US20080027199A1 - Shape memory polymer articles with a microstructured surface - Google Patents

Shape memory polymer articles with a microstructured surface Download PDF

Info

Publication number
US20080027199A1
US20080027199A1 US11/460,685 US46068506A US2008027199A1 US 20080027199 A1 US20080027199 A1 US 20080027199A1 US 46068506 A US46068506 A US 46068506A US 2008027199 A1 US2008027199 A1 US 2008027199A1
Authority
US
United States
Prior art keywords
article
siloxane
radically polymerizable
shape memory
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/460,685
Inventor
Mieczyslaw H. Mazurek
Robert K. Galkiewicz
Audrey A. Sherman
James R. Starkey
Wendi J. Winkler
Haiyan Zhang
Jeffrey M. Olofson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/460,685 priority Critical patent/US20080027199A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAZUREK, MIECZYSLAW H., OLOFSON, JEFFREY, SHERMAN, AUDREY A., STARKEY, JAMES R., WINKLER, WENDI J., ZHANG, HAIYAN, GALKIEWICZ, ROBERT K.
Priority to EP07799431A priority patent/EP2046408A4/en
Priority to PCT/US2007/073097 priority patent/WO2008014109A1/en
Priority to KR1020097001561A priority patent/KR20090036117A/en
Publication of US20080027199A1 publication Critical patent/US20080027199A1/en
Priority to US13/296,362 priority patent/US10279069B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/046Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/06Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/068Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/148Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the invention relates to shape memory polymers, and particularly, to shape memory polymers having microstructured surfaces.
  • Shape memory materials have the unique ability to “remember” a pre-set shape and, upon exposure to the appropriate stimuli, shift from a deformed or altered shape back to the pre-set shape.
  • shape memory materials For example, shape memory metal alloys are commonly used in various medical, dental, mechanical, and other technology areas for a wide variety of products.
  • Shape memory polymers and the uses of these materials have emerged more recently. However, the basic premise behind these materials is the same—that the material can be pre-set in a particular shape, deformed, and then revert back to the pre-set shape when exposed to the appropriate stimuli.
  • the present disclosure relates generally to shape memory polymer articles.
  • the shape memory polymer articles may include a microstructured surface.
  • an illustrative article that includes a polymeric member.
  • the polymeric member may include a surface having a microstructure and it may include a shape memory polymer.
  • the shape memory polymer may include a copolymer network.
  • the copolymer network may include the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer.
  • the at least one (meth)acrylate monomer when homopolymerized, may form a homopolymer that has a glass transition temperature, a melting temperature, or both greater than about 40° C.
  • an illustrative article in another embodiment, includes a polymeric member having a microstructured surface.
  • the microstructured surface may include a surface feature that is not visible to an unaided eye.
  • the polymeric member may include a shape memory polymer.
  • an illustrative article in yet another embodiment, includes a polymeric member having a microstructured surface.
  • the microstructured surface may include a surface feature that is not visible to an unaided eye.
  • the polymeric member may include a shape memory polymer.
  • the shape memory polymer may include a copolymer network.
  • the copolymer network may include the reaction product of (meth)acryloxyurea siloxane and isobornyl acrylate.
  • FIG. 1 is a side view of an illustrative article having a surface with a microstructure
  • FIG. 2 is a side view of another illustrative article having a surface with a microstructure
  • FIG. 3 is an alternative side view of the illustrative article shown in FIG. 2 .
  • this disclosure is directed to shape memory polymer articles that have a microstructured surface. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through discussion of the various features and components provided below.
  • Weight percent, percent by weight, wt %, wt-%, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • alkyl refers to a straight or branched chain monovalent hydrocarbon radical optionally containing one or more heteroatomic substitutions independently selected from S, O, Si, or N.
  • Alkyl groups generally include those with one to twenty atoms. Alkyl groups may be unsubstituted or substituted with those substituents that do not interfere with the specified function of the composition. Substituents include alkoxy, hydroxy, mercapto, amino, alkyl substituted amino, or halo, for example.
  • alkyl as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isobutyl, and isopropyl, and the like.
  • aryl refers to monovalent unsaturated aromatic carbocyclic radicals having a single ring, such as phenyl, or multiple condensed rings, such as naphthyl or anthryl.
  • Aryl groups may be unsubstituted or substituted with those substituents that do not interfere with the specified function of the composition. Substituents include alkoxy, hydroxy, mercapto, amino, alkyl substituted amino, or halo, for example.
  • Such an aryl ring may be optionally fused to one or more of another heterocyclic ring(s), heteroaryl ring(s), aryl ring(s), cycloalkenyl ring(s), or cycloalkyl rings.
  • aryl as used herein include, but are not limited to, phenyl, 2-naphthyl, 1-naphthyl, biphenyl, 2-hydroxyphenyl, 2-aminophenyl, 2-methoxyphenyl and the like.
  • (meth)acrylate is used to define both acrylates and methacrylates.
  • telechelic siloxane refers to siloxanes with 2 reactive groups, one at either end of the siloxane chain.
  • shape memory polymer refers to polymeric materials that are stimuli-responsive. Upon application of an external stimuli they have the ability to change their shape. A change in shape initiated by a change in temperature can be referred to as a thermally induced shape memory effect. While not being bound by theory, the shape memory effect may result from the polymer's structure, that is, its morphology in combination with a certain processing and programming technology. Therefore, the shape-memory behavior can be observed for several polymers that may differ significantly in their chemical composition.
  • the present disclosure is directed to articles.
  • the articles may include a polymeric member that has a surface with a microstructure and that includes a shape memory polymer.
  • the articles contemplated span a vast array of technical fields and include essentially any structure that may find utility or otherwise benefit from having a shape memory polymer incorporated into their construction. This may include a variety of different devices, apparatuses, components or portions of devices, layers or surfaces on devices, and the like, or any other suitable structure.
  • the articles of this disclosure may include an adhesive, a tape or substrate including an adhesive, a heat-activated tape, a microstructured tape, a backing member, a foam tape, a device having a fluid disposed or encapsulated therein, a microfluidic device, a circuit or circuit board, a printed circuit, a film (including multilayer optical films), a micromachined article, an embossed article, a printing plate or film used to create 3 D prints, a substrate for pattern coating and/or pattern printing, an electrode, a device having cube corners with retroreflective characteristics, a secure identification article, a secure license or license plate, a directional organic light emitting diode, a sensor, an indicator, a switch, and the like, or any other suitable device.
  • this list of articles is not intended to be limiting as the articles contemplated can take the form of any suitable structure, apparatus, or device.
  • an exemplary article may include a shape memory polymer.
  • shape memory polymers suitable for the articles are described in more detail below.
  • the entire article is made from the shape memory polymer.
  • only a portion of the article is made from a shape memory polymer. This may include a shape memory polymer layer, a shape memory polymer surface, a shape memory polymer portion, or any other suitable configuration.
  • the remaining materials making up the article may include metals, metal alloys, polymers, ceramics, and the like, or any other suitable material. Regardless of whether the article is completely or partially made from a shape memory polymer, the articles described herein can be described as “shape memory polymer articles”.
  • Shape memory polymers are known to have the unique ability to be set in a pre-set shape, deformed to an altered shape, and then revert back to the pre-set shape when exposed to the appropriate stimuli (e.g., changes in temperature, application of solvent, etc.). Because the articles disclosed herein include a shape memory polymer, the portion of the article (or all of the article if made completely from a shape memory polymer) having the shape memory polymer can be configured to utilize this property.
  • the article may include a shape memory polymer surface that has been cast or otherwise shaped to have a pre-set shape or configuration. This surface can be deformed to an altered or deformed shape and then be shifted back to the pre-set shape when appropriately cued. Triggering the shift from the deformed shape to the pre-set shape can vary depending on the particular polymer used or other parameters. However, at least some of the shape memory polymers disclosed herein can be shifted by exposure to elevated temperatures and/or to an appropriate solvent.
  • the articles include a surface having a microstructure.
  • a surface with a microstructure is different than a “flat” or unstructured surface.
  • the term “microstructure” means the configuration of features wherein at least 2 dimensions of the features are microscopic. The topical and/or cross-sectional view of the features, therefore, are microscopic.
  • the term “microscopic” refers to features of small enough dimension so as to require an optic aid to the naked eye when viewed from any plane of view to determine its shape.
  • One criterion is found in Modern Optic Engineering by W. J. Smith, McGraw-Hill, 1966, pages 104-105 whereby visual acuity,“ . . .
  • microstructures may be formed along portions or all of any number of surfaces of the article.
  • some surfaces of the articles may include sections that have microstructures and sections that are free from microstructures.
  • substantially all of one or more surfaces of the articles may include microstructures.
  • shape and/or configuration of the microstructures can also vary.
  • microstructures can include one or more projections, one or more depressions, a combination of projections and depressions, ridges, posts, pyramids, hemispheres, cones, protrusion, or any other suitable feature.
  • the shapes of the various projections and/or depressions can also vary.
  • some embodiments of projections and/or depressions can be rounded in shape (e.g., circular, semicircular, spherical, hemispherical, oval, pill-shaped, partially pill-shaped, etc.) or include a rounded portion, polygonal in shape or include a polygonal portion (e.g., triangular, squared, cubed including cube corners, tetrahedrical, rectangular, paralleopiped, pentagonal, hexagonal, etc.), an irregular shape, a regular shape, a pointed shape, a truncated shape, combinations thereof, or any other suitable shape.
  • the projections and/or depressions may include or define one or more channels, valleys, wells, ridges, and the like, combinations thereof, or any other configuration.
  • Microstructures may be formed in a surface of an article through the use of a microstructured molding tool.
  • a microstructured molding tool is an implement for imparting a structure or finish to at least a portion of an article and that may be continuously reused in the process.
  • Microstructured molding tools can be in the form of a planar stamping press, a flexible or inflexible belt, a roller, or the like.
  • microstructured molding tools are generally considered to be tools from which the microstructured surface feature is generated by embossing, coating, casting, or platen pressing and do not become part of the finished microstructured article. Instead, a surface on the article corresponding to where the article came into contact with the microstructured surface of the molding tool defines the microstructure or microstructured surface feature of the article.
  • microstructured molding tools can also be prepared by replicating various microstructured surfaces, including irregular shapes and patterns, with a moldable material such as those selected from the group consisting of crosslinkable liquid silicone rubber, radiation curable urethanes, etc. or replicating various microstructures by electroforming to generate a negative or positive replica intermediate or final embossing tool mold.
  • microstructured molds having random and irregular shapes and patterns can be generated by chemical etching, sandblasting, shot peening or sinking discrete structured particles in a moldable material.
  • any of the microstructured molding tools can be altered or modified according to the procedure taught in U.S. Pat. No. 5,122,902, the entire disclosure of which is herein incorporated by reference.
  • FIG. 1 is provided to depict a portion of an example article 10 .
  • Article 10 includes a shape memory polymer such as, for example, any of the shape memory polymers described herein.
  • Article 10 may comprise a polymeric member that includes a surface 12 having a plurality of surface features or microstructures 14 formed therein.
  • microstructures 14 are depicted as projections extending outward from surface 12 .
  • this arrangement is not intended to be limiting as a wide variety of differing arrangements are contemplated including those described above.
  • article 10 may be in the “pre-set” shape or may be in the “deformed” shape. If article 10 , as shown in FIG. 1 , is in the pre-set shape, surface 12 can be deformed. This may be accomplished, for example, by changing the configuration of microstructures 14 . For example, microstructures 14 may be flattened. The deformed article 10 can be shifted back to the pre-set configuration (i.e., the configuration depicted in FIG. 1 for this example) upon exposure to, for example, increased temperature, solvent, or any other suitable stimuli. Alternatively, if article 10 is in the deformed shape or configuration when arranged as shown in FIG. 1 , exposure to the appropriate stimuli may shift article 10 back to the pre-set shape. In this later embodiment, the pre-set shape may include a generally flat or planar arrangement for surface 12 or any other suitable shape.
  • FIGS. 2-3 depict another example article 1010 .
  • Article 1010 may comprise, a sensor.
  • article 1010 may include a surface 1012 having a microstructure defined therein.
  • the microstructure may include, for example, a plurality of rows or wells 1014 .
  • This configuration may be the pre-set shape of surface 1012 .
  • Surface 1012 can be deformed into a deformed shape that is, for example, substantially flat.
  • a secondary surface 1012 ′ for example on the opposite side of article 1010 (which is indicated in FIG. 3 as article 1010 ′) may have a generally flat pre-set shape that can be deformed to have a microstructure that includes or defines a hexagonal pattern therein. Mobilizing may restore both surfaces 1012 / 1012 ′.
  • mobilizing may include the application of heat and/or the exposure to solvent or solvent vapors to one or both of surface 1012 and/or surface 1012 ′.
  • surfaces 1012 / 1012 ′ may be exposed to heat and restored.
  • surfaces 1012 / 1012 ′ may be exposed to solvent or solvent vapors.
  • This later embodiment may allow article 1010 to be used as a sensor that can “smell” a solvent. For example, a user may visually observe the changes in the shape of article 1010 (on one or both sides) in order to observe that the sensor has smelled a particular solvent.
  • FIGS. 2-3 in addition to illustrating that article 1010 can be used as a sensor, also indicate that a surface having a pre-set shape may be formed on multiple sides of an article.
  • FIGS. 2-3 illustrate article 1010 having surface 1012 with a pre-set shape that includes a microstructure whereas surface 1012 ′ has a pre-set shape that is generally planar.
  • one or both of the surfaces 1012 / 1012 ′ can be deformed.
  • surface 1012 can be flattened whereas surface 1012 ′ can be deformed to have a microstructure.
  • article 1010 can be seen as having a secondary surface 1012 ′ with a microstructure.
  • secondary surface 1012 ′ may, alternatively, have a pre-set shape that includes the microstructure shown in FIG. 3 and it can be deformed to have another shape.
  • the secondary surface 1012 ′ (or other surfaces having a pre-set shape) may be defined along any area of the article 1010 and need not be limited to just a surface that is opposite of surface 1012 . Regardless of the configuration of surfaces 1012 / 1012 ′, mobilization shifts surfaces 1012 / 1012 ′ back to their pre-set shape.
  • other articles are contemplated that have multiple surfaces with pre-set shapes including multiple planar surfaces and/or multiple surfaces with microstructures.
  • other embodiments are contemplated where one or more surfaces have a microstructure formed therein and one or more of these surfaces can be deformed to have a different microstructure.
  • Shape memory polymers can be classified as elastomers. On the molecular level they represent polymer networks that include segment chains that are connected by netpoints. The netpoints can be formed by entanglements of the polymer chains or intermolecular interaction of certain polymer blocks. These cross-links are called physical netpoints. Cross-links in the form of covalent bonds form chemical netpoints.
  • An elastomer exhibits a shape-memory functionality if the material can be stabilized in the deformed state in a temperature range that is relevant for the particular application. This can be achieved by using the network chains as a kind of molecular switch.
  • the copolymer network includes an elastomeric phase or component and a “glassy” or high glass transition temperature phase or component.
  • the glassy phase holds or constrains the elastomeric component so that the substrate can be deformed into and stays in the deformed shape. Shifting from a deformed shape to the pre-set shape generally includes mobilizing the glassy phase of the shape memory polymer in order to allow the elastomeric component to “spring back” or otherwise shift to the original pre-set shape.
  • mobilizing is understood to be the mobilization of the glassy phase through the application of the appropriate external stimuli.
  • the elastomeric phase comprises a free radically polymerizable siloxane having greater than one functional free radically polymerizable group.
  • the glassy phase may comprise at least one (meth)acrylate monomer that, when homopolymerized, forms a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C.
  • exposure of the shape memory polymer to temperatures greater than 40° C. can mobilize the glassy phase and cause the deformed surface of the substrate from the deformed shape to the pre-set shape.
  • a solvent such as alkyl alcohol, acetone, etc. can partially dissolve or plasticize the glassy phase and effectuate the same change.
  • the (meth)acrylate monomer may crystallize when reacted with the free radically polymerizable siloxane having greater than one functional free radically polymerizable group.
  • exposing the copolymer network to temperatures above the melting point of the (meth)acrylate monomer may mobilize the glassy phase.
  • the relative proportions of the various components of the copolymer network can vary.
  • the copolymer network may include about 10-70 weight-percent of the free radically polymerizable siloxane.
  • the copolymer network may include about 10-60 weight-percent of the free radically polymerizable siloxane.
  • the copolymer network may include about 20-60 weight-percent of the free radically polymerizable siloxane.
  • the free radically polymerizable siloxanes for use in the copolymer networks may be represented by the following formula:
  • X is a group having ethylenic unsaturation
  • Y is a divalent linking group
  • n is an integer of 0 to 1;
  • D is selected from the group consisting of hydrogen, an alkyl group of 1 to about 10 carbon atoms, aryl, and substituted aryl;
  • R is a divalent hydrocarbon group
  • R 1 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, aryl, and substituted aryl;
  • R 2 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, aryl, and substituted aryl;
  • R 3 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, vinyl, aryl, and substituted aryl;
  • R 4 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, vinyl, aryl, and substituted aryl;
  • n is an integer of about 10 to about 2000.
  • Suitable free radically polymerizable siloxanes for use in the articles described herein may include those described in U.S. Pat. No. 5,091,483, the entire disclosure of which is herein incorporated by reference.
  • the free radically polymerizable siloxanes comprise telechelic siloxanes.
  • the telechelic siloxanes may include, for example, (meth)acryloxyurea siloxane (MAUS), acrylamidoamido siloxane (ACMAS), methacrylamidoamido siloxane (MACMAS), and methylstyrylurea siloxane (MeStUS).
  • these telechelic siloxanes are formed by reacting silicone diamines with capping reagents such as isocyanatoethylmethacrylate (IEM), vinyldimethylazlactone (VDM), isopropenyl dimethyl azlactone (IDM), and m-isopropenyl alpha, alpha-dimethyl benzyl isocyanate (m-TMI), respectively.
  • IEM isocyanatoethylmethacrylate
  • VDM vinyldimethylazlactone
  • IDM isopropenyl dimethyl azlactone
  • m-TMI m-isopropenyl alpha, alpha-dimethyl benzyl isocyanate
  • telechelic siloxanes may have a number average molecular weights in the range of about 1,000 to 200,000.
  • the telechelic siloxanes have free radically polymerizable end groups. Due to the polar nature of the hydrogen bonding end groups and the nonpolar nature of the polydimethylsiloxane chain, a transient network is formed wherein the polar end groups tend to associate with each other. The relative strength of the end group association for the various telechelic siloxanes is reflected in their viscosities, with higher viscosities seen in the case of the more strongly associating end groups (e.g., ACMAS and MeStUS).
  • the telechelic siloxanes are obtained from amine-functional siloxane intermediates.
  • Suitable polydiorganosiloxane diamines and methods of making the polydiorganosiloxane diamines are described, for example, in U.S. Pat. No. 3,890,269 (Martin), U.S. Pat. No. 4,661,577 (Jo Lane et al.), U.S. Pat. No. 5,026,890 (Webb et al.), U.S. Pat. No. 5,276,122 (Aoki et al.), U.S. Pat. No. 5,214,119 (Leir et al.), U.S. Pat. No.
  • polydiorganosiloxane diamines are commercially available, for example, from Shin Etsu Silicones of America, Inc., Torrance, Calif. and from Gelest Inc., Morrisville, Pa. Particularly useful polydiorganosiloxane diamines include bis(3-aminopropyl)polydimethylsiloxanes.
  • Polydimethylsiloxanes having acrylamidoamido end groups can be prepared by the reaction of a polydimethylsiloxane diamine with 2 equivalents of vinyl dimethyl azlactone (VDM).
  • polydimethylsiloxanes having methacrylamidoamido end groups can be prepared in the same manner by the reaction of a polydimethylsiloxane diamine with 2 equivalents of isopropenyl dimethyl azlactone (IDM).
  • Polydimethylsiloxanes having methacryloxyurea end groups can be prepared using the same procedure, by the reaction of a polydimethylsiloxane with 2 equivalents of isocyanatoethyl methacrylate (IEM).
  • Polydimethylsiloxanes having alpha-methylstyrylurea end groups can be made by the reaction of a polydimethylsiloxane with 2 equivalents of m-isopropenyl-alpha,alpha-dimethyl benzyl isocyanate (m-TMI).
  • the free radically polymerizable siloxanes comprise non-techelic siloxanes.
  • These siloxanes are ones according to the above formula where at least some of the groups R 3 and/or R 4 comprise vinyl groups.
  • (meth)acrylate monomers are monomers that are the (meth)acrylate esters of non-tertiary alkyl alcohols, the alkyl groups of which comprise from about 1 to about 20, or about 1 to about 18 carbon atoms.
  • Suitable (meth)acrylate monomers include, for example, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, ethyl methacrylate, isobornyl acrylate, isobornyl methacrylate, methyl methacrylate, 1-methylcyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, 3-methylcyclohexyl methacrylate, 4-methylcyclohexyl methacrylate, and 2-phenoxy ethyl methacrylate.
  • Particularly suitable (meth)acrylate monomers are those that, when homopolymerized, form a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C. These monomers are suitable in forming a copolymer network with a free radically polymerizable siloxane.
  • preferred (meth)acrylate monomers include isobornyl acrylate, cyclohexyl acrylate, trimethyl cyclohexyl acrylate, methyl methacrylate, methacrylic acid, t-butyl acrylate.
  • a single (meth)acrylate monomer or a combination of (meth)acrylate monomers may be used.
  • the glass transition temperature (and/or the melting temperature) may be measured by conventional techniques such as Differential Scanning Calorimetry (DSC) or Dynamic Mechanical Analysis (DMA). Some additional details regarding these components of the copolymer network are described in more detail below.
  • DSC Differential Scanning Calorimetry
  • DMA Dynamic Mechanical Analysis
  • the shape memory polymer may be a copolymer network including the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer.
  • the reaction may include, for example, polymerization via curing. Curing may be carried out in an oxygen-free, e.g., in an inert atmosphere such as nitrogen gas or by utilizing a barrier of radiation-transparent material having low oxygen permeability. Curing can also be carried out under an inerting fluid such as water. When visible or ultraviolet radiation is used for curing, the reaction may also contain a photoinitiator.
  • Suitable photoinitiators include benzoin ethers, benzophenone and derivatives thereof, acetophenone derivatives, camphorquinone, and the like.
  • Some examples of commercially available photoinititaors include DARACUR 1173, DAROCUR 4265, IRGACURE 651, IRGACURE 1800, IRGACURE 369, IRGACURE 1700, and IRGACURE 907, commercially from Ciba Geigy.
  • the photoinitiator may be used at a concentration of from about 0.1% to about 5% by weight of the total polymerizable composition, and, if curing is carried out under an inerting fluid, the fluid is preferably saturated with the photoinitiator or photoinitiators being utilized in order to avoid the leaching of initiator from the reaction.
  • the rapid cure observed for these materials allows for the use of relatively low levels of photoinitiator, hence uniform cure of thick sections can be achieved due to deeper penetration of radiation.
  • curing can also be achieved thermally, which may include the use of thermal initiator such as peroxides, azo compounds, or persulfates generally at a concentration of from about 1% to about 5% by weight of the total polymerizable composition.
  • any initiator (thermal or photo-) utilized may be soluble in the reaction components themselves, thereby avoiding the need for a separate solvent. Liquid initiators may be preferred.
  • Polymerization mixtures can be prepared by dissolving telechelic siloxanes in the (meth)acrylate monomers and adding a photoinitiator Such polymerization mixtures typically have viscosities that permit the preparation of samples in film form by direct coating and radiation curing by standard procedures.
  • the shape memory polymer article may be formed by coating and curing the polymerizable mixture in a structured configuration, by curing the polymerization mixture in an unstructured configuration and then applying a structure through the imposition of heat and pressure, or by a combination of the these processes.
  • the polymerization mixture can be coated onto a carrier layer such as a liner (either structured or unstructured), onto a substrate (such as a metal sheet or foil, a film, a ceramic or piece of glass, etc) or onto a tool or mold.
  • a covering layer which may be another liner, substrate, tool or mold and may be the same or different from the carrier layer.
  • the resulting construction is then cured, preferably with UV radiation.
  • one or both of the carrier layer and or the covering layer are removed and the shape memory polymer article may then be subjected to additional processing (to create or remove structuring, to form in articles of a desired shape, etc).
  • 5K MeStUS Alpha-methyl styrylurea siloxane a difunctional silicone alpha-methyl styrene prepared from PDMS diamine 5K as described in U.S. Pat. No. 5,514,730 column 14 for 35K MeStUS, using 5,000 g/mole PDMS diamine instead of 35,000 g/mole PDMS diamine.
  • 50K MAUS Methacryloxyurea siloxane a difunctional silicone acrylate prepared from PDMS diamine 50K as described in U.S. Pat. No. 5,514,730 column 14 for 35K MAUS, using 50,000 g/mole PDMS diamine instead of 35,000 g/mole PDMS diamine.
  • 50K MeStUS Alpha-methyl styrylurea siloxane a difunctional silicone alpha-methyl styrene prepared from PDMS diamine 50K as described in U.S. Pat. No. 5,514,730 column 14 for 35K MeStUS, using 50,000 g/mole PDMS diamine instead of 35,000 g/mole PDMS diamine.
  • a curable precursor solution of 40 parts of 5K MAUS dissolved in 60 parts of IBA, containing 0.5 wt % DAROCUR 1173 was poured on the first tool, which was an unstructured PET film laid down on the surface of a glass plate.
  • the first tool was bordered by a compliant adhesive film of 3 millimeters thickness to serve as a dam for the curable adhesive precursor as well as a spacer to control the thickness of the cured film.
  • the liquid layer of curable precursor was covered with a cover sheet (an unstructured UV transparent film) and the excess fluid was squeezed out by placing a rigid glass plate over the cover sheet and pressing the thus formed sandwich construction until the glass plate rested against the spacer.
  • the sandwich construction was exposed to low intensity UV lights through the cover sheet for 10-15 minutes.
  • the resulting cured film (slab) had two surfaces replicated from the first tool and from the cover sheet (second tool) and was removed from both the first tool and from the cover sheet. The edges of the substrate were trimmed.
  • Example 1 The slab prepared in Example 1 was deformed by pressing against the structured surface of the metal tool and a polished steel plate with heat/pressure (110° C. for 10 minutes, pre-press 4.1 MegaPascals (600 lbs/in 2 ) for 10 minutes, 30 MegaPascals (2 ton/in 2 ) high pressure for 10 minutes) and quenched (25 minutes until temperature reached 60° C.).
  • the structure of the tool an array of tilted triangular prisms with millimeter-size dimensions, was partially replicated—approximately 60-70% of the height of the pyramid.
  • Example 2 A part of the film made in Example 2 was heated to approximately 110° C. on a heating plate. The area exposed to heat became essentially flat, with some traces of the embossed microstructure still visible.
  • a shape-memory substrate was prepared as described in Example 2.
  • One part of the sample was submitted to a secondary process of shaving off the temporary surface features.
  • the portion of the sample with shaved-off material showed rounded cavities with topologies corresponding to the shaved-off elements.
  • a shape-memory substrate was prepared as described in Example 1 except that the first tool was a microstructured film having linear array of rectangular channels (200 micrometers at the bottom, 100 micrometers at the top, 200 micrometer high) and a 1 millimeter spacer was used.
  • the sample was flattened between the two polished steel plates under the conditions as described in Example 2 except flat tools were used.
  • One part of the film was sprayed with metallic silver paint to form a thin layer of metallic silver.
  • the electrical conductivity of the sample was checked using a Fluke 87 III RMS Multimeter, which was independent of the position of the electrodes (x and y conductive). A portion of the sample was heated to 120° C. on a heating plate to restore the original shape of the surface. Electrical conductivity of the sample was again checked. While the sample maintained the electrical conductivity along the channels the conductivity in the cross-direction was primarily destroyed and/or disrupted.
  • a shape-memory substrate was made as described in Example 1 except that the first tool was a metal tool with structured surfaces as described in Example 2.
  • the substrate having sharp macroscopic features was subsequently submitted to heat and pressure between two polished steel plates under the conditions described in Example 2 except flat tools were used.
  • the substrate became essentially flat with the pyramids being partially flattened and partially bent. Part of the original structure was restored by selectively focusing sunlight through a lens onto several of the pyramids.
  • a shape-memory substrate was tested through the stages of making, distorting and restoring.
  • the sample was made as described in Example 1 except that the first tool was a metal tool having an array of cube corners as described in U.S. Pat. No. 5,706,132.
  • the pyramids had a height of 87 micrometers (3.5 mil).
  • the spacer used was 125 micrometers.
  • the sample was removed from the first tool while maintained on the flat PET cover.
  • the sample showed retroreflectivity when analyzed using a retroviewer (the sample “made” stage).
  • a part of the sample was flattened between the two polished steel plates under the conditions described in Example 2 except that the tools were flat.
  • Example 7 A series of samples were made, distorted and restored as in Example 7 except that different compositions of the curable precursors were used (containing Monomer 1, IBA and DAROCUR 1173) as shown in Table 1. Results of the testing are shown in Table 2.
  • a shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used.
  • One of the surfaces of the substrate was deformed by pressing the sample between the metal tool, having regularly arranged square posts (150 micrometers at the bottom, 150 micrometers at the top, 50 micrometers high), to create a corresponding array of microcavities.
  • the substrate was coated with a Water-borne PSA. Upon drying the water at 25° C. for 24 hours, the film contained PSA distributed within the pockets of microstructure substrate and showed no/little tack.
  • a portion of the sample was heated to 120° C. on a heating plate causing the restoration of the original flatness of the substrate and making the sample tacky by exposing the PSA layer on the surface.
  • a shape-memory substrate was made as described in Example 1 except that a 1 millimeter spacer was used.
  • One of the surfaces of the substrate was deformed by pressing the sample between the metal tool, having an array of triangular posts (420 micrometers depth), to create an array of visible cavities.
  • the substrate was flooded with colored aqueous fluid to fill the cavities.
  • Silicone pressure sensitive adhesive tape (as described in U.S. Pat. No. 6,569,521, Example 28) was laminated to the substrate to seal off the cavities filled with the fluid. When heated to 120° C. the substrate returned to its original shape exerting pressure on the laminated tape causing the tape to also distort, and causing the adhesive border seals to rupture.
  • a shape-memory substrate was made as described in Example 1, except that the first tool was a metal tool, a replica of the tool used to deform the substrate in Example 14, having regularly arranged square cavities (150 micron at the bottom, 150 micron at the top, 45 micrometer high) and a 1 millimeter spacer to create a corresponding array of micro-posts.
  • the sample was flattened between two polished steel plates under the conditions as described in Example 2. The sample was heated to 120° C. on a heating plate to restore the original structure (posts) of the surface. The posts were able to pick up water-based ink for transfer to paper.
  • a shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used.
  • One of the surfaces of the substrate was deformed by pressing the sample between the metal tool having regularly arranged square posts, as described in Example 14, to create a corresponding array of micro-cavities.
  • a droplet of the solution of dye (bromothymol blue, sodium salt) in ethylene glycol was deposited on the surface of the film, clear-cut borders along the line of the pattern were naturally established, and the solvent essentially restored the “printed” area to flatness with the clearly visible high concentration of the dye in the spots corresponding to the arrangement of cavities in which it was originally deposited.
  • a shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used and the first tool was a metal tool with an array of square posts, as described in Example 14.
  • the cured sample was pressed between 2 flat surfaces using the technique described in Example 2.
  • a droplet of the solution of dye (bromothymol blue, sodium salt) in ethylene glycol was deposited on the surface of the film, clear-cut borders along the line of the pattern were naturally established, and the solvent essentially restored the “printed” area to its micro-cavitated form dragging the ink into the cavities.
  • a shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the cured substrate was deformed by pressing the sample between the metal tool, used in Example 16. A droplet of the aqueous solution of dye (bromophenol blue indicator solution) was deposited and pressed on the microstructured surface of the shape-memory substrate. The solution was primarily distributed in the channels between the posts, and on the top of the posts having some small micro-channels. When exposed to heat (120° C.), the solvent (water) evaporated and the flatness of the first surface of the substrate was essentially restored leaving a regular pattern of the dye on the surface.
  • dye bromophenol blue indicator solution
  • a shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the substrate was deformed by pressing the sample between the metal tool (an array of cube corners as described in U.S. Pat. No. 5,706,132, pyramidal height of 87 micrometers), as described in Example 2.
  • a border of adhesive was made on a plastic substrate and the microstructured surface was placed within and on the border. The retroreflectivity of the microstructured surface disappeared where in contact with the adhesive border, but remained retroreflective within the border.

Abstract

A shape memory polymer article is disclosed. The article may include a surface having a microstructure and it may include a shape memory polymer. The shape memory polymer may include a copolymer network. The copolymer network may be formed from the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is related to commonly assigned, co-pending U.S. patent application Ser. No. ______ by Sherman et al., entitled “Method of Forming and Using Shape Memory Polymer,” and filed of even date herewith (Docket 62183US002); and to commonly assigned, co-pending U.S. patent application Ser. No. ______ by Dunn et al., entitled “Microlens Sheeting With Floating Image Using A Shape Memory Material,” and filed of even date herewith (Docket 62252US002).
  • FIELD OF THE INVENTION
  • The invention relates to shape memory polymers, and particularly, to shape memory polymers having microstructured surfaces.
  • BACKGROUND
  • Shape memory materials have the unique ability to “remember” a pre-set shape and, upon exposure to the appropriate stimuli, shift from a deformed or altered shape back to the pre-set shape. Several commercially important uses have been developed for shape memory materials. For example, shape memory metal alloys are commonly used in various medical, dental, mechanical, and other technology areas for a wide variety of products.
  • Shape memory polymers and the uses of these materials have emerged more recently. However, the basic premise behind these materials is the same—that the material can be pre-set in a particular shape, deformed, and then revert back to the pre-set shape when exposed to the appropriate stimuli.
  • SUMMARY
  • The present disclosure relates generally to shape memory polymer articles. The shape memory polymer articles may include a microstructured surface.
  • In one embodiment, an illustrative article is described that includes a polymeric member. The polymeric member may include a surface having a microstructure and it may include a shape memory polymer. The shape memory polymer may include a copolymer network. The copolymer network may include the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer. The at least one (meth)acrylate monomer, when homopolymerized, may form a homopolymer that has a glass transition temperature, a melting temperature, or both greater than about 40° C.
  • In another embodiment, an illustrative article is described that includes a polymeric member having a microstructured surface. The microstructured surface may include a surface feature that is not visible to an unaided eye. The polymeric member may include a shape memory polymer.
  • In yet another embodiment, an illustrative article is described that includes a polymeric member having a microstructured surface. The microstructured surface may include a surface feature that is not visible to an unaided eye. The polymeric member may include a shape memory polymer. The shape memory polymer may include a copolymer network. The copolymer network may include the reaction product of (meth)acryloxyurea siloxane and isobornyl acrylate.
  • The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples, which follow, more particularly exemplify these embodiments.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
  • FIG. 1 is a side view of an illustrative article having a surface with a microstructure;
  • FIG. 2 is a side view of another illustrative article having a surface with a microstructure; and
  • FIG. 3 is an alternative side view of the illustrative article shown in FIG. 2.
  • While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
  • DETAILED DESCRIPTION
  • Generally, this disclosure is directed to shape memory polymer articles that have a microstructured surface. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through discussion of the various features and components provided below.
  • Selected Definitions
  • All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
  • Weight percent, percent by weight, wt %, wt-%, % by weight, and the like are synonyms that refer to the concentration of a substance as the weight of that substance divided by the weight of the composition and multiplied by 100.
  • The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
  • As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • As used herein, the term “alkyl” refers to a straight or branched chain monovalent hydrocarbon radical optionally containing one or more heteroatomic substitutions independently selected from S, O, Si, or N. Alkyl groups generally include those with one to twenty atoms. Alkyl groups may be unsubstituted or substituted with those substituents that do not interfere with the specified function of the composition. Substituents include alkoxy, hydroxy, mercapto, amino, alkyl substituted amino, or halo, for example. Examples of “alkyl” as used herein include, but are not limited to, methyl, ethyl, n-propyl, n-butyl, n-pentyl, isobutyl, and isopropyl, and the like.
  • As used herein, the term “aryl” refers to monovalent unsaturated aromatic carbocyclic radicals having a single ring, such as phenyl, or multiple condensed rings, such as naphthyl or anthryl. Aryl groups may be unsubstituted or substituted with those substituents that do not interfere with the specified function of the composition. Substituents include alkoxy, hydroxy, mercapto, amino, alkyl substituted amino, or halo, for example. Such an aryl ring may be optionally fused to one or more of another heterocyclic ring(s), heteroaryl ring(s), aryl ring(s), cycloalkenyl ring(s), or cycloalkyl rings. Examples of “aryl” as used herein include, but are not limited to, phenyl, 2-naphthyl, 1-naphthyl, biphenyl, 2-hydroxyphenyl, 2-aminophenyl, 2-methoxyphenyl and the like.
  • As used herein the term (meth)acrylate is used to define both acrylates and methacrylates.
  • The term telechelic siloxane refers to siloxanes with 2 reactive groups, one at either end of the siloxane chain.
  • As used herein, the term shape memory polymer refers to polymeric materials that are stimuli-responsive. Upon application of an external stimuli they have the ability to change their shape. A change in shape initiated by a change in temperature can be referred to as a thermally induced shape memory effect. While not being bound by theory, the shape memory effect may result from the polymer's structure, that is, its morphology in combination with a certain processing and programming technology. Therefore, the shape-memory behavior can be observed for several polymers that may differ significantly in their chemical composition.
  • Articles
  • The present disclosure is directed to articles. The articles may include a polymeric member that has a surface with a microstructure and that includes a shape memory polymer. The articles contemplated span a vast array of technical fields and include essentially any structure that may find utility or otherwise benefit from having a shape memory polymer incorporated into their construction. This may include a variety of different devices, apparatuses, components or portions of devices, layers or surfaces on devices, and the like, or any other suitable structure. For example, the articles of this disclosure may include an adhesive, a tape or substrate including an adhesive, a heat-activated tape, a microstructured tape, a backing member, a foam tape, a device having a fluid disposed or encapsulated therein, a microfluidic device, a circuit or circuit board, a printed circuit, a film (including multilayer optical films), a micromachined article, an embossed article, a printing plate or film used to create 3D prints, a substrate for pattern coating and/or pattern printing, an electrode, a device having cube corners with retroreflective characteristics, a secure identification article, a secure license or license plate, a directional organic light emitting diode, a sensor, an indicator, a switch, and the like, or any other suitable device. It should be noted that this list of articles is not intended to be limiting as the articles contemplated can take the form of any suitable structure, apparatus, or device.
  • As indicated above, an exemplary article may include a shape memory polymer. Some examples of shape memory polymers suitable for the articles are described in more detail below. In some embodiments, the entire article is made from the shape memory polymer. In other embodiments, only a portion of the article is made from a shape memory polymer. This may include a shape memory polymer layer, a shape memory polymer surface, a shape memory polymer portion, or any other suitable configuration. When only a portion of the article is made from a shape memory polymer, the remaining materials making up the article may include metals, metal alloys, polymers, ceramics, and the like, or any other suitable material. Regardless of whether the article is completely or partially made from a shape memory polymer, the articles described herein can be described as “shape memory polymer articles”.
  • Shape memory polymers are known to have the unique ability to be set in a pre-set shape, deformed to an altered shape, and then revert back to the pre-set shape when exposed to the appropriate stimuli (e.g., changes in temperature, application of solvent, etc.). Because the articles disclosed herein include a shape memory polymer, the portion of the article (or all of the article if made completely from a shape memory polymer) having the shape memory polymer can be configured to utilize this property. For example, the article may include a shape memory polymer surface that has been cast or otherwise shaped to have a pre-set shape or configuration. This surface can be deformed to an altered or deformed shape and then be shifted back to the pre-set shape when appropriately cued. Triggering the shift from the deformed shape to the pre-set shape can vary depending on the particular polymer used or other parameters. However, at least some of the shape memory polymers disclosed herein can be shifted by exposure to elevated temperatures and/or to an appropriate solvent.
  • Also as indicated above, the articles include a surface having a microstructure. Generally, a surface with a microstructure is different than a “flat” or unstructured surface. As used herein, the term “microstructure” means the configuration of features wherein at least 2 dimensions of the features are microscopic. The topical and/or cross-sectional view of the features, therefore, are microscopic. As used herein, the term “microscopic” refers to features of small enough dimension so as to require an optic aid to the naked eye when viewed from any plane of view to determine its shape. One criterion is found in Modern Optic Engineering by W. J. Smith, McGraw-Hill, 1966, pages 104-105 whereby visual acuity,“ . . . is defined and measured in terms of the angular size of the smallest character that can be recognized.” Normal visual acuity is considered to be when the smallest recognizable letter subtends an angular height of 5 minutes of arc on the retina. At a typical working distance of 250 mm (10 inches), this yields a lateral dimension of 0.36 mm (0.0145 inch) for this object.
  • The microstructures may be formed along portions or all of any number of surfaces of the article. For example, some surfaces of the articles may include sections that have microstructures and sections that are free from microstructures. Alternatively, substantially all of one or more surfaces of the articles may include microstructures. In addition, the shape and/or configuration of the microstructures can also vary. For example, microstructures can include one or more projections, one or more depressions, a combination of projections and depressions, ridges, posts, pyramids, hemispheres, cones, protrusion, or any other suitable feature. The shapes of the various projections and/or depressions can also vary. For example, some embodiments of projections and/or depressions can be rounded in shape (e.g., circular, semicircular, spherical, hemispherical, oval, pill-shaped, partially pill-shaped, etc.) or include a rounded portion, polygonal in shape or include a polygonal portion (e.g., triangular, squared, cubed including cube corners, tetrahedrical, rectangular, paralleopiped, pentagonal, hexagonal, etc.), an irregular shape, a regular shape, a pointed shape, a truncated shape, combinations thereof, or any other suitable shape. In at least some of these as well as in other embodiments, the projections and/or depressions may include or define one or more channels, valleys, wells, ridges, and the like, combinations thereof, or any other configuration.
  • Microstructures may be formed in a surface of an article through the use of a microstructured molding tool. A microstructured molding tool is an implement for imparting a structure or finish to at least a portion of an article and that may be continuously reused in the process. Microstructured molding tools can be in the form of a planar stamping press, a flexible or inflexible belt, a roller, or the like. Furthermore, microstructured molding tools are generally considered to be tools from which the microstructured surface feature is generated by embossing, coating, casting, or platen pressing and do not become part of the finished microstructured article. Instead, a surface on the article corresponding to where the article came into contact with the microstructured surface of the molding tool defines the microstructure or microstructured surface feature of the article.
  • A broad range of methods are known to those skilled in this art for generating microstructured molding tools. Examples of these methods include but are not limited to photolithography, etching, discharge machining, ion milling, micromachining, and electroforming. Microstructured molding tools can also be prepared by replicating various microstructured surfaces, including irregular shapes and patterns, with a moldable material such as those selected from the group consisting of crosslinkable liquid silicone rubber, radiation curable urethanes, etc. or replicating various microstructures by electroforming to generate a negative or positive replica intermediate or final embossing tool mold. Also, microstructured molds having random and irregular shapes and patterns can be generated by chemical etching, sandblasting, shot peening or sinking discrete structured particles in a moldable material. Additionally any of the microstructured molding tools can be altered or modified according to the procedure taught in U.S. Pat. No. 5,122,902, the entire disclosure of which is herein incorporated by reference.
  • For illustration purposes, FIG. 1 is provided to depict a portion of an example article 10. Article 10 includes a shape memory polymer such as, for example, any of the shape memory polymers described herein. Article 10 may comprise a polymeric member that includes a surface 12 having a plurality of surface features or microstructures 14 formed therein. In this example, microstructures 14 are depicted as projections extending outward from surface 12. However, this arrangement is not intended to be limiting as a wide variety of differing arrangements are contemplated including those described above.
  • Depending on the application, article 10 may be in the “pre-set” shape or may be in the “deformed” shape. If article 10, as shown in FIG. 1, is in the pre-set shape, surface 12 can be deformed. This may be accomplished, for example, by changing the configuration of microstructures 14. For example, microstructures 14 may be flattened. The deformed article 10 can be shifted back to the pre-set configuration (i.e., the configuration depicted in FIG. 1 for this example) upon exposure to, for example, increased temperature, solvent, or any other suitable stimuli. Alternatively, if article 10 is in the deformed shape or configuration when arranged as shown in FIG. 1, exposure to the appropriate stimuli may shift article 10 back to the pre-set shape. In this later embodiment, the pre-set shape may include a generally flat or planar arrangement for surface 12 or any other suitable shape.
  • FIGS. 2-3 depict another example article 1010. Article 1010 may comprise, a sensor. In this embodiment, article 1010 may include a surface 1012 having a microstructure defined therein. The microstructure may include, for example, a plurality of rows or wells 1014. This configuration may be the pre-set shape of surface 1012. Surface 1012 can be deformed into a deformed shape that is, for example, substantially flat. A secondary surface 1012′, for example on the opposite side of article 1010 (which is indicated in FIG. 3 as article 1010′) may have a generally flat pre-set shape that can be deformed to have a microstructure that includes or defines a hexagonal pattern therein. Mobilizing may restore both surfaces 1012/1012′. For example, surface 1012 may shift back to the pre-set shape (see FIG. 2) and opposite surface 1012′ may shift back to a substantially flat shape. In this embodiment, mobilizing may include the application of heat and/or the exposure to solvent or solvent vapors to one or both of surface 1012 and/or surface 1012′. For example, surfaces 1012/1012′ may be exposed to heat and restored. Alternatively, surfaces 1012/1012′ may be exposed to solvent or solvent vapors. This later embodiment may allow article 1010 to be used as a sensor that can “smell” a solvent. For example, a user may visually observe the changes in the shape of article 1010 (on one or both sides) in order to observe that the sensor has smelled a particular solvent.
  • FIGS. 2-3, in addition to illustrating that article 1010 can be used as a sensor, also indicate that a surface having a pre-set shape may be formed on multiple sides of an article. For example, FIGS. 2-3 illustrate article 1010 having surface 1012 with a pre-set shape that includes a microstructure whereas surface 1012′ has a pre-set shape that is generally planar. In these embodiments or embodiments of the same spirit, one or both of the surfaces 1012/1012′ can be deformed. For example, surface 1012 can be flattened whereas surface 1012′ can be deformed to have a microstructure. Thus, article 1010 can be seen as having a secondary surface 1012′ with a microstructure. It can be appreciated that secondary surface 1012′ may, alternatively, have a pre-set shape that includes the microstructure shown in FIG. 3 and it can be deformed to have another shape. Moreover, the secondary surface 1012′ (or other surfaces having a pre-set shape) may be defined along any area of the article 1010 and need not be limited to just a surface that is opposite of surface 1012. Regardless of the configuration of surfaces 1012/1012′, mobilization shifts surfaces 1012/1012′ back to their pre-set shape. It can be appreciated that other articles are contemplated that have multiple surfaces with pre-set shapes including multiple planar surfaces and/or multiple surfaces with microstructures. Moreover, other embodiments are contemplated where one or more surfaces have a microstructure formed therein and one or more of these surfaces can be deformed to have a different microstructure.
  • Shape Memory Polymers
  • As described above, the articles disclosed herein include a shape memory polymer. Shape memory polymers can be classified as elastomers. On the molecular level they represent polymer networks that include segment chains that are connected by netpoints. The netpoints can be formed by entanglements of the polymer chains or intermolecular interaction of certain polymer blocks. These cross-links are called physical netpoints. Cross-links in the form of covalent bonds form chemical netpoints. An elastomer exhibits a shape-memory functionality if the material can be stabilized in the deformed state in a temperature range that is relevant for the particular application. This can be achieved by using the network chains as a kind of molecular switch. For this purpose, it should be possible to limit the flexibility of the segments as a function of temperature. This process is supposed to be reversible. The ability to incorporate a control function into the material provides a thermal transition Ttrans of the network chains in the temperature range of interest for the particular application. At temperatures above Ttrans the chain segments are flexible, whereas the flexibility of the chains below this thermal transition is at least partially limited. In the case of a transition from the rubber-elastic, i.e., viscous, to the glassy state the flexibility of the entire segment is limited.
  • Without being bound to theory, it is believed that the copolymer network includes an elastomeric phase or component and a “glassy” or high glass transition temperature phase or component. The glassy phase holds or constrains the elastomeric component so that the substrate can be deformed into and stays in the deformed shape. Shifting from a deformed shape to the pre-set shape generally includes mobilizing the glassy phase of the shape memory polymer in order to allow the elastomeric component to “spring back” or otherwise shift to the original pre-set shape. According to this theory, mobilizing is understood to be the mobilization of the glassy phase through the application of the appropriate external stimuli.
  • In at least some embodiments, the elastomeric phase comprises a free radically polymerizable siloxane having greater than one functional free radically polymerizable group. The glassy phase may comprise at least one (meth)acrylate monomer that, when homopolymerized, forms a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C. According to these embodiments, exposure of the shape memory polymer to temperatures greater than 40° C. can mobilize the glassy phase and cause the deformed surface of the substrate from the deformed shape to the pre-set shape. In other embodiments, a solvent such as alkyl alcohol, acetone, etc. can partially dissolve or plasticize the glassy phase and effectuate the same change. In some embodiments, the (meth)acrylate monomer may crystallize when reacted with the free radically polymerizable siloxane having greater than one functional free radically polymerizable group. In these embodiments, exposing the copolymer network to temperatures above the melting point of the (meth)acrylate monomer may mobilize the glassy phase.
  • The relative proportions of the various components of the copolymer network can vary. For example, in at least some embodiments, the copolymer network may include about 10-70 weight-percent of the free radically polymerizable siloxane. In other embodiments, the copolymer network may include about 10-60 weight-percent of the free radically polymerizable siloxane. In still other embodiments, the copolymer network may include about 20-60 weight-percent of the free radically polymerizable siloxane.
  • Free Radically Polymerizable Siloxanes
  • The free radically polymerizable siloxanes for use in the copolymer networks may be represented by the following formula:
  • Figure US20080027199A1-20080131-C00001
  • wherein:
  • X is a group having ethylenic unsaturation;
  • Y is a divalent linking group;
  • m is an integer of 0 to 1;
  • D is selected from the group consisting of hydrogen, an alkyl group of 1 to about 10 carbon atoms, aryl, and substituted aryl;
  • R is a divalent hydrocarbon group;
  • R1 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, aryl, and substituted aryl;
  • R2 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, aryl, and substituted aryl;
  • R3 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, vinyl, aryl, and substituted aryl;
  • R4 are monovalent moieties which can be the same or different selected from the group consisting of alkyl, substituted alkyl, vinyl, aryl, and substituted aryl; and
  • n is an integer of about 10 to about 2000.
  • Some examples of suitable free radically polymerizable siloxanes for use in the articles described herein may include those described in U.S. Pat. No. 5,091,483, the entire disclosure of which is herein incorporated by reference.
  • In at least some embodiments, the free radically polymerizable siloxanes comprise telechelic siloxanes. The telechelic siloxanes may include, for example, (meth)acryloxyurea siloxane (MAUS), acrylamidoamido siloxane (ACMAS), methacrylamidoamido siloxane (MACMAS), and methylstyrylurea siloxane (MeStUS). In general, these telechelic siloxanes are formed by reacting silicone diamines with capping reagents such as isocyanatoethylmethacrylate (IEM), vinyldimethylazlactone (VDM), isopropenyl dimethyl azlactone (IDM), and m-isopropenyl alpha, alpha-dimethyl benzyl isocyanate (m-TMI), respectively. These telechelic siloxanes may have a number average molecular weights in the range of about 1,000 to 200,000. Some additional details regarding synthesis is provided below. Particularly preferred telechelic siloxanes are those that include a polydimethylsiloxane chain and may also be referred to as polydimethylsiloxanes.
  • The telechelic siloxanes have free radically polymerizable end groups. Due to the polar nature of the hydrogen bonding end groups and the nonpolar nature of the polydimethylsiloxane chain, a transient network is formed wherein the polar end groups tend to associate with each other. The relative strength of the end group association for the various telechelic siloxanes is reflected in their viscosities, with higher viscosities seen in the case of the more strongly associating end groups (e.g., ACMAS and MeStUS).
  • Functional polymers, like these telechelic siloxanes, that are easy to cure to elastomers are often referred to as “liquid rubbers.” Indeed, by the exposure of telechelic siloxanes having free radically polymerizable end groups to low-intensity UV radiation (when the system contains photoinitiator), silicone elastomers with controlled properties can be obtained.
  • In general the telechelic siloxanes are obtained from amine-functional siloxane intermediates. Suitable polydiorganosiloxane diamines and methods of making the polydiorganosiloxane diamines are described, for example, in U.S. Pat. No. 3,890,269 (Martin), U.S. Pat. No. 4,661,577 (Jo Lane et al.), U.S. Pat. No. 5,026,890 (Webb et al.), U.S. Pat. No. 5,276,122 (Aoki et al.), U.S. Pat. No. 5,214,119 (Leir et al.), U.S. Pat. No. 5,461,134 (Leir et al.), U.S. Pat. No. 5,512,650 (Leir et al.), and U.S. Pat. No. 6,355,759 (Sherman et al.), incorporated herein by reference in their entirety. Some polydiorganosiloxane diamines are commercially available, for example, from Shin Etsu Silicones of America, Inc., Torrance, Calif. and from Gelest Inc., Morrisville, Pa. Particularly useful polydiorganosiloxane diamines include bis(3-aminopropyl)polydimethylsiloxanes.
  • Polydimethylsiloxanes having acrylamidoamido end groups (ACMAS) can be prepared by the reaction of a polydimethylsiloxane diamine with 2 equivalents of vinyl dimethyl azlactone (VDM). Similarly, polydimethylsiloxanes having methacrylamidoamido end groups (MACMAS) can be prepared in the same manner by the reaction of a polydimethylsiloxane diamine with 2 equivalents of isopropenyl dimethyl azlactone (IDM).
  • Polydimethylsiloxanes having methacryloxyurea end groups (MAUS) can be prepared using the same procedure, by the reaction of a polydimethylsiloxane with 2 equivalents of isocyanatoethyl methacrylate (IEM).
  • Polydimethylsiloxanes having alpha-methylstyrylurea end groups (MeStUS) can be made by the reaction of a polydimethylsiloxane with 2 equivalents of m-isopropenyl-alpha,alpha-dimethyl benzyl isocyanate (m-TMI).
  • In other embodiments the free radically polymerizable siloxanes comprise non-techelic siloxanes. These siloxanes are ones according to the above formula where at least some of the groups R3 and/or R4 comprise vinyl groups.
  • (Meth)Acrylate Monomers
  • Generally, (meth)acrylate monomers are monomers that are the (meth)acrylate esters of non-tertiary alkyl alcohols, the alkyl groups of which comprise from about 1 to about 20, or about 1 to about 18 carbon atoms. Suitable (meth)acrylate monomers include, for example, benzyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, ethyl methacrylate, isobornyl acrylate, isobornyl methacrylate, methyl methacrylate, 1-methylcyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, 3-methylcyclohexyl methacrylate, 4-methylcyclohexyl methacrylate, and 2-phenoxy ethyl methacrylate.
  • Particularly suitable (meth)acrylate monomers are those that, when homopolymerized, form a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C. These monomers are suitable in forming a copolymer network with a free radically polymerizable siloxane. Examples of preferred (meth)acrylate monomers include isobornyl acrylate, cyclohexyl acrylate, trimethyl cyclohexyl acrylate, methyl methacrylate, methacrylic acid, t-butyl acrylate. A single (meth)acrylate monomer or a combination of (meth)acrylate monomers may be used.
  • The glass transition temperature (and/or the melting temperature) may be measured by conventional techniques such as Differential Scanning Calorimetry (DSC) or Dynamic Mechanical Analysis (DMA). Some additional details regarding these components of the copolymer network are described in more detail below.
  • Curing Initiator
  • As indicated above, the shape memory polymer may be a copolymer network including the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer. The reaction may include, for example, polymerization via curing. Curing may be carried out in an oxygen-free, e.g., in an inert atmosphere such as nitrogen gas or by utilizing a barrier of radiation-transparent material having low oxygen permeability. Curing can also be carried out under an inerting fluid such as water. When visible or ultraviolet radiation is used for curing, the reaction may also contain a photoinitiator. Suitable photoinitiators include benzoin ethers, benzophenone and derivatives thereof, acetophenone derivatives, camphorquinone, and the like. Some examples of commercially available photoinititaors include DARACUR 1173, DAROCUR 4265, IRGACURE 651, IRGACURE 1800, IRGACURE 369, IRGACURE 1700, and IRGACURE 907, commercially from Ciba Geigy. The photoinitiator may be used at a concentration of from about 0.1% to about 5% by weight of the total polymerizable composition, and, if curing is carried out under an inerting fluid, the fluid is preferably saturated with the photoinitiator or photoinitiators being utilized in order to avoid the leaching of initiator from the reaction. The rapid cure observed for these materials allows for the use of relatively low levels of photoinitiator, hence uniform cure of thick sections can be achieved due to deeper penetration of radiation. If desired, curing can also be achieved thermally, which may include the use of thermal initiator such as peroxides, azo compounds, or persulfates generally at a concentration of from about 1% to about 5% by weight of the total polymerizable composition. In at least some embodiments, any initiator (thermal or photo-) utilized may be soluble in the reaction components themselves, thereby avoiding the need for a separate solvent. Liquid initiators may be preferred.
  • Preparation of Silicone-Acrylate Copolymeric Networks
  • Polymerization mixtures can be prepared by dissolving telechelic siloxanes in the (meth)acrylate monomers and adding a photoinitiator Such polymerization mixtures typically have viscosities that permit the preparation of samples in film form by direct coating and radiation curing by standard procedures.
  • The shape memory polymer article may be formed by coating and curing the polymerizable mixture in a structured configuration, by curing the polymerization mixture in an unstructured configuration and then applying a structure through the imposition of heat and pressure, or by a combination of the these processes.
  • For example, the polymerization mixture can be coated onto a carrier layer such as a liner (either structured or unstructured), onto a substrate (such as a metal sheet or foil, a film, a ceramic or piece of glass, etc) or onto a tool or mold. The coated polymerization mixture is then covered with a covering layer which may be another liner, substrate, tool or mold and may be the same or different from the carrier layer. The resulting construction is then cured, preferably with UV radiation. Upon curing one or both of the carrier layer and or the covering layer are removed and the shape memory polymer article may then be subjected to additional processing (to create or remove structuring, to form in articles of a desired shape, etc).
  • The entire disclosures of the following patents, which are referred to in the various Examples, are herein incorporated by reference: U.S. Pat. No. 5,514,730, U.S. Pat. No. 5,706,132, and U.S. Pat. No. 6,569,521.
  • EXAMPLES
  • These examples are merely for illustrative purposes only and are not meant to be limiting on the scope of the appended claims. All parts, percentages, ratios, etc. in the examples and the rest of the specification are by weight, unless noted otherwise. Solvents and other reagents used were obtained from Sigma-Aldrich Chemical Company; Milwaukee, Wis. unless otherwise noted.
  • Table of Abbreviations
    Abbreviation or
    Trade
    Designation Description
     5K MAUS Methacryloxyurea siloxane, a difunctional silicone acrylate prepared
    from PDMS diamine 5K as described in U.S. Pat. No. 5,514,730
    column 14 for 35K MAUS, using 5,000 g/mole PDMS diamine instead
    of 35,000 g/mole PDMS diamine.
    PDMS Polydimethyl siloxane
    DAROCUR Photoinitiator: 2-hydroxy-2-methyl-1-phenyl-propan-1-one from Ciba
    1173 Specialty Chemicals, Hawthorne, NY.
    PET Unprimed polyester film of polyethylene terephthalate having a
    thickness of 50 or 125 micrometers.
     5K MeStUS Alpha-methyl styrylurea siloxane, a difunctional silicone alpha-methyl
    styrene prepared from PDMS diamine 5K as described in U.S. Pat.
    No. 5,514,730 column 14 for 35K MeStUS, using 5,000 g/mole
    PDMS diamine instead of 35,000 g/mole PDMS diamine.
     5K ACMAS Acrylamidoamido siloxane, a difunctional silicone acrylamido
    prepared from PDMS diamine 5K as described in U.S. Pat. No.
    5,514,730 column 14 for 35K ACMAS, using 5,000 g/mole PDMS
    diamine instead of 35,000 g/mole PDMS diamine.
    50K MAUS Methacryloxyurea siloxane, a difunctional silicone acrylate prepared
    from PDMS diamine 50K as described in U.S. Pat. No.
    5,514,730 column 14 for 35K MAUS, using 50,000 g/mole PDMS
    diamine instead of 35,000 g/mole PDMS diamine.
    50K MeStUS Alpha-methyl styrylurea siloxane, a difunctional silicone alpha-methyl
    styrene prepared from PDMS diamine 50K as described in U.S. Pat.
    No. 5,514,730 column 14 for 35K MeStUS, using 50,000 g/mole
    PDMS diamine instead of 35,000 g/mole PDMS diamine.
    50K ACMAS Acrylamidoamido siloxane, a difunctional silicone acrylamido
    prepared from PDMS diamine 50K as described in U.S. Pat. No.
    5,514,730 column 14 for 35K ACMAS, using 50,000 g/mole PDMS
    diamine instead of 35,000 g/mole PDMS diamine.
    Water-borne Acrylate polymer dispersion at 40% solids.
    PSA
  • Example 1
  • A curable precursor solution of 40 parts of 5K MAUS dissolved in 60 parts of IBA, containing 0.5 wt % DAROCUR 1173 was poured on the first tool, which was an unstructured PET film laid down on the surface of a glass plate. The first tool was bordered by a compliant adhesive film of 3 millimeters thickness to serve as a dam for the curable adhesive precursor as well as a spacer to control the thickness of the cured film. The liquid layer of curable precursor was covered with a cover sheet (an unstructured UV transparent film) and the excess fluid was squeezed out by placing a rigid glass plate over the cover sheet and pressing the thus formed sandwich construction until the glass plate rested against the spacer. The sandwich construction was exposed to low intensity UV lights through the cover sheet for 10-15 minutes. The resulting cured film (slab) had two surfaces replicated from the first tool and from the cover sheet (second tool) and was removed from both the first tool and from the cover sheet. The edges of the substrate were trimmed.
  • Example 2
  • The slab prepared in Example 1 was deformed by pressing against the structured surface of the metal tool and a polished steel plate with heat/pressure (110° C. for 10 minutes, pre-press 4.1 MegaPascals (600 lbs/in2) for 10 minutes, 30 MegaPascals (2 ton/in2) high pressure for 10 minutes) and quenched (25 minutes until temperature reached 60° C.). The structure of the tool—an array of tilted triangular prisms with millimeter-size dimensions, was partially replicated—approximately 60-70% of the height of the pyramid.
  • Example 3
  • A part of the film made in Example 2 was heated to approximately 110° C. on a heating plate. The area exposed to heat became essentially flat, with some traces of the embossed microstructure still visible.
  • Example 4
  • A shape-memory substrate was prepared as described in Example 2. One part of the sample was submitted to a secondary process of shaving off the temporary surface features. When the sample was heated to 120° C. the portion of the sample with shaved-off material showed rounded cavities with topologies corresponding to the shaved-off elements.
  • Example 5
  • A shape-memory substrate was prepared as described in Example 1 except that the first tool was a microstructured film having linear array of rectangular channels (200 micrometers at the bottom, 100 micrometers at the top, 200 micrometer high) and a 1 millimeter spacer was used. The sample was flattened between the two polished steel plates under the conditions as described in Example 2 except flat tools were used. One part of the film was sprayed with metallic silver paint to form a thin layer of metallic silver. The electrical conductivity of the sample was checked using a Fluke 87 III RMS Multimeter, which was independent of the position of the electrodes (x and y conductive). A portion of the sample was heated to 120° C. on a heating plate to restore the original shape of the surface. Electrical conductivity of the sample was again checked. While the sample maintained the electrical conductivity along the channels the conductivity in the cross-direction was primarily destroyed and/or disrupted.
  • Example 6
  • A shape-memory substrate was made as described in Example 1 except that the first tool was a metal tool with structured surfaces as described in Example 2. The substrate having sharp macroscopic features was subsequently submitted to heat and pressure between two polished steel plates under the conditions described in Example 2 except flat tools were used. The substrate became essentially flat with the pyramids being partially flattened and partially bent. Part of the original structure was restored by selectively focusing sunlight through a lens onto several of the pyramids.
  • Example 7
  • A shape-memory substrate was tested through the stages of making, distorting and restoring. The sample was made as described in Example 1 except that the first tool was a metal tool having an array of cube corners as described in U.S. Pat. No. 5,706,132. The pyramids had a height of 87 micrometers (3.5 mil). The spacer used was 125 micrometers. The sample was removed from the first tool while maintained on the flat PET cover. The sample showed retroreflectivity when analyzed using a retroviewer (the sample “made” stage). A part of the sample was flattened between the two polished steel plates under the conditions described in Example 2 except that the tools were flat. It was noticed that the height of the pyramids were reduced, but the pyramidal shape of the flattened microfeatures was maintained (the sample “distorted” stage). The sample showed no retroreflectivity in a retroviewer. A portion of the sample was heated to 120° C., which restored the original shape of the pyramids and the retroreflectivity of the sample (the sample “restored” stage).
  • Example 8-13
  • A series of samples were made, distorted and restored as in Example 7 except that different compositions of the curable precursors were used (containing Monomer 1, IBA and DAROCUR 1173) as shown in Table 1. Results of the testing are shown in Table 2.
  • TABLE 1
    Monomer 1 Monomer 1 IBA DAROCUR 1173
    Example Identity (parts) (parts) (wt %)
    8  5K MeStUS 50 50 0.5
    9  5K MAUS 50 50 0.5
    10  5K ACMAS 50 50 0.5
    11 50K MeStUS 50 50 0.5
    12 50K MAUS 50 50 0.5
    13 50K ACMAS 50 50 0.5
  • TABLE 2
    Appearance
    Sample Appearance As After Appearance
    Example Color Made Distortion Distortion As Restored
    8 Clear Retroreflective Flattened to No retroreflection Retroreflective
    Cubes 0.6 Cubes
    micrometers
    9 Clear Retroreflective Flattened to No retroreflection Retroreflective
    Cubes 1.0 Cubes
    micrometers
    10 Bluish Retroreflective Flattened to No retroreflection Retroreflective
    Haze Cubes 2.0 Cubes
    micrometers
    11 Clear Retroreflective Flattened to No retroreflection Retroreflective
    Cubes 1.0 Cubes
    micrometers
    12 Clear Retroreflective Flattened to No retroreflection Retroreflective
    Cubes 1.5 Cubes
    micrometers
    13 Clear Retroreflective Flattened to No retroreflection Retroreflective
    Cubes 7.8 Cubes
    micrometers
  • Example 14
  • A shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the substrate was deformed by pressing the sample between the metal tool, having regularly arranged square posts (150 micrometers at the bottom, 150 micrometers at the top, 50 micrometers high), to create a corresponding array of microcavities. The substrate was coated with a Water-borne PSA. Upon drying the water at 25° C. for 24 hours, the film contained PSA distributed within the pockets of microstructure substrate and showed no/little tack. A portion of the sample was heated to 120° C. on a heating plate causing the restoration of the original flatness of the substrate and making the sample tacky by exposing the PSA layer on the surface.
  • Example 15
  • A shape-memory substrate was made as described in Example 1 except that a 1 millimeter spacer was used. One of the surfaces of the substrate was deformed by pressing the sample between the metal tool, having an array of triangular posts (420 micrometers depth), to create an array of visible cavities. The substrate was flooded with colored aqueous fluid to fill the cavities. Silicone pressure sensitive adhesive tape (as described in U.S. Pat. No. 6,569,521, Example 28) was laminated to the substrate to seal off the cavities filled with the fluid. When heated to 120° C. the substrate returned to its original shape exerting pressure on the laminated tape causing the tape to also distort, and causing the adhesive border seals to rupture.
  • Example 16
  • A shape-memory substrate was made as described in Example 1, except that the first tool was a metal tool, a replica of the tool used to deform the substrate in Example 14, having regularly arranged square cavities (150 micron at the bottom, 150 micron at the top, 45 micrometer high) and a 1 millimeter spacer to create a corresponding array of micro-posts. The sample was flattened between two polished steel plates under the conditions as described in Example 2. The sample was heated to 120° C. on a heating plate to restore the original structure (posts) of the surface. The posts were able to pick up water-based ink for transfer to paper.
  • Example 17
  • A shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the substrate was deformed by pressing the sample between the metal tool having regularly arranged square posts, as described in Example 14, to create a corresponding array of micro-cavities. When a droplet of the solution of dye (bromothymol blue, sodium salt) in ethylene glycol was deposited on the surface of the film, clear-cut borders along the line of the pattern were naturally established, and the solvent essentially restored the “printed” area to flatness with the clearly visible high concentration of the dye in the spots corresponding to the arrangement of cavities in which it was originally deposited.
  • Example 18
  • A shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used and the first tool was a metal tool with an array of square posts, as described in Example 14. The cured sample was pressed between 2 flat surfaces using the technique described in Example 2. When a droplet of the solution of dye (bromothymol blue, sodium salt) in ethylene glycol was deposited on the surface of the film, clear-cut borders along the line of the pattern were naturally established, and the solvent essentially restored the “printed” area to its micro-cavitated form dragging the ink into the cavities.
  • Examples 19
  • A shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the cured substrate was deformed by pressing the sample between the metal tool, used in Example 16. A droplet of the aqueous solution of dye (bromophenol blue indicator solution) was deposited and pressed on the microstructured surface of the shape-memory substrate. The solution was primarily distributed in the channels between the posts, and on the top of the posts having some small micro-channels. When exposed to heat (120° C.), the solvent (water) evaporated and the flatness of the first surface of the substrate was essentially restored leaving a regular pattern of the dye on the surface.
  • Example 20
  • A shape-memory substrate was made as described in Example 1 except that a 125 micrometers spacer was used. One of the surfaces of the substrate was deformed by pressing the sample between the metal tool (an array of cube corners as described in U.S. Pat. No. 5,706,132, pyramidal height of 87 micrometers), as described in Example 2. A border of adhesive was made on a plastic substrate and the microstructured surface was placed within and on the border. The retroreflectivity of the microstructured surface disappeared where in contact with the adhesive border, but remained retroreflective within the border.
  • The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.

Claims (23)

1. An article, comprising:
a polymeric member including a surface having a microstructure; and
wherein the polymeric member comprises a shape memory polymer, the shape memory polymer comprising a copolymer network comprising the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer, wherein the at least one (meth)acrylate monomer, when homopolymerized, forms a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C.
2. The article of claim 1, wherein the free radically polymerizable siloxane has a number average molecular weight of about 1,000-200,000 grams per mole.
3. The article of claim 1, wherein the free radically polymerizable siloxane includes a telechelic siloxane.
4. The article of claim 2, wherein the telechelic siloxane includes (meth)acryloxyurea siloxane.
5. The article of claim 2, wherein the telechelic siloxane includes acrylamidoamido siloxane.
6. The article of claim 2, wherein the telechelic siloxane includes methacrylamidoamido siloxane.
7. The article of claim 2, wherein the telechelic siloxane includes methylstyrylurea siloxane.
8. The article of claim 1, wherein the (meth)acrylate monomer includes isobornyl acrylate.
9. The article of claim 1, wherein the copolymer network includes about 10-70 weight-percent of the free radically polymerizable siloxane.
10. The article of claim 1, wherein the copolymer network includes about 10-60 weight-percent of the free radically polymerizable siloxane.
11. The article of claim 1, wherein the copolymer network includes about 20-60 weight-percent of the free radically polymerizable siloxane.
12. The article of claim 1, wherein the polymeric member includes a secondary surface having a microstructure.
13. An article, comprising:
a polymeric member including a microstructured surface, wherein the microstructured surface includes a surface feature that is not visible to an unaided eye; and
wherein the polymeric member includes a shape memory polymer.
14. The article of claim 13, wherein the shape memory polymer comprises a copolymer network comprising the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer, wherein the at least one (meth)acrylate monomer, when homopolymerized, forms a homopolymer having a glass transition temperature, a melting temperature, or both greater than about 40° C.
15. The article of claim 14, wherein the free radically polymerizable siloxane has a number average molecular weight of about 1,000-200,000 grams per mole.
16. The article of claim 14, wherein the (meth)acrylate monomer includes isobornyl acrylate.
17. The article of claim 14, wherein the free radically polymerizable siloxane includes a telechelic siloxane.
18. The article of claim 17, wherein the telechelic siloxane includes (meth)acryloxyurea siloxane, acrylamidoamido siloxane, methacrylamidoamido siloxane, or methylstyrylurea siloxane.
19. The article of claim 13, wherein the surface feature includes a plurality of depressions.
20. The article of claim 13, wherein the surface feature includes a plurality of projections.
21. The article of claim 13, wherein the polymeric member includes a secondary surface having a microstructure.
22. An article, comprising:
a polymeric member including a microstructured surface, wherein the microstructured surface includes a surface feature that is not visible to an unaided eye; and
wherein the polymeric member includes a shape memory polymer, the shape memory polymer comprising a copolymer network comprising the reaction product of (meth)acryloxyurea siloxane and isobornyl acrylate.
23. An article comprising a shape memory polymer having a microstructured surface and comprising a copolymer network, the copolymer network comprising the reaction product of a free radically polymerizable siloxane having greater than one functional free radically polymerizable group and at least one (meth)acrylate monomer, wherein the at least one (meth)acrylate monomer, when homopolymerized, forms a homopolymer having a glass transition temperature greater than about 40° C.
US11/460,685 2006-07-28 2006-07-28 Shape memory polymer articles with a microstructured surface Abandoned US20080027199A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/460,685 US20080027199A1 (en) 2006-07-28 2006-07-28 Shape memory polymer articles with a microstructured surface
EP07799431A EP2046408A4 (en) 2006-07-28 2007-07-10 Shape memory polymer articles with a microstructured surface
PCT/US2007/073097 WO2008014109A1 (en) 2006-07-28 2007-07-10 Shape memory polymer articles with a microstructured surface
KR1020097001561A KR20090036117A (en) 2006-07-28 2007-07-10 Shape memory polymer articles with a microstructured surface
US13/296,362 US10279069B2 (en) 2006-07-28 2011-11-15 Shape memory polymer articles with a microstructured surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/460,685 US20080027199A1 (en) 2006-07-28 2006-07-28 Shape memory polymer articles with a microstructured surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/296,362 Continuation US10279069B2 (en) 2006-07-28 2011-11-15 Shape memory polymer articles with a microstructured surface

Publications (1)

Publication Number Publication Date
US20080027199A1 true US20080027199A1 (en) 2008-01-31

Family

ID=38981787

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/460,685 Abandoned US20080027199A1 (en) 2006-07-28 2006-07-28 Shape memory polymer articles with a microstructured surface
US13/296,362 Active 2028-08-12 US10279069B2 (en) 2006-07-28 2011-11-15 Shape memory polymer articles with a microstructured surface

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/296,362 Active 2028-08-12 US10279069B2 (en) 2006-07-28 2011-11-15 Shape memory polymer articles with a microstructured surface

Country Status (4)

Country Link
US (2) US20080027199A1 (en)
EP (1) EP2046408A4 (en)
KR (1) KR20090036117A (en)
WO (1) WO2008014109A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070081254A1 (en) * 2005-10-11 2007-04-12 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US20080064815A1 (en) * 2006-09-12 2008-03-13 Henkel Corporation Reinforcement and Cure Enhancement of Curable Resins
US20080118862A1 (en) * 2000-02-22 2008-05-22 3M Innovative Properties Company Sheeting with composite image that floats
US20080130126A1 (en) * 2006-12-04 2008-06-05 3M Innovative Properties Company User interface including composite images that float
US20080257486A1 (en) * 2007-04-20 2008-10-23 Gm Global Technology Operations, Inc. Multilayer thermo-reversible dry adhesives
US20080292848A1 (en) * 2007-05-23 2008-11-27 Gm Global Technology Operations, Inc. Multilayer adhesive for thermal reversible joining of substrates
US20090280330A1 (en) * 2007-04-20 2009-11-12 Gm Global Technology Operations, Inc. Shape memory polymer and adhesive combination and methods of making and using the same
US20100103528A1 (en) * 2008-10-23 2010-04-29 Endle James P Methods of forming sheeting with composite images that float and sheeting with composite images that float
US20100295820A1 (en) * 2009-05-19 2010-11-25 Microsoft Corporation Light-induced shape-memory polymer display screen
US20100316959A1 (en) * 2007-11-27 2010-12-16 Gates Brian J Methods for forming sheeting with a composite image that floats and a master tooling
US20110198781A1 (en) * 2006-07-28 2011-08-18 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US8072626B2 (en) 2004-12-02 2011-12-06 3M Innovative Properties Company System for reading and authenticating a composite image in a sheeting
US8111463B2 (en) 2008-10-23 2012-02-07 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US8343633B2 (en) 2007-10-31 2013-01-01 3M Innovative Properties Company Method of modifying light with silicone (meth) acrylate copolymers
US8459807B2 (en) 2007-07-11 2013-06-11 3M Innovative Properties Company Sheeting with composite image that floats
US8637226B2 (en) 2007-10-31 2014-01-28 3M Innovative Properties Company Method of forming an image having multiple phases
US8753959B2 (en) 2010-06-08 2014-06-17 Henkel IP & Holding GmbH Coating adhesives onto dicing before grinding and micro-fabricated wafers
WO2015012803A1 (en) * 2013-07-23 2015-01-29 Empire Technology Development Llc Packaging materials and methods for their preparation and use
US20150130110A1 (en) * 2013-11-14 2015-05-14 GM Global Technology Operations LLC Fit and finish methods
US20150158244A1 (en) * 2013-12-05 2015-06-11 Stratasys Ltd. Object Of Additive Manufacture With Encoded Predicted Shape Change And Method Of Manufacturing Same
US9281182B2 (en) 2011-02-01 2016-03-08 Henkel IP & Holding GmbH Pre-cut wafer applied underfill film
US9362105B2 (en) 2011-02-01 2016-06-07 Henkel IP & Holding GmbH Pre-cut wafer applied underfill film on dicing tape
DE102015215973A1 (en) * 2015-08-21 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Holding structure and holding device for holding an object
US20170056618A1 (en) * 2015-09-02 2017-03-02 Syracuse University Antifouling urinary catheters with shape-memory topographic patterns
US9607896B2 (en) 2011-07-01 2017-03-28 Henkel IP & Holding GmbH Use of repellent material to protect fabrication regions in semi conductor assembly
CN109679019A (en) * 2018-12-31 2019-04-26 成都市水泷头化工科技有限公司 A kind of the shape memory copolymer and preparation method of recovery of shape temperature-controllable
US10279069B2 (en) 2006-07-28 2019-05-07 3M Innovative Properties Company Shape memory polymer articles with a microstructured surface
US10350794B2 (en) 2013-10-31 2019-07-16 University Of Florida Research Foundation, Inc. Porous polymer membranes, methods of making, and methods of use
US10513089B2 (en) 2014-10-08 2019-12-24 Massachusetts Institute Of Technology Self-transforming structures
US10549505B2 (en) 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10717108B2 (en) 2014-10-17 2020-07-21 University Of Florida Research Foundation, Inc. Methods and structures for light regulating coatings
US20200232857A1 (en) * 2019-01-21 2020-07-23 Technische Universiteit Eindhoven Optical sensor based on shape memory between scattering and transparent modes
US10808095B2 (en) 2015-05-08 2020-10-20 University Of Florida Research Foundation, Inc. Macroporous photonic crystal membrane, methods of making, and methods of use
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
CN113402866A (en) * 2021-07-08 2021-09-17 长春工业大学 Polymer for regulating and controlling drug release based on shape memory
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US11467094B2 (en) 2017-05-17 2022-10-11 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11480527B2 (en) 2017-12-20 2022-10-25 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11705527B2 (en) 2017-12-21 2023-07-18 University Of Florida Research Foundation, Inc. Substrates having a broadband antireflection layer and methods of forming a broadband antireflection layer
US20230311431A1 (en) * 2022-04-01 2023-10-05 The Boeing Company Methods for configuring a shape of a tool and associated systems and methods for manufacturing a composite structure
US11795281B2 (en) 2016-08-15 2023-10-24 University Of Florida Research Foundation, Inc. Methods and compositions relating to tunable nanoporous coatings
US11819277B2 (en) 2018-06-20 2023-11-21 University Of Florida Research Foundation, Inc. Intraocular pressure sensing material, devices, and uses thereof
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202661719U (en) 2009-03-10 2013-01-09 3M创新有限公司 User interface having projected synthetic image
WO2014081940A1 (en) 2012-11-21 2014-05-30 Trustees Of Boston University Tissue markers and uses thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420527A (en) * 1980-09-05 1983-12-13 Rexham Corporation Thermoset relief patterned sheet
US4783141A (en) * 1984-03-14 1988-11-08 Canon Kabushiki Kaisha Array lens
US5091483A (en) * 1989-09-22 1992-02-25 Minnesota Mining And Manufacturing Company Radiation-curable silicone elastomers and pressure sensitive adhesives
US5244288A (en) * 1991-07-15 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for braille display of information from crt screen
US5264278A (en) * 1991-03-20 1993-11-23 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive coated tapes adherable to paint coated substrates
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US5514730A (en) * 1991-03-20 1996-05-07 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive compositions
US5589246A (en) * 1994-10-17 1996-12-31 Minnesota Mining And Manufacturing Company Heat-activatable adhesive article
US5889118A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Thermomorphic "smart" pressure sensitive adhesives
US6092465A (en) * 1998-03-03 2000-07-25 United Container Machinery, Inc. Method and apparatus for providing erasable relief images
US6288842B1 (en) * 2000-02-22 2001-09-11 3M Innovative Properties Sheeting with composite image that floats
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
US7068434B2 (en) * 2000-02-22 2006-06-27 3M Innovative Properties Company Sheeting with composite image that floats
US7253958B2 (en) * 2003-07-31 2007-08-07 Lucent Technologies Inc. Tunable micro-lens arrays

Family Cites Families (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918705A (en) 1930-12-20 1933-07-18 Herbert E Ives Parallax panoramagram
US1905716A (en) 1931-04-03 1933-04-25 Bell Telephone Labor Inc Making stereoscopic parallax panoramagrams from pseudoscopic parallax panoramagrams
US2039648A (en) 1933-05-06 1936-05-05 Perser Corp Camera for making parallax panoramagrams
US2063985A (en) 1935-05-24 1936-12-15 Winnek Stereoscopic Processes Apparatus for making a composite stereograph
US2279825A (en) 1940-07-24 1942-04-14 Nicholas T Kaszab Stereoscopic picture with aplanat focusing element
US2326634A (en) 1941-12-26 1943-08-10 Minnesota Mining & Mfg Reflex light reflector
US2500511A (en) 1944-07-10 1950-03-14 Reliephographie Soc Pour L Exp Relief photograph having reflecting back
US2622472A (en) 1946-05-25 1952-12-23 Reliephographie Soc Pour L Exp Apparatus for relief and movement photography
US2833176A (en) 1953-07-21 1958-05-06 Ossoinak Andres Juan Luis Arrangement for the exhibition of dynamic scenes to an observer in movement with respect to a screen
US3357770A (en) 1961-10-02 1967-12-12 Intermountain Res And Engineer Stereoscopic viewing apparatus which includes a curved lenticular screen in front ofa curved picture supporting surface
US3161509A (en) 1962-04-24 1964-12-15 Eastman Kodak Co Line stereo color pictures
FR1342335A (en) 1962-09-29 1963-11-08 Centre Nat Rech Scient Improvements to devices for obtaining virtual images of various objects
US3154872A (en) 1963-02-13 1964-11-03 Minnesota Mining & Mfg Tamper-proof markings for reflecting structures
US3306974A (en) 1963-03-08 1967-02-28 Gilbert R Johnson Color reproduction with a monochromatic gradient line image
US3365350A (en) 1965-04-28 1968-01-23 Cahn Leo Three dimensional picture
US5449597A (en) 1966-04-21 1995-09-12 Sawyer; George M. Lippmann process of color photography, which produces a photograph with a 2-dimensional image, to result in another process of color photography which produces a photograph with a 3-dimensional image
US3459111A (en) 1966-06-20 1969-08-05 Polaroid Corp Image dissection camera
US3503315A (en) 1966-12-12 1970-03-31 Lucas Industries Ltd Integral photography
US3607273A (en) 1967-03-08 1971-09-21 American Screen Process Equip Image formation by selective foam generation
US3584369A (en) 1967-10-11 1971-06-15 Roger Lannes De Montebello Process of making reinforced lenticular sheet
US3613539A (en) 1968-07-26 1971-10-19 Leslie Peter Dudley Integral photography
US3676130A (en) 1969-11-26 1972-07-11 Bell Telephone Labor Inc Beaded plate integral photography
DE2040665C3 (en) 1970-08-17 1979-01-04 Agfa-Gevaert Ag, 5090 Leverkusen Process for producing colored paper pictures and apparatus for carrying out the process
US3706486A (en) 1970-08-27 1972-12-19 Roger De Montebello Reinforced lenticular sheet with plural apertured sheets
US3751258A (en) 1970-10-29 1973-08-07 Eastman Kodak Co Autostereographic print element
GB1433025A (en) 1972-06-29 1976-04-22 Sublistatic Holding Sa Reproducing a multi-coloured image
US3890269A (en) 1972-08-11 1975-06-17 Stauffer Chemical Co Process for preparing aminofunctional polysiloxane polymers
US3801183A (en) 1973-06-01 1974-04-02 Minnesota Mining & Mfg Retro-reflective film
US4121011A (en) 1975-11-28 1978-10-17 Raychem Corporation Polymeric article coated with a thermochromic paint
US4034555A (en) 1975-12-16 1977-07-12 Rosenthal Bruce A Lenticular optical system
US4541727A (en) 1975-12-16 1985-09-17 Rosenthal Bruce A Lenticular optical system
US4099838A (en) 1976-06-07 1978-07-11 Minnesota Mining And Manufacturing Company Reflective sheet material
US4082426A (en) 1976-11-26 1978-04-04 Minnesota Mining And Manufacturing Company Retroreflective sheeting with retroreflective markings
US4200875A (en) 1978-07-31 1980-04-29 The United States Of America As Represented By The Secretary Of The Air Force Apparatus for, and method of, recording and viewing laser-made images on high gain retroreflective sheeting
US4315665A (en) 1979-09-07 1982-02-16 Eidetic Images, Inc. Composite optical element having controllable light transmission and reflection characteristics
US4424990A (en) 1980-01-30 1984-01-10 Raychem Corporation Thermochromic compositions
US4509837A (en) 1980-08-29 1985-04-09 Michiel Kassies Real image projection device
GB2083726A (en) 1980-09-09 1982-03-24 Minnesota Mining & Mfg Preparation of multi-colour prints by laser irradiation and materials for use therein
EP0118449B1 (en) 1982-04-07 1987-11-11 STREET, Graham Stewart Brandon Method and apparatus for use in producing autostereoscopic images
US4557590A (en) 1982-09-10 1985-12-10 Winnek Douglas Fredwill Method and apparatus for making true three-dimensional photographs from pseudo three-dimensional photographs
US4541830A (en) 1982-11-11 1985-09-17 Matsushita Electric Industrial Co., Ltd. Dye transfer sheets for heat-sensitive recording
US4634220A (en) 1983-02-07 1987-01-06 Minnesota Mining And Manufacturing Company Directionally imaged sheeting
GB8326387D0 (en) 1983-10-03 1983-11-02 Brightad Ltd Production of autostereoscopic images
US4618552A (en) 1984-02-17 1986-10-21 Canon Kabushiki Kaisha Light receiving member for electrophotography having roughened intermediate layer
US4632895A (en) 1984-08-23 1986-12-30 Minnesota Mining And Manufacturing Company Diffusion or sublimation transfer imaging system
US4927238A (en) 1984-11-27 1990-05-22 Nicholas C. Terzis Method and apparatus for displaying a three dimensional visual image
JPS61133349A (en) 1984-12-03 1986-06-20 Hitachi Ltd Alloy capable of varying spectral reflectance and recording material
US4732453A (en) 1984-12-10 1988-03-22 Integrated Images, Inc. Integral photography apparatus and method of forming same
US4629667A (en) 1985-03-29 1986-12-16 Minnesota Mining And Manufacturing Company White reflective coating
US4691993A (en) 1985-05-13 1987-09-08 Minnesota Mining And Manufacturing Company Transparent sheets containing directional images and method for forming the same
US4708920A (en) 1985-09-16 1987-11-24 Minnesota Mining And Manufacturing Company Microlens sheet containing directional half-tone images and method for making the same
CA1267173A (en) 1985-09-23 1990-03-27 Thomas I. Bradshaw Sheet containing contour-dependent directional image and method for forming the same
US4661577A (en) 1985-10-01 1987-04-28 General Electric Company Aminofunctional polysiloxanes
US5064272A (en) 1985-11-18 1991-11-12 Minnesota Mining And Manufacturing Company Encapsulated-lens retroreflective sheeting and method of making
US4700207A (en) 1985-12-24 1987-10-13 Eastman Kodak Company Cellulosic binder for dye-donor element used in thermal dye transfer
US4935335A (en) 1986-01-06 1990-06-19 Dennison Manufacturing Company Multiple imaging
US5214119A (en) 1986-06-20 1993-05-25 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, dimaine precursors of the same, method of making such diamines and end products comprising the block copolymer
US5512650A (en) 1986-06-20 1996-04-30 Minnesota Mining And Manufacturing Company Block copolymer, method of making the same, diamine precursors of the same, method of making such diamines and end products comprising the block copolymer
US4704152A (en) 1986-07-28 1987-11-03 Owens-Illinois, Inc. Method of and apparatus for press forming cathode ray tube faceplate panels
US4775219A (en) 1986-11-21 1988-10-04 Minnesota Mining & Manufacturing Company Cube-corner retroreflective articles having tailored divergence profiles
US4799739A (en) 1987-08-10 1989-01-24 Advanced Dimensional Displays, Inc. Real time autostereoscopic displays using holographic diffusers
JPS6465153A (en) * 1987-09-04 1989-03-10 Nok Corp Production of shape memory elastomer
JPH0165153U (en) 1987-10-20 1989-04-26
US4833124A (en) 1987-12-04 1989-05-23 Eastman Kodak Company Process for increasing the density of images obtained by thermal dye transfer
US4772582A (en) 1987-12-21 1988-09-20 Eastman Kodak Company Spacer bead layer for dye-donor element used in laser-induced thermal dye transfer
US5026890A (en) 1988-05-20 1991-06-25 General Electric Company Method and intermediates for preparation of bis(aminoalkyl)polydiorganosiloxanes
JPH02105101A (en) 1988-10-14 1990-04-17 Mitsubishi Heavy Ind Ltd Variable focus lens and method for adjusting its focal length
JPH066342B2 (en) 1988-10-14 1994-01-26 三菱重工業株式会社 Shape memory film and its use
US4876235A (en) 1988-12-12 1989-10-24 Eastman Kodak Company Dye-receiving element containing spacer beads in a laser-induced thermal dye transfer
US5122902A (en) 1989-03-31 1992-06-16 Minnesota Mining And Manufacturing Company Retroreflective articles having light-transmissive surfaces
JPH0321613A (en) * 1989-06-19 1991-01-30 Nippon Unicar Co Ltd Shape-memorizing elastomer
JPH0368610A (en) * 1989-08-08 1991-03-25 Daikin Ind Ltd Shape memory polymer material
JPH0368611A (en) * 1989-08-08 1991-03-25 Daikin Ind Ltd Shape memory polymer material
US5105206A (en) 1989-12-27 1992-04-14 Eastman Kodak Company Thermal printer for producing transparencies
US5644431A (en) 1990-05-18 1997-07-01 University Of Arkansas, N.A. Directional image transmission sheet and method of making same
US5254390B1 (en) 1990-11-15 1999-05-18 Minnesota Mining & Mfg Plano-convex base sheet for retroreflective articles
JP2986956B2 (en) 1991-04-04 1999-12-06 大日本印刷株式会社 Adhesive sheet
US5169707A (en) 1991-05-08 1992-12-08 Minnesota Mining And Manufacturing Company Retroreflective security laminates with dual level verification
TW221312B (en) 1991-06-27 1994-02-21 Eastman Kodak Co
JP2684130B2 (en) 1991-08-15 1997-12-03 信越化学工業株式会社 Method for producing amino group-containing polysiloxane
JP2746790B2 (en) 1992-03-02 1998-05-06 富士写真フイルム株式会社 Stereoscopic image recording method and stereoscopic image recording apparatus
US5279912A (en) 1992-05-11 1994-01-18 Polaroid Corporation Three-dimensional image, and methods for the production thereof
US5359454A (en) 1992-08-18 1994-10-25 Applied Physics Research, L.P. Apparatus for providing autostereoscopic and dynamic images
EP0583766A1 (en) 1992-08-18 1994-02-23 Eastman Kodak Company Depth image printed on lenticular material
US5330799A (en) 1992-09-15 1994-07-19 The Phscologram Venture, Inc. Press polymerization of lenticular images
US5364740A (en) 1992-12-30 1994-11-15 Minnesota Mining And Manufacturing Company Bleaching of dyes in photosensitive systems
US5717844A (en) 1993-01-06 1998-02-10 Lo; Allen Kwok Wah Method and apparatus for producing 3D pictures with extended angular coverage
EP0688351B1 (en) 1993-03-11 1997-08-06 Minnesota Mining And Manufacturing Company Radiation curable acrylate/silicone permanently removable pressure sensitive adhesive
US5308737A (en) 1993-03-18 1994-05-03 Minnesota Mining And Manufacturing Company Laser propulsion transfer using black metal coated substrates
FR2704951B1 (en) 1993-05-05 1995-07-21 Particulier Editions AUTOSTEREOSCOPIC IMAGE FORMING DEVICE.
GB9309673D0 (en) 1993-05-11 1993-06-23 De La Rue Holographics Ltd Security device
US5493427A (en) 1993-05-25 1996-02-20 Sharp Kabushiki Kaisha Three-dimensional display unit with a variable lens
US5360694A (en) 1993-10-18 1994-11-01 Minnesota Mining And Manufacturing Company Thermal dye transfer
US5680171A (en) 1993-10-21 1997-10-21 Lo; Allen Kwok Wah Method and apparatus for producing composite images and 3D pictures
US5326619A (en) 1993-10-28 1994-07-05 Minnesota Mining And Manufacturing Company Thermal transfer donor element comprising a substrate having a microstructured surface
US5459016A (en) 1993-12-16 1995-10-17 Minnesota Mining And Manufacturing Company Nanostructured thermal transfer donor element
US5594841A (en) 1993-12-27 1997-01-14 Schutz; Stephen A. Stereogram and method of constructing the same
DE69520826T2 (en) 1994-03-24 2001-12-20 Minnesota Mining & Mfg RETROREFLECTIVE LICENSE PLATE AND MANUFACTURING METHOD
JPH0820165A (en) 1994-03-24 1996-01-23 Minnesota Mining & Mfg Co <3M> Black metal heat picture formable transparent component
JPH07281327A (en) 1994-04-08 1995-10-27 Canon Inc Ink jet device and ink jet method
US5896230A (en) 1994-05-03 1999-04-20 National Graphics, Inc. Lenticular lens with multidimensional display having special effects layer
US6057067A (en) 1994-07-11 2000-05-02 3M Innovative Properties Company Method for preparing integral black matrix/color filter elements
US5521035A (en) 1994-07-11 1996-05-28 Minnesota Mining And Manufacturing Company Methods for preparing color filter elements using laser induced transfer of colorants with associated liquid crystal display device
US5491045A (en) 1994-12-16 1996-02-13 Eastman Kodak Company Image dye combination for laser ablative recording element
US5642226A (en) 1995-01-18 1997-06-24 Rosenthal; Bruce A. Lenticular optical system
US5685939A (en) 1995-03-10 1997-11-11 Minnesota Mining And Manufacturing Company Process for making a Z-axis adhesive and establishing electrical interconnection therewith
US5945249A (en) 1995-04-20 1999-08-31 Imation Corp. Laser absorbable photobleachable compositions
GB9617416D0 (en) 1996-08-20 1996-10-02 Minnesota Mining & Mfg Thermal bleaching of infrared dyes
US5935758A (en) 1995-04-20 1999-08-10 Imation Corp. Laser induced film transfer system
DE69637994D1 (en) 1995-04-26 2009-09-24 Minnesota Mining & Mfg ABLATION PROCEDURE BY LASER PRESENTATION
JPH0976245A (en) 1995-09-08 1997-03-25 Nippon Columbia Co Ltd Manufacture of mold for microlens array and matrix for the microlens array
AU7256496A (en) 1995-10-17 1997-05-07 Minnesota Mining And Manufacturing Company Method for radiation-induced thermal transfer of resist for flexible printed circuitry
US5757550A (en) 1995-10-31 1998-05-26 Eastman Kodak Company Dual-view imaging product
US5689372A (en) 1995-12-22 1997-11-18 Eastman Kodak Company Integral imaging with anti-halation
US5706132A (en) 1996-01-19 1998-01-06 Minnesota Mining And Manufacturing Company Dual orientation retroreflective sheeting
US5639580A (en) 1996-02-13 1997-06-17 Eastman Kodak Company Reflective integral image element
US6355759B1 (en) 1996-04-25 2002-03-12 3M Innovative Properties Company Polydiorganosiloxane polyurea segmented copolymers and a process for making same
US5888650A (en) 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
JPH10111660A (en) 1996-10-01 1998-04-28 Minnesota Mining & Mfg Co <3M> Retroreflective sheet and its production
US6076933A (en) 1996-10-08 2000-06-20 Jenmar Visual Systems Light transmitting and dispersing filter having low reflectance
US5894069A (en) 1997-02-12 1999-04-13 Eastman Kodak Company Transferring colorant from a donor element to a compact disc
US6110645A (en) 1997-03-13 2000-08-29 Kodak Polychrome Graphics Llc Method of imaging lithographic printing plates with high intensity laser
US5744291A (en) 1997-04-03 1998-04-28 Ip; Sunny Leong-Pang 3D photographic print material
US5856061A (en) 1997-08-14 1999-01-05 Minnesota Mining And Manufacturing Company Production of color proofs and printing plates
US5850278A (en) 1997-08-28 1998-12-15 Lo; Allen Kwok Wah Optical 3D printer with extended angular coverage
DE19804997C1 (en) 1997-09-24 1999-02-11 Utsch Kg Erich Marking symbols in plates, especially vehicle number plates with reflective film on plate substrate
RU2215542C2 (en) * 1998-02-23 2003-11-10 Массачусетс Инститьют Оф Текнолоджи Biodecomposing polymers able recovery of form
US5994026A (en) 1998-03-30 1999-11-30 Eastman Kodak Company Flexographic printing plate with mask layer and methods of imaging and printing
US6123751A (en) 1998-06-09 2000-09-26 Donaldson Company, Inc. Filter construction resistant to the passage of water soluble materials; and method
US6197474B1 (en) 1999-08-27 2001-03-06 Eastman Kodak Company Thermal color proofing process
US6228555B1 (en) 1999-12-28 2001-05-08 3M Innovative Properties Company Thermal mass transfer donor element
JP3778481B2 (en) 2000-02-14 2006-05-24 ニチアス株式会社 Shape memory foam material and method for producing the same
US7336422B2 (en) 2000-02-22 2008-02-26 3M Innovative Properties Company Sheeting with composite image that floats
US6242152B1 (en) 2000-05-03 2001-06-05 3M Innovative Properties Thermal transfer of crosslinked materials from a donor to a receptor
US6569521B1 (en) 2000-07-06 2003-05-27 3M Innovative Properties Company Stretch releasing pressure sensitive adhesive tape and articles
US6369844B1 (en) 2000-08-11 2002-04-09 Eastman Kodak Company Laser imaging process
US6827325B2 (en) * 2000-08-28 2004-12-07 Johnson & Johnson Vision Care, Inc. Shape memory polymer or alloy ophthalmic lens mold and methods of forming ophthalmic products
JP2002196106A (en) 2000-12-27 2002-07-10 Seiko Epson Corp Microlens array, method for manufacturing the same, and optical device
US6986855B1 (en) 2001-01-24 2006-01-17 Cornerstone Research Group Structural and optical applications for shape memory polymers (SMP)
US7221512B2 (en) 2002-01-24 2007-05-22 Nanoventions, Inc. Light control material for displaying color information, and images
US20040030062A1 (en) * 2002-05-02 2004-02-12 Mather Patrick T. Castable shape memory polymers
US20060051540A1 (en) 2002-09-20 2006-03-09 Seiji Kagawa Shape-memory polybutylene terephthalate film, production process and use thereof, and process for production of polybutylene terephthalate film
US7245430B2 (en) 2003-04-21 2007-07-17 Ricoh Company, Ltd. Method and apparatus for displaying three-dimensional stereo image using light deflector
US7355793B2 (en) 2004-05-19 2008-04-08 The Regents Of The University Of California Optical system applicable to improving the dynamic range of Shack-Hartmann sensors
US7981499B2 (en) 2005-10-11 2011-07-19 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US20080027199A1 (en) 2006-07-28 2008-01-31 3M Innovative Properties Company Shape memory polymer articles with a microstructured surface
US7951319B2 (en) 2006-07-28 2011-05-31 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US7586685B2 (en) 2006-07-28 2009-09-08 Dunn Douglas S Microlens sheeting with floating image using a shape memory material

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4420527A (en) * 1980-09-05 1983-12-13 Rexham Corporation Thermoset relief patterned sheet
US4783141A (en) * 1984-03-14 1988-11-08 Canon Kabushiki Kaisha Array lens
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US5091483A (en) * 1989-09-22 1992-02-25 Minnesota Mining And Manufacturing Company Radiation-curable silicone elastomers and pressure sensitive adhesives
US5514730A (en) * 1991-03-20 1996-05-07 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive compositions
US5264278A (en) * 1991-03-20 1993-11-23 Minnesota Mining And Manufacturing Company Radiation-curable acrylate/silicone pressure-sensitive adhesive coated tapes adherable to paint coated substrates
US5244288A (en) * 1991-07-15 1993-09-14 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for braille display of information from crt screen
US5589246A (en) * 1994-10-17 1996-12-31 Minnesota Mining And Manufacturing Company Heat-activatable adhesive article
US5889118A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Thermomorphic "smart" pressure sensitive adhesives
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
US6092465A (en) * 1998-03-03 2000-07-25 United Container Machinery, Inc. Method and apparatus for providing erasable relief images
US6288842B1 (en) * 2000-02-22 2001-09-11 3M Innovative Properties Sheeting with composite image that floats
US7068434B2 (en) * 2000-02-22 2006-06-27 3M Innovative Properties Company Sheeting with composite image that floats
US7253958B2 (en) * 2003-07-31 2007-08-07 Lucent Technologies Inc. Tunable micro-lens arrays

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118862A1 (en) * 2000-02-22 2008-05-22 3M Innovative Properties Company Sheeting with composite image that floats
US8057980B2 (en) 2000-02-22 2011-11-15 Dunn Douglas S Sheeting with composite image that floats
US8072626B2 (en) 2004-12-02 2011-12-06 3M Innovative Properties Company System for reading and authenticating a composite image in a sheeting
US20110236651A1 (en) * 2005-10-11 2011-09-29 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US20070081254A1 (en) * 2005-10-11 2007-04-12 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US7981499B2 (en) 2005-10-11 2011-07-19 3M Innovative Properties Company Methods of forming sheeting with a composite image that floats and sheeting with a composite image that floats
US20110198781A1 (en) * 2006-07-28 2011-08-18 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US10279069B2 (en) 2006-07-28 2019-05-07 3M Innovative Properties Company Shape memory polymer articles with a microstructured surface
US8236226B2 (en) 2006-07-28 2012-08-07 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US20080064815A1 (en) * 2006-09-12 2008-03-13 Henkel Corporation Reinforcement and Cure Enhancement of Curable Resins
US20080130126A1 (en) * 2006-12-04 2008-06-05 3M Innovative Properties Company User interface including composite images that float
US7800825B2 (en) 2006-12-04 2010-09-21 3M Innovative Properties Company User interface including composite images that float
US20080257486A1 (en) * 2007-04-20 2008-10-23 Gm Global Technology Operations, Inc. Multilayer thermo-reversible dry adhesives
US8685528B2 (en) * 2007-04-20 2014-04-01 GM Global Technology Operations LLC Shape memory polymer and adhesive combination and methods of making and using the same
US20090280330A1 (en) * 2007-04-20 2009-11-12 Gm Global Technology Operations, Inc. Shape memory polymer and adhesive combination and methods of making and using the same
US8628838B2 (en) * 2007-04-20 2014-01-14 GM Global Technology Operations LLC Multilayer thermo-reversible dry adhesives
US20080292848A1 (en) * 2007-05-23 2008-11-27 Gm Global Technology Operations, Inc. Multilayer adhesive for thermal reversible joining of substrates
US8012292B2 (en) * 2007-05-23 2011-09-06 GM Global Technology Operations LLC Multilayer adhesive for thermal reversible joining of substrates
US8459807B2 (en) 2007-07-11 2013-06-11 3M Innovative Properties Company Sheeting with composite image that floats
US8637226B2 (en) 2007-10-31 2014-01-28 3M Innovative Properties Company Method of forming an image having multiple phases
US8343633B2 (en) 2007-10-31 2013-01-01 3M Innovative Properties Company Method of modifying light with silicone (meth) acrylate copolymers
US20100316959A1 (en) * 2007-11-27 2010-12-16 Gates Brian J Methods for forming sheeting with a composite image that floats and a master tooling
US8586285B2 (en) 2007-11-27 2013-11-19 3M Innovative Properties Company Methods for forming sheeting with a composite image that floats and a master tooling
US8111463B2 (en) 2008-10-23 2012-02-07 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US8514493B2 (en) 2008-10-23 2013-08-20 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US8537470B2 (en) 2008-10-23 2013-09-17 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US7995278B2 (en) 2008-10-23 2011-08-09 3M Innovative Properties Company Methods of forming sheeting with composite images that float and sheeting with composite images that float
US20100103528A1 (en) * 2008-10-23 2010-04-29 Endle James P Methods of forming sheeting with composite images that float and sheeting with composite images that float
US8279200B2 (en) * 2009-05-19 2012-10-02 Microsoft Corporation Light-induced shape-memory polymer display screen
US20100295820A1 (en) * 2009-05-19 2010-11-25 Microsoft Corporation Light-induced shape-memory polymer display screen
US8753959B2 (en) 2010-06-08 2014-06-17 Henkel IP & Holding GmbH Coating adhesives onto dicing before grinding and micro-fabricated wafers
US9082840B2 (en) 2010-06-08 2015-07-14 Henkel IP & Holding GmbH Coating adhesives onto dicing before grinding and micro-fabricated wafers
US9281182B2 (en) 2011-02-01 2016-03-08 Henkel IP & Holding GmbH Pre-cut wafer applied underfill film
US9362105B2 (en) 2011-02-01 2016-06-07 Henkel IP & Holding GmbH Pre-cut wafer applied underfill film on dicing tape
US9607896B2 (en) 2011-07-01 2017-03-28 Henkel IP & Holding GmbH Use of repellent material to protect fabrication regions in semi conductor assembly
WO2015012803A1 (en) * 2013-07-23 2015-01-29 Empire Technology Development Llc Packaging materials and methods for their preparation and use
US10730208B2 (en) 2013-10-31 2020-08-04 University Of Florida Research Foundation, Inc. Porous polymer membranes, methods of making, and methods of use
US10350794B2 (en) 2013-10-31 2019-07-16 University Of Florida Research Foundation, Inc. Porous polymer membranes, methods of making, and methods of use
US20150130110A1 (en) * 2013-11-14 2015-05-14 GM Global Technology Operations LLC Fit and finish methods
US9623813B2 (en) * 2013-11-14 2017-04-18 GM Global Technology Operations LLC Fit and finish methods
US11155025B2 (en) 2013-12-05 2021-10-26 Massachusetts Institute Of Technology Methods for additive manufacturing of an object
US20150158244A1 (en) * 2013-12-05 2015-06-11 Stratasys Ltd. Object Of Additive Manufacture With Encoded Predicted Shape Change And Method Of Manufacturing Same
US10513089B2 (en) 2014-10-08 2019-12-24 Massachusetts Institute Of Technology Self-transforming structures
US10717108B2 (en) 2014-10-17 2020-07-21 University Of Florida Research Foundation, Inc. Methods and structures for light regulating coatings
US10808095B2 (en) 2015-05-08 2020-10-20 University Of Florida Research Foundation, Inc. Macroporous photonic crystal membrane, methods of making, and methods of use
DE102015215973A1 (en) * 2015-08-21 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Holding structure and holding device for holding an object
US20170056618A1 (en) * 2015-09-02 2017-03-02 Syracuse University Antifouling urinary catheters with shape-memory topographic patterns
US10500370B2 (en) * 2015-09-02 2019-12-10 Syracuse University Antifouling urinary catheters with shape-memory topographic patterns
US11406792B2 (en) * 2015-09-02 2022-08-09 Syracuse University Antifouling urinary catheters with shape-memory topographic patterns
US11052597B2 (en) 2016-05-16 2021-07-06 Massachusetts Institute Of Technology Additive manufacturing of viscoelastic materials
US11795281B2 (en) 2016-08-15 2023-10-24 University Of Florida Research Foundation, Inc. Methods and compositions relating to tunable nanoporous coatings
US10549505B2 (en) 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US10633772B2 (en) 2017-01-12 2020-04-28 Massachusetts Institute Of Technology Active woven materials
US10953605B2 (en) 2017-04-04 2021-03-23 Massachusetts Institute of Technology, Cambridge, Massachusetts and Steeicase Incorporated Additive manufacturing in gel-supported environment
US11781993B2 (en) 2017-05-17 2023-10-10 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11467094B2 (en) 2017-05-17 2022-10-11 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11480527B2 (en) 2017-12-20 2022-10-25 University Of Florida Research Foundation, Inc. Methods and sensors for detection
US11705527B2 (en) 2017-12-21 2023-07-18 University Of Florida Research Foundation, Inc. Substrates having a broadband antireflection layer and methods of forming a broadband antireflection layer
US11819277B2 (en) 2018-06-20 2023-11-21 University Of Florida Research Foundation, Inc. Intraocular pressure sensing material, devices, and uses thereof
US11312071B2 (en) 2018-11-12 2022-04-26 Ossur Iceland Ehf Additive manufacturing system, method and corresponding components for making elastomeric structures
US11390025B2 (en) 2018-11-12 2022-07-19 Ossur Iceland Ehf Medical device including a structure based on filaments
CN109679019A (en) * 2018-12-31 2019-04-26 成都市水泷头化工科技有限公司 A kind of the shape memory copolymer and preparation method of recovery of shape temperature-controllable
US20200232857A1 (en) * 2019-01-21 2020-07-23 Technische Universiteit Eindhoven Optical sensor based on shape memory between scattering and transparent modes
US11883306B2 (en) 2019-11-12 2024-01-30 Ossur Iceland Ehf Ventilated prosthetic liner
CN113402866A (en) * 2021-07-08 2021-09-17 长春工业大学 Polymer for regulating and controlling drug release based on shape memory
US20230311431A1 (en) * 2022-04-01 2023-10-05 The Boeing Company Methods for configuring a shape of a tool and associated systems and methods for manufacturing a composite structure

Also Published As

Publication number Publication date
US20120058305A1 (en) 2012-03-08
EP2046408A4 (en) 2009-08-19
EP2046408A1 (en) 2009-04-15
US10279069B2 (en) 2019-05-07
KR20090036117A (en) 2009-04-13
WO2008014109A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US10279069B2 (en) Shape memory polymer articles with a microstructured surface
US8236226B2 (en) Methods for changing the shape of a surface of a shape memory polymer article
KR101381489B1 (en) Resin mold
US6770721B1 (en) Polymer gel contact masks and methods and molds for making same
US9744715B2 (en) Method for producing patterned materials
KR100314563B1 (en) Pressure Sensitive Adhesive with Microstructured Surface
EP2185664B1 (en) Pressure-sensitive adhesive composition having improved initial tack
KR101730577B1 (en) Resin mold for nanoimprinting
JP5958338B2 (en) Fine uneven structure, water-repellent article, mold, and method for producing fine uneven structure
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
JP2004506777A (en) Structured release liner with improved adhesion to adhesive articles
EP2212723A1 (en) Articles and methods of making articles having a concavity or convexity
JP2007320071A (en) Manufacturing method of template and treated base material having transfer fine pattern
JP2016210150A (en) Laminate, production method thereof and article
JP4418880B2 (en) Microstructure with micro structure on the surface
KR20110090808A (en) Resin type, molding and the method for producing the molding
JP7326876B2 (en) Resin mold, replica mold manufacturing method, and optical element manufacturing method
JP7358753B2 (en) Inkjet printing substrates, acrylic resin laminates, key chains, straps and acrylic stands
JP2018112687A (en) Method for producing optical member and method for producing three-dimensional structure
JP2023143465A (en) Junction structure
JP2023112783A (en) Fine uneven structure object and adsorption sheet
KR20220049017A (en) Decorative films and decorative molded articles
KR20160014493A (en) Cliche, printing apparatus comprising the same, pringting method using the same, and method for preparing cliche

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAZUREK, MIECZYSLAW H.;GALKIEWICZ, ROBERT K.;SHERMAN, AUDREY A.;AND OTHERS;REEL/FRAME:018373/0790;SIGNING DATES FROM 20060907 TO 20060918

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION