US20100114169A1 - Flexible linking piece for stabilising the spine - Google Patents

Flexible linking piece for stabilising the spine Download PDF

Info

Publication number
US20100114169A1
US20100114169A1 US12/606,901 US60690109A US2010114169A1 US 20100114169 A1 US20100114169 A1 US 20100114169A1 US 60690109 A US60690109 A US 60690109A US 2010114169 A1 US2010114169 A1 US 2010114169A1
Authority
US
United States
Prior art keywords
anchor
wall
rigid
rigid portion
connecting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/606,901
Inventor
Regis Le Couedic
Denis Pasquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zimmer Spine SAS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/606,901 priority Critical patent/US20100114169A1/en
Assigned to ZIMMER SPINE S.A.S. reassignment ZIMMER SPINE S.A.S. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT SPINE
Publication of US20100114169A1 publication Critical patent/US20100114169A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7031Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other made wholly or partly of flexible material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass

Definitions

  • This disclosure relates to a connecting member for maintaining the spacing between at least two anchor members which are interconnected by said connecting member.
  • Systems for stabilizing the vertebral column by bracing at least two consecutive vertebrae by means of anchor members fixed into said vertebrae and connected by rigid connecting rods are well known in the art.
  • Systems of this kind are generally coupled systems such that two consecutive vertebrae are interconnected by two substantially parallel rods fixed one on each side of the spinous processes.
  • the anchor members are screwed into the posterior portions of the vertebrae and pass through the pedicles and a substantial portion of the vertebral bodies and therefore provide a fixed and durable connection.
  • the above stabilizing systems are routinely used to consolidate several consecutive vertebrae.
  • the vertebrae are interconnected by rigid rods over a substantial length of the vertebral column.
  • Such assemblies hold the vertebrae correctly relative to each other; however, they considerably stiffen the spine in terms of bending. It has been shown that a more flexible stabilizing system, which confers greater relative mobility on the vertebrae, is beneficial in some pathologies.
  • a first object of embodiments described herein is to provide a connecting member for maintaining the spacing of existing anchor members while at the same time allowing relative mobility of said anchor members.
  • a connecting member in accordance with one embodiment adapted to maintain the spacing between at least two anchor members screwed into vertebrae, comprises at least two rigid rod-forming parts made of a first material and each having a fixing, first portion adapted to be fixed into an anchor member and a fastening, second portion, said rods being aligned with each other and said fastening portions facing each other, and a connecting body that is made entirely from a second material that is more elastically deformable than said first material and interconnects the facing fastening portions of said rigid parts so that said connecting body is able to deform elastically, whereby the vertebrae, which are held spaced from each other, are movable relative to each other.
  • a feature of the connecting member lies in the way the two rigid parts are fastened together by means of an elastically deformable connecting body which imparts relative mobility to the rigid parts when under stress, with the reaction force to the stress being proportional, within certain limits, to the deformation of the connecting body.
  • the connecting member can be bent by stresses in directions that are not parallel to the axis of the connecting member; it can also be stretched or contracted by opposing forces acting parallel to the axis of the connecting member.
  • the two anchor members when at rest, are interconnected by the connecting member with its fixing portions fastened to the anchor members, and can be moved relative to each other by forces proportional to the movement.
  • Said rigid parts are preferably mechanically connected together by a single connecting body providing the whole of said mechanical connection.
  • a single member provides the connection between the rigid parts at the same time as controlling relative movement of the rigid parts.
  • said connecting body consists entirely of a single second material to simplify assembly and to impart homogeneous mechanical properties to it.
  • the connecting member of an embodiment has n rigid parts with n ⁇ 1 connecting bodies disposed between them along the longitudinal axis of said member, each rigid part situated between two connecting bodies having one fixing, first portion and two fastening, second portions, there being one fastening, second portion at each end of said fixing, first portion, and said fastening, second portions being connected respectively to said two connecting bodies, and the rigid parts at the two ends of said member advantageously have respective single fastening, second portions connected to the connecting bodies, whereby said connecting member is adapted to interconnect n anchor members.
  • the connecting member maintains the spacing between all the anchor members that it interconnects, each of which can be fixed to a respective vertebra, to align them.
  • Each rigid part is fixed to an anchor member and, between successive anchor members, there is a connecting body that interconnects the two fastening portions.
  • a single connecting member stabilizes several vertebrae, which reduces the time to assemble the stabilizing system as a whole and consequently the operating time.
  • the connecting member stabilizes several consecutive vertebrae by connecting them together, while at the same time making them highly flexible and conferring on them a high degree of relative compressibility in the longitudinal direction.
  • each of said fastening portions of said rigid parts that said connecting body interconnects has a fastening wall to which said connecting body is adapted to adhere.
  • said fastening wall has openings adapted to cooperate with asperities on said connecting body to increase the surface area of contact between said wall and said body.
  • providing openings in a wall increases the surface area of that wall, which increases the contact area between the two materials if one of the materials can be molded onto the wall of the other material.
  • the increase in contact area increases the connecting forces between said connecting body and said fastening portions.
  • the static friction forces of the material of the connecting member on said two members are increased in a corresponding manner and these forces are added to the connecting forces.
  • Said second material of which said connecting body is made is advantageously obtained by polymerization.
  • the connecting body can easily be hot molded onto the fastening walls if the material is polymerized beforehand, or it can be formed in situ if the rate of polymerization of the monomers constituting said second material is sufficiently low to provide the time necessary for completing the assembly.
  • said first material of which said rigid parts are made is a titanium alloy. It is therefore easy to form openings in said fastening wall to which said connecting body is able to adhere.
  • the section of said rigid rod-forming parts is circular, which facilitates the manufacture of the member. Also, if prior art circular section connecting rods are to be replaced by connecting rods described herein without making it necessary to replace the anchor members, it is necessary for said rigid parts to have sections identical to the sections of the prior art connecting rods.
  • the present disclosure also provides a vertebral stabilization system for fastening together at least two vertebrae each having a median plane substantially perpendicular to the axis of the spine of which they form a part and a posterior wall defining a posterior median plane of said spine, said system comprising at least two anchor members each adapted to be fixed into the posterior wall of a respective vertebra so that a line which intersects said two anchor members is substantially parallel to said axis of the spine, which system further comprises at least one connecting member whose two rigid parts are adapted to interconnect said two anchor members so that the axis of said connecting member is substantially parallel to said axis of the spine, whereby said vertebrae, which are interconnected via their posterior portions, present relative mobility along said axis of said spine.
  • FIG. 1 is a diagrammatic perspective view of a connecting member in accordance with an embodiment
  • FIG. 2 is a diagrammatic view in axial section of the connecting member in accordance with an embodiment
  • FIG. 3 is a perspective view showing anchor members connected by the connecting member
  • FIG. 4 is a side elevation view of a vertebral column showing two consecutive vertebrae into which there are screwed anchor members interconnected by a connecting member in accordance with an embodiment
  • FIG. 5 is a perspective view showing a connecting member having two connecting bodies and three rigid parts.
  • the connecting member 10 has two cylindrical rigid parts 12 and 14 .
  • Each rigid part 12 , 14 has a fixing, first portion 16 , 18 and a fastening, second portion 20 , 22 forming an enlargement.
  • the facing fastening portions 20 and 22 are connected together by a connecting body 24 so that the rigid parts 12 and 14 are in axial alignment.
  • the connecting member 10 is therefore circularly symmetrical about the axis A.
  • the connecting body 24 is a plastics material body obtained by polymerization.
  • the material of the body is chosen from materials which are more elastically deformable than the material of said rigid parts 12 , 14 and, most importantly, whose elastic properties are of the same order of magnitude as those of the posterior ligaments that hold the spine together.
  • Organic silicon compounds constitute polymers whose mechanical properties can be determined by the choice of their basic components, in particular by their degree of substitution, the nature of the substituents, and their molecular weight, and whose elastic behavior predominates over its plastic behavior. They therefore constitute a family of materials suitable for interconnecting the two rigid parts 12 and 14 . Also, these polymers can adhere strongly to materials of inorganic composition. Thus the connecting body 24 provides good means for fastening together the rigid parts 12 , 14 , which are generally made of titanium alloy.
  • polymer materials that can be used are not limited to organic silicon compounds, and any other material having comparable properties could be suitable.
  • the material of the connecting body 24 is adapted to adhere to the fastening walls 20 ′ and 22 ′ of said fastening second portions 20 , 22 .
  • openings 30 , 32 are formed in the fastening walls 20 , 22 of the fastening, second portions and are adapted to cooperate with asperities 26 , 28 on the connecting body 24 which are inserted into the openings 30 , 32 .
  • This feature increases the contact area between the two materials and thereby increases the connecting force between them in a direction normal to said surface of contact and creates static friction forces which are additional to the adhesion force.
  • connection of the above kind is obtained either by injecting the polymer while hot between the two rigid parts 12 and 14 held facing each other in a mold, or by cold molding the mixture of monomers between the two rigid parts 12 and 14 , if the speed of the reaction is sufficiently low.
  • the asperities 26 , 28 are therefore formed in situ, when the polymer liquid or paste inserted into the openings 26 , 28 solidifies after cooling or after a chemical reaction.
  • the connecting body 24 consists of the polymer disposed between the rigid parts 12 and 14 , more specifically between the fastening walls 20 ′ and 22 ′, and, in order to retain the polymer between the facing portions while it is in the liquid state, the walls of the mold must necessarily surround the space between and in line with the two rigid parts 12 , 14 .
  • the openings 30 , 32 formed in the fastening walls 20 ′ and 22 ′ open onto the outside wall of the rigid parts 12 and 14 so that the liquid polymer penetrates entirely into the openings 30 , 32 without it being possible for air to be trapped therein. This reinforces the fastening of the connecting body 24 to the rigid parts 12 , 14 .
  • the openings 30 , 32 which are shown as parallel to the longitudinal axis of the connecting member in FIG. 2 , can be oblique to that longitudinal axis and/or not rectilinear. These configurations increase the static friction forces of the polymer on the rigid parts, which fastens them together more strongly.
  • the connecting member 10 is able to bend in all directions in a plane Pp perpendicular to the axis A of the connecting member when the two first portions are immobilized. Bending of the connecting member 10 compresses one edge of the connecting body 24 and stretches the diametrally opposite edge, whereas the rigid parts 12 and 14 retain their shape. Because the material of the connecting body 24 is elastically deformable, when the stresses causing the bending are removed, the connecting member 10 returns to its original state in which the rigid parts 12 and 14 are in axial alignment.
  • the rigid parts 12 and 14 can move relative to each other in opposite directions along the longitudinal axis A to compress or stretch the connecting body 24 .
  • the relative movement of the two rigid parts 12 and 14 can occur in directions other than the directions described above, but the connecting member is principally loaded in bending, tension and compression, as described in more detail below.
  • FIG. 3 shows the connecting member 10 whose two rigid parts 12 and 14 interconnect the two anchor members 42 and 44 .
  • the two anchor members 42 and 44 are parallel to each other in a common axial plane Pa.
  • Each anchor member 42 , 44 has a threaded shank 46 with a U-shaped head 48 at the top whose inside wall is threaded so that a screw-forming member 50 can be screwed into it.
  • a screw-forming member 50 can be screwed into it.
  • the bending of the connecting member 10 compresses the lower edge 52 of the connecting body 24 and stretches the diametrally opposite upper edge 54 , while the rigid parts 12 and 14 retain their shape. Because the material of the connecting body 24 is elastically deformable, when the stress is removed the connecting member reverts to its original rectilinear shape and the threaded shanks of the anchor members 46 return to their former relative position.
  • the mechanism of elastic bending of the connecting member 10 and the anchor members 42 , 44 described above is the same if the threaded shanks 46 of the anchor members 42 and 44 move away from each other, the connecting member bending with the opposite curvature.
  • anchor members 42 and 44 are movable in translation relative to each other along the axis A, their relative movement stretching or compressing the connecting body 24 .
  • connecting member 10 in a vertebral stabilization system for fastening together at least two vertebrae V 1 and V 2 is described below with reference to FIG. 4 .
  • the vertebrae V 1 , V 2 each have respective median planes PV 1 , PV 2 substantially perpendicular to the axis Ar of the spine of which they form part, and respective posterior walls PPV 1 , PPV 2 defining a posterior median plane PPr of said spine.
  • the stabilizing system includes at least two anchor members 42 and 44 respectively screwed into the posterior walls PPV 1 , PPV 2 of the vertebrae V 1 , V 2 , so that a line L that intersects the two anchor members 42 and 44 is substantially parallel to said axis Ar of the spine.
  • the two first portions 16 and 18 of the connecting member 10 interconnect the two anchor members 42 and 44 .
  • the vertebrae V 1 and V 2 which are interconnected in their posterior portions, possess relative mobility along the axis Ar of the spine.
  • the vertebrae V 1 and V 2 move away from each other in opposite directions E and ⁇ E, which causes the threaded shanks 46 to move away from each other, deforming the connecting member 10 , and in particular its connecting body 24 .
  • the connecting body is compressed both longitudinally and at the upper edge 54 .
  • the deformed connecting member has it concave side facing away from the spine.
  • the connecting body is then subjected to longitudinal extension of its upper edge 54 and possibly to compression of its lower edge 52 .
  • connecting member 10 achieves greater relative mobility of the vertebrae compared to the prior art connecting rods, which cannot be compressed longitudinally.
  • the connecting member has three rigid rod-forming parts 12 , 14 , 15 and two connecting bodies 24 1 , 24 2 interconnecting the three rigid parts 12 , 14 , 15 .
  • the central rigid part 15 includes a fixing, first portion and two fastening, second portions, with one fastening, second portion on each side of said fixing, first portion.
  • the fastening, second portions are connected to the two connecting bodies 24 1 , 24 2 .
  • the other two rigid parts 12 , 14 situated at the two ends of the connecting member, have a single fastening, second portion connected to the connecting bodies.
  • the connecting member therefore maintains the spacing between three anchor members that it interconnects, which are fixed to three substantially equidistant vertebrae, to align them.
  • Each rigid part of the connecting member is fixed to an anchor member so that there are respective elastically deformable connecting bodies between the pairs of vertebrae.
  • a single connecting member stabilizes three vertebrae, which reduces the time needed to assemble the stabilizing system as a whole and consequently the operating time. Also, because the three vertebrae are interconnected by a single connecting member, their mobility relative to each other is better controlled.
  • connecting members having more than three rigid parts connected together by elastically deformable connecting bodies would not depart from the scope of the invention.

