US20110225848A1 - Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics - Google Patents

Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics Download PDF

Info

Publication number
US20110225848A1
US20110225848A1 US13/047,449 US201113047449A US2011225848A1 US 20110225848 A1 US20110225848 A1 US 20110225848A1 US 201113047449 A US201113047449 A US 201113047449A US 2011225848 A1 US2011225848 A1 US 2011225848A1
Authority
US
United States
Prior art keywords
foam
boots
shoe
fabric
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/047,449
Inventor
Baychar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solid Water Holdings
Original Assignee
Solid Water Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/747,340 external-priority patent/US5738937A/en
Priority claimed from US08/910,116 external-priority patent/US6048810A/en
Application filed by Solid Water Holdings filed Critical Solid Water Holdings
Priority to US13/047,449 priority Critical patent/US20110225848A1/en
Publication of US20110225848A1 publication Critical patent/US20110225848A1/en
Priority to US13/684,671 priority patent/US20130078419A1/en
Priority to US14/514,531 priority patent/US20150031258A1/en
Priority to US14/967,579 priority patent/US20160088900A1/en
Priority to US15/245,602 priority patent/US20160360824A1/en
Priority to US15/673,735 priority patent/US20170332726A1/en
Priority to US16/438,625 priority patent/US20190289954A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/07Linings therefor
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/02Uppers; Boot legs
    • A43B23/0205Uppers; Boot legs characterised by the material
    • A43B23/0235Different layers of different material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/02Uppers; Boot legs
    • A43B23/0245Uppers; Boot legs characterised by the constructive form
    • A43B23/026Laminated layers
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/12Special watertight footwear
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/12Special watertight footwear
    • A43B7/125Special watertight footwear provided with a vapour permeable member, e.g. a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2484Coating or impregnation is water absorbency-increasing or hydrophilicity-increasing or hydrophilicity-imparting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/612Hollow strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • Y10T442/655Metal or metal-coated strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]

Definitions

  • the present invention relates to a variety of shoes and boots used in a variety of applications.
  • the present invention may be employed in a variety of applications including running shoes, lite hiking shoes and hiking boots, snowboard boots, alpine boots, and the like.
  • the shoes and boots are breathable and waterproof to increase comfort for the runner, hiker or rider, etc.
  • These shoes and boots include liner that transfer moisture in a way never before accomplished in the prior art.
  • liners are known from the prior art. However, these liners do not provide the advantages realized by the present invention.
  • the present inventor has recognized the problems faced by runners, snowboarders, skiers and hikers and developed shoes, boots and liners to overcome such problems.
  • FIG. 1 illustrates a first portion of the liner according to a first embodiment of the present invention.
  • FIG. 2 illustrates a second portion of the liner according to a first embodiment of the present invention.
  • FIG. 3 illustrates an example of the liner according to the first embodiment of the present invention.
  • FIG. 4 illustrates the liner shown in FIG. 3 which will form a part of a running shoe, snowboard boot or alpine boot liner.
  • FIGS. 5( a ) and 5 ( b ) illustrate a sole portion of a liner constructed according to a preferred embodiment of the present invention.
  • FIGS. 6 and 7 illustrate a tongue portion of a shoe or snowboard boot constructed according to the first embodiment of the present invention.
  • FIG. 8 illustrates a more detailed view of the liner portion used for the tongue of FIGS. 6 and 7 .
  • FIG. 9 illustrates a portion of the liner used in the upper cuff area.
  • FIG. 10 illustrates the travel of moisture through a reticulated foam, then a flexible mesh, into and through a breathable membrane according to the first embodiment of the present invention.
  • FIG. 11 illustrates the toe portion of a shoe, snowboard boot or alpine boot according to a preferred embodiment of the present invention.
  • FIG. 12 illustrates an overall drawing of a snowboard boot, soft alpine, alpine or hiking boot which will incorporate the liner of the present invention.
  • FIG. 13 illustrates an overall drawing of a running shoe.
  • FIG. 1 illustrates a portion of the liner, or lining system, according to a first embodiment of the present invention.
  • This embodiment is directed to a liner for a running shoe which is generally non-removable or for a snowboard or alpine boot which is generally removable.
  • the liner may be non-removable in some embodiments.
  • the various layers of materials discussed below can be attached to one another in a number of ways, particularly by lamination, mechanical bonding (or stitch bonding such as that done by Tietex, Inc. or XYMED GROUP by DuPont®) or Foss Manufacturing, or the like, or a combination of lamination and mechanical bonding. Mechanical bonding can be performed using nylon, spandex or LYCRA® thread, or the like. As shown in FIG.
  • a first foam material ( 20 ) is provided between an inner liner ( 10 ) and a nonwoven attached to a second foam material ( 30 ).
  • the inner liner ( 10 ) can be attached to the first foam material ( 20 ) by lamination or the like.
  • the second foam material ( 30 ) is a germicidal, reticulated and/or open cell foam and has a thickness of approximately 1/20 to 1 ⁇ 4 inch. All of the foam materials used in the present invention are assumed to be breathable and their thickness can be varied depending upon specific needs. Alternatively, some of the foam materials can be replaced with a germicidal, hydrophilic open-cell foam. For example, a foam called AQUAZONE or VPF (made by FOAMEX) may be used.
  • the AQUAZONE or VPF is attached to a non-woven top sheet made of wool, wood pulp, polyester, cotton, rayon, polypropylene, LYCRA®, spandex, lyocel, acetate or a combination of these, etc.
  • the inner liner ( 10 ) is preferably constructed using specific fabrics possessing certain desired characteristics.
  • fabrics which can be employed depending upon the individual needs of their application as well as the individual needs of each runner or rider is provided below. These fabrics may either be used individually or in combination and can be double sided with one fiber on one side and another on the other side. Variations for use in a running or hiking shoe, snowboard or soft alpine or shell boot or liner are specifically recited.
  • the first fabric is an anti-microbial, anti-fungal polypropylene (also referred to as polyolefin) LYCRA® blend (2%) with INNOVA fiber, or the like.
  • INNOVA is a continuous filament fiber (manufactured by Deercreek Fabrics, Inc. or Coville, Inc.).
  • the second fabric is an anti-microbial, anti-fungal polypropylene having a polyester or cotton backing, or the like (such as that manufactured by Coville, Inc.).
  • the polyester or cotton backing can be replaced with wool, silk, acetate, lyocel or the like.
  • the third fabric is an anti-microbial, anti-fungal polypropylene/cotton blend with ALPHA fiber (such as that manufactured by Intex Fabrics, Inc.).
  • the fourth fabric is a field sensor polyester with waffle weave construction (such as that manufactured by Toray and distributed by Yagi & Co., Inc.).
  • a polyester material known as AQUA-DRY, manufactured by Teijin Shojin can be employed.
  • the fifth fabric is a hydrophilic anti-microbial DRI-LEX BABY KID or perforated material (such as that manufactured by Faytex Corp.).
  • the sixth fabric is a polyester looped terry (such as that manufactured by Kronfli Spundale Mills, Inc.).
  • the seventh fabric is a sueded/sanded polyester microfiber material (distributed by Yagi & Co., Inc. and Teijin Shojin, Inc.).
  • the eighth fabric is POLAR TEC Series 2000, which is a wickable, moisture transfer fiber, containing LYCRA® and polypropylene. This fabric is also anti-microbial.
  • the ninth fabric is a moisture transfer fabric by Tietex, Inc.
  • the tenth fabric is a wool blend with a cotton, polyester, or the like backing. Double faced knitted fabric
  • the eleventh fabric is nylon or nylon polyester blend treated with or without transfer dry fiber technology manufactured by Guilford Mills.
  • the twelve fabric is a spacer fabrics constructed of nylon, polyester, polyester or polypropylene blends manufactured by Malden Mills or Deercreek Fabrics or the like.
  • the thirteenth fabric is a polypropylene, polyester or acrylic blends. Chemically ionized synthetic fabrics by Sterling Fiber.(CYSTAR AF ECT.)
  • the fourteenth fabric is acrillan or DURASPUN acrylics fabrics by Monsanto.
  • Fifteen fabric is an acetate blend.
  • spacer fabrics polyester or polyester blends manufactured by Malden Mills and others can be used. These are composite fabrics having layers of fibers.
  • the moisture transfer characteristics of the inner liner ( 10 ) causes moisture vapors to pass from a runner or rider's body through the inner liner ( 10 ) where it then comes into contact with the first foam material ( 20 ). The moisture vapors travel through the first foam material ( 20 ) and come into contact with the abutting nonwoven or second foam material ( 30 ).
  • the first foam material ( 20 ) may be a cellular elastomeric composite (as described in U.S. Pat. No. 6,074,966 the disclosure of which hereby incorporated by reference), or the like.
  • the cellular elastomeric composite is formed in one process and is developed by Foxrun Technology.
  • Layer 20 is a 1/20′′ to 1 ⁇ 8′′ germicidal, reticulated foam (or germicidal, hydrophilic flexible polyester, open-cell foam such as AQUAZONE or VPF, Or the like) backed with a non-woven top sheet comprised of wool, wood pulp, rayon, cotton, polypropylene, lyocel, polyester, LYCRA®, spandex, or a combination there of or the like.
  • the elastomeric composite natural synthetic or blend fibers and foam are hydroentangled or fused together with water pressure.
  • foam material 20 can be a foam that is separate from the non-woven top sheet and is attached to the non-woven top sheet by lamination, stitched, or ultrasonically bonded.
  • the non-woven top sheet (when used) abuts the next layer of 1/20′′ to 1 ⁇ 4′′ reticulated/hydrophilic flexible polyester, open cell foam, or second foam material 30 .
  • the second foam material 30 may also be a germicidal, hydrophilic, open cell 1/20′′ to 1 ⁇ 4′′ foam, such as AQUAZONE or VPF or the like.
  • the second foam material is preferably backed with a non-woven top sheet as mentioned above.
  • any of the foam materials discussed herein can be backed by such a non-woven top sheet and can be a flexible polyester open cell foam.
  • the running shoe, hiking shoe, snowboard boot, soft alpine boot and shell boot or liner may utilize the composites to transfer moisture vapor.
  • the composite system combines multiple layers of foams and nonwovens in numerous locations to absorb, move and transfer moisture. This foam composite creates a one-way system that allows moisture to travel only in an outward direction.
  • many of the foam materials are interchangeable depending upon specific needs.
  • the foam materials can be flame laminated to a non-woven apertured top sheet of wool, cotton, lyocel, polypropylene or polyester, or a blend thereof, for example.
  • the apertured top sheet may also be coated with a foam or may have a polymer dot matrix applied that is a polymer with phase change material (which have reversible enhanced thermal properties).
  • the first foam layer 20 may also be substituted with a germicidal, hydrophilic open-cell, 1/16′′ to 1 ⁇ 8′′ foam, such as AQUAZONE or VPF.
  • the foam can also be backed by non-woven top sheet.
  • a temperature regulating membrane called Outlast can be inserted between inner layer 10 and the first foam material 20 , or applied to the fibers of layer 10 .
  • Frisby Technologies can be embedded in the first open cell flexible polyester, hydrophilic foam layer 20 or placed in the second foam material 30 .
  • the hydrophilic foam is preferably AQUAZONE or VPF, but may be a Frisby product called COMFORTEMP, or the like.
  • the outlast membrane or coating can be placed on the other side of the foam, outside the non-woven top sheet, if present.
  • phase change technology by Outlast, Frisby, Freudenberg, Schoeller or Invista, or the like may be combined with any foam, nonwoven or insulative layer and can be on either side.
  • the nonwoven may as well by treated with a thermal enhancing technology by Wisconsin Global Technologies or nanotechnology. Nanotechnology may be used in any portion of this invention.
  • a third foam material 50 which provides support and has similar characteristics to the second foam material 30 , allows the moisture vapors to continue their movement toward the outside.
  • This third foam material 50 may be a foam, a nonwoven or spacer fabric, or combination thereof, is formed in certain areas to take necessary shapes such as the shape of an ankle, heel cup and foot bones, and is positioned so as to allow the moisture to pass through into subsequent elements, such as a waterproof/breathable membrane 70 and the outer layer 80 of the overall lining system.
  • the outer layer 80 is preferably waterproofed by encapsulation or by using a waterproof/breathable finish or film.
  • the third foam material 50 may alternatively be a spacer fabric by Muller or Malden or the like.
  • the easily molded spacer fabric or the third reticulated/open cell foam material 50 can be designed to provide a well defined heel lift, and heel pocket.
  • This invention develops the components necessary to increase technical performance with the increases support around the heel, toe, and ankle.
  • the toe box is from top to bottom, wider and more flexible than in previous snowboard or alpine boots.
  • the laminated or mechanically bonded foams and nonwovens under the heel support the runner and rider's lower back and allows for a comfortable stride. With this added comfort, the aggressive or recreational runner, hiker, rider or skier can achieve a higher level of continued performance. Spacer fabrics can be combined for improved performance.
  • a structural mesh 40 which can be a flex guard, for example such as one manufactured by Naltex or Conwed or the like, that adds structural integrity to the lining system.
  • a spacer fabric, moldable foam, or the like may also be used in place of this flex guard or mesh. Also, neither may be used in some circumstances.
  • the moldable foam if not very breathable, can be made breathable by puncturing. Alternatively, the moldable foam can be a reticulated or hydrophilic, open-cell structure, or the like.
  • a non-woven top-sheet (with or without apertures) can be attached to the moldable foam.
  • the second foam material may be omitted.
  • the moldable foam can be AQUAZONE or VPF.
  • the moldable foam or spacer fabrics are used instead of the flexible mesh as layer 40 .
  • the material 50 is preferably similar in construction to the second foam material, namely being either germicidal, reticulated and approximately 1/20′′ to 1 ⁇ 4 inch thick, or being germicidal, hydrophilic open-cell (for example AQUAZONE or VPF).
  • This material is preferably laminated to a non-woven top sheet (which may or may not be apertured) comprised of wood pulp, lyocel, acetate, rayon, or cotton. The top sheet abuts the waterproof/breathable membrane 70 or an encapsulated or coated outer fabric.
  • THERMOLITE For snowboard, alpine and hiking boots, due to the cold weather conditions, a combination of THERMOLITE(or THERMALOFT) or the like and foam mechanically bonded or laminated together, or a foam and nonwoven, or SSOFTHERM inclusive of an open cell foam, or THERMOLITE with a spacer fabric or THERMOLITE by itself is preferably used for the third foam material 50 .
  • THERMOLITE manufactured by DuPont®, is a thin insulation having a hollow polyester fiber laid in random layers with an acrylic binder (loose felted) needle punched through the cross section to attach layers and tie them down.
  • Various types of THERMOLITE can be used, such as THERMOLITE EXTREME, THERMOLOFT, MICROLOFT, TFI 2000 G/M2 or TFI 4000 G/M2, etc.
  • a thermal nonwoven composite created with synthetic fibers having a open cell foam needle-punched into its internal structural layers can form layer 50 , and abut layer 60 , an elastomeric composite, a open cell foam, another nonwoven, a spacer fabric, another thermal product such as THERMOLITE, Foss thermal, or layer 70 a breathable membrane or layer 80 the exterior fabric or synthetic leather.
  • the foam can be combined with the fibers of the nonwoven or the nonwoven can be combined into the foam depending upon the application and whether there is a need for cooling or warming.
  • the Foss composite may be next to outlast membrane or have the Frisby Technology embedded in the needled open cell foam applied. COMFORTEMP by Frisby Technology may also be needled into the existing Foss to thermal composite layer.
  • outer layer 80 If encapsulation is used in outer layer 80 as discussed herein, then it is important to use THERMOLITE, THERMOLITE with foam or the Foss composite contracted of SSOFTHERM and acetate, polyester, acrylic or the like with open cell foam needled into the base as layer 50 and 60 in all alpine liners and hiking applications.
  • the Foss composite may be bi-polar in nature and may contain wood pulp or lyocel fibers.
  • the Outlast membrane or Frisby can be used in combination with the third material 50 , 60 , especially in condition with THERMOLITE or the like.
  • the moisture vapor continues from the second foam material 30 through the mesh or spacer material 40 and on through the third exterior foam or THERMOLITE material 50 or combinations if applied in layer 60 .
  • the moisture vapors are then passed through waterproof/breathable membrane layer 70 if applied.
  • the moisture vapors are absorbed into waterproof/breathable membrane passed through to an outer layer of fabric 80 , as shown in FIG. 4 .
  • the waterproof/breathable membrane 70 can be selected from a variety presently available on the market. Those under the tradenames VAPEX 2000/Plus/Standard/1300, SECO-TEC, THINTECH, LAY-TEK and WITCOFLEX SUPER DRY FILM by Baxanden Chemicals (a hydrophilic membrane), and breathable membranes by Harrison Technologies are currently being considered.
  • TX-1540 application by Shawmut Mills
  • TX-1540 is intended to be an ultra-thin, skin friendly, moisture barrier that allows moisture vapors to escape while preventing outside water from penetrating.
  • the Outlast membrane or the Frisby Technologies can be used in combination with other membranes with encapsulation techniques, or with structurally knitted fabrics and can adjust to temperature changes.
  • Nextec the one practiced by Nextec is particularly advantageous.
  • an optional protective rim or cuff 90 preferably made of a slow recovery foam (by FOAMEX, for example) a spacer product by Muller Textil or neoprene covered by LYCRA®. Cuff 90 could also be made of a reticulated foam. The cuff is optional in all alpine and hiking boots.
  • a pull tab 100 preferably made of nylon, is connected to the protective rim 90 .
  • an abrasive protective material 110 is provided adjacent to a tongue 300 .
  • Another abrasive protective material 120 is provided around the heed portion of the shoe. Abrasive protective material 120 is supplied by Schoeller, DuPont®, or the like. the protective material is optional in all alpine liners.
  • the outer layer of fabric 80 of the lining system has 200 to 6000 denier strength and is made waterproof by a membrane, a coating, encapsulation technology or by using structurally knitted, water repelling fabrics.
  • Encapsulation technology is being utilized by a company called Nextec, Inc. or Toray, Inc. (a Japanese company or the like).
  • Nextec Technology can be combined with the Outlast membrane or Frisby Technology.
  • the Outlast membrane may be coated or laminated to the outer fabric. If the outer fabric is encapsulated then the outlast technology must be applied to the fiber or fabric prior to encapsulation.
  • the Frisby temperature regulating molecules can be incorporated into the spaces between the encapsulated fibers and may be inserted at the time of encapsulation.
  • the breathable membranes preserve the outer layer of fabric 80 and perform as a waterproof barrier for the runner orrider's liners. If the encapsulation technology is applied to the outer layer of fabric 80 , then the breathable laminate membranes need not be used.
  • the outer layer 80 may be any of the following materials, either individually or in combination. These materials include synthetic leathers, synthetic breathable fabrics, or the like, by Daewoo, Kevlar, and Cordura fabrics, by Schoeller, travis or the like, Kevlar, and technical fabrics by DuPont® and Toray, Cordura treated by encapsulation by Nectex, Toray, DuPont®, Travis, and the like, 4-ply Supplex, Cordura waterproofed by the breathable membrane, F.L. fabric by Malden Mills, DERMIZAX by Toray, ENTRANT-GIL and WAXEY by Toray, GYMSTAR PLUS and TUFLEX-HR both by Unitika.
  • the Corduras can be those made by others as well.
  • Nylon or polyester spacer meshes waterproofed by coating, encapsulation or film There are primarily three ways of protecting outer layer 80 , encapsulation, using a membrane, structurally knitting the fabric to repel water or coating the fabrics with a waterproof film.
  • the outer layer 80 is a combination of one of the above-mentioned materials with one of the following: the Outlast or Frisby Technologies and encapsulation by Nextec or the like, or the Outlast membrane or Frisby Technologies and the waterproof/breathable fabrics such as ENTRANT-GIL, DERMIZAX, TUFLEX, GYMSTAR or the like.
  • the Outlast membrane is laminated or coated to the outer fabric or woven into the fabric or fibers, or the Frisby Technology embedded in the encapsulated outer fabric and then laminated to the waterproof/breathable membrane, the Frisby or Outlast Technologies in combination with structurally knitted or woven waterproofed fabrics, or finally the Frisby or Outlast Technologies in combination with ENTRANT-GIL, DERMIZAX, TUFLEX, or GYMSTAR, nylon supplex or cordura, polyester, Kelvar or synthetic blends or the like.
  • the outer fabrics in several performance categories may not apply either Frisby or Outlast Technologies.
  • Frisby technology may also be in combination with an elastomeric technology preferable by Foxrun Technologies or abutting the outer fabric layer 80 in any of the open cell foams or a membrane by Outlast technologies may be laminated to the elastomeric composite abutting the outer fabric layer 80 .
  • phase change technology by Frisby, Outlast or Wisconsin Global Technologies may be applied to any layer of elastomeric, foam or nonwoven where specified.
  • Elastomeric composite technology may be substituted in any area where there is a foam abutting nonwoven composite combination.
  • the non-abrasive fabrics used in the moisture transfer inner liner of the present invention greatly reduces the possibility of trapped moisture, thereby protecting the foot from fungus growth and any damage.
  • the anti-fungal, anti-microbial polypropylene (polyolefin) fabrics quickly remove moisture away from the foot. Skin damage is minimized because the polypropylene fabric has a smooth, continuous surface or soft fleeced texture. This fabric also prevents bacterial build-up which can cause foot odor and fungus. Chemical ionization may be applied to polyolefin
  • the polyester looped terry blend is an excellent wicking fabric and can remove moisture rapidly when treated with a wetting agent or chemical ionization.
  • the anti-fungal, anti-microbial, DRI-LEX nylon fabrics like the polypropylene, is sanded and soft. The material is extremely comfortable and cool to the tough. Chemical ionization can be applied to nylon and nylon blends.
  • the polyester field sensor fabric works well with those individuals who prefer high performance.
  • the liner absorbs moisture immediately.
  • a polyester microfiber fabric is smooth to touch and wickable.
  • a wetting agent may be added to assist in moisture transfer. Chemical ionization can be applied to nylon and nylon blends
  • the lightweight Kevlar, STARLITE, Cordura, DERMIZAX or the like outer liner materials are twice as durable as the former heavyweight leathers, synthetic leathers and materials often used on the outer shell, functions as a flexible, high abrasive, breathable outer surface and aid in the moisture transfer and may be in combination with synthetic leathers and nylon or polyester spacer meshes products.
  • FIGS. 5( a ) and 5 ( b ) illustrate a sole portion 200 of a footbed insert.
  • This removable footbed is constructed to remove moisture downward and out away from the runner or rider's foot.
  • the inner lining material abuts an open cell foam laminated to a nonwoven abutting a moldable spacer product preferably by Muller Textil. In some cases the nonwoven may be removed. In extreme temperatures the Foss thermal composite constructed with Ssoftherm and a combination of one or more synthetic fibers is preferable.
  • the synthetic fibers that may be blended with the Ssofttherm include a combination of polyester, acrylic, lyocel blends needled together with and open foam may take the place of the nonwoven and open cell foam combination or may abut the open cell on one side and the spacer product on the other side or the outer fabric.
  • THERMOLITE or the like may be an option to the Foss thermal composite and may be needled together with an open cell foam.
  • the footbed may be covered with CAMBRELLE DRI-LEX nylon, the Toray field sensor products or one of the selected inner lining materials or a nonwoven.
  • the inserted hydrophilic open cell and spacer fabric composite adds support and transfers moisture downward.
  • the bottom portion of the foam is preferably provided with a non-woven top sheet as described earlier.
  • FIGS. 6 , 7 , and 8 illustrate the tongue 300 of the shoe in more detail. The tongue is designed to add further comfort and support. As shown in FIG.
  • an inner liner fabric 310 of the tongue 300 is preferably one of the other inner liner materials mentioned above, especially the field sensor by Toray, polypropylene, LYCRA® blend with INNOVA fiber, the polyester microfiber, the polyester looped terry or the fabrics by Malden Mills, looped terry polypropylene blends or, polyester by Kronfli, Miliken or the like.
  • This inner liner fabric 310 is preferably laminated to a structural support foam 320 and nonwoven. The nonwoven abuts a moldable spacer fabric followed by the nonwoven foot bed fabric. The foot bed is preferably molded and removable.
  • the foam is an 1 ⁇ 8 inch or 1 ⁇ 4 inch and is germicidal, reticulated flexible polyester and open cell foam.
  • the inner lining fabric may also be abutting an elastomeric composite or may be directly abutting a moldable spacer fabric and exterior materials.
  • a hydrophilic open cell or perforated foam 330 (also could be a reticulated foam, or the like) abuts a structural support foam or spacer product 320 .
  • the hydrophilic perforated foam or spacer fabric 330 can take the shape of the foot bones and protect the upper foot from damage.
  • the structural support 320 can also be shaped to accommodate the foot and protect the ankle bones.
  • a moldable spacer fabric by Muller, or the like may also be used as portion 330 .
  • a moisture transfer material 340 lies over the hydrophilic open cell or perforated foam 330 .
  • This moisture transfer material 340 is preferably made from material known as aero-spacer DRI-LEX, which is manufactured by Faytex Corp, BIRDEYE nylon by Gilford Mills treated with or without transport technology, an aero-spacer fabric manufactured by Apex Mills, or a waterproof nylon or polyester blend or the like.
  • the abutting exterior fabrics may be either a nylon or polyester blend spacer mesh material or one of the selected exterior fabrics mentioned and can be coated with a waterproof coating.
  • the aero-spacer, exterior spacer meshes products or outer fabrics are in combinations with synthetic leathers. It should be understood that non-woven synthetic materials can always be substituted for the aero-spacer DRI-LEX, spacer mesh products even if not specifically mentioned in other parts of this disclosure.
  • the spacer mesh products 340 in some hiking applications, is wrapped around the outer edge of the tongue to allow moisture vapors traveling from the upper foot area to escape through moisture transfer material 340 to the outer surface of the tongue 300 . Material 340 also aids in providing a softer edged tongue.
  • an outer layer 350 may be added in some hiking applications over a central portion of the material 340 .
  • Another hydrophilic, molded foam (not shown), or slow recovery form, moldable spacer fabric or hydrophilic foam, is shaped to fit between the outer layer 350 and material 340 . In extreme adventure sport applications the added protection may be required.
  • outer layer 350 which can be a breathable synthetic leather (by Daewoo Corp. for example) or a Kevlar, or the like is surrounded by aero-spacer DRI-LEX 340 , a substitute as mentioned above or a combination thereof.
  • an abrasive reflective grip fabric may be added for running and hiking applications (such as that manufactured by Schoeller and identified by the number 6500, or the like), also shown in FIG. 4 .
  • Stitching is identified by numeral 370 .
  • FIG. 7 illustrates a top portion of the tongue 300 , and shows stitching 370 and the liner fabric 310 .
  • the liners are preferably provided with a pull tab 100 as illustrated in FIGS. 4 , 9 , and 10 on the back of cuff 90 constructed of a slow recovery foam (by Rogers, or the like), moldable spacer fabric or neoprene covered by LYCRA®.
  • cuff 90 can be omitted altogether.
  • FIG. 9 shows an opened up version of the liner looking from the back of the liner or hiking boot.
  • an abrasive grip fabric material 410 such as manufactured by Schoeller, Inc., and referred to by the number 6500.
  • Below material 410 is a reflective grip composite material 420 .
  • FIG. 4 An option in the hiking application is a highly abrasive fabric 110 as shown in FIG. 4 .
  • Fabric 110 is preferable a Kevlar or STARLITE, or a Cordura, or the like.
  • outer shell fabric 80 is the same as that shown in FIG. 4 , and can be any of the fabrics listed previously in connection with outer shell fabric 80 .
  • the nylon pull tab 100 allows the rider's easily entree into the liner.
  • FIG. 10 shows the other side of the liner of FIG. 9 .
  • 510 can be a 1 ⁇ 4 inch moldable foam which has been punctured or a moldable spacer fabric or the like.
  • 520 represents the combination of the flexible mesh and foam (in case the moldable foam is not used as depicted), the outer shell fabric.
  • the arrows depict the flow of moisture.
  • FIG. 11 illustrates the toe portion 400 of the liner.
  • the toe portion 400 is constructed with an inner liner 10 , followed by a foam nonwoven composite abutting a thermal composite material 30 , followed by a breathable membrane if used 60 and finally followed by the outer fabric 70 .
  • Foam material 30 can either be a single foam, two foams, a foam, nonwoven, foam composite, a THERMOLITE, a THERMOLITE and foam combination, Foss thermal composite with SSOFTHERM and synthetic fiber blends or any of these in combination with a non-woven top sheet (or a cellular elastomeric composite).
  • Abrasive grip fabric is also shown.
  • the breathable membrane is optional the shoe.
  • the 6500 high abrasive fabrics manufactured by Schoeller, Inc. or the like are optionally located on the back of the cuff and the top of the toe box and heel.
  • the Kevlar and Cordura, STARLITE and Cordura fabrics provide comfort and durability to the liners and are extremely strong and resistant to abrasion and allow for breathability and performance.
  • FIG. 12 illustrates a snowboard boot liner incorporating the lining system discussed above.
  • the following elements of the snowboard boot are shown: numeral 610 represents a waterproof breathable synthetic leather, a Kevlar fabric (made by Schoeller, or a similar material), Schoeller, DuPont® & Toray or the like, Cordura or DERMIZAX by Toray; numeral 615 represents materials similar to that of numeral 610 , but can have different colors for aesthetic purposes; numeral 630 represents a Kevlar or a material made by Schoeller, or the like, with the heel portion being synthetic rubber, EVA, or the like, manufactured by Daewoo; numeral 635 represents an inner moisture transfer material covering a molded breathable foam or spacer fabric; numeral 640 represents a Kevlar or Cordura material; numeral 650 represents some decorative piping made of synthetic leather, stitching, polymer or the like; numeral 655 represents a pull tab made of nylon or synthetic leather; numeral 660 represents the base of the Boot which can be made of
  • the sock 675 is made up of three layers.
  • the first layer can be any of the inner liner materials discussed above.
  • the second layer is a layer of foam or THERMOLITE, THERMOLITE with foam or the Foss thermal composite with a foam needled in or a combination thereof.
  • the third layer is a fabric such as moisture transfer polyester blend manufactured by Deercreek fabrics, Menra Mills, or the like. Encapsulation technology can also be applied to the third layer.
  • Sock 675 can be used for additional warmth and is removable, unlike the shoe liner and can be inserted into the all weather synthetic rubber or leather boot or a combination of leather and synthetic rubber boot, a snowboard boot, soft alpine boot or alpine shell liner. The insert is preferable used in a boot where the inner liner is not removable.
  • the three layers can be attached to one another by lamination, although mechanical bonding, or stitching, or ultrasonic bonding, can also be used.
  • FIG. 13 illustrates a running shoe 700 that is formed by the various combination of layers discussed above.
  • the top portion of the shoe 700 emphasizes the various layers that make up the shoe and should be interpreted in the context of the discussion above regarding the various options.
  • the microfiber technology disclosed above is rapidly developing and changing and has greatly increased the potential for improved performance of such products such as running shoes and alpine boots, provided that they are properly utilized as in the present invention. These new products are part of rapidly developing fabric technology.
  • the present invention employs a combination of fabric, foam, nonwovens, moldable spacer materials and THERMOLITE or SSOFTHERM blended layers with or without open cell foam needled into the layers, with or without breathable membranes. Breathable membranes are optional in the running or hiking shoe.
  • Other options include structurally woven or knitted waterproof fabrics, coated fabrics, or encapsulated outer fabrics in such combinations that increase the performance of the products in which they are used as well as increasing breathability.
  • the breathable membrane is optional in all alpine, snowboard boot, hiking applications and removable insert sock liners rubber boots or the like. While the discussion above has focused upon running and hiking shoes and snowboard and alpine boot liners, similar applications can be made with cross country boots, or in-line skates, protective gear, helmets, gloves, accessories and apparel with slight modifications.
  • the liner would preferably have a waterproofed outer fabric, attached to a synthetic rubber base.
  • Encapsulation technology and membranes such as TX1540, WILCOFLEX DRY combined with the Outlast technology from Gateway Technologies can be employed. It is preferable to use Outlast or Frisby close to the individual's foot in alpine, snowboard, or alpine cross country boots.
  • Outlast or Frisby Technologies may also be added to any of the inner lining material listed. Otherwise, the liner could be very similar, although the use of the supportive mesh could be limited to certain areas. Adjustments in the breathable membrane would be made to accommodate winter conditions and cosmetic changes could be applied to the surface areas.
  • a liner for alpine boots is similar to in-line skate boots with moldable spacer products and plastic mesh by Naltex used for high-performance boots.
  • This liner would have the following layers of materials (additional drawings for these applications are omitted in order to be concise). The liner will be described in a sequence of layers beginning with the innermost layer.
  • the first layer is selected from a group including field sensor technology by Toray, anti-microbial, anti-fungal, polypropylene INNOVA or ALPHA; DRI-LEX CAMBRELLE, or DRILEX DOE SKIN manufactured by Faytex Corp., looped poly terry by Kronfli, DRI-LEX/polyterry by Faytex, polypropylene or wool blends backed by another fiber for example cotton or wool or the like by Coville, Cordura, polyester sueded or fleeced, moisture transfer materials, or Malden Mills polyester and blends thereof, or the like. A combination of these materials may also be employed depending upon the needs of an individual skier. All fabrics may be chemical ionization.
  • the various layers can be combined by lamination, mechanical bonding, stitch bonding, ultrasonic bonding or a combination of these two.
  • the second and third layers would include a foam that contacts the first layer and is a germicidal, reticulated foam or a hydrophilic, open-cell foam, such as AQUAZONE OR VPF, FOAMEX or COMFORTEMP by Frisby or the like.
  • these layers can be a cellular elastomeric composite which is one of the above-mentioned foams backed by a non-woven apertured top sheet composed of wood pulp, polyester, rayon, cotton, or polypropylene, in a single process.
  • a foam nonwoven, foam, nonwoven composite may also be used followed by a thermal composite if applicable.
  • the fourth layer is a hydrophilic, open cell(AQUAZONE or VPF), slow recovery foam or flex-guard or a polyester spacer material (by Muller) or the like for support.
  • AQUAZONE or VPF is laminated to a flat non-woven top sheet composed of wood pulp, rayon, cotton, polyester, lyocel, polypropylene which abuts a waterproof/breathable membrane (fifth layer).
  • the flex-guard it is followed by another layer of AQUAZONE or VPF with a top sheet abutting the waterproof/breathable membrane or the encapsulated outer fabrics.
  • the spacer material is used, it may or may not be molded to accommodate the foot.
  • the non-woven top sheet may be eliminated.
  • the spacer material will be followed by either a waterproof membrane, an encapsulated or coated fabric.
  • the spacer material may alternatively be used in a number of the boot layers in combination with a thermal composite, foam or a foam, nonwoven composite.
  • the fifth layer is a waterproof/breathable membrane which may be any one of the following: Outlast membrane by Gateway Technologies in combination with SECO-TEX, No. TX1540 (laminated by Shawmut Mills), THINTECH, VAPEX 2000/1300 standard, Laytex and ENTRANT-GIL by Toray or the like.
  • the Outlast membrane by Gateway Technologies is in conjunction with one of the suggested breathable membranes or the like.
  • the laminated or coated outlast membrane may also be combined with some encapsulated fibers and fabrics.
  • the Frisby Technology may be embedded in the preceding foam or THERMOLITE or MICROLOFT by DuPont®, but is not in combination with a breathable membrane.
  • Frisby Technology can be used in conjunction with structurally knitted waterproof fabrics, or with the encapsulation technology by Nectex, Toray or the like. Encapsulation by Nextec combined with the Outlast Technologies is preferred. If encapsulation is employed, then the fourth layer preferably includes THERMOLITE or a thermal foam composite inclusive of SSOFTHERM, a product by Foss Manufacturing, needled together with foam. If a non-removable liner is employed instead of a removable liner, a waterproof-breathable thin film can be used instead of encapsulation or a waterproof/breathable membrane.
  • the sixth and final layer in this removable shell liner may be Cordura, STARLITE, Jerusalem 3 ⁇ 4 ply Supplex, Kevlar fabrics, DERMIZAX or encapsulated fabric or any combination of them. Also, a waterproof breathable thin film coated fabric could be used.
  • a liner for the alpine cross country boots is similar to the snowboard boot liner except the cross country boot does not have a sock liner, and the foams (or THERMOLITE and foam) are thinner.
  • This liner would include the following.
  • a first layer selected from a group including polypropylene, LYCRA® or wool backed by cotton, wool, or a rayon blend or an anti-microbial, anti-fungal INNOVA or ALPHA; sueded polyester; polyester field sensor; looped polyester terry; DRI-LEX DOESKIN or BABY KID by Faytex Corp.; polyester DRI-LEX Terry by Faytex; polyester spacer fabric by Malden; and polypropylene backed by cotton by Coville.
  • the second layer is a germicidal open cell hydrophilic foam. It may be COMFORTEMP by Frisby or AQUAZONE or VPF with Frisby Technologies. This foam can be provided with or without a non-woven top sheet.
  • the non-woven top sheet can be selected from any of the materials previously specified.
  • the third layer is a structural support foam or a moldable spacer material by Muller Textil.
  • the foam may be a moldable hydrophilic AQUAZONE OR VPF.
  • the heel and arch may also have a slow recovery foam or spacer product added for comfort.
  • the thickness of the layer of foam or spacer fabric and THERMOLITE may vary for performance.
  • the fourth layer is a thin layer of THERMOLITE, the Foss foam thermal composite or AQUAZONE OR VPF or the like with a non-woven top sheet made of wood pulp, rayon, cotton, polyester, or polypropylene.
  • the fourth layer may be optional in some performance categories.
  • the fifth layer is optionally, a waterproof/breathable membrane which may be any one of the following: SECO at Shawmut Mills, THINTECH, VAPEX 2000/1300 standard, Laytex, breathable membranes by Harrison Technologies, or ENTRANT-GIL by Toray.
  • the outlast membrane by Gateway Technologies is employed for this layer.
  • the outlast membrane can be used by itself, with another membrane or with encapsulation technology on the outer fabric, such as Nextec, Toray or the like. Frisby Technology may also be applied in the open cell foam, or encapsulated outer fabrics. COMFORTEMP by Frisby Technology may be used in some applications.
  • just encapsulation of the sixth layer can be performed to achieve similar results.
  • a combination of Outlast or Frisby and encapsulation fibers or fabrics by Nextec or the like is preferred.
  • the fourth layer preferably includes THERMOLITE or the Foss Manufacturing thermal foam composite.
  • the sixth layer is one of the following fabrics. Note that if these fabrics are encapsulated, the waterproof/breathable membrane in the fifth layer may not be needed in combination.
  • These fabrics include the following: Cordura; LYCRA® blends; STARLITE by Faytex Corp.; Kevlar fabric by Schoeller (14705, 6500, 13207, 13632, 65563, etc.); DuPont® and Toray or the like, Cordura 2000 by DuPont®, DERMIZAX and ENTRANT-GIL by Toray, 3 or 4 ply Supplex; Mojave and Jewish nylon and polyester blends by Travis; 6 ply Maxus nylon blends or the like; and synthetic leathers by Daewoo, Inc. or the like. These fabrics may be used individually or in combination.
  • the seventh layer is a LYCRA® covered neoprene, moldable spacer fabric or slow recovery foam or reticulated open cell foam ankle cuff.
  • the tongue for the alpine boot is similar to the tongue of the in-line skate.
  • the tongue of the cross country boot is similar to the snowboard boot. They can be constructed of AQUAZONE OR VPF molded foams with a top sheet or moldable spacer fabrics. A slow recovery foam can also be used as specified with the snowboard boot.
  • the inner fabric is one or more of DRI-LEX Aero-spacer, polyester field sensor by Toray, polyester spacer by Malden, polypropylene, polar fleece, INNOVA or ALPHA or DRI-LEX DOESKIN, polyester sueded or fleeced or the like.
  • the outer tongue fabrics are high abrasive fabrics Kevlar, STARLITE, or Schollar's Corduras, 6500, DRI-LEX Aero-Spacer (or other Aero-spacer materials by Faytex, or the like, and breathable synthetic leathers by Daewoo, or the like.
  • a liner for the hiking boot would include the following.
  • the first layer is selected from a group including: polyester field sensor, looped poly terry, DRI-LEX by Faytex, DOE SKIN, BABY KID, CAMBRELLE by Faytex, anti-fungal, anti-microbial polypropylene fabrics, INNOVA or ALPHA, sueded polyester blends, COOL MAX or nylon blends, or the like. Any combination of these moisture transfer fabrics can also be used.
  • the second layer is a cellular elastomeric composite or hydrophilic open cell AQUAZONE OR VPF foam or COMFORTEMP by Frisby.
  • the Outlast membrane is optional in this layer. If a foam is used, a non-woven top sheet selected from previously mentioned materials can be attached as a backing.
  • the third layer is a molded hydrophilic AQUAZONE OR VPF backed by an aperture top sheet composed of cotton, polyester, polypropylene, lyocel, rayon, or wood pulp or the like.
  • a moldable heel and ankle spacer fabric by Muller or the like may also be used in place of the third layer of hydrophilic foam.
  • a moldable spacer fabric or foam may be added around the toe box and back cuff.
  • a molded heel/ankle insert by Muller Textil is preferably also used.
  • the fourth layer may utilize a waterproof/breathable membrane which may be any one of the following: Outlast membrane by Gateway Technologies combined with SECO-TEX, TX1540 (distributed by Shawmut Mills), THINTECH, VAPEX 2000/1300 standard, Laytex, WILCOFLEX DRY or the like.
  • the Outlast technology may also be used independently of the breathable membrane and may also be coated to the outer fabric or fibers. Also, this membrane layer may be eliminated in some models depending upon the hiker's needs.
  • encapsulation of the fifth layer can be performed to achieve similar results. If encapsulation is employed, then the third layer is preferably AQUAZONE OR VPF or a moldable spacer fabric, or THERMOLITE or the thermal Foss composite.
  • the Outlast technology can be used in combination outer fabrics with or without encapsulation, such as by Nextec, or the like.
  • the fifth and last layer is a combination of one or more of the following: Corduras; Supplex Nylon; STARLITE; Tudor; Kevlar; polyester nylon blends; and breathable synthetic leathers.
  • this layer is waterproofed by using encapsulation, waterproof films or coatings, or breathable membranes, with or without the Outlast or Frisby Technologies.
  • Elastomeric composite technology may be substituted in any area where there is a foam abutting nonwoven combination.
  • the breathable liner according to the present invention could also be added to clothing such as shirts, pants, gloves, helmets, etc., by omitting elements such as the structural mesh and by adjusting the number of foam material layers and their thickness.
  • clothing preferably has a wickable inner liner, followed by an elastomeric composite or a 1/16-1 ⁇ 8′′ AQUAZONE OR VPF open cell foam which may be embedded with or without Frisby Technologies.
  • a non-woven may or may not be laminated to the foam.
  • a breathable membrane abuts the foam or non-woven and is laminated to the outer fabric.
  • the outer fabric may be encapsulated, laminated to a breathable waterproof membrane, coated with a waterproof film, or structurally woven or knitted to repel water.
  • this liner system is using THERMOLITE or the thermal Ssoftherm product mechanically bonded to a needle punched composite inclusive of open cell foam and is may use a polyester spun bonded filter products by Tangerding Vlitesstoffe, Vitafiber, or the like to be used as an alternative to hydrophilic foam layers.

Abstract

The waterproof/breathable moisture transfer liner for a running and hiking shoe includes an inner liner selected from technically advanced fabrics which are carefully selected. A series of layers are provided outside the inner liner including foam material layers, breathable membranes, a supportive mesh or a moldable foam, and an outer shell fabric. The applicability of the liner to alpine, snowboard boots, cross country, hiking boots, protective gear and helmets, along with appropriate variations for each application.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application is a continuation application of U.S. Ser. No. 12/684,588, filed Jan. 8, 2010, which is a continuation application of U.S. Ser. No. 10/786,416, filed Feb. 26, 2004(now abandoned), which is a continuation-in-part application of U.S. Ser. No. 09/500,535, filed Feb. 9, 2000 (now abandoned), which is a continuation application of U.S. Ser. No. 08/910,116, filed Aug. 13, 1997 (now U.S. Pat. No. 6,048,810), which is a continuation-in-part application of U.S. Ser. No. 08/832,800, filed Apr. 4, 1997 (now abandoned), which is a continuation-in-part application of U.S. Ser. No. 08/747,340, filed Nov. 12, 1996 (now U.S. Pat. No. 5,738,937), and claims priority to U.S. Provisional Applications 60/449,580 and 60/449,584, both filed on Feb. 26, 2003. The entire disclosures of all of these applications are hereby incorporated by reference. In addition, the entire disclosures of abandoned applications U.S. Ser. No. 10/600,711, filed Jun. 23, 2003 and U.S. Ser. No. 10/757,454, filed Jan. 15, 2004, are also hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a variety of shoes and boots used in a variety of applications. For example, the present invention may be employed in a variety of applications including running shoes, lite hiking shoes and hiking boots, snowboard boots, alpine boots, and the like. The shoes and boots are breathable and waterproof to increase comfort for the runner, hiker or rider, etc. These shoes and boots include liner that transfer moisture in a way never before accomplished in the prior art.
  • BACKGROUND OF THE INVENTION
  • Various types of liners are known from the prior art. However, these liners do not provide the advantages realized by the present invention. The present inventor has recognized the problems faced by runners, snowboarders, skiers and hikers and developed shoes, boots and liners to overcome such problems.
  • There is an on-going need for comfort, breathability, and support for running shoes, snowboard boots and alpine boots and linings therefor. In prior designs, a rigid, non-breathable outer material, such as vinyl, foam, and nylon is often used. The inner liners have been leather, synthetic leather, nylon, or polyester blends which extremely limit the ability to breathe or wick moisture away from a runner or rider's body. These materials have prevented the foot from breathing adequately.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a first portion of the liner according to a first embodiment of the present invention.
  • FIG. 2 illustrates a second portion of the liner according to a first embodiment of the present invention.
  • FIG. 3 illustrates an example of the liner according to the first embodiment of the present invention.
  • FIG. 4 illustrates the liner shown in FIG. 3 which will form a part of a running shoe, snowboard boot or alpine boot liner.
  • FIGS. 5( a) and 5(b) illustrate a sole portion of a liner constructed according to a preferred embodiment of the present invention.
  • FIGS. 6 and 7 illustrate a tongue portion of a shoe or snowboard boot constructed according to the first embodiment of the present invention.
  • FIG. 8 illustrates a more detailed view of the liner portion used for the tongue of FIGS. 6 and 7.
  • FIG. 9 illustrates a portion of the liner used in the upper cuff area.
  • FIG. 10 illustrates the travel of moisture through a reticulated foam, then a flexible mesh, into and through a breathable membrane according to the first embodiment of the present invention.
  • FIG. 11 illustrates the toe portion of a shoe, snowboard boot or alpine boot according to a preferred embodiment of the present invention.
  • FIG. 12 illustrates an overall drawing of a snowboard boot, soft alpine, alpine or hiking boot which will incorporate the liner of the present invention.
  • FIG. 13 illustrates an overall drawing of a running shoe.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following detailed description of the preferred embodiments of the present invention is undertaken in connection with the drawings. This description, while undertaken with respect to the disclosed embodiments, is intended to enable a variety of different applications and slight modifications which form a part of the present invention. More specifically, many of the materials used in this lining system have been developed relatively recently, and in many cases are still being modified and improved. Where possible, tradenames of specific products have been used to assist in the understanding of the invention. The lining system according to the present invention can be easily adapted to accommodate further developments in these materials. For example, while the preferred embodiments are illustratively presented below as a specific sequence of layers, it should be understood that one or more of these layers may be omitted depending upon the specific needs of any application. In other words, it is not strictly necessary to have a certain number of foam layers just as that disclosed in the currently preferred embodiment. This also applies for the other elements that are described. For the sake of conciseness, every possible combination contemplated by the inventor is not specifically enumerated. With this in mind, the preferred embodiments currently envisioned are set forth below.
  • FIG. 1 illustrates a portion of the liner, or lining system, according to a first embodiment of the present invention. This embodiment is directed to a liner for a running shoe which is generally non-removable or for a snowboard or alpine boot which is generally removable. The liner may be non-removable in some embodiments. The various layers of materials discussed below can be attached to one another in a number of ways, particularly by lamination, mechanical bonding (or stitch bonding such as that done by Tietex, Inc. or XYMED GROUP by DuPont®) or Foss Manufacturing, or the like, or a combination of lamination and mechanical bonding. Mechanical bonding can be performed using nylon, spandex or LYCRA® thread, or the like. As shown in FIG. 1, a first foam material (20) is provided between an inner liner (10) and a nonwoven attached to a second foam material (30). The inner liner (10) can be attached to the first foam material (20) by lamination or the like. The second foam material (30) is a germicidal, reticulated and/or open cell foam and has a thickness of approximately 1/20 to ¼ inch. All of the foam materials used in the present invention are assumed to be breathable and their thickness can be varied depending upon specific needs. Alternatively, some of the foam materials can be replaced with a germicidal, hydrophilic open-cell foam. For example, a foam called AQUAZONE or VPF (made by FOAMEX) may be used. Preferably, the AQUAZONE or VPF is attached to a non-woven top sheet made of wool, wood pulp, polyester, cotton, rayon, polypropylene, LYCRA®, spandex, lyocel, acetate or a combination of these, etc.
  • The inner liner (10) is preferably constructed using specific fabrics possessing certain desired characteristics. A list of fabrics which can be employed depending upon the individual needs of their application as well as the individual needs of each runner or rider is provided below. These fabrics may either be used individually or in combination and can be double sided with one fiber on one side and another on the other side. Variations for use in a running or hiking shoe, snowboard or soft alpine or shell boot or liner are specifically recited.
  • The first fabric is an anti-microbial, anti-fungal polypropylene (also referred to as polyolefin) LYCRA® blend (2%) with INNOVA fiber, or the like. INNOVA is a continuous filament fiber (manufactured by Deercreek Fabrics, Inc. or Coville, Inc.).
  • The second fabric is an anti-microbial, anti-fungal polypropylene having a polyester or cotton backing, or the like (such as that manufactured by Coville, Inc.). For uses such as winter hiking, alpine boots, the polyester or cotton backing can be replaced with wool, silk, acetate, lyocel or the like.
  • The third fabric is an anti-microbial, anti-fungal polypropylene/cotton blend with ALPHA fiber (such as that manufactured by Intex Fabrics, Inc.).
  • The fourth fabric is a field sensor polyester with waffle weave construction (such as that manufactured by Toray and distributed by Yagi & Co., Inc.). Alternatively, a polyester material known as AQUA-DRY, manufactured by Teijin Shojin can be employed.
  • The fifth fabric is a hydrophilic anti-microbial DRI-LEX BABY KID or perforated material (such as that manufactured by Faytex Corp.).
  • The sixth fabric is a polyester looped terry (such as that manufactured by Kronfli Spundale Mills, Inc.).
  • The seventh fabric is a sueded/sanded polyester microfiber material (distributed by Yagi & Co., Inc. and Teijin Shojin, Inc.).
  • The eighth fabric is POLAR TEC Series 2000, which is a wickable, moisture transfer fiber, containing LYCRA® and polypropylene. This fabric is also anti-microbial.
  • The ninth fabric is a moisture transfer fabric by Tietex, Inc.
  • The tenth fabric is a wool blend with a cotton, polyester, or the like backing. Double faced knitted fabric
  • The eleventh fabric is nylon or nylon polyester blend treated with or without transfer dry fiber technology manufactured by Guilford Mills.
  • The twelve fabric is a spacer fabrics constructed of nylon, polyester, polyester or polypropylene blends manufactured by Malden Mills or Deercreek Fabrics or the like.
  • The thirteenth fabric is a polypropylene, polyester or acrylic blends. Chemically ionized synthetic fabrics by Sterling Fiber.(CYSTAR AF ECT.)
  • The fourteenth fabric is acrillan or DURASPUN acrylics fabrics by Monsanto.
  • Fifteen fabric is an acetate blend.
  • Other fabrics recommended are DRILINE by Milliken & Co. DRYWICK by Adidas, DRI F.I.T. by Nike, DRYLINER by Insport, DRY-LEX by Faytex, HYDROMOVE by Reebok International, HYDRASUEDE by Insport, M.C.S. by Burlington Mills, NATUREXX POLARTEC 100 series bi polar by Malden Mills, QUICK WICK Collection by Summit Knitting.
  • All synthetic fibers and fabrics may be treated with transfer dry fiber technologies.
  • Finally, spacer fabrics, polyester or polyester blends manufactured by Malden Mills and others can be used. These are composite fabrics having layers of fibers.
  • All of these fabrics have good moisture transfer characteristics which prevent damage to a runner or rider's foot by preventing excessive moisture build-up.
  • The moisture transfer characteristics of the inner liner (10) causes moisture vapors to pass from a runner or rider's body through the inner liner (10) where it then comes into contact with the first foam material (20). The moisture vapors travel through the first foam material (20) and come into contact with the abutting nonwoven or second foam material (30).
  • The first foam material (20) may be a cellular elastomeric composite (as described in U.S. Pat. No. 6,074,966 the disclosure of which hereby incorporated by reference), or the like. The cellular elastomeric composite is formed in one process and is developed by Foxrun Technology. Layer 20 is a 1/20″ to ⅛″ germicidal, reticulated foam (or germicidal, hydrophilic flexible polyester, open-cell foam such as AQUAZONE or VPF, Or the like) backed with a non-woven top sheet comprised of wool, wood pulp, rayon, cotton, polypropylene, lyocel, polyester, LYCRA®, spandex, or a combination there of or the like. The elastomeric composite natural synthetic or blend fibers and foam are hydroentangled or fused together with water pressure.
  • Alternatively, foam material 20 can be a foam that is separate from the non-woven top sheet and is attached to the non-woven top sheet by lamination, stitched, or ultrasonically bonded. The non-woven top sheet (when used) abuts the next layer of 1/20″ to ¼″ reticulated/hydrophilic flexible polyester, open cell foam, or second foam material 30. The second foam material 30 may also be a germicidal, hydrophilic, open cell 1/20″ to ¼″ foam, such as AQUAZONE or VPF or the like. The second foam material is preferably backed with a non-woven top sheet as mentioned above. In fact, any of the foam materials discussed herein can be backed by such a non-woven top sheet and can be a flexible polyester open cell foam. In fact the running shoe, hiking shoe, snowboard boot, soft alpine boot and shell boot or liner may utilize the composites to transfer moisture vapor. The composite system combines multiple layers of foams and nonwovens in numerous locations to absorb, move and transfer moisture. This foam composite creates a one-way system that allows moisture to travel only in an outward direction. Also, many of the foam materials are interchangeable depending upon specific needs. Alternatively, the foam materials can be flame laminated to a non-woven apertured top sheet of wool, cotton, lyocel, polypropylene or polyester, or a blend thereof, for example. The apertured top sheet may also be coated with a foam or may have a polymer dot matrix applied that is a polymer with phase change material (which have reversible enhanced thermal properties).
  • For example, the first foam layer 20 may also be substituted with a germicidal, hydrophilic open-cell, 1/16″ to ⅛″ foam, such as AQUAZONE or VPF. The foam can also be backed by non-woven top sheet. Also, a temperature regulating membrane called Outlast, by Gateway Technologies can be inserted between inner layer 10 and the first foam material 20, or applied to the fibers of layer 10.
  • Alternatively, Frisby Technologies can be embedded in the first open cell flexible polyester, hydrophilic foam layer 20 or placed in the second foam material 30. The hydrophilic foam is preferably AQUAZONE or VPF, but may be a Frisby product called COMFORTEMP, or the like.
  • The outlast membrane or coating can be placed on the other side of the foam, outside the non-woven top sheet, if present. In fact, phase change technology by Outlast, Frisby, Freudenberg, Schoeller or Invista, or the like may be combined with any foam, nonwoven or insulative layer and can be on either side.
  • A number of patents have been issued to Triangle Research & Development Corp. disclosing details related to the processes now being employed by Gateway Technologies and Frisby. For example, U.S. Pat. Nos. 4,756,958 and 5,366,801 are directed to fibers and fabrics with reversible enhanced thermal properties, respectively. The disclosures of these two patents are hereby incorporated by reference. Other patents assigned to Triangle Research & Development Corp., that are related by subject matter and have overlapping inventorship, include U.S. Pat. Nos. 5,415,22; 5,290,904; and 5,244,356. These patents are also hereby incorporated by reference.
  • Another patent, U.S. Pat. No. 5,499,460, which has overlapping inventorship with the above-mentioned patents, is directed to a moldable foam insole with reversible enhanced thermal storage properties. The disclosure of this patent is hereby incorporated by reference, and is illustrative of one type of moldable foam that can be used as mentioned herein.
  • The nonwoven may as well by treated with a thermal enhancing technology by Wisconsin Global Technologies or nanotechnology. Nanotechnology may be used in any portion of this invention.
  • As shown in FIG. 2, a third foam material 50, which provides support and has similar characteristics to the second foam material 30, allows the moisture vapors to continue their movement toward the outside. This third foam material 50 may be a foam, a nonwoven or spacer fabric, or combination thereof, is formed in certain areas to take necessary shapes such as the shape of an ankle, heel cup and foot bones, and is positioned so as to allow the moisture to pass through into subsequent elements, such as a waterproof/breathable membrane 70 and the outer layer 80 of the overall lining system. The outer layer 80 is preferably waterproofed by encapsulation or by using a waterproof/breathable finish or film. The third foam material 50 may alternatively be a spacer fabric by Muller or Malden or the like. The easily molded spacer fabric or the third reticulated/open cell foam material 50 can be designed to provide a well defined heel lift, and heel pocket. This invention develops the components necessary to increase technical performance with the increases support around the heel, toe, and ankle. For snowboard boots or alpine boots, the toe box is from top to bottom, wider and more flexible than in previous snowboard or alpine boots. The laminated or mechanically bonded foams and nonwovens under the heel support the runner and rider's lower back and allows for a comfortable stride. With this added comfort, the aggressive or recreational runner, hiker, rider or skier can achieve a higher level of continued performance. Spacer fabrics can be combined for improved performance.
  • As shown in FIG. 3, between the supporting second foam material 30 and the third foam material 50 is a structural mesh 40 which can be a flex guard, for example such as one manufactured by Naltex or Conwed or the like, that adds structural integrity to the lining system. A spacer fabric, moldable foam, or the like, may also be used in place of this flex guard or mesh. Also, neither may be used in some circumstances. The moldable foam, if not very breathable, can be made breathable by puncturing. Alternatively, the moldable foam can be a reticulated or hydrophilic, open-cell structure, or the like. A non-woven top-sheet (with or without apertures) can be attached to the moldable foam. If a spacer fabric or moldable foam is used, then the second foam material may be omitted. Also, the moldable foam can be AQUAZONE or VPF. Preferably, for extreme sports applications the moldable foam or spacer fabrics are used instead of the flexible mesh as layer 40.
  • As mentioned earlier, the material 50 is preferably similar in construction to the second foam material, namely being either germicidal, reticulated and approximately 1/20″ to ¼ inch thick, or being germicidal, hydrophilic open-cell (for example AQUAZONE or VPF). This material is preferably laminated to a non-woven top sheet (which may or may not be apertured) comprised of wood pulp, lyocel, acetate, rayon, or cotton. The top sheet abuts the waterproof/breathable membrane 70 or an encapsulated or coated outer fabric.
  • For snowboard, alpine and hiking boots, due to the cold weather conditions, a combination of THERMOLITE(or THERMALOFT) or the like and foam mechanically bonded or laminated together, or a foam and nonwoven, or SSOFTHERM inclusive of an open cell foam, or THERMOLITE with a spacer fabric or THERMOLITE by itself is preferably used for the third foam material 50. THERMOLITE, manufactured by DuPont®, is a thin insulation having a hollow polyester fiber laid in random layers with an acrylic binder (loose felted) needle punched through the cross section to attach layers and tie them down. Various types of THERMOLITE can be used, such as THERMOLITE EXTREME, THERMOLOFT, MICROLOFT, TFI 2000 G/M2 or TFI 4000 G/M2, etc.
  • Alternatively, a thermal nonwoven composite (by Foss Manufacturing) created with synthetic fibers having a open cell foam needle-punched into its internal structural layers can form layer 50, and abut layer 60, an elastomeric composite, a open cell foam, another nonwoven, a spacer fabric, another thermal product such as THERMOLITE, Foss thermal, or layer 70 a breathable membrane or layer 80 the exterior fabric or synthetic leather. Also, the foam can be combined with the fibers of the nonwoven or the nonwoven can be combined into the foam depending upon the application and whether there is a need for cooling or warming. The Foss composite may be next to outlast membrane or have the Frisby Technology embedded in the needled open cell foam applied. COMFORTEMP by Frisby Technology may also be needled into the existing Foss to thermal composite layer.
  • If encapsulation is used in outer layer 80 as discussed herein, then it is important to use THERMOLITE, THERMOLITE with foam or the Foss composite contracted of SSOFTHERM and acetate, polyester, acrylic or the like with open cell foam needled into the base as layer 50 and 60 in all alpine liners and hiking applications. The Foss composite may be bi-polar in nature and may contain wood pulp or lyocel fibers. Again, the Outlast membrane or Frisby can be used in combination with the third material 50, 60, especially in condition with THERMOLITE or the like.
  • The moisture vapor continues from the second foam material 30 through the mesh or spacer material 40 and on through the third exterior foam or THERMOLITE material 50 or combinations if applied in layer 60. The moisture vapors are then passed through waterproof/breathable membrane layer 70 if applied. The moisture vapors are absorbed into waterproof/breathable membrane passed through to an outer layer of fabric 80, as shown in FIG. 4. The waterproof/breathable membrane 70 can be selected from a variety presently available on the market. Those under the tradenames VAPEX 2000/Plus/Standard/1300, SECO-TEC, THINTECH, LAY-TEK and WITCOFLEX SUPER DRY FILM by Baxanden Chemicals (a hydrophilic membrane), and breathable membranes by Harrison Technologies are currently being considered. However, the membranes currently considered to be the preferred ones are called TX-1540 (application by Shawmut Mills). TX-1540 is intended to be an ultra-thin, skin friendly, moisture barrier that allows moisture vapors to escape while preventing outside water from penetrating. The Outlast membrane or the Frisby Technologies can be used in combination with other membranes with encapsulation techniques, or with structurally knitted fabrics and can adjust to temperature changes. Of the various encapsulation techniques, the one practiced by Nextec is particularly advantageous.
  • Also shown in FIG. 4 is an optional protective rim or cuff 90, preferably made of a slow recovery foam (by FOAMEX, for example) a spacer product by Muller Textil or neoprene covered by LYCRA®. Cuff 90 could also be made of a reticulated foam. The cuff is optional in all alpine and hiking boots. A pull tab 100, preferably made of nylon, is connected to the protective rim 90. In adventure sports applications an abrasive protective material 110 is provided adjacent to a tongue 300. Another abrasive protective material 120 is provided around the heed portion of the shoe. Abrasive protective material 120 is supplied by Schoeller, DuPont®, or the like. the protective material is optional in all alpine liners.
  • The outer layer of fabric 80 of the lining system has 200 to 6000 denier strength and is made waterproof by a membrane, a coating, encapsulation technology or by using structurally knitted, water repelling fabrics. Encapsulation technology is being utilized by a company called Nextec, Inc. or Toray, Inc. (a Japanese company or the like). Nextec Technology can be combined with the Outlast membrane or Frisby Technology. The Outlast membrane may be coated or laminated to the outer fabric. If the outer fabric is encapsulated then the outlast technology must be applied to the fiber or fabric prior to encapsulation. The Frisby temperature regulating molecules can be incorporated into the spaces between the encapsulated fibers and may be inserted at the time of encapsulation. The breathable membranes preserve the outer layer of fabric 80 and perform as a waterproof barrier for the runner orrider's liners. If the encapsulation technology is applied to the outer layer of fabric 80, then the breathable laminate membranes need not be used.
  • The outer layer 80 may be any of the following materials, either individually or in combination. These materials include synthetic leathers, synthetic breathable fabrics, or the like, by Daewoo, Kevlar, and Cordura fabrics, by Schoeller, travis or the like, Kevlar, and technical fabrics by DuPont® and Toray, Cordura treated by encapsulation by Nectex, Toray, DuPont®, Travis, and the like, 4-ply Supplex, Cordura waterproofed by the breathable membrane, F.L. fabric by Malden Mills, DERMIZAX by Toray, ENTRANT-GIL and WAXEY by Toray, GYMSTAR PLUS and TUFLEX-HR both by Unitika. The Corduras can be those made by others as well. Nylon or polyester spacer meshes waterproofed by coating, encapsulation or film. There are primarily three ways of protecting outer layer 80, encapsulation, using a membrane, structurally knitting the fabric to repel water or coating the fabrics with a waterproof film. Preferably, the outer layer 80 is a combination of one of the above-mentioned materials with one of the following: the Outlast or Frisby Technologies and encapsulation by Nextec or the like, or the Outlast membrane or Frisby Technologies and the waterproof/breathable fabrics such as ENTRANT-GIL, DERMIZAX, TUFLEX, GYMSTAR or the like. The Outlast membrane is laminated or coated to the outer fabric or woven into the fabric or fibers, or the Frisby Technology embedded in the encapsulated outer fabric and then laminated to the waterproof/breathable membrane, the Frisby or Outlast Technologies in combination with structurally knitted or woven waterproofed fabrics, or finally the Frisby or Outlast Technologies in combination with ENTRANT-GIL, DERMIZAX, TUFLEX, or GYMSTAR, nylon supplex or cordura, polyester, Kelvar or synthetic blends or the like. The outer fabrics in several performance categories may not apply either Frisby or Outlast Technologies. The Frisby technology may also be in combination with an elastomeric technology preferable by Foxrun Technologies or abutting the outer fabric layer 80 in any of the open cell foams or a membrane by Outlast technologies may be laminated to the elastomeric composite abutting the outer fabric layer 80. In fact phase change technology by Frisby, Outlast or Wisconsin Global Technologies may be applied to any layer of elastomeric, foam or nonwoven where specified.
  • Elastomeric composite technology may be substituted in any area where there is a foam abutting nonwoven composite combination.
  • Selecting the proper materials depends upon the needs of each individual runner or hiker or rider or skier's needs. The non-abrasive fabrics used in the moisture transfer inner liner of the present invention greatly reduces the possibility of trapped moisture, thereby protecting the foot from fungus growth and any damage. The anti-fungal, anti-microbial polypropylene (polyolefin) fabrics quickly remove moisture away from the foot. Skin damage is minimized because the polypropylene fabric has a smooth, continuous surface or soft fleeced texture. This fabric also prevents bacterial build-up which can cause foot odor and fungus. Chemical ionization may be applied to polyolefin
  • The polyester looped terry blend is an excellent wicking fabric and can remove moisture rapidly when treated with a wetting agent or chemical ionization.
  • The anti-fungal, anti-microbial, DRI-LEX nylon fabrics, like the polypropylene, is sanded and soft. The material is extremely comfortable and cool to the tough. Chemical ionization can be applied to nylon and nylon blends.
  • The polyester field sensor fabric works well with those individuals who prefer high performance. The liner absorbs moisture immediately.
  • A polyester microfiber fabric is smooth to touch and wickable. A wetting agent may be added to assist in moisture transfer. Chemical ionization can be applied to nylon and nylon blends
  • Finally, a wool, cotton or polyester blend backed with polyester, acrylic or cotton or the like. Structurally knitted double faced and ionized fabrics.
  • As a result of using this lining system, the runner, rider or hiker continues to have a cooler, drier foot. The lightweight Kevlar, STARLITE, Cordura, DERMIZAX or the like outer liner materials are twice as durable as the former heavyweight leathers, synthetic leathers and materials often used on the outer shell, functions as a flexible, high abrasive, breathable outer surface and aid in the moisture transfer and may be in combination with synthetic leathers and nylon or polyester spacer meshes products.
  • FIGS. 5( a) and 5(b) illustrate a sole portion 200 of a footbed insert. This removable footbed is constructed to remove moisture downward and out away from the runner or rider's foot. The inner lining material abuts an open cell foam laminated to a nonwoven abutting a moldable spacer product preferably by Muller Textil. In some cases the nonwoven may be removed. In extreme temperatures the Foss thermal composite constructed with Ssoftherm and a combination of one or more synthetic fibers is preferable. The synthetic fibers that may be blended with the Ssofttherm include a combination of polyester, acrylic, lyocel blends needled together with and open foam may take the place of the nonwoven and open cell foam combination or may abut the open cell on one side and the spacer product on the other side or the outer fabric. THERMOLITE or the like may be an option to the Foss thermal composite and may be needled together with an open cell foam. The footbed may be covered with CAMBRELLE DRI-LEX nylon, the Toray field sensor products or one of the selected inner lining materials or a nonwoven. The inserted hydrophilic open cell and spacer fabric composite adds support and transfers moisture downward. The bottom portion of the foam is preferably provided with a non-woven top sheet as described earlier. The heel pocked foam or spacer fabric protects the back of the heel. This cushion protector allows circulation in the heel. ComforMaxSport by DuPont®, an anti-microbial CAMBRELLE DRI-LEX nylon, Toray field sensor or one of the selected moisture transfer fabrics, or the like, covers a spacer fabric material, a slow recovery foam or molded hydrophilic foam 220 that supports the arch and insures additional comfort for a runner in some applications. This footbed insert is removable and when inserted abuts a nonwoven thermal inside the liner. BA FIGS. 6, 7, and 8 illustrate the tongue 300 of the shoe in more detail. The tongue is designed to add further comfort and support. As shown in FIG. 8, an inner liner fabric 310 of the tongue 300 is preferably one of the other inner liner materials mentioned above, especially the field sensor by Toray, polypropylene, LYCRA® blend with INNOVA fiber, the polyester microfiber, the polyester looped terry or the fabrics by Malden Mills, looped terry polypropylene blends or, polyester by Kronfli, Miliken or the like. This inner liner fabric 310 is preferably laminated to a structural support foam 320 and nonwoven. The nonwoven abuts a moldable spacer fabric followed by the nonwoven foot bed fabric. The foot bed is preferably molded and removable. Preferably, the foam is an ⅛ inch or ¼ inch and is germicidal, reticulated flexible polyester and open cell foam. The inner lining fabric may also be abutting an elastomeric composite or may be directly abutting a moldable spacer fabric and exterior materials. A hydrophilic open cell or perforated foam 330 (also could be a reticulated foam, or the like) abuts a structural support foam or spacer product 320. The hydrophilic perforated foam or spacer fabric 330 can take the shape of the foot bones and protect the upper foot from damage. The structural support 320 can also be shaped to accommodate the foot and protect the ankle bones. Optionally, a moldable spacer fabric by Muller, or the like, may also be used as portion 330. A moisture transfer material 340 lies over the hydrophilic open cell or perforated foam 330. This moisture transfer material 340 is preferably made from material known as aero-spacer DRI-LEX, which is manufactured by Faytex Corp, BIRDEYE nylon by Gilford Mills treated with or without transport technology, an aero-spacer fabric manufactured by Apex Mills, or a waterproof nylon or polyester blend or the like. The abutting exterior fabrics may be either a nylon or polyester blend spacer mesh material or one of the selected exterior fabrics mentioned and can be coated with a waterproof coating. In one embodiment, the aero-spacer, exterior spacer meshes products or outer fabrics are in combinations with synthetic leathers. It should be understood that non-woven synthetic materials can always be substituted for the aero-spacer DRI-LEX, spacer mesh products even if not specifically mentioned in other parts of this disclosure. The spacer mesh products 340, in some hiking applications, is wrapped around the outer edge of the tongue to allow moisture vapors traveling from the upper foot area to escape through moisture transfer material 340 to the outer surface of the tongue 300. Material 340 also aids in providing a softer edged tongue. Finally, an outer layer 350 may be added in some hiking applications over a central portion of the material 340. Another hydrophilic, molded foam (not shown), or slow recovery form, moldable spacer fabric or hydrophilic foam, is shaped to fit between the outer layer 350 and material 340. In extreme adventure sport applications the added protection may be required.
  • As shown in FIG. 6, outer layer 350, which can be a breathable synthetic leather (by Daewoo Corp. for example) or a Kevlar, or the like is surrounded by aero-spacer DRI-LEX 340, a substitute as mentioned above or a combination thereof. At the top of the tongue 300 an abrasive reflective grip fabric may be added for running and hiking applications (such as that manufactured by Schoeller and identified by the number 6500, or the like), also shown in FIG. 4. Stitching is identified by numeral 370. FIG. 7 illustrates a top portion of the tongue 300, and shows stitching 370 and the liner fabric 310.
  • The liners are preferably provided with a pull tab 100 as illustrated in FIGS. 4, 9, and 10 on the back of cuff 90 constructed of a slow recovery foam (by Rogers, or the like), moldable spacer fabric or neoprene covered by LYCRA®. Optionally, cuff 90 can be omitted altogether. FIG. 9 shows an opened up version of the liner looking from the back of the liner or hiking boot. Located just beneath the LYCRA® covered neoprene cuff or spacer fabric 90 is an abrasive grip fabric material 410, such as manufactured by Schoeller, Inc., and referred to by the number 6500. Below material 410 is a reflective grip composite material 420. An option in the hiking application is a highly abrasive fabric 110 as shown in FIG. 4. Fabric 110 is preferable a Kevlar or STARLITE, or a Cordura, or the like. Finally, outer shell fabric 80 is the same as that shown in FIG. 4, and can be any of the fabrics listed previously in connection with outer shell fabric 80. The nylon pull tab 100 allows the rider's easily entree into the liner.
  • FIG. 10 shows the other side of the liner of FIG. 9. In FIG. 10, 510 can be a ¼ inch moldable foam which has been punctured or a moldable spacer fabric or the like. 520 represents the combination of the flexible mesh and foam (in case the moldable foam is not used as depicted), the outer shell fabric. As in all of the figures, the arrows depict the flow of moisture. FIG. 11 illustrates the toe portion 400 of the liner. Preferably, the toe portion 400 is constructed with an inner liner 10, followed by a foam nonwoven composite abutting a thermal composite material 30, followed by a breathable membrane if used 60 and finally followed by the outer fabric 70. Foam material 30 can either be a single foam, two foams, a foam, nonwoven, foam composite, a THERMOLITE, a THERMOLITE and foam combination, Foss thermal composite with SSOFTHERM and synthetic fiber blends or any of these in combination with a non-woven top sheet (or a cellular elastomeric composite). Abrasive grip fabric is also shown. The breathable membrane is optional the shoe.
  • The 6500 high abrasive fabrics manufactured by Schoeller, Inc. or the like are optionally located on the back of the cuff and the top of the toe box and heel. The Kevlar and Cordura, STARLITE and Cordura fabrics provide comfort and durability to the liners and are extremely strong and resistant to abrasion and allow for breathability and performance.
  • FIG. 12 illustrates a snowboard boot liner incorporating the lining system discussed above. The following elements of the snowboard boot are shown: numeral 610 represents a waterproof breathable synthetic leather, a Kevlar fabric (made by Schoeller, or a similar material), Schoeller, DuPont® & Toray or the like, Cordura or DERMIZAX by Toray; numeral 615 represents materials similar to that of numeral 610, but can have different colors for aesthetic purposes; numeral 630 represents a Kevlar or a material made by Schoeller, or the like, with the heel portion being synthetic rubber, EVA, or the like, manufactured by Daewoo; numeral 635 represents an inner moisture transfer material covering a molded breathable foam or spacer fabric; numeral 640 represents a Kevlar or Cordura material; numeral 650 represents some decorative piping made of synthetic leather, stitching, polymer or the like; numeral 655 represents a pull tab made of nylon or synthetic leather; numeral 660 represents the base of the Boot which can be made of a synthetic polyurethane; numeral 670 represents a reflective Kevlar back; and finally, numeral 675 represents an optional sock that can be inserted into the boot with the permanent liner or the removable liner insert if desired.
  • The sock 675 is made up of three layers. The first layer can be any of the inner liner materials discussed above. The second layer is a layer of foam or THERMOLITE, THERMOLITE with foam or the Foss thermal composite with a foam needled in or a combination thereof. The third layer is a fabric such as moisture transfer polyester blend manufactured by Deercreek fabrics, Menra Mills, or the like. Encapsulation technology can also be applied to the third layer. Sock 675 can be used for additional warmth and is removable, unlike the shoe liner and can be inserted into the all weather synthetic rubber or leather boot or a combination of leather and synthetic rubber boot, a snowboard boot, soft alpine boot or alpine shell liner. The insert is preferable used in a boot where the inner liner is not removable. The three layers can be attached to one another by lamination, although mechanical bonding, or stitching, or ultrasonic bonding, can also be used.
  • FIG. 13 illustrates a running shoe 700 that is formed by the various combination of layers discussed above. The top portion of the shoe 700 emphasizes the various layers that make up the shoe and should be interpreted in the context of the discussion above regarding the various options.
  • The microfiber technology disclosed above is rapidly developing and changing and has greatly increased the potential for improved performance of such products such as running shoes and alpine boots, provided that they are properly utilized as in the present invention. These new products are part of rapidly developing fabric technology. The present invention employs a combination of fabric, foam, nonwovens, moldable spacer materials and THERMOLITE or SSOFTHERM blended layers with or without open cell foam needled into the layers, with or without breathable membranes. Breathable membranes are optional in the running or hiking shoe. Other options include structurally woven or knitted waterproof fabrics, coated fabrics, or encapsulated outer fabrics in such combinations that increase the performance of the products in which they are used as well as increasing breathability. The breathable membrane is optional in all alpine, snowboard boot, hiking applications and removable insert sock liners rubber boots or the like. While the discussion above has focused upon running and hiking shoes and snowboard and alpine boot liners, similar applications can be made with cross country boots, or in-line skates, protective gear, helmets, gloves, accessories and apparel with slight modifications. For example, in the case of a cross country ski boot, the liner would preferably have a waterproofed outer fabric, attached to a synthetic rubber base. Encapsulation technology and membranes such as TX1540, WILCOFLEX DRY combined with the Outlast technology from Gateway Technologies can be employed. It is preferable to use Outlast or Frisby close to the individual's foot in alpine, snowboard, or alpine cross country boots. Outlast or Frisby Technologies may also be added to any of the inner lining material listed. Otherwise, the liner could be very similar, although the use of the supportive mesh could be limited to certain areas. Adjustments in the breathable membrane would be made to accommodate winter conditions and cosmetic changes could be applied to the surface areas.
  • The following is a brief discussion of the variations that are preferably employed for a running and hiking shoes and snowboard or alpine liners and the like. Similar names correspond to similar products discussed above and are not described in further detail.
  • Alpine Boots
  • First, a liner for alpine boots is similar to in-line skate boots with moldable spacer products and plastic mesh by Naltex used for high-performance boots. This liner would have the following layers of materials (additional drawings for these applications are omitted in order to be concise). The liner will be described in a sequence of layers beginning with the innermost layer. The first layer is selected from a group including field sensor technology by Toray, anti-microbial, anti-fungal, polypropylene INNOVA or ALPHA; DRI-LEX CAMBRELLE, or DRILEX DOE SKIN manufactured by Faytex Corp., looped poly terry by Kronfli, DRI-LEX/polyterry by Faytex, polypropylene or wool blends backed by another fiber for example cotton or wool or the like by Coville, Cordura, polyester sueded or fleeced, moisture transfer materials, or Malden Mills polyester and blends thereof, or the like. A combination of these materials may also be employed depending upon the needs of an individual skier. All fabrics may be chemical ionization.
  • Just in the case of the snowboard boot, the various layers can be combined by lamination, mechanical bonding, stitch bonding, ultrasonic bonding or a combination of these two. The second and third layers would include a foam that contacts the first layer and is a germicidal, reticulated foam or a hydrophilic, open-cell foam, such as AQUAZONE OR VPF, FOAMEX or COMFORTEMP by Frisby or the like. Alternatively, these layers can be a cellular elastomeric composite which is one of the above-mentioned foams backed by a non-woven apertured top sheet composed of wood pulp, polyester, rayon, cotton, or polypropylene, in a single process. A foam nonwoven, foam, nonwoven composite may also be used followed by a thermal composite if applicable.
  • The fourth layer is a hydrophilic, open cell(AQUAZONE or VPF), slow recovery foam or flex-guard or a polyester spacer material (by Muller) or the like for support. In this case, AQUAZONE or VPF is laminated to a flat non-woven top sheet composed of wood pulp, rayon, cotton, polyester, lyocel, polypropylene which abuts a waterproof/breathable membrane (fifth layer). If the flex-guard is used, it is followed by another layer of AQUAZONE or VPF with a top sheet abutting the waterproof/breathable membrane or the encapsulated outer fabrics. If the spacer material is used, it may or may not be molded to accommodate the foot. The non-woven top sheet may be eliminated. The spacer material will be followed by either a waterproof membrane, an encapsulated or coated fabric. The spacer material may alternatively be used in a number of the boot layers in combination with a thermal composite, foam or a foam, nonwoven composite.
  • The fifth layer is a waterproof/breathable membrane which may be any one of the following: Outlast membrane by Gateway Technologies in combination with SECO-TEX, No. TX1540 (laminated by Shawmut Mills), THINTECH, VAPEX 2000/1300 standard, Laytex and ENTRANT-GIL by Toray or the like. The Outlast membrane by Gateway Technologies is in conjunction with one of the suggested breathable membranes or the like. The laminated or coated outlast membrane may also be combined with some encapsulated fibers and fabrics. The Frisby Technology may be embedded in the preceding foam or THERMOLITE or MICROLOFT by DuPont®, but is not in combination with a breathable membrane. Frisby Technology can be used in conjunction with structurally knitted waterproof fabrics, or with the encapsulation technology by Nectex, Toray or the like. Encapsulation by Nextec combined with the Outlast Technologies is preferred. If encapsulation is employed, then the fourth layer preferably includes THERMOLITE or a thermal foam composite inclusive of SSOFTHERM, a product by Foss Manufacturing, needled together with foam. If a non-removable liner is employed instead of a removable liner, a waterproof-breathable thin film can be used instead of encapsulation or a waterproof/breathable membrane.
  • The sixth and final layer in this removable shell liner may be Cordura, STARLITE, Tudor ¾ ply Supplex, Kevlar fabrics, DERMIZAX or encapsulated fabric or any combination of them. Also, a waterproof breathable thin film coated fabric could be used.
  • Alpine Cross Country Boots
  • A liner for the alpine cross country boots is similar to the snowboard boot liner except the cross country boot does not have a sock liner, and the foams (or THERMOLITE and foam) are thinner. This liner would include the following. A first layer selected from a group including polypropylene, LYCRA® or wool backed by cotton, wool, or a rayon blend or an anti-microbial, anti-fungal INNOVA or ALPHA; sueded polyester; polyester field sensor; looped polyester terry; DRI-LEX DOESKIN or BABY KID by Faytex Corp.; polyester DRI-LEX Terry by Faytex; polyester spacer fabric by Malden; and polypropylene backed by cotton by Coville.
  • The second layer is a germicidal open cell hydrophilic foam. It may be COMFORTEMP by Frisby or AQUAZONE or VPF with Frisby Technologies. This foam can be provided with or without a non-woven top sheet. The non-woven top sheet can be selected from any of the materials previously specified.
  • The third layer is a structural support foam or a moldable spacer material by Muller Textil. The foam may be a moldable hydrophilic AQUAZONE OR VPF. The heel and arch may also have a slow recovery foam or spacer product added for comfort. The thickness of the layer of foam or spacer fabric and THERMOLITE may vary for performance.
  • The fourth layer is a thin layer of THERMOLITE, the Foss foam thermal composite or AQUAZONE OR VPF or the like with a non-woven top sheet made of wood pulp, rayon, cotton, polyester, or polypropylene. The fourth layer may be optional in some performance categories.
  • The fifth layer is optionally, a waterproof/breathable membrane which may be any one of the following: SECO at Shawmut Mills, THINTECH, VAPEX 2000/1300 standard, Laytex, breathable membranes by Harrison Technologies, or ENTRANT-GIL by Toray. The outlast membrane by Gateway Technologies is employed for this layer. The outlast membrane can be used by itself, with another membrane or with encapsulation technology on the outer fabric, such as Nextec, Toray or the like. Frisby Technology may also be applied in the open cell foam, or encapsulated outer fabrics. COMFORTEMP by Frisby Technology may be used in some applications. Alternatively, instead of the membrane, just encapsulation of the sixth layer can be performed to achieve similar results. A combination of Outlast or Frisby and encapsulation fibers or fabrics by Nextec or the like is preferred. If encapsulation is employed, then the fourth layer preferably includes THERMOLITE or the Foss Manufacturing thermal foam composite.
  • The sixth layer is one of the following fabrics. Note that if these fabrics are encapsulated, the waterproof/breathable membrane in the fifth layer may not be needed in combination. These fabrics include the following: Cordura; LYCRA® blends; STARLITE by Faytex Corp.; Kevlar fabric by Schoeller (14705, 6500, 13207, 13632, 65563, etc.); DuPont® and Toray or the like, Cordura 2000 by DuPont®, DERMIZAX and ENTRANT-GIL by Toray, 3 or 4 ply Supplex; Mojave and Tudor nylon and polyester blends by Travis; 6 ply Maxus nylon blends or the like; and synthetic leathers by Daewoo, Inc. or the like. These fabrics may be used individually or in combination.
  • The seventh layer is a LYCRA® covered neoprene, moldable spacer fabric or slow recovery foam or reticulated open cell foam ankle cuff.
  • The tongue for the alpine boot is similar to the tongue of the in-line skate. The tongue of the cross country boot is similar to the snowboard boot. They can be constructed of AQUAZONE OR VPF molded foams with a top sheet or moldable spacer fabrics. A slow recovery foam can also be used as specified with the snowboard boot. The inner fabric is one or more of DRI-LEX Aero-spacer, polyester field sensor by Toray, polyester spacer by Malden, polypropylene, polar fleece, INNOVA or ALPHA or DRI-LEX DOESKIN, polyester sueded or fleeced or the like. The outer tongue fabrics are high abrasive fabrics Kevlar, STARLITE, or Schollar's Corduras, 6500, DRI-LEX Aero-Spacer (or other Aero-spacer materials by Faytex, or the like, and breathable synthetic leathers by Daewoo, or the like.
  • Hiking Boots
  • A liner for the hiking boot would include the following. The first layer is selected from a group including: polyester field sensor, looped poly terry, DRI-LEX by Faytex, DOE SKIN, BABY KID, CAMBRELLE by Faytex, anti-fungal, anti-microbial polypropylene fabrics, INNOVA or ALPHA, sueded polyester blends, COOL MAX or nylon blends, or the like. Any combination of these moisture transfer fabrics can also be used.
  • The second layer is a cellular elastomeric composite or hydrophilic open cell AQUAZONE OR VPF foam or COMFORTEMP by Frisby. The Outlast membrane is optional in this layer. If a foam is used, a non-woven top sheet selected from previously mentioned materials can be attached as a backing.
  • The third layer is a molded hydrophilic AQUAZONE OR VPF backed by an aperture top sheet composed of cotton, polyester, polypropylene, lyocel, rayon, or wood pulp or the like. A moldable heel and ankle spacer fabric by Muller or the like may also be used in place of the third layer of hydrophilic foam. A moldable spacer fabric or foam may be added around the toe box and back cuff. A molded heel/ankle insert by Muller Textil is preferably also used.
  • The fourth layer may utilize a waterproof/breathable membrane which may be any one of the following: Outlast membrane by Gateway Technologies combined with SECO-TEX, TX1540 (distributed by Shawmut Mills), THINTECH, VAPEX 2000/1300 standard, Laytex, WILCOFLEX DRY or the like. The Outlast technology may also be used independently of the breathable membrane and may also be coated to the outer fabric or fibers. Also, this membrane layer may be eliminated in some models depending upon the hiker's needs. Alternatively, instead of the membrane, encapsulation of the fifth layer can be performed to achieve similar results. If encapsulation is employed, then the third layer is preferably AQUAZONE OR VPF or a moldable spacer fabric, or THERMOLITE or the thermal Foss composite. The Outlast technology can be used in combination outer fabrics with or without encapsulation, such as by Nextec, or the like.
  • The fifth and last layer is a combination of one or more of the following: Corduras; Supplex Nylon; STARLITE; Tudor; Kevlar; polyester nylon blends; and breathable synthetic leathers. Preferably, this layer is waterproofed by using encapsulation, waterproof films or coatings, or breathable membranes, with or without the Outlast or Frisby Technologies.
  • Elastomeric composite technology may be substituted in any area where there is a foam abutting nonwoven combination.
  • Furthermore, the breathable liner according to the present invention could also be added to clothing such as shirts, pants, gloves, helmets, etc., by omitting elements such as the structural mesh and by adjusting the number of foam material layers and their thickness. For example, clothing preferably has a wickable inner liner, followed by an elastomeric composite or a 1/16-⅛″ AQUAZONE OR VPF open cell foam which may be embedded with or without Frisby Technologies. A non-woven may or may not be laminated to the foam. A breathable membrane abuts the foam or non-woven and is laminated to the outer fabric. The outer fabric may be encapsulated, laminated to a breathable waterproof membrane, coated with a waterproof film, or structurally woven or knitted to repel water. Indeed, the amount of foam used can be reduced due to cost consideration, etc. Presently, this liner system is using THERMOLITE or the thermal Ssoftherm product mechanically bonded to a needle punched composite inclusive of open cell foam and is may use a polyester spun bonded filter products by Tangerding Vlitesstoffe, Vitafiber, or the like to be used as an alternative to hydrophilic foam layers.
  • While the present invention has been described above in connection with the preferred embodiments, one of ordinary skill in the art would be enabled by this disclosure to make various modifications to the disclosed embodiments and still be within the scope and spirit of the present invention.

Claims (12)

1. A shoe or boot comprising:
an inner moisture transfer material;
a thermal nonwoven composite layer having a nonwoven top sheet to which a flexible, germicidal, open-cell foam material is attached;
a thermal insulating layer; and
an outer moisture transfer material waterproofed by a waterproof film,
wherein at least one of the layers has reversible enhanced thermal properties.
2. The shoe or boot according to claim 1, wherein the open-cell foam is hydrophilic and breathable.
3. The shoe or boot according to claim 1, wherein at least two of the four layers defined therein are attached to each other by lamination.
4. The shoe or boot according to claim 1, wherein at least two of the four layers defined therein are attached to each other by mechanical bonding.
5. The shoe or boot according to claim 1, wherein the outer moisture transfer material includes a water repellant knitted or woven fabric.
6. The shoe or boot according to claim 1, wherein the open-cell foam is coated with a polymer dot matrix including a phase change material.
7. The shoe or boot according to claim 1, wherein the nonwoven top sheet is coated with a polymer dot matrix including a phase change material.
8. A shoe or boot comprising:
an inner moisture transfer material; and
a thermal nonwoven composite having a nonwoven topsheet of synthetic fibers affixed to an open-cell foam material,
wherein the thermal nonwoven composite is affixed to the inner moisture transfer material and moisture vapor is transferable from the inner moisture transfer material through the thermal nonwoven composite, and
wherein at least one of the inner moisture transfer material and thermal nonwoven composite have reversible enhanced thermal properties.
9. The shoe or boot according to claim 8, wherein the thermal nonwoven composite is coated with a polymer dot matrix including a phase change material.
10. The shoe or boot according to claim 8, further comprising an outer layer attached to the thermal nonwoven composite, the outer layer comprising encapsulated synthetic fibers.
11. A shoe or boot comprising:
an inner moisture transfer material; and
a thermal nonwoven composite which includes an open-cell foam material affixed to a nonwoven topsheet, the thermal nonwoven composite being affixed to the inner moisture transfer material,
wherein the thermal nonwoven composite has reversible enhanced thermal properties.
12. The shoe or boot according to claim 11, wherein the thermal nonwoven composite is coated with a polymer dot matrix including a phase change material.
US13/047,449 1996-11-12 2011-03-14 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics Abandoned US20110225848A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/047,449 US20110225848A1 (en) 1996-11-12 2011-03-14 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US13/684,671 US20130078419A1 (en) 1996-11-12 2012-11-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US14/514,531 US20150031258A1 (en) 1996-11-12 2014-10-15 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US14/967,579 US20160088900A1 (en) 1996-11-12 2015-12-14 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US15/245,602 US20160360824A1 (en) 1996-11-12 2016-08-24 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US15/673,735 US20170332726A1 (en) 1996-11-12 2017-08-10 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US16/438,625 US20190289954A1 (en) 2000-02-09 2019-06-12 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US08/747,340 US5738937A (en) 1996-11-12 1996-11-12 Waterproof/breathable liner and in-line skate employing the liner
US83280097A 1997-04-04 1997-04-04
US08/910,116 US6048810A (en) 1996-11-12 1997-08-13 Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US50053500A 2000-02-09 2000-02-09
US44958403P 2003-02-26 2003-02-26
US44958003P 2003-02-26 2003-02-26
US10/786,416 US20050034330A1 (en) 1996-11-12 2004-02-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US12/684,588 US20100107452A1 (en) 1996-11-12 2010-01-08 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US13/047,449 US20110225848A1 (en) 1996-11-12 2011-03-14 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/684,588 Continuation US20100107452A1 (en) 1996-11-12 2010-01-08 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/684,671 Continuation US20130078419A1 (en) 1996-11-12 2012-11-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Publications (1)

Publication Number Publication Date
US20110225848A1 true US20110225848A1 (en) 2011-09-22

Family

ID=46301877

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/786,416 Abandoned US20050034330A1 (en) 1996-11-12 2004-02-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US12/684,588 Abandoned US20100107452A1 (en) 1996-11-12 2010-01-08 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US13/047,449 Abandoned US20110225848A1 (en) 1996-11-12 2011-03-14 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US13/684,671 Abandoned US20130078419A1 (en) 1996-11-12 2012-11-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US14/514,531 Abandoned US20150031258A1 (en) 1996-11-12 2014-10-15 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/786,416 Abandoned US20050034330A1 (en) 1996-11-12 2004-02-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US12/684,588 Abandoned US20100107452A1 (en) 1996-11-12 2010-01-08 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/684,671 Abandoned US20130078419A1 (en) 1996-11-12 2012-11-26 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US14/514,531 Abandoned US20150031258A1 (en) 1996-11-12 2014-10-15 Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics

Country Status (1)

Country Link
US (5) US20050034330A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140059891A1 (en) * 2012-08-29 2014-03-06 Chung-Kuang Lin Structure of shoe
CN104039188A (en) * 2011-10-05 2014-09-10 辛帕特克斯技术有限公司 Composite with improved moisture drainage
US20140283410A1 (en) * 2013-03-22 2014-09-25 Reebok International Limited Molded Footwear Upper And Method Of Making Same
US20150150335A1 (en) * 2013-12-04 2015-06-04 Tbl Licensing Llc Waterproof shoe with size and shape-adjustable bootie
CN106113681A (en) * 2016-06-27 2016-11-16 中国人民解放军总后勤部军需装备研究所 A kind of vamp Compound Fabric of gradient function and preparation method thereof
WO2018195147A3 (en) * 2017-04-18 2019-01-03 Bha Altair, Llc Method and apparatus for one piece footwear construction
WO2019160170A1 (en) * 2018-02-13 2019-08-22 박문환 Shoe sole having double structure

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060242862A1 (en) * 2005-04-26 2006-11-02 Linda Chelani Winter sport/snow boot
US20070062067A1 (en) * 2005-09-16 2007-03-22 Columbia Insurance Company Boot with interchangeable booties
US7958573B2 (en) * 2006-01-19 2011-06-14 Gentex Corporation Size adjustable safety and comfort liner for a helmet
US20070199210A1 (en) * 2006-02-24 2007-08-30 The Timberland Company Compression molded footwear and methods of manufacture
US20070214682A1 (en) * 2006-03-17 2007-09-20 Smotrycz Zenon O Ventilated shoe sole construction with improved medical support
US20070281569A1 (en) * 2006-06-05 2007-12-06 Ming Lai Wu Thermally Insulated and Moisture-Repellent Textile Structure
US7908772B2 (en) * 2006-08-15 2011-03-22 Columbia Insurance Company Footwear with additives and a plurality of removable footbeds
GB0713830D0 (en) * 2007-07-17 2007-08-29 P2I Ltd Novel products method
US9885129B2 (en) 2007-12-19 2018-02-06 Coolcore, Llc Fabric and method of making the same
US8440119B2 (en) * 2007-12-19 2013-05-14 Tempnology Llc Process of making a fabric
US8122616B2 (en) * 2008-07-25 2012-02-28 Nike, Inc. Composite element with a polymer connecting layer
US20100039239A1 (en) * 2008-08-13 2010-02-18 Ibetoh Angela Joseph Easy-on talking and detection shoes for kids
US8074375B2 (en) * 2009-03-16 2011-12-13 Le Chameau Boot
WO2011075765A1 (en) * 2009-12-21 2011-06-30 Sea To Summit Pty Ltd A condensate management system and material incorporating same
US9707119B2 (en) 2010-06-21 2017-07-18 Under Armour, Inc. Foot support article
US9402437B2 (en) * 2010-06-21 2016-08-02 Under Armour, Inc. Foot support article
AU2011289321B2 (en) 2010-08-11 2016-03-24 G-Form, LLC Flexible cushioning pads, items incorporating such pads, and methods of making and using
US20120198595A1 (en) * 2011-02-08 2012-08-09 Young Tracy L Article of clothing for cycling
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods
US11026473B2 (en) 2011-05-19 2021-06-08 Under Armour, Inc. Foot support article
ES2592530T3 (en) 2011-06-17 2016-11-30 Fiberweb, Llc Multi-layer vapor permeable article, substantially waterproof
WO2012177996A2 (en) 2011-06-23 2012-12-27 Fiberweb, Inc. Vapor permeable, substantially water impermeable multilayer article
US10369769B2 (en) 2011-06-23 2019-08-06 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
WO2012178011A2 (en) 2011-06-24 2012-12-27 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
CA2842451A1 (en) * 2011-07-29 2013-02-07 W. L. Gore & Associates Gmbh Upper assembly for footwear and footwear including the same
US9615611B2 (en) 2011-08-11 2017-04-11 G-Form, LLC Breathable impact absorbing cushioning and constructions
AT13332U1 (en) * 2011-08-19 2013-10-15 Flawa Ag sole
US9392839B2 (en) * 2012-01-06 2016-07-19 Sport Maska Inc. Laminate quarter panel for a skate boot and skate boot formed therewith
CA2868027A1 (en) * 2012-03-19 2013-09-26 G-Form, LLC Protective impact absorbing structures with internal reinforcement and materials therefor
DE212012000278U1 (en) * 2012-06-20 2015-01-27 CosmoCare Ltd. clothing
EP2877064B1 (en) 2012-07-27 2019-05-08 Tempur-Pedic Management, LLC Body support cushion having multiple layers of phase change material
FR2994062B1 (en) * 2012-08-06 2014-08-29 Decathlon Sa SHOE COMPRISING AN INNER SHOE
CN104120540A (en) * 2013-04-23 2014-10-29 上海帕兰朵纺织科技发展有限公司 Composite-function fiber knitted fabric with moisture absorption and heating functions and manufacturing method thereof
US20140352178A1 (en) * 2013-05-28 2014-12-04 Karsten Manufacturing Corporation Ventilated footwear
US20170273404A1 (en) * 2013-08-13 2017-09-28 Under Armour, Inc. Footwear upper with molded geometry
CN104757741A (en) * 2014-01-07 2015-07-08 维珍妮国际(集团)有限公司 Improvement on manufacture of shoes
US20150230541A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Footwear Assemblies Made Therewith, and Waterproof Breathable Socks
US20150230543A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Footwear Assemblies Made Therewith, and Waterproof Breathable Socks
US20170156442A1 (en) * 2014-07-11 2017-06-08 Geox S.P.A. Method for providing parts of waterproof and breathable shoes, parts of waterproof and breathable shoes provided with the method, and waterproof and breathable soles provided with the shoe parts
CN104921400B (en) * 2015-06-10 2017-01-04 国网四川省电力公司宜宾供电公司 A kind of electrical insulation boots
KR20180042291A (en) 2015-08-13 2018-04-25 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 Booty and footwear assemblies comprising seamless stretch films, and methods therefor
CN108135302A (en) 2015-08-19 2018-06-08 W.L.戈尔及同仁股份有限公司 Compliance seamless three-dimensional product and the method for the product
EP3556238B1 (en) * 2018-04-19 2023-06-07 Dunlop Protective Footwear B.V. Article of footwear, and method for manufacturing such an article
US11083242B2 (en) 2018-03-29 2021-08-10 Dunlop Protective Footwear B.V. Article of footwear, and method for manufacturing such an article
CN111096522A (en) * 2018-10-25 2020-05-05 清远广硕技研服务有限公司 Waterproof breathable vamp
JP2021154026A (en) * 2020-03-30 2021-10-07 美津濃株式会社 Shoe sole structure, production method thereof, and shoe comprising the sole structure

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US575090A (en) * 1897-01-12 Cleat
US3020169A (en) * 1956-12-06 1962-02-06 B B Chem Co Shoe lining and stiffening materials
US3366291A (en) * 1965-09-02 1968-01-30 Geo W Bollman & Co Inc Hat making method
US3570150A (en) * 1969-01-27 1971-03-16 Robert B Field Shoe upper assembly
US3961124A (en) * 1974-11-04 1976-06-01 George Matton Shoe-stiffener material of latex saturated flexible fabric
US4015347A (en) * 1974-12-28 1977-04-05 Kazuyoshi Morishita Insoles effective for curing and preventing athlete's foot
US4166152A (en) * 1977-08-17 1979-08-28 Minnesota Mining And Manufacturing Company Tacky polymeric microspheres
US4192086A (en) * 1978-09-29 1980-03-11 Scholl, Inc. Deodorizing insole
US4216177A (en) * 1979-05-16 1980-08-05 Rogers Corporation Polyurethane foam product and process of manufacture thereof from thermosetting frothed mixture
US4245410A (en) * 1979-05-14 1981-01-20 Questor Corporation Foamed ski boot
US4279179A (en) * 1979-08-23 1981-07-21 J. I. Case Company Ignition system control
US4338371A (en) * 1980-12-24 1982-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Absorbent product to absorb fluids
US4338366A (en) * 1977-10-28 1982-07-06 The Procter & Gamble Company Surface wiping implement
US4391872A (en) * 1979-07-26 1983-07-05 Teijin, Ltd. Hollow water-absorbing polyester filament textile material
US4454191A (en) * 1981-08-17 1984-06-12 Bluecher Hubert Waterproof and moisture-conducting fabric coated with hydrophilic polymer
US4524529A (en) * 1982-08-27 1985-06-25 Helmut Schaefer Insole for shoes
US4529641A (en) * 1983-11-21 1985-07-16 Monsanto Company Thermoformable laminate structure
US4594283A (en) * 1984-04-05 1986-06-10 Kuraray Co., Ltd. Shoemaking material and production thereof
US4599810A (en) * 1981-08-06 1986-07-15 W. L. Gore & Associates Waterproof shoe construction
US4639397A (en) * 1983-04-15 1987-01-27 Toray Industries, Inc. Thick and thin fiber having grooves on its surface and process for producing the same
US4656760A (en) * 1985-02-26 1987-04-14 Kangaroos U.S.A., Inc. Cushioning and impact absorptive means for footwear
US4662006A (en) * 1985-09-05 1987-05-05 Grandoe Corporation Multi-ply glove or mitt construction
US4666765A (en) * 1985-10-02 1987-05-19 Caldwell James M Silicone coated fabric
US4674204A (en) * 1983-02-28 1987-06-23 Sullivan James B Shock absorbing innersole and method for preparing same
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US4805319A (en) * 1985-02-26 1989-02-21 Kangaroos U.S.A., Inc. Cushioning and impact absorptive means for footwear operative component
US4816328A (en) * 1987-11-13 1989-03-28 W. L. Gore & Associates, Inc. Breathable, non-linting laminate
US4823407A (en) * 1987-05-22 1989-04-25 Burlington Industries, Inc. Headwear with face tunnel for cold weather environment
US4845862A (en) * 1987-03-11 1989-07-11 Burlington Industries, Inc. Cold weather footwear
US4894932A (en) * 1987-02-04 1990-01-23 Nippon Rubber Co., Ltd. Air-permeable shoe
US4909523A (en) * 1987-06-12 1990-03-20 Rollerblade, Inc. In-line roller skate with frame
US4910886A (en) * 1983-02-28 1990-03-27 Sullivan James B Shock-absorbing innersole
US4925732A (en) * 1988-07-27 1990-05-15 W. L. Gore & Associates, Inc. Breathable flexible laminates adhered by a breathable adhesive
US4983450A (en) * 1986-11-18 1991-01-08 Mitsue Toatsu Chemicals, Inc. Gas-permeable, waterproof nonwoven fabric and process for its production
US5000643A (en) * 1985-07-16 1991-03-19 Kao Corporation Goods handling method and apparatus thereof
US5004643A (en) * 1988-03-14 1991-04-02 Sili-Tex, Inc. Silicone polymer-internally coated webs
US5006057A (en) * 1988-02-16 1991-04-09 Eastman Kodak Company Modified grooved polyester fibers and spinneret for production thereof
US5010596A (en) * 1990-06-25 1991-04-30 Brown Darryl L Conformable weighted conditioning garment
US5021280A (en) * 1988-12-09 1991-06-04 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Waterproof sweat-transmitting clothing insulation
US5035943A (en) * 1989-05-12 1991-07-30 Precision Fabrics Group Breathable foam-coated nonwoven pillow ticking
US5043209A (en) * 1988-11-22 1991-08-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Absorbent liner for impermeable clothing
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5092614A (en) * 1990-07-10 1992-03-03 Rollerblade, Inc. Lightweight in-line roller skate, frame, and frame mounting system
US5098778A (en) * 1990-04-24 1992-03-24 General Electric Company Plastic based laminates comprising outer fiber-reinforced thermoset sheets, lofted fiber-reinforced thermoplastic sheets and a foam core layer
US5126182A (en) * 1989-10-17 1992-06-30 Malden Mills Industries, Inc. Drapable, water vapor permeable, wind and water resistant composite fabric and method of manufacturing same
US5134017A (en) * 1988-09-02 1992-07-28 Precision Fabrics Group, Inc. Foam coated protective apparel fabric
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
US5216825A (en) * 1992-01-21 1993-06-08 Brum Kenneth A Odor adsorbing contoured support inner sole
US5224356A (en) * 1991-09-30 1993-07-06 Triangle Research & Development Corp. Method of using thermal energy absorbing and conducting potting materials
US5277954A (en) * 1992-08-13 1994-01-11 W. L. Gore & Associates, Inc. Adhesive-backed breathable layered materials
US5290904A (en) * 1991-07-31 1994-03-01 Triangle Research And Development Corporation Heat shield
US5330208A (en) * 1993-03-22 1994-07-19 Charron Francois E Shock absorbent in-line roller skate
US5340132A (en) * 1991-06-13 1994-08-23 Rollerblade, Inc. Torsionally stiffened in-line roller skate frame with dual side walls
US5342070A (en) * 1993-02-04 1994-08-30 Rollerblade, Inc. In-line skate with molded joe box
US5378529A (en) * 1990-01-24 1995-01-03 Salomon S.A. Material allowing the absorption and drainage of moisture and article of clothing fitted with a material of this kind
US5380020A (en) * 1993-01-28 1995-01-10 Rollerblade, Inc. In-line skate
US5385036A (en) * 1993-05-24 1995-01-31 Guilford Mills, Inc. Warp knitted textile spacer fabric, method of producing same, and products produced therefrom
US5397141A (en) * 1993-07-30 1995-03-14 Canstar Sports Group Inc. In-line skate construction
US5398948A (en) * 1993-07-23 1995-03-21 Mathis; Ronald J. Damping mechanism for roller skate
US5400526A (en) * 1993-09-14 1995-03-28 Sessa; Raymond V. Footwear sole with bulbous protrusions and pneumatic ventilation
US5415924A (en) * 1993-02-05 1995-05-16 Aquatic Design Waterproof, breathable fabric for outdoor athletic apparel
US5415222A (en) * 1993-11-19 1995-05-16 Triangle Research & Development Corporation Micro-climate cooling garment
US5431970A (en) * 1993-08-11 1995-07-11 Broun; Conway C. Laminate material for protective bags and cases
US5437466A (en) * 1993-07-19 1995-08-01 K-2 Corporation In-line roller skate
US5439733A (en) * 1989-06-26 1995-08-08 Lainiere De Picardie Insert intended for use in the clothing industry
US5499460A (en) * 1992-02-18 1996-03-19 Bryant; Yvonne G. Moldable foam insole with reversible enhanced thermal storage properties
US5499459A (en) * 1994-10-06 1996-03-19 H. H. Brown Shoe Company, Inc. Footwear with replaceable, watertight bootie
US5503413A (en) * 1994-10-31 1996-04-02 Pavel Belogour In-line roller skates with suspension
US5544908A (en) * 1994-05-06 1996-08-13 K-2 Corporation Thermoplastic composite ski and method of manufacture
US5549973A (en) * 1993-06-30 1996-08-27 Carnegie Mellon University Metal, alloy, or metal carbide nanoparticles and a process for forming same
US5637389A (en) * 1992-02-18 1997-06-10 Colvin; David P. Thermally enhanced foam insulation
US5655226A (en) * 1992-10-09 1997-08-12 Williams; Cole Article of waterproof, breathable apparel and the method of making same
US5727336A (en) * 1992-01-31 1998-03-17 Ogden, Inc. Footwear insole with a moisture absorbent inner layer
US5738937A (en) * 1996-11-12 1998-04-14 Baychar; Waterproof/breathable liner and in-line skate employing the liner
US5763335A (en) * 1996-05-21 1998-06-09 H.H. Brown Shoe Technologies, Inc. Composite material for absorbing and dissipating body fluids and moisture
US5775006A (en) * 1994-12-14 1998-07-07 Truckee Winter Sports, Inc. Insulated winter weather boot having an adjustable strap closure
US5783277A (en) * 1997-04-17 1998-07-21 Malden Mills Industries, Inc. Three-dimensional knit spacer fabric for footwear and outerwear
US5785909A (en) * 1996-08-21 1998-07-28 Nike, Inc. Method of making footwear with a pourable foam
US5787502A (en) * 1994-02-17 1998-08-04 Middleton; Nigel John Thermoinsulative protective garments
US5876792A (en) * 1988-03-14 1999-03-02 Nextec Applications, Inc. Methods and apparatus for controlled placement of a polymer composition into a web
US5879715A (en) * 1997-09-02 1999-03-09 Ceramem Corporation Process and system for production of inorganic nanoparticles
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US6018819A (en) * 1998-04-15 2000-02-01 Bha Technologies, Inc. Garment with moisture vapor transmissive wind barrier panels
US6048810A (en) * 1996-11-12 2000-04-11 Baychar; Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US6065227A (en) * 1997-03-31 2000-05-23 Chen; Eddie Waterproof foot covering
US6074966A (en) * 1996-09-09 2000-06-13 Zlatkus; Frank P. Nonwoven fabric composite having multi-directional stretch properties utilizing a cellular or foam layer
US6171446B1 (en) * 1998-10-19 2001-01-09 Shakespeare Company Press felt with grooved fibers having improved dewatering characteristics
US6200915B1 (en) * 1998-04-28 2001-03-13 Dow Corning Ltd Silicone coated textile fabrics
US6237251B1 (en) * 1991-08-21 2001-05-29 Reebok International Ltd. Athletic shoe construction
US20010008672A1 (en) * 1996-03-20 2001-07-19 Jean Norvell Flocked articles
US20010016992A1 (en) * 1999-02-01 2001-08-30 Gross Alexander L. Method for producing a blow molded plastic outdoor boot shell
US20020012784A1 (en) * 1999-03-02 2002-01-31 Norton Edward J. Composite footwear upper and method of manufacturing a composite footwear upper
US6509285B1 (en) * 1997-09-15 2003-01-21 Patrick Yeh Fabric for moisture management
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US20040058102A1 (en) * 1996-11-12 2004-03-25 Baychar Moisture transfer liner for alpine boots, snowboard boots inline skates, hockey skates, hiking boots and the like
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
US20040081791A1 (en) * 2002-07-03 2004-04-29 Abrams Louis Brown Flocked articles and methods of making same
US20060124892A1 (en) * 2004-12-09 2006-06-15 Rolland Loic P Phase change material (PCM) compositions for thermal management

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050491A (en) * 1976-06-21 1977-09-27 Wilma Rae Hargrove Storage bag for use with a students chair-desk
US4233349A (en) * 1979-03-26 1980-11-11 E. I. Du Pont De Nemours And Company Suede-like product and process therefor
IT1119336B (en) * 1979-07-31 1986-03-10 Stalteri F PROCEDURE AND PLANT FOR THE MANUFACTURE OF FOOTWEAR OF SYNTHETIC MATERIAL WITH THE EFFECT OF SUEDE AND FOOTWEAR SO OBTAINED
US4621013A (en) * 1983-11-21 1986-11-04 Monsanto Company Thermoformable laminate structure
US4851291A (en) * 1986-06-19 1989-07-25 The United States Of America As Represented By The Secretary Of Agriculture Temperature adaptable textile fibers and method of preparing same
US5154682A (en) * 1989-09-14 1992-10-13 David Kellerman Low friction adjustable shoe insert
US5364678A (en) * 1989-10-17 1994-11-15 Malden Mills Industries, Inc. Windproof and water resistant composite fabric with barrier layer
US5075343A (en) * 1989-11-16 1991-12-24 Blount David H Flame-retardant polyurethane foam utilizing boric acid
US5169712A (en) * 1991-08-23 1992-12-08 Amoco Corporation Porous film composites
US5294258A (en) * 1992-04-08 1994-03-15 Nordson Corporation Apparatus for producing an integral adhesive matrix
US6004662A (en) * 1992-07-14 1999-12-21 Buckley; Theresa M. Flexible composite material with phase change thermal storage
CH689665A5 (en) * 1993-09-07 1999-08-13 Lange Int Sa Shoe portion other than the sole, in particular slipper tongue inside ski boot.
GB9319359D0 (en) * 1993-09-18 1993-11-03 Lucas Ind Plc Gear arrangement
JPH10502137A (en) * 1994-06-14 1998-02-24 ゲイトウェイ・テクノロジーズ・インコーポレーテッド Energy absorbing fabric coating and method of manufacture
US5566395A (en) * 1994-07-20 1996-10-22 Nebeker; Leonard R. Liner for hat
US5677048A (en) * 1996-03-04 1997-10-14 Gateway Technologies, Inc. Coated skived foam and fabric article containing energy absorbing phase change material
US6474001B1 (en) * 1998-12-11 2002-11-05 Eddie Chen Waterproof shoe having stitch seam for drainage II
US6602811B1 (en) * 1998-12-23 2003-08-05 Malden Mills Industries, Inc. Anti-microbial enhanced knit fabric
WO2001006054A1 (en) * 1999-07-19 2001-01-25 Avantgarb, Llc Nanoparticle-based permanent treatments for textiles
US6474002B2 (en) * 2000-06-09 2002-11-05 Eddie Chen Waterproof shoe having a waterproof but vapor-permeable lining sleeve
IT1317368B1 (en) * 2000-10-10 2003-06-16 Nottington Holding Bv WATERPROOF FOOTWEAR STRUCTURE WITH SOLE OR MIDSOLE PRINTED ON THE UPPER.
US6770580B2 (en) * 2001-08-08 2004-08-03 Golite Fabric material constructed from open-sided fibers for use in garments and the like

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US575090A (en) * 1897-01-12 Cleat
US3020169A (en) * 1956-12-06 1962-02-06 B B Chem Co Shoe lining and stiffening materials
US3366291A (en) * 1965-09-02 1968-01-30 Geo W Bollman & Co Inc Hat making method
US3570150A (en) * 1969-01-27 1971-03-16 Robert B Field Shoe upper assembly
US3961124A (en) * 1974-11-04 1976-06-01 George Matton Shoe-stiffener material of latex saturated flexible fabric
US4015347A (en) * 1974-12-28 1977-04-05 Kazuyoshi Morishita Insoles effective for curing and preventing athlete's foot
US4166152A (en) * 1977-08-17 1979-08-28 Minnesota Mining And Manufacturing Company Tacky polymeric microspheres
US4166152B1 (en) * 1977-08-17 1999-05-18 Minnesota Mining & Mfg Tacky polymeric microspheres
US4338366A (en) * 1977-10-28 1982-07-06 The Procter & Gamble Company Surface wiping implement
US4192086A (en) * 1978-09-29 1980-03-11 Scholl, Inc. Deodorizing insole
US4245410A (en) * 1979-05-14 1981-01-20 Questor Corporation Foamed ski boot
US4216177A (en) * 1979-05-16 1980-08-05 Rogers Corporation Polyurethane foam product and process of manufacture thereof from thermosetting frothed mixture
US4391872A (en) * 1979-07-26 1983-07-05 Teijin, Ltd. Hollow water-absorbing polyester filament textile material
US4279179A (en) * 1979-08-23 1981-07-21 J. I. Case Company Ignition system control
US4338371A (en) * 1980-12-24 1982-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Absorbent product to absorb fluids
US4599810A (en) * 1981-08-06 1986-07-15 W. L. Gore & Associates Waterproof shoe construction
US4454191A (en) * 1981-08-17 1984-06-12 Bluecher Hubert Waterproof and moisture-conducting fabric coated with hydrophilic polymer
US4524529A (en) * 1982-08-27 1985-06-25 Helmut Schaefer Insole for shoes
US4674204A (en) * 1983-02-28 1987-06-23 Sullivan James B Shock absorbing innersole and method for preparing same
US4910886B1 (en) * 1983-02-28 1995-05-09 Atlantic Thermoplastics Co Inc Shock-absorbing innersole
US4910886A (en) * 1983-02-28 1990-03-27 Sullivan James B Shock-absorbing innersole
US4639397A (en) * 1983-04-15 1987-01-27 Toray Industries, Inc. Thick and thin fiber having grooves on its surface and process for producing the same
US4529641A (en) * 1983-11-21 1985-07-16 Monsanto Company Thermoformable laminate structure
US4594283A (en) * 1984-04-05 1986-06-10 Kuraray Co., Ltd. Shoemaking material and production thereof
US4656760A (en) * 1985-02-26 1987-04-14 Kangaroos U.S.A., Inc. Cushioning and impact absorptive means for footwear
US4805319A (en) * 1985-02-26 1989-02-21 Kangaroos U.S.A., Inc. Cushioning and impact absorptive means for footwear operative component
US5000643A (en) * 1985-07-16 1991-03-19 Kao Corporation Goods handling method and apparatus thereof
US4662006A (en) * 1985-09-05 1987-05-05 Grandoe Corporation Multi-ply glove or mitt construction
US4666765A (en) * 1985-10-02 1987-05-19 Caldwell James M Silicone coated fabric
US4983450A (en) * 1986-11-18 1991-01-08 Mitsue Toatsu Chemicals, Inc. Gas-permeable, waterproof nonwoven fabric and process for its production
US4894932A (en) * 1987-02-04 1990-01-23 Nippon Rubber Co., Ltd. Air-permeable shoe
US4845862A (en) * 1987-03-11 1989-07-11 Burlington Industries, Inc. Cold weather footwear
US4823407A (en) * 1987-05-22 1989-04-25 Burlington Industries, Inc. Headwear with face tunnel for cold weather environment
US4909523A (en) * 1987-06-12 1990-03-20 Rollerblade, Inc. In-line roller skate with frame
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US4816328A (en) * 1987-11-13 1989-03-28 W. L. Gore & Associates, Inc. Breathable, non-linting laminate
US5006057A (en) * 1988-02-16 1991-04-09 Eastman Kodak Company Modified grooved polyester fibers and spinneret for production thereof
US5004643A (en) * 1988-03-14 1991-04-02 Sili-Tex, Inc. Silicone polymer-internally coated webs
US5418051A (en) * 1988-03-14 1995-05-23 Fabric Coating Corporation Internally coated webs
US5876792A (en) * 1988-03-14 1999-03-02 Nextec Applications, Inc. Methods and apparatus for controlled placement of a polymer composition into a web
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
US4925732A (en) * 1988-07-27 1990-05-15 W. L. Gore & Associates, Inc. Breathable flexible laminates adhered by a breathable adhesive
US5134017A (en) * 1988-09-02 1992-07-28 Precision Fabrics Group, Inc. Foam coated protective apparel fabric
US5047448A (en) * 1988-09-27 1991-09-10 Kuraray Company Limited Antimicrobial-shaped article and a process for producing the same
US5043209A (en) * 1988-11-22 1991-08-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Absorbent liner for impermeable clothing
US5021280A (en) * 1988-12-09 1991-06-04 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Waterproof sweat-transmitting clothing insulation
US5035943A (en) * 1989-05-12 1991-07-30 Precision Fabrics Group Breathable foam-coated nonwoven pillow ticking
US5439733A (en) * 1989-06-26 1995-08-08 Lainiere De Picardie Insert intended for use in the clothing industry
US5126182A (en) * 1989-10-17 1992-06-30 Malden Mills Industries, Inc. Drapable, water vapor permeable, wind and water resistant composite fabric and method of manufacturing same
US5378529A (en) * 1990-01-24 1995-01-03 Salomon S.A. Material allowing the absorption and drainage of moisture and article of clothing fitted with a material of this kind
US5098778A (en) * 1990-04-24 1992-03-24 General Electric Company Plastic based laminates comprising outer fiber-reinforced thermoset sheets, lofted fiber-reinforced thermoplastic sheets and a foam core layer
US5010596A (en) * 1990-06-25 1991-04-30 Brown Darryl L Conformable weighted conditioning garment
US5092614A (en) * 1990-07-10 1992-03-03 Rollerblade, Inc. Lightweight in-line roller skate, frame, and frame mounting system
US5340132A (en) * 1991-06-13 1994-08-23 Rollerblade, Inc. Torsionally stiffened in-line roller skate frame with dual side walls
US5290904A (en) * 1991-07-31 1994-03-01 Triangle Research And Development Corporation Heat shield
US6237251B1 (en) * 1991-08-21 2001-05-29 Reebok International Ltd. Athletic shoe construction
US5224356A (en) * 1991-09-30 1993-07-06 Triangle Research & Development Corp. Method of using thermal energy absorbing and conducting potting materials
US5216825A (en) * 1992-01-21 1993-06-08 Brum Kenneth A Odor adsorbing contoured support inner sole
US5727336A (en) * 1992-01-31 1998-03-17 Ogden, Inc. Footwear insole with a moisture absorbent inner layer
US5637389A (en) * 1992-02-18 1997-06-10 Colvin; David P. Thermally enhanced foam insulation
US5499460A (en) * 1992-02-18 1996-03-19 Bryant; Yvonne G. Moldable foam insole with reversible enhanced thermal storage properties
US5277954A (en) * 1992-08-13 1994-01-11 W. L. Gore & Associates, Inc. Adhesive-backed breathable layered materials
US5655226A (en) * 1992-10-09 1997-08-12 Williams; Cole Article of waterproof, breathable apparel and the method of making same
US5380020A (en) * 1993-01-28 1995-01-10 Rollerblade, Inc. In-line skate
US5342070A (en) * 1993-02-04 1994-08-30 Rollerblade, Inc. In-line skate with molded joe box
US5415924A (en) * 1993-02-05 1995-05-16 Aquatic Design Waterproof, breathable fabric for outdoor athletic apparel
US5330208A (en) * 1993-03-22 1994-07-19 Charron Francois E Shock absorbent in-line roller skate
US5385036A (en) * 1993-05-24 1995-01-31 Guilford Mills, Inc. Warp knitted textile spacer fabric, method of producing same, and products produced therefrom
US5549973A (en) * 1993-06-30 1996-08-27 Carnegie Mellon University Metal, alloy, or metal carbide nanoparticles and a process for forming same
US5437466A (en) * 1993-07-19 1995-08-01 K-2 Corporation In-line roller skate
US5437466B1 (en) * 1993-07-19 1997-11-18 K 2 Corp In-line roller skate
US5398948A (en) * 1993-07-23 1995-03-21 Mathis; Ronald J. Damping mechanism for roller skate
US5397141A (en) * 1993-07-30 1995-03-14 Canstar Sports Group Inc. In-line skate construction
US5431970A (en) * 1993-08-11 1995-07-11 Broun; Conway C. Laminate material for protective bags and cases
US5400526A (en) * 1993-09-14 1995-03-28 Sessa; Raymond V. Footwear sole with bulbous protrusions and pneumatic ventilation
US5415222A (en) * 1993-11-19 1995-05-16 Triangle Research & Development Corporation Micro-climate cooling garment
US5787502A (en) * 1994-02-17 1998-08-04 Middleton; Nigel John Thermoinsulative protective garments
US5544908A (en) * 1994-05-06 1996-08-13 K-2 Corporation Thermoplastic composite ski and method of manufacture
US5499459A (en) * 1994-10-06 1996-03-19 H. H. Brown Shoe Company, Inc. Footwear with replaceable, watertight bootie
US5503413A (en) * 1994-10-31 1996-04-02 Pavel Belogour In-line roller skates with suspension
US5775006A (en) * 1994-12-14 1998-07-07 Truckee Winter Sports, Inc. Insulated winter weather boot having an adjustable strap closure
US20010008672A1 (en) * 1996-03-20 2001-07-19 Jean Norvell Flocked articles
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5763335A (en) * 1996-05-21 1998-06-09 H.H. Brown Shoe Technologies, Inc. Composite material for absorbing and dissipating body fluids and moisture
US5785909A (en) * 1996-08-21 1998-07-28 Nike, Inc. Method of making footwear with a pourable foam
US6074966A (en) * 1996-09-09 2000-06-13 Zlatkus; Frank P. Nonwoven fabric composite having multi-directional stretch properties utilizing a cellular or foam layer
US6893695B2 (en) * 1996-11-12 2005-05-17 Baychar Holdings, Llc Waterproof/breathable moisture transfer composite and liner for snowboard boots, alpine boots, hiking boots and the like
US20040058102A1 (en) * 1996-11-12 2004-03-25 Baychar Moisture transfer liner for alpine boots, snowboard boots inline skates, hockey skates, hiking boots and the like
US6048810A (en) * 1996-11-12 2000-04-11 Baychar; Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US5738937A (en) * 1996-11-12 1998-04-14 Baychar; Waterproof/breathable liner and in-line skate employing the liner
US6065227A (en) * 1997-03-31 2000-05-23 Chen; Eddie Waterproof foot covering
US5783277A (en) * 1997-04-17 1998-07-21 Malden Mills Industries, Inc. Three-dimensional knit spacer fabric for footwear and outerwear
US5879715A (en) * 1997-09-02 1999-03-09 Ceramem Corporation Process and system for production of inorganic nanoparticles
US6509285B1 (en) * 1997-09-15 2003-01-21 Patrick Yeh Fabric for moisture management
US6018819A (en) * 1998-04-15 2000-02-01 Bha Technologies, Inc. Garment with moisture vapor transmissive wind barrier panels
US6200915B1 (en) * 1998-04-28 2001-03-13 Dow Corning Ltd Silicone coated textile fabrics
US6171446B1 (en) * 1998-10-19 2001-01-09 Shakespeare Company Press felt with grooved fibers having improved dewatering characteristics
US20010016992A1 (en) * 1999-02-01 2001-08-30 Gross Alexander L. Method for producing a blow molded plastic outdoor boot shell
US20020012784A1 (en) * 1999-03-02 2002-01-31 Norton Edward J. Composite footwear upper and method of manufacturing a composite footwear upper
US6723428B1 (en) * 1999-05-27 2004-04-20 Foss Manufacturing Co., Inc. Anti-microbial fiber and fibrous products
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US20040081791A1 (en) * 2002-07-03 2004-04-29 Abrams Louis Brown Flocked articles and methods of making same
US20060124892A1 (en) * 2004-12-09 2006-06-15 Rolland Loic P Phase change material (PCM) compositions for thermal management

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039188A (en) * 2011-10-05 2014-09-10 辛帕特克斯技术有限公司 Composite with improved moisture drainage
US20140059891A1 (en) * 2012-08-29 2014-03-06 Chung-Kuang Lin Structure of shoe
US20140283410A1 (en) * 2013-03-22 2014-09-25 Reebok International Limited Molded Footwear Upper And Method Of Making Same
US10499706B2 (en) * 2013-03-22 2019-12-10 Reebok International Limited Molded footwear upper and method of making same
US20150150335A1 (en) * 2013-12-04 2015-06-04 Tbl Licensing Llc Waterproof shoe with size and shape-adjustable bootie
CN106113681A (en) * 2016-06-27 2016-11-16 中国人民解放军总后勤部军需装备研究所 A kind of vamp Compound Fabric of gradient function and preparation method thereof
WO2018195147A3 (en) * 2017-04-18 2019-01-03 Bha Altair, Llc Method and apparatus for one piece footwear construction
WO2019160170A1 (en) * 2018-02-13 2019-08-22 박문환 Shoe sole having double structure

Also Published As

Publication number Publication date
US20150031258A1 (en) 2015-01-29
US20130078419A1 (en) 2013-03-28
US20100107452A1 (en) 2010-05-06
US20050034330A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US20150031258A1 (en) Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US20210127787A1 (en) Performance action sports product having a breathable, mechanically bonded, needlepunch nonwoven material combining shaped fibers and thermal and cooling fibers
US6893695B2 (en) Waterproof/breathable moisture transfer composite and liner for snowboard boots, alpine boots, hiking boots and the like
US8569190B2 (en) Waterproof/breathable moisture transfer liner for snowboard boots, alpine boots, hiking boots and the like
US10980309B2 (en) Performance footwear, apparel or medical accessory product for hot, cold, and all-weather conditions, the performance footwear, apparel or medical accessory product comprised of a series of material layers
US7314840B2 (en) Waterproof/breathable, moisture transfer, soft shell Alpine boots, and snowboard boots, insert liners and footbeds
US20180079185A1 (en) Softboots and waterproof/breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US6981341B2 (en) Waterproof/breathable moisture transfer composite capable of wicking moisture away from an individual's body and capable of regulating temperature
US20040058102A1 (en) Moisture transfer liner for alpine boots, snowboard boots inline skates, hockey skates, hiking boots and the like
US20140120310A1 (en) Softboots and waterproof/breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
US20170332726A1 (en) Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US20190289954A1 (en) Running shoes, hiking shoes and boots, snowboard boots, alpine boots, hiking boots, and the like, having waterproof/breathable moisture transfer characteristics
US20220234336A1 (en) Softboots and waterproof/breathable moisture transfer composite and liner for in-line skates, ice-skates, hockey skates, snowboard boots, alpine boots, hiking boots and the like
EP1539477B1 (en) Moisture transfer liner for alpine boots, snowboard boots, inline skates, hockey skates, hiking boots and the like

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION