitral valve annulus 406, with its distal end, including dilator 370 (with opening 374) and sheath 350, extending into the left atrium 404. FIG. 20 shows the inventive prosthetic valve 100 partially deployed, with the amount of deployment being approximately as in the system 300 shown in FIGS. 6-8. As shown, expandable stent portion 110 has partially exited or been partially deployed from the distal end of sheath 350. Three support arms 140 are extended and spring 130 is released or deployed, and is being held through loops (not visible) on ends of the support arms 140.
  • In an alternative embodiment of the system of the invention, it may be desired to includes means for keeping the expandable stent portion inside a retractable sheath and compressed until the retractable sheath has been retracted enough to fully clear the expandable stent portion. Therefore, the expandable stent portion would not be in a partially deployed configuration as in earlier figures. This alternative embodiment may be desired because it is possible that stored energy in a compressed end of the prosthetic heart valve may force the expandable stent portion out of a distal end of a sheath prematurely and before the expandable stent portion is desired to be fully deployed. Such premature release of the prosthetic heart valve could result in improper placement of the device, for example. In order to avoid such premature release upon deployment, the invention contemplates using means to prevent such premature release.
  • FIGS. 23 and 24 show illustrative means for preventing premature release of the device from a delivery system. For example, in FIG. 23, retainers 113 are added to the second end 114 of the expandable stent portion 110 that prevent the expandable stent portion 110 from exiting the sheath 350 until the expandable stent portion 110 has fully cleared the sheath 350. The retainers 113 would mate, for example, with some portion of the pushing rod 360. In FIG. 24, another alternative means for preventing premature release of the device from the delivery system 300 is shown as bosses 361 located on the pushing rod 360. the prosthetic heart valve would be enclosed in a retractable sheath (not shown) and surrounding extension 368 of pushing rod 360. The bosses 361 would hold a proximal end of a collapsed prosthetic heart device between the retractable sheath and pushing rod 360 until a proximal end of an expandable sheath portion of the prosthetic heart valve fully cleared the retractable sheath. The bosses 361 and retainers 113 are examples of means for preventing premature release, however, and other means are also contemplated.
  • All publications, patents and patent documents cited are fully incorporated by reference herein, as though individually incorporated by reference. Numerous characteristics and advantages of the invention meant to be described by this document have been set forth in the foregoing description. It is to be understood, however, that while particular forms or embodiments of the invention have been illustrated, various modifications, including modifications to shape, and arrangement of parts, and the like, can be made without departing from the spirit and scope of the invention.

Claims (17)

1. A prosthetic valve, comprising:
an expandable stent including an inner lumen and having a first and a second end; and
a spring attached to the first end of the expandable stent;
wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic heart valve at an implantation position in a body lumen.
2. The prosthetic valve of claim 1, further comprising a valvular element disposed in the inner lumen of the expandable stent.
3. The prosthetic valve of claim 2, wherein the valvular element comprises at least one leaflet.
4. The prosthetic valve of claim 1, further comprising a plurality of support arms that are used to attach the spring to the first end of the expandable stent.
5. The prosthetic valve of claim 4, wherein each of the plurality of support arms comprises at least one loop through which the spring extends and is attached to the support arm.
6. The prosthetic valve of claim 4, wherein the support arms comprise a material that is more stiff than a material comprising the spring.
7. The prosthetic valve of claim 4, wherein the support arms limit the amount of radial expansion of the spring in order to result in a desired diametric configuration of the spring.
8. The prosthetic valve of claim 1, wherein the spring comprises a torsion spring.
9. The prosthetic valve of claim 1, wherein the expandable stent is sized to fit in a heart valve selected from a group consisting of an aortic valve, a mitral valve, a tricuspid valve, and a pulmonary valve.
10. The prosthetic valve of claim 1, wherein the spring and the expandable stent are compressed into a collapsed position for insertion into a sheath for delivery to the implantation position.
11. The prosthetic valve of claim 1, further comprising a second spring attached to the second end of the expandable stent.
12. A prosthetic valve delivery system, comprising:
a prosthetic valve, comprising:
an expandable stent including an inner lumen and having a first and a second end;
a valvular element disposed in the inner lumen of the expandable stent; and
a spring attached to the first end of the expandable stent;
wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic heart valve at an implantation position in a body lumen; and
a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position.
13. The prosthetic valve delivery system of claim 12, wherein the sheath is retractable in order to deploy the prosthetic valve.
14. A method of implanting a prosthetic valve, the method comprising the steps of:
inserting a system into a body, the system comprising:
a prosthetic valve, comprising:
an expandable stent including an inner lumen and having a first and a second end;
a valvular element disposed in the inner lumen of the e expandable stent; and
a spring attached to the first end of the expandable stent;
wherein the expandable stent and the spring can expand radially to a desired diametric configuration once deployed in order to anchor the prosthetic valve at an implantation position in a body lumen;
and
a sheath comprising a distal end and a lumen in which the prosthetic valve is positioned prior to deployment of the prosthetic valve and out of which the prosthetic valve is deployed at the implantation position;
advancing the system to the implantation position; and
deploying the prosthetic valve to the desired diametric configuration to anchor the prosthetic valve at the implantation position.
15. The method of claim 14, wherein the sheath is retractable in order to deploy the prosthetic valve.
16. The method of claim 14, further comprising the step of pulling proximally on the system when the prosthetic valve is partially deployed.
17. The method of claim 14, further comprising the step of removing the remainder of the system and leaving the prosthetic valve, once deployed, in place.
US12/846,962 2010-04-01 2010-07-30 Transcatheter valve with torsion spring fixation and related systems and methods Active 2030-08-14 US8652204B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/846,962 US8652204B2 (en) 2010-04-01 2010-07-30 Transcatheter valve with torsion spring fixation and related systems and methods
US14/156,076 US9925044B2 (en) 2010-04-01 2014-01-15 Transcatheter valve with torsion spring fixation and related systems and methods
US15/903,642 US10716665B2 (en) 2010-04-01 2018-02-23 Transcatheter valve with torsion spring fixation and related systems and methods
US16/908,974 US11554010B2 (en) 2010-04-01 2020-06-23 Transcatheter valve with torsion spring fixation and related systems and methods
US18/067,272 US11833041B2 (en) 2010-04-01 2022-12-16 Transcatheter valve with torsion spring fixation and related systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32011110P 2010-04-01 2010-04-01
US12/846,962 US8652204B2 (en) 2010-04-01 2010-07-30 Transcatheter valve with torsion spring fixation and related systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/156,076 Continuation US9925044B2 (en) 2010-04-01 2014-01-15 Transcatheter valve with torsion spring fixation and related systems and methods

Publications (2)

Publication Number Publication Date
US20110245911A1 true US20110245911A1 (en) 2011-10-06
US8652204B2 US8652204B2 (en) 2014-02-18

Family

ID=44710552

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/846,962 Active 2030-08-14 US8652204B2 (en) 2010-04-01 2010-07-30 Transcatheter valve with torsion spring fixation and related systems and methods
US14/156,076 Active 2031-02-11 US9925044B2 (en) 2010-04-01 2014-01-15 Transcatheter valve with torsion spring fixation and related systems and methods
US15/903,642 Active 2031-03-03 US10716665B2 (en) 2010-04-01 2018-02-23 Transcatheter valve with torsion spring fixation and related systems and methods
US16/908,974 Active 2031-05-30 US11554010B2 (en) 2010-04-01 2020-06-23 Transcatheter valve with torsion spring fixation and related systems and methods
US18/067,272 Active US11833041B2 (en) 2010-04-01 2022-12-16 Transcatheter valve with torsion spring fixation and related systems and methods

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/156,076 Active 2031-02-11 US9925044B2 (en) 2010-04-01 2014-01-15 Transcatheter valve with torsion spring fixation and related systems and methods
US15/903,642 Active 2031-03-03 US10716665B2 (en) 2010-04-01 2018-02-23 Transcatheter valve with torsion spring fixation and related systems and methods
US16/908,974 Active 2031-05-30 US11554010B2 (en) 2010-04-01 2020-06-23 Transcatheter valve with torsion spring fixation and related systems and methods
US18/067,272 Active US11833041B2 (en) 2010-04-01 2022-12-16 Transcatheter valve with torsion spring fixation and related systems and methods

Country Status (1)

Country Link
US (5) US8652204B2 (en)

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087209A1 (en) * 2012-12-06 2014-06-12 Mitralix Ltd. Devices and methods for the replacement of the functioning of heart valves
EP2750631A1 (en) 2011-10-19 2014-07-09 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US20140214159A1 (en) * 2011-08-11 2014-07-31 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140316516A1 (en) * 2012-01-04 2014-10-23 Tendyne Holdings, Inc. Multi-component cuff designs for transcatheter mitral valve replacement subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
WO2014110171A3 (en) * 2013-01-10 2014-12-24 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
US20150025623A1 (en) * 2013-07-17 2015-01-22 Juan F. Granada System and method for cardiac valve repair and replacement
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9017399B2 (en) 2010-07-21 2015-04-28 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20150209138A1 (en) * 2012-04-19 2015-07-30 Caisson Interventional, LLC Heart valve assembly and methods
US20150265400A1 (en) * 2014-03-18 2015-09-24 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
WO2015125024A3 (en) * 2014-02-21 2015-11-26 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US20150351906A1 (en) * 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US9254192B2 (en) 2007-09-13 2016-02-09 Georg Lutter Truncated cone heart valve stent
WO2016093877A1 (en) * 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US20160193046A1 (en) * 2014-03-27 2016-07-07 Romeo Majano Valvuloplasty balloon and valve stent deployment catheter
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9433500B2 (en) 2009-12-04 2016-09-06 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
WO2016148777A1 (en) * 2015-03-18 2016-09-22 Medtronic Vascular Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US20160361160A1 (en) * 2014-02-18 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9597181B2 (en) 2013-06-25 2017-03-21 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9750606B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US20180133011A1 (en) * 2016-11-14 2018-05-17 Laboratoires Invalv Implant for treating a biological valve
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US9987132B1 (en) 2016-08-10 2018-06-05 Mitraltech Ltd. Prosthetic valve with leaflet connectors
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10154903B2 (en) 2016-08-01 2018-12-18 Cardiovalve Ltd. Minimally-invasive delivery systems
US20180368977A1 (en) * 2011-12-21 2018-12-27 The Trustees Of The University Of Pennsylvania Platforms For Mitral Valve Replacement
US20190029819A1 (en) * 2004-10-02 2019-01-31 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10213307B2 (en) 2014-11-05 2019-02-26 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
USD841813S1 (en) 2017-08-03 2019-02-26 Cardiovalve Ltd. Prosthetic heart valve element
US10226330B2 (en) 2013-08-14 2019-03-12 Mitral Valve Technologies Sarl Replacement heart valve apparatus and methods
US10226339B2 (en) 2012-01-31 2019-03-12 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
US10245143B2 (en) 2011-08-05 2019-04-02 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10251748B2 (en) 2015-02-12 2019-04-09 Medtronic Vascular, Inc. Centering devices for use with a valve prosthesis delivery system and methods of use thereof
US10265166B2 (en) 2015-12-30 2019-04-23 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
EP2861186B1 (en) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Replacement heart valve
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US10376361B2 (en) 2011-08-05 2019-08-13 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10390952B2 (en) 2015-02-05 2019-08-27 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
RU192707U1 (en) * 2017-11-14 2019-09-26 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ им. ак. Е.Н. Мешалкина" Минздрава России) Transcatheter mitral valve prosthesis
RU2703646C2 (en) * 2015-08-17 2019-10-21 Венус Медтех (Ханчжоу), Инк. Aortic valve prosthesis
US10449039B2 (en) 2015-03-19 2019-10-22 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10449044B2 (en) * 2016-06-02 2019-10-22 Medtronic Vascular, Inc. Transcatheter valve delivery system with septum hole closure tip assembly
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463483B2 (en) * 2014-12-19 2019-11-05 Venus Medtech (Hangzhou) Inc. Minimally invasive mitral valve replacement with brim
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10478297B2 (en) 2015-01-27 2019-11-19 Medtronic Vascular, Inc. Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
US10492908B2 (en) 2014-07-30 2019-12-03 Cardiovalve Ltd. Anchoring of a prosthetic valve
CN110575285A (en) * 2018-06-08 2019-12-17 上海微创心通医疗科技有限公司 Implant delivery tube and implant delivery system
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US10588742B2 (en) 2013-08-14 2020-03-17 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US20200121458A1 (en) * 2018-10-22 2020-04-23 Vdyne, Llc Guidewire Delivery of Transcatheter Heart Valve
US10667905B2 (en) 2015-04-16 2020-06-02 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US20200306038A1 (en) * 2014-06-06 2020-10-01 Edwards Lifesciences Corporation Prosthetic valve for replacing a native mitral or tricuspid valve
US10799345B2 (en) 2017-09-19 2020-10-13 Cardiovalve Ltd. Prosthetic valve with protective fabric covering around tissue anchor bases
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US20200390544A1 (en) * 2011-10-19 2020-12-17 Twelve, Inc. Devices, systems and methods for heart valve replacement
US20210000593A1 (en) * 2018-02-15 2021-01-07 Tricares SAS Stent and replacement heart valve prosthesis with improved fixation features
US10888420B2 (en) 2016-03-14 2021-01-12 Medtronic Vascular, Inc. Stented prosthetic heart valve having a wrap and delivery devices
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
WO2022041638A1 (en) * 2020-08-25 2022-03-03 江苏臻亿医疗科技有限公司 Tricuspid valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11278402B2 (en) 2019-02-21 2022-03-22 Medtronic, Inc. Prosthesis for transcatheter delivery having an infolding longitudinal segment for a smaller radially compressed profile
US11291547B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11331186B2 (en) * 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
CN114569293A (en) * 2022-05-09 2022-06-03 上海纽脉医疗科技股份有限公司 Prosthetic valve and transcatheter prosthetic valve delivery system
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11583397B2 (en) 2019-09-24 2023-02-21 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
US11633277B2 (en) 2018-01-10 2023-04-25 Cardiovalve Ltd. Temperature-control during crimping of an implant
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US11890187B2 (en) 2010-03-05 2024-02-06 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US11931252B2 (en) 2019-07-15 2024-03-19 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0817708A2 (en) 2007-09-26 2017-05-16 St Jude Medical prosthetic heart valve, and lamella structure for the same.
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
DE202009018961U1 (en) 2008-07-15 2014-11-26 St. Jude Medical, Inc. Heart valve prosthesis and arrangement for delivering a heart valve prosthesis
BRPI1008902A2 (en) 2009-02-27 2016-03-15 St Jude Medical prosthetic heart valve.
EP2413843B1 (en) 2009-03-30 2020-04-22 Suzhou Jiecheng Medical Technology Co. Ltd. Sutureless valve prostheses and devices for delivery
EP4119098A1 (en) 2009-04-15 2023-01-18 Edwards Lifesciences CardiAQ LLC Vascular implant and delivery system
WO2011120050A1 (en) * 2010-03-26 2011-09-29 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
AU2011349578B2 (en) 2010-12-23 2016-06-30 Twelve, Inc. System for mitral valve repair and replacement
JP5872692B2 (en) 2011-06-21 2016-03-01 トゥエルヴ, インコーポレイテッド Artificial therapy device
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
WO2014159447A2 (en) 2013-03-14 2014-10-02 Cardiovantage Medical, Inc. Embolic protection devices and methods of use
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
KR101429005B1 (en) * 2013-05-06 2014-08-12 부산대학교 산학협력단 Holding Device of Cardiac Valves
CN108294846A (en) 2013-05-20 2018-07-20 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
EP3010446B2 (en) 2013-06-19 2024-03-20 AGA Medical Corporation Collapsible valve having paravalvular leak protection
WO2015038458A1 (en) 2013-09-12 2015-03-19 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP4176844A1 (en) 2013-11-06 2023-05-10 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US11672652B2 (en) 2014-02-18 2023-06-13 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
CR20160424A (en) 2014-03-26 2016-12-08 St Jude Medical Cardiology Div Inc Transcather mitral valve stent frames
WO2015152980A1 (en) 2014-03-31 2015-10-08 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
WO2015175524A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Subannular sealing for paravalvular leak protection
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
WO2015175863A1 (en) 2014-05-16 2015-11-19 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
WO2016154166A1 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
EP3337428A1 (en) 2015-08-21 2018-06-27 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
CN109091272B (en) 2015-11-06 2021-10-22 麦克尔有限公司 Mitral valve prosthesis
EP3448316B1 (en) 2016-04-29 2023-03-29 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors
WO2018039543A1 (en) 2016-08-26 2018-03-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10456249B2 (en) 2016-09-15 2019-10-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
WO2018081490A1 (en) 2016-10-28 2018-05-03 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10653510B2 (en) 2016-11-09 2020-05-19 Boston Scientific Scimed, Inc. Stent including displacement capabilities
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US11666444B2 (en) * 2017-08-03 2023-06-06 The Regents Of The University Of California Atrial cage for placement, securing and anchoring of atrioventricular valves
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
US11006939B2 (en) 2017-12-08 2021-05-18 Tendyne Holdings, Inc. Introducer sheath with seal and methods of using the same
CN210582753U (en) 2018-01-07 2020-05-22 苏州杰成医疗科技有限公司 Delivery system for delivering a valve prosthesis
CN211213690U (en) 2018-01-07 2020-08-11 苏州杰成医疗科技有限公司 Control unit for controlling a valve delivery device to deliver a valve prosthesis
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
US20190365538A1 (en) * 2018-06-04 2019-12-05 4C Medical Technologies, Inc. Devices, systems and methods for preventing prolapse of native cardiac valve leaflets
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
WO2020060828A1 (en) 2018-09-20 2020-03-26 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
US11471277B2 (en) 2018-12-10 2022-10-18 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
US11786355B2 (en) 2020-01-30 2023-10-17 Boston Scientific Scimed, Inc. Radial adjusting self-expanding stent with anti-migration features
WO2023244861A1 (en) * 2022-06-17 2023-12-21 4C Medical Technologies, Inc. A prosthetic heart valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209835A1 (en) * 2002-05-10 2003-11-13 Iksoo Chun Method of forming a tubular membrane on a structural frame

Family Cites Families (590)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3540431A (en) 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3642004A (en) 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3839741A (en) 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
US3795246A (en) 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US4078268A (en) 1975-04-24 1978-03-14 St. Jude Medical, Inc. Heart valve prosthesis
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4491986A (en) 1976-05-12 1985-01-08 Shlomo Gabbay Heart valve
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
JPS6015534B2 (en) 1977-08-31 1985-04-19 ロ−レルバンクマシン株式会社 Coin counting and packaging machine number selection mechanism
US4233690A (en) 1978-05-19 1980-11-18 Carbomedics, Inc. Prosthetic device couplings
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4501030A (en) 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
FR2523810B1 (en) 1982-03-23 1988-11-25 Carpentier Alain ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
US4834755A (en) 1983-04-04 1989-05-30 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4610688A (en) 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4681908A (en) 1983-11-09 1987-07-21 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US5232445A (en) 1984-11-23 1993-08-03 Tassilo Bonzel Dilatation catheter
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US5061273A (en) 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
DE3701704C1 (en) 1987-01-22 1988-08-18 Braun Melsungen Ag Heart valve prosthesis
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4872874A (en) 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4819751A (en) 1987-10-16 1989-04-11 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
US4909252A (en) 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US4917102A (en) 1988-09-14 1990-04-17 Advanced Cardiovascular Systems, Inc. Guidewire assembly with steerable adjustable tip
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
DK0474748T3 (en) 1989-05-31 1995-05-01 Baxter Int Biological flap prosthesis
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5002559A (en) 1989-11-30 1991-03-26 Numed PTCA catheter
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5108425A (en) 1990-05-30 1992-04-28 Hwang Ned H C Low turbulence heart valve
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5272909A (en) 1991-04-25 1993-12-28 Baxter International Inc. Method and device for testing venous valves
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
DK0583410T3 (en) 1991-05-16 2001-11-12 Mures Cardiovascular Res Inc Heart valve
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US20060058775A1 (en) 1991-07-16 2006-03-16 Stevens John H System and methods for performing endovascular procedures
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5795325A (en) 1991-07-16 1998-08-18 Heartport, Inc. Methods and apparatus for anchoring an occluding member
US5558644A (en) 1991-07-16 1996-09-24 Heartport, Inc. Retrograde delivery catheter and method for inducing cardioplegic arrest
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5720776A (en) 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5354330A (en) 1991-10-31 1994-10-11 Ats Medical Inc. Heart valve prosthesis
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US7101392B2 (en) 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
DE69333161T2 (en) 1992-05-08 2004-06-03 Schneider (Usa) Inc., Plymouth Stent for the esophagus
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5178632A (en) 1992-06-09 1993-01-12 Hanson Richard D Bi-leaflet heart valve prosthesis
US5449384A (en) 1992-09-28 1995-09-12 Medtronic, Inc. Dynamic annulus heart valve employing preserved porcine valve leaflets
WO1994015549A1 (en) 1992-12-30 1994-07-21 Schneider (Usa) Inc. Apparatus for deploying body implantable stents
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US5489294A (en) 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
DE4415359C2 (en) 1994-05-02 1997-10-23 Aesculap Ag Surgical tubular shaft instrument
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
JP3970341B2 (en) 1994-06-20 2007-09-05 テルモ株式会社 Vascular catheter
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US6896696B2 (en) * 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US5849005A (en) 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
CA2215970A1 (en) 1995-03-30 1996-10-03 Heartport, Inc. System and methods for performing endovascular procedures
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US5772694A (en) 1995-05-16 1998-06-30 Medical Carbon Research Institute L.L.C. Prosthetic heart valve with improved blood flow
US5580922A (en) 1995-06-06 1996-12-03 Weyerhaeuser Company Cellulose products treated with isocyanate compositions
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6348066B1 (en) 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
ATE218052T1 (en) 1995-11-27 2002-06-15 Schneider Europ Gmbh STENT FOR USE IN A PHYSICAL PASSAGE
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
EP1011889B1 (en) 1996-01-30 2002-10-30 Medtronic, Inc. Articles for and methods of making stents
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US20020068949A1 (en) 1996-02-23 2002-06-06 Williamson Warren P. Extremely long wire fasteners for use in minimally invasive surgery and means and method for handling those fasteners
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US5746709A (en) 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
AU3122197A (en) 1996-05-14 1997-12-05 Embol-X, Inc. Aortic occluder with associated filter and methods of use during cardiac surgery
EP0808614B1 (en) 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6764509B2 (en) 1996-09-06 2004-07-20 Carbomedics Inc. Prosthetic heart valve with surface modification
US6702851B1 (en) 1996-09-06 2004-03-09 Joseph A. Chinn Prosthetic heart valve with surface modification
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
DE69732349D1 (en) 1996-10-01 2005-03-03 Numed Inc EXPANDABLE STENT
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
EP1009467A4 (en) 1997-02-19 2001-07-25 Condado Med Devices Corp Multi-purpose catheters, catheter systems, and radiation treatment
US5830229A (en) 1997-03-07 1998-11-03 Micro Therapeutics Inc. Hoop stent
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5817126A (en) 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5860966A (en) 1997-04-16 1999-01-19 Numed, Inc. Method of securing a stent on a balloon catheter
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6855143B2 (en) 1997-06-13 2005-02-15 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6162208A (en) 1997-09-11 2000-12-19 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
US5908451A (en) 1997-11-25 1999-06-01 Cardiotech International Corporation Prosthetic heart valve
WO1999026559A1 (en) 1997-11-25 1999-06-03 Triad Vascular Systems, Inc. Layered endovascular graft
ES2227877T3 (en) 1997-12-16 2005-04-01 B. Braun Celsa MEDICAL SET FOR THE TREATMENT OF AN ANATOMICAL CONDUCT AFFECTION.
EP1049425B1 (en) 1997-12-29 2009-11-25 Cleveland Clinic Foundation The System for minimally invasive insertion of a bioprosthetic heart valve
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
EP1054634A4 (en) 1998-02-10 2006-03-29 Artemis Medical Inc Entrapping apparatus and method for use
JP2003522550A (en) 1998-02-10 2003-07-29 アーテミス・メディカル・インコーポレイテッド Occlusion, fixation, tensioning, and diverting devices and methods of use
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6059809A (en) 1998-02-16 2000-05-09 Medicorp, S.A. Protective angioplasty device
US5964405A (en) 1998-02-20 1999-10-12 Sulzer Metco (Us) Inc. Arc thermal spray gun and gas cap therefor
US6091042A (en) 1998-03-11 2000-07-18 Sulzer Metco (Us) Inc. Arc thermal spray gun extension and gas jet member therefor
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6218662B1 (en) 1998-04-23 2001-04-17 Western Atlas International, Inc. Downhole carbon dioxide gas analyzer
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6890330B2 (en) 2000-10-27 2005-05-10 Viacor, Inc. Intracardiovascular access (ICVATM) system
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
JP4399585B2 (en) 1998-06-02 2010-01-20 クック インコーポレイティド Multi-sided medical device
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6203550B1 (en) 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6475239B1 (en) 1998-10-13 2002-11-05 Sulzer Carbomedics Inc. Method for making polymer heart valves with leaflets having uncut free edges
US6051014A (en) 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6146366A (en) 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
AU764886B2 (en) 1999-01-27 2003-09-04 Viacor Incorporated Cardiac valve procedure methods and devices
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
WO2000044309A2 (en) 1999-02-01 2000-08-03 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
CA2360620C (en) 1999-02-01 2009-09-01 Hideki Hyodoh Woven intravascular devices and methods for making the same and apparatus for delivery of the same
DE19904975A1 (en) 1999-02-06 2000-09-14 Impella Cardiotech Ag Device for intravascular heart valve surgery
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
WO2000047136A1 (en) 1999-02-12 2000-08-17 Johns Hopkins University Venous valve implant bioprosthesis and endovascular treatment for venous insufficiency
US6110201A (en) 1999-02-18 2000-08-29 Venpro Bifurcated biological pulmonary valved conduit
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6673089B1 (en) 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
IL128938A0 (en) 1999-03-11 2000-02-17 Mind Guard Ltd Implantable stroke treating device
US6076742A (en) 1999-03-11 2000-06-20 Sulzer Metco (Us) Inc. Arc thermal spray gun extension with conical spray
US7147663B1 (en) 1999-04-23 2006-12-12 St. Jude Medical Atg, Inc. Artificial heart valve attachment apparatus and methods
US6309417B1 (en) 1999-05-12 2001-10-30 Paul A. Spence Heart valve and apparatus for replacement thereof
AU4713200A (en) 1999-05-12 2000-11-21 Mark Ortiz Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6296662B1 (en) 1999-05-26 2001-10-02 Sulzer Carbiomedics Inc. Bioprosthetic heart valve with balanced stent post deflection
US6287339B1 (en) 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
EP1057459A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Radially expandable stent
US6241763B1 (en) 1999-06-08 2001-06-05 William J. Drasler In situ venous valve device and method of formation
WO2001005331A1 (en) 1999-07-16 2001-01-25 Biocompatibles Ltd Braided stent
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6371970B1 (en) 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
AU3581000A (en) 1999-09-10 2001-04-17 Cook Incorporated Endovascular treatment for chronic venous insufficiency
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US7300457B2 (en) 1999-11-19 2007-11-27 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6936066B2 (en) 1999-11-19 2005-08-30 Advanced Bio Prosthetic Surfaces, Ltd. Complaint implantable medical devices and methods of making same
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
ES2307590T3 (en) 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.
US6872226B2 (en) 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US6769434B2 (en) 2000-06-30 2004-08-03 Viacor, Inc. Method and apparatus for performing a procedure on a cardiac valve
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
DK1255510T5 (en) 2000-01-31 2009-12-21 Cook Biotech Inc Stent Valve Klapper
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US7296577B2 (en) 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6652571B1 (en) 2000-01-31 2003-11-25 Scimed Life Systems, Inc. Braided, branched, implantable device and processes for manufacture thereof
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US7686842B2 (en) 2000-05-04 2010-03-30 Oregon Health Sciences University Endovascular stent graft
US7429965B2 (en) 2000-05-19 2008-09-30 Technology Innovations, Llc Apparatus for the display of embedded information
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
US6695878B2 (en) 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6635085B1 (en) 2000-08-17 2003-10-21 Carbomedics Inc. Heart valve stent with alignment posts
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
US6846325B2 (en) 2000-09-07 2005-01-25 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US20060142848A1 (en) 2000-09-12 2006-06-29 Shlomo Gabbay Extra-anatomic aortic valve placement
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
WO2004030568A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Device and method for repairing a native heart valve leaflet
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE10048814B4 (en) 2000-09-29 2004-04-15 Siemens Ag Computed tomography device with a data acquisition system and method for such a computed tomography device
US6932838B2 (en) 2000-09-29 2005-08-23 Tricardia, Llc Venous valvuloplasty device and method
ATE343969T1 (en) 2000-09-29 2006-11-15 Cordis Corp COATED MEDICAL DEVICES
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
WO2002064012A2 (en) 2000-11-07 2002-08-22 Artemis Medical, Inc. Target tissue localization assembly and method
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
CA2436803C (en) 2000-11-21 2009-09-15 Rex Medical, L.P. Percutaneous aortic valve
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US20020072789A1 (en) 2000-12-12 2002-06-13 Hackett Steven S. Soc lubricant filler port
US20040093075A1 (en) 2000-12-15 2004-05-13 Titus Kuehne Stent with valve and method of use thereof
AU2002236640A1 (en) 2000-12-15 2002-06-24 Viacor, Inc. Apparatus and method for replacing aortic valve
EP1355590B1 (en) 2001-01-30 2008-12-10 Edwards Lifesciences AG Medical system for remodeling an extravascular tissue structure
US20050182483A1 (en) 2004-02-11 2005-08-18 Cook Incorporated Percutaneously placed prosthesis with thromboresistant valve portion
US6562058B2 (en) 2001-03-02 2003-05-13 Jacques Seguin Intravascular filter system
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US6663663B2 (en) 2001-05-14 2003-12-16 M.I. Tech Co., Ltd. Stent
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
US6767109B2 (en) 2001-06-06 2004-07-27 Ivoclar Vivadent Ag Light hardening device and a light source suitable for use in a light hardening device
EP1392197B1 (en) 2001-06-08 2005-11-16 Rex Medical, LP Vascular device with valve for approximating vessel wall
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7547322B2 (en) 2001-07-19 2009-06-16 The Cleveland Clinic Foundation Prosthetic valve and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6896002B2 (en) 2001-08-21 2005-05-24 Scimed Life Systems, Inc Pressure transducer protection valve
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20030065386A1 (en) 2001-09-28 2003-04-03 Weadock Kevin Shaun Radially expandable endoprosthesis device with two-stage deployment
US7172572B2 (en) 2001-10-04 2007-02-06 Boston Scientific Scimed, Inc. Manifold system for a medical device
US6976974B2 (en) 2002-10-23 2005-12-20 Scimed Life Systems, Inc. Rotary manifold syringe
US20080021552A1 (en) 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US6730377B2 (en) 2002-01-23 2004-05-04 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US6689144B2 (en) 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US7252681B2 (en) 2002-02-14 2007-08-07 St. Medical, Inc. Heart valve structures
US7331992B2 (en) 2002-02-20 2008-02-19 Bard Peripheral Vascular, Inc. Anchoring device for an endoluminal prosthesis
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US20030195609A1 (en) * 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
AU2003228528A1 (en) 2002-04-16 2003-11-03 Viacor, Inc. Method and apparatus for resecting and replacing an aortic valve
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7105016B2 (en) 2002-04-23 2006-09-12 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US6830575B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Method and device for providing full protection to a stent
EP1507492A1 (en) 2002-05-10 2005-02-23 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US20040117004A1 (en) 2002-05-16 2004-06-17 Osborne Thomas A. Stent and method of forming a stent with integral barbs
EP1513440A2 (en) 2002-05-30 2005-03-16 The Board of Trustees of The Leland Stanford Junior University Apparatus and method for coronary sinus access
DE20321838U1 (en) 2002-08-13 2011-02-10 JenaValve Technology Inc., Wilmington Device for anchoring and aligning heart valve prostheses
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
EP1592367B1 (en) 2002-08-28 2016-04-13 HLT, Inc. Method and device for treating diseased valve
KR100442330B1 (en) 2002-09-03 2004-07-30 주식회사 엠아이텍 Stent and manufacturing method the same
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
WO2004026170A2 (en) 2002-09-20 2004-04-01 Impliant Ltd. Mechanically attached elastomeric cover for prosthesis
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7105013B2 (en) 2002-09-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Protective sleeve assembly for a balloon catheter
WO2004037128A1 (en) 2002-10-24 2004-05-06 Boston Scientific Limited Venous valve apparatus and method
EP1567087B1 (en) 2002-11-08 2009-04-01 Jacques Seguin Endoprosthesis for vascular bifurcation
AU2003287638A1 (en) 2002-11-13 2004-06-03 Rosengart, Todd, K. Apparatus and method for cutting a heart valve
US7141061B2 (en) 2002-11-14 2006-11-28 Synecor, Llc Photocurable endoprosthesis system
FR2847155B1 (en) 2002-11-20 2005-08-05 Younes Boudjemline METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY
WO2004050137A2 (en) 2002-11-29 2004-06-17 Mindguard Ltd. Braided intraluminal device for stroke prevention
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
US7156527B2 (en) 2003-03-06 2007-01-02 3M Innovative Properties Company Lamina comprising cube corner elements and retroreflective sheeting
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US20050107871A1 (en) 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
WO2004089253A1 (en) 2003-04-01 2004-10-21 Cook Incorporated Percutaneously deployed vascular valves
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US20040210240A1 (en) 2003-04-21 2004-10-21 Sean Saint Method and repair device for treating mitral valve insufficiency
US8388628B2 (en) 2003-04-24 2013-03-05 Medtronic, Inc. Expandable sheath for delivering instruments and agents into a body lumen and methods for use
ATE446061T1 (en) 2003-04-24 2009-11-15 Cook Inc ARTIFICIAL BLOOD VESSEL VALVE WITH IMPROVED FLOW BEHAVIOR
US7591832B2 (en) 2003-04-24 2009-09-22 Medtronic, Inc. Expandable guide sheath and apparatus with distal protection and methods for use
US20040267357A1 (en) 2003-04-30 2004-12-30 Allen Jeffrey W. Cardiac valve modification method and device
DE602004023350D1 (en) 2003-04-30 2009-11-12 Medtronic Vascular Inc Percutaneous inserted provisional valve
WO2004103222A1 (en) 2003-05-19 2004-12-02 Cook Incorporated Implantable medical device with constrained expansion
ATE481057T1 (en) 2003-05-28 2010-10-15 Cook Inc VALVE PROSTHESIS WITH VESSEL FIXING DEVICE
WO2005004753A1 (en) 2003-06-09 2005-01-20 3F Therapeutics, Inc. Atrioventricular heart valve and minimally invasive delivery systems thereof
US20070093869A1 (en) 2003-06-20 2007-04-26 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
US7316706B2 (en) 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
WO2004112651A2 (en) 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Chordae tendinae girdle
EP1648346A4 (en) 2003-06-20 2006-10-18 Medtronic Vascular Inc Valve annulus reduction system
US20040260394A1 (en) 2003-06-20 2004-12-23 Medtronic Vascular, Inc. Cardiac valve annulus compressor system
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
BRPI0412362A (en) 2003-07-08 2006-09-05 Ventor Technologies Ltd prosthetic implant devices particularly for transarterial transport in the treatment of aortic stenoses and implantation methods for such devices
EP1646332B1 (en) 2003-07-18 2015-06-17 Edwards Lifesciences AG Remotely activated mitral annuloplasty system
AU2004258942B2 (en) 2003-07-21 2009-12-03 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
US7153324B2 (en) 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
DE10340265A1 (en) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prosthesis for the replacement of the aortic and / or mitral valve of the heart
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
WO2005032421A2 (en) 2003-09-15 2005-04-14 Medtronic Vascular, Inc. Apparatus and method for elongation of a papillary muscle
EG24012A (en) 2003-09-24 2008-03-23 Wael Mohamed Nabil Lotfy Valved balloon stent
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
JP3726266B2 (en) 2003-10-02 2005-12-14 朝日インテック株式会社 Medical guidewire tip structure
CA2545874C (en) 2003-10-06 2012-02-21 3F Therapeutics, Inc. Minimally invasive valve replacement system
US7604650B2 (en) 2003-10-06 2009-10-20 3F Therapeutics, Inc. Method and assembly for distal embolic protection
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US20050075712A1 (en) 2003-10-06 2005-04-07 Brian Biancucci Minimally invasive valve replacement system
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
EP1673041B1 (en) 2003-10-15 2010-04-21 Cook Incorporated Prosthesis deployment system retention device
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US9078780B2 (en) * 2003-11-08 2015-07-14 Cook Medical Technologies Llc Balloon flareable branch vessel prosthesis and method
WO2005046530A1 (en) 2003-11-12 2005-05-26 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve reguritation
US7655040B2 (en) 2003-11-12 2010-02-02 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
US7955384B2 (en) 2003-11-12 2011-06-07 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
WO2005048883A1 (en) 2003-11-13 2005-06-02 Fidel Realyvasquez Methods and apparatus for valve repair
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050149181A1 (en) 2004-01-07 2005-07-07 Medtronic, Inc. Bileaflet prosthetic valve and method of manufacture
WO2005069850A2 (en) 2004-01-15 2005-08-04 Macoviak John A Trestle heart valve replacement
JP4403183B2 (en) 2004-02-05 2010-01-20 チルドレンズ・メディカル・センター・コーポレイション Transcatheter delivery of replacement heart valves
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20050203549A1 (en) 2004-03-09 2005-09-15 Fidel Realyvasquez Methods and apparatus for off pump aortic valve replacement with a valve prosthesis
WO2005089674A1 (en) 2004-03-15 2005-09-29 Medtronic Vascular Inc. Radially crush-resistant stent
EP1730465B1 (en) 2004-03-18 2015-05-20 Renishaw plc Scanning an object
WO2005096993A1 (en) 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
BRPI0510107A (en) 2004-04-23 2007-09-25 3F Therapeutics Inc implantable protein valve
EP2422751A3 (en) 2004-05-05 2013-01-02 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
WO2005112831A2 (en) 2004-05-17 2005-12-01 Fidel Realyvasquez Method and apparatus for percutaneous valve repair
EP1600121B1 (en) 2004-05-25 2007-07-18 William Cook Europe ApS Stent and stent retrieval system
EP1768630B1 (en) 2004-06-16 2015-01-07 Machine Solutions, Inc. Stent crimping device
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
EP1786367B1 (en) 2004-08-27 2013-04-03 Cook Medical Technologies LLC Placement of multiple intraluminal medical devices within a body vessel
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
FR2874813B1 (en) 2004-09-07 2007-06-22 Perouse Soc Par Actions Simpli VALVULAR PROSTHESIS
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
WO2006041505A1 (en) 2004-10-02 2006-04-20 Huber Christoph Hans Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060089711A1 (en) 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
US7458987B2 (en) 2004-10-29 2008-12-02 Cook Incorporated Vascular valves having implanted and target configurations and methods of preparing the same
WO2006054107A2 (en) 2004-11-19 2006-05-26 Medtronic Inc. Method and apparatus for treatment of cardiac valves
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US20060247570A1 (en) 2005-01-19 2006-11-02 Pokorney James L Cardiac support cannula device and method
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
FR2883721B1 (en) 2005-04-05 2007-06-22 Perouse Soc Par Actions Simpli NECESSARY TO BE IMPLANTED IN A BLOOD CIRCULATION CONDUIT, AND ASSOCIATED TUBULAR ENDOPROTHESIS
US20060276882A1 (en) 2005-04-11 2006-12-07 Cook Incorporated Medical device including remodelable material attached to frame
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP3482717B1 (en) 2005-05-27 2023-09-06 Edwards Lifesciences Corporation Stentless support structure
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US20070027533A1 (en) 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US20070038295A1 (en) 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US20070043431A1 (en) 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
WO2007025028A1 (en) 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
AU2006295080A1 (en) 2005-09-21 2007-04-05 Medtronic, Inc. Composite heart valve apparatus manufactured using techniques involving laser machining of tissue
US20070078510A1 (en) 2005-09-26 2007-04-05 Ryan Timothy R Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
US20070100449A1 (en) 2005-10-31 2007-05-03 O'neil Michael Injectable soft tissue fixation technique
US20070100439A1 (en) 2005-10-31 2007-05-03 Medtronic Vascular, Inc. Chordae tendinae restraining ring
WO2007054014A1 (en) 2005-11-09 2007-05-18 Ning Wen Delivery device for delivering a self-expanding stent
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
CN101011298B (en) 2006-01-16 2010-05-26 孔祥清 Device for replacing aortic valve membrane or pulmonary valve membrane percutaneously
US7637946B2 (en) 2006-02-09 2009-12-29 Edwards Lifesciences Corporation Coiled implant for mitral valve repair
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
US20070203391A1 (en) 2006-02-24 2007-08-30 Medtronic Vascular, Inc. System for Treating Mitral Valve Regurgitation
US7635386B1 (en) 2006-03-07 2009-12-22 University Of Maryland, Baltimore Methods and devices for performing cardiac valve repair
US20070225681A1 (en) 2006-03-21 2007-09-27 Medtronic Vascular Catheter Having a Selectively Formable Distal Section
US20070238979A1 (en) 2006-03-23 2007-10-11 Medtronic Vascular, Inc. Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US20070233238A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Devices for Imaging and Navigation During Minimally Invasive Non-Bypass Cardiac Procedures
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
US20070239254A1 (en) 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
US20070239269A1 (en) 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US20070239271A1 (en) 2006-04-10 2007-10-11 Than Nguyen Systems and methods for loading a prosthesis onto a minimally invasive delivery system
EP3593761A1 (en) 2006-04-12 2020-01-15 Medtronic Vascular, Inc. Annuloplasty device having a helical anchor
US20070244555A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
US20070244544A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070244546A1 (en) 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
US20070288000A1 (en) 2006-04-19 2007-12-13 Medtronic Vascular, Inc. Method for Aiding Valve Annuloplasty
US7442207B2 (en) 2006-04-21 2008-10-28 Medtronic Vascular, Inc. Device, system, and method for treating cardiac valve regurgitation
US20070255394A1 (en) 2006-04-28 2007-11-01 Medtronic, Inc. Method and apparatus for cardiac valve replacement
JP2009536074A (en) 2006-05-05 2009-10-08 チルドレンズ・メディカル・センター・コーポレイション Transcatheter heart valve
US20080004696A1 (en) 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
CN100581454C (en) 2006-07-14 2010-01-20 Ge医疗系统环球技术有限公司 Magnetic field generator and MRI device
WO2008031103A2 (en) 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
AU2007299934B2 (en) 2006-09-28 2013-09-12 Hlt, Inc. Delivery tool for percutaneous delivery of a prosthesis
WO2008047354A2 (en) 2006-10-16 2008-04-24 Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8470024B2 (en) 2006-12-19 2013-06-25 Sorin Group Italia S.R.L. Device for in situ positioning of cardiac valve prosthesis
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
FR2910269B1 (en) 2006-12-22 2009-02-27 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE
EP2111190B1 (en) 2007-01-19 2013-10-09 Medtronic, Inc. Stented heart valve devices for atrioventricular valve replacement
US20080262593A1 (en) 2007-02-15 2008-10-23 Ryan Timothy R Multi-layered stents and methods of implanting
US8623074B2 (en) 2007-02-16 2014-01-07 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
FR2913879B1 (en) 2007-03-21 2009-06-12 Perouse Soc Par Actions Simpli DEVICE FOR LAGGING A RADIALLY EXPANSIBLE IMPLANT, NECESSARY FOR TREATMENT AND METHOD OF RELAUNCHING
US20080255651A1 (en) 2007-04-12 2008-10-16 Medtronic Vascular, Inc. Telescoping Stability Sheath and Method of Use
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
EP2150210B1 (en) 2007-05-15 2016-10-12 JenaValve Technology, Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
BRPI0812372A2 (en) 2007-06-04 2015-02-03 St Jude Medical PROSTHETIC HEART VALVE.
BRPI0813773A2 (en) 2007-06-26 2017-05-16 St Jude Medical apparatus for providing a protein heart valve in a patient.
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
AU2008294012B2 (en) 2007-08-24 2013-04-18 St. Jude Medical, Inc. Prosthetic aortic heart valves
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
BRPI0817708A2 (en) 2007-09-26 2017-05-16 St Jude Medical prosthetic heart valve, and lamella structure for the same.
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
BRPI0819217B8 (en) 2007-10-25 2021-06-22 Symetis Sa replacement valve for use within a human body, system for replacing a valve within a human body, and heart valve release system with stent
ATE543461T1 (en) 2007-11-05 2012-02-15 St Jude Medical FOLDABLE AND EXTENDABLE HEART VALVE PROSTHESIS WITH NON-EXTENDABLE STENT COLUMNS AND RECOLLECTION FUNCTION
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
JP5591120B2 (en) 2008-01-16 2014-09-17 セント ジュード メディカル インコーポレイテッド Collapsible / expandable prosthetic heart valve delivery and retrieval system
WO2009094373A1 (en) * 2008-01-22 2009-07-30 Cook Incorporated Valve frame
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
WO2009100198A2 (en) 2008-02-08 2009-08-13 Mayo Foundation For Medical Education And Research Transapical heart port
CA2715448C (en) 2008-02-25 2017-06-13 Medtronic Vascular Inc. Infundibular reducer devices
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US9011525B2 (en) 2008-02-29 2015-04-21 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US7806919B2 (en) 2008-04-01 2010-10-05 Medtronic Vascular, Inc. Double-walled stent system
FR2930137B1 (en) 2008-04-18 2010-04-23 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE.
US9173737B2 (en) 2008-04-23 2015-11-03 Medtronic, Inc. Stented heart valve devices
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
WO2010030928A1 (en) * 2008-09-15 2010-03-18 Abbott Laboratories Vascular Enterprises Limited Stent with independent stent rings and transitional attachments
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
EP2201911B1 (en) 2008-12-23 2015-09-30 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US8021420B2 (en) 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
US20100256723A1 (en) 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US8075611B2 (en) 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209835A1 (en) * 2002-05-10 2003-11-13 Iksoo Chun Method of forming a tubular membrane on a structural frame

Cited By (336)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190029819A1 (en) * 2004-10-02 2019-01-31 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US11058536B2 (en) * 2004-10-02 2021-07-13 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US11304803B2 (en) 2004-10-02 2022-04-19 Edwards Lifesciences Cardiaq Llc Method for replacement of heart valve
US9254192B2 (en) 2007-09-13 2016-02-09 Georg Lutter Truncated cone heart valve stent
US10456248B2 (en) 2007-09-13 2019-10-29 Georg Lutter Truncated cone heart valve stent
US11213387B2 (en) 2007-09-13 2022-01-04 Georg Lutter Truncated cone heart valve stent
US9730792B2 (en) 2007-09-13 2017-08-15 Georg Lutter Truncated cone heart valve stent
US9717591B2 (en) 2009-12-04 2017-08-01 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9433500B2 (en) 2009-12-04 2016-09-06 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US10660751B2 (en) 2009-12-08 2020-05-26 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US10548726B2 (en) 2009-12-08 2020-02-04 Cardiovalve Ltd. Rotation-based anchoring of an implant
US11839541B2 (en) 2009-12-08 2023-12-12 Cardiovalve Ltd. Prosthetic heart valve with upper skirt
US11141268B2 (en) 2009-12-08 2021-10-12 Cardiovalve Ltd. Prosthetic heart valve with upper and lower skirts
US11351026B2 (en) 2009-12-08 2022-06-07 Cardiovalve Ltd. Rotation-based anchoring of an implant
US10231831B2 (en) 2009-12-08 2019-03-19 Cardiovalve Ltd. Folding ring implant for heart valve
US11179236B2 (en) 2009-12-08 2021-11-23 Colorado State University Research Foundation Device and system for transcatheter mitral valve replacement
US10610359B2 (en) 2009-12-08 2020-04-07 Cardiovalve Ltd. Folding ring prosthetic heart valve
US11890187B2 (en) 2010-03-05 2024-02-06 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US11918461B2 (en) 2010-03-05 2024-03-05 Edwards Lifesciences Corporation Methods for treating a deficient native mitral valve
US11109964B2 (en) 2010-03-10 2021-09-07 Cardiovalve Ltd. Axially-shortening prosthetic valve
US10512456B2 (en) 2010-07-21 2019-12-24 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10925595B2 (en) 2010-07-21 2021-02-23 Cardiovalve Ltd. Valve prosthesis configured for deployment in annular spacer
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US9017399B2 (en) 2010-07-21 2015-04-28 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US10531872B2 (en) 2010-07-21 2020-01-14 Cardiovalve Ltd. Valve prosthesis configured for deployment in annular spacer
US11426155B2 (en) 2010-07-21 2022-08-30 Cardiovalve Ltd. Helical anchor implantation
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US10456255B2 (en) 2011-03-21 2019-10-29 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US11369469B2 (en) 2011-08-05 2022-06-28 Cardiovalve Ltd. Method for use at a heart valve
US11690712B2 (en) 2011-08-05 2023-07-04 Cardiovalve Ltd. Clip-secured implant for heart valve
US10376361B2 (en) 2011-08-05 2019-08-13 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11517429B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Apparatus for use at a heart valve
US10226341B2 (en) 2011-08-05 2019-03-12 Cardiovalve Ltd. Implant for heart valve
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11291547B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US10702385B2 (en) 2011-08-05 2020-07-07 Cardiovalve Ltd. Implant for heart valve
US11517436B2 (en) 2011-08-05 2022-12-06 Cardiovalve Ltd. Implant for heart valve
US11291545B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Implant for heart valve
US11344410B2 (en) 2011-08-05 2022-05-31 Cardiovalve Ltd. Implant for heart valve
US11864995B2 (en) 2011-08-05 2024-01-09 Cardiovalve Ltd. Implant for heart valve
US10695173B2 (en) 2011-08-05 2020-06-30 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US11291546B2 (en) 2011-08-05 2022-04-05 Cardiovalve Ltd. Leaflet clip with collars
US10245143B2 (en) 2011-08-05 2019-04-02 Cardiovalve Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9387078B2 (en) 2011-08-05 2016-07-12 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US11364116B2 (en) 2011-08-11 2022-06-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US20140214159A1 (en) * 2011-08-11 2014-07-31 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11135055B2 (en) 2011-08-11 2021-10-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11382737B2 (en) 2011-08-11 2022-07-12 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9833315B2 (en) 2011-08-11 2017-12-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11484404B2 (en) 2011-08-11 2022-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123180B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10639145B2 (en) 2011-08-11 2020-05-05 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US10617519B2 (en) 2011-08-11 2020-04-14 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11123181B2 (en) 2011-08-11 2021-09-21 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US11311374B2 (en) 2011-08-11 2022-04-26 Tendyne Holdings, Inc. Prosthetic valves and related inventions
US9480559B2 (en) * 2011-08-11 2016-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
EP2750631A1 (en) 2011-10-19 2014-07-09 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
EP2750630B1 (en) 2011-10-19 2021-06-30 Twelve, Inc. Device for heart valve replacement
US20200390544A1 (en) * 2011-10-19 2020-12-17 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11826249B2 (en) * 2011-10-19 2023-11-28 Twelve, Inc. Devices, systems and methods for heart valve replacement
US10952844B2 (en) 2011-12-16 2021-03-23 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US10321988B2 (en) 2011-12-21 2019-06-18 The Trustees Of The University Of Pennsylvania Platforms for mitral valve replacement
US11364114B2 (en) * 2011-12-21 2022-06-21 The Trustees Of The University Of Pennsylvania Platforms for mitral valve replacement
US20180368977A1 (en) * 2011-12-21 2018-12-27 The Trustees Of The University Of Pennsylvania Platforms For Mitral Valve Replacement
US20140316516A1 (en) * 2012-01-04 2014-10-23 Tendyne Holdings, Inc. Multi-component cuff designs for transcatheter mitral valve replacement subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly
US11166812B2 (en) 2012-01-31 2021-11-09 Mitral Valve Technologies Sari Valve docking devices, systems and methods
US10226339B2 (en) 2012-01-31 2019-03-12 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
US11376124B2 (en) 2012-01-31 2022-07-05 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US11925553B2 (en) 2012-01-31 2024-03-12 Mitral Valve Technologies Sarl Valve docking devices, systems and methods
US9427316B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US10660750B2 (en) 2012-04-19 2020-05-26 Caisson Interventional, LLC Heart valve assembly systems and methods
US9566152B2 (en) * 2012-04-19 2017-02-14 Caisson Interventional, LLC Heart valve assembly and methods
US10285810B2 (en) 2012-04-19 2019-05-14 Caisson Interventional, LLC Valve replacement systems and methods
US20150209138A1 (en) * 2012-04-19 2015-07-30 Caisson Interventional, LLC Heart valve assembly and methods
US10080656B2 (en) 2012-04-19 2018-09-25 Caisson Interventional Llc Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US11051935B2 (en) 2012-04-19 2021-07-06 Caisson Interventional, LLC Valve replacement systems and methods
EP2861186B1 (en) 2012-06-19 2019-07-24 Boston Scientific Scimed, Inc. Replacement heart valve
US11759318B2 (en) 2012-07-28 2023-09-19 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9895221B2 (en) 2012-07-28 2018-02-20 Tendyne Holdings, Inc. Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US11090155B2 (en) 2012-07-30 2021-08-17 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US10219900B2 (en) 2012-07-30 2019-03-05 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
WO2014087209A1 (en) * 2012-12-06 2014-06-12 Mitralix Ltd. Devices and methods for the replacement of the functioning of heart valves
US20140163669A1 (en) * 2012-12-06 2014-06-12 Mitralix Ltd. Devices and methods for the replacement of the functioning of heart valves
US9132007B2 (en) 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
WO2014110171A3 (en) * 2013-01-10 2014-12-24 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
US10631982B2 (en) * 2013-01-24 2020-04-28 Cardiovale Ltd. Prosthetic valve and upstream support therefor
US11844691B2 (en) 2013-01-24 2023-12-19 Cardiovalve Ltd. Partially-covered prosthetic valves
US20150351906A1 (en) * 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US20180147059A1 (en) * 2013-01-24 2018-05-31 Mitraltech Ltd. Prosthetic valve and upstream support therefor
US11135059B2 (en) 2013-01-24 2021-10-05 Cardiovalve Ltd. Prosthetic valve and upstream support therefor
US9681952B2 (en) 2013-01-24 2017-06-20 Mitraltech Ltd. Anchoring of prosthetic valve supports
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US10835377B2 (en) 2013-01-24 2020-11-17 Cardiovalve Ltd. Rolled prosthetic valve support
US11690713B2 (en) 2013-02-01 2023-07-04 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10973630B2 (en) 2013-02-01 2021-04-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10702379B2 (en) 2013-02-01 2020-07-07 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10463494B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11311379B2 (en) 2013-04-02 2022-04-26 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11364119B2 (en) 2013-04-04 2022-06-21 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US10405976B2 (en) 2013-05-30 2019-09-10 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US11617645B2 (en) 2013-05-30 2023-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9597181B2 (en) 2013-06-25 2017-03-21 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US11471281B2 (en) 2013-06-25 2022-10-18 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US10595996B2 (en) 2013-06-25 2020-03-24 Tendyne Holdings, Inc. Thrombus management and structural compliance features for prosthetic heart valves
US9561103B2 (en) * 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
WO2015009503A3 (en) * 2013-07-17 2015-03-19 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US11510780B2 (en) 2013-07-17 2022-11-29 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10624742B2 (en) 2013-07-17 2020-04-21 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9554899B2 (en) 2013-07-17 2017-01-31 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US20150025623A1 (en) * 2013-07-17 2015-01-22 Juan F. Granada System and method for cardiac valve repair and replacement
US10149761B2 (en) 2013-07-17 2018-12-11 Cephea Valve Technlologies, Inc. System and method for cardiac valve repair and replacement
US10154906B2 (en) 2013-07-17 2018-12-18 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US11612480B2 (en) 2013-08-01 2023-03-28 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US10610354B2 (en) 2013-08-01 2020-04-07 Tendyne Holdings, Inc. Epicardial anchor devices and methods
US10226330B2 (en) 2013-08-14 2019-03-12 Mitral Valve Technologies Sarl Replacement heart valve apparatus and methods
US11234811B2 (en) 2013-08-14 2022-02-01 Mitral Valve Technologies Sarl Replacement heart valve systems and methods
US11304797B2 (en) 2013-08-14 2022-04-19 Mitral Valve Technologies Sarl Replacement heart valve methods
US11523899B2 (en) 2013-08-14 2022-12-13 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US10588742B2 (en) 2013-08-14 2020-03-17 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
US11229515B2 (en) 2013-08-14 2022-01-25 Mitral Valve Technologies Sarl Replacement heart valve systems and methods
US10555718B2 (en) 2013-10-17 2020-02-11 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US11246562B2 (en) 2013-10-17 2022-02-15 Tendyne Holdings, Inc. Apparatus and methods for alignment and deployment of intracardiac devices
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10117741B2 (en) 2013-10-23 2018-11-06 Caisson Interventional, LLC Methods and systems for heart valve therapy
US11833035B2 (en) 2013-10-23 2023-12-05 Caisson Interventional Llc Methods and systems for heart valve therapy
US10736736B2 (en) 2013-10-23 2020-08-11 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10363135B2 (en) 2013-10-29 2019-07-30 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US11096783B2 (en) 2013-10-29 2021-08-24 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US11589985B2 (en) 2014-02-05 2023-02-28 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10201419B2 (en) 2014-02-05 2019-02-12 Tendyne Holdings, Inc. Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US11464628B2 (en) 2014-02-05 2022-10-11 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US11045183B2 (en) 2014-02-11 2021-06-29 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10271946B2 (en) 2014-02-18 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US20160361160A1 (en) * 2014-02-18 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US9949825B2 (en) * 2014-02-18 2018-04-24 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US10952847B2 (en) 2014-02-18 2021-03-23 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US10052199B2 (en) 2014-02-21 2018-08-21 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US20210137678A1 (en) * 2014-02-21 2021-05-13 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US10898320B2 (en) * 2014-02-21 2021-01-26 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
EP3782585A1 (en) * 2014-02-21 2021-02-24 Mitral Valve Technologies Sàrl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
WO2015125024A3 (en) * 2014-02-21 2015-11-26 Mitral Valve Technologies Sarl Devices, systems and methods for delivering a prosthetic mitral valve and anchoring device
US11382753B2 (en) 2014-03-10 2022-07-12 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10517728B2 (en) 2014-03-10 2019-12-31 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10363131B2 (en) 2014-03-18 2019-07-30 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
US9763778B2 (en) * 2014-03-18 2017-09-19 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
US20150265400A1 (en) * 2014-03-18 2015-09-24 St. Jude Medical, Cardiology Division, Inc. Aortic insufficiency valve percutaneous valve anchoring
US20160193046A1 (en) * 2014-03-27 2016-07-07 Romeo Majano Valvuloplasty balloon and valve stent deployment catheter
US20200306038A1 (en) * 2014-06-06 2020-10-01 Edwards Lifesciences Corporation Prosthetic valve for replacing a native mitral or tricuspid valve
US11684471B2 (en) * 2014-06-06 2023-06-27 Edwards Lifesciences Corporation Prosthetic valve for replacing a native mitral or tricuspid valve
US10835375B2 (en) 2014-06-12 2020-11-17 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US11872130B2 (en) 2014-07-30 2024-01-16 Cardiovalve Ltd. Prosthetic heart valve implant
US10492908B2 (en) 2014-07-30 2019-12-03 Cardiovalve Ltd. Anchoring of a prosthetic valve
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
US11701225B2 (en) 2014-07-30 2023-07-18 Cardiovalve Ltd. Delivery of a prosthetic valve
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US11406493B2 (en) 2014-09-12 2022-08-09 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US10653519B2 (en) 2014-09-12 2020-05-19 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9750606B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10603167B2 (en) 2014-10-23 2020-03-31 Caisson Interventional, LLC Systems and methods for heart valve therapy
US11439506B2 (en) 2014-10-23 2022-09-13 Caisson Interventional Llc Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10213307B2 (en) 2014-11-05 2019-02-26 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
US11717407B2 (en) 2014-11-05 2023-08-08 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
US9439757B2 (en) 2014-12-09 2016-09-13 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10548721B2 (en) 2014-12-09 2020-02-04 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10433953B2 (en) 2014-12-09 2019-10-08 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
WO2016093877A1 (en) * 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US9492273B2 (en) 2014-12-09 2016-11-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
AU2019257510B2 (en) * 2014-12-09 2021-04-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US11147665B2 (en) 2014-12-09 2021-10-19 Cepha Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10869755B2 (en) 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
US10463483B2 (en) * 2014-12-19 2019-11-05 Venus Medtech (Hangzhou) Inc. Minimally invasive mitral valve replacement with brim
US10786351B2 (en) 2015-01-07 2020-09-29 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10478297B2 (en) 2015-01-27 2019-11-19 Medtronic Vascular, Inc. Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
US11801136B2 (en) 2015-01-27 2023-10-31 Medtronic Vascular, Inc. Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
US11278407B2 (en) 2015-01-27 2022-03-22 Medtronic Vascular, Inc. Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
US10849748B2 (en) 2015-02-05 2020-12-01 Cardiovalve Ltd. Prosthetic valve delivery system with independently-movable capsule portions
US10722360B2 (en) 2015-02-05 2020-07-28 Cardiovalve Ltd. Prosthetic valve with radially-deflectable tissue anchors
US10973636B2 (en) 2015-02-05 2021-04-13 Cardiovalve Ltd. Prosthetic valve with tissue anchors free from lateral interconnections
US11801135B2 (en) 2015-02-05 2023-10-31 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10918481B2 (en) 2015-02-05 2021-02-16 Cardiovalve Ltd. Techniques for deployment of a prosthetic valve
US11672658B2 (en) 2015-02-05 2023-06-13 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US10357360B2 (en) 2015-02-05 2019-07-23 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US10758344B2 (en) 2015-02-05 2020-09-01 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US11793638B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with pivoting tissue anchor portions
US10390952B2 (en) 2015-02-05 2019-08-27 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US11534298B2 (en) 2015-02-05 2022-12-27 Cardiovalve Ltd. Prosthetic valve with s-shaped tissue anchors
US10736742B2 (en) 2015-02-05 2020-08-11 Cardiovalve Ltd. Prosthetic valve with atrial arms
US10426610B2 (en) 2015-02-05 2019-10-01 Cardiovalve Ltd. Prosthetic valve with radially-deflectable tissue anchors
US10449047B2 (en) 2015-02-05 2019-10-22 Cardiovalve Ltd. Prosthetic heart valve with compressible frames
US10667908B2 (en) 2015-02-05 2020-06-02 Cardiovalve Ltd. Prosthetic valve with S-shaped tissue anchors
US11793635B2 (en) 2015-02-05 2023-10-24 Cardiovalve Ltd. Prosthetic valve with angularly offset frames
US10888422B2 (en) 2015-02-05 2021-01-12 Cardiovalve Ltd. Prosthetic valve with flexible tissue anchor portions
US10695177B2 (en) 2015-02-05 2020-06-30 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US10682227B2 (en) 2015-02-05 2020-06-16 Cardiovalve Ltd. Prosthetic valve with pivoting tissue anchor portions
US10463487B2 (en) 2015-02-05 2019-11-05 Cardiovalve Ltd. Prosthetic valve delivery system with independently-movable capsule portions
US10463488B2 (en) 2015-02-05 2019-11-05 Cardiovalve Ltd. Prosthetic valve with separably-deployable valve body and tissue anchors
US10864078B2 (en) 2015-02-05 2020-12-15 Cardiovalve Ltd. Prosthetic valve with separably-deployable valve body and tissue anchors
US10507105B2 (en) 2015-02-05 2019-12-17 Cardiovalve Ltd. Prosthetic valve with tissue anchors free from lateral interconnections
US10524903B2 (en) 2015-02-05 2020-01-07 Cardiovalve Ltd. Prosthetic valve with aligned inner and outer frames
US10610356B2 (en) 2015-02-05 2020-04-07 Tendyne Holdings, Inc. Expandable epicardial pads and devices and methods for delivery of same
US11786364B2 (en) 2015-02-11 2023-10-17 Edwards Lifesciences Corporation Delivery apparatuses for medical device implants
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10758341B2 (en) 2015-02-11 2020-09-01 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US11109966B2 (en) 2015-02-12 2021-09-07 Medtronic Vascular, Inc. Centering devices for use with a valve prosthesis delivery system and methods of use thereof
US10251748B2 (en) 2015-02-12 2019-04-09 Medtronic Vascular, Inc. Centering devices for use with a valve prosthesis delivery system and methods of use thereof
US10617518B2 (en) * 2015-03-18 2020-04-14 Medtronic Vascular, Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
CN107405197A (en) * 2015-03-18 2017-11-28 美敦力瓦斯科尔勒公司 Valve prosthesis and its application method with integrated centering machine
US11723764B2 (en) 2015-03-18 2023-08-15 Medtronic Vascular, Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
WO2016148777A1 (en) * 2015-03-18 2016-09-22 Medtronic Vascular Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
US10231827B2 (en) 2015-03-18 2019-03-19 Medtronic Vascular, Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
US11497600B2 (en) 2015-03-19 2022-11-15 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10449039B2 (en) 2015-03-19 2019-10-22 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10667905B2 (en) 2015-04-16 2020-06-02 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US11523902B2 (en) 2015-04-16 2022-12-13 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10470881B2 (en) 2015-05-14 2019-11-12 Cephea Valve Technologies, Inc. Replacement mitral valves
US11617646B2 (en) 2015-05-14 2023-04-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10555808B2 (en) 2015-05-14 2020-02-11 Cephea Valve Technologies, Inc. Replacement mitral valves
US10143552B2 (en) 2015-05-14 2018-12-04 Cephea Valve Technologies, Inc. Replacement mitral valves
US10849746B2 (en) 2015-05-14 2020-12-01 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11786373B2 (en) 2015-05-14 2023-10-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
RU2703646C2 (en) * 2015-08-17 2019-10-21 Венус Медтех (Ханчжоу), Инк. Aortic valve prosthesis
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US11318012B2 (en) 2015-09-18 2022-05-03 Tendyne Holdings, Inc. Apparatus and methods for delivery of prosthetic mitral valve
US11096782B2 (en) 2015-12-03 2021-08-24 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10610358B2 (en) 2015-12-28 2020-04-07 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US11464629B2 (en) 2015-12-28 2022-10-11 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10265166B2 (en) 2015-12-30 2019-04-23 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10939998B2 (en) 2015-12-30 2021-03-09 Caisson Interventional, LLC Systems and methods for heart valve therapy
US11298117B2 (en) 2016-02-16 2022-04-12 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10888420B2 (en) 2016-03-14 2021-01-12 Medtronic Vascular, Inc. Stented prosthetic heart valve having a wrap and delivery devices
US11253354B2 (en) 2016-05-03 2022-02-22 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US11273035B2 (en) 2016-06-02 2022-03-15 Medtronic Vascular, Inc. Occluder
US10449044B2 (en) * 2016-06-02 2019-10-22 Medtronic Vascular, Inc. Transcatheter valve delivery system with septum hole closure tip assembly
US11039921B2 (en) 2016-06-13 2021-06-22 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US11090157B2 (en) 2016-06-30 2021-08-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11701226B2 (en) 2016-06-30 2023-07-18 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US11065116B2 (en) 2016-07-12 2021-07-20 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10426614B2 (en) 2016-08-01 2019-10-01 Cardiovalve Ltd. Minimally-invasive delivery systems
US10154903B2 (en) 2016-08-01 2018-12-18 Cardiovalve Ltd. Minimally-invasive delivery systems
US10952850B2 (en) 2016-08-01 2021-03-23 Cardiovalve Ltd. Minimally-invasive delivery systems
US11779458B2 (en) 2016-08-10 2023-10-10 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US10779939B2 (en) 2016-08-10 2020-09-22 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US9987132B1 (en) 2016-08-10 2018-06-05 Mitraltech Ltd. Prosthetic valve with leaflet connectors
US10856975B2 (en) 2016-08-10 2020-12-08 Cardiovalve Ltd. Prosthetic valve with concentric frames
US10098732B1 (en) 2016-08-10 2018-10-16 Cardiovalve Ltd. Prosthetic valve with leaflet connectors
US20180133011A1 (en) * 2016-11-14 2018-05-17 Laboratoires Invalv Implant for treating a biological valve
US10568737B2 (en) 2017-01-23 2020-02-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US11633278B2 (en) 2017-01-23 2023-04-25 Cephea Valve Technologies, Inc. Replacement mitral valves
US11090158B2 (en) 2017-01-23 2021-08-17 Cephea Valve Technologies, Inc. Replacement mitral valves
US10368990B2 (en) 2017-01-23 2019-08-06 Cephea Valve Technologies, Inc. Replacement mitral valves
US11058535B2 (en) 2017-01-23 2021-07-13 Cephea Valve Technologies, Inc. Replacement mitral valves
US10828153B2 (en) 2017-01-23 2020-11-10 Cephea Valve Technologies, Inc. Replacement mitral valves
US11154399B2 (en) 2017-07-13 2021-10-26 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
USD841812S1 (en) 2017-08-03 2019-02-26 Cardiovalve Ltd. Prosthetic heart valve element
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
USD841813S1 (en) 2017-08-03 2019-02-26 Cardiovalve Ltd. Prosthetic heart valve element
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US11571298B2 (en) 2017-08-03 2023-02-07 Cardiovalve Ltd. Prosthetic valve with appendages
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11191639B2 (en) 2017-08-28 2021-12-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10905549B2 (en) 2017-09-19 2021-02-02 Cardiovalve Ltd. Prosthetic valve with overlapping atrial tissue anchors and ventricular tissue anchors
US11337804B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with radially-deformable tissue anchors configured to restrict axial valve migration
US11819405B2 (en) 2017-09-19 2023-11-21 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured for radial extension
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11318014B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve delivery system with multi-planar steering
US11304804B2 (en) 2017-09-19 2022-04-19 Cardiovalve, Ltd. Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
US11337803B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion
US10799345B2 (en) 2017-09-19 2020-10-13 Cardiovalve Ltd. Prosthetic valve with protective fabric covering around tissue anchor bases
US11304805B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors
US10856972B2 (en) 2017-09-19 2020-12-08 Cardiovalve Ltd. Prosthetic valve with angularly offset atrial anchoring arms and ventricular anchoring legs
US10905548B2 (en) 2017-09-19 2021-02-02 Cardio Valve Ltd. Prosthetic valve with protective sleeve around an outlet rim
US11318015B2 (en) 2017-09-19 2022-05-03 Cardiovalve Ltd. Prosthetic valve configured to fill a volume between tissue anchors with native valve tissue
US11864996B2 (en) 2017-09-19 2024-01-09 Cardiovalve Ltd. Prosthetic valve with protective sleeve around an outlet rim
US11304806B2 (en) 2017-09-19 2022-04-19 Cardiovalve Ltd. Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
US10881511B2 (en) 2017-09-19 2021-01-05 Cardiovalve Ltd. Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue
US11337802B2 (en) 2017-09-19 2022-05-24 Cardiovalve Ltd. Heart valve delivery systems and methods
RU192707U1 (en) * 2017-11-14 2019-09-26 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ им. ак. Е.Н. Мешалкина" Минздрава России) Transcatheter mitral valve prosthesis
US11382746B2 (en) 2017-12-13 2022-07-12 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11872131B2 (en) 2017-12-13 2024-01-16 Cardiovalve Ltd. Prosthetic valve and delivery tool therefor
US11633277B2 (en) 2018-01-10 2023-04-25 Cardiovalve Ltd. Temperature-control during crimping of an implant
US11872124B2 (en) 2018-01-10 2024-01-16 Cardiovalve Ltd. Temperature-control during crimping of an implant
US20210000593A1 (en) * 2018-02-15 2021-01-07 Tricares SAS Stent and replacement heart valve prosthesis with improved fixation features
US11786366B2 (en) 2018-04-04 2023-10-17 Vdyne, Inc. Devices and methods for anchoring transcatheter heart valve
CN110575285A (en) * 2018-06-08 2019-12-17 上海微创心通医疗科技有限公司 Implant delivery tube and implant delivery system
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US11273033B2 (en) 2018-09-20 2022-03-15 Vdyne, Inc. Side-delivered transcatheter heart valve replacement
US11071627B2 (en) 2018-10-18 2021-07-27 Vdyne, Inc. Orthogonally delivered transcatheter heart valve frame for valve in valve prosthesis
US11109969B2 (en) * 2018-10-22 2021-09-07 Vdyne, Inc. Guidewire delivery of transcatheter heart valve
US20200121458A1 (en) * 2018-10-22 2020-04-23 Vdyne, Llc Guidewire Delivery of Transcatheter Heart Valve
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11185409B2 (en) 2019-01-26 2021-11-30 Vdyne, Inc. Collapsible inner flow control component for side-delivered transcatheter heart valve prosthesis
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
US11278402B2 (en) 2019-02-21 2022-03-22 Medtronic, Inc. Prosthesis for transcatheter delivery having an infolding longitudinal segment for a smaller radially compressed profile
US11298227B2 (en) * 2019-03-05 2022-04-12 Vdyne, Inc. Tricuspid regurgitation control devices for orthogonal transcatheter heart valve prosthesis
US11076956B2 (en) 2019-03-14 2021-08-03 Vdyne, Inc. Proximal, distal, and anterior anchoring tabs for side-delivered transcatheter mitral valve prosthesis
US11173027B2 (en) 2019-03-14 2021-11-16 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11202706B2 (en) 2019-05-04 2021-12-21 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11712335B2 (en) 2019-05-04 2023-08-01 Vdyne, Inc. Cinch device and method for deployment of a side-delivered prosthetic heart valve in a native annulus
US11931252B2 (en) 2019-07-15 2024-03-19 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
US11166814B2 (en) 2019-08-20 2021-11-09 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11344412B2 (en) 2019-08-20 2022-05-31 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11179239B2 (en) 2019-08-20 2021-11-23 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
US11331186B2 (en) * 2019-08-26 2022-05-17 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11337807B2 (en) 2019-08-26 2022-05-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
US11583397B2 (en) 2019-09-24 2023-02-21 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
WO2022041638A1 (en) * 2020-08-25 2022-03-03 江苏臻亿医疗科技有限公司 Tricuspid valve prosthesis
CN114569293A (en) * 2022-05-09 2022-06-03 上海纽脉医疗科技股份有限公司 Prosthetic valve and transcatheter prosthetic valve delivery system

Also Published As

Publication number Publication date
US9925044B2 (en) 2018-03-27
US11554010B2 (en) 2023-01-17
US11833041B2 (en) 2023-12-05
US20200315794A1 (en) 2020-10-08
US8652204B2 (en) 2014-02-18
US20180185142A1 (en) 2018-07-05
US20230122916A1 (en) 2023-04-20
US20140180401A1 (en) 2014-06-26
US10716665B2 (en) 2020-07-21

Similar Documents

Publication Publication Date Title
US11833041B2 (en) Transcatheter valve with torsion spring fixation and related systems and methods
US11730597B2 (en) Prosthetic heart valve and delivery apparatus
US11589984B2 (en) Devices and methods for delivery of valve prostheses
JP6785786B2 (en) Systems and methods for heart valve treatment
US20190175339A1 (en) Septomarginal trabecula attachment for heart valve repair
US11109965B2 (en) Transcatheter heart valve prosthesis assembled inside heart chambers or blood vessels
US20060282161A1 (en) Valve annulus reduction system
US20090259306A1 (en) Transcatheter heart valve with micro-anchors
AU2016296785A1 (en) Delivery apparatus for self-expanding medical device
US11712336B1 (en) Prosthetic heart valves
US11793628B2 (en) Transcatheter bio-prosthesis member and support structure
US20190321173A1 (en) Flexible heart valve prosthesis
WO2020006026A1 (en) Flexible heart valve prosthesis
CN114727872A (en) Valve delivery system including shortened compensator to improve positioning accuracy

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QUILL, JASON;CLAGUE, CYNTHIA T.;ROTHSTEIN, PAUL T.;SIGNING DATES FROM 20100729 TO 20100730;REEL/FRAME:024765/0150

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8