Abstract

Embodiments described herein relate to a connecting member for maintaining the spacing between at least two anchor members screwed into vertebrae and methods for stabilizing the spine using a connecting member. One embodiment of a connecting member can include a first rigid portion formed of a first material, a second rigid portion formed of the first material and a connecting body comprising a second material that is more elastically deformable than the first material.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority under 37 CFR 1.53(b) to U.S. patent application Ser. No. 10/333,881, filed Jan. 24, 2003, entitled “Flexible Linking Piece for Stabilising the Spine” by inventors Regis LeCouedic and Denis Pasquet, which claims priority under 35 U.S.C. 371 to International Application No. PCT/FR01/02426, filed Jul. 25, 2001, entitled “Flexible Linking Piece for Stabilising the Spine” by inventors Regis LeCouedic and Denis Pasquet, which claims benefit of priority to French Application No. 00/09706 entitled “Flexible Linking Piece for Stablising the Spine” by inventors Regis LeCouedic and Denis Pasquet, filed Jul. 25, 2000, all of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • This disclosure relates to a connecting member for maintaining the spacing between at least two anchor members which are interconnected by said connecting member.
  • BACKGROUND
  • Systems for stabilizing the vertebral column by bracing at least two consecutive vertebrae by means of anchor members fixed into said vertebrae and connected by rigid connecting rods are well known in the art. Systems of this kind are generally coupled systems such that two consecutive vertebrae are interconnected by two substantially parallel rods fixed one on each side of the spinous processes. The anchor members are screwed into the posterior portions of the vertebrae and pass through the pedicles and a substantial portion of the vertebral bodies and therefore provide a fixed and durable connection.
  • The above stabilizing systems are routinely used to consolidate several consecutive vertebrae. Thus the vertebrae are interconnected by rigid rods over a substantial length of the vertebral column. Such assemblies hold the vertebrae correctly relative to each other; however, they considerably stiffen the spine in terms of bending. It has been shown that a more flexible stabilizing system, which confers greater relative mobility on the vertebrae, is beneficial in some pathologies.
  • BRIEF SUMMARY
  • A first object of embodiments described herein is to provide a connecting member for maintaining the spacing of existing anchor members while at the same time allowing relative mobility of said anchor members.
  • To achieve the above object, a connecting member in accordance with one embodiment, adapted to maintain the spacing between at least two anchor members screwed into vertebrae, comprises at least two rigid rod-forming parts made of a first material and each having a fixing, first portion adapted to be fixed into an anchor member and a fastening, second portion, said rods being aligned with each other and said fastening portions facing each other, and a connecting body that is made entirely from a second material that is more elastically deformable than said first material and interconnects the facing fastening portions of said rigid parts so that said connecting body is able to deform elastically, whereby the vertebrae, which are held spaced from each other, are movable relative to each other.
  • Thus a feature of the connecting member lies in the way the two rigid parts are fastened together by means of an elastically deformable connecting body which imparts relative mobility to the rigid parts when under stress, with the reaction force to the stress being proportional, within certain limits, to the deformation of the connecting body. As a result, the connecting member can be bent by stresses in directions that are not parallel to the axis of the connecting member; it can also be stretched or contracted by opposing forces acting parallel to the axis of the connecting member.
  • Consequently, the two anchor members, when at rest, are interconnected by the connecting member with its fixing portions fastened to the anchor members, and can be moved relative to each other by forces proportional to the movement.
  • Said rigid parts are preferably mechanically connected together by a single connecting body providing the whole of said mechanical connection. In this way a single member provides the connection between the rigid parts at the same time as controlling relative movement of the rigid parts. Also, in a particular embodiment, said connecting body consists entirely of a single second material to simplify assembly and to impart homogeneous mechanical properties to it.
  • The connecting member of an embodiment has n rigid parts with n−1 connecting bodies disposed between them along the longitudinal axis of said member, each rigid part situated between two connecting bodies having one fixing, first portion and two fastening, second portions, there being one fastening, second portion at each end of said fixing, first portion, and said fastening, second portions being connected respectively to said two connecting bodies, and the rigid parts at the two ends of said member advantageously have respective single fastening, second portions connected to the connecting bodies, whereby said connecting member is adapted to interconnect n anchor members.
  • Thus, by virtue of this feature, the connecting member maintains the spacing between all the anchor members that it interconnects, each of which can be fixed to a respective vertebra, to align them. Each rigid part is fixed to an anchor member and, between successive anchor members, there is a connecting body that interconnects the two fastening portions. Thus a single connecting member stabilizes several vertebrae, which reduces the time to assemble the stabilizing system as a whole and consequently the operating time. Also, by virtue of this feature, the connecting member stabilizes several consecutive vertebrae by connecting them together, while at the same time making them highly flexible and conferring on them a high degree of relative compressibility in the longitudinal direction.
  • In a preferred embodiment, each of said fastening portions of said rigid parts that said connecting body interconnects has a fastening wall to which said connecting body is adapted to adhere. Thus no additional fixing member is needed and the adhesive properties of the second material to the fastening wall are sufficient to connect them.
  • In one particular embodiment, said fastening wall has openings adapted to cooperate with asperities on said connecting body to increase the surface area of contact between said wall and said body.
  • Obviously, providing openings in a wall increases the surface area of that wall, which increases the contact area between the two materials if one of the materials can be molded onto the wall of the other material. The increase in contact area increases the connecting forces between said connecting body and said fastening portions. Also, the static friction forces of the material of the connecting member on said two members are increased in a corresponding manner and these forces are added to the connecting forces.
  • Said second material of which said connecting body is made is advantageously obtained by polymerization. In this way, the connecting body can easily be hot molded onto the fastening walls if the material is polymerized beforehand, or it can be formed in situ if the rate of polymerization of the monomers constituting said second material is sufficiently low to provide the time necessary for completing the assembly.
  • In a preferred embodiment, said first material of which said rigid parts are made is a titanium alloy. It is therefore easy to form openings in said fastening wall to which said connecting body is able to adhere.
  • In another preferred embodiment, the section of said rigid rod-forming parts is circular, which facilitates the manufacture of the member. Also, if prior art circular section connecting rods are to be replaced by connecting rods described herein without making it necessary to replace the anchor members, it is necessary for said rigid parts to have sections identical to the sections of the prior art connecting rods.
  • The present disclosure also provides a vertebral stabilization system for fastening together at least two vertebrae each having a median plane substantially perpendicular to the axis of the spine of which they form a part and a posterior wall defining a posterior median plane of said spine, said system comprising at least two anchor members each adapted to be fixed into the posterior wall of a respective vertebra so that a line which intersects said two anchor members is substantially parallel to said axis of the spine, which system further comprises at least one connecting member whose two rigid parts are adapted to interconnect said two anchor members so that the axis of said connecting member is substantially parallel to said axis of the spine, whereby said vertebrae, which are interconnected via their posterior portions, present relative mobility along said axis of said spine.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and advantages of various embodiments will emerge on reading the following description of particular embodiments, which is given by way of non-limiting example and with reference to the accompanying drawings, in which:
  • FIG. 1 is a diagrammatic perspective view of a connecting member in accordance with an embodiment,
  • FIG. 2 is a diagrammatic view in axial section of the connecting member in accordance with an embodiment,
  • FIG. 3 is a perspective view showing anchor members connected by the connecting member,
  • FIG. 4 is a side elevation view of a vertebral column showing two consecutive vertebrae into which there are screwed anchor members interconnected by a connecting member in accordance with an embodiment, and
  • FIG. 5 is a perspective view showing a connecting member having two connecting bodies and three rigid parts.
  • DETAILED DESCRIPTION
  • The various portions of a connecting member are described initially with reference to FIG. 1.
  • The connecting member 10 has two cylindrical rigid parts 12 and 14. Each rigid part 12, 14 has a fixing, first portion 16, 18 and a fastening, second portion 20, 22 forming an enlargement. The facing fastening portions 20 and 22 are connected together by a connecting body 24 so that the rigid parts 12 and 14 are in axial alignment. The connecting member 10 is therefore circularly symmetrical about the axis A.
  • How the two rigid parts 12 and 14 are fastened together is described below with reference to FIG. 2.
  • The connecting body 24 is a plastics material body obtained by polymerization. The material of the body is chosen from materials which are more elastically deformable than the material of said rigid parts 12, 14 and, most importantly, whose elastic properties are of the same order of magnitude as those of the posterior ligaments that hold the spine together.
  • Organic silicon compounds constitute polymers whose mechanical properties can be determined by the choice of their basic components, in particular by their degree of substitution, the nature of the substituents, and their molecular weight, and whose elastic behavior predominates over its plastic behavior. They therefore constitute a family of materials suitable for interconnecting the two rigid parts 12 and 14. Also, these polymers can adhere strongly to materials of inorganic composition. Thus the connecting body 24 provides good means for fastening together the rigid parts 12, 14, which are generally made of titanium alloy.
  • Nevertheless, the polymer materials that can be used are not limited to organic silicon compounds, and any other material having comparable properties could be suitable.
  • The material of the connecting body 24 is adapted to adhere to the fastening walls 20′ and 22′ of said fastening second portions 20, 22. However, to increase the adhesion, openings 30, 32 are formed in the fastening walls 20, 22 of the fastening, second portions and are adapted to cooperate with asperities 26, 28 on the connecting body 24 which are inserted into the openings 30, 32.
  • This feature increases the contact area between the two materials and thereby increases the connecting force between them in a direction normal to said surface of contact and creates static friction forces which are additional to the adhesion force.
  • A connection of the above kind is obtained either by injecting the polymer while hot between the two rigid parts 12 and 14 held facing each other in a mold, or by cold molding the mixture of monomers between the two rigid parts 12 and 14, if the speed of the reaction is sufficiently low. The asperities 26, 28 are therefore formed in situ, when the polymer liquid or paste inserted into the openings 26, 28 solidifies after cooling or after a chemical reaction. Obviously, the connecting body 24 consists of the polymer disposed between the rigid parts 12 and 14, more specifically between the fastening walls 20′ and 22′, and, in order to retain the polymer between the facing portions while it is in the liquid state, the walls of the mold must necessarily surround the space between and in line with the two rigid parts 12, 14.
  • In a particular embodiment (not shown) the openings 30, 32 formed in the fastening walls 20′ and 22′ open onto the outside wall of the rigid parts 12 and 14 so that the liquid polymer penetrates entirely into the openings 30, 32 without it being possible for air to be trapped therein. This reinforces the fastening of the connecting body 24 to the rigid parts 12, 14.
  • Also, the openings 30, 32, which are shown as parallel to the longitudinal axis of the connecting member in FIG. 2, can be oblique to that longitudinal axis and/or not rectilinear. These configurations increase the static friction forces of the polymer on the rigid parts, which fastens them together more strongly.
  • Now that the manner in which the two rigid parts are fastened together has been described, movement of the rigid parts relative to each other is described with reference to FIG. 1.
  • Given the circular symmetry of the rigid parts 12 and 14 and the connecting body 24, and the nature of the material of the connecting body 24, the connecting member 10 is able to bend in all directions in a plane Pp perpendicular to the axis A of the connecting member when the two first portions are immobilized. Bending of the connecting member 10 compresses one edge of the connecting body 24 and stretches the diametrally opposite edge, whereas the rigid parts 12 and 14 retain their shape. Because the material of the connecting body 24 is elastically deformable, when the stresses causing the bending are removed, the connecting member 10 returns to its original state in which the rigid parts 12 and 14 are in axial alignment.
  • Also, the rigid parts 12 and 14 can move relative to each other in opposite directions along the longitudinal axis A to compress or stretch the connecting body 24.
  • The relative movement of the two rigid parts 12 and 14 can occur in directions other than the directions described above, but the connecting member is principally loaded in bending, tension and compression, as described in more detail below.
  • Deformation of the connecting member connected with relative movement of the anchor members 42 and 44 is described next with reference to FIG. 3.
  • FIG. 3 shows the connecting member 10 whose two rigid parts 12 and 14 interconnect the two anchor members 42 and 44. The two anchor members 42 and 44 are parallel to each other in a common axial plane Pa.
  • Each anchor member 42, 44 has a threaded shank 46 with a U-shaped head 48 at the top whose inside wall is threaded so that a screw-forming member 50 can be screwed into it. Thus the first portions 16 and 18 of the rigid parts 12 and 14 are accommodated in the heads 48 of the respective anchor members 42 and 44 and are locked to them by tightening the screw-forming members 50.
  • As a result, when the threaded shanks 46 of the anchor members move towards each other due to the effect of opposite forces T and −T in the plane Pa and substantially parallel to the axis A the anchor members 42 and 44 deform the connecting member, which bends.
  • The bending of the connecting member 10 compresses the lower edge 52 of the connecting body 24 and stretches the diametrally opposite upper edge 54, while the rigid parts 12 and 14 retain their shape. Because the material of the connecting body 24 is elastically deformable, when the stress is removed the connecting member reverts to its original rectilinear shape and the threaded shanks of the anchor members 46 return to their former relative position.
  • The mechanism of elastic bending of the connecting member 10 and the anchor members 42, 44 described above is the same if the threaded shanks 46 of the anchor members 42 and 44 move away from each other, the connecting member bending with the opposite curvature.
  • Also, the anchor members 42 and 44 are movable in translation relative to each other along the axis A, their relative movement stretching or compressing the connecting body 24.
  • The use of the connecting member 10 in a vertebral stabilization system for fastening together at least two vertebrae V1 and V2 is described below with reference to FIG. 4.
  • The vertebrae V1, V2 each have respective median planes PV1, PV2 substantially perpendicular to the axis Ar of the spine of which they form part, and respective posterior walls PPV1, PPV2 defining a posterior median plane PPr of said spine.
  • The stabilizing system includes at least two anchor members 42 and 44 respectively screwed into the posterior walls PPV1, PPV2 of the vertebrae V1, V2, so that a line L that intersects the two anchor members 42 and 44 is substantially parallel to said axis Ar of the spine. The two first portions 16 and 18 of the connecting member 10 interconnect the two anchor members 42 and 44. As a result, the vertebrae V1 and V2, which are interconnected in their posterior portions, possess relative mobility along the axis Ar of the spine.
  • Thus when the spine is stretched, the vertebrae V1 and V2 move away from each other in opposite directions E and −E, which causes the threaded shanks 46 to move away from each other, deforming the connecting member 10, and in particular its connecting body 24. This is because the connecting body is compressed both longitudinally and at the upper edge 54. The deformed connecting member has it concave side facing away from the spine.
  • When the spine is bent, the inverse effect occurs and the vertebrae V1 and V2 move towards each other, which induces deformation of the connecting member with its concave side facing toward the spine.
  • The connecting body is then subjected to longitudinal extension of its upper edge 54 and possibly to compression of its lower edge 52.
  • It will be understood that the connecting member 10 achieves greater relative mobility of the vertebrae compared to the prior art connecting rods, which cannot be compressed longitudinally.
  • In a particular embodiment as shown in FIG. 5, the connecting member has three rigid rod-forming parts 12, 14, 15 and two connecting bodies 24 1, 24 2 interconnecting the three rigid parts 12, 14, 15. To this end, the central rigid part 15 includes a fixing, first portion and two fastening, second portions, with one fastening, second portion on each side of said fixing, first portion. The fastening, second portions are connected to the two connecting bodies 24 1, 24 2. The other two rigid parts 12, 14, situated at the two ends of the connecting member, have a single fastening, second portion connected to the connecting bodies.
  • The connecting member therefore maintains the spacing between three anchor members that it interconnects, which are fixed to three substantially equidistant vertebrae, to align them. Each rigid part of the connecting member is fixed to an anchor member so that there are respective elastically deformable connecting bodies between the pairs of vertebrae. In this way, a single connecting member stabilizes three vertebrae, which reduces the time needed to assemble the stabilizing system as a whole and consequently the operating time. Also, because the three vertebrae are interconnected by a single connecting member, their mobility relative to each other is better controlled.
  • It goes without saying that providing connecting members having more than three rigid parts connected together by elastically deformable connecting bodies would not depart from the scope of the invention.

Claims (20)

1. A method of stabilizing a spinal segment of a body comprising:
securing a first anchor to a first vertebra, the first anchor including a head portion and a bone attachment portion;
securing a second anchor to a second vertebra, the second anchor including a head portion and a bone attachment portion;
implanting a connecting member into the body, wherein the connecting member comprises:
a first rigid portion formed of a first material comprising;
a first rod portion adapted to secure in a head portion of a first anchor; and
a first wall having a larger radius than the first rod portion;
a second rigid portion formed of the first material comprising:
a second rod portion adapted to secure in a head portion of a second anchor; and
a second wall having a larger radius than the second rod portion; and
a connecting body having a first end abutting the first wall and a second end abutting the second wall, wherein the connecting body comprises a second material that is more elastically deformable than the first material;
positioning the connecting body between the head portion of the first anchor and the head portion of the second anchor; and
positioning the first rigid portion within the head portion of the first anchor and the second rigid portion in the head portion of the second anchor.
2. The method of claim 1, wherein the first wall and second wall each comprise at least one protrusion that abuts the connecting body.
3. The method of claim 2, wherein the first rigid portion partially overlaps said connecting body.
4. The method of claim 1, wherein the first rigid portion defines an opening passing from the first wall through the first rigid portion and open to an end of the first rod portion and the second rigid portion defines an opening passing from the second wall through the second rigid rod portion and open to and of the second rod portion.
5. The method of claim 1, further comprising positioning the first rigid portion and second rigid portion from the top of the first anchor and second anchor respectively.
6. The method of claim 1, further comprising:
securing the first rigid portion to the head portion of the first anchor by engaging a first locking member to a the head portion of the first anchor; and
securing the second rigid portion to the head portion of the second anchor by engaging a second locking member to a the head portion of the second anchor;
7. The method of claim 1, wherein the head portion of each of the first and second anchors includes a slot adapted to receive the first rigid portion and second rigid portion respectively.
8. The method of claim 1, wherein the connecting body has a greater cross-sectional area than the first rod portion and the second rod portion.
9. The method of claim 7, wherein the first rigid portion and second rigid portion are formed of a biocompatible metal and the connecting body comprises a polymer.
10. A connecting member comprising:
a first rigid portion formed of a first material comprising;
a first portion adapted to secure in a head portion of a first anchor; and
a first wall having a larger radius than the first rod portion;
a second rigid portion formed of the first material comprising:
a second portion adapted to secure in a head portion of a second anchor; and
a second wall having a larger radius than the second rod portion; and
a connecting body having a first end abutting the first wall and a second end abutting the second wall, wherein the connecting body comprises a second material that is more elastically deformable than the first material.
11. The connecting member of claim 10, wherein the first wall and second wall each comprise at least one protrusion that abuts the connecting body.
12. The connecting member of claim 11, wherein the first rigid portion partially overlaps said connecting body.
13. The connecting member of claim 10, wherein the first rigid portion defines an opening passing from the first wall through the first rigid portion and open to an end of the first rod portion and the second rigid portion defines an opening passing from the second wall through the second rigid rod portion and open to and of the second rod portion.
14. The connecting member of claim 10, wherein the first material is a biocompatible metal and the second material is a polymer.
15. The connecting member of claim 10, wherein the connecting body is substantially symmetrical about a longitudinal axis.
16. The connecting member of claim 10, wherein the first rigid portion and the second rigid portion are cylindrical.
17. A spinal stabilization system comprising:
a first anchor coupled to a first vertebra, the first anchor having a head portion;
a second anchor coupled to a second vertebra, the second anchor having a head portion;
a connecting member comprising:
a first rigid portion formed of a first material comprising;
a first portion secured in a head portion of a first anchor; and
a first wall having a larger radius than the first rod portion;
a second rigid portion formed of the first material comprising:
a second portion secured in a head portion of a second anchor; and
a second wall having a larger radius than the second rod portion; and
a connecting body having a first end abutting the first wall and a second end abutting the second wall, wherein the connecting body comprises a second material that is more elastically deformable than the first material.
18. The spinal stabilization system of claim 17, wherein the first wall and second wall each comprise at least one protrusion that abuts the connecting body.
19. The spinal stabilization system of claim 18, wherein the first rigid portion partially overlaps said connecting body.
20. The spinal stabilization system of claim 17, wherein the first rigid portion defines an opening passing from the first wall through the first rigid portion and open to an end of the first rigid portion and the second rigid portion defines an opening passing from the second wall through the second rigid portion and open to an end of the second rigid portion.
US12/606,901 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine Abandoned US20100114169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/606,901 US20100114169A1 (en) 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0009706A FR2812186B1 (en) 2000-07-25 2000-07-25 FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION
FR00/09706 2000-07-25
PCT/FR2001/002426 WO2002007622A1 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine
US10/333,881 US7641673B2 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine
US12/606,901 US20100114169A1 (en) 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2001/002426 Continuation WO2002007622A1 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine
US10/333,881 Continuation US7641673B2 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine

Publications (1)

Publication Number Publication Date
US20100114169A1 true US20100114169A1 (en) 2010-05-06

Family

ID=8852866

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/333,881 Expired - Fee Related US7641673B2 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine
US12/606,903 Abandoned US20100114173A1 (en) 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine
US12/606,901 Abandoned US20100114169A1 (en) 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/333,881 Expired - Fee Related US7641673B2 (en) 2000-07-25 2001-07-25 Flexible linking piece for stabilising the spine
US12/606,903 Abandoned US20100114173A1 (en) 2000-07-25 2009-10-27 Flexible linking piece for stabilising the spine

Country Status (8)

Country Link
US (3) US7641673B2 (en)
EP (1) EP1303225B1 (en)
AT (1) ATE296059T1 (en)
AU (1) AU2001279908A1 (en)
DE (1) DE60111053T2 (en)
ES (1) ES2243531T3 (en)
FR (1) FR2812186B1 (en)
WO (1) WO2002007622A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287250A1 (en) * 2003-12-10 2009-11-19 Warsaw Orthopedic, Inc. Method and apparatus for replacing the function of facet joints
US20090326584A1 (en) * 2008-06-27 2009-12-31 Michael Andrew Slivka Spinal Dynamic Stabilization Rods Having Interior Bumpers
US8348952B2 (en) 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US8414614B2 (en) 2005-10-22 2013-04-09 Depuy International Ltd Implant kit for supporting a spinal column
US8425563B2 (en) 2006-01-13 2013-04-23 Depuy International Ltd. Spinal rod support kit
US8430914B2 (en) 2007-10-24 2013-04-30 Depuy Spine, Inc. Assembly for orthopaedic surgery
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
US11583318B2 (en) 2018-12-21 2023-02-21 Paradigm Spine, Llc Modular spine stabilization system and associated instruments

Families Citing this family (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273912B1 (en) * 1996-02-28 2001-08-14 Impra, Inc. Flanged graft for end-to-side anastomosis
US20080039859A1 (en) * 1997-01-02 2008-02-14 Zucherman James F Spine distraction implant and method
FR2812185B1 (en) 2000-07-25 2003-02-28 Spine Next Sa SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION
FR2812186B1 (en) * 2000-07-25 2003-02-28 Spine Next Sa FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US6579319B2 (en) * 2000-11-29 2003-06-17 Medicinelodge, Inc. Facet joint replacement
US20050080486A1 (en) 2000-11-29 2005-04-14 Fallin T. Wade Facet joint replacement
US6419703B1 (en) * 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
US7090698B2 (en) 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US7862587B2 (en) * 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
CA2469005A1 (en) * 2001-12-07 2003-06-12 Mathys Medizinaltechnik Ag Damping element
FR2842724B1 (en) 2002-07-23 2005-05-27 Spine Next Sa VERTEBRAL FASTENING SYSTEM
AU2003265597A1 (en) * 2002-08-23 2004-03-11 Paul C. Mcafee Metal-backed uhmpe rod sleeve system preserving spinal motion
WO2006052796A2 (en) 2004-11-10 2006-05-18 Jackson Roger P Helical guide and advancement flange with break-off extensions
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
FR2845587B1 (en) * 2002-10-14 2005-01-21 Scient X DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT
FR2846223B1 (en) * 2002-10-24 2006-04-14 Frederic Fortin FLEXIBLE AND MODULAR INTERVERTEBRAL CONNECTION DEVICE HAVING MULTIDIRECTIONAL WORKING ELEMENT
FR2846222B1 (en) * 2002-10-24 2005-08-26 Frederic Fortin MODULAR AND ADJUSTABLE FLEXIBLE VERTEBRAL CONNECTION DEVICE
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7887539B2 (en) 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
US20070016200A1 (en) * 2003-04-09 2007-01-18 Jackson Roger P Dynamic stabilization medical implant assemblies and methods
US8540753B2 (en) 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US7615068B2 (en) * 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
US20050182401A1 (en) * 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
US20050171543A1 (en) * 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
US20050177164A1 (en) * 2003-05-02 2005-08-11 Carmen Walters Pedicle screw devices, systems and methods having a preloaded set screw
US7713287B2 (en) * 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
ATE499889T1 (en) 2003-05-02 2011-03-15 Univ Yale DYNAMIC SPINAL STABILIZER
US20050182400A1 (en) * 2003-05-02 2005-08-18 Jeffrey White Spine stabilization systems, devices and methods
US8652175B2 (en) * 2003-05-02 2014-02-18 Rachiotek, Llc Surgical implant devices and systems including a sheath member
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US7967850B2 (en) 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US7815665B2 (en) * 2003-09-24 2010-10-19 N Spine, Inc. Adjustable spinal stabilization system
US7763052B2 (en) * 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US20050203513A1 (en) * 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US20050065516A1 (en) * 2003-09-24 2005-03-24 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US8979900B2 (en) 2003-09-24 2015-03-17 DePuy Synthes Products, LLC Spinal stabilization device
CA2540594A1 (en) 2003-09-29 2005-04-07 Synthes Gmbh Dynamic damping element for two bones
CN100581493C (en) * 2003-11-07 2010-01-20 比德曼莫泰赫有限公司 Spring element for a bone stabilizing device
US8632570B2 (en) 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US8419770B2 (en) 2003-12-10 2013-04-16 Gmedelaware 2 Llc Spinal facet implants with mating articulating bearing surface and methods of use
US20050131407A1 (en) * 2003-12-16 2005-06-16 Sicvol Christopher W. Flexible spinal fixation elements
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7815664B2 (en) 2005-01-04 2010-10-19 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US7597694B2 (en) 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US8029548B2 (en) 2008-05-05 2011-10-04 Warsaw Orthopedic, Inc. Flexible spinal stabilization element and system
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US8333789B2 (en) 2007-01-10 2012-12-18 Gmedelaware 2 Llc Facet joint replacement
US7993373B2 (en) 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
US9050148B2 (en) 2004-02-27 2015-06-09 Roger P. Jackson Spinal fixation tool attachment structure
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
WO2005092218A1 (en) 2004-02-27 2005-10-06 Jackson Roger P Orthopedic implant rod reduction tool set and method
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7645294B2 (en) * 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
FR2869523A1 (en) * 2004-04-28 2005-11-04 Frederic Fortin FLEXIBLE AND MODULAR VERTEBRAL CONNECTION DEVICE HAVING AN ADJUSTABLE ELEMENT FOR WORKING MULTIDIRECTIONALLY
EP1740111B1 (en) * 2004-04-28 2009-08-05 Synthes GmbH Device for dynamic bone stabilization
US7766941B2 (en) * 2004-05-14 2010-08-03 Paul Kamaljit S Spinal support, stabilization
FR2870718B1 (en) * 2004-05-25 2006-09-22 Spine Next Sa TREATMENT ASSEMBLY FOR THE DEGENERATION OF AN INTERVERTEBRAL DISC
EP1748737A4 (en) * 2004-05-27 2009-06-17 Depuy Spine Inc Tri-joint implant
US7588578B2 (en) * 2004-06-02 2009-09-15 Facet Solutions, Inc Surgical measurement systems and methods
US7758581B2 (en) 2005-03-28 2010-07-20 Facet Solutions, Inc. Polyaxial reaming apparatus and method
US8764801B2 (en) 2005-03-28 2014-07-01 Gmedelaware 2 Llc Facet joint implant crosslinking apparatus and method
US8858599B2 (en) * 2004-06-09 2014-10-14 Warsaw Orthopedic, Inc. Systems and methods for flexible spinal stabilization
CN101090675A (en) * 2004-06-23 2007-12-19 应用脊柱外科技术公司 Systems and methods for spine stabilization
US7261738B2 (en) 2004-06-30 2007-08-28 Depuy Spine, Inc. C-shaped disc prosthesis
US7351261B2 (en) * 2004-06-30 2008-04-01 Depuy Spine, Inc. Multi-joint implant
US8021428B2 (en) 2004-06-30 2011-09-20 Depuy Spine, Inc. Ceramic disc prosthesis
US7854752B2 (en) 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
WO2006020530A2 (en) * 2004-08-09 2006-02-23 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US8092496B2 (en) * 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US7896906B2 (en) 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US7766940B2 (en) * 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US20060084976A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
DE102004048938B4 (en) * 2004-10-07 2015-04-02 Synthes Gmbh Device for the dynamic stabilization of vertebral bodies
US20060085073A1 (en) * 2004-10-18 2006-04-20 Kamshad Raiszadeh Medical device systems for the spine
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US20070239159A1 (en) * 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US7935134B2 (en) 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
EP1804728A2 (en) * 2004-10-28 2007-07-11 Axial Biotech, Inc. Apparatus and method for concave scoliosis expansion
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US20060229613A1 (en) * 2004-12-31 2006-10-12 Timm Jens P Sheath assembly for spinal stabilization device
US20070276493A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US7559929B2 (en) * 2005-02-18 2009-07-14 Warsaw Orthopedic, Inc. Implants and methods for positioning same in surgical approaches to the spine
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US7361196B2 (en) 2005-02-22 2008-04-22 Stryker Spine Apparatus and method for dynamic vertebral stabilization
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US7951175B2 (en) * 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US7722647B1 (en) 2005-03-14 2010-05-25 Facet Solutions, Inc. Apparatus and method for posterior vertebral stabilization
US20060247638A1 (en) * 2005-04-29 2006-11-02 Sdgi Holdings, Inc. Composite spinal fixation systems
US7695499B2 (en) * 2005-04-29 2010-04-13 Warsaw Orthopedic, Inc. System, devices and method for augmenting existing fusion constructs
US20060276788A1 (en) * 2005-05-26 2006-12-07 Amedica Corporation Osteoconductive spinal fixation system
US7967844B2 (en) * 2005-06-10 2011-06-28 Depuy Spine, Inc. Multi-level posterior dynamic stabilization systems and methods
US7828825B2 (en) * 2005-06-20 2010-11-09 Warsaw Orthopedic, Inc. Multi-level multi-functional spinal stabilization systems and methods
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US7811309B2 (en) * 2005-07-26 2010-10-12 Applied Spine Technologies, Inc. Dynamic spine stabilization device with travel-limiting functionality
US7699875B2 (en) * 2006-04-17 2010-04-20 Applied Spine Technologies, Inc. Spinal stabilization device with weld cap
US7713288B2 (en) * 2005-08-03 2010-05-11 Applied Spine Technologies, Inc. Spring junction and assembly methods for spinal device
FR2890850B1 (en) 2005-09-20 2009-04-17 Abbott Spine Sa VERTEBRAL FASTENING SYSTEM
FR2890851B1 (en) 2005-09-21 2008-06-20 Abbott Spine Sa ANCILLARY TO TENSION A FLEXIBLE LINK.
WO2007038429A1 (en) 2005-09-27 2007-04-05 Endius, Inc. Methods and apparatuses for stabilizing the spine through an access device
US7879074B2 (en) * 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US7993376B2 (en) * 2005-09-29 2011-08-09 Depuy Spine, Inc. Methods of implanting a motion segment repair system
US20080140076A1 (en) * 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
US20070093814A1 (en) * 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilization systems
US20070093813A1 (en) * 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
US20070093815A1 (en) * 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
US7722651B2 (en) 2005-10-21 2010-05-25 Depuy Spine, Inc. Adjustable bone screw assembly
US8267970B2 (en) * 2005-10-25 2012-09-18 Depuy Spine, Inc. Laminar hook spring
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8137385B2 (en) 2005-10-31 2012-03-20 Stryker Spine System and method for dynamic vertebral stabilization
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
US20080294198A1 (en) * 2006-01-09 2008-11-27 Jackson Roger P Dynamic spinal stabilization assembly with torsion and shear control
US20070173822A1 (en) * 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Use of a posterior dynamic stabilization system with an intradiscal device
US7815663B2 (en) 2006-01-27 2010-10-19 Warsaw Orthopedic, Inc. Vertebral rods and methods of use
US7682376B2 (en) * 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US7578849B2 (en) * 2006-01-27 2009-08-25 Warsaw Orthopedic, Inc. Intervertebral implants and methods of use
US7927358B2 (en) * 2006-03-07 2011-04-19 Zimmer Spine, Inc. Spinal stabilization device
US20070225707A1 (en) * 2006-03-22 2007-09-27 Sdgi Holdings, Inc. Orthopedic spinal devices fabricated from two or more materials
US8025681B2 (en) * 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US7942905B2 (en) * 2006-04-20 2011-05-17 Warsaw Orthopedic, Inc. Vertebral stabilizer
US20070288012A1 (en) * 2006-04-21 2007-12-13 Dennis Colleran Dynamic motion spinal stabilization system and device
US20070270821A1 (en) * 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Vertebral stabilizer
US8361129B2 (en) * 2006-04-28 2013-01-29 Depuy Spine, Inc. Large diameter bone anchor assembly
US7785350B2 (en) * 2006-05-08 2010-08-31 Warsaw Orthopedic, Inc. Load bearing flexible spinal connecting element
US20070270838A1 (en) * 2006-05-08 2007-11-22 Sdgi Holdings, Inc. Dynamic spinal stabilization device with dampener
US8012179B2 (en) * 2006-05-08 2011-09-06 Warsaw Orthopedic, Inc. Dynamic spinal stabilization members and methods
US7666211B2 (en) * 2006-12-28 2010-02-23 Mi4Spine, Llc Vertebral disc annular fibrosis tensioning and lengthening device
US8449576B2 (en) * 2006-06-28 2013-05-28 DePuy Synthes Products, LLC Dynamic fixation system
US7927356B2 (en) * 2006-07-07 2011-04-19 Warsaw Orthopedic, Inc. Dynamic constructs for spinal stabilization
US20080039847A1 (en) * 2006-08-09 2008-02-14 Mark Piper Implant and system for stabilization of the spine
US7766942B2 (en) * 2006-08-31 2010-08-03 Warsaw Orthopedic, Inc. Polymer rods for spinal applications
US8425601B2 (en) 2006-09-11 2013-04-23 Warsaw Orthopedic, Inc. Spinal stabilization devices and methods of use
EP2047813A1 (en) 2007-10-11 2009-04-15 Abbott Spine Bone fixing system and method of use
US7947045B2 (en) * 2006-10-06 2011-05-24 Zimmer Spine, Inc. Spinal stabilization system with flexible guides
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
US8096996B2 (en) 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8361117B2 (en) * 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
AU2007332794C1 (en) 2006-12-08 2012-01-12 Roger P. Jackson Tool system for dynamic spinal implants
CN102525623B (en) 2006-12-10 2015-04-29 帕拉迪格脊骨有限责任公司 Posterior functionally dynamic stabilization system
WO2008086467A2 (en) 2007-01-10 2008-07-17 Facet Solutions, Inc. Taper-locking fixation system
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US7875059B2 (en) * 2007-01-18 2011-01-25 Warsaw Orthopedic, Inc. Variable stiffness support members
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US7931676B2 (en) * 2007-01-18 2011-04-26 Warsaw Orthopedic, Inc. Vertebral stabilizer
US8029547B2 (en) * 2007-01-30 2011-10-04 Warsaw Orthopedic, Inc. Dynamic spinal stabilization assembly with sliding collars
US8109975B2 (en) * 2007-01-30 2012-02-07 Warsaw Orthopedic, Inc. Collar bore configuration for dynamic spinal stabilization assembly
WO2008098206A1 (en) * 2007-02-09 2008-08-14 Altiva Corporation Dynamic stabilization device
US20090105762A1 (en) * 2007-10-23 2009-04-23 Jackson Roger P Dynamic stabilization member with fin supported segment
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US8097022B2 (en) * 2007-02-20 2012-01-17 Warsaw Orthopedic, Inc. Flexible coupling members for spinal stabilization members
US8740944B2 (en) * 2007-02-28 2014-06-03 Warsaw Orthopedic, Inc. Vertebral stabilizer
US8241362B2 (en) * 2007-04-26 2012-08-14 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US20080275504A1 (en) * 2007-05-02 2008-11-06 Bonin Henry K Constructs for dynamic spinal stabilization
WO2008153827A1 (en) 2007-05-31 2008-12-18 Jackson Roger P Dynamic stabilization connecting member with pre-tensioned solid core
US8313515B2 (en) 2007-06-15 2012-11-20 Rachiotek, Llc Multi-level spinal stabilization system
US20080312694A1 (en) * 2007-06-15 2008-12-18 Peterman Marc M Dynamic stabilization rod for spinal implants and methods for manufacturing the same
US8292925B2 (en) 2007-06-19 2012-10-23 Zimmer Spine, Inc. Flexible member with variable flexibility for providing dynamic stability to a spine
JP2010535593A (en) * 2007-08-07 2010-11-25 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Dynamic cable system
US20090088782A1 (en) * 2007-09-28 2009-04-02 Missoum Moumene Flexible Spinal Rod With Elastomeric Jacket
US20090093843A1 (en) * 2007-10-05 2009-04-09 Lemoine Jeremy J Dynamic spine stabilization system
ATE536824T1 (en) 2007-10-23 2011-12-15 Zimmer Spine FASTENING DEVICES AND STABILIZATION SYSTEMS WITH THESE FASTENING DEVICES
US20090105764A1 (en) * 2007-10-23 2009-04-23 Jackson Roger P Dynamic stabilization member with fin support and solid core extension
US8128635B2 (en) 2007-10-23 2012-03-06 Zimmer Spine S.A.S. Bone fixation tensioning tool and method
US8911477B2 (en) 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
US8252028B2 (en) 2007-12-19 2012-08-28 Depuy Spine, Inc. Posterior dynamic stabilization device
US8425564B2 (en) * 2008-01-03 2013-04-23 P. Douglas Kiester Spine reconstruction rod extender
USD620109S1 (en) 2008-02-05 2010-07-20 Zimmer Spine, Inc. Surgical installation tool
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US8608746B2 (en) 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
ATE515239T1 (en) 2008-04-24 2011-07-15 Zimmer Spine SYSTEM FOR STABILIZING AT LEAST ONE SECTION OF THE SPINE
US10973556B2 (en) 2008-06-17 2021-04-13 DePuy Synthes Products, Inc. Adjustable implant assembly
US20090326583A1 (en) * 2008-06-25 2009-12-31 Missoum Moumene Posterior Dynamic Stabilization System With Flexible Ligament
US8211146B2 (en) * 2008-07-03 2012-07-03 Warsaw Orthopedic Implantable device and method of forming
EP2442739A1 (en) * 2008-08-01 2012-04-25 Jackson, Roger P. Longitudinal connecting member with sleeved tensioned cords
US8287571B2 (en) * 2008-08-12 2012-10-16 Blackstone Medical, Inc. Apparatus for stabilizing vertebral bodies
US20100094344A1 (en) * 2008-10-14 2010-04-15 Kyphon Sarl Pedicle-Based Posterior Stabilization Members and Methods of Use
US20100114165A1 (en) * 2008-11-04 2010-05-06 Abbott Spine, Inc. Posterior dynamic stabilization system with pivoting collars
US20100137908A1 (en) * 2008-12-01 2010-06-03 Zimmer Spine, Inc. Dynamic Stabilization System Components Including Readily Visualized Polymeric Compositions
US9055979B2 (en) * 2008-12-03 2015-06-16 Zimmer Gmbh Cord for vertebral fixation having multiple stiffness phases
US8992576B2 (en) * 2008-12-17 2015-03-31 DePuy Synthes Products, LLC Posterior spine dynamic stabilizer
US20100160968A1 (en) * 2008-12-19 2010-06-24 Abbott Spine Inc. Systems and methods for pedicle screw-based spine stabilization using flexible bands
US8137356B2 (en) * 2008-12-29 2012-03-20 Zimmer Spine, Inc. Flexible guide for insertion of a vertebral stabilization system
US8118840B2 (en) 2009-02-27 2012-02-21 Warsaw Orthopedic, Inc. Vertebral rod and related method of manufacture
CN103917181A (en) 2009-06-15 2014-07-09 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
WO2013043218A1 (en) 2009-06-15 2013-03-28 Jackson Roger P Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
US20110009906A1 (en) * 2009-07-13 2011-01-13 Zimmer Spine, Inc. Vertebral stabilization transition connector
US9011494B2 (en) * 2009-09-24 2015-04-21 Warsaw Orthopedic, Inc. Composite vertebral rod system and methods of use
CA2774471A1 (en) 2009-10-05 2011-04-14 James L. Surber Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US8361123B2 (en) 2009-10-16 2013-01-29 Depuy Spine, Inc. Bone anchor assemblies and methods of manufacturing and use thereof
US8328849B2 (en) * 2009-12-01 2012-12-11 Zimmer Gmbh Cord for vertebral stabilization system
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) * 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US20110172720A1 (en) * 2010-01-13 2011-07-14 Kyphon Sarl Articulating interspinous process clamp
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8740945B2 (en) 2010-04-07 2014-06-03 Zimmer Spine, Inc. Dynamic stabilization system using polyaxial screws
US8920471B2 (en) 2010-07-12 2014-12-30 K2M, Inc. Transverse connector
US8382803B2 (en) 2010-08-30 2013-02-26 Zimmer Gmbh Vertebral stabilization transition connector
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element
DE112011104028A1 (en) 2010-11-02 2013-12-12 Roger P. Jackson Polyaxial bone anchor with quick-release shaft and rotatable holder
WO2012128825A1 (en) 2011-03-24 2012-09-27 Jackson Roger P Polyaxial bone anchor with compound articulation and pop-on shank
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8657855B2 (en) 2011-10-17 2014-02-25 Warsaw Orthopedic, Inc. Spinal fixation implant for mounting to spinous processes and related method
WO2013106217A1 (en) 2012-01-10 2013-07-18 Jackson, Roger, P. Multi-start closures for open implants
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10758274B1 (en) 2014-05-02 2020-09-01 Nuvasive, Inc. Spinal fixation constructs and related methods
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US215190A (en) * 1879-05-06 Improvement in derrick-stakes
US2515366A (en) * 1948-05-04 1950-07-18 John A Zublin Heavy-duty flexible drill pipe
US2585207A (en) * 1950-10-11 1952-02-12 John A Zublin Apparatus for drilling lateral bores deviating from vertical well bores
US2649092A (en) * 1949-10-26 1953-08-18 American Cystoscope Makers Inc Catheter
US3669133A (en) * 1971-06-08 1972-06-13 Hycor Inc Collapsible rod
US4328839A (en) * 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US4917700A (en) * 1988-08-01 1990-04-17 Zimmer, Inc. Prosthetic ligament
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US5011497A (en) * 1987-10-29 1991-04-30 Atos Medical Ab Joint prosthesis
US5034011A (en) * 1990-08-09 1991-07-23 Advanced Spine Fixation Systems Incorporated Segmental instrumentation of the posterior spine
US5092866A (en) * 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5102412A (en) * 1990-06-19 1992-04-07 Chaim Rogozinski System for instrumentation of the spine in the treatment of spinal deformities
US5129388A (en) * 1989-02-09 1992-07-14 Vignaud Jean Louis Device for supporting the spinal column
US5176708A (en) * 1990-03-12 1993-01-05 Sulzer Brothers Limited Prosthetic implant
US5176680A (en) * 1990-02-08 1993-01-05 Vignaud Jean Louis Device for the adjustable fixing of spinal osteosynthesis rods
US5190543A (en) * 1990-11-26 1993-03-02 Synthes (U.S.A.) Anchoring device
US5217450A (en) * 1989-07-21 1993-06-08 Carter Holt Harvey Plastic Products Group Limited Retention devices
US5413602A (en) * 1991-09-30 1995-05-09 Howmedica Gmbh Vertebral body spacer device
US5413576A (en) * 1993-02-10 1995-05-09 Rivard; Charles-Hilaire Apparatus for treating spinal disorder
US5415661A (en) * 1993-03-24 1995-05-16 University Of Miami Implantable spinal assist device
US5423817A (en) * 1993-07-29 1995-06-13 Lin; Chih-I Intervertebral fusing device
US5423819A (en) * 1989-02-06 1995-06-13 American Cyanamid Company Screw and driver for securing a bone block
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5480401A (en) * 1993-02-17 1996-01-02 Psi Extra-discal inter-vertebral prosthesis for controlling the variations of the inter-vertebral distance by means of a double damper
US5486174A (en) * 1993-02-24 1996-01-23 Soprane S.A. Fastener for the osteosynthesis of the spinal column
US5488761A (en) * 1994-07-28 1996-02-06 Leone; Ronald P. Flexible shaft and method for manufacturing same
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5508093A (en) * 1991-09-03 1996-04-16 Hoechst Aktiengesellschaft Fusible fiber bonded layered product comprising layers of carrier and binder fibers
US5536268A (en) * 1992-12-23 1996-07-16 Plus Endoprothetik Ag System for osteosynthesis at the vertebral column, connecting element for such a system and tool for its placement and removal
US5540688A (en) * 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
US5591165A (en) * 1992-11-09 1997-01-07 Sofamor, S.N.C. Apparatus and method for spinal fixation and correction of spinal deformities
US5609634A (en) * 1992-07-07 1997-03-11 Voydeville; Gilles Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5611800A (en) * 1994-02-15 1997-03-18 Alphatec Manufacturing, Inc. Spinal fixation system
US5616142A (en) * 1994-07-20 1997-04-01 Yuan; Hansen A. Vertebral auxiliary fixation device
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US5733284A (en) * 1993-08-27 1998-03-31 Paulette Fairant Device for anchoring spinal instrumentation on a vertebra
US5782831A (en) * 1996-11-06 1998-07-21 Sdgi Holdings, Inc. Method an device for spinal deformity reduction using a cable and a cable tensioning system
US5888201A (en) * 1996-02-08 1999-03-30 Schneider (Usa) Inc Titanium alloy self-expanding stent
US5928233A (en) * 1995-12-22 1999-07-27 Ohio Medical Instrument Co., Inc. Spinal fixation device with laterally attachable connectors
US5928284A (en) * 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
US6053922A (en) * 1995-07-18 2000-04-25 Krause; William R. Flexible shaft
US6241730B1 (en) * 1997-11-26 2001-06-05 Scient'x (Societe A Responsabilite Limitee) Intervertebral link device capable of axial and angular displacement
US6248106B1 (en) * 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6337142B2 (en) * 1997-07-02 2002-01-08 Stryker Trauma Gmbh Elongate element for transmitting forces
US6352557B1 (en) * 1999-08-13 2002-03-05 Bret A. Ferree Treating degenerative disc disease through transplantion of extracellular nucleus pulposus matrix and autograft nucleus pulposus cells
US20020035366A1 (en) * 2000-09-18 2002-03-21 Reto Walder Pedicle screw for intervertebral support elements
US20020082598A1 (en) * 2000-06-23 2002-06-27 Teitelbaum George P. Percutaneous vertebral fusion system
US20020082698A1 (en) * 2000-09-18 2002-06-27 Parenteau Nancy L. Method for treating a patient using a cultured connective tissue construct
US6419702B1 (en) * 1999-08-13 2002-07-16 Bret A. Ferree Treating degenerative disc disease through transplantation of the nucleus pulposis
US20030045874A1 (en) * 2001-08-31 2003-03-06 Thomas James C. Transverse connector assembly for spine fixation system
US20030069639A1 (en) * 2001-04-14 2003-04-10 Tom Sander Methods and compositions for repair or replacement of joints and soft tissues
US6551321B1 (en) * 2000-06-23 2003-04-22 Centerpulse Orthopedics Inc. Flexible intramedullary nail
US20030109880A1 (en) * 2001-08-01 2003-06-12 Showa Ika Kohgyo Co., Ltd. Bone connector
US6582468B1 (en) * 1998-12-11 2003-06-24 Spryker Spine Intervertebral disc prosthesis with compressible body
US6585738B1 (en) * 1998-07-06 2003-07-01 Stryker Spine Spinal osteosynthesis device for anterior fixation with plate
US20040049190A1 (en) * 2002-08-09 2004-03-11 Biedermann Motech Gmbh Dynamic stabilization device for bones, in particular for vertebrae
US20040049189A1 (en) * 2000-07-25 2004-03-11 Regis Le Couedic Flexible linking piece for stabilising the spine
US6706044B2 (en) * 2001-04-19 2004-03-16 Spineology, Inc. Stacked intermedular rods for spinal fixation
US6723335B1 (en) * 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
US20040082954A1 (en) * 2000-06-23 2004-04-29 Teitelbaum George P. Formable orthopedic fixation system with cross linking
US6749614B2 (en) * 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
US20050033295A1 (en) * 2003-08-08 2005-02-10 Paul Wisnewski Implants formed of shape memory polymeric material for spinal fixation
US20050043733A1 (en) * 2001-02-28 2005-02-24 Lukas Eisermann Woven orthopedic implants
US20050056979A1 (en) * 2001-12-07 2005-03-17 Mathys Medizinaltechnik Ag Damping element and device for stabilisation of adjacent vertebral bodies
US20050065416A1 (en) * 2001-10-31 2005-03-24 Gyula Subotics Non-invasive measurement of blood glucose level
US6875212B2 (en) * 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US20050085914A1 (en) * 2003-10-17 2005-04-21 Co-Ligne Ag Fusion implant
US20050085814A1 (en) * 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
US6899716B2 (en) * 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US20050149023A1 (en) * 2001-09-28 2005-07-07 Stephen Ritland Adjustable rod and connector device and method of use
US20050154390A1 (en) * 2003-11-07 2005-07-14 Lutz Biedermann Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US6989011B2 (en) * 2003-05-23 2006-01-24 Globus Medical, Inc. Spine stabilization system
US7029495B2 (en) * 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
US20060142758A1 (en) * 2002-09-11 2006-06-29 Dominique Petit Linking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
US20070016193A1 (en) * 2002-05-08 2007-01-18 Stephen Ritland Dynamic fixation device and method of use
US20070150064A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation
US20080015693A1 (en) * 2004-05-27 2008-01-17 Regis Le Couedic Spinal Arthroplasty System
US7321912B2 (en) * 2003-06-24 2008-01-22 Texas Instruments Incorporated Device with dB-to-linear gain conversion
US20080033557A1 (en) * 2004-05-17 2008-02-07 Abbott Spine Intervertebral Spacer for Cervical Vertebrae
US20080039943A1 (en) * 2004-05-25 2008-02-14 Regis Le Couedic Set For Treating The Degeneracy Of An Intervertebral Disc
US20080058812A1 (en) * 2006-02-03 2008-03-06 Thomas Zehnder Vertebral column implant
US20080140133A1 (en) * 2006-12-08 2008-06-12 Randall Noel Allard Methods and Devices for Treating a Multi-Level Spinal Deformity
US7651515B2 (en) * 2003-06-16 2010-01-26 Ulrich Gmbh & Co. Kg Implant for correction and stabilization of the spinal column
US7763052B2 (en) * 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553993B1 (en) 1983-10-28 1986-02-07 Peze William METHOD AND APPARATUS FOR DYNAMIC CORRECTION OF SPINAL DEFORMATIONS
US4773402A (en) 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant
JPH01136655A (en) * 1987-11-24 1989-05-29 Asahi Optical Co Ltd Movable type pyramid spacer
US4887596A (en) 1988-03-02 1989-12-19 Synthes (U.S.A.) Open backed pedicle screw
US4950269A (en) 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
GB2254394B (en) 1988-12-21 1993-03-17 Bristol Myers Squibb Co Coupler assembly
USRE36221E (en) * 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
FR2681776A1 (en) 1991-09-30 1993-04-02 Fixano Sa VERTEBRAL OSTEOSYNTHESIS DEVICE.
US5217480A (en) * 1992-06-09 1993-06-08 Habley Medical Technology Corporation Capillary blood drawing device
FR2692952B1 (en) * 1992-06-25 1996-04-05 Psi IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT.
GB9217578D0 (en) * 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5334203A (en) 1992-09-30 1994-08-02 Amei Technologies Inc. Spinal fixation system and methods
US5456722A (en) 1993-01-06 1995-10-10 Smith & Nephew Richards Inc. Load bearing polymeric cable
DE4303770C1 (en) 1993-02-09 1994-05-26 Plus Endoprothetik Ag Rotkreuz Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces.
US5601554A (en) * 1993-03-04 1997-02-11 Advanced Spine Fixation Systems, Inc. Branch connector for spinal fixation systems
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
FR2712481B1 (en) 1993-11-18 1996-01-12 Graf Henry Improvements to flexible inter-vertebral stabilizers.
US5522816A (en) * 1994-03-09 1996-06-04 Acromed Corporation Transverse connection for spinal column corrective devices
FR2730405A1 (en) * 1995-02-10 1996-08-14 Moreau Patrice Spinal column prosthesis
AU5935196A (en) * 1995-06-06 1996-12-24 Sdgi Holdings, Inc. Device for linking adjacent rods in spinal instrumentation
US6447518B1 (en) 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
NZ272994A (en) * 1995-09-12 2001-06-29 C G Surgical Ltd Spinal prosthesis device which stabilises lamina after laminoplasty
US5752955A (en) * 1995-10-30 1998-05-19 Fastenetix, L.L.C. Sliding shaft variable length cross-link device for use with dual rod apparatus
US5658286A (en) 1996-02-05 1997-08-19 Sava; Garard A. Fabrication of implantable bone fixation elements
DE69631128T2 (en) 1996-03-27 2004-09-23 Lubos Rehak DEVICE FOR CORRECTION OF SPINE DEFORM
FR2748386B1 (en) 1996-05-09 1998-11-20 Breard Francis Henri ANTI-TRIP SYSTEM FOR SPINE ARTHRODESIS BAR
SE506841C2 (en) 1996-06-28 1998-02-16 Ericsson Telefon Ab L M Apparatus and method for phase distortion compensation
FR2751864B1 (en) * 1996-08-01 1999-04-30 Graf Henry DEVICE FOR MECHANICALLY CONNECTING AND ASSISTING VERTEBRES BETWEEN THEM
US6602293B1 (en) 1996-11-01 2003-08-05 The Johns Hopkins University Polymeric composite orthopedic implant
FR2755844B1 (en) * 1996-11-15 1999-01-29 Stryker France Sa OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
JP2992878B2 (en) * 1997-04-09 1999-12-20 茂夫 佐野 Artificial facet joint
FR2766353B1 (en) 1997-07-28 1999-11-26 Dimso Sa IMPLANT, ESPECIALLY ANTERIOR CERVICAL PLATE
US6290700B1 (en) 1997-07-31 2001-09-18 Plus Endoprothetik Ag Device for stiffening and/or correcting a vertebral column or such like
FR2774581B1 (en) 1998-02-10 2000-08-11 Dimso Sa INTEREPINOUS STABILIZER TO BE ATTACHED TO SPINOUS APOPHYSIS OF TWO VERTEBRES
FR2775183B1 (en) 1998-02-20 2000-08-04 Jean Taylor INTER-SPINOUS PROSTHESIS
US6270910B1 (en) 1998-04-03 2001-08-07 3M Innovative Properties Company Anisotropic film
FR2785787B1 (en) 1998-11-12 2001-04-13 Materiel Orthopedique En Abreg OSTEOSYNTHESIS DEVICE OF AN ANTERIORALLY SPACHED SEGMENT
EP1164954B1 (en) * 1999-03-30 2006-12-06 Howmedica Osteonics Corp. Apparatus for spinal stabilization
US6206882B1 (en) * 1999-03-30 2001-03-27 Surgical Dynamics Inc. Plating system for the spine
US6162223A (en) 1999-04-09 2000-12-19 Smith & Nephew, Inc. Dynamic wrist fixation apparatus for early joint motion in distal radius fractures
US6296643B1 (en) 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
FR2796828B1 (en) 1999-07-27 2001-10-19 Dev Sed Soc Et IMPLANTABLE INTERVERTEBRAL CONNECTION DEVICE
FR2799640B1 (en) 1999-10-15 2002-01-25 Spine Next Sa IMPLANT INTERVETEBRAL
US6610079B1 (en) 1999-12-14 2003-08-26 Linvatec Corporation Fixation system and method
US6610062B2 (en) 2000-02-16 2003-08-26 Ebi, L.P. Method and system for spinal fixation
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US6312431B1 (en) 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
US6899713B2 (en) * 2000-06-23 2005-05-31 Vertelink Corporation Formable orthopedic fixation system
FR2811540B1 (en) * 2000-07-12 2003-04-25 Spine Next Sa IMPORTING INTERVERTEBRAL IMPLANT
US6447546B1 (en) 2000-08-11 2002-09-10 Dale G. Bramlet Apparatus and method for fusing opposing spinal vertebrae
US6554831B1 (en) * 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
US6752831B2 (en) 2000-12-08 2004-06-22 Osteotech, Inc. Biocompatible osteogenic band for repair of spinal disorders
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
US6783527B2 (en) * 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
US6679883B2 (en) * 2001-10-31 2004-01-20 Ortho Development Corporation Cervical plate for stabilizing the human spine
US6656184B1 (en) 2002-01-09 2003-12-02 Biomet, Inc. Bone screw with helical spring
US6733534B2 (en) * 2002-01-29 2004-05-11 Sdgi Holdings, Inc. System and method for spine spacing
FR2837094B1 (en) * 2002-03-15 2004-11-26 Fixano INTERVERTEBRAL IMPLANT
US6966910B2 (en) * 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US20040015166A1 (en) * 2002-07-22 2004-01-22 Gorek Josef E. System and method for stabilizing the spine by securing spine stabilization rods in crossed disposition
FR2845587B1 (en) * 2002-10-14 2005-01-21 Scient X DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT
US20050075634A1 (en) * 2002-10-29 2005-04-07 Zucherman James F. Interspinous process implant with radiolucent spacer and lead-in tissue expander
US7833246B2 (en) * 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US20060095035A1 (en) * 2004-11-03 2006-05-04 Jones Robert J Instruments and methods for reduction of vertebral bodies
ES2629625T3 (en) * 2002-10-30 2017-08-11 Zimmer Spine, Inc. Insertion spinal stabilization system
ATE499889T1 (en) * 2003-05-02 2011-03-15 Univ Yale DYNAMIC SPINAL STABILIZER
DE10348329B3 (en) * 2003-10-17 2005-02-17 Biedermann Motech Gmbh Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece
FR2867057B1 (en) * 2004-03-02 2007-06-01 Spinevision DYNAMIC BONDING ELEMENT FOR A SPINAL FIXING SYSTEM AND FIXING SYSTEM COMPRISING SUCH A CONNECTING MEMBER
US7175626B2 (en) * 2004-06-15 2007-02-13 Board Of Regents Of The University Of Nebraska Dynamic compression device and driving tool
US8226689B2 (en) * 2005-09-23 2012-07-24 Zimmer Spine, Inc. Apparatus and methods for spinal implant with variable link mechanism
US20080140076A1 (en) * 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
US20080039843A1 (en) * 2006-08-11 2008-02-14 Abdou M S Spinal motion preservation devices and methods of use
US20080147122A1 (en) * 2006-10-12 2008-06-19 Jackson Roger P Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer
US8029544B2 (en) * 2007-01-02 2011-10-04 Zimmer Spine, Inc. Spine stiffening device
EP2142121B1 (en) * 2007-04-30 2014-04-16 Globus Medical, Inc. Flexible spine stabilization system
US20090099606A1 (en) * 2007-10-16 2009-04-16 Zimmer Spine Inc. Flexible member with variable flexibility for providing dynamic stability to a spine

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US215190A (en) * 1879-05-06 Improvement in derrick-stakes
US2515366A (en) * 1948-05-04 1950-07-18 John A Zublin Heavy-duty flexible drill pipe
US2649092A (en) * 1949-10-26 1953-08-18 American Cystoscope Makers Inc Catheter
US2585207A (en) * 1950-10-11 1952-02-12 John A Zublin Apparatus for drilling lateral bores deviating from vertical well bores
US3669133A (en) * 1971-06-08 1972-06-13 Hycor Inc Collapsible rod
US4328839A (en) * 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4763644A (en) * 1984-02-28 1988-08-16 Webb Peter J Spinal fixation
US4892552A (en) * 1984-03-30 1990-01-09 Ainsworth Robert D Orthopedic device
US4743260A (en) * 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US5282863A (en) * 1985-06-10 1994-02-01 Charles V. Burton Flexible stabilization system for a vertebral column
US4648388A (en) * 1985-11-01 1987-03-10 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
US4648388B1 (en) * 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4805602A (en) * 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
US5011497A (en) * 1987-10-29 1991-04-30 Atos Medical Ab Joint prosthesis
US5002576A (en) * 1988-06-06 1991-03-26 Mecron Medizinische Produkte Gmbh Intervertebral disk endoprosthesis
US4917700A (en) * 1988-08-01 1990-04-17 Zimmer, Inc. Prosthetic ligament
US5092866A (en) * 1989-02-03 1992-03-03 Breard Francis H Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
US5423819A (en) * 1989-02-06 1995-06-13 American Cyanamid Company Screw and driver for securing a bone block
US5129388A (en) * 1989-02-09 1992-07-14 Vignaud Jean Louis Device for supporting the spinal column
US5217450A (en) * 1989-07-21 1993-06-08 Carter Holt Harvey Plastic Products Group Limited Retention devices
US4932975A (en) * 1989-10-16 1990-06-12 Vanderbilt University Vertebral prosthesis
US5176680A (en) * 1990-02-08 1993-01-05 Vignaud Jean Louis Device for the adjustable fixing of spinal osteosynthesis rods
US5176708A (en) * 1990-03-12 1993-01-05 Sulzer Brothers Limited Prosthetic implant
US5181917A (en) * 1990-06-19 1993-01-26 Chaim Rogozinski System and method for instrumentation of the spine in the treatment of spinal deformities
US5102412A (en) * 1990-06-19 1992-04-07 Chaim Rogozinski System for instrumentation of the spine in the treatment of spinal deformities
US5034011A (en) * 1990-08-09 1991-07-23 Advanced Spine Fixation Systems Incorporated Segmental instrumentation of the posterior spine
US5190543A (en) * 1990-11-26 1993-03-02 Synthes (U.S.A.) Anchoring device
US5540688A (en) * 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5508093A (en) * 1991-09-03 1996-04-16 Hoechst Aktiengesellschaft Fusible fiber bonded layered product comprising layers of carrier and binder fibers
US5413602A (en) * 1991-09-30 1995-05-09 Howmedica Gmbh Vertebral body spacer device
US5609634A (en) * 1992-07-07 1997-03-11 Voydeville; Gilles Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
US5591165A (en) * 1992-11-09 1997-01-07 Sofamor, S.N.C. Apparatus and method for spinal fixation and correction of spinal deformities
US5536268A (en) * 1992-12-23 1996-07-16 Plus Endoprothetik Ag System for osteosynthesis at the vertebral column, connecting element for such a system and tool for its placement and removal
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
US5413576A (en) * 1993-02-10 1995-05-09 Rivard; Charles-Hilaire Apparatus for treating spinal disorder
US5480401A (en) * 1993-02-17 1996-01-02 Psi Extra-discal inter-vertebral prosthesis for controlling the variations of the inter-vertebral distance by means of a double damper
US5486174A (en) * 1993-02-24 1996-01-23 Soprane S.A. Fastener for the osteosynthesis of the spinal column
US5415661A (en) * 1993-03-24 1995-05-16 University Of Miami Implantable spinal assist device
US5423816A (en) * 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
US5423817A (en) * 1993-07-29 1995-06-13 Lin; Chih-I Intervertebral fusing device
US5733284A (en) * 1993-08-27 1998-03-31 Paulette Fairant Device for anchoring spinal instrumentation on a vertebra
US5611800A (en) * 1994-02-15 1997-03-18 Alphatec Manufacturing, Inc. Spinal fixation system
US5616142A (en) * 1994-07-20 1997-04-01 Yuan; Hansen A. Vertebral auxiliary fixation device
US5645599A (en) * 1994-07-26 1997-07-08 Fixano Interspinal vertebral implant
US5488761A (en) * 1994-07-28 1996-02-06 Leone; Ronald P. Flexible shaft and method for manufacturing same
US5591235A (en) * 1995-03-15 1997-01-07 Kuslich; Stephen D. Spinal fixation device
US6053922A (en) * 1995-07-18 2000-04-25 Krause; William R. Flexible shaft
US5928233A (en) * 1995-12-22 1999-07-27 Ohio Medical Instrument Co., Inc. Spinal fixation device with laterally attachable connectors
US5888201A (en) * 1996-02-08 1999-03-30 Schneider (Usa) Inc Titanium alloy self-expanding stent
US5782831A (en) * 1996-11-06 1998-07-21 Sdgi Holdings, Inc. Method an device for spinal deformity reduction using a cable and a cable tensioning system
US6337142B2 (en) * 1997-07-02 2002-01-08 Stryker Trauma Gmbh Elongate element for transmitting forces
US6241730B1 (en) * 1997-11-26 2001-06-05 Scient'x (Societe A Responsabilite Limitee) Intervertebral link device capable of axial and angular displacement
US6585738B1 (en) * 1998-07-06 2003-07-01 Stryker Spine Spinal osteosynthesis device for anterior fixation with plate
US5928284A (en) * 1998-07-09 1999-07-27 Mehdizadeh; Hamid M. Disc replacement prosthesis
US6582468B1 (en) * 1998-12-11 2003-06-24 Spryker Spine Intervertebral disc prosthesis with compressible body
US6352557B1 (en) * 1999-08-13 2002-03-05 Bret A. Ferree Treating degenerative disc disease through transplantion of extracellular nucleus pulposus matrix and autograft nucleus pulposus cells
US6419702B1 (en) * 1999-08-13 2002-07-16 Bret A. Ferree Treating degenerative disc disease through transplantation of the nucleus pulposis
US6921403B2 (en) * 2000-02-16 2005-07-26 Trans1 Inc. Method and apparatus for spinal distraction and fusion
US6899716B2 (en) * 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US6248106B1 (en) * 2000-02-25 2001-06-19 Bret Ferree Cross-coupled vertebral stabilizers
US6723335B1 (en) * 2000-04-07 2004-04-20 Jeffrey William Moehlenbruck Methods and compositions for treating intervertebral disc degeneration
US6875212B2 (en) * 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US6551321B1 (en) * 2000-06-23 2003-04-22 Centerpulse Orthopedics Inc. Flexible intramedullary nail
US20050149022A1 (en) * 2000-06-23 2005-07-07 Shaolian Samuel M. Curable media for implantable medical device
US20020082598A1 (en) * 2000-06-23 2002-06-27 Teitelbaum George P. Percutaneous vertebral fusion system
US7008424B2 (en) * 2000-06-23 2006-03-07 University Of Southern California Percutaneous vertebral fusion system
US20040082954A1 (en) * 2000-06-23 2004-04-29 Teitelbaum George P. Formable orthopedic fixation system with cross linking
US6749614B2 (en) * 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
US20040049189A1 (en) * 2000-07-25 2004-03-11 Regis Le Couedic Flexible linking piece for stabilising the spine
US20020035366A1 (en) * 2000-09-18 2002-03-21 Reto Walder Pedicle screw for intervertebral support elements
US20020082698A1 (en) * 2000-09-18 2002-06-27 Parenteau Nancy L. Method for treating a patient using a cultured connective tissue construct
US20050043733A1 (en) * 2001-02-28 2005-02-24 Lukas Eisermann Woven orthopedic implants
US20030069639A1 (en) * 2001-04-14 2003-04-10 Tom Sander Methods and compositions for repair or replacement of joints and soft tissues
US6706044B2 (en) * 2001-04-19 2004-03-16 Spineology, Inc. Stacked intermedular rods for spinal fixation
US20030109880A1 (en) * 2001-08-01 2003-06-12 Showa Ika Kohgyo Co., Ltd. Bone connector
US20030045874A1 (en) * 2001-08-31 2003-03-06 Thomas James C. Transverse connector assembly for spine fixation system
US6991632B2 (en) * 2001-09-28 2006-01-31 Stephen Ritland Adjustable rod and connector device and method of use
US20050149023A1 (en) * 2001-09-28 2005-07-07 Stephen Ritland Adjustable rod and connector device and method of use
US20050065416A1 (en) * 2001-10-31 2005-03-24 Gyula Subotics Non-invasive measurement of blood glucose level
US20050056979A1 (en) * 2001-12-07 2005-03-17 Mathys Medizinaltechnik Ag Damping element and device for stabilisation of adjacent vertebral bodies
US20050065514A1 (en) * 2001-12-07 2005-03-24 Armin Studer Damping element
US7329258B2 (en) * 2001-12-07 2008-02-12 Synthes (U.S.A.) Damping element
US20070016193A1 (en) * 2002-05-08 2007-01-18 Stephen Ritland Dynamic fixation device and method of use
US20040049190A1 (en) * 2002-08-09 2004-03-11 Biedermann Motech Gmbh Dynamic stabilization device for bones, in particular for vertebrae
US7029495B2 (en) * 2002-08-28 2006-04-18 Scimed Life Systems, Inc. Medical devices and methods of making the same
US20060142758A1 (en) * 2002-09-11 2006-06-29 Dominique Petit Linking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
US6989011B2 (en) * 2003-05-23 2006-01-24 Globus Medical, Inc. Spine stabilization system
US7651515B2 (en) * 2003-06-16 2010-01-26 Ulrich Gmbh & Co. Kg Implant for correction and stabilization of the spinal column
US7321912B2 (en) * 2003-06-24 2008-01-22 Texas Instruments Incorporated Device with dB-to-linear gain conversion
US20050033295A1 (en) * 2003-08-08 2005-02-10 Paul Wisnewski Implants formed of shape memory polymeric material for spinal fixation
US20050085914A1 (en) * 2003-10-17 2005-04-21 Co-Ligne Ag Fusion implant
US20050085814A1 (en) * 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
US20050154390A1 (en) * 2003-11-07 2005-07-14 Lutz Biedermann Stabilization device for bones comprising a spring element and manufacturing method for said spring element
US7763052B2 (en) * 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US20080033557A1 (en) * 2004-05-17 2008-02-07 Abbott Spine Intervertebral Spacer for Cervical Vertebrae
US20080039943A1 (en) * 2004-05-25 2008-02-14 Regis Le Couedic Set For Treating The Degeneracy Of An Intervertebral Disc
US20080015693A1 (en) * 2004-05-27 2008-01-17 Regis Le Couedic Spinal Arthroplasty System
US20070150064A1 (en) * 2005-12-22 2007-06-28 Depuy Spine, Inc. Methods and devices for intervertebral augmentation
US20080058812A1 (en) * 2006-02-03 2008-03-06 Thomas Zehnder Vertebral column implant
US20080140133A1 (en) * 2006-12-08 2008-06-12 Randall Noel Allard Methods and Devices for Treating a Multi-Level Spinal Deformity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287250A1 (en) * 2003-12-10 2009-11-19 Warsaw Orthopedic, Inc. Method and apparatus for replacing the function of facet joints
US8414614B2 (en) 2005-10-22 2013-04-09 Depuy International Ltd Implant kit for supporting a spinal column
US8425563B2 (en) 2006-01-13 2013-04-23 Depuy International Ltd. Spinal rod support kit
US8348952B2 (en) 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US8430914B2 (en) 2007-10-24 2013-04-30 Depuy Spine, Inc. Assembly for orthopaedic surgery
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US20090326584A1 (en) * 2008-06-27 2009-12-31 Michael Andrew Slivka Spinal Dynamic Stabilization Rods Having Interior Bumpers
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
US9320543B2 (en) 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
US11583318B2 (en) 2018-12-21 2023-02-21 Paradigm Spine, Llc Modular spine stabilization system and associated instruments

Also Published As

Publication number Publication date
EP1303225B1 (en) 2005-05-25
US20040049189A1 (en) 2004-03-11
EP1303225A1 (en) 2003-04-23
DE60111053T2 (en) 2006-08-24
AU2001279908A1 (en) 2002-02-05
US7641673B2 (en) 2010-01-05
US20100114173A1 (en) 2010-05-06
FR2812186B1 (en) 2003-02-28
FR2812186A1 (en) 2002-02-01
ES2243531T3 (en) 2005-12-01
ATE296059T1 (en) 2005-06-15
DE60111053D1 (en) 2005-06-30
WO2002007622A1 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
US20100114169A1 (en) Flexible linking piece for stabilising the spine
US8012182B2 (en) Semi-rigid linking piece for stabilizing the spine
US9636145B2 (en) Flexible spine stabilization system
AU2002225119B2 (en) Intervertebral Implant with Deformable Wedge
US8216274B2 (en) Longitudinal member for use in spinal or trauma surgery and stabilization device with such a longitudinal member
CA2540591C (en) Device for the elastic stabilisation of bodies of the vertebra
KR101051232B1 (en) Dynamic Spinal Stabilization Mechanism with Damper
US5645544A (en) Variable angle extension rod
US9451988B2 (en) Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant
US9050140B2 (en) Apparatus for stabilizing vertebral bodies
AU2009281847B2 (en) Vertebral rod system and methods of use
KR20090018063A (en) Locking device and method, for use in a bone stabilization system, employing a set screw member and deformable saddle member
US20070276367A1 (en) Device for interconnection of components in a spinal implant assembly
KR20060043403A (en) Rod-like element for application in spinal or trauma surgery, and stabilization device with such a rod-like element
JP2007054628A (en) Bar-like implant element and stabilizing device
US20140052185A1 (en) Dynamic Spine Stabilizers
ZA200602370B (en) Device for elastically stabilising vertebral bodies

Legal Events

Date Code Title Description
AS Assignment

Owner name: ZIMMER SPINE S.A.S.,FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:ABBOTT SPINE;REEL/FRAME:024072/0871

Effective date: 20090612

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION