US20070100283A1 - Control tabs for infusion devices and methods of using the same - Google Patents

Control tabs for infusion devices and methods of using the same Download PDF

Info

Publication number
US20070100283A1
US20070100283A1 US11/593,210 US59321006A US2007100283A1 US 20070100283 A1 US20070100283 A1 US 20070100283A1 US 59321006 A US59321006 A US 59321006A US 2007100283 A1 US2007100283 A1 US 2007100283A1
Authority
US
United States
Prior art keywords
infusion device
infusion
tab
reservoir
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/593,210
Inventor
James Causey
William Stutz
Clyde Nason
Sheldon Moberg
Jay Yonemoto
Richard Purvis
Cary Talbot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Minimed Inc
Original Assignee
Minimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27415129&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20070100283(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/533,578 external-priority patent/US6752787B1/en
Application filed by Minimed Inc filed Critical Minimed Inc
Priority to US11/593,210 priority Critical patent/US20070100283A1/en
Publication of US20070100283A1 publication Critical patent/US20070100283A1/en
Priority to US12/689,887 priority patent/US8613726B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/14566Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir for receiving a piston rod of the pump
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1456Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons with a replaceable reservoir comprising a piston rod to be moved into the reservoir, e.g. the piston rod is part of the removable reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0266Shape memory materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6018General characteristics of the apparatus with identification means providing set-up signals for the apparatus configuration

Definitions

  • This invention relates to external infusion devices and, in particular embodiments to external infusion devices that control the rate that a fluid is infused into an individual's body.
  • Portable personal infusion devices and systems are relatively well-known in the medical arts, for use in delivering or dispensing a prescribed medication to a patient.
  • Many pharmaceutical agents are delivered into the subcutaneous tissue and the most common is insulin.
  • CSII continuous subcutaneous infusion of insulin
  • other medications that are infused include HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, and anti-cancer treatments.
  • low cost infusion devices have used an elastomeric diaphragm, sponge rubber, balloon or gas generator to expel fluid to be infused into a patient over a period of time at a single, relatively constant rate.
  • a drawback to these devices is that they are only filled with fluid once. When the infusion of fluid is complete, the infusion device is disposed of. Thus, the infusion device must be made at an extremely low cost.
  • Another drawback is that the low cost may not allow for the high quality needed to have sufficient flow rate control accuracy for the delivery of dosage sensitive drugs.
  • infusion devices have been designed with more accurate dosage control, but at a significantly higher cost.
  • the more accurate infusion devices are designed to be refilled and reused.
  • refillable infusion devices comprise a relatively compact housing adapted to receive a syringe or reservoir carrying a prescribed medication for administration to the patient through infusion tubing and an associated catheter or infusion set.
  • Such infusion devices are utilized to administer insulin and other medications, with exemplary infusion device constructions being shown and described in U.S. Pat. Nos. 4,562,751; 4,678,408; 4,685,903; 5,080,653 and 5,097,122, which are incorporated by reference herein.
  • the cost of manufacturing may make the refillable infusion device too expensive for some users or medications.
  • the low cost, one-time-use, constant flow rate infusion devices may not have sufficient flow rate accuracy or the adjustments needed to control the dosage for some users.
  • a reusable external infusion device with a predetermined usage life for infusing a fluid into a body includes a replaceable reservoir, a power supply, a drive system, an electronics system, and a housing.
  • the housing contains the reservoir, power supply, drive system, and electronics system.
  • the replaceable reservoir contains the fluid before infusing and has a usage life substantially shorter than the predetermined usage life of the infusion device.
  • the power supply provides power to the drive system and the electronics system to force fluid from the reservoir.
  • the electronics system regulates the power from the power supply to control the drive system.
  • the infusion device includes a control system operatively coupled to the electronics system that adjusts one or more control parameters.
  • control system is a supplemental device.
  • the supplemental device establishes two way communication with the electronics system.
  • the supplemental device has a display.
  • the infusion device may be refurbished at least once to function for another predetermined usage life.
  • the predetermined usage life for the infusion device expires, the infusion device ceases to infuse fluid.
  • the predetermined usage life for the infusion device is programmed into a software program as a number of times that the replaceable reservoir is replaced in the infusion device.
  • the drive mechanism of the infusion device contains a DC motor in the drive system.
  • the drive mechanism of the infusion device contains a stepper motor, solenoid motor, a shape memory alloy driven motor, or the like.
  • a reusable external infusion device is for infusing a fluid into an individual.
  • the infusion device includes a housing and a replaceable fluid containing reservoir that is inserted into the housing.
  • the housing contains only one electronics module to control the infusion device.
  • the electronics module contained within the housing is produced using chip-on-board construction.
  • the electronics module contained within the housing is produced using ball grid array construction.
  • the electronics module a flex circuit to control the infusion device.
  • the housing contains a detection device that detects the presence or absence of the replaceable reservoir.
  • the reusable external infusion device further includes a drive mechanism coupled to an electronics system and the housing includes a button coupled to the electronics system that an individual may push to cause the drive mechanism to deliver a bolus of fluid into the individual.
  • the housing and internal contents are assembled together without screws.
  • the housing includes at least one feature that is fused using ultrasonic vibrations.
  • the housing includes a drive mechanism that contains at least one non-metallic gear.
  • the housing includes a slidable key that provides access to remove and/or replace the replaceable reservoir inside the housing.
  • the housing accepts a key that includes a communication device for communicating with a supplemental device.
  • the housing accepts a tab that includes a communication device for communicating with a supplemental device.
  • the housing accepts a tab/key that includes a communication device for communicating with a supplemental device.
  • the housing includes an opening to insert a removable tab that includes a programmable chip that contains at least one control parameter to control the infusion device.
  • the housing includes an opening to insert a tab that includes at least one electrical terminal that establishes electrical contact between at least one set of electrical terminals inside the housing.
  • the housing is adapted to receive at least one of at least two different tabs that are insertable into the housing, and the at least two different tabs each have different electrical terminal configurations that establish electrical contact between different electrical terminals inside the housing, and connects different electrical terminals to cause the external infusion device to dispense fluid at different rates.
  • the housing is adapted to receive at least one tab with an optically readable pattern, and the housing includes an optical reader to read the optically readable pattern on the at least one tab to control at least one control parameter of the reusable external infusion device.
  • the housing is adapted to receive at least one tab that includes magnetically stored information, and the housing includes a magnetic reader to read the magnetically stored information from the at least one tab to control at least one control parameter of the reusable external infusion device.
  • the reusable external infusion device includes at least one lithium magnesium oxide (LiMnO 2 ) battery.
  • the reusable external infusion device includes a battery that lasts at least 10 weeks, measured while the reusable external infusion device dispenses up to 40 milliliters of fluid per day and while the alarms draw substantially no power from at least one battery.
  • an alarm is activated when the reusable external infusion device needs to be refurbished.
  • the reusable external infusion device has a predetermined usage life and when the predetermined usage life has expired, the reusable external infusion device may be refurbished at least once to function for another predetermined usage life.
  • the reusable external infusion device has a predetermined usage life and when the predetermined usage life expires, the reusable external infusion device ceases to infuse fluid.
  • the reusable external infusion device has a predetermined usage life and the predetermined usage life for the reusable external infusion device is programmed into a software program as a number of times that the replaceable reservoir is replaced in the housing, as a number of days that the reusable external infusion device is in use, as the number of times the battery is replaced in the reusable external infusion device, and/or as the number of times that a key is removed from the reusable external infusion device.
  • the reusable external infusion device has a predetermined usage life and the predetermined usage life for the reusable external infusion device is expired when the amount of electrical power consumed to empty a reservoir exceeds a predetermined amount programmed into a software program.
  • an external infusion device for infusing a fluid into a body includes a housing, a reservoir, a drive system, at least one power supply, one or more electrical elements, and a tab.
  • the housing contains the reservoir and the drive system.
  • the reservoir contains the fluid, and the drive system forces the fluid from the reservoir.
  • the drive system is powered by the at least one power supply.
  • the one or more electrical elements are coupled to the power supply and the drive system to regulate the rate that the drive system forces fluid from the reservoir.
  • the tab mates with the housing, and contains at least one of the one or more electrical elements.
  • the tab is removable, and in particular embodiments is replaceable with a different tab.
  • the different tab changes the rate that the drive system forces fluid from the reservoir.
  • the tab may be removed from one external infusion device and mated with a different external infusion device to affect the operation of the different external infusion device.
  • the tab may only be used in a predetermined number of external infusion devices.
  • the tab includes at least one of the at least one power supply.
  • the tab is insertable into an opening in the housing, and may include a seal to improve resistance to water or contaminants entering the housing.
  • the tab is attachable to the exterior of the housing.
  • the housing includes a seal that is in contact with the tab to improve resistance to water or contaminants entering the housing.
  • the tab is disposable, and in some embodiments, the tab, once it is installed, is not removable from the housing. In other embodiments, the reservoir of the external infusion device can only be filled once.
  • the tab affects whether a medicament filling apparatus can mate with the infusion device. In alternative embodiments, the tab affects whether or not a fluid path between a medicament filling apparatus and the reservoir is open.
  • the tab includes all of the one or more electrical elements. In other embodiments, the tab includes at least a portion of the drive system. In still other embodiments, the tab includes the drive system. In yet another embodiment, the tab includes one or more components that are sensitive to sterilization treatments. And in still another embodiment, the tab includes one or more components that are reusable.
  • the tab includes one or more indicators.
  • the one or more indicators indicate that the drive system is powered.
  • the one or more indicators indicate that fluid delivery is in process.
  • the one or more indicators indicate a power supply status.
  • a tab for an external infusion device having a housing containing a reservoir for fluid to be infused into a body and a drive system to force the fluid from the reservoir powered by at least one power supply and controlled by one or more electrical elements
  • a support structure mates with the housing of the external infusion device, and the at least one of the one or more electrical elements is attached to the support structure.
  • the tab affects the rate that the fluid is infused into the body.
  • the tab is insertable into an opening in the housing, and includes a seal to improve resistance to water or contaminants entering the housing.
  • the tab is attachable to the exterior of the housing. In other alternative embodiments, once the tab is installed, it contacts a seal on the housing that improves resistance to water or contaminants entering the housing.
  • the tab is removable, and in some embodiments, the tab may be removed form one external infusion device and mated with a different external infusion device to affect at least one control parameter of the different external infusion device. In particular embodiments, the tab may only be used in a predetermined number of external infusion devices.
  • the tab is disposable and in some embodiments, after it is installed, the tab is not removable from the housing. In further alternative embodiments, the tab can only be used once. In other alternative embodiments, the tab includes at least one of the at least one power supply. In further embodiments, the tab includes at least a portion of the drive system.
  • the tab affects whether a medicament filling apparatus can mate with the infusion device. In other embodiments, the tab affects whether or not a fluid path between a medicament filling apparatus and the reservoir is open.
  • FIG. 1 is a block diagram, illustrating an infusion device and a supplemental device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an infusion device connected to a tube, an infusion set and an individual's body according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of an electronics module in accordance with an embodiment of the present invention.
  • FIG. 4 is a perspective view of a flex circuit in accordance with an embodiment of the present invention.
  • FIG. 5 is a partial perspective view of an infusion device drive system in accordance with an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing “Tinnerman” style retaining rings holding gear hubs in accordance with an embodiment of the present invention.
  • FIG. 7 is a partial perspective view of internal components of an infusion device with multiple batteries in accordance with another embodiment of the present invention.
  • FIG. 8 is a perspective view of an infusion device with a key slid out of the housing in accordance with an embodiment of the present invention.
  • FIG. 9 is a partial perspective view of an infusion device with a key that has electrical traces in accordance with another embodiment of the present invention.
  • FIG. 10 is a perspective view of the infusion device of FIG. 8 with the housing removed to show the internal components and the key.
  • FIG. 11 is a perspective diagram of an infusion device connected to a computer in accordance with an embodiment of the present invention.
  • FIG. 12 is a perspective diagram of an infusion device connected to a personal digital assistant in accordance with an embodiment of the present invention.
  • FIG. 13 is a perspective diagram of an infusion device communicating with a dedicated programming device in accordance with an embodiment of the present invention.
  • FIG. 14 is a partial perspective view of an infusion device with a tab that has electrical traces in accordance with a further embodiment of the present invention.
  • FIG. 15 is a perspective view of two tabs with different electrical traces in accordance with an embodiment of the present invention.
  • FIG. 16 is a perspective view of two keys with different electrical traces in accordance with an embodiment of the present invention.
  • FIG. 17 is a partial perspective view of an infusion device with a tab that has a programmable chip in accordance with an embodiment of the present invention.
  • FIG. 18 is a partial perspective view of an infusion device with a key that is that has a programmable chip in accordance with an embodiment of the present invention.
  • FIG. 19 ( a ) is a perspective view of a communication key with a slot to accept a connector in accordance with an embodiment of the present invention.
  • FIG. 19 ( b ) is a perspective view of a communication key with a connector and wire attached in accordance with an embodiment of the present invention.
  • FIG. 20 is a perspective view of a communication key for RF communication in accordance with an embodiment of the present invention.
  • FIG. 21 is a perspective view of a communication key for IR communication in accordance with an embodiment of the present invention.
  • FIG. 22 is a plan view of the internal components of an infusion pump in accordance with an embodiment of the present invention.
  • FIG. 23 ( a ) is a partial cutout perspective view of an infusion device with a tab in accordance with an embodiment of the present invention.
  • FIG. 23 ( b ) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab in accordance with an embodiment of the present invention.
  • FIG. 24 ( a ) is a partial cutout perspective view of an infusion device with a tab containing at least one battery in accordance with an embodiment of the present invention.
  • FIG. 24 ( b ) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab containing at least one battery in accordance with an embodiment of the present invention.
  • FIG. 25 ( a ) is a partial cutout perspective view of an infusion device with a tab containing at least one battery, at least one electrical component, and a drive system in accordance with an embodiment of the present invention.
  • FIG. 25 ( b ) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab containing at least one battery, at least one electrical component, and a drive system in accordance with an embodiment of the present invention.
  • the invention is embodied in a reusable external infusion device for infusing a fluid into an individual's body and methods of manufacturing the same.
  • the infusion device controls the rate that fluid flows from a reservoir inside a housing, through an external tube, and into the individual's body.
  • the infused fluid is insulin.
  • many other fluids may be administered through infusion such as, but not limited to, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, vitamins, hormones, or the like.
  • an infusion device 10 includes a reservoir 12 , a drive system 14 , an electronics system 16 , a control system 18 , and a power supply 20 , all contained within a housing 22 .
  • the fluid is pushed from the reservoir 12 by the drive system 14 when commanded by the electronics system 16 .
  • the power supply 20 provides power to both the drive system 14 and the electronics system 16 .
  • a user or another qualified person, such as a doctor, parent, or spouse interfaces with the electronics system 16 through the control system 18 .
  • fluid flows from the infusion device 10 , through the external tube 24 , into an infusion set 26 , and then into the individual's body 28 , as shown in FIG. 2 .
  • Infusion sets 26 that may be used in conjunction with the infusion device 10 are described in, but not limited to, U.S. Pat. Nos. 4,723,947; 4,755,173; 5,176,662; and 5,584,813; and disclosed in U.S. patent application Ser. No. 09/034,626 (attorney docket PD-0269), filed Mar. 4, 1998 and entitled “Medication Infusion Set”, which are hereby incorporated by reference.
  • the control system 18 provides a method for the user or another qualified person to adjust one or more control parameters that the electronics system 16 uses to calculate and issue commands to the drive system 14 .
  • Control parameters include, for example, one or more basal rates, one or more bolus rates, maximum and minimum delivery rates, one or more alarm criteria, or the like.
  • the electronics system 16 is a compilation of one or more electrical elements designed to carryout commands as specified by the control parameters. Electrical elements may include, but are not limited to, resistors, capacitors, amplifiers, diodes, semiconductor circuits, traces, wires, antennae, buttons, sound emanating devices, light emitting devices, receivers, transmitters, switches, or the like. In preferred embodiments, the electrical elements are attached to a single electronics board to form an electronics module.
  • an electronics module 30 is a “popsickle stick” design, as shown in FIGS. 3, 5 , 10 and 22 . The term “popsickle stick” refers to the electronics module's long thin layout that optimizes the usage of space within the housing 22 .
  • the electronics module 30 stretches the length of the housing 22 so that only short leads are needed to extend from the electronics module 30 to any component that uses electricity or signals from the electronics.
  • the use of a “popsickle stick” design also facilitates ease of assembly and integrating for the infusion device 10 .
  • the electrical elements of the electronics module are mounted on a flex circuit.
  • the flex circuit has one or more flex circuit leads 34 that run to various locations within the housing 22 to minimize or eliminate the need for wires.
  • An example of one embodiment of a flex circuit 32 is shown in FIG. 4 .
  • Flex circuit leads 34 may run to a motor 36 , an antenna 38 , one or more LEDs 40 , one or more buttons 42 , a battery 44 , electrical elements 46 , or the like.
  • the flex circuit 32 may connect to other devices or components such as a transmitter, a receiver, a display, an alarm, a tab, a communication port, a power port, or the like.
  • one or more semiconductor circuits are wire bonded to the flex circuit 32 .
  • the electronics module 30 includes chip-on-board construction. In alternative embodiments, the electronics module 30 includes ball grid array (BGA) packages or leaded chip construction.
  • BGA ball grid array
  • the electronics system 16 includes one or more LEDs 40 to indicate specific conditions about the infusion device 10 , such as whether the fluid is being dispensed, the battery power level, the fluid level in the reservoir 12 , whether the electronics system 16 is functioning, warnings regarding how soon the infusion device 10 will require servicing, or the like.
  • the electronics system 16 includes one or more alarms.
  • an alarm is a piezo electric sound device.
  • the one or more alarms includes a vibrator, a light, a sound emanating device, or the like.
  • the drive system 14 includes a motor/gear box 48 with a drive shaft 50 that extends out of the motor/gear box 48 , one or more gears 52 external to the motor/gear box 48 that transfers motion from the drive shaft 50 to a lead screw 54 , and a piston 56 that is coupled to the lead screw 54 , such that as the lead screw 54 rotates, the piston 56 moves a plunger 58 inside the reservoir 12 .
  • the angular rotation of a motor shaft 136 is measured with an optical encoder 138 attached to an end of a motor shaft 136 protruding from the motor/gear box 48 .
  • the drive system 14 may also be the same as or similar to the drive mechanism described in, U.S. patent application Ser. No. 09/429,352 (attorney docket PD-0286), filed Oct. 28, 1999 and entitled “Compact Pump Drive System”, which is hereby incorporated by reference.
  • the motor/gear box 48 includes a stepper motor.
  • the motor/gear box 48 uses a direct current (DC) motor, a solenoid motor or a shape memory alloy (SMA) driven motor.
  • the SMA motor may be of the type described in U.S. patent application Ser. No. 09/249,666, filed on Feb. 12, 1999, entitled “Incremental Motion Pump Mechanisms Powered By Shape Memory Alloy Wire Or The Like”, which is hereby incorporated by reference.
  • the SMA motor may include a ratchet/pawl mechanism actuated by a SMA component.
  • the one or more gears 52 external to the motor/gear box 48 have a one-to-one gear ratio.
  • the gears may have different gear rations such as 1.5:1, 2:1, 3:1, 5:1, or the like depending on the motor control resolution and the minimum dosage requirement for the fluid.
  • the gears 52 are made of molded plastic.
  • the gears 52 are made of metal, epoxy, laminates, or other suitably strong materials.
  • mechanical power is transferred from the motor/gear box 48 to the lead screw 54 using one or more of a belt, timing belt, chain, gears, rack or the like.
  • each of the gears 52 have a gear hub 60 that fits through one of the openings 62 in a wall 64 contained within the housing 22 .
  • a “Tinnerman” style retaining ring 66 slips over the gear hub 60 of each gear 52 to secure the gear 52 to the wall 64 .
  • each gear hub 60 is held in place with a snap ring, a rivet, a threaded nut, a press-on nut, or the like.
  • each gear 52 has a “D” shaped hole 68 passing entirely through the gear 52 that is located generally at the center of rotation.
  • the drive shaft 50 with a mating “D” shaped end 51 , fits into the “D” shaped hole 68 in a gear 52 .
  • a “D” shaped end 55 of the lead screw 54 fits into a “D” shaped hole 68 in a gear 52 .
  • the “D” shaped holes 68 function to transmit torque from the drive shaft 50 to the gears 52 and on to the lead screw 54 without the need for a fixed attachment of the drive shaft 50 and the lead screw 54 to the gear hubs 60 .
  • other shaped holes are used such as hexagonal, square, rectangular, polygonal, triangular, oval, star, clover, round, notched, or the like along with a drive shaft and a lead screw with mating ends that fit into the holes.
  • the piston 56 has a threaded bore 70 that is generally centered with the piston's longitudinal axis, and the threads 72 on the lead screw 54 mate with the threaded bore 70 on the piston 56 .
  • the first half of an inch of the piston bore 70 is threaded and the remainder of the bore through the rest of the piston is smooth with a large enough diameter to allow the lead screw to pass through unobstructed.
  • the length of the piston bore that is threaded may be increased or decreased depending on the number of threads needed to apply force to the plunger and the amount of friction generated between the piston bore 70 and the lead screw 54 .
  • the piston 56 includes a flange 74 with a notch 76 that fits over a rail 78 .
  • the rail 78 runs generally parallel to the lead screw 54 .
  • an edge of the notch 76 in the piston flange 74 rests against the rail 78 and prevents the piston 56 from rotating. Therefore, as the lead screw 54 rotates, the piston 56 moves along the length of the lead screw 54 substantially free of rotational movement.
  • the threaded bore 70 in the piston 56 is not generally centered with the piston's centerline.
  • the lead screw 54 may pass through the piston's flange 74 .
  • the power supply is a battery 44 .
  • the power supply is a lithium magnesium oxide (Li Mn O 2 ) battery 44 , as shown in FIGS. 4, 5 and 10 .
  • Li Mn O 2 lithium magnesium oxide
  • Some of the factors that influence the size of the battery 44 are, the amount of power needed to drive the motor/gear box 48 , the amount of friction through out the drive system 14 , the size of the reservoir 12 (and therefore the amount of piston 56 displacement needed to empty the reservoir 12 ), the dosage resolution required, the dosage volume, whether or not alarms are set off, how frequently lights or displays are used, and the number of days desired between battery 44 replacement.
  • the battery 44 lasts at least 10 weeks, while the reusable infusion device 10 dispenses fluid at a rate of up to 40 milliliters per day without alarms. At greater fluid dispensing rates and/or when the alarms are active, the battery duration may be diminished.
  • the battery capacity is generally 2.1 amp-hours at 3 volts.
  • the combined capacity of a pair of batteries 80 shown in FIG. 7 , is generally 1.1 amp-hours at 3 volts.
  • the battery 44 may last as little as 3 days (a common time to empty a reservoir 12 ) with a battery capacity as low as 0.035 amp-hours. Or, the battery 44 may last as long as a year (a likely time to have the infusion device 10 serviced) with a better battery capacity as large as 12.6 amp-hours. And in other alternative embodiments, the battery voltage may be as low as 0.5 volts and as large as 9 volts depending on the power needed for the drive system 14 and electronics system 16 . In further alternative embodiments, two or more batteries ( FIG. 7 ) may be used to supply the voltage and capacity needed to operate the infusion device 10 .
  • the battery 44 and reservoir 12 are removable through an opening 82 in the housing 22 , and the opening 82 may be closed by sliding a key 84 into a slot 83 formed in the housing 22 so that the key 84 covers the battery 44 and slides over the shoulder 86 of the reservoir 12 , as shown in FIGS. 8 , and 10 .
  • the key 84 may be slid part way out of the slot 83 of the housing 22 to a detent position that provides a sufficient opening to remove the reservoir 12 from the housing 22 while retaining the battery 44 in place within the housing 22 .
  • the battery 44 and the reservoir 12 may both be removed from the housing 22 by entirely removing the key 84 from the slot 83 to fully expose the opening 82 .
  • two different sliding keys are used, one to slide over the battery 44 and another to slide over the shoulder 86 of the reservoir 12 .
  • the key 84 has a conductive trace 85 that connects a battery terminal 88 of the battery 44 to a power lead 87 on the electronics module 30 (see FIG. 8 ).
  • the entire back of the key 84 could be conductive. Therefore, if the key 84 is removed, battery power is removed from the electronics system 16 .
  • a capacitor, or other charge storage device maintains electrical power for at least 15 seconds and up to 3 minutes after the battery 44 is disconnected from the electronics system 16 . This allows an individual time to replace the battery 44 without losing electrically stored information in the electronics system 16 .
  • a commonly known DC converter is used to convert AC wall current into the appropriate DC current and a DC jack is plugged into the infusion device 10 to keep the infusion device 10 powered whenever battery power is low or the battery 44 is removed.
  • the battery 44 is rechargeable by supplying a DC current to the infusion device 10 such as by plugging in a DC converter.
  • the infusion device 10 may be placed on a cradle to recharge the battery 44 using induction, solar cells, or use other methods of supplying current to a battery.
  • the infusion device 10 may be powered directly using solar cells, a DC power supply such as an exterior battery or a DC converter plugged into an AC outlet, and the like.
  • a switch 89 (shown in FIGS. 4, 5 and 10 ) is located in the housing 22 so that when the reservoir 12 is inserted far enough into the housing 22 , an end of the reservoir 12 contacts the switch 89 causing the switch 89 to toggle.
  • the switch 89 is also spring loaded to return to its original position when the reservoir 12 is removed.
  • the switch 89 detects when the reservoir 12 is removed from the housing 22 .
  • the infusion device 10 may include an optical reader that optically detects when a reservoir is present.
  • the motor/gear box 48 when the reservoir 12 is removed from the housing 22 , the motor/gear box 48 is automatically triggered to run in reverse to fully retract the piston 56 in preparation for a new reservoir 12 to be installed.
  • the motor/gear box 48 retracts the piston 56 when the key 84 is removed far enough to permit removal of the reservoir 12 .
  • the infusion device 10 is disabled by the electronics system 16 when a predetermined usage life is expired. For instance, the electronics system 16 keeps track of the number of times the reservoir 12 is replaced and compares that number to a specified number that is programmed into a software program in the electronics system 16 . Thus, the electronics system 16 will shut down the infusion device 10 , stopping the flow of fluid, after the reservoir 12 is replaced a specified number of times. In preferred embodiments, the predetermined life of the infusion device 10 is expired when the reservoir 12 has been replaced sixty times.
  • the number of times that the reservoir 12 may be replaced before the predetermined life of the infusion device 10 is expired may be as many as one hundred and fifty times or as few as twenty times due to the durability of the components that might wear, how carefully individuals handle the infusion device 10 , the types of climates the infusion device 10 is subjected to, or the like.
  • other measurements are used to detect when the infusion device's predetermined life is expired such as, the number of days of use, the number of times the battery 44 is replaced, an increase in the amount of battery power consumed to empty a reservoir 12 , the number of times a key 84 is removed from the infusion device 10 , or the like.
  • the infusion device 10 may be refurbished and returned to the user to be used again after the electronics system 16 has disabled the infusion device 10 due to exceeding its predetermined life.
  • the infusion device 10 can be refurbished at least once before its total life is expired.
  • the predetermined life may increase or decrease after refurbishing due to a change in the quality of a replacement part, a new lubrication method, new information about the durability of the infusion device 10 , how well the user cares for the particular infusion device, or the like.
  • the infusion device 10 is not refurbishable.
  • the infusion device 10 may be refurbished at least 2 times and up to an indefinite number of times before its total life is expired and it can no longer be used.
  • measurements are taken to determine if the total life of the infusion device 10 has expired such as, a significant physical shock detected by an accelerometer (perhaps a shock greater than 2.5 gs, depending on the amount of shock the infusion device 10 can handle), an increase in the amount of battery power consumed to empty a reservoir 12 , a maximum temperature such as 120 degrees F. has been exceeded, the reservoir has been replaced too many times (such as 1,000 times), or the like.
  • the electronics system 16 stores the control parameters, and default control parameters are programmed into the electronics system 16 during manufacturing.
  • the control parameters may be changed by an individual using the control system 18 .
  • the control system 18 of the infusion device 10 has buttons 42 accessible through the housing 22 .
  • a button 42 is used to command a bolus.
  • additional buttons 42 may provide additional control features such as to undo a previous command, confirm a command, activate a function, initialize a software program, initialize a new reservoir 12 , reset one or more control parameters to a default value, modify a control parameter, withdraw the piston 56 , or the like.
  • LEDs indicate that control parameters have been modified by turning on or off, flashing, changing color, sequencing, or the like.
  • the electronics system includes a LCD, LED display, or other displays to show the status of control parameters and/or indicate to the user, which control parameters, are being modified.
  • other feedback methods such as sounds, vibrations, or the like are used to indicate the status of control parameters.
  • a supplemental device 90 is used as, or is used in addition to, the control system 18 to adjust, change, modify, program, input, or the like, one or all of the control parameters.
  • the supplemental device 90 interfaces with the electronics system 16 as shown in FIG. 1 .
  • the supplemental device 90 includes a display 98 , an input system 100 and a communication system 102 that interfaces with the infusion device 10 .
  • the communication system 102 provides an initiating signal to the infusion device 10 to cause the control system 18 to go into a programming mode. Alternatively, no initiating signal is needed.
  • the communication system 102 provides 2-way communication between the supplemental device 90 and the infusion device 10 , as shown in FIG. 1 .
  • the communication system 102 may be one way.
  • the supplemental device 90 is a computer system 200 that communicates with an infusion device 210 .
  • the computer system 200 has a monitor 202 as the display, a keyboard 204 as the input system, and the computer 206 and wires 208 as the communication system, as shown in FIG. 11 .
  • the wires 208 are detachable at the infusion device 210 .
  • the wires 503 carry information between the supplemental device 90 to a communication key 501 , shown in FIGS. 19 ( a ) and 19 ( b ).
  • the wires 503 connect to the communication key 501 through a connector 505 that mates with slot 507 in the key 501 .
  • the communication key 501 carries the information signals through electrical traces (not shown) to electrical terminals 114 on the infusion device, such as shown in FIG. 9 .
  • the wires 503 are detachable from the communication key 501 as shown in FIGS. 19 ( a ) and 19 ( b ). In other embodiments, the wires 503 do not detach from the communication key.
  • the supplemental device 90 is a personal digital assistant (PDA) 300 or a hand held computer such as a Palm Pilot that communicates with an infusion device 310 .
  • PDA personal digital assistant
  • the PDA 300 has a touch screen LCD 302 that performs the duties of both the display and the input system, while the cradle 304 and wire 306 serve as the communication system, as shown in FIG. 12 .
  • the PDA may communicate using a wireless connection, such as by IR, RF, or the like.
  • the supplemental device 90 is a dedicated programming device 400 , that communicates with an infusion device 410 as shown in FIG. 13 .
  • the dedicated programming device 400 has a LCD 402 for its display, buttons 404 as the input system and a radio transmitter 406 and receiver 408 as the communication system.
  • the communication system 102 in the supplemental device 90 uses JR signals, optical signals, direct electrical contact, laser signals, combinations of carrier frequencies, or the like.
  • the display 98 is monitor, a touch screen, LEDs, lights, or the like.
  • the input system 100 includes a keyboard, a button, a touch screen, a touch pad, a dial, a switch, a microphone, a joystick, a computer mouse, a roller ball, or the like.
  • a communication key is used that includes portions of the communication system.
  • a communication key 601 has a radio frequency transmitter 603 and receiver 605 , shown in FIG. 20 .
  • a communication key 701 has a infra red transmitter 703 and receiver 705 , shown in FIG. 21 .
  • Other communication devices may be included in the communication key that use other carriers such as, ultrasonic, visual light, video frequencies, ultra violet, laser, microwave, or the like.
  • installation of the communication key into the infusion device causes the control system of the infusion device to go into a programming mode.
  • the infusion device enters a programming mode when the communication key contacts a switch (not shown), contacts electrical terminals 114 , is detected by a sensor such as an optical or magnetic proximity sensor, pushes a button, or the like.
  • control parameters such as the basal and/or bolus levels, maximum or minimum basal rate or the like, are set in an infusion device 103 when a tab 104 , with at least one conductive trace 108 , is inserted into a slot 106 on the housing 107 , such as shown in FIG. 14 .
  • the conductive trace 108 establishes connections between some of the electrical terminals (not shown) in the infusion device 103 .
  • Different patterns of conductive traces 108 and 108 ′ on different tabs 104 and 104 ′ (shown as examples in FIG. 15 ) connect different electrical terminals (not shown) in the infusion device 103 .
  • control parameters such as basal rates
  • the number of electrical terminals (not shown) and the number of conductive traces 108 may vary depending on the number of control parameters that are controlled using the tabs 104 .
  • the number of different patterns of unique conductive traces 108 , and therefore different tabs 104 is dependent on the number of control parameters that are controlled with the tabs 104 and the number of variations needed for each command parameter.
  • a doctor may prescribe a particular basal rate and therefore insert a particular tab 104 into the infusion device 103 .
  • the doctor may remove the originally prescribed tab 104 and insert a different tab 104 that causes the infusion device 103 to dispense the fluid at a different rate.
  • the tabs may include an optical pattern that is read by an optical reader in the housing.
  • the optical pattern may be similar to that shown in FIG. 15 .
  • other patterns or a bar codes may be used.
  • the tabs may include information stored on a magnetic media. And the information may be read by a magnetic reader contained within the housing.
  • the tab is in the form of a tab/key 110 that slides into slot 83 on an infusion device 111 to hold the battery 44 and/or reservoir 12 in place as shown in FIG. 9 .
  • Conductive traces 112 on the tab/key 110 establish connections between some of electrical terminals 114 .
  • Different patterns of conductive traces 112 and 112 ′ on different tab/keys 110 and 110 ′ (shown as examples in FIG. 16 ) connect different electrical terminals 114 .
  • different control parameters such as basal rates, or the like, are set and used by the electronics system 16 .
  • a tab 116 has a programmable chip 118 , such as shown in FIG. 17 , which is programmed with different control parameters before insertion into a slot 122 in a housing 124 of an infusion device 126 .
  • One or more conductive traces 120 on the tab 116 connect the chip 118 to the electronics system 16 through electrical terminals (not shown) in the housing 124 .
  • different tabs 116 have chips 118 that are programmed with different basal rates. Therefore, to change the basal rate for an infusion device 10 , an individual may remove the existing tab 116 from the housing 124 and install a different tab 116 that includes a chip 118 that is programmed to command a different basal rate.
  • the tabs 116 are removed from the infusion device 126 , and the chips 118 are re-programmed with different control parameters, and then the tab 116 is re-installed into the infusion device 126 .
  • the chips 118 are not re-programmable, and a new tab 116 with a new chip 118 is used when control parameters must be changed.
  • the tab is in the form of a tab/key 128 and has a programmable chip 130 such as shown in FIG. 18 , which is programmed with different control parameters before insertion into slot 83 of the housing 22 of infusion device 132 .
  • One or more conductive traces 134 on the tab/key 128 connect the chip 130 to the electronics system 16 through electrical terminals 114 .
  • a tab/key normally used to establish control parameters as described above, may be a communication key.
  • the communication key enables the infusion device to communicate with a supplemental device 90 to change control parameters or transfer data.
  • a tab/key that is not a communication key is reinserted into the infusion device for normal operation after the communication key has completed the communication with the supplemental device 90 .
  • the communication key is left in the infusion device or a different tab/key is used after the communication device is removed.
  • the tab/key includes communication devices.
  • a tab/key with a computer chip may include a slot to accept a connector such as communication key 501 shown in FIGS. 19 ( a ) and 19 ( b ).
  • Other communication devices such as IR, RF, ultrasonic, or the like may be included on a tab/key.
  • the supplemental device 90 can reprogram computer chips included on the tab/key.
  • a communication device is included on a tab that does not serve as the key that covers the battery 44 and the reservoir 12 .
  • the tabs are color coded to identify the basal rate or other control parameters they are programmed to command.
  • other identification methods may be used to indicate the basal rate, and/or other control parameters, associated with a particular tab such as, a code number, a serial number, a lot number, a batch number, a name, or the like. Methods of applying the identification include, stamping, silk-screening, printing, typing, labels, embossing, imprinting, molding, or the like.
  • other means are used to identify tabs that have different control parameters from each other such as, surface textures, flexibility, materials, a raised patterns, printed patterns, or the like.
  • Tabs may be used to modify characteristics of other infusion devices as well, such as those described in U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,505,709; 5,785,688; 5,814,020 and 5,097,122; and disclosed in U.S. patent application Ser. No. 09/334,858 (attorney docket PD-0294), filed Jun. 17, 1999 and entitled “Infusion Pump With Remote Programming and Carbohydrate Calculator Capabilities”, and Ser. No. 09/429,352 (attorney docket PD-0286), filed Oct. 28, 1999 and entitled “Compact Pump Drive System”, which are hereby incorporated by reference.
  • tabs are used in disposable infusion devices, such as shown in FIGS. 23 ( a )- 24 ( b ) and U.S. Pat. Nos. 5,814,020 and 5,785,688.
  • the infusion device 800 shown in FIGS. 23 ( a ) and ( b ), has a housing 818 , a reservoir 812 , a gas generator 814 , one or more batteries 816 , and a tab 802 that contains one or more electronic elements (not shown).
  • the tab 802 When the tab 802 is installed into an opening 804 on the infusion device 800 , one or more conductive traces 806 come in contact with one or more electrical terminals 808 to provide an electrical contact between the infusion device 800 and the tab 802 .
  • a seal 810 closes the opening 804 in the infusion device 800 to prevent contaminants from entering and/or to improve water resistance of the infusion device 800 .
  • one or more batteries 916 are stored in a tab 902 that mates with an infusion device 900 , such as shown in FIGS. 24 ( a ) and ( b ).
  • the infusion device 900 has a housing 918 , a reservoir 912 , a gas generator 914 , and an opening 904 to receive the tab 902 .
  • the tab 902 contains the one or more batteries 906 and one or more electronic elements (not shown). When the tab 902 is inserted into the opening 904 one or more conductive traces 906 come into electrical contact with one or more electrical terminals 908 on the infusion device 900 .
  • a seal 910 closes the opening 904 in the infusion device 900 to prevent contaminates from entering and/or to improve water resistance of the infusion device 900 .
  • one or more components that are included with the tab are reusable and/or sensitive to sterilization treatments such as, radiation, heat, gas, fog or mist (such as hydrogen peroxide), chemical washes or soaks, and the like.
  • sterilization treatments such as, radiation, heat, gas, fog or mist (such as hydrogen peroxide), chemical washes or soaks, and the like.
  • the infusion device without the tab can be processed through a sterilization process before the tab is inserted.
  • the tab, and any components included with the tab are excluded from a sterilization process, since these components do not come in contact with fluids or materials infused into the body and do not need to be sterilized.
  • the tab may be used in one infusion device, and then removed from the infusion device and installed into another infusion device.
  • a tab may be mated with an infusion device that has been sterilized, and then the infusion device is used for infusing a fluid into an individual.
  • the tab may be removed.
  • the infusion device may be disposed of or re-sterilized.
  • the tab may be reused with a new infusion device or a newly sterilized infusion device, or the tab may be disposed of when no longer useable.
  • the tab must be inserted into the infusion device for the infusion device to operate. And removal of the tab causes the infusion device to stop fluid delivery. In alternative embodiments, the infusion device continues to operate independent of whether a tab is installed or not.
  • the tab may include, for example, portions of, or all of: an electronics system, drive system, power supply, communication system, output device (such as an LCD, one or more LED's, speaker, sound making device, vibrator, and the like), input devices (such as a key pad, a touch screen, or the like), or the like.
  • output device such as an LCD, one or more LED's, speaker, sound making device, vibrator, and the like
  • input devices such as a key pad, a touch screen, or the like
  • one or more batteries 1016 , an electronics system 1018 , and a drive system 1014 are included in a tab 1002 that mates with an infusion device 1000 , such as shown in FIGS. 25 ( a ) and ( b ).
  • the infusion device 1000 has a housing 1018 , a reservoir 1012 , and an opening 1004 to receive the tab 1002 .
  • a seal 1010 closes the opening 1004 in the infusion device 1000 to prevent contaminates from entering and/or to improve water resistance of the infusion device 1000 .
  • some of the elements 1016 , 1018 , or 1014 may be omitted entirely.
  • a tab may be shaped to attach to the external surface of the infusion device.
  • the tabs may be formed in different shapes and the seals may be omitted, placed in a different position on the tab, or placed on or incorporated in the infusion device.
  • the tabs are coded so that tabs with different characteristics (such as electrical elements that cause a different infusion rate, or work with different types of insulin, or add or subtract features, or affect different control parameters) may be identified from one another.
  • the tabs may be different colors, have bar codes or markings, include numbers, letters and/or names, have bumps, be different shapes, have textures or patterns, or the like.
  • the tabs may affect the infusion device filling process.
  • the tab must be installed into the infusion device before the infusion device reservoir is filled with medicament.
  • the tab may activate a valve to open the fluid path, or the tab may include a port for a filling apparatus to mate with the infusion device, of the shape of the tab may limit the shape of the filling apparatus that can be mated with the infusion device to fill the reservoir with medicament, or the like.
  • different concentrations or different types of medicament may be packaged in different filling apparatuses so that each type of tab will only permit a particular filling apparatus to mate with the infusion device, if the filling apparatus contains medicament that is compatible with the tab.
  • each tab has a limited usage life.
  • the tab is removable from the infusion device and may be installed into a different infusion device to affect at least one control parameter of the infusion device.
  • the tab may only be re-installed into a different infusion device a predetermined number of times, which determines the usage life. Once the usage life is exceeded, the tab will not permit the infusion device to function.
  • the tab will work for a limited amount of time or until a predetermined amount of medicament is expelled from the infusion device reservoir, or until the reservoir has been emptied a predetermined number of times, or the like.
  • Tabs may also be used to calibrate or control various features of characteristic or analyte monitor systems such as those described in U.S. patent application Ser. No. 09/465,715 (attorney docket PD-0291), filed Dec. 17, 1999 and entitled “Telemetered Characteristic Monitor System And Method Of Using The Same”; and Ser. No. 09/246,661 (attorney docket PD-0321), filed Feb. 5, 1999 and entitled “An Analyte Sensor And Holter-Type Monitor System And Method Of Using The Same”; and also Ser. No. 09/334,996 (attorney docket PD-0338), filed Jun. 17, 1999 and entitled “Characteristic Monitor With A Characteristic Meter And Method Of Using The Same”, which are all hereby incorporated by reference herein.
  • substantially all parts of the infusion device 10 are designed to slide or snap together during assembly. In particular embodiments, no screws are used on the infusion device 10 .
  • the housing 22 is plastic and is sealed using ultrasonic fusing. In alternative embodiments, other methods are used to seal the housing 22 such as gluing, bonding, fusing, melting, snapping, pressing, or the like. In other alternative embodiments, the housing 22 is made of other materials such as metal, rubber, resin, foam, or the like. Refurbishing of the infusion pump 10 may require destruction of the housing 22 .

Abstract

An external infusion device that infuses a fluid into an individual's body includes a housing, a reservoir, a drive system, a power supply, electrical elements, and a tab. The reservoir contains the fluid, and the drive system forces the fluid from the reservoir. The electrical elements control the power to the drive system to regulate the rate that fluid is forced from the reservoir. The tab mates with the housing, and contains at least one electrical element. The tab is removable, and may be replaced with a different tab. The different tab may change the rate fluid is forced from the reservoir. A tab may be removed from one external infusion device and installed in a different external infusion device. The tab may be limited to use in a predetermined number of external infusion devices and may include a power supply.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 09/672,244, filed on Sep. 28, 2000, and entitled “Cost-Sensitive Application Infusion Device,” which is a continuation of U.S. patent application Ser. No. 09/533,578, filed on Mar. 23, 2000, and entitled “Cost-Sensitive Application Infusion Device,” both of which are specifically incorporated by reference herein.
  • FIELD OF THE INVENTION
  • This invention relates to external infusion devices and, in particular embodiments to external infusion devices that control the rate that a fluid is infused into an individual's body.
  • BACKGROUND OF THE INVENTION
  • Portable personal infusion devices and systems are relatively well-known in the medical arts, for use in delivering or dispensing a prescribed medication to a patient. Many pharmaceutical agents are delivered into the subcutaneous tissue and the most common is insulin. Currently, more than 70,000 patients in the U.S. and 30,000 more patients worldwide use continuous subcutaneous infusion of insulin (CSII) for the treatment of diabetes mellitus. However, other medications that are infused include HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, and anti-cancer treatments.
  • Traditionally, low cost infusion devices have used an elastomeric diaphragm, sponge rubber, balloon or gas generator to expel fluid to be infused into a patient over a period of time at a single, relatively constant rate. A drawback to these devices is that they are only filled with fluid once. When the infusion of fluid is complete, the infusion device is disposed of. Thus, the infusion device must be made at an extremely low cost. Another drawback is that the low cost may not allow for the high quality needed to have sufficient flow rate control accuracy for the delivery of dosage sensitive drugs.
  • To obviate these drawbacks, infusion devices have been designed with more accurate dosage control, but at a significantly higher cost. To compensate for the relatively high cost, the more accurate infusion devices are designed to be refilled and reused.
  • In one form, refillable infusion devices comprise a relatively compact housing adapted to receive a syringe or reservoir carrying a prescribed medication for administration to the patient through infusion tubing and an associated catheter or infusion set. Such infusion devices are utilized to administer insulin and other medications, with exemplary infusion device constructions being shown and described in U.S. Pat. Nos. 4,562,751; 4,678,408; 4,685,903; 5,080,653 and 5,097,122, which are incorporated by reference herein.
  • While the sophisticated electronics and robust mechanics of the more expensive refillable infusion devices provide a more reliable and accurate infusion device, the cost of manufacturing may make the refillable infusion device too expensive for some users or medications. On the other hand, the low cost, one-time-use, constant flow rate infusion devices may not have sufficient flow rate accuracy or the adjustments needed to control the dosage for some users.
  • SUMMARY OF THE DISCLOSURE
  • According to an embodiment of the invention, a reusable external infusion device with a predetermined usage life for infusing a fluid into a body includes a replaceable reservoir, a power supply, a drive system, an electronics system, and a housing. The housing contains the reservoir, power supply, drive system, and electronics system. The replaceable reservoir contains the fluid before infusing and has a usage life substantially shorter than the predetermined usage life of the infusion device. The power supply provides power to the drive system and the electronics system to force fluid from the reservoir. The electronics system regulates the power from the power supply to control the drive system.
  • In particular embodiments of the present invention, the infusion device includes a control system operatively coupled to the electronics system that adjusts one or more control parameters.
  • In more particular embodiments, the control system is a supplemental device. In additional embodiments, the supplemental device establishes two way communication with the electronics system. In particular embodiments, the supplemental device has a display.
  • In preferred embodiments, after the infusion device's predetermined usage life has expired, the infusion device may be refurbished at least once to function for another predetermined usage life. In particular embodiments, when the predetermined usage life for the infusion device expires, the infusion device ceases to infuse fluid. In further particular embodiments, the predetermined usage life for the infusion device is programmed into a software program as a number of times that the replaceable reservoir is replaced in the infusion device.
  • In preferred embodiments, the drive mechanism of the infusion device contains a DC motor in the drive system. In alternative embodiments, the drive mechanism of the infusion device contains a stepper motor, solenoid motor, a shape memory alloy driven motor, or the like.
  • According to another embodiment of the present invention, a reusable external infusion device is for infusing a fluid into an individual. In preferred embodiments, the infusion device includes a housing and a replaceable fluid containing reservoir that is inserted into the housing.
  • In preferred embodiments, the housing contains only one electronics module to control the infusion device. In particular embodiments, the electronics module contained within the housing is produced using chip-on-board construction. In other particular embodiments, the electronics module contained within the housing is produced using ball grid array construction. In further embodiments, the electronics module a flex circuit to control the infusion device. In preferred embodiments, the housing contains a detection device that detects the presence or absence of the replaceable reservoir. In further preferred embodiments, the reusable external infusion device further includes a drive mechanism coupled to an electronics system and the housing includes a button coupled to the electronics system that an individual may push to cause the drive mechanism to deliver a bolus of fluid into the individual.
  • In additional preferred embodiments, the housing and internal contents are assembled together without screws. In more preferred embodiments, the housing includes at least one feature that is fused using ultrasonic vibrations. In other preferred embodiments, the housing includes a drive mechanism that contains at least one non-metallic gear.
  • In preferred embodiments, the housing includes a slidable key that provides access to remove and/or replace the replaceable reservoir inside the housing. In particular embodiments, the housing accepts a key that includes a communication device for communicating with a supplemental device. In alternative embodiments, the housing accepts a tab that includes a communication device for communicating with a supplemental device. In further alternative embodiments, the housing accepts a tab/key that includes a communication device for communicating with a supplemental device.
  • In further preferred embodiments, the housing includes an opening to insert a removable tab that includes a programmable chip that contains at least one control parameter to control the infusion device. In further embodiments, the housing includes an opening to insert a tab that includes at least one electrical terminal that establishes electrical contact between at least one set of electrical terminals inside the housing. In particular embodiments, the housing is adapted to receive at least one of at least two different tabs that are insertable into the housing, and the at least two different tabs each have different electrical terminal configurations that establish electrical contact between different electrical terminals inside the housing, and connects different electrical terminals to cause the external infusion device to dispense fluid at different rates. In still further embodiments, the housing is adapted to receive at least one tab with an optically readable pattern, and the housing includes an optical reader to read the optically readable pattern on the at least one tab to control at least one control parameter of the reusable external infusion device. In alternative embodiments, the housing is adapted to receive at least one tab that includes magnetically stored information, and the housing includes a magnetic reader to read the magnetically stored information from the at least one tab to control at least one control parameter of the reusable external infusion device.
  • In preferred embodiments, the reusable external infusion device includes at least one lithium magnesium oxide (LiMnO2) battery. In particular embodiments, the reusable external infusion device includes a battery that lasts at least 10 weeks, measured while the reusable external infusion device dispenses up to 40 milliliters of fluid per day and while the alarms draw substantially no power from at least one battery.
  • In additional particular embodiments, an alarm is activated when the reusable external infusion device needs to be refurbished. In preferred embodiments, the reusable external infusion device has a predetermined usage life and when the predetermined usage life has expired, the reusable external infusion device may be refurbished at least once to function for another predetermined usage life. In particular embodiments, the reusable external infusion device has a predetermined usage life and when the predetermined usage life expires, the reusable external infusion device ceases to infuse fluid.
  • In further particular embodiments, the reusable external infusion device has a predetermined usage life and the predetermined usage life for the reusable external infusion device is programmed into a software program as a number of times that the replaceable reservoir is replaced in the housing, as a number of days that the reusable external infusion device is in use, as the number of times the battery is replaced in the reusable external infusion device, and/or as the number of times that a key is removed from the reusable external infusion device. In other embodiments, the reusable external infusion device has a predetermined usage life and the predetermined usage life for the reusable external infusion device is expired when the amount of electrical power consumed to empty a reservoir exceeds a predetermined amount programmed into a software program.
  • According to an embodiment of the invention, an external infusion device for infusing a fluid into a body includes a housing, a reservoir, a drive system, at least one power supply, one or more electrical elements, and a tab. The housing contains the reservoir and the drive system. The reservoir contains the fluid, and the drive system forces the fluid from the reservoir. The drive system is powered by the at least one power supply. The one or more electrical elements are coupled to the power supply and the drive system to regulate the rate that the drive system forces fluid from the reservoir. The tab mates with the housing, and contains at least one of the one or more electrical elements. In preferred embodiments, the tab is removable, and in particular embodiments is replaceable with a different tab. In some embodiments, the different tab changes the rate that the drive system forces fluid from the reservoir. In particular embodiments, the tab may be removed from one external infusion device and mated with a different external infusion device to affect the operation of the different external infusion device. In other particular embodiments, the tab may only be used in a predetermined number of external infusion devices. In further embodiments, the tab includes at least one of the at least one power supply.
  • In preferred embodiments, the tab is insertable into an opening in the housing, and may include a seal to improve resistance to water or contaminants entering the housing. Alternatively, the tab is attachable to the exterior of the housing. In alternative embodiments, the housing includes a seal that is in contact with the tab to improve resistance to water or contaminants entering the housing.
  • In alternative embodiments, the tab is disposable, and in some embodiments, the tab, once it is installed, is not removable from the housing. In other embodiments, the reservoir of the external infusion device can only be filled once.
  • In preferred embodiments, the tab affects whether a medicament filling apparatus can mate with the infusion device. In alternative embodiments, the tab affects whether or not a fluid path between a medicament filling apparatus and the reservoir is open.
  • In particular embodiments, the tab includes all of the one or more electrical elements. In other embodiments, the tab includes at least a portion of the drive system. In still other embodiments, the tab includes the drive system. In yet another embodiment, the tab includes one or more components that are sensitive to sterilization treatments. And in still another embodiment, the tab includes one or more components that are reusable.
  • In particular embodiments, the tab includes one or more indicators. In preferred embodiments, the one or more indicators indicate that the drive system is powered. In other embodiments, the one or more indicators indicate that fluid delivery is in process. And in still other embodiments, the one or more indicators indicate a power supply status.
  • According to an embodiment of the invention, a tab for an external infusion device having a housing containing a reservoir for fluid to be infused into a body and a drive system to force the fluid from the reservoir powered by at least one power supply and controlled by one or more electrical elements includes a support structure and at least one of the one or more electrical elements. The support structure mates with the housing of the external infusion device, and the at least one of the one or more electrical elements is attached to the support structure. In preferred embodiments, the tab affects the rate that the fluid is infused into the body. Furthermore, the tab is insertable into an opening in the housing, and includes a seal to improve resistance to water or contaminants entering the housing. In alternative embodiments, the tab is attachable to the exterior of the housing. In other alternative embodiments, once the tab is installed, it contacts a seal on the housing that improves resistance to water or contaminants entering the housing.
  • In preferred embodiments, the tab is removable, and in some embodiments, the tab may be removed form one external infusion device and mated with a different external infusion device to affect at least one control parameter of the different external infusion device. In particular embodiments, the tab may only be used in a predetermined number of external infusion devices.
  • In alternative embodiments, the tab is disposable and in some embodiments, after it is installed, the tab is not removable from the housing. In further alternative embodiments, the tab can only be used once. In other alternative embodiments, the tab includes at least one of the at least one power supply. In further embodiments, the tab includes at least a portion of the drive system.
  • In some embodiments, the tab affects whether a medicament filling apparatus can mate with the infusion device. In other embodiments, the tab affects whether or not a fluid path between a medicament filling apparatus and the reservoir is open.
  • Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, various features of embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the several figures.
  • FIG. 1 is a block diagram, illustrating an infusion device and a supplemental device according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an infusion device connected to a tube, an infusion set and an individual's body according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of an electronics module in accordance with an embodiment of the present invention.
  • FIG. 4 is a perspective view of a flex circuit in accordance with an embodiment of the present invention.
  • FIG. 5 is a partial perspective view of an infusion device drive system in accordance with an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing “Tinnerman” style retaining rings holding gear hubs in accordance with an embodiment of the present invention.
  • FIG. 7 is a partial perspective view of internal components of an infusion device with multiple batteries in accordance with another embodiment of the present invention.
  • FIG. 8 is a perspective view of an infusion device with a key slid out of the housing in accordance with an embodiment of the present invention.
  • FIG. 9 is a partial perspective view of an infusion device with a key that has electrical traces in accordance with another embodiment of the present invention.
  • FIG. 10 is a perspective view of the infusion device of FIG. 8 with the housing removed to show the internal components and the key.
  • FIG. 11 is a perspective diagram of an infusion device connected to a computer in accordance with an embodiment of the present invention.
  • FIG. 12 is a perspective diagram of an infusion device connected to a personal digital assistant in accordance with an embodiment of the present invention.
  • FIG. 13 is a perspective diagram of an infusion device communicating with a dedicated programming device in accordance with an embodiment of the present invention.
  • FIG. 14 is a partial perspective view of an infusion device with a tab that has electrical traces in accordance with a further embodiment of the present invention.
  • FIG. 15 is a perspective view of two tabs with different electrical traces in accordance with an embodiment of the present invention.
  • FIG. 16 is a perspective view of two keys with different electrical traces in accordance with an embodiment of the present invention.
  • FIG. 17 is a partial perspective view of an infusion device with a tab that has a programmable chip in accordance with an embodiment of the present invention.
  • FIG. 18 is a partial perspective view of an infusion device with a key that is that has a programmable chip in accordance with an embodiment of the present invention.
  • FIG. 19(a) is a perspective view of a communication key with a slot to accept a connector in accordance with an embodiment of the present invention.
  • FIG. 19(b) is a perspective view of a communication key with a connector and wire attached in accordance with an embodiment of the present invention.
  • FIG. 20 is a perspective view of a communication key for RF communication in accordance with an embodiment of the present invention.
  • FIG. 21 is a perspective view of a communication key for IR communication in accordance with an embodiment of the present invention.
  • FIG. 22 is a plan view of the internal components of an infusion pump in accordance with an embodiment of the present invention.
  • FIG. 23(a) is a partial cutout perspective view of an infusion device with a tab in accordance with an embodiment of the present invention.
  • FIG. 23(b) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab in accordance with an embodiment of the present invention.
  • FIG. 24(a) is a partial cutout perspective view of an infusion device with a tab containing at least one battery in accordance with an embodiment of the present invention.
  • FIG. 24(b) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab containing at least one battery in accordance with an embodiment of the present invention.
  • FIG. 25(a) is a partial cutout perspective view of an infusion device with a tab containing at least one battery, at least one electrical component, and a drive system in accordance with an embodiment of the present invention.
  • FIG. 25(b) is a top plan view showing a rough layout of internal components of an infusion device, which has a tab containing at least one battery, at least one electrical component, and a drive system in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As shown in the drawings for purposes of illustration, the invention is embodied in a reusable external infusion device for infusing a fluid into an individual's body and methods of manufacturing the same. The infusion device controls the rate that fluid flows from a reservoir inside a housing, through an external tube, and into the individual's body. In preferred embodiments, the infused fluid is insulin. In alternative embodiments, many other fluids may be administered through infusion such as, but not limited to, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, vitamins, hormones, or the like.
  • In preferred embodiments, as shown in FIG. 1, an infusion device 10 includes a reservoir 12, a drive system 14, an electronics system 16, a control system 18, and a power supply 20, all contained within a housing 22. The fluid is pushed from the reservoir 12 by the drive system 14 when commanded by the electronics system 16. The power supply 20 provides power to both the drive system 14 and the electronics system 16. A user or another qualified person, such as a doctor, parent, or spouse interfaces with the electronics system 16 through the control system 18. In preferred embodiments, fluid flows from the infusion device 10, through the external tube 24, into an infusion set 26, and then into the individual's body 28, as shown in FIG. 2. Infusion sets 26 that may be used in conjunction with the infusion device 10 are described in, but not limited to, U.S. Pat. Nos. 4,723,947; 4,755,173; 5,176,662; and 5,584,813; and disclosed in U.S. patent application Ser. No. 09/034,626 (attorney docket PD-0269), filed Mar. 4, 1998 and entitled “Medication Infusion Set”, which are hereby incorporated by reference.
  • The control system 18 provides a method for the user or another qualified person to adjust one or more control parameters that the electronics system 16 uses to calculate and issue commands to the drive system 14. Control parameters include, for example, one or more basal rates, one or more bolus rates, maximum and minimum delivery rates, one or more alarm criteria, or the like.
  • In preferred embodiments, the electronics system 16 is a compilation of one or more electrical elements designed to carryout commands as specified by the control parameters. Electrical elements may include, but are not limited to, resistors, capacitors, amplifiers, diodes, semiconductor circuits, traces, wires, antennae, buttons, sound emanating devices, light emitting devices, receivers, transmitters, switches, or the like. In preferred embodiments, the electrical elements are attached to a single electronics board to form an electronics module. In particular embodiments, an electronics module 30 is a “popsickle stick” design, as shown in FIGS. 3, 5, 10 and 22. The term “popsickle stick” refers to the electronics module's long thin layout that optimizes the usage of space within the housing 22. With the “popsickle stick” design, the electronics module 30 stretches the length of the housing 22 so that only short leads are needed to extend from the electronics module 30 to any component that uses electricity or signals from the electronics. The use of a “popsickle stick” design also facilitates ease of assembly and integrating for the infusion device 10.
  • In alternative embodiments, the electrical elements of the electronics module are mounted on a flex circuit. Preferably, the flex circuit has one or more flex circuit leads 34 that run to various locations within the housing 22 to minimize or eliminate the need for wires. An example of one embodiment of a flex circuit 32 is shown in FIG. 4. Flex circuit leads 34 may run to a motor 36, an antenna 38, one or more LEDs 40, one or more buttons 42, a battery 44, electrical elements 46, or the like. In additional embodiments, the flex circuit 32 may connect to other devices or components such as a transmitter, a receiver, a display, an alarm, a tab, a communication port, a power port, or the like. In additional embodiments, one or more semiconductor circuits are wire bonded to the flex circuit 32.
  • In preferred embodiments, the electronics module 30 includes chip-on-board construction. In alternative embodiments, the electronics module 30 includes ball grid array (BGA) packages or leaded chip construction.
  • In preferred embodiments, the electronics system 16 includes one or more LEDs 40 to indicate specific conditions about the infusion device 10, such as whether the fluid is being dispensed, the battery power level, the fluid level in the reservoir 12, whether the electronics system 16 is functioning, warnings regarding how soon the infusion device 10 will require servicing, or the like. In preferred embodiments, the electronics system 16 includes one or more alarms. Preferably, an alarm is a piezo electric sound device. In alternative embodiments, the one or more alarms includes a vibrator, a light, a sound emanating device, or the like.
  • In preferred embodiments, as shown in FIGS. 5 and 22, the drive system 14 includes a motor/gear box 48 with a drive shaft 50 that extends out of the motor/gear box 48, one or more gears 52 external to the motor/gear box 48 that transfers motion from the drive shaft 50 to a lead screw 54, and a piston 56 that is coupled to the lead screw 54, such that as the lead screw 54 rotates, the piston 56 moves a plunger 58 inside the reservoir 12. The angular rotation of a motor shaft 136 is measured with an optical encoder 138 attached to an end of a motor shaft 136 protruding from the motor/gear box 48. In other embodiments, the drive system 14 may also be the same as or similar to the drive mechanism described in, U.S. patent application Ser. No. 09/429,352 (attorney docket PD-0286), filed Oct. 28, 1999 and entitled “Compact Pump Drive System”, which is hereby incorporated by reference. In particular embodiments, the motor/gear box 48 includes a stepper motor. In alternative embodiments, the motor/gear box 48 uses a direct current (DC) motor, a solenoid motor or a shape memory alloy (SMA) driven motor. The SMA motor may be of the type described in U.S. patent application Ser. No. 09/249,666, filed on Feb. 12, 1999, entitled “Incremental Motion Pump Mechanisms Powered By Shape Memory Alloy Wire Or The Like”, which is hereby incorporated by reference. The SMA motor may include a ratchet/pawl mechanism actuated by a SMA component.
  • In preferred embodiments, the one or more gears 52 external to the motor/gear box 48 have a one-to-one gear ratio. However, in alternative embodiments, the gears may have different gear rations such as 1.5:1, 2:1, 3:1, 5:1, or the like depending on the motor control resolution and the minimum dosage requirement for the fluid. In particular embodiments, the gears 52 are made of molded plastic. In alternative embodiments, the gears 52 are made of metal, epoxy, laminates, or other suitably strong materials. In alternative embodiments, mechanical power is transferred from the motor/gear box 48 to the lead screw 54 using one or more of a belt, timing belt, chain, gears, rack or the like.
  • As shown on FIG. 6, in preferred embodiments, each of the gears 52 have a gear hub 60 that fits through one of the openings 62 in a wall 64 contained within the housing 22. A “Tinnerman” style retaining ring 66 slips over the gear hub 60 of each gear 52 to secure the gear 52 to the wall 64. In alternative embodiments, each gear hub 60 is held in place with a snap ring, a rivet, a threaded nut, a press-on nut, or the like. In preferred embodiments, each gear 52 has a “D” shaped hole 68 passing entirely through the gear 52 that is located generally at the center of rotation. The drive shaft 50, with a mating “D” shaped end 51, fits into the “D” shaped hole 68 in a gear 52. In addition, a “D” shaped end 55 of the lead screw 54 fits into a “D” shaped hole 68 in a gear 52. The “D” shaped holes 68 function to transmit torque from the drive shaft 50 to the gears 52 and on to the lead screw 54 without the need for a fixed attachment of the drive shaft 50 and the lead screw 54 to the gear hubs 60. In alternative embodiments, other shaped holes are used such as hexagonal, square, rectangular, polygonal, triangular, oval, star, clover, round, notched, or the like along with a drive shaft and a lead screw with mating ends that fit into the holes.
  • As shown in FIG. 5, in preferred embodiments, the piston 56 has a threaded bore 70 that is generally centered with the piston's longitudinal axis, and the threads 72 on the lead screw 54 mate with the threaded bore 70 on the piston 56. Preferably only the first half of an inch of the piston bore 70 is threaded and the remainder of the bore through the rest of the piston is smooth with a large enough diameter to allow the lead screw to pass through unobstructed. Alternatively, the length of the piston bore that is threaded may be increased or decreased depending on the number of threads needed to apply force to the plunger and the amount of friction generated between the piston bore 70 and the lead screw 54. Preferably, the piston 56 includes a flange 74 with a notch 76 that fits over a rail 78. The rail 78 runs generally parallel to the lead screw 54. As the lead screw 54 rotates, an edge of the notch 76 in the piston flange 74 rests against the rail 78 and prevents the piston 56 from rotating. Therefore, as the lead screw 54 rotates, the piston 56 moves along the length of the lead screw 54 substantially free of rotational movement. In alternative embodiments, the threaded bore 70 in the piston 56 is not generally centered with the piston's centerline. For example, the lead screw 54 may pass through the piston's flange 74.
  • In preferred embodiments, the power supply is a battery 44. In particular embodiments, the power supply is a lithium magnesium oxide (Li Mn O2) battery 44, as shown in FIGS. 4, 5 and 10. Some of the factors that influence the size of the battery 44 are, the amount of power needed to drive the motor/gear box 48, the amount of friction through out the drive system 14, the size of the reservoir 12 (and therefore the amount of piston 56 displacement needed to empty the reservoir 12), the dosage resolution required, the dosage volume, whether or not alarms are set off, how frequently lights or displays are used, and the number of days desired between battery 44 replacement. In preferred embodiments, the battery 44 lasts at least 10 weeks, while the reusable infusion device 10 dispenses fluid at a rate of up to 40 milliliters per day without alarms. At greater fluid dispensing rates and/or when the alarms are active, the battery duration may be diminished. In preferred embodiments, with a 3 ml reservoir 12, the battery capacity is generally 2.1 amp-hours at 3 volts. In other embodiments, with a 1.5 ml reservoir 12′, such as shown in FIG. 7, the combined capacity of a pair of batteries 80, shown in FIG. 7, is generally 1.1 amp-hours at 3 volts. In alternative embodiments, the battery 44 may last as little as 3 days (a common time to empty a reservoir 12) with a battery capacity as low as 0.035 amp-hours. Or, the battery 44 may last as long as a year (a likely time to have the infusion device 10 serviced) with a better battery capacity as large as 12.6 amp-hours. And in other alternative embodiments, the battery voltage may be as low as 0.5 volts and as large as 9 volts depending on the power needed for the drive system 14 and electronics system 16. In further alternative embodiments, two or more batteries (FIG. 7) may be used to supply the voltage and capacity needed to operate the infusion device 10.
  • In preferred embodiments, the battery 44 and reservoir 12 are removable through an opening 82 in the housing 22, and the opening 82 may be closed by sliding a key 84 into a slot 83 formed in the housing 22 so that the key 84 covers the battery 44 and slides over the shoulder 86 of the reservoir 12, as shown in FIGS. 8, and 10. In this embodiment, the key 84 may be slid part way out of the slot 83 of the housing 22 to a detent position that provides a sufficient opening to remove the reservoir 12 from the housing 22 while retaining the battery 44 in place within the housing 22. The battery 44 and the reservoir 12 may both be removed from the housing 22 by entirely removing the key 84 from the slot 83 to fully expose the opening 82. In alternative embodiments, two different sliding keys (not shown) are used, one to slide over the battery 44 and another to slide over the shoulder 86 of the reservoir 12.
  • In preferred embodiments, the key 84 has a conductive trace 85 that connects a battery terminal 88 of the battery 44 to a power lead 87 on the electronics module 30 (see FIG. 8). Alternatively, the entire back of the key 84 could be conductive. Therefore, if the key 84 is removed, battery power is removed from the electronics system 16. In preferred embodiments, a capacitor, or other charge storage device, maintains electrical power for at least 15 seconds and up to 3 minutes after the battery 44 is disconnected from the electronics system 16. This allows an individual time to replace the battery 44 without losing electrically stored information in the electronics system 16. In alternative embodiments, a commonly known DC converter is used to convert AC wall current into the appropriate DC current and a DC jack is plugged into the infusion device 10 to keep the infusion device 10 powered whenever battery power is low or the battery 44 is removed. In additional embodiments, the battery 44 is rechargeable by supplying a DC current to the infusion device 10 such as by plugging in a DC converter. Alternatively, the infusion device 10 may be placed on a cradle to recharge the battery 44 using induction, solar cells, or use other methods of supplying current to a battery. In additional alternatives the infusion device 10 may be powered directly using solar cells, a DC power supply such as an exterior battery or a DC converter plugged into an AC outlet, and the like.
  • In preferred embodiments, a switch 89 (shown in FIGS. 4, 5 and 10) is located in the housing 22 so that when the reservoir 12 is inserted far enough into the housing 22, an end of the reservoir 12 contacts the switch 89 causing the switch 89 to toggle. The switch 89 is also spring loaded to return to its original position when the reservoir 12 is removed. Thus, the switch 89 detects when the reservoir 12 is removed from the housing 22. In alternative embodiments, the infusion device 10 may include an optical reader that optically detects when a reservoir is present. In preferred embodiments, when the reservoir 12 is removed from the housing 22, the motor/gear box 48 is automatically triggered to run in reverse to fully retract the piston 56 in preparation for a new reservoir 12 to be installed. In alternative embodiments, the motor/gear box 48 retracts the piston 56 when the key 84 is removed far enough to permit removal of the reservoir 12.
  • In preferred embodiments, the infusion device 10 is disabled by the electronics system 16 when a predetermined usage life is expired. For instance, the electronics system 16 keeps track of the number of times the reservoir 12 is replaced and compares that number to a specified number that is programmed into a software program in the electronics system 16. Thus, the electronics system 16 will shut down the infusion device 10, stopping the flow of fluid, after the reservoir 12 is replaced a specified number of times. In preferred embodiments, the predetermined life of the infusion device 10 is expired when the reservoir 12 has been replaced sixty times. In alternative embodiments, the number of times that the reservoir 12 may be replaced before the predetermined life of the infusion device 10 is expired may be as many as one hundred and fifty times or as few as twenty times due to the durability of the components that might wear, how carefully individuals handle the infusion device 10, the types of climates the infusion device 10 is subjected to, or the like. In additional alternative embodiments, other measurements are used to detect when the infusion device's predetermined life is expired such as, the number of days of use, the number of times the battery 44 is replaced, an increase in the amount of battery power consumed to empty a reservoir 12, the number of times a key 84 is removed from the infusion device 10, or the like.
  • In preferred embodiments, the infusion device 10 may be refurbished and returned to the user to be used again after the electronics system 16 has disabled the infusion device 10 due to exceeding its predetermined life. In particular embodiments, the infusion device 10 can be refurbished at least once before its total life is expired. In particular embodiments, the predetermined life may increase or decrease after refurbishing due to a change in the quality of a replacement part, a new lubrication method, new information about the durability of the infusion device 10, how well the user cares for the particular infusion device, or the like. In alternative embodiments, the infusion device 10 is not refurbishable. In other alternative embodiments, the infusion device 10 may be refurbished at least 2 times and up to an indefinite number of times before its total life is expired and it can no longer be used. In particular embodiments, measurements are taken to determine if the total life of the infusion device 10 has expired such as, a significant physical shock detected by an accelerometer (perhaps a shock greater than 2.5 gs, depending on the amount of shock the infusion device 10 can handle), an increase in the amount of battery power consumed to empty a reservoir 12, a maximum temperature such as 120 degrees F. has been exceeded, the reservoir has been replaced too many times (such as 1,000 times), or the like.
  • In preferred embodiments, the electronics system 16 stores the control parameters, and default control parameters are programmed into the electronics system 16 during manufacturing. Preferably, the control parameters may be changed by an individual using the control system 18. In preferred embodiments, the control system 18 of the infusion device 10 has buttons 42 accessible through the housing 22. In particular embodiments, a button 42 is used to command a bolus. In other particular embodiments, additional buttons 42 may provide additional control features such as to undo a previous command, confirm a command, activate a function, initialize a software program, initialize a new reservoir 12, reset one or more control parameters to a default value, modify a control parameter, withdraw the piston 56, or the like. In preferred embodiments, LEDs indicate that control parameters have been modified by turning on or off, flashing, changing color, sequencing, or the like. In alternative embodiments, the electronics system includes a LCD, LED display, or other displays to show the status of control parameters and/or indicate to the user, which control parameters, are being modified. In other alternative embodiments, other feedback methods such as sounds, vibrations, or the like are used to indicate the status of control parameters.
  • In other embodiments, a supplemental device 90 is used as, or is used in addition to, the control system 18 to adjust, change, modify, program, input, or the like, one or all of the control parameters. The supplemental device 90 interfaces with the electronics system 16 as shown in FIG. 1. Preferably, the supplemental device 90 includes a display 98, an input system 100 and a communication system 102 that interfaces with the infusion device 10. The communication system 102 provides an initiating signal to the infusion device 10 to cause the control system 18 to go into a programming mode. Alternatively, no initiating signal is needed. Preferably the communication system 102 provides 2-way communication between the supplemental device 90 and the infusion device 10, as shown in FIG. 1. Alternatively the communication system 102 may be one way.
  • In particular embodiments, the supplemental device 90 is a computer system 200 that communicates with an infusion device 210. The computer system 200 has a monitor 202 as the display, a keyboard 204 as the input system, and the computer 206 and wires 208 as the communication system, as shown in FIG. 11. In preferred embodiments, the wires 208 are detachable at the infusion device 210. In alternative embodiments, the wires 503 carry information between the supplemental device 90 to a communication key 501, shown in FIGS. 19(a) and 19(b). The wires 503 connect to the communication key 501 through a connector 505 that mates with slot 507 in the key 501. The communication key 501 carries the information signals through electrical traces (not shown) to electrical terminals 114 on the infusion device, such as shown in FIG. 9. In particular embodiments, the wires 503 are detachable from the communication key 501 as shown in FIGS. 19(a) and 19(b). In other embodiments, the wires 503 do not detach from the communication key. In further embodiments, the supplemental device 90 is a personal digital assistant (PDA) 300 or a hand held computer such as a Palm Pilot that communicates with an infusion device 310. The PDA 300 has a touch screen LCD 302 that performs the duties of both the display and the input system, while the cradle 304 and wire 306 serve as the communication system, as shown in FIG. 12. In still further embodiments, the PDA may communicate using a wireless connection, such as by IR, RF, or the like. In still other embodiments, the supplemental device 90 is a dedicated programming device 400, that communicates with an infusion device 410 as shown in FIG. 13. The dedicated programming device 400 has a LCD 402 for its display, buttons 404 as the input system and a radio transmitter 406 and receiver 408 as the communication system.
  • In alternative embodiments, the communication system 102 in the supplemental device 90 uses JR signals, optical signals, direct electrical contact, laser signals, combinations of carrier frequencies, or the like. In further alternative embodiments, the display 98 is monitor, a touch screen, LEDs, lights, or the like. In more alternative embodiments, the input system 100 includes a keyboard, a button, a touch screen, a touch pad, a dial, a switch, a microphone, a joystick, a computer mouse, a roller ball, or the like.
  • In particular alternative embodiments, a communication key is used that includes portions of the communication system. For example, a communication key 601 has a radio frequency transmitter 603 and receiver 605, shown in FIG. 20. Alternatively, a communication key 701 has a infra red transmitter 703 and receiver 705, shown in FIG. 21. Other communication devices may be included in the communication key that use other carriers such as, ultrasonic, visual light, video frequencies, ultra violet, laser, microwave, or the like. In alternative embodiments, installation of the communication key into the infusion device causes the control system of the infusion device to go into a programming mode. In particular alternative embodiments, the infusion device enters a programming mode when the communication key contacts a switch (not shown), contacts electrical terminals 114, is detected by a sensor such as an optical or magnetic proximity sensor, pushes a button, or the like.
  • In another embodiment, control parameters such as the basal and/or bolus levels, maximum or minimum basal rate or the like, are set in an infusion device 103 when a tab 104, with at least one conductive trace 108, is inserted into a slot 106 on the housing 107, such as shown in FIG. 14. The conductive trace 108 establishes connections between some of the electrical terminals (not shown) in the infusion device 103. Different patterns of conductive traces 108 and 108′ on different tabs 104 and 104′ (shown as examples in FIG. 15) connect different electrical terminals (not shown) in the infusion device 103. As different electric terminals (not shown) are connected to each other, different control parameters, such as basal rates, are set and then used by the electronics system 16. The number of electrical terminals (not shown) and the number of conductive traces 108 may vary depending on the number of control parameters that are controlled using the tabs 104. The number of different patterns of unique conductive traces 108, and therefore different tabs 104, is dependent on the number of control parameters that are controlled with the tabs 104 and the number of variations needed for each command parameter. As an example of an application using tabs 104 to control the infusion device 103, a doctor may prescribe a particular basal rate and therefore insert a particular tab 104 into the infusion device 103. Later, if a patient's needs have changed, the doctor may remove the originally prescribed tab 104 and insert a different tab 104 that causes the infusion device 103 to dispense the fluid at a different rate. In alternative embodiments, the tabs may include an optical pattern that is read by an optical reader in the housing. For instance, the optical pattern may be similar to that shown in FIG. 15. Alternatively, other patterns or a bar codes may be used. In further alternative embodiments, the tabs may include information stored on a magnetic media. And the information may be read by a magnetic reader contained within the housing.
  • In alternative embodiments, the tab is in the form of a tab/key 110 that slides into slot 83 on an infusion device 111 to hold the battery 44 and/or reservoir 12 in place as shown in FIG. 9. Conductive traces 112 on the tab/key 110 establish connections between some of electrical terminals 114. Different patterns of conductive traces 112 and 112′ on different tab/ keys 110 and 110′ (shown as examples in FIG. 16) connect different electrical terminals 114. Again, as different electrical terminals 114 are connected to each other, different control parameters such as basal rates, or the like, are set and used by the electronics system 16.
  • In other embodiments, a tab 116 has a programmable chip 118, such as shown in FIG. 17, which is programmed with different control parameters before insertion into a slot 122 in a housing 124 of an infusion device 126. One or more conductive traces 120 on the tab 116 connect the chip 118 to the electronics system 16 through electrical terminals (not shown) in the housing 124. In particular embodiments, different tabs 116 have chips 118 that are programmed with different basal rates. Therefore, to change the basal rate for an infusion device 10, an individual may remove the existing tab 116 from the housing 124 and install a different tab 116 that includes a chip 118 that is programmed to command a different basal rate. In particular embodiments, the tabs 116 are removed from the infusion device 126, and the chips 118 are re-programmed with different control parameters, and then the tab 116 is re-installed into the infusion device 126. In alternative embodiments, the chips 118 are not re-programmable, and a new tab 116 with a new chip 118 is used when control parameters must be changed.
  • In alternative embodiments, the tab is in the form of a tab/key 128 and has a programmable chip 130 such as shown in FIG. 18, which is programmed with different control parameters before insertion into slot 83 of the housing 22 of infusion device 132. One or more conductive traces 134 on the tab/key 128 connect the chip 130 to the electronics system 16 through electrical terminals 114.
  • In additional alternative embodiments, a tab/key, normally used to establish control parameters as described above, may be a communication key. The communication key enables the infusion device to communicate with a supplemental device 90 to change control parameters or transfer data. In particular embodiments, a tab/key that is not a communication key is reinserted into the infusion device for normal operation after the communication key has completed the communication with the supplemental device 90. In other particular embodiments, the communication key is left in the infusion device or a different tab/key is used after the communication device is removed.
  • In other particular embodiments, the tab/key includes communication devices. For example, a tab/key with a computer chip (such as tab/key 128 described above) may include a slot to accept a connector such as communication key 501 shown in FIGS. 19(a) and 19(b). Other communication devices such as IR, RF, ultrasonic, or the like may be included on a tab/key. In particular embodiments, the supplemental device 90 can reprogram computer chips included on the tab/key. In alternative embodiments, a communication device is included on a tab that does not serve as the key that covers the battery 44 and the reservoir 12.
  • In preferred embodiments, the tabs are color coded to identify the basal rate or other control parameters they are programmed to command. In alternative embodiments, other identification methods may be used to indicate the basal rate, and/or other control parameters, associated with a particular tab such as, a code number, a serial number, a lot number, a batch number, a name, or the like. Methods of applying the identification include, stamping, silk-screening, printing, typing, labels, embossing, imprinting, molding, or the like. In additional alternative embodiments, other means are used to identify tabs that have different control parameters from each other such as, surface textures, flexibility, materials, a raised patterns, printed patterns, or the like.
  • Tabs may be used to modify characteristics of other infusion devices as well, such as those described in U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,505,709; 5,785,688; 5,814,020 and 5,097,122; and disclosed in U.S. patent application Ser. No. 09/334,858 (attorney docket PD-0294), filed Jun. 17, 1999 and entitled “Infusion Pump With Remote Programming and Carbohydrate Calculator Capabilities”, and Ser. No. 09/429,352 (attorney docket PD-0286), filed Oct. 28, 1999 and entitled “Compact Pump Drive System”, which are hereby incorporated by reference. In particular embodiments, tabs are used in disposable infusion devices, such as shown in FIGS. 23(a)-24(b) and U.S. Pat. Nos. 5,814,020 and 5,785,688. The infusion device 800, shown in FIGS. 23(a) and (b), has a housing 818, a reservoir 812, a gas generator 814, one or more batteries 816, and a tab 802 that contains one or more electronic elements (not shown). When the tab 802 is installed into an opening 804 on the infusion device 800, one or more conductive traces 806 come in contact with one or more electrical terminals 808 to provide an electrical contact between the infusion device 800 and the tab 802. A seal 810 closes the opening 804 in the infusion device 800 to prevent contaminants from entering and/or to improve water resistance of the infusion device 800.
  • In other embodiments, one or more batteries 916 are stored in a tab 902 that mates with an infusion device 900, such as shown in FIGS. 24(a) and (b). The infusion device 900 has a housing 918, a reservoir 912, a gas generator 914, and an opening 904 to receive the tab 902. The tab 902 contains the one or more batteries 906 and one or more electronic elements (not shown). When the tab 902 is inserted into the opening 904 one or more conductive traces 906 come into electrical contact with one or more electrical terminals 908 on the infusion device 900. A seal 910 closes the opening 904 in the infusion device 900 to prevent contaminates from entering and/or to improve water resistance of the infusion device 900.
  • In still other embodiments, one or more components that are included with the tab are reusable and/or sensitive to sterilization treatments such as, radiation, heat, gas, fog or mist (such as hydrogen peroxide), chemical washes or soaks, and the like. The infusion device without the tab can be processed through a sterilization process before the tab is inserted. Thus, the tab, and any components included with the tab, are excluded from a sterilization process, since these components do not come in contact with fluids or materials infused into the body and do not need to be sterilized.
  • In some embodiments, the tab may be used in one infusion device, and then removed from the infusion device and installed into another infusion device. For example, a tab may be mated with an infusion device that has been sterilized, and then the infusion device is used for infusing a fluid into an individual. When the infusion device is ready to be replaced due to, for example, a low reservoir, housing damage, or for any other reason, the tab may be removed. Once the tab is removed, the infusion device may be disposed of or re-sterilized. The tab may be reused with a new infusion device or a newly sterilized infusion device, or the tab may be disposed of when no longer useable.
  • In preferred embodiments, the tab must be inserted into the infusion device for the infusion device to operate. And removal of the tab causes the infusion device to stop fluid delivery. In alternative embodiments, the infusion device continues to operate independent of whether a tab is installed or not.
  • In preferred embodiments, an LED (light emitting diode) or other indicator may be used on the infusion device or on the tab to indicate that the tab is inserted properly, the drive system is powered, fluid delivery is in process, the power supply status, and the like.
  • In preferred embodiments, the tab may include, for example, portions of, or all of: an electronics system, drive system, power supply, communication system, output device (such as an LCD, one or more LED's, speaker, sound making device, vibrator, and the like), input devices (such as a key pad, a touch screen, or the like), or the like.
  • In a particular embodiment, one or more batteries 1016, an electronics system 1018, and a drive system 1014 are included in a tab 1002 that mates with an infusion device 1000, such as shown in FIGS. 25(a) and (b). The infusion device 1000 has a housing 1018, a reservoir 1012, and an opening 1004 to receive the tab 1002. When the tab 1002 is inserted into the opening 1004, one or more conductive traces 1006 come into electrical contact with one or more electrical terminals 1008 on the infusion device 1000. A seal 1010 closes the opening 1004 in the infusion device 1000 to prevent contaminates from entering and/or to improve water resistance of the infusion device 1000. In alternative embodiments, some of the elements 1016, 1018, or 1014 may be omitted entirely.
  • In alternative embodiments, a tab may be shaped to attach to the external surface of the infusion device. In other embodiments, the tabs may be formed in different shapes and the seals may be omitted, placed in a different position on the tab, or placed on or incorporated in the infusion device.
  • In some embodiments, the tabs are coded so that tabs with different characteristics (such as electrical elements that cause a different infusion rate, or work with different types of insulin, or add or subtract features, or affect different control parameters) may be identified from one another. For example, the tabs may be different colors, have bar codes or markings, include numbers, letters and/or names, have bumps, be different shapes, have textures or patterns, or the like.
  • In other embodiments, the tabs may affect the infusion device filling process. In some embodiments, the tab must be installed into the infusion device before the infusion device reservoir is filled with medicament. For instance the tab may activate a valve to open the fluid path, or the tab may include a port for a filling apparatus to mate with the infusion device, of the shape of the tab may limit the shape of the filling apparatus that can be mated with the infusion device to fill the reservoir with medicament, or the like. In these embodiments, different concentrations or different types of medicament may be packaged in different filling apparatuses so that each type of tab will only permit a particular filling apparatus to mate with the infusion device, if the filling apparatus contains medicament that is compatible with the tab. In alternative embodiments, the tab may provide a code or signal to the infusion device indicating which filling apparatuses are compatible with the tab. Alternatively, each filling apparatus may provide a code or signal to the infusion device. If the filling apparatus is not compatible with the tab, the filling apparatus cannot connect with the infusion device and/or the fluid path to the reservoir is not opened to permit filling. Conversely, if the filling apparatus is compatible with the tab, it will connect with the infusion device and the fluid path to the reservoir is opened to permit filling.
  • In other embodiments, each tab has a limited usage life. In particular embodiments, the tab is removable from the infusion device and may be installed into a different infusion device to affect at least one control parameter of the infusion device. In some embodiments, the tab may only be re-installed into a different infusion device a predetermined number of times, which determines the usage life. Once the usage life is exceeded, the tab will not permit the infusion device to function. In other embodiments, the tab will work for a limited amount of time or until a predetermined amount of medicament is expelled from the infusion device reservoir, or until the reservoir has been emptied a predetermined number of times, or the like.
  • Tabs may also be used to calibrate or control various features of characteristic or analyte monitor systems such as those described in U.S. patent application Ser. No. 09/465,715 (attorney docket PD-0291), filed Dec. 17, 1999 and entitled “Telemetered Characteristic Monitor System And Method Of Using The Same”; and Ser. No. 09/246,661 (attorney docket PD-0321), filed Feb. 5, 1999 and entitled “An Analyte Sensor And Holter-Type Monitor System And Method Of Using The Same”; and also Ser. No. 09/334,996 (attorney docket PD-0338), filed Jun. 17, 1999 and entitled “Characteristic Monitor With A Characteristic Meter And Method Of Using The Same”, which are all hereby incorporated by reference herein.
  • In preferred embodiments, substantially all parts of the infusion device 10 are designed to slide or snap together during assembly. In particular embodiments, no screws are used on the infusion device 10. In preferred embodiments, the housing 22 is plastic and is sealed using ultrasonic fusing. In alternative embodiments, other methods are used to seal the housing 22 such as gluing, bonding, fusing, melting, snapping, pressing, or the like. In other alternative embodiments, the housing 22 is made of other materials such as metal, rubber, resin, foam, or the like. Refurbishing of the infusion pump 10 may require destruction of the housing 22.
  • While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
  • The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (24)

1-41. (canceled)
42. An external infusion system for infusing a fluid into a body, the infusion system comprising:
an external infusion device comprising:
a housing adapted for use on an exterior of the body;
a reservoir contained in the housing for containing the fluid before infusing;
a drive system for delivering the fluid from the reservoir into the body; and
an electronics system coupled to the drive system that uses a plurality of control parameters to regulate the drive system to deliver the fluid from the reservoir into the body;
wherein the infusion device has a predetermined usage life, and when the predetermined usage life for the infusion device expires, the infusion device ceases to deliver the fluid from the reservoir into the body; and
a supplemental device comprising:
an input device for inputting data to adjust at least one of the control parameters of the infusion device;
a display coupled to the input device for displaying the at least one of the control parameters of the infusion device; and
a communication system coupled to the input device and the display that interfaces with the electronics system of the infusion device to adjust the at least one of the control parameters of the infusion device.
43. The infusion system of claim 42, wherein the predetermined usage life for the infusion device is programmed into the electronics system as a number of days the infusion device is in use.
44. The infusion system of claim 42, wherein the predetermined usage life for the infusion device is programmed into the electronics system as a number of times the reservoir is replaced in the infusion device.
45. The infusion system of claim 42, wherein the infusion device further comprises a power supply coupled to the drive system and the electronics system for providing power to the drive system and the electronics system.
46. The infusion system of claim 45, wherein the power supply of the infusion device is a battery, and the predetermined usage life for the infusion device is programmed into the electronics system as a number of times the battery is replaced in the infusion device.
47. The infusion system of claim 42, wherein the drive system of the infusion device comprises a shape memory alloy driven motor.
48. The infusion system of claim 42, wherein the drive system of the infusion device comprises a DC motor.
49. The infusion system of claim 42, wherein the supplemental device communicates with the infusion device using a wireless connection.
50. The infusion system of claim 49, wherein the supplemental device communicates with the infusion device using RF frequencies.
51. The infusion device of claim 42, wherein the infusion device further comprises an alarm that is activated when the predetermined usage life for the infusion device expires.
52. The infusion system of claim 42, wherein the communication system of the supplemental device further interfaces with the electronics system of the infusion device to receive data from the infusion device.
53. The infusion system of claim 52, wherein the display of the supplemental device further displays the data received from the infusion device.
54. The infusion system of claim 52, wherein the supplemental device further comprises an alarm that is activated when the communication system receives data from the infusion device indicating that the predetermined usage life for the infusion device has expired.
55. The infusion system of claim 42, wherein the fluid to be infused into the body is insulin.
56. The infusion system of claim 55, wherein the at least one of the control parameters of the infusion device adjusted by the supplemental device is a basal rate of the insulin to be infused into the body.
57. The infusion system of claim 55, wherein the at least one of the control parameters of the infusion device adjusted by the supplemental device is a bolus of the insulin to be infused into the body.
58. An external infusion device for infusing a fluid into a body, the infusion device comprising:
a housing adapted for use on an exterior of the body;
a reservoir contained in the housing for containing the fluid before infusing;
a drive system including a shape memory alloy driven motor for delivering the fluid from the reservoir into the body; and
an electronics system coupled to the drive system that uses a plurality of control parameters to regulate the drive system to deliver the fluid from the reservoir into the body and that is adapted to interface with a supplemental device to adjust at least one of the control parameters of the infusion device;
wherein the infusion device has a predetermined usage life that is programmed into the electronics system as a number of days the infusion device is in use.
59. The infusion device of claim 58, wherein when the predetermined usage life for the infusion device expires, the infusion device ceases to deliver the fluid from the reservoir into the body.
60. The infusion device of claim 58, wherein the electronics system is adapted to interface with the supplemental device using a wireless connection.
61. The infusion device of claim 60, wherein the electronics system is adapted to interface with the supplemental device using RF frequencies.
62. The infusion device of claim 58, wherein the fluid to be infused into the body is insulin.
63. The infusion device of claim 62, wherein the at least one of the control parameters of the infusion device adjusted by the supplemental device is a basal rate of the insulin to be infused into the body.
64. The infusion device of claim 62, wherein the at least one of the control parameters of the infusion device adjusted by the supplemental device is a bolus of the insulin to be infused into the body.
US11/593,210 2000-03-23 2006-11-06 Control tabs for infusion devices and methods of using the same Abandoned US20070100283A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/593,210 US20070100283A1 (en) 2000-03-23 2006-11-06 Control tabs for infusion devices and methods of using the same
US12/689,887 US8613726B2 (en) 2000-03-23 2010-01-19 Control tabs for infusion devices and methods of using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/533,578 US6752787B1 (en) 1999-06-08 2000-03-23 Cost-sensitive application infusion device
US67224400A 2000-09-28 2000-09-28
US09/813,660 US20010041869A1 (en) 2000-03-23 2001-03-21 Control tabs for infusion devices and methods of using the same
US11/593,210 US20070100283A1 (en) 2000-03-23 2006-11-06 Control tabs for infusion devices and methods of using the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US67224400A Continuation 2000-03-23 2000-09-28
US09/813,660 Division US20010041869A1 (en) 2000-03-23 2001-03-21 Control tabs for infusion devices and methods of using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/689,887 Division US8613726B2 (en) 2000-03-23 2010-01-19 Control tabs for infusion devices and methods of using the same

Publications (1)

Publication Number Publication Date
US20070100283A1 true US20070100283A1 (en) 2007-05-03

Family

ID=27415129

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/813,660 Abandoned US20010041869A1 (en) 2000-03-23 2001-03-21 Control tabs for infusion devices and methods of using the same
US11/593,210 Abandoned US20070100283A1 (en) 2000-03-23 2006-11-06 Control tabs for infusion devices and methods of using the same
US12/689,887 Expired - Lifetime US8613726B2 (en) 2000-03-23 2010-01-19 Control tabs for infusion devices and methods of using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/813,660 Abandoned US20010041869A1 (en) 2000-03-23 2001-03-21 Control tabs for infusion devices and methods of using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/689,887 Expired - Lifetime US8613726B2 (en) 2000-03-23 2010-01-19 Control tabs for infusion devices and methods of using the same

Country Status (8)

Country Link
US (3) US20010041869A1 (en)
EP (1) EP1265661B2 (en)
JP (1) JP2003527217A (en)
AT (1) ATE376436T1 (en)
AU (1) AU2001247672A1 (en)
CA (1) CA2401570C (en)
DE (1) DE60131071T3 (en)
WO (1) WO2001070307A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100094261A1 (en) * 2008-10-10 2010-04-15 Bryant Robert J System and method for administering an infusible fluid
US20100191186A1 (en) * 2007-12-31 2010-07-29 Deka Products Limited Partnership Split ring resonator antenna adapted for use in wirelessly controlled medical device
US20100217233A1 (en) * 2009-02-20 2010-08-26 Ranft Elizabeth A Method and device to anesthetize an area
US7914499B2 (en) 2006-03-30 2011-03-29 Valeritas, Inc. Multi-cartridge fluid delivery device
US8070726B2 (en) 2003-04-23 2011-12-06 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
US20120083738A1 (en) * 2001-05-18 2012-04-05 Deka Products Limited Partnership Infusion pump assembly
US20120165747A1 (en) * 2009-04-30 2012-06-28 Sanofi-Aventis Deutschland Gmbh Pen-Type Injector With Ergonomic Button Arrangement
US8414536B2 (en) 2008-10-10 2013-04-09 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US8430849B2 (en) 2010-09-24 2013-04-30 Perqflo, Llc Infusion pumps and plunger pusher position-responsive cartridge lock for infusion pumps
US8684972B2 (en) 2008-10-10 2014-04-01 Deka Products Limited Partnership Infusion pump assembly with a backup power supply
US8708960B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Multi-language/multi-processor infusion pump assembly
US8708376B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Medium connector
US8834429B2 (en) 2008-10-10 2014-09-16 Deka Products Limited Partnership Infusion pump assembly
US8905972B2 (en) 2010-11-20 2014-12-09 Perqflo, Llc Infusion pumps
US8915879B2 (en) 2010-09-24 2014-12-23 Perqflo, Llc Infusion pumps
US9024768B2 (en) 2008-10-10 2015-05-05 Deka Products Limited Partnership Occlusion detection system and method
US9089636B2 (en) 2004-07-02 2015-07-28 Valeritas, Inc. Methods and devices for delivering GLP-1 and uses thereof
WO2015126721A1 (en) * 2014-02-24 2015-08-27 Becton, Dickinson And Company Infusion pump with program key
US9173996B2 (en) 2001-05-18 2015-11-03 Deka Products Limited Partnership Infusion set for a fluid pump
US9216249B2 (en) 2010-09-24 2015-12-22 Perqflo, Llc Infusion pumps
US9498573B2 (en) 2010-09-24 2016-11-22 Perqflo, Llc Infusion pumps
US10159786B2 (en) 2014-09-30 2018-12-25 Perqflo, Llc Hybrid ambulatory infusion pumps
EP4059546A4 (en) * 2019-11-15 2023-03-22 Shenzhen Mindray Scientific Co., Ltd. Injection pump
US11672909B2 (en) 2016-02-12 2023-06-13 Medtronic Minimed, Inc. Ambulatory infusion pumps and assemblies for use with same
US11684712B2 (en) 2015-02-18 2023-06-27 Medtronic Minimed, Inc. Ambulatory infusion pumps and reservoir assemblies for use with same

Families Citing this family (422)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733446B2 (en) 2000-01-21 2004-05-11 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
US20120209197A1 (en) * 2002-01-04 2012-08-16 Lanigan Richard J Infusion pump assembly
US8152789B2 (en) 2001-10-23 2012-04-10 Medtronic Minimed, Inc. System and method for providing closed loop infusion formulation delivery
DE10151471A1 (en) * 2001-10-18 2003-05-15 Disetronic Licensing Ag Injection device with energy storage
GB0129187D0 (en) * 2001-12-06 2002-01-23 Dca Design Int Ltd Improvements in and relating to a medicament cartridge
DE10163774A1 (en) * 2001-12-22 2003-07-03 Roche Diagnostics Gmbh Plug-in data transfer module, useful in monitoring medical conditions, comprises an interface at the analysis system, and a communication unit to transmit converted electromagnetic/acoustic signals to a data processing station
US10080529B2 (en) 2001-12-27 2018-09-25 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US6852104B2 (en) 2002-02-28 2005-02-08 Smiths Medical Md, Inc. Programmable insulin pump
US20080172026A1 (en) 2006-10-17 2008-07-17 Blomquist Michael L Insulin pump having a suspension bolus
ES2242465B1 (en) * 2002-08-27 2007-02-01 Zygos Centro Gallego De Reproduccion, S PORTABLE PULSATIBLE HORMONE MICROINFUSION DEVICE BASED ON TORPEDO TYPE LINEAR PUSH-DRIVE MOTOR SYSTEM.
WO2004041330A2 (en) 2002-11-05 2004-05-21 M 2 Medical A/S A disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
KR100478771B1 (en) * 2003-03-27 2005-03-25 주식회사 엔터기술 insulin pump
DE10327254B4 (en) * 2003-06-17 2010-01-28 Disetronic Licensing Ag Modular infusion pump
EP1850910A1 (en) 2005-02-07 2007-11-07 Medtronic, Inc. Ion imbalance detector
WO2006105794A1 (en) 2005-04-06 2006-10-12 M 2 Medical A/S An actuator
US8512288B2 (en) 2006-08-23 2013-08-20 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8277415B2 (en) 2006-08-23 2012-10-02 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US7905868B2 (en) 2006-08-23 2011-03-15 Medtronic Minimed, Inc. Infusion medium delivery device and method with drive device for driving plunger in reservoir
US8840586B2 (en) 2006-08-23 2014-09-23 Medtronic Minimed, Inc. Systems and methods allowing for reservoir filling and infusion medium delivery
US20080097291A1 (en) 2006-08-23 2008-04-24 Hanson Ian B Infusion pumps and methods and delivery devices and methods with same
US7955305B2 (en) 2005-05-06 2011-06-07 Medtronic Minimed, Inc. Needle inserter and method for infusion device
CN101208700A (en) * 2005-06-27 2008-06-25 诺沃-诺迪斯克有限公司 User interface for delivery system providing graphical programming of profile
US20090212966A1 (en) * 2005-06-27 2009-08-27 Novo Nordisk A/S User Interface for Delivery System Providing Dual Setting of Parameters
WO2007000426A2 (en) 2005-06-27 2007-01-04 Novo Nordisk A/S User interface for delivery system providing shortcut navigation
EP1933901B1 (en) 2005-09-26 2014-12-31 Asante Solutions, Inc. Portable infusion pump having a flexible pushrod with hinged portions
US8551046B2 (en) 2006-09-18 2013-10-08 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US7534226B2 (en) 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8105279B2 (en) * 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8545445B2 (en) 2006-02-09 2013-10-01 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
US11364335B2 (en) 2006-02-09 2022-06-21 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US11478623B2 (en) 2006-02-09 2022-10-25 Deka Products Limited Partnership Infusion pump assembly
US11497846B2 (en) 2006-02-09 2022-11-15 Deka Products Limited Partnership Patch-sized fluid delivery systems and methods
DE502006000203D1 (en) * 2006-03-30 2008-01-10 Roche Diagnostics Gmbh Infusion system with an infusion unit and a remote control unit
US7727180B2 (en) 2006-05-17 2010-06-01 Sterling Investments Lc Method and apparatus for presetting device operating levels with display
US7789857B2 (en) 2006-08-23 2010-09-07 Medtronic Minimed, Inc. Infusion medium delivery system, device and method with needle inserter and needle inserter device and method
US9056165B2 (en) 2006-09-06 2015-06-16 Medtronic Minimed, Inc. Intelligent therapy recommendation algorithm and method of using the same
WO2008040765A1 (en) * 2006-10-04 2008-04-10 Novo Nordisk A/S User interface for delivery system comprising diary function
JP2010511430A (en) 2006-12-04 2010-04-15 デカ・プロダクツ・リミテッド・パートナーシップ Medical device including a slider assembly
JP2010512813A (en) * 2006-12-14 2010-04-30 ノボ・ノルデイスク・エー/エス User interface of medical law system with diary function with change function
US8738107B2 (en) 2007-05-10 2014-05-27 Medtronic Minimed, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
CA2677009A1 (en) 2007-02-06 2008-08-14 Glumetrics, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
US8323250B2 (en) 2007-04-30 2012-12-04 Medtronic Minimed, Inc. Adhesive patch systems and methods
US8597243B2 (en) * 2007-04-30 2013-12-03 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US7963954B2 (en) 2007-04-30 2011-06-21 Medtronic Minimed, Inc. Automated filling systems and methods
JP5102350B2 (en) 2007-04-30 2012-12-19 メドトロニック ミニメド インコーポレイテッド Reservoir filling / bubble management / infusion medium delivery system and method using the system
US8434528B2 (en) 2007-04-30 2013-05-07 Medtronic Minimed, Inc. Systems and methods for reservoir filling
US8613725B2 (en) 2007-04-30 2013-12-24 Medtronic Minimed, Inc. Reservoir systems and methods
US7959715B2 (en) 2007-04-30 2011-06-14 Medtronic Minimed, Inc. Systems and methods allowing for reservoir air bubble management
US7794426B2 (en) 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US7833196B2 (en) 2007-05-21 2010-11-16 Asante Solutions, Inc. Illumination instrument for an infusion pump
US7892199B2 (en) 2007-05-21 2011-02-22 Asante Solutions, Inc. Occlusion sensing for an infusion pump
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US7967795B1 (en) 2010-01-19 2011-06-28 Lamodel Ltd. Cartridge interface assembly with driving plunger
WO2009044401A2 (en) * 2007-10-02 2009-04-09 Yossi Gross External drug pump
US9345836B2 (en) 2007-10-02 2016-05-24 Medimop Medical Projects Ltd. Disengagement resistant telescoping assembly and unidirectional method of assembly for such
US10420880B2 (en) 2007-10-02 2019-09-24 West Pharma. Services IL, Ltd. Key for securing components of a drug delivery system during assembly and/or transport and methods of using same
US9656019B2 (en) 2007-10-02 2017-05-23 Medimop Medical Projects Ltd. Apparatuses for securing components of a drug delivery system during transport and methods of using same
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
US8313467B2 (en) * 2007-12-27 2012-11-20 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
US8414563B2 (en) 2007-12-31 2013-04-09 Deka Products Limited Partnership Pump assembly with switch
US9456955B2 (en) 2007-12-31 2016-10-04 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
CN114796703A (en) 2007-12-31 2022-07-29 德卡产品有限公司 Infusion pump assembly
US10080704B2 (en) 2007-12-31 2018-09-25 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US8881774B2 (en) 2007-12-31 2014-11-11 Deka Research & Development Corp. Apparatus, system and method for fluid delivery
US10188787B2 (en) 2007-12-31 2019-01-29 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US8858501B2 (en) * 2008-04-11 2014-10-14 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US8206353B2 (en) * 2008-04-11 2012-06-26 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
US8597269B2 (en) * 2008-04-11 2013-12-03 Medtronic Minimed, Inc. Reservoir seal retainer systems and methods
US9295776B2 (en) * 2008-04-11 2016-03-29 Medtronic Minimed, Inc. Reservoir plunger head systems and methods
ES2366146T3 (en) * 2008-06-30 2011-10-17 Animas Corporation DRIVING MECHANISM.
US8700114B2 (en) 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US9393369B2 (en) 2008-09-15 2016-07-19 Medimop Medical Projects Ltd. Stabilized pen injector
JP6288903B2 (en) 2008-09-15 2018-03-07 デカ・プロダクツ・リミテッド・パートナーシップ Systems and methods for fluid delivery
US20100145305A1 (en) * 2008-11-10 2010-06-10 Ruth Alon Low volume accurate injector
US9370621B2 (en) * 2008-12-16 2016-06-21 Medtronic Minimed, Inc. Needle insertion systems and methods
US8152779B2 (en) * 2008-12-30 2012-04-10 Medimop Medical Projects Ltd. Needle assembly for drug pump
US8167846B2 (en) * 2009-07-08 2012-05-01 Medtronic Minimed, Inc. Reservoir filling systems and methods
US8393357B2 (en) 2009-07-08 2013-03-12 Medtronic Minimed, Inc. Reservoir filling systems and methods
EP2453948B1 (en) 2009-07-15 2015-02-18 DEKA Products Limited Partnership Apparatus, systems and methods for an infusion pump assembly
EP3284494A1 (en) 2009-07-30 2018-02-21 Tandem Diabetes Care, Inc. Portable infusion pump system
US8356644B2 (en) 2009-08-07 2013-01-22 Medtronic Minimed, Inc. Transfer guard systems and methods
US8900190B2 (en) 2009-09-02 2014-12-02 Medtronic Minimed, Inc. Insertion device systems and methods
US8882710B2 (en) 2009-09-02 2014-11-11 Medtronic Minimed, Inc. Insertion device systems and methods
US8308679B2 (en) 2009-12-30 2012-11-13 Medtronic Minimed, Inc. Alignment systems and methods
US10071196B2 (en) 2012-05-15 2018-09-11 West Pharma. Services IL, Ltd. Method for selectively powering a battery-operated drug-delivery device and device therefor
US10071198B2 (en) 2012-11-02 2018-09-11 West Pharma. Servicees IL, Ltd. Adhesive structure for medical device
US8157769B2 (en) * 2009-09-15 2012-04-17 Medimop Medical Projects Ltd. Cartridge insertion assembly for drug delivery system
US9399091B2 (en) 2009-09-30 2016-07-26 Medtronic, Inc. System and method to regulate ultrafiltration
WO2011087804A2 (en) 2009-12-21 2011-07-21 Medtronic, Inc. Peptide-polynucleotide compositions, and methods for transfecting a cell with dna and treatment of neurodegenerative disease
US9039653B2 (en) 2009-12-29 2015-05-26 Medtronic Minimed, Inc. Retention systems and methods
US8858500B2 (en) * 2009-12-30 2014-10-14 Medtronic Minimed, Inc. Engagement and sensing systems and methods
US8998858B2 (en) * 2009-12-29 2015-04-07 Medtronic Minimed, Inc. Alignment and connection systems and methods
US8998840B2 (en) 2009-12-30 2015-04-07 Medtronic Minimed, Inc. Connection and alignment systems and methods
US20120215163A1 (en) 2009-12-30 2012-08-23 Medtronic Minimed, Inc. Sensing systems and methods
US8435209B2 (en) 2009-12-30 2013-05-07 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US9421321B2 (en) 2009-12-30 2016-08-23 Medtronic Minimed, Inc. Connection and alignment systems and methods
US11497850B2 (en) 2009-12-30 2022-11-15 Medtronic Minimed, Inc. Connection and alignment detection systems and methods
US8070723B2 (en) 2009-12-31 2011-12-06 Medtronic Minimed, Inc. Activity guard
US8348898B2 (en) 2010-01-19 2013-01-08 Medimop Medical Projects Ltd. Automatic needle for drug pump
WO2011091265A1 (en) 2010-01-22 2011-07-28 Deka Products Limited Partnership Method and system for shape-memory alloy wire control
US9326708B2 (en) 2010-03-26 2016-05-03 Medtronic Minimed, Inc. Ambient temperature sensor systems and methods
US9452261B2 (en) 2010-05-10 2016-09-27 Medimop Medical Projects Ltd. Low volume accurate injector
USD669165S1 (en) 2010-05-27 2012-10-16 Asante Solutions, Inc. Infusion pump
US9215995B2 (en) 2010-06-23 2015-12-22 Medtronic Minimed, Inc. Sensor systems having multiple probes and electrode arrays
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
JP5917565B2 (en) 2011-01-27 2016-05-18 メドトロニック ミニメド インコーポレイテッド Insertion device system and method
US8900206B2 (en) 2011-02-22 2014-12-02 Medtronic Minimed, Inc. Pressure vented fluid reservoir for a fluid infusion device
US11266823B2 (en) 2011-02-22 2022-03-08 Medtronic Minimed, Inc. Retractable sealing assembly for a fluid reservoir of a fluid infusion device
EP2678028A2 (en) 2011-02-25 2014-01-01 Medtronic, Inc. Systems and methods for therapy of kidney disease and/or heart failure using chimeric natriuretic peptides
US20120277155A1 (en) 2011-02-25 2012-11-01 Medtronic, Inc. Therapy for kidney disease and/or heart failure
USD702834S1 (en) 2011-03-22 2014-04-15 Medimop Medical Projects Ltd. Cartridge for use in injection device
US9848778B2 (en) 2011-04-29 2017-12-26 Medtronic, Inc. Method and device to monitor patients with kidney disease
US9192707B2 (en) 2011-04-29 2015-11-24 Medtronic, Inc. Electrolyte and pH monitoring for fluid removal processes
US9456755B2 (en) 2011-04-29 2016-10-04 Medtronic, Inc. Method and device to monitor patients with kidney disease
US9008744B2 (en) 2011-05-06 2015-04-14 Medtronic Minimed, Inc. Method and apparatus for continuous analyte monitoring
US8795231B2 (en) 2011-05-10 2014-08-05 Medtronic Minimed, Inc. Automated reservoir fill system
US8585657B2 (en) 2011-06-21 2013-11-19 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
CN103889481B (en) 2011-08-02 2016-03-09 美敦力公司 With the hemodialysis system of flow path with controlled compliance volume
US10857277B2 (en) 2011-08-16 2020-12-08 Medtronic, Inc. Modular hemodialysis system
AU2012299169B2 (en) 2011-08-19 2017-08-24 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US20130244937A1 (en) 2011-09-02 2013-09-19 Nile Therapeutics, Inc. Chimeric natriuretic peptide compositions and methods of preparation
US8808230B2 (en) 2011-09-07 2014-08-19 Asante Solutions, Inc. Occlusion detection for an infusion pump system
US10352941B2 (en) 2011-09-27 2019-07-16 Medtronic Minimed, Inc. Method for functionalizing a porous membrane covering of an optical sensor to facilitate coupling of an antithrom-bogenic agent
WO2013053076A1 (en) 2011-10-10 2013-04-18 Zensun (Shanghai)Science & Technology Limited Compositions and methods for treating heart failure
US9989522B2 (en) 2011-11-01 2018-06-05 Medtronic Minimed, Inc. Methods and materials for modulating start-up time and air removal in dry sensors
US8999720B2 (en) 2011-11-17 2015-04-07 Medtronic Minimed, Inc. Aqueous radiation protecting formulations and methods for making and using them
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9713668B2 (en) 2012-01-04 2017-07-25 Medtronic, Inc. Multi-staged filtration system for blood fluid removal
US9610401B2 (en) 2012-01-13 2017-04-04 Medtronic Minimed, Inc. Infusion set component with modular fluid channel element
US11524151B2 (en) 2012-03-07 2022-12-13 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US9072827B2 (en) 2012-03-26 2015-07-07 Medimop Medical Projects Ltd. Fail safe point protector for needle safety flap
US9995611B2 (en) 2012-03-30 2018-06-12 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9493807B2 (en) 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
US9408567B2 (en) 2012-06-08 2016-08-09 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US8454562B1 (en) 2012-07-20 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
ES2743160T3 (en) 2012-07-31 2020-02-18 Icu Medical Inc Patient care system for critical medications
US9682188B2 (en) 2012-08-21 2017-06-20 Medtronic Minimed, Inc. Reservoir fluid volume estimator and medical device incorporating same
US10130767B2 (en) 2012-08-30 2018-11-20 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
CA2889504A1 (en) 2012-11-07 2014-05-15 Medtronic Minimed, Inc. Dry insertion and one-point in vivo calibration of an optical analyte sensor
US9265455B2 (en) 2012-11-13 2016-02-23 Medtronic Minimed, Inc. Methods and systems for optimizing sensor function by the application of voltage
US10194840B2 (en) 2012-12-06 2019-02-05 Medtronic Minimed, Inc. Microarray electrodes useful with analyte sensors and methods for making and using them
US10905816B2 (en) 2012-12-10 2021-02-02 Medtronic, Inc. Sodium management system for hemodialysis
US9421323B2 (en) 2013-01-03 2016-08-23 Medimop Medical Projects Ltd. Door and doorstop for portable one use drug delivery apparatus
JP6556631B2 (en) 2013-01-09 2019-08-07 インスペクトロン,インコーポレイテッド Remote inspection device
US11565029B2 (en) 2013-01-09 2023-01-31 Medtronic, Inc. Sorbent cartridge with electrodes
US9707328B2 (en) 2013-01-09 2017-07-18 Medtronic, Inc. Sorbent cartridge to measure solute concentrations
US9713666B2 (en) 2013-01-09 2017-07-25 Medtronic, Inc. Recirculating dialysate fluid circuit for blood measurement
US11154648B2 (en) 2013-01-09 2021-10-26 Medtronic, Inc. Fluid circuits for sorbent cartridge with sensors
US10426383B2 (en) 2013-01-22 2019-10-01 Medtronic Minimed, Inc. Muting glucose sensor oxygen response and reducing electrode edge growth with pulsed current plating
US10850016B2 (en) 2013-02-01 2020-12-01 Medtronic, Inc. Modular fluid therapy system having jumpered flow paths and systems and methods for cleaning and disinfection
US9526822B2 (en) 2013-02-01 2016-12-27 Medtronic, Inc. Sodium and buffer source cartridges for use in a modular controlled compliant flow path
US10543052B2 (en) 2013-02-01 2020-01-28 Medtronic, Inc. Portable dialysis cabinet
US9623164B2 (en) 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US10010663B2 (en) 2013-02-01 2018-07-03 Medtronic, Inc. Fluid circuit for delivery of renal replacement therapies
US9827361B2 (en) 2013-02-02 2017-11-28 Medtronic, Inc. pH buffer measurement system for hemodialysis systems
US9144640B2 (en) 2013-02-02 2015-09-29 Medtronic, Inc. Sorbent cartridge configurations for improved dialysate regeneration
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9603995B2 (en) 2013-03-15 2017-03-28 Tandem Diabetes Care. Inc. Device and method for setting therapeutic parameters for an infusion device
US9486171B2 (en) 2013-03-15 2016-11-08 Tandem Diabetes Care, Inc. Predictive calibration
US9011164B2 (en) 2013-04-30 2015-04-21 Medimop Medical Projects Ltd. Clip contact for easy installation of printed circuit board PCB
WO2014187342A1 (en) 2013-05-22 2014-11-27 Zensun (Shanghai) Science & Technology, Ltd. Extended Release of Neuregulin for Treating Heart Failure
WO2014190264A1 (en) 2013-05-24 2014-11-27 Hospira, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US9338819B2 (en) 2013-05-29 2016-05-10 Medtronic Minimed, Inc. Variable data usage personal medical system and method
CA2913918C (en) 2013-05-29 2022-02-15 Hospira, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
AU2014274146B2 (en) 2013-05-29 2019-01-24 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US9457141B2 (en) 2013-06-03 2016-10-04 Bigfoot Biomedical, Inc. Infusion pump system and method
US10194864B2 (en) 2013-06-21 2019-02-05 Medtronic Minimed, Inc. Anchoring apparatus and method for attaching device on body
CA2914977C (en) 2013-07-03 2021-11-02 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
US9880528B2 (en) 2013-08-21 2018-01-30 Medtronic Minimed, Inc. Medical devices and related updating methods and systems
US8979799B1 (en) 2013-10-14 2015-03-17 Medtronic Minimed, Inc. Electronic injector
US9375537B2 (en) 2013-10-14 2016-06-28 Medtronic Minimed, Inc. Therapeutic agent injection device
US8979808B1 (en) 2013-10-14 2015-03-17 Medtronic Minimed, Inc. On-body injector and method of use
US9265881B2 (en) 2013-10-14 2016-02-23 Medtronic Minimed, Inc. Therapeutic agent injection device
EP2862586B1 (en) 2013-10-21 2021-09-01 F. Hoffmann-La Roche AG Control unit for infusion pump units, including a controlled intervention unit
FI3060276T3 (en) 2013-10-24 2023-06-07 Infusion system for preventing mischanneling of multiple medicaments
US9226709B2 (en) * 2013-11-04 2016-01-05 Medtronic Minimed, Inc. ICE message system and method
US10076283B2 (en) 2013-11-04 2018-09-18 Medtronic, Inc. Method and device to manage fluid volumes in the body
US9267875B2 (en) 2013-11-21 2016-02-23 Medtronic Minimed, Inc. Accelerated life testing device and method
US10537875B2 (en) 2013-11-26 2020-01-21 Medtronic, Inc. Precision recharging of sorbent materials using patient and session data
US9884145B2 (en) 2013-11-26 2018-02-06 Medtronic, Inc. Parallel modules for in-line recharging of sorbents using alternate duty cycles
CN105992552B (en) 2013-11-27 2019-06-18 美敦力公司 Accurate dialysis monitoring and synchronization system
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
US9750877B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Predicted time to assess and/or control a glycemic state
US9849240B2 (en) 2013-12-12 2017-12-26 Medtronic Minimed, Inc. Data modification for predictive operations and devices incorporating same
US10105488B2 (en) 2013-12-12 2018-10-23 Medtronic Minimed, Inc. Predictive infusion device operations and related methods and systems
US10945630B2 (en) 2013-12-16 2021-03-16 Medtronic Minimed, Inc. Use of Electrochemical Impedance Spectroscopy (EIS) in gross failure analysis
US9603561B2 (en) 2013-12-16 2017-03-28 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
US9779226B2 (en) 2013-12-18 2017-10-03 Medtronic Minimed, Inc. Fingerprint enhanced authentication for medical devices in wireless networks
US9143941B2 (en) 2013-12-18 2015-09-22 Medtronic Minimed, Inc. Secure communication by user selectable communication range
US9694132B2 (en) 2013-12-19 2017-07-04 Medtronic Minimed, Inc. Insertion device for insertion set
EP4250313A3 (en) 2013-12-26 2023-11-22 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
WO2015100340A1 (en) 2013-12-26 2015-07-02 Tandem Diabetes Care, Inc. Safety processor for wireless control of a drug delivery device
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same
EP3110474B1 (en) 2014-02-28 2019-12-18 ICU Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US9388805B2 (en) * 2014-03-24 2016-07-12 Medtronic Minimed, Inc. Medication pump test device and method of use
US9689830B2 (en) 2014-04-03 2017-06-27 Medtronic Minimed, Inc. Sensor detection pads with integrated fuse
US9707336B2 (en) 2014-04-07 2017-07-18 Medtronic Minimed, Inc. Priming detection system and method of using the same
US10232113B2 (en) 2014-04-24 2019-03-19 Medtronic Minimed, Inc. Infusion devices and related methods and systems for regulating insulin on board
US9681828B2 (en) 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
AU2015266706B2 (en) 2014-05-29 2020-01-30 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US9901305B2 (en) 2014-06-13 2018-02-27 Medtronic Minimed, Inc. Physiological sensor history backfill system and method
US10172991B2 (en) 2014-06-24 2019-01-08 Medtronic, Inc. Modular dialysate regeneration assembly
WO2015199768A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. Stacked sorbent assembly
US9452255B2 (en) 2014-07-21 2016-09-27 Medtronic Minimed, Inc. Smart connection interface
US10137246B2 (en) 2014-08-06 2018-11-27 Bigfoot Biomedical, Inc. Infusion pump assembly and method
US9717845B2 (en) 2014-08-19 2017-08-01 Medtronic Minimed, Inc. Geofencing for medical devices
US20160051755A1 (en) 2014-08-25 2016-02-25 Medtronic Minimed, Inc. Low cost fluid delivery device
US9919096B2 (en) 2014-08-26 2018-03-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US20160058940A1 (en) * 2014-08-28 2016-03-03 Zyno Medical, LLC. Low-cost ambulatory medical pump
US9839753B2 (en) 2014-09-26 2017-12-12 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US10279126B2 (en) 2014-10-07 2019-05-07 Medtronic Minimed, Inc. Fluid conduit assembly with gas trapping filter in the fluid flow path
US9841014B2 (en) 2014-10-20 2017-12-12 Medtronic Minimed, Inc. Insulin pump data acquisition device and system
US9592335B2 (en) 2014-10-20 2017-03-14 Medtronic Minimed, Inc. Insulin pump data acquisition device
US9901675B2 (en) 2014-11-25 2018-02-27 Medtronic Minimed, Inc. Infusion set insertion device and method of use
US9731067B2 (en) 2014-11-25 2017-08-15 Medtronic Minimed, Inc. Mechanical injection pump and method of use
US9636453B2 (en) 2014-12-04 2017-05-02 Medtronic Minimed, Inc. Advance diagnosis of infusion device operating mode viability
US9943645B2 (en) 2014-12-04 2018-04-17 Medtronic Minimed, Inc. Methods for operating mode transitions and related infusion devices and systems
US9713665B2 (en) 2014-12-10 2017-07-25 Medtronic, Inc. Degassing system for dialysis
US10098993B2 (en) 2014-12-10 2018-10-16 Medtronic, Inc. Sensing and storage system for fluid balance
US9895479B2 (en) 2014-12-10 2018-02-20 Medtronic, Inc. Water management system for use in dialysis
US10874787B2 (en) 2014-12-10 2020-12-29 Medtronic, Inc. Degassing system for dialysis
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10307535B2 (en) 2014-12-19 2019-06-04 Medtronic Minimed, Inc. Infusion devices and related methods and systems for preemptive alerting
US9717848B2 (en) 2015-01-22 2017-08-01 Medtronic Minimed, Inc. Data derived pre-bolus delivery
US9872954B2 (en) 2015-03-02 2018-01-23 Medtronic Minimed, Inc. Belt clip
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10307528B2 (en) 2015-03-09 2019-06-04 Medtronic Minimed, Inc. Extensible infusion devices and related methods
US10449298B2 (en) 2015-03-26 2019-10-22 Medtronic Minimed, Inc. Fluid injection devices and related methods
US10293120B2 (en) 2015-04-10 2019-05-21 West Pharma. Services IL, Ltd. Redundant injection device status indication
EP3088021A1 (en) * 2015-04-27 2016-11-02 Fresenius Vial SAS Infusion pump base module with plurality of attachable control modules
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
US10130757B2 (en) 2015-05-01 2018-11-20 Medtronic Minimed, Inc. Method and system for leakage detection in portable medical devices
US9999721B2 (en) 2015-05-26 2018-06-19 Medtronic Minimed, Inc. Error handling in infusion devices with distributed motor control and related operating methods
US10149943B2 (en) 2015-05-29 2018-12-11 West Pharma. Services IL, Ltd. Linear rotation stabilizer for a telescoping syringe stopper driverdriving assembly
CA2991058A1 (en) 2015-07-08 2017-01-12 Trustees Of Boston University Infusion system and components thereof
US10478557B2 (en) 2015-08-21 2019-11-19 Medtronic Minimed, Inc. Personalized parameter modeling methods and related devices and systems
US10201657B2 (en) 2015-08-21 2019-02-12 Medtronic Minimed, Inc. Methods for providing sensor site rotation feedback and related infusion devices and systems
US10293108B2 (en) 2015-08-21 2019-05-21 Medtronic Minimed, Inc. Infusion devices and related patient ratio adjustment methods
US9987432B2 (en) 2015-09-22 2018-06-05 West Pharma. Services IL, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US10576207B2 (en) 2015-10-09 2020-03-03 West Pharma. Services IL, Ltd. Angled syringe patch injector
US10086145B2 (en) 2015-09-22 2018-10-02 West Pharma Services Il, Ltd. Rotation resistant friction adapter for plunger driver of drug delivery device
US10117992B2 (en) 2015-09-29 2018-11-06 Medtronic Minimed, Inc. Infusion devices and related rescue detection methods
US9992818B2 (en) 2015-10-06 2018-06-05 Medtronic Minimed, Inc. Protocol translation device
CN108430536B (en) 2015-10-09 2022-04-08 西医药服务以色列分公司 Method of filling a custom syringe
US11501867B2 (en) 2015-10-19 2022-11-15 Medtronic Minimed, Inc. Medical devices and related event pattern presentation methods
US11666702B2 (en) 2015-10-19 2023-06-06 Medtronic Minimed, Inc. Medical devices and related event pattern treatment recommendation methods
US9757511B2 (en) 2015-10-19 2017-09-12 Medtronic Minimed, Inc. Personal medical device and method of use with restricted mode challenge
US10146911B2 (en) 2015-10-23 2018-12-04 Medtronic Minimed, Inc. Medical devices and related methods and systems for data transfer
US10037722B2 (en) 2015-11-03 2018-07-31 Medtronic Minimed, Inc. Detecting breakage in a display element
WO2017078965A1 (en) 2015-11-06 2017-05-11 Medtronic, Inc Dialysis prescription optimization for decreased arrhythmias
US10827959B2 (en) 2015-11-11 2020-11-10 Medtronic Minimed, Inc. Sensor set
US9848805B2 (en) 2015-12-18 2017-12-26 Medtronic Minimed, Inc. Biostable glucose permeable polymer
US10327680B2 (en) 2015-12-28 2019-06-25 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US10327686B2 (en) 2015-12-28 2019-06-25 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US20170181672A1 (en) 2015-12-28 2017-06-29 Medtronic Minimed, Inc. Sensor systems, devices, and methods for continuous glucose monitoring
US10349872B2 (en) 2015-12-28 2019-07-16 Medtronic Minimed, Inc. Methods, systems, and devices for sensor fusion
CA3009409A1 (en) 2016-01-05 2017-07-13 Bigfoot Biomedical, Inc. Operating multi-modal medicine delivery systems
WO2017127215A1 (en) 2016-01-21 2017-07-27 Medimop Medical Projects Ltd. Needle insertion and retraction mechanism
CN111544704B (en) 2016-01-21 2022-06-03 西医药服务以色列有限公司 Force containment in autoinjectors
JP6885960B2 (en) 2016-01-21 2021-06-16 ウェスト ファーマ サービシーズ イスラエル リミテッド Drug delivery device with visual indicators
CN109068983B (en) 2016-01-28 2021-03-23 克鲁有限公司 Method and apparatus for tracking food intake and other behaviors and providing relevant feedback
US10790054B1 (en) 2016-12-07 2020-09-29 Medtronic Minimed, Inc. Method and apparatus for tracking of food intake and other behaviors and providing relevant feedback
USD809134S1 (en) 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
WO2017161076A1 (en) 2016-03-16 2017-09-21 Medimop Medical Projects Ltd. Staged telescopic screw assembly having different visual indicators
US10376647B2 (en) 2016-03-18 2019-08-13 West Pharma. Services IL, Ltd. Anti-rotation mechanism for telescopic screw assembly
US10994064B2 (en) 2016-08-10 2021-05-04 Medtronic, Inc. Peritoneal dialysate flow path sensing
US10874790B2 (en) 2016-08-10 2020-12-29 Medtronic, Inc. Peritoneal dialysis intracycle osmotic agent adjustment
US10765369B2 (en) 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Analyte sensor
US10413183B2 (en) 2016-04-08 2019-09-17 Medtronic Minimed, Inc. Insertion device
US10765348B2 (en) 2016-04-08 2020-09-08 Medtronic Minimed, Inc. Sensor and transmitter product
US10589038B2 (en) 2016-04-27 2020-03-17 Medtronic Minimed, Inc. Set connector systems for venting a fluid reservoir
US10324058B2 (en) 2016-04-28 2019-06-18 Medtronic Minimed, Inc. In-situ chemistry stack for continuous glucose sensors
US9970893B2 (en) 2016-04-28 2018-05-15 Medtronic Minimed, Inc. Methods, systems, and devices for electrode capacitance calculation and application
US10426389B2 (en) 2016-04-28 2019-10-01 Medtronic Minimed, Inc. Methods, systems, and devices for electrode capacitance calculation and application
AU2017264784B2 (en) 2016-05-13 2022-04-21 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US9968737B2 (en) 2016-05-26 2018-05-15 Medtronic Minimed, Inc. Systems for set connector assembly with lock
US10086133B2 (en) 2016-05-26 2018-10-02 Medtronic Minimed, Inc. Systems for set connector assembly with lock
US10086134B2 (en) 2016-05-26 2018-10-02 Medtronic Minimed, Inc. Systems for set connector assembly with lock
JP6957525B2 (en) 2016-06-02 2021-11-02 ウェスト ファーマ サービシーズ イスラエル リミテッド Needle evacuation by 3 positions
US11134872B2 (en) 2016-06-06 2021-10-05 Medtronic Minimed, Inc. Thermally stable glucose limiting membrane for glucose sensors
US11179078B2 (en) 2016-06-06 2021-11-23 Medtronic Minimed, Inc. Polycarbonate urea/urethane polymers for use with analyte sensors
EP3468635A4 (en) 2016-06-10 2019-11-20 ICU Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
CN106237451B (en) * 2016-06-25 2019-08-02 东莞医谷生物医学科技有限公司 Diabetes injection therapeutic device
EP3490635B1 (en) 2016-08-01 2021-11-17 West Pharma. Services Il, Ltd. Partial door closure prevention spring
JP6869327B2 (en) 2016-08-01 2021-05-12 ウェスト ファーマ サービシーズ イスラエル リミテッド Anti-rotation cartridge
US10485924B2 (en) 2016-09-06 2019-11-26 Medtronic Minimed, Inc. Pump clip for a fluid infusion device
US11013843B2 (en) 2016-09-09 2021-05-25 Medtronic, Inc. Peritoneal dialysis fluid testing system
US10426896B2 (en) 2016-09-27 2019-10-01 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
US10981148B2 (en) 2016-11-29 2021-04-20 Medtronic, Inc. Zirconium oxide module conditioning
USD836769S1 (en) 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
AU2017376111B2 (en) 2016-12-12 2023-02-02 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and related systems and methods
US10709834B2 (en) 2016-12-21 2020-07-14 Medtronic Minimed, Inc. Medication fluid infusion set component with integrated physiological analyte sensor, and corresponding fluid infusion device
US10861591B2 (en) 2016-12-21 2020-12-08 Medtronic Minimed, Inc. Infusion systems and methods for pattern-based therapy adjustments
US10272201B2 (en) 2016-12-22 2019-04-30 Medtronic Minimed, Inc. Insertion site monitoring methods and related infusion devices and systems
RU2757312C2 (en) 2017-01-06 2021-10-13 Трастис Оф Бостон Юниверсити Infusion system and its components
US11197949B2 (en) 2017-01-19 2021-12-14 Medtronic Minimed, Inc. Medication infusion components and systems
US10821225B2 (en) 2017-01-20 2020-11-03 Medtronic Minimed, Inc. Cannulas for drug delivery devices
US10552580B2 (en) 2017-02-07 2020-02-04 Medtronic Minimed, Inc. Infusion system consumables and related calibration methods
US10646649B2 (en) 2017-02-21 2020-05-12 Medtronic Minimed, Inc. Infusion devices and fluid identification apparatuses and methods
US11134868B2 (en) 2017-03-17 2021-10-05 Medtronic Minimed, Inc. Metal pillar device structures and methods for making and using them in electrochemical and/or electrocatalytic applications
US20180272066A1 (en) 2017-03-24 2018-09-27 Medtronic Minimed, Inc. Patient management systems and adherence recommendation methods
US11512384B2 (en) 2017-05-11 2022-11-29 Medtronic Minimed, Inc. Analyte sensors and methods for fabricating analyte sensors
JP6810816B2 (en) * 2017-05-30 2021-01-06 ウェスト ファーマ サービシーズ イスラエル リミテッド Syringe noise and vibration damping mount module
CN110869072B (en) 2017-05-30 2021-12-10 西部制药服务有限公司(以色列) Modular drive mechanism for a wearable injector
US10960381B2 (en) 2017-06-15 2021-03-30 Medtronic, Inc. Zirconium phosphate disinfection recharging and conditioning
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
US10856784B2 (en) 2017-06-30 2020-12-08 Medtronic Minimed, Inc. Sensor initialization methods for faster body sensor response
US20200188587A1 (en) * 2017-07-12 2020-06-18 Infusion Innovations Pty Ltd Assemblies, Systems and Methods for Programming Medical Devices
US11389088B2 (en) 2017-07-13 2022-07-19 Bigfoot Biomedical, Inc. Multi-scale display of blood glucose information
US10596295B2 (en) 2017-08-28 2020-03-24 Medtronic Minimed, Inc. Adhesive patch arrangement for a physiological characteristic sensor, and related sensor assembly
US11412960B2 (en) 2017-08-28 2022-08-16 Medtronic Minimed, Inc. Pedestal for sensor assembly packaging and sensor introducer removal
USD869923S1 (en) * 2017-09-07 2019-12-17 Ifixit Wedge tool
US11445951B2 (en) 2017-09-13 2022-09-20 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
US10874300B2 (en) 2017-09-26 2020-12-29 Medtronic Minimed, Inc. Waferscale physiological characteristic sensor package with integrated wireless transmitter
USD863343S1 (en) 2017-09-27 2019-10-15 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
US10525244B2 (en) 2017-09-28 2020-01-07 Medtronic Minimed, Inc. Microneedle arrays and methods for fabricating microneedle arrays
US10524730B2 (en) 2017-09-28 2020-01-07 Medtronic Minimed, Inc. Medical devices with microneedle arrays and methods for operating such medical devices
WO2019079174A1 (en) * 2017-10-16 2019-04-25 Becton, Dickinson And Company Sterilization arrangement for drug delivery device
US11676734B2 (en) 2017-11-15 2023-06-13 Medtronic Minimed, Inc. Patient therapy management system that leverages aggregated patient population data
US11278654B2 (en) 2017-12-07 2022-03-22 Medtronic, Inc. Pneumatic manifold for a dialysis system
US11471082B2 (en) 2017-12-13 2022-10-18 Medtronic Minimed, Inc. Complex redundancy in continuous glucose monitoring
US11213230B2 (en) 2017-12-13 2022-01-04 Medtronic Minimed, Inc. Optional sensor calibration in continuous glucose monitoring
JP7402799B2 (en) 2017-12-22 2023-12-21 ウェスト ファーマ サービシーズ イスラエル リミテッド Syringes available with different cartridge sizes
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11439352B2 (en) 2018-01-17 2022-09-13 Medtronic Minimed, Inc. Medical device with adhesive patch longevity
US11033667B2 (en) 2018-02-02 2021-06-15 Medtronic, Inc. Sorbent manifold for a dialysis system
US11186859B2 (en) 2018-02-07 2021-11-30 Medtronic Minimed, Inc. Multilayer electrochemical analyte sensors and methods for making and using them
US11220735B2 (en) 2018-02-08 2022-01-11 Medtronic Minimed, Inc. Methods for controlling physical vapor deposition metal film adhesion to substrates and surfaces
US11583213B2 (en) 2018-02-08 2023-02-21 Medtronic Minimed, Inc. Glucose sensor electrode design
US11110215B2 (en) 2018-02-23 2021-09-07 Medtronic, Inc. Degasser and vent manifolds for dialysis
US11672446B2 (en) 2018-03-23 2023-06-13 Medtronic Minimed, Inc. Insulin delivery recommendations based on nutritional information
US11158413B2 (en) 2018-04-23 2021-10-26 Medtronic Minimed, Inc. Personalized closed loop medication delivery system that utilizes a digital twin of the patient
US11147919B2 (en) 2018-04-23 2021-10-19 Medtronic Minimed, Inc. Methodology to recommend and implement adjustments to a fluid infusion device of a medication delivery system
US11523972B2 (en) 2018-04-24 2022-12-13 Deka Products Limited Partnership Apparatus, system and method for fluid delivery
US10861603B2 (en) * 2018-05-07 2020-12-08 Medtronic Minimed, Inc. Proactive image-based infusion device delivery adjustments
US11191677B2 (en) * 2018-05-18 2021-12-07 Tina Holdings, Llc Tampon insertion device
US11761077B2 (en) 2018-08-01 2023-09-19 Medtronic Minimed, Inc. Sputtering techniques for biosensors
US11122697B2 (en) 2018-08-07 2021-09-14 Medtronic Minimed, Inc. Method of fabricating an electronic medical device, including overmolding an assembly with thermoplastic material
US11021731B2 (en) 2018-08-23 2021-06-01 Medtronic Minimed, Inc. Analyte sensing layers, analyte sensors and methods for fabricating the same
US11213616B2 (en) 2018-08-24 2022-01-04 Medtronic, Inc. Recharge solution for zirconium phosphate
US10828419B2 (en) 2018-09-04 2020-11-10 Medtronic Minimed, Inc. Infusion set with pivoting metal cannula and strain relief
US11547799B2 (en) 2018-09-20 2023-01-10 Medtronic Minimed, Inc. Patient day planning systems and methods
US11071821B2 (en) 2018-09-28 2021-07-27 Medtronic Minimed, Inc. Insulin infusion device with efficient confirmation routine for blood glucose measurements
US11097052B2 (en) 2018-09-28 2021-08-24 Medtronic Minimed, Inc. Insulin infusion device with configurable target blood glucose value for automatic basal insulin delivery operation
US10894126B2 (en) 2018-09-28 2021-01-19 Medtronic Minimed, Inc. Fluid infusion system that automatically determines and delivers a correction bolus
US10980942B2 (en) 2018-09-28 2021-04-20 Medtronic Minimed, Inc. Infusion devices and related meal bolus adjustment methods
US20200116748A1 (en) 2018-10-11 2020-04-16 Medtronic Minimed, Inc. Systems and methods for measurement of fluid delivery
US10946140B2 (en) 2018-10-11 2021-03-16 Medtronic Minimed, Inc. Systems and methods for measurement of fluid delivery
US11363986B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system
US20200289373A1 (en) 2018-10-31 2020-09-17 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a physiological characteristic sensor device
US11367516B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Automated detection of a physical behavior event and corresponding adjustment of a medication dispensing system
US11367517B2 (en) 2018-10-31 2022-06-21 Medtronic Minimed, Inc. Gesture-based detection of a physical behavior event based on gesture sensor data and supplemental information from at least one external source
US11806457B2 (en) 2018-11-16 2023-11-07 Mozarc Medical Us Llc Peritoneal dialysis adequacy meaurements
US11382541B2 (en) 2018-11-16 2022-07-12 Medtronic Minimed, Inc. Miniaturized analyte sensor
US11806456B2 (en) 2018-12-10 2023-11-07 Mozarc Medical Us Llc Precision peritoneal dialysis therapy based on dialysis adequacy measurements
US11540750B2 (en) 2018-12-19 2023-01-03 Medtronic Minimed, Inc Systems and methods for physiological characteristic monitoring
CN111407881A (en) 2019-01-07 2020-07-14 上海泽生科技开发股份有限公司 Methods and compositions for neuregulin to prevent, treat or delay myocardial damage
JP7210290B2 (en) 2019-01-08 2023-01-23 セイコーインスツル株式会社 Feeding device and portable pouring device
US11439752B2 (en) 2019-02-01 2022-09-13 Medtronic Minimed, Inc. Methods and devices for occlusion detection using actuator sensors
US11389587B2 (en) 2019-02-06 2022-07-19 Medtronic Minimed, Inc. Patient monitoring systems and related presentation methods
US11191899B2 (en) 2019-02-12 2021-12-07 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US11311215B2 (en) 2019-04-04 2022-04-26 Medtronic Minimed, Inc. Measurement of device materials using non-Faradaic electrochemical impedance spectroscopy
US11224361B2 (en) 2019-04-23 2022-01-18 Medtronic Minimed, Inc. Flexible physiological characteristic sensor assembly
US11317867B2 (en) 2019-04-23 2022-05-03 Medtronic Minimed, Inc. Flexible physiological characteristic sensor assembly
CN111939386B (en) * 2019-05-17 2023-05-09 上海移宇科技股份有限公司 Double-side driven multi-infusion injection molding type medicine infusion device
US10939488B2 (en) 2019-05-20 2021-03-02 Medtronic Minimed, Inc. Method and system for controlling communication between devices of a wireless body area network for an medical device system
US20200384192A1 (en) 2019-06-06 2020-12-10 Medtronic Minimed, Inc. Fluid infusion systems
US11448611B2 (en) 2019-07-03 2022-09-20 Medtronic Minimed, Inc. Structurally reinforced sensor and method for manufacturing the same
DE112020003400T5 (en) 2019-07-16 2022-03-31 Beta Bionics, Inc. OUTPATIENT INSTITUTION AND ITS COMPONENTS
US11617828B2 (en) 2019-07-17 2023-04-04 Medtronic Minimed, Inc. Reservoir connection interface with detectable signature
US11718865B2 (en) 2019-07-26 2023-08-08 Medtronic Minimed, Inc. Methods to improve oxygen delivery to implantable sensors
US11523757B2 (en) 2019-08-01 2022-12-13 Medtronic Minimed, Inc. Micro-pillar working electrodes design to reduce backflow of hydrogen peroxide in glucose sensor
US11617522B2 (en) 2019-08-06 2023-04-04 Medtronic Minimed, Inc. Sensor inserter with disposal lockout state
US11883208B2 (en) 2019-08-06 2024-01-30 Medtronic Minimed, Inc. Machine learning-based system for estimating glucose values based on blood glucose measurements and contextual activity data
US11724045B2 (en) 2019-08-21 2023-08-15 Medtronic Minimed, Inc. Connection of a stopper and piston in a fluid delivery device
US11571515B2 (en) 2019-08-29 2023-02-07 Medtronic Minimed, Inc. Controlling medical device operation and features based on detected patient sleeping status
US11565044B2 (en) 2019-09-12 2023-01-31 Medtronic Minimed, Inc. Manufacturing controls for sensor calibration using fabrication measurements
US11654235B2 (en) 2019-09-12 2023-05-23 Medtronic Minimed, Inc. Sensor calibration using fabrication measurements
US11241537B2 (en) 2019-09-20 2022-02-08 Medtronic Minimed, Inc. Contextual personalized closed-loop adjustment methods and systems
US11213623B2 (en) 2019-09-20 2022-01-04 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US11511099B2 (en) 2019-10-08 2022-11-29 Medtronic Minimed, Inc. Apparatus for detecting mating of a cap with a fluid delivery device and method
US11638545B2 (en) 2019-10-16 2023-05-02 Medtronic Minimed, Inc. Reducing sensor foreign body response via high surface area metal structures
US11496083B2 (en) 2019-11-15 2022-11-08 Medtronic Minimed, Inc. Devices and methods for controlling electromechanical actuators
US11559624B2 (en) 2019-11-21 2023-01-24 Medtronic Minimed, Inc. Systems for wearable infusion port and associated pump
US11324881B2 (en) 2019-11-21 2022-05-10 Medtronic Minimed, Inc. Systems for wearable infusion port and associated pump
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US20210170103A1 (en) 2019-12-09 2021-06-10 Medtronic Minimed, Inc. Methods and systems for real-time sensor measurement simulation
US11786655B2 (en) 2019-12-13 2023-10-17 Medtronic Minimed, Inc. Context-sensitive predictive operation of a medication delivery system in response to gesture-indicated activity changes
US11488700B2 (en) 2019-12-13 2022-11-01 Medtronic Minimed, Inc. Medical device configuration procedure guidance responsive to detected gestures
US20210183522A1 (en) 2019-12-13 2021-06-17 Medtronic Minimed, Inc. Method and system for training a mathematical model of a user based on data received from a discrete insulin therapy system
US11690573B2 (en) 2019-12-18 2023-07-04 Medtronic Minimed, Inc. Systems for skin patch gravity resistance
US11375955B2 (en) 2019-12-18 2022-07-05 Medtronic Minimed, Inc. Systems for skin patch gravity resistance
US11821022B2 (en) 2019-12-23 2023-11-21 Medtronic Minimed, Inc. Ethylene oxide absorption layer for analyte sensing and method
US11244753B2 (en) 2020-01-30 2022-02-08 Medtronic Minimed, Inc. Activity monitoring systems and methods
US11833327B2 (en) 2020-03-06 2023-12-05 Medtronic Minimed, Inc. Analyte sensor configuration and calibration based on data collected from a previously used analyte sensor
US11742680B2 (en) 2020-03-09 2023-08-29 Medtronic Minimed, Inc. Dynamic management of charge
US11278661B2 (en) 2020-03-10 2022-03-22 Beta Bionics, Inc. Infusion system and components thereof
USD958167S1 (en) 2020-03-23 2022-07-19 Companion Medical, Inc. Display screen with graphical user interface
USD958817S1 (en) 2020-03-31 2022-07-26 Medtronic Minimed, Inc. Display screen with graphical user interface
US11596359B2 (en) 2020-04-09 2023-03-07 Medtronic Minimed, Inc. Methods and systems for mitigating sensor error propagation
US11690955B2 (en) 2020-04-23 2023-07-04 Medtronic Minimed, Inc. Continuous analyte sensor quality measures and related therapy actions for an automated therapy delivery system
US11583631B2 (en) 2020-04-23 2023-02-21 Medtronic Minimed, Inc. Intuitive user interface features and related functionality for a therapy delivery system
US11272884B2 (en) 2020-06-04 2022-03-15 Medtronic Minimed, Inc. Liner for adhesive skin patch
WO2022020184A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
US11650248B2 (en) 2020-07-28 2023-05-16 Medtronic Minimed, Inc. Electrical current measurement system
US11445807B2 (en) 2020-07-31 2022-09-20 Medtronic Minimed, Inc. Pump clip with tube clamp for a fluid infusion device
US11839743B2 (en) 2020-10-07 2023-12-12 Medtronic Minimed, Inc. Graphic user interface for automated infusate delivery
US11737783B2 (en) 2020-10-16 2023-08-29 Medtronic Minimed, Inc. Disposable medical device introduction system
US11844930B2 (en) 2020-10-29 2023-12-19 Medtronic Minimed, Inc. User-mountable electronic device with accelerometer-based activation feature
US11806503B2 (en) 2020-10-29 2023-11-07 Medtronic Minimed, Inc. Removable wearable device and related attachment methods
US11534086B2 (en) 2020-10-30 2022-12-27 Medtronic Minimed, Inc. Low-profile wearable medical device
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11904146B2 (en) 2021-06-08 2024-02-20 Medtronic Minimed, Inc. Medicine injection devices, systems, and methods for medicine administration and tracking
US11792714B2 (en) 2021-06-16 2023-10-17 Medtronic Minimed, Inc. Medicine administration in dynamic networks
US11850344B2 (en) 2021-08-11 2023-12-26 Mozarc Medical Us Llc Gas bubble sensor
US11587742B1 (en) 2021-09-02 2023-02-21 Medtronic Minimed, Inc. Ingress-tolerant input devices
US11817285B2 (en) 2021-09-02 2023-11-14 Medtronic Minimed, Inc. Ingress-tolerant input devices comprising sliders
US11896447B2 (en) 2022-03-14 2024-02-13 Medtronic Minimed, Inc. Safeguards against separation from portable medicine delivery devices

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498228A (en) * 1967-05-01 1970-03-03 Charles A Blumle Portable infusion pump
US3886938A (en) * 1973-10-23 1975-06-03 Scala Anthony Power operated fluid infusion device
US3895631A (en) * 1974-02-04 1975-07-22 Alza Corp Liquid infusion unit
US4210138A (en) * 1977-12-02 1980-07-01 Baxter Travenol Laboratories, Inc. Metering apparatus for a fluid infusion system with flow control station
US4231366A (en) * 1976-08-12 1980-11-04 Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Blood flow monitoring and control apparatus
US4269185A (en) * 1979-01-08 1981-05-26 Whitney Douglass G Self contained mechanical injector
US4270532A (en) * 1977-12-28 1981-06-02 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4498843A (en) * 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4529401A (en) * 1982-01-11 1985-07-16 Cardiac Pacemakers, Inc. Ambulatory infusion pump having programmable parameters
US4543955A (en) * 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
US4636144A (en) * 1982-07-06 1987-01-13 Fujisawa Pharmaceutical Co., Ltd. Micro-feed pump for an artificial pancreas
US4657490A (en) * 1985-03-27 1987-04-14 Quest Medical, Inc. Infusion pump with disposable cassette
US4718896A (en) * 1986-01-10 1988-01-12 Abbott Laboratories Apparatus and method for controlling the flow of fluid through an administration set
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4781548A (en) * 1987-04-10 1988-11-01 Alderson Richard K Infusion pump system and conduit therefor
US4847764A (en) * 1987-05-21 1989-07-11 Meditrol, Inc. System for dispensing drugs in health care institutions
US4908017A (en) * 1985-05-14 1990-03-13 Ivion Corporation Failsafe apparatus and method for effecting syringe drive
US5373852A (en) * 1993-06-25 1994-12-20 The Regents Of The University Of California Monitoring uterine contractions by radiotelemetric transmission
US5378231A (en) * 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
US5429602A (en) * 1992-04-29 1995-07-04 Hauser; Jean-Luc Programmable portable infusion pump system
US5485408A (en) * 1992-09-09 1996-01-16 Sims Deltec, Inc. Pump simulation apparatus
US5558639A (en) * 1993-06-10 1996-09-24 Gangemi; Ronald J. Ambulatory patient infusion apparatus
US5582591A (en) * 1994-09-02 1996-12-10 Delab Delivery of solid drug compositions
US5658250A (en) * 1993-07-13 1997-08-19 Sims Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
US5681285A (en) * 1992-10-15 1997-10-28 Baxter International Inc. Infusion pump with an electronically loadable drug library and a user interface for loading the library
US5733313A (en) * 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5741313A (en) * 1996-09-09 1998-04-21 Pacesetter, Inc. Implantable medical device with a reduced volumetric configuration and improved shock stabilization
US5744793A (en) * 1994-02-28 1998-04-28 Electro-Pro, Inc. Triangulation position-detection and integrated dispensing valve
US5755692A (en) * 1994-09-28 1998-05-26 Manicom; Anthony William Method and apparatus for administering a drug to a patient
US5788669A (en) * 1995-11-22 1998-08-04 Sims Deltec, Inc. Pump tracking system
US5797519A (en) * 1997-03-14 1998-08-25 The Coca-Cola Company Postmix beverage dispenser
US5895371A (en) * 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US5960085A (en) * 1997-04-14 1999-09-28 De La Huerga; Carlos Security badge for automated access control and secure data gathering
US5984894A (en) * 1991-04-18 1999-11-16 Novo Nordisk A/S Infuser
US6026325A (en) * 1998-06-18 2000-02-15 Pacesetter, Inc. Implantable medical device having an improved packaging system and method for making electrical connections
US6051887A (en) * 1998-08-28 2000-04-18 Medtronic, Inc. Semiconductor stacked device for implantable medical apparatus
USRE36871E (en) * 1984-02-08 2000-09-12 Abbott Laboratories Remotely programmable infusion system
US6142343A (en) * 1998-12-30 2000-11-07 Steris Inc Cap and dust cover for an antiseptic soap dispenser
US6375638B2 (en) * 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection
US6752787B1 (en) * 1999-06-08 2004-06-22 Medtronic Minimed, Inc., Cost-sensitive application infusion device

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079776B (en) * 1957-08-26 1960-04-14 Heidenau Maschf Veb Soap cooling and molding machine
DE3015777A1 (en) * 1980-04-24 1981-10-29 Ferring Arzneimittel Gmbh, 2300 Kiel DEVICE FOR INTERMITTENT PULSATORIC APPLICATION OF LIQUID MEDICINAL PRODUCTS
US5167617A (en) * 1983-08-18 1992-12-01 Drug Delivery Systems Inc. Disposable electralytic transdermal drug applicator
IL69431A (en) * 1983-08-04 1987-12-31 Omikron Scient Ltd Liquid delivery system particularly useful as an implantable micro-pump for delivering insulin or other drugs
US5135479A (en) * 1983-08-18 1992-08-04 Drug Delivery Systems, Inc. Programmable control and mounting system for transdermal drug applicator
US4685902A (en) * 1983-08-24 1987-08-11 Becton, Dickinson And Company Disposable reservoir cassette
CH665955A5 (en) * 1985-11-19 1988-06-30 Universo Sa Manually programmable injector - has interchangeable drug cartridge, and data input setting the valves which can be manually selected
US4877745A (en) * 1986-11-17 1989-10-31 Abbott Laboratories Apparatus and process for reagent fluid dispensing and printing
CA1283827C (en) * 1986-12-18 1991-05-07 Giorgio Cirelli Appliance for injection of liquid formulations
US4734092A (en) * 1987-02-18 1988-03-29 Ivac Corporation Ambulatory drug delivery device
US5803712A (en) 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
US5131816A (en) * 1988-07-08 1992-07-21 I-Flow Corporation Cartridge fed programmable ambulatory infusion pumps powered by DC electric motors
US5279558A (en) * 1989-06-16 1994-01-18 Science Incorporated Fluid delivery apparatus with an additive
US5527288A (en) * 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
ES2098333T3 (en) 1991-01-31 1997-05-01 Baxter Int AUTOMATIC INSTILATION PUMP WITH SUBSTITUTE MEMORY CARTRIDGES.
DE4104814C1 (en) * 1991-02-16 1992-03-26 B. Braun Melsungen Ag, 3508 Melsungen, De
JPH05103833A (en) 1991-04-18 1993-04-27 Terumo Corp Drug quantitative distributor
US5207645A (en) * 1991-06-25 1993-05-04 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
US6436078B1 (en) * 1994-12-06 2002-08-20 Pal Svedman Transdermal perfusion of fluids
US5271527A (en) 1992-04-02 1993-12-21 Habley Medical Technology Corporation Reusable pharmaceutical dispenser with full stroke indicator
FR2692689B1 (en) * 1992-06-19 1996-12-20 Gemplus Card Int METHOD OF MEDICAL ASSISTANCE USING A MEASURING AND / OR THERAPY APPARATUS AND DEVICE FOR IMPLEMENTING THE METHOD.
GB9219875D0 (en) * 1992-09-19 1992-10-28 Graseby Medical Ltd Electronic program cards
IL107038A (en) 1992-10-05 1997-04-15 Senetek Plc Medicament injectors and methods for injection using same
US5474527A (en) * 1993-03-29 1995-12-12 Bettinger; David S. Positive displacement transdermal system
US5487386A (en) * 1993-04-22 1996-01-30 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
US5496363A (en) * 1993-06-02 1996-03-05 Minnesota Mining And Manufacturing Company Electrode and assembly
US5368562A (en) * 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
US5458140A (en) * 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5997501A (en) * 1993-11-18 1999-12-07 Elan Corporation, Plc Intradermal drug delivery device
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5582593A (en) * 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5876368A (en) * 1994-09-30 1999-03-02 Becton Dickinson And Company Iontophoretic drug delivery device having improved controller
SE510420C2 (en) 1994-11-14 1999-05-25 Cma Microdialysis Ab Infusion and microdialysis pump
US5697896A (en) * 1994-12-08 1997-12-16 Alza Corporation Electrotransport delivery device
US5879322A (en) * 1995-03-24 1999-03-09 Alza Corporation Self-contained transdermal drug delivery device
AU7093096A (en) * 1995-09-05 1997-03-27 Elan Medical Technologies Limited Chemically driven liquid delivery pumping device
WO1997011742A1 (en) * 1995-09-28 1997-04-03 Becton Dickinson And Company Iontophoretic drug delivery system, including disposable patch
US5693018A (en) * 1995-10-11 1997-12-02 Science Incorporated Subdermal delivery device
FR2747313B1 (en) * 1996-04-16 1998-06-05 Lhd Lab Hygiene Dietetique TRANSDERMAL MEDICINE DELIVERY DEVICE BY IONOPHORESIS
US6157858A (en) * 1996-12-26 2000-12-05 Elan Pharma International Limited Device for the delivery of a substance to a subject and improved electrode assembly
US5860957A (en) * 1997-02-07 1999-01-19 Sarcos, Inc. Multipathway electronically-controlled drug delivery system
US5873850A (en) * 1997-05-29 1999-02-23 Becton Dickinson And Company Locking and disfiguring mechanism for an iontophoretic system
IL121286A0 (en) * 1997-07-11 1998-01-04 Pets N People Ltd Apparatus and methods for dispensing pet care substances
US5957895A (en) * 1998-02-20 1999-09-28 Becton Dickinson And Company Low-profile automatic injection device with self-emptying reservoir
US6126637A (en) * 1998-04-15 2000-10-03 Science Incorporated Fluid delivery device with collapsible needle cover
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
DE19828677A1 (en) * 1998-05-20 2000-04-20 Hans Reinhard Koch Operating system, in particular ophthalmic operating system
US5993423A (en) * 1998-08-18 1999-11-30 Choi; Soo Bong Portable automatic syringe device and injection needle unit thereof
US6445955B1 (en) * 1999-07-08 2002-09-03 Stephen A. Michelson Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit
US6377848B1 (en) * 1999-08-25 2002-04-23 Vyteris, Inc. Devices activating an iontophoretic delivery device
GB9926538D0 (en) * 1999-11-09 2000-01-12 Kci Medical Ltd Multi-lumen connector
US6468247B1 (en) * 2000-04-21 2002-10-22 Mark Zamoyski Perfusion device for localized drug delivery
IL156245A0 (en) * 2000-12-22 2004-01-04 Dca Design Int Ltd Drive mechanism for an injection device
AU2005228145B2 (en) * 2004-03-24 2011-03-03 Corium Pharma Solutions, Inc. Transdermal delivery device
US7596398B2 (en) * 2005-03-01 2009-09-29 Masimo Laboratories, Inc. Multiple wavelength sensor attachment
EP1863559A4 (en) * 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
EP1933901B1 (en) * 2005-09-26 2014-12-31 Asante Solutions, Inc. Portable infusion pump having a flexible pushrod with hinged portions
US7963945B2 (en) * 2005-12-14 2011-06-21 Hewlett-Packard Development Company, L.P. Replaceable supplies for IV fluid delivery systems
US7654127B2 (en) * 2006-12-21 2010-02-02 Lifescan, Inc. Malfunction detection in infusion pumps
US8579879B2 (en) * 2010-02-19 2013-11-12 Medtronic Minimed, Inc. Closed-loop glucose control startup

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498228A (en) * 1967-05-01 1970-03-03 Charles A Blumle Portable infusion pump
US3886938A (en) * 1973-10-23 1975-06-03 Scala Anthony Power operated fluid infusion device
US3895631A (en) * 1974-02-04 1975-07-22 Alza Corp Liquid infusion unit
US4231366A (en) * 1976-08-12 1980-11-04 Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg Blood flow monitoring and control apparatus
US4210138A (en) * 1977-12-02 1980-07-01 Baxter Travenol Laboratories, Inc. Metering apparatus for a fluid infusion system with flow control station
US4270532A (en) * 1977-12-28 1981-06-02 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4269185A (en) * 1979-01-08 1981-05-26 Whitney Douglass G Self contained mechanical injector
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4373527B1 (en) * 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4529401A (en) * 1982-01-11 1985-07-16 Cardiac Pacemakers, Inc. Ambulatory infusion pump having programmable parameters
US4636144A (en) * 1982-07-06 1987-01-13 Fujisawa Pharmaceutical Co., Ltd. Micro-feed pump for an artificial pancreas
US4498843A (en) * 1982-08-02 1985-02-12 Schneider Philip H Insulin infusion pump
US4543955A (en) * 1983-08-01 1985-10-01 Cordis Corporation System for controlling body implantable action device
USRE36871E (en) * 1984-02-08 2000-09-12 Abbott Laboratories Remotely programmable infusion system
US4657490A (en) * 1985-03-27 1987-04-14 Quest Medical, Inc. Infusion pump with disposable cassette
US4908017A (en) * 1985-05-14 1990-03-13 Ivion Corporation Failsafe apparatus and method for effecting syringe drive
US4718896A (en) * 1986-01-10 1988-01-12 Abbott Laboratories Apparatus and method for controlling the flow of fluid through an administration set
US4781548A (en) * 1987-04-10 1988-11-01 Alderson Richard K Infusion pump system and conduit therefor
US4847764A (en) * 1987-05-21 1989-07-11 Meditrol, Inc. System for dispensing drugs in health care institutions
US4847764C1 (en) * 1987-05-21 2001-09-11 Meditrol Inc System for dispensing drugs in health care instituions
US5984894A (en) * 1991-04-18 1999-11-16 Novo Nordisk A/S Infuser
US5429602A (en) * 1992-04-29 1995-07-04 Hauser; Jean-Luc Programmable portable infusion pump system
US5485408A (en) * 1992-09-09 1996-01-16 Sims Deltec, Inc. Pump simulation apparatus
US5681285A (en) * 1992-10-15 1997-10-28 Baxter International Inc. Infusion pump with an electronically loadable drug library and a user interface for loading the library
US5378231A (en) * 1992-11-25 1995-01-03 Abbott Laboratories Automated drug infusion system
US5558639A (en) * 1993-06-10 1996-09-24 Gangemi; Ronald J. Ambulatory patient infusion apparatus
US5373852A (en) * 1993-06-25 1994-12-20 The Regents Of The University Of California Monitoring uterine contractions by radiotelemetric transmission
US5658250A (en) * 1993-07-13 1997-08-19 Sims Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
US5744793A (en) * 1994-02-28 1998-04-28 Electro-Pro, Inc. Triangulation position-detection and integrated dispensing valve
US5582591A (en) * 1994-09-02 1996-12-10 Delab Delivery of solid drug compositions
US5755692A (en) * 1994-09-28 1998-05-26 Manicom; Anthony William Method and apparatus for administering a drug to a patient
US5788669A (en) * 1995-11-22 1998-08-04 Sims Deltec, Inc. Pump tracking system
US5733313A (en) * 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5895371A (en) * 1996-08-27 1999-04-20 Sabratek Corporation Medical treatment apparatus and method
US5741313A (en) * 1996-09-09 1998-04-21 Pacesetter, Inc. Implantable medical device with a reduced volumetric configuration and improved shock stabilization
US5797519A (en) * 1997-03-14 1998-08-25 The Coca-Cola Company Postmix beverage dispenser
US5960085A (en) * 1997-04-14 1999-09-28 De La Huerga; Carlos Security badge for automated access control and secure data gathering
US6026325A (en) * 1998-06-18 2000-02-15 Pacesetter, Inc. Implantable medical device having an improved packaging system and method for making electrical connections
US6051887A (en) * 1998-08-28 2000-04-18 Medtronic, Inc. Semiconductor stacked device for implantable medical apparatus
US6142343A (en) * 1998-12-30 2000-11-07 Steris Inc Cap and dust cover for an antiseptic soap dispenser
US6375638B2 (en) * 1999-02-12 2002-04-23 Medtronic Minimed, Inc. Incremental motion pump mechanisms powered by shape memory alloy wire or the like
US6752787B1 (en) * 1999-06-08 2004-06-22 Medtronic Minimed, Inc., Cost-sensitive application infusion device
US6423035B1 (en) * 1999-06-18 2002-07-23 Animas Corporation Infusion pump with a sealed drive mechanism and improved method of occlusion detection

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632499B2 (en) * 2001-05-18 2014-01-21 Deka Products Limited Partnership Infusion pump assembly
US9446188B2 (en) * 2001-05-18 2016-09-20 Deka Products Limited Partnership Infusion pump assembly
US20170007779A1 (en) * 2001-05-18 2017-01-12 Deka Products Limited Partnership Infusion pump assembly
US20180133413A1 (en) * 2001-05-18 2018-05-17 Deka Products Limited Partnership Infusion pump assembly
US10967137B2 (en) * 2001-05-18 2021-04-06 Deka Products Limited Partnership Infusion pump assembly
US20120083738A1 (en) * 2001-05-18 2012-04-05 Deka Products Limited Partnership Infusion pump assembly
US9173996B2 (en) 2001-05-18 2015-11-03 Deka Products Limited Partnership Infusion set for a fluid pump
US20210290861A1 (en) * 2001-05-18 2021-09-23 Deka Products Limited Partnership Infusion pump assembly
US10500352B2 (en) * 2001-05-18 2019-12-10 Deka Products Limited Partnership Infusion pump assembly
US20140135695A1 (en) * 2001-05-18 2014-05-15 Deka Products Limited Partnership Infusion pump assembly
US8070726B2 (en) 2003-04-23 2011-12-06 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
US9072828B2 (en) 2003-04-23 2015-07-07 Valeritas, Inc. Hydraulically actuated pump for long duration medicament administration
US10525194B2 (en) 2003-04-23 2020-01-07 Valeritas, Inc. Hydraulically actuated pump for fluid administration
US11642456B2 (en) 2003-04-23 2023-05-09 Mannkind Corporation Hydraulically actuated pump for fluid administration
US9125983B2 (en) 2003-04-23 2015-09-08 Valeritas, Inc. Hydraulically actuated pump for fluid administration
US9511187B2 (en) 2003-04-23 2016-12-06 Valeritas, Inc. Hydraulically actuated pump for fluid administration
US9089636B2 (en) 2004-07-02 2015-07-28 Valeritas, Inc. Methods and devices for delivering GLP-1 and uses thereof
US8821443B2 (en) 2006-03-30 2014-09-02 Valeritas, Inc. Multi-cartridge fluid delivery device
US8361053B2 (en) 2006-03-30 2013-01-29 Valeritas, Inc. Multi-cartridge fluid delivery device
US9687599B2 (en) 2006-03-30 2017-06-27 Valeritas, Inc. Multi-cartridge fluid delivery device
US7914499B2 (en) 2006-03-30 2011-03-29 Valeritas, Inc. Multi-cartridge fluid delivery device
US10493199B2 (en) 2006-03-30 2019-12-03 Valeritas, Inc. Multi-cartridge fluid delivery device
US11894609B2 (en) 2007-12-31 2024-02-06 Deka Products Limited Partnership Split ring resonator antenna adapted for use in wirelessly controlled medical device
US8900188B2 (en) * 2007-12-31 2014-12-02 Deka Products Limited Partnership Split ring resonator antenna adapted for use in wirelessly controlled medical device
US20100191186A1 (en) * 2007-12-31 2010-07-29 Deka Products Limited Partnership Split ring resonator antenna adapted for use in wirelessly controlled medical device
US8684972B2 (en) 2008-10-10 2014-04-01 Deka Products Limited Partnership Infusion pump assembly with a backup power supply
US8414536B2 (en) 2008-10-10 2013-04-09 Deka Products Limited Partnership Pump assembly with a removable cover assembly
US8708960B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Multi-language/multi-processor infusion pump assembly
US9180245B2 (en) 2008-10-10 2015-11-10 Deka Products Limited Partnership System and method for administering an infusible fluid
US9024768B2 (en) 2008-10-10 2015-05-05 Deka Products Limited Partnership Occlusion detection system and method
US20100094261A1 (en) * 2008-10-10 2010-04-15 Bryant Robert J System and method for administering an infusible fluid
US8708376B2 (en) 2008-10-10 2014-04-29 Deka Products Limited Partnership Medium connector
US8834429B2 (en) 2008-10-10 2014-09-16 Deka Products Limited Partnership Infusion pump assembly
US20100217233A1 (en) * 2009-02-20 2010-08-26 Ranft Elizabeth A Method and device to anesthetize an area
US9227009B2 (en) * 2009-04-30 2016-01-05 Sanofi-Aventis Deutschland Gmbh Pen-type injector with ergonomic button arrangement
US20120165747A1 (en) * 2009-04-30 2012-06-28 Sanofi-Aventis Deutschland Gmbh Pen-Type Injector With Ergonomic Button Arrangement
US8777901B2 (en) 2010-09-24 2014-07-15 Perqflo, Llc Infusion pumps
US10272196B2 (en) 2010-09-24 2019-04-30 Perqflo, Llc Infusion pumps
US8915879B2 (en) 2010-09-24 2014-12-23 Perqflo, Llc Infusion pumps
US9750875B2 (en) 2010-09-24 2017-09-05 Perqflo, Llc Infusion pumps
US9308320B2 (en) 2010-09-24 2016-04-12 Perqflo, Llc Infusion pumps
US9216249B2 (en) 2010-09-24 2015-12-22 Perqflo, Llc Infusion pumps
US8430849B2 (en) 2010-09-24 2013-04-30 Perqflo, Llc Infusion pumps and plunger pusher position-responsive cartridge lock for infusion pumps
US9498573B2 (en) 2010-09-24 2016-11-22 Perqflo, Llc Infusion pumps
US9320849B2 (en) 2010-09-24 2016-04-26 Perqflo, Llc Infusion pumps
US11547792B2 (en) 2010-09-24 2023-01-10 Medtronic Minimed, Inc. Infusion pumps
US9381300B2 (en) 2010-09-24 2016-07-05 Perqflo, Llc Infusion pumps
US10967124B2 (en) 2010-11-20 2021-04-06 Medtronic Minimed, Inc. Infusion pumps
US10029045B2 (en) 2010-11-20 2018-07-24 Perqflo, Llc Infusion pumps
US8905972B2 (en) 2010-11-20 2014-12-09 Perqflo, Llc Infusion pumps
US11607491B2 (en) * 2014-02-24 2023-03-21 Becton, Dickinson And Company Infusion pump with program key
WO2015126721A1 (en) * 2014-02-24 2015-08-27 Becton, Dickinson And Company Infusion pump with program key
US20170049960A1 (en) * 2014-02-24 2017-02-23 Becton, Dickinson And Company Infusion Pump with Program Key
US10159786B2 (en) 2014-09-30 2018-12-25 Perqflo, Llc Hybrid ambulatory infusion pumps
US10946137B2 (en) 2014-09-30 2021-03-16 Medtronic Minimed, Inc. Hybrid ambulatory infusion pumps
US11684712B2 (en) 2015-02-18 2023-06-27 Medtronic Minimed, Inc. Ambulatory infusion pumps and reservoir assemblies for use with same
US11672909B2 (en) 2016-02-12 2023-06-13 Medtronic Minimed, Inc. Ambulatory infusion pumps and assemblies for use with same
EP4059546A4 (en) * 2019-11-15 2023-03-22 Shenzhen Mindray Scientific Co., Ltd. Injection pump

Also Published As

Publication number Publication date
WO2001070307A1 (en) 2001-09-27
US20010041869A1 (en) 2001-11-15
CA2401570A1 (en) 2002-09-27
US8613726B2 (en) 2013-12-24
DE60131071D1 (en) 2007-12-06
DE60131071T2 (en) 2008-07-31
EP1265661B1 (en) 2007-10-24
ATE376436T1 (en) 2007-11-15
CA2401570C (en) 2006-07-04
AU2001247672A1 (en) 2001-10-03
EP1265661B2 (en) 2010-07-21
US20100160861A1 (en) 2010-06-24
EP1265661A1 (en) 2002-12-18
DE60131071T3 (en) 2010-12-16
JP2003527217A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
US8613726B2 (en) Control tabs for infusion devices and methods of using the same
US6752787B1 (en) Cost-sensitive application infusion device
US9522232B2 (en) Data storage for an infusion pump system
US7789859B2 (en) Operating an infusion pump system
CA2565956C (en) Cost-sensitive application infusion device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION