US20060281187A1 - Analyte detection devices and methods with hematocrit/volume correction and feedback control - Google Patents

Analyte detection devices and methods with hematocrit/volume correction and feedback control Download PDF

Info

Publication number
US20060281187A1
US20060281187A1 US11/239,122 US23912205A US2006281187A1 US 20060281187 A1 US20060281187 A1 US 20060281187A1 US 23912205 A US23912205 A US 23912205A US 2006281187 A1 US2006281187 A1 US 2006281187A1
Authority
US
United States
Prior art keywords
sample
arrangement
analyte
assay pad
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/239,122
Inventor
Jeffrey Emery
Carole Stivers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuity Medical Inc
Original Assignee
Rosedale Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosedale Medical Inc filed Critical Rosedale Medical Inc
Priority to US11/239,122 priority Critical patent/US20060281187A1/en
Assigned to ROSEDALE MEDICAL, INC. reassignment ROSEDALE MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMERY, JEFFREY L., STIVERS, CAROLE R.
Priority to CA2611891A priority patent/CA2611891C/en
Priority to EP06772943.4A priority patent/EP1893994B1/en
Priority to PCT/US2006/022840 priority patent/WO2006138226A2/en
Priority to EP19187252.2A priority patent/EP3629005A1/en
Priority to JP2008516982A priority patent/JP5802361B2/en
Publication of US20060281187A1 publication Critical patent/US20060281187A1/en
Assigned to INTUITY MEDICAL, INC. reassignment INTUITY MEDICAL, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ROSEDALE MEDICAL, INC.
Priority to US13/037,089 priority patent/US8969097B2/en
Priority to US14/614,177 priority patent/US9366636B2/en
Priority to US15/177,041 priority patent/US10226208B2/en
Priority to US16/159,546 priority patent/US11419532B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14535Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring haematocrit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/521Single-layer analytical elements
    • G01N33/523Single-layer analytical elements the element being adapted for a specific analyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N2021/752Devices comprising reaction zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/886Streptomyces
    • Y10S435/895Streptomyces filipinensis

Definitions

  • the present invention is directed to techniques and devices for detection of the presence and/or concentration of an analyte.
  • diabetes is the fifth-deadliest disease in the United States and kills more than 213,000 people a year, the total economic cost of diabetes in 2002 was estimated at over $132 billion dollars, and the risk of developing type I juvenile diabetes is higher than virtually all other chronic childhood diseases.
  • a critical component in managing diabetes is frequent blood glucose monitoring.
  • a number of systems exist for self-monitoring by the patient.
  • One such system may be termed a photometric system or method.
  • the first step is to obtain the sample of aqueous fluid containing an analyte to be assayed, usually whole blood or fractions thereof.
  • the sample of blood may be obtained by a finger stick or other means.
  • the fluid sample is then contacted with an assay pad or membrane.
  • Contact is generally achieved by moving the assay pad or membrane into contact with the liquid sample on the surface of the patient's skin.
  • the target analyte present in the sample passes through the assay pad or membrane by capillary, wicking, gravity flow and/or diffusion mechanisms. Chemical reagents present in the pad or membrane react with the target analyte producing a light absorbing reaction product, or color change.
  • the assay pad or membrane is then inserted into a monitor where an optical measurement is then made of this color change.
  • the optical measurement is a reflectance measurement
  • a surface of the assay pad or membrane is illuminated with a light source.
  • Light is reflected from the surface of the assay pad or membrane as diffuse reflected light.
  • This diffuse light is collected and measured, for example by the detector of a reflectance spectrophotometer.
  • the amount of reflected light is then related to the amount of analyte in the sample; usually the amount of light reflected off the surface of the assay pad or membrane is an inverse function of the amount of analyte contained in the sample.
  • An algorithm is employed to determine analyte concentration contained in the sample based on the information provided by the detector.
  • Representative algorithms that may be employed where the analyte of interest is glucose and the fluid sample is whole blood are disclosed, for example, in U.S. Pat. Nos. 5,049,487; 5,059,394; 5,843,692 and 5,968,760; the disclosures of which are incorporated herein by reference.
  • Glucose monitoring technology that relies on the photometric method of quantifying the glucose concentration in whole blood may be subject to errors associated with variations in hematocrit level, or concentration of red blood cells within the blood sample.
  • Various methods have been employed to ensure the accuracy and repeatability of measured glucose concentration using the photometric method across a typical range of hematocrit levels.
  • a normal hematocrit level is 42-54% for men and 36-48% for women. Overall, the normal range is from 36-54%, but for a variety of reasons, those who regularly test their glucose concentrations may have hematocrit levels even lower (anemia) or higher (polycythemia) than these normal ranges. This presents a challenge for the development of accurate glucose monitoring.
  • glucose monitors typically require that the user supply a sufficient quantity of whole blood for an accurate reading.
  • This volume has been around 10 microliters or more in the past, but with the development of newer quantification technologies, the minimum volume has been brought to as low as 1 microliter for photometric meters. This has reduced the burden on diabetics in their testing by reducing the depth of the lancing and the effort to milk a relatively large amount of blood from their lancing site. Again, the calibration of the meter is developed with the assumption that this minimum supply has been delivered to the test strip. If the user has not supplied a sufficient amount, then the meter generally displays an error code and the user must test again.
  • a photometric meter may have the ability to evaluate and adjust its internal calibration by detecting the amount of fluid supplied to the reagent strip, and applying an appropriate calibration parameter specifically chosen for that volume.
  • One such device relies on the application of a specific magnitude and duration of a partial vacuum to the skin in order to facilitate the acquisition of a minimum required sample volume.
  • this pre-programmed amount or duration of vacuum may be appropriate.
  • this pre-programmed catalyst may produce either an insufficient or excessive amount of blood, as well as other undesired outcomes, such as excessive bruising (for those with fragile capillary networks), an unnecessary delay in obtaining results (for fast bleeding individuals), as well as excessive residual blood left on the skin.
  • the sample quantification detector could also determine in real-time whether or not a sufficient sample volume has been obtained for an accurate reading, and provide this information as feedback to control the magnitude and/or duration of a catalyst. This feedback driven control would be a significant advantage for integrated glucose monitoring technology.
  • Photometric assay pads or membranes for analyte concentration measurements typically produce a circular or linear spot when the chemical reagents contained therein react with a fluid containing a specific analyte, such as glucose, within whole blood.
  • An ideal spot may be defined as one in which the color across the spot is uniform and indicative of the concentration of the analyte.
  • a spot which is not ideal may be manifest in one or more of the following ways: non-uniformity of the primary color (e.g., variations in the intensity of blue); presence of non-primary color, such as red, which may be associated with the presence and/or lysis of blood cells, and the above color variations may be distributed randomly or non-uniformly across the spot.
  • the quality of a spot developed as a result of an analyte reacting with the reagent membrane may not be ideal as described above.
  • Such reasons may include one or more of: flaws or manufacturing variations in the membrane structure; variations in the concentration of the reagent enzyme; mishandling of the membrane during manufacturing; and unintended chemical reactions between the fluid and/or analyte and the reagent structure and/or membrane chemistry (such as another medical drug within the blood sample reacting with the reagent enzyme).
  • the state of the art has been advanced through the provision of arrangements, devices and techniques such as those described further herein, for accurately, efficiently, and economically determining the presence and/or concentration of an analyte.
  • the state of the art has been advanced, especially, but not exclusively, within the context of personal glucose monitoring devices and techniques. Additionally, or alternatively, according to the present invention arrangements, devices and techniques are provided which may overcome one or more of the abovementioned shortcomings associated with conventional systems and methods.
  • Devices and methods are contemplated that may employ a detector comprising an array of detector elements or pixels to detect color change or intensity of reflected light associated with a photometric chemical reaction between the analyte and reagent chemistry.
  • the detector elements comprise CMOS-based detector elements.
  • the CMOS detector elements help correct for differences in hematocrit levels and/or volumes associated with samples under analysis.
  • An additional aspect of the present invention provides for CMOS-based detector elements that can provide feedback control for a connected device that performs automated whole blood sampling and detection of an analyte.
  • feedback from CMOS detection elements is used to compensate for non-ideal reaction spot characteristics.
  • the present invention provides a device for monitoring the concentration of an analyte present in bodily fluid, the device comprising a detector, the detector comprising a detector element or pixel, the element or pixel comprising a CMOS sensor, a CCD sensor, a photodiode or an infrared sensor, including both near-field and mid-field infrared sensors.
  • Other sensing systems also contemplated within the scope of the present invention include infrared, ultraviolet and fluorescent sensing systems and electrochemical sensing systems, including reagentless sensing approaches.
  • detector array of the present invention may include any suitable detector element(s).
  • the present invention is thus not limited to embodiments of the invention including CMOS or CCD detector elements, photodiodes, infrared, fluorescent, ultraviolet or electrochemical detector elements.
  • the detector array is not limited only to linear arrays.
  • Non-linear arrays such as polar or area arrays, are also contemplated by the present invention.
  • first, second, third and fourth components does not limit the present invention to embodiments where each of these components is physically separable from one another.
  • a single physical element of the invention may perform the features of more than one of the claimed first, second, third or fourth components.
  • a plurality of separate physical elements working together may perform the claimed features of one of the claimed first, second, third or fourth components.
  • reference to first, second (etc.) method steps does not limit the invention to only separate steps.
  • a single method step may satisfy multiple steps described herein.
  • a plurality of method steps could, in combination, constitute a single method step recited herein.
  • an assay pad comprising at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot upon reaction with the analyte
  • a light source comprising at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot upon reaction with the analyte
  • a detector comprising at least one detector
  • a processor capable of producing a detectable signal in the form of a reaction spot upon reaction with the analyte
  • the memory comprising: (a) at least one value indicative of one or more of: (i) the level of hematocrit contained in the sample; (ii) the volume of the sample applied to the assay pad; or (iii) imperfections present in the reaction spot; and (b) at least one algorithm for calculating the concentration of the analyte contained in the sample.
  • devices, arrangements and methods for quantifying the concentration of an analyte present in bodily fluid comprising: providing an assay pad comprising at least one chemical reagent; introducing a sample onto the assay pad; producing a detectable signal in the form of a reaction spot upon reaction of the at least one chemical reagent with the analyte; generating a signal based on light reflected off the assay pad; calculating at least one value indicative to one or more of: (i) the level of hematocrit contained in the sample; (ii) the volume of the sample applied to the assay pad; or (iii) imperfections present in the reaction spot; and calculating the concentration of analyte contained in the sample by factoring in the at least one value.
  • the device may comprise a glucose meter integrating some or all of the above-described features.
  • the integrated device may be configured to perform at least one such photometric analysis before reloading disposable components thereof becomes necessary.
  • the integrated device may be handheld or wearable.
  • the integrated device may be in the general form of a wristwatch.
  • the detector elements may comprise CMOS-based detector elements.
  • the detector array may be in the form of a linear array of CMOS-based detector elements or pixels.
  • an integrated device may include means for extracting a sample of bodily fluid and can comprise a skin piercing member and the application of one or more of: (i) vacuum; (ii) positive pressure; and (iii) heat.
  • the device may further comprise a computer-readable medium, the medium comprising at least one of an algorithm and a look-up table.
  • the device may further comprise a microprocessor controller.
  • the above-described invention may further comprise at least one of a light source, one or more lenses, one or more light transmission elements (e.g. optical fibers), optical diffusers and optical filters.
  • the assay pad may comprise at least one chemical reagent that produces a color change defining a reaction spot upon reaction with the analyte.
  • FIG. 1 is a flow diagram of a mode of operation according to certain aspects of the present invention.
  • FIG. 2 is a schematic illustration of an arrangement formed according to the principles of the present invention.
  • FIG. 3 is a schematic diagram of a portion of the arrangement of FIG. 2 .
  • FIG. 4 is a perspective view of a device formed according to an embodiment of the present invention.
  • FIG. 5 is a partial cutaway view of FIG. 4 .
  • a target analyte such as glucose, bilirubin, alcohol, controlled substances, toxins, hormones, proteins, etc.
  • the current invention provides the ability to correct for broad variations in sample hematocrit levels in the measurement of an analyte, such as glucose, during the course of the test.
  • the invention takes advantage of an imaging array of detectors to perform this correction and does not require any additional hardware. In other words, no other distinct sensors or detectors, other than the imaging array, are required to calculate the correction.
  • the very sensor that is used to quantify the analyte within the sample may also correct for hematocrit.
  • Strategic algorithms that process the data from the imaging array provide real-time or near real-time information about the sample hematocrit level. Thus, more accurate results, regardless of the hematocrit level of the user, may be obtained via correction based on the hematocrit level of the sample.
  • the current invention may also use appropriate algorithms to permit real-time sensing of the amount of sample volume delivered to an assay pad. With this information, appropriate calibration parameters may be selected corresponding to the actual delivered volume. To correct for sample volume, algorithms similar to those used for hematocrit correction may be used, where volume is substituted for hematocrit and a unique formulation and corresponding constants are determined.
  • the present invention offers the flexibility to improve the accuracy of measured glucose for a broad range of sample volumes that are typically delivered to the assay pad of the meter system.
  • sampling catalysts such as vacuum, heat, pressure, etc. may be implemented or provided automatically by the device to help ensure sufficient sample volume is collected and analyzed.
  • the invention provides information to the meter system to know when and how much of the catalyst is sufficient. Since the invention can measure or estimate the volume of the sample delivered to the assay pad, it can also provide feedback to start, maintain or terminate the catalysts, as well as increase or decrease the magnitude of the catalyst, based on this measured volume.
  • the present invention can process data received from the detector array to compensate for irregularities or imperfections present in a reaction spot in order to improve accuracy of the analyte concentration method.
  • the present invention includes devices, arrangements and methods that include any of the above referenced aspects individually, as well as combinations of some or all of these aspects.
  • the current invention may employ a linear CMOS imaging detector array.
  • the linear CMOS array detects light across a single row of optical detectors (pixels) whose output is proportional to the amount of light incident to the pixel.
  • Linear detector arrays offer an advantage over 2-D imaging systems in simplicity and efficiency in processing the image information as long as the expected location of reagent chemistry reaction or reagent spot is known and the associated light, which may be supplied by an LED, is reflected from this area and is imaged appropriately by the CMOS array.
  • the CMOS detector array may have an overall size that is comparable to the size of the assay pad and the expected range of spot sizes that develop on the pad. According to one alternative, the detector can be larger than the size of the pad. This construction can allow wider tolerances in the relative position of the assay pad and the detector, and provide for additional in-process error detection and recovery (e.g., detecting or correcting for assay pad motion).
  • CMOS detector array such as part # TSL1401R or TSL1401CS; from TAOS, Plano, Tex. This detector has 128 pixels across an array of ⁇ 19 mm in length. Light reflected off of white surfaces, such as an unreacted reagent pad, and received by the CMOS detector results in a signal from each pixel that is conditioned to produce a near maximum response up to 5 volts.
  • a number of different arrangements comprising a quantification member, such as an assay pad, a sensor or detector, and one or more additional components are contemplated by the present inventions. Additional exemplary arrangements are described in U.S. application Ser. No. 10/394,230, ANALYTE CONCENTRATION DETECTION DEVICES AND METHODS, the entire content of which is incorporated by reference herein.
  • the senor When coupled with an assay pad containing a photometric reagent, the sensor detects the change in color of the pad, and the output is processed as a change in voltage relative to that of the original reagent color. Typically, about 10-50% of the pixels across the array are sufficient to resolve a spot of color change, but this can depend on a variety of factors, including CMOS sensor design, sample volume size, reagent dynamics, and the optical path between the pad and sensor.
  • a second assay may be performed at a different area of the same assay pad, or on separate assay pad, at a location corresponding to the aforementioned unused pixels.
  • the unused pixels may be used for calibration or as a control.
  • a control solution having a known concentration of analyte may be introduced in the area of the assay pad, or onto a separate pad, in the area of the unused pixels.
  • control solution reacts with the reagent and the signal produced by pixels can be calibrated in accordance with the known analyte concentration.
  • a means for calibrating the reagent for lot information may be provided in the area of the unused pixels, thereby eliminating the need for the user to set reagent lot calibration codes.
  • a similar arrangement and technique would be to utilize a standard color in registry with the unused pixels that produces a known reflectance signal. Upon reading this known signal, the arrangement, via a microprocessor and associated software and electronic components, can verify whether or not the device is functioning properly.
  • sensor data can be acquired with an analog-to-digital capture device, such as a PC board, and processed as a linear dimension data array whose size corresponds to the number of pixels in the imaging array, such as 128 or 256 pixels.
  • This data array will change over time as the reaction between the analyte (glucose) and the reagent enzymes develops, reaches saturation and begins to dry out.
  • the current invention incorporates an algorithm for processing the information in the data array over time to detect and correct for the hematocrit in the blood sample.
  • the rate of color change over time across the detector array, and thus rate of change in signal of the data array, is dependent upon the relative amount of plasma in the sample.
  • a relatively high plasma content in a given sample size will cause the sample to react with the reagent chemistry faster and develop a change in color more quickly than a relatively smaller plasma content. Since hematocrit level is inversely proportional to plasma content, the rate of color change can be scaled inversely to hematocrit level.
  • rate of color change and hematocrit level will depend upon a variety of variables, including the volume of the sample delivered to the assay pad as well as the inherent reagent chemistry, optical path, light source and detector array. Consequently, a unique correlation calibration between color change rate as detected by the CMOS imager and blood hematocrit level can be empirically determined and programmed into a memory device as a lookup table, or calculation.
  • Exemplary, non-limiting algorithm formulations to accomplish the above include:
  • Pixel position x ranges from the lower to upper limits and in the case of a 256 pixel array, would range from 1 to 256.
  • Array signal strength A(x,t) corresponds to a measure of the color of the reagent membrane. Typically, this signal is initially processed as a voltage or a current. Those skilled in the art of photometric reagent signal process will appreciate that subsequent transformation of this data into a measure of normalized reflectance R and/or to absorption via the well-known calculation of K/S may be represented by A(x,t). For example:
  • the appropriate calibration factor relating reflected light to glucose concentration would then be chosen based on the hematocrit level.
  • the meter detects color change and applies the correct calibration factor for the user's hematocrit level to the calculation of glucose content made by an algorithm also contained in the same, or a different memory device.
  • glucose calibration curve is of the form:
  • This corrected signal would then be substituted into the above equation to calculate the hematocrit-adjusted glucose concentration.
  • Processing the data generated by the change in color caused by the reaction between the analyte and reagent chemistry in conjunction with the speed and capacity of today's microprocessors would not add to the required time to process the sample, yet would substantially increase the accuracy and reduce the variability for analyte concentration measurements associated with different whole blood hematocrit levels.
  • Such alternatives and modifications include one or more of: evaluating the rate of pixel signal changes with respect to time; evaluating the rate of pixel change with respect to time and with respect to associated pixels that also are changing (i.e., spatial and temporal rate of change); evaluating the rate of pixel change with respect to time for an individual pixel; evaluating the rate of pixel change with respect to time for multiple pixels; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color when enzymatic reaction and color change is complete; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color during the ongoing enzymatic reaction; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color after a lapse of a predetermined amount of time before any enzymatic reaction has actually occurred; and evaluating the resolved volume of the sample (as described
  • the invention also contemplates novel arrangements, devices and methods for quantifying, in real-time, the amount of sample delivered to an analyte quantification member, such as an assay pad.
  • This method takes advantage of the discrete data provided by individual detector elements or pixels.
  • the system described earlier can resolve a particular dimension associated with the size of the spot, such as width.
  • This invention does not require that the spot be of a particular shape, such as round, square, or rectangular, as long as the detector array is oriented to resolve at least one dimension of the spot that is proportional to sample volume. Assuming the assay pad and the method by which the blood is delivered to the pad has been optimized to reduce the variability in spot development, the spot size will be proportional to the volume of blood sample.
  • the imaging system can resolve the spot size by identifying how many pixels or detector elements have detected a color change. Although the color change associated with the chemical reaction between analyte and enzyme may not be completed or reached equilibrium, the quantification of the number of pixels that have detected a predetermined threshold change in color will be proportional to the spot size. Thus, a real-time assessment of the spot size and thus volume can be computed.
  • the effect on glucose concentration calculations associated with various sample volumes may be empirically determined, and a lookup table, equation, or calculation incorporated in a memory device which may then be used to select an appropriate predetermined calibration factor to provide a more accurate reading of the analyte concentration for a particular sample volume.
  • an appropriate calibration factor based on the actual sample volume may be applied to an algorithm used to calculate glucose concentration.
  • glucose calibration curve is of the form:
  • This corrected signal would then be substituted into the above equation to calculate the volume-adjusted glucose concentration.
  • such alternatives and modifications include one or more of: computing the number of pixels that have detected a change in color above a prescribed constant threshold at a particular point in time during the enzymatic reaction; computing the number of pixels that have detected a change in color above a prescribed constant threshold at multiple points in time during the enzymatic reaction; computing the number of pixels that have detected a change in color above a prescribed constant threshold at a time in which the enzymatic reaction is complete; computing the number of pixels that have detected a change in color above a variable threshold across the array; using above strategies to correlate output to actual sample volume at reagent pad; and using above strategies to predict sample volume to be delivered to assay pad after a predetermined amount of time.
  • the volume information can be used as feedback information, and utilized in devices such as an integrated meter.
  • the definition of an integrated device or meter in this context includes one which includes the functions of acquiring a sample of body fluid or blood from the skin, transporting the body fluid or blood from the skin to a quantification area or assay pad, and quantifying the analyte (e.g.—glucose) in the sample via a photometric method.
  • analyte e.g.—glucose
  • a catalyst such as vacuum, heat, pressure, vibration or similar action is preferably applied to the sampling site to facilitate the acquisition of sufficient sample volume of blood.
  • Catalysts such as these can be effective in expressing sufficiently large volumes of blood even from alternative body sites that are less perfused than the fingertips.
  • this invention provides a construction and method to control the catalyst such that it operates for exactly as long as necessary.
  • the detector array and associated on-board data processing within the integrated device can provide a feedback signal via a digital microprocessor controller or similar device which indicates either to increase, decrease, or keep constant the magnitude of the catalyst, as well as to either continue or stop the application of the catalyst.
  • the control signal may be either binary or analog and use this information accordingly to control a pump (for vacuum/pressure), a motor (for vibration), a heating element (for increasing skin temperature) or combinations thereof.
  • FIG. 1 One such exemplary mode of operation is illustrated in FIG. 1 .
  • a suitable catalyst such as a vacuum created by a suitable mechanism or pump is initiated. Shortly thereafter the signals from the detector array are analyzed and the sample volume estimated. This volume is compared with a target sample volume. If the volume is sufficient, the catalyst is turned off. If the volume is insufficient, the reading and calculating processes are repeated until such time as the target sample volume is reached. Once the target sample volume is reached, the analyte concentration determination may continue.
  • a suitable catalyst such as a vacuum created by a suitable mechanism or pump is initiated. Shortly thereafter the signals from the detector array are analyzed and the sample volume estimated. This volume is compared with a target sample volume. If the volume is sufficient, the catalyst is turned off. If the volume is insufficient, the reading and calculating processes are repeated until such time as the target sample volume is reached. Once the target sample volume is reached, the analyte concentration determination may continue.
  • such alternatives and modifications may include one or more of: providing a feedback signal corresponding to actual sample volume received at the assay pad; providing a feedback signal corresponding to predicted volume anticipated to be delivered to assay pad; providing an analog feedback signal that is proportional to the volume received at the assay pad; providing a digital feedback signal that indicates either sufficient or insufficient quantity of sample volume received; providing feedback signal based on imaging of an alternative location within the meter that is not necessarily the reagent pad, but can also be imaged by the detector array to detect whether a specific threshold of blood will be delivered to the reagent pad; and providing feedback signal based on imaging of an alternative location outside of the meter (such as on the skin) that can also be imaged by the detector array to detect whether a specific threshold of blood will be delivered to the assay pad.
  • the discrete nature of the detection elements or pixels also allows for detection of flaws and to distinguish them from regions of the reaction spot that are developing an appropriate or more ideal photometric reaction, even if they are randomly distributed.
  • a detector array is arranged to scan the reaction spot, optionally coupled with appropriate optical magnification.
  • An ideal spot will produce little or no variation in signal response across the array.
  • the response of the pixels will vary spatially and temporally.
  • a quantification algorithm which has one or more of the following features could correct and/or ignore the reaction spot flaw(s) and have the potential to provide a more accurate measurement of the analyte concentration: identification and inclusion of data only from pixels which correspond to the appropriate and expected color (e.g., screen for data corresponding to various shades of blue only); identification and exclusion of data from pixels which do not correspond to the appropriate and expected color (e.g., screen out data corresponding to shades of red); inclusion/exclusion of pixel information which does not change at a rate with respect to time expected for the appropriate color (e.g., rate of change of blue is not the same as that of non-blue pixels); and inclusion/exclusion of pixel information which does not change at a rate with respect to time after a specific elapsed time or during a specific time window expected for the appropriate color (e.g., blue pixels change from time t 1 to t 2 by x %, whereas non-blue pixels do not change by x % between time t 1 through t 2
  • Combinations of the above strategies or similar ones may allow the algorithm to successfully correct for non-ideal spots. It may even be the case that a relatively small percentage of the spot area actually is ideal, yet if the detector array can image this area, even 1 pixel could be sufficient to provide an accurate reading of the analyte.
  • FIGS. 2-3 are schematic illustrations of at least some of the aspects of arrangements, devices and methods of the present invention.
  • an arrangement 10 such as an integrated device or meter may include a detector array 20 , which can be provided in the form of a linear array of individual detection elements 30 . Each detection element 30 is capable of producing a signal.
  • the detection elements 30 may comprise one or more CMOS-based detection elements or pixels.
  • the linear array 20 is generally in optical registry with an assay pad 40 .
  • the relative vertical position of the assay pad and detector array 20 may, of course, differ from the illustrated embodiment.
  • the assay pad 40 and the detector array 20 may have a geometry that differs from that of the illustrated embodiment.
  • the detector array 20 may be larger than the assay pad 40 .
  • the assay pad 40 preferably contains at least one reagent.
  • a mechanism may be provided to transport a sample of body fluid, such as blood, to the assay pad 40 .
  • a hollow member 60 such as a needle, having one end in fluid communication with the assay pad may provide a mechanism for transport.
  • a reaction between the reagent and the analyte of interest e.g., glucose
  • the detector array 20 corresponds in location to the spot 50 produces a signal in response to the color change that is indicative of the presence of the analyte of interest.
  • the signal can be used to estimate the volume of the sample applied to the reagent pad, monitor the kinetics of the reaction between the reagent and the analyte, and ascertain irregularities in the reaction spot 50 , as described above. This information can then be used to correct the output (e.g., concentration of analyte present in the sample) of the device to account for the hematocrit level, volume of sample presented to the assay pad 40 , and/or irregularities in the reaction spot 50 .
  • the above-described arrangement 10 of features may all be contained or integrated within a single device or meter. Alternatively, one or a combination of any of the above-described features may be incorporated into such a device.
  • the detector array 20 forms part of an arrangement 70 present in the device 10 for carrying out the various operations described herein.
  • the detector 20 may contain a plurality of detector elements in signal communication with a device 72 having timing and control logic.
  • the timing and control logic may include internal as well external control signals. These signals typically include clock and frame start signals. External timing and control signals may be generated by a microprocessor/microcontroller or other external circuitry.
  • the detector array 20 may have analog signal output. Alternatively, the detector 20 may have a digital data interface.
  • the detector may comprise an internal signal amplifier 74 .
  • the signal amplifier 74 may be external, as indicated by the amplifier 74 shown in broken line.
  • the amplifier 74 may be entirely omitted.
  • both an internal and external amplifiers 74 may be provided.
  • the signal from the detector 20 is outputted to an analog/digital converter 76 (where no digital data interface is provided by the detector).
  • the converter 76 is connected to a bus 78 , along with a memory 80 and an input/output device 82 .
  • the memory 80 may comprise one or more of RAM, ROM or EEPROM, as well as other conventional memory devices. Whatever its form, the memory 80 preferably contains at least one value indicative of hematocrit level, sample volume or reagent spot imperfections. In this regard the memory may contain one or more of the algorithms and look-up tables described herein.
  • the converter 76 , the bus 78 , the memory 80 and input/output device 82 may be components of a microprocessor/microcontroller 84 . According to an alternative embodiment, the converter 76 , memory 80 and input/output device 82 are external to the microprocessor/microcontroller 84 .
  • the input/output device 82 is in signal communication with various output devices 86 , 88 , 90 , 92 , and can provide control signals thereto.
  • These output devices may include a device providing a catalyst to facilitate sample acquisition, as described herein.
  • these devices may include one or more of a vacuum pump, an actuation trigger device, a light source, a heat source, a vibration motor, or combinations of any of the foregoing. Regardless of the form of these devices, they are configured and arranged such that they are in signal communication with input/output device 82 so as to be responsive to the control signals.
  • These control signals may be based on sample volume calculations made with the assistance of the detector array, as described herein.
  • An integrated device formed according to the principles of the present invention may have a number of suitable configurations.
  • the device is configured to perform testing by acquiring a sample of blood from the user, transfer the sample to an analysis site, and determine the concentration of a target analyte contained in the sample.
  • These operations are all performed with little or no user input. For example, these operations may commence automatically according to a specified or predetermined schedule. Alternatively, these operations may commence at the command of the user via, for example, pressing a start button on the device.
  • the device may include disposable and reusable portions.
  • the disposable portion may include at least one skin piercing element/transport member and analysis site (which may include an assay pad).
  • the disposable portion may provide the capability to perform a single test. After testing is complete, the disposable portion is discarded and replaced with a new disposable portion before performing another test.
  • the disposable portion includes a plurality of skin piercing elements/transport members and analysis sites. Such disposable units permit a plurality of tests to be performed before it is necessary to discard and replace the disposable unit.
  • the device may be either wearable or handheld, or both.
  • FIGS. 4-5 A non-limiting exemplary integrated device 100 is illustrated in FIGS. 4-5 .
  • the device 100 generally comprises a functional portion 102 , and an optional attachment means or band 104 .
  • the integrated device 100 may be wearable.
  • the integrated device may be operable as a hand-held device.
  • the band 104 can be separated and/or otherwise removed from the user, and the device 100 stored in a suitable case or in the user's pocket. The band can then be grasped and used to hold the device against the skin to perform a testing operation.
  • the device 100 preferably includes at least one arrangement for performing a measurement of the concentration of an analyte contained in a sample of blood.
  • the device 100 comprises at least one skin-piercing element, at least one actuation member, such as a torsional spring element as described in further detail herein, and at least one analysis site 110 , which may contain an assay pad.
  • the at least one arrangement may form part of a disposable portion or unit.
  • the disposable unit allows for at least one measurement of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced.
  • the disposable unit allows for a plurality of measurements of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced.
  • the device may additionally contain one or more of the features disclosed in U.S. Pat. No. 6,540,975, U.S. Patent Application Publications 2003/0153900, 2004/0191119, and published PCT applications WO 04/085995 and WO 04/0191693, the entire contents of which are incorporated herein by reference.

Abstract

Disclosed are devices, arrangements and methods for quantifying the concentration of an analyte present in bodily fluid, including: an assay pad having at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot upon reaction with the analyte; a light source; a detector array; a processor; and a memory in communication with the processor, the memory comprising: (a) at least one value indicative of one or more of: (i) the level of hematocrit contained in the sample; (ii) the volume of the sample applied to the assay pad; or (iii) imperfections present in the reaction spot; and (b) at least one algorithm for calculating the concentration of the analyte contained in the sample.

Description

  • The present application claims priority pursuant to 35 U.S.C. §119(e) to provisional application Ser. No. 60/689,546 filed Jun. 13, 2005, the entire content of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is directed to techniques and devices for detection of the presence and/or concentration of an analyte.
  • BACKGROUND OF THE INVENTION
  • In the following discussion certain articles and methods will be described for background and introductory purposes. Nothing contained herein is to be construed as an “admission” of prior art. Applicant expressly reserves the right to demonstrate, where appropriate, that the articles and methods referenced herein do not constitute prior art under the applicable statutory provisions.
  • According to the American Diabetes Association, diabetes is the fifth-deadliest disease in the United States and kills more than 213,000 people a year, the total economic cost of diabetes in 2002 was estimated at over $132 billion dollars, and the risk of developing type I juvenile diabetes is higher than virtually all other chronic childhood diseases.
  • A critical component in managing diabetes is frequent blood glucose monitoring. Currently, a number of systems exist for self-monitoring by the patient. One such system may be termed a photometric system or method. In such systems, the first step is to obtain the sample of aqueous fluid containing an analyte to be assayed, usually whole blood or fractions thereof. The sample of blood may be obtained by a finger stick or other means.
  • The fluid sample is then contacted with an assay pad or membrane. Contact is generally achieved by moving the assay pad or membrane into contact with the liquid sample on the surface of the patient's skin. Following application to the pad or membrane, the target analyte present in the sample passes through the assay pad or membrane by capillary, wicking, gravity flow and/or diffusion mechanisms. Chemical reagents present in the pad or membrane react with the target analyte producing a light absorbing reaction product, or color change.
  • The assay pad or membrane is then inserted into a monitor where an optical measurement is then made of this color change. In those embodiments where the optical measurement is a reflectance measurement, a surface of the assay pad or membrane is illuminated with a light source. Light is reflected from the surface of the assay pad or membrane as diffuse reflected light. This diffuse light is collected and measured, for example by the detector of a reflectance spectrophotometer. The amount of reflected light is then related to the amount of analyte in the sample; usually the amount of light reflected off the surface of the assay pad or membrane is an inverse function of the amount of analyte contained in the sample.
  • An algorithm is employed to determine analyte concentration contained in the sample based on the information provided by the detector. Representative algorithms that may be employed where the analyte of interest is glucose and the fluid sample is whole blood are disclosed, for example, in U.S. Pat. Nos. 5,049,487; 5,059,394; 5,843,692 and 5,968,760; the disclosures of which are incorporated herein by reference.
  • Glucose monitoring technology that relies on the photometric method of quantifying the glucose concentration in whole blood may be subject to errors associated with variations in hematocrit level, or concentration of red blood cells within the blood sample. Various methods have been employed to ensure the accuracy and repeatability of measured glucose concentration using the photometric method across a typical range of hematocrit levels. A normal hematocrit level is 42-54% for men and 36-48% for women. Overall, the normal range is from 36-54%, but for a variety of reasons, those who regularly test their glucose concentrations may have hematocrit levels even lower (anemia) or higher (polycythemia) than these normal ranges. This presents a challenge for the development of accurate glucose monitoring. This is because the meter is typically designed or calibrated assuming the sample will contain a hematocrit level somewhere in the normal range. Diabetics and clinicians make critical medical decisions in the management of their disease based on the readings provided by these meters. Thus, it would be advantageous to have a photometric quantification method that is more accurate across a broader range of hematocrit levels.
  • Additionally, glucose monitors typically require that the user supply a sufficient quantity of whole blood for an accurate reading. This volume has been around 10 microliters or more in the past, but with the development of newer quantification technologies, the minimum volume has been brought to as low as 1 microliter for photometric meters. This has reduced the burden on diabetics in their testing by reducing the depth of the lancing and the effort to milk a relatively large amount of blood from their lancing site. Again, the calibration of the meter is developed with the assumption that this minimum supply has been delivered to the test strip. If the user has not supplied a sufficient amount, then the meter generally displays an error code and the user must test again. Further, a user may supply more than the typical amount of blood to the test strip, which may lead to an inaccurate result if the calibration of the strip is volume sensitive. It would be advantageous for a photometric meter to have the ability to evaluate and adjust its internal calibration by detecting the amount of fluid supplied to the reagent strip, and applying an appropriate calibration parameter specifically chosen for that volume.
  • The development of a fully integrated glucose meter system requires incorporating the processes of skin lancing, transfer of blood to the reagent test strip, and quantification of whole blood glucose all in a single device. Such systems may not require any user intervention at all during the quantification process as long as sufficient sample volume is obtained. An automated catalyst, such as heat, vacuum, or pressure may be utilized to obtain a sample of body fluid, or whole blood.
  • One such device relies on the application of a specific magnitude and duration of a partial vacuum to the skin in order to facilitate the acquisition of a minimum required sample volume. For some individuals, this pre-programmed amount or duration of vacuum may be appropriate. For others, this pre-programmed catalyst may produce either an insufficient or excessive amount of blood, as well as other undesired outcomes, such as excessive bruising (for those with fragile capillary networks), an unnecessary delay in obtaining results (for fast bleeding individuals), as well as excessive residual blood left on the skin. Thus, it would be advantageous if the sample quantification detector could also determine in real-time whether or not a sufficient sample volume has been obtained for an accurate reading, and provide this information as feedback to control the magnitude and/or duration of a catalyst. This feedback driven control would be a significant advantage for integrated glucose monitoring technology.
  • Photometric assay pads or membranes for analyte concentration measurements typically produce a circular or linear spot when the chemical reagents contained therein react with a fluid containing a specific analyte, such as glucose, within whole blood. An ideal spot may be defined as one in which the color across the spot is uniform and indicative of the concentration of the analyte. A spot which is not ideal may be manifest in one or more of the following ways: non-uniformity of the primary color (e.g., variations in the intensity of blue); presence of non-primary color, such as red, which may be associated with the presence and/or lysis of blood cells, and the above color variations may be distributed randomly or non-uniformly across the spot.
  • For a variety of reasons, the quality of a spot developed as a result of an analyte reacting with the reagent membrane may not be ideal as described above. Such reasons may include one or more of: flaws or manufacturing variations in the membrane structure; variations in the concentration of the reagent enzyme; mishandling of the membrane during manufacturing; and unintended chemical reactions between the fluid and/or analyte and the reagent structure and/or membrane chemistry (such as another medical drug within the blood sample reacting with the reagent enzyme).
  • Most devices on the market cannot detect or correct for low quality spots. Their sensors, typically one or more photodiodes, do not have the ability to discretely analyze the flaws within a reagent spot. Thus, there exists a risk that these systems may not provide an accurate reading in circumstances of a non-ideal spot.
  • SUMMARY OF THE INVENTION
  • According to the present invention, the state of the art has been advanced through the provision of arrangements, devices and techniques such as those described further herein, for accurately, efficiently, and economically determining the presence and/or concentration of an analyte. According to the present invention, the state of the art has been advanced, especially, but not exclusively, within the context of personal glucose monitoring devices and techniques. Additionally, or alternatively, according to the present invention arrangements, devices and techniques are provided which may overcome one or more of the abovementioned shortcomings associated with conventional systems and methods.
  • Devices and methods are contemplated that may employ a detector comprising an array of detector elements or pixels to detect color change or intensity of reflected light associated with a photometric chemical reaction between the analyte and reagent chemistry. Optionally, the detector elements comprise CMOS-based detector elements. In particular, the CMOS detector elements help correct for differences in hematocrit levels and/or volumes associated with samples under analysis. An additional aspect of the present invention provides for CMOS-based detector elements that can provide feedback control for a connected device that performs automated whole blood sampling and detection of an analyte. In yet another aspect of the present invention, feedback from CMOS detection elements is used to compensate for non-ideal reaction spot characteristics.
  • According to one aspect, the present invention provides a device for monitoring the concentration of an analyte present in bodily fluid, the device comprising a detector, the detector comprising a detector element or pixel, the element or pixel comprising a CMOS sensor, a CCD sensor, a photodiode or an infrared sensor, including both near-field and mid-field infrared sensors. Other sensing systems also contemplated within the scope of the present invention include infrared, ultraviolet and fluorescent sensing systems and electrochemical sensing systems, including reagentless sensing approaches.
  • It is therefore to be understood that reference herein to the detector array of the present invention may include any suitable detector element(s). The present invention is thus not limited to embodiments of the invention including CMOS or CCD detector elements, photodiodes, infrared, fluorescent, ultraviolet or electrochemical detector elements.
  • It is to be understood that the detector array is not limited only to linear arrays. Non-linear arrays, such as polar or area arrays, are also contemplated by the present invention.
  • It is to be understood that reference herein to first, second, third and fourth components (etc.) does not limit the present invention to embodiments where each of these components is physically separable from one another. For example, a single physical element of the invention may perform the features of more than one of the claimed first, second, third or fourth components. Conversely, a plurality of separate physical elements working together may perform the claimed features of one of the claimed first, second, third or fourth components. Similarly, reference to first, second (etc.) method steps does not limit the invention to only separate steps. According to the invention, a single method step may satisfy multiple steps described herein. Conversely, a plurality of method steps could, in combination, constitute a single method step recited herein.
  • According to an aspect of the present invention, there are provided devices, arrangements and methods for quantifying the concentration of an analyte present in bodily fluid, comprising: an assay pad comprising at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot upon reaction with the analyte; a light source; a detector; a processor; and a memory in communication with the processor, the memory comprising: (a) at least one value indicative of one or more of: (i) the level of hematocrit contained in the sample; (ii) the volume of the sample applied to the assay pad; or (iii) imperfections present in the reaction spot; and (b) at least one algorithm for calculating the concentration of the analyte contained in the sample.
  • According to a further aspect of the present invention, there are provided devices, arrangements and methods for quantifying the concentration of an analyte present in bodily fluid, comprising: providing an assay pad comprising at least one chemical reagent; introducing a sample onto the assay pad; producing a detectable signal in the form of a reaction spot upon reaction of the at least one chemical reagent with the analyte; generating a signal based on light reflected off the assay pad; calculating at least one value indicative to one or more of: (i) the level of hematocrit contained in the sample; (ii) the volume of the sample applied to the assay pad; or (iii) imperfections present in the reaction spot; and calculating the concentration of analyte contained in the sample by factoring in the at least one value.
  • According to the above, the device may comprise a glucose meter integrating some or all of the above-described features. The integrated device may be configured to perform at least one such photometric analysis before reloading disposable components thereof becomes necessary. The integrated device may be handheld or wearable. The integrated device may be in the general form of a wristwatch.
  • According to the present invention, the detector elements may comprise CMOS-based detector elements. Moreover, the detector array may be in the form of a linear array of CMOS-based detector elements or pixels.
  • According to the present invention, an integrated device may include means for extracting a sample of bodily fluid and can comprise a skin piercing member and the application of one or more of: (i) vacuum; (ii) positive pressure; and (iii) heat.
  • According to the present invention, as described above, the device may further comprise a computer-readable medium, the medium comprising at least one of an algorithm and a look-up table. According to the present invention, the device may further comprise a microprocessor controller.
  • The above-described invention may further comprise at least one of a light source, one or more lenses, one or more light transmission elements (e.g. optical fibers), optical diffusers and optical filters.
  • In certain embodiments of the above-described invention, the assay pad may comprise at least one chemical reagent that produces a color change defining a reaction spot upon reaction with the analyte.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The preferred embodiments are illustrated in the drawings in which like reference numerals refer to the like elements and in which:
  • FIG. 1 is a flow diagram of a mode of operation according to certain aspects of the present invention.
  • FIG. 2 is a schematic illustration of an arrangement formed according to the principles of the present invention.
  • FIG. 3 is a schematic diagram of a portion of the arrangement of FIG. 2.
  • FIG. 4 is a perspective view of a device formed according to an embodiment of the present invention.
  • FIG. 5 is a partial cutaway view of FIG. 4.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Exemplary arrangements and methods for the detection and measurement of the presence and/or concentration of a target analyte, such as glucose, bilirubin, alcohol, controlled substances, toxins, hormones, proteins, etc., will now be described.
  • In broader aspects, the current invention provides the ability to correct for broad variations in sample hematocrit levels in the measurement of an analyte, such as glucose, during the course of the test. The invention takes advantage of an imaging array of detectors to perform this correction and does not require any additional hardware. In other words, no other distinct sensors or detectors, other than the imaging array, are required to calculate the correction. The very sensor that is used to quantify the analyte within the sample may also correct for hematocrit. Strategic algorithms that process the data from the imaging array provide real-time or near real-time information about the sample hematocrit level. Thus, more accurate results, regardless of the hematocrit level of the user, may be obtained via correction based on the hematocrit level of the sample.
  • The current invention may also use appropriate algorithms to permit real-time sensing of the amount of sample volume delivered to an assay pad. With this information, appropriate calibration parameters may be selected corresponding to the actual delivered volume. To correct for sample volume, algorithms similar to those used for hematocrit correction may be used, where volume is substituted for hematocrit and a unique formulation and corresponding constants are determined.
  • The present invention offers the flexibility to improve the accuracy of measured glucose for a broad range of sample volumes that are typically delivered to the assay pad of the meter system. In addition, sampling catalysts such as vacuum, heat, pressure, etc. may be implemented or provided automatically by the device to help ensure sufficient sample volume is collected and analyzed. The invention provides information to the meter system to know when and how much of the catalyst is sufficient. Since the invention can measure or estimate the volume of the sample delivered to the assay pad, it can also provide feedback to start, maintain or terminate the catalysts, as well as increase or decrease the magnitude of the catalyst, based on this measured volume. This offers the advantage of adapting the device function to the user's real-time skin physiology, minimizing the risks associated with the catalysts (bruising, scarring, excessive bleeding), reducing the energy consumed by the system, and reducing the chance of a wasted test operation (and the associated user's time, battery supply, and cost of test strip) by ensuring a minimum sample volume is obtained, as well as minimizing the overall time to get a result from the system.
  • According to additional broad aspects, the present invention can process data received from the detector array to compensate for irregularities or imperfections present in a reaction spot in order to improve accuracy of the analyte concentration method. The present invention includes devices, arrangements and methods that include any of the above referenced aspects individually, as well as combinations of some or all of these aspects.
  • The current invention may employ a linear CMOS imaging detector array. Contrary to other approaches that describe the use of 2-D CCD imaging detector arrays, the linear CMOS array detects light across a single row of optical detectors (pixels) whose output is proportional to the amount of light incident to the pixel. Linear detector arrays offer an advantage over 2-D imaging systems in simplicity and efficiency in processing the image information as long as the expected location of reagent chemistry reaction or reagent spot is known and the associated light, which may be supplied by an LED, is reflected from this area and is imaged appropriately by the CMOS array.
  • The CMOS detector array may have an overall size that is comparable to the size of the assay pad and the expected range of spot sizes that develop on the pad. According to one alternative, the detector can be larger than the size of the pad. This construction can allow wider tolerances in the relative position of the assay pad and the detector, and provide for additional in-process error detection and recovery (e.g., detecting or correcting for assay pad motion).
  • In addition to light sources such as LED's, various optical components such as lenses, diffusers, light pipes, etc. may be integrated into the system to optimize the image size and resolution. Such a system may utilize a commercially available linear CMOS detector array such as part # TSL1401R or TSL1401CS; from TAOS, Plano, Tex. This detector has 128 pixels across an array of ˜19 mm in length. Light reflected off of white surfaces, such as an unreacted reagent pad, and received by the CMOS detector results in a signal from each pixel that is conditioned to produce a near maximum response up to 5 volts. Darker surfaces, such as from a color change associated with a reagent spot, will produce lower voltage response for each pixel depending on the reagent chemistry, light source, optical path, and ultimately, the concentration of the analyte (e.g., glucose).
  • A number of different arrangements comprising a quantification member, such as an assay pad, a sensor or detector, and one or more additional components are contemplated by the present inventions. Additional exemplary arrangements are described in U.S. application Ser. No. 10/394,230, ANALYTE CONCENTRATION DETECTION DEVICES AND METHODS, the entire content of which is incorporated by reference herein.
  • When coupled with an assay pad containing a photometric reagent, the sensor detects the change in color of the pad, and the output is processed as a change in voltage relative to that of the original reagent color. Typically, about 10-50% of the pixels across the array are sufficient to resolve a spot of color change, but this can depend on a variety of factors, including CMOS sensor design, sample volume size, reagent dynamics, and the optical path between the pad and sensor.
  • Since the arrangements and techniques of the present invention can perform the assay without all of the pixels in the sensor array being in optical registry with the reagent spot, it is contemplated by the present invention to utilize these free pixels in one or more possible ways. For example, a second assay may be performed at a different area of the same assay pad, or on separate assay pad, at a location corresponding to the aforementioned unused pixels. The unused pixels may be used for calibration or as a control. For instance, a control solution having a known concentration of analyte may be introduced in the area of the assay pad, or onto a separate pad, in the area of the unused pixels. The control solution reacts with the reagent and the signal produced by pixels can be calibrated in accordance with the known analyte concentration. According to another alternative, a means for calibrating the reagent for lot information may be provided in the area of the unused pixels, thereby eliminating the need for the user to set reagent lot calibration codes. A similar arrangement and technique would be to utilize a standard color in registry with the unused pixels that produces a known reflectance signal. Upon reading this known signal, the arrangement, via a microprocessor and associated software and electronic components, can verify whether or not the device is functioning properly.
  • According to certain embodiments, sensor data can be acquired with an analog-to-digital capture device, such as a PC board, and processed as a linear dimension data array whose size corresponds to the number of pixels in the imaging array, such as 128 or 256 pixels. This data array will change over time as the reaction between the analyte (glucose) and the reagent enzymes develops, reaches saturation and begins to dry out.
  • According to one embodiment, the current invention incorporates an algorithm for processing the information in the data array over time to detect and correct for the hematocrit in the blood sample. The rate of color change over time across the detector array, and thus rate of change in signal of the data array, is dependent upon the relative amount of plasma in the sample. A relatively high plasma content in a given sample size will cause the sample to react with the reagent chemistry faster and develop a change in color more quickly than a relatively smaller plasma content. Since hematocrit level is inversely proportional to plasma content, the rate of color change can be scaled inversely to hematocrit level.
  • The relation between rate of color change and hematocrit level will depend upon a variety of variables, including the volume of the sample delivered to the assay pad as well as the inherent reagent chemistry, optical path, light source and detector array. Consequently, a unique correlation calibration between color change rate as detected by the CMOS imager and blood hematocrit level can be empirically determined and programmed into a memory device as a lookup table, or calculation.
  • Exemplary, non-limiting algorithm formulations to accomplish the above include:
      • 1. Hct α δA(x,t)/δt; where Hct=hematocrit, α implies proportional to, δ/δt=is the partial derivative with respect to time (a measure of rate of change), and A(x,t) is a measure of the array signal strength in the sensor at position x at time t.
      • Proportionality may be linear and of the form Hct=m(δA(x,t)/δt)+C; where m and C are constants determined empirically. Hematocrit proportionality correction may also be better represented by polynomial, exponential, power or other functions.
      • 2. Hematocrit a δA(x,t)/δx; where Hct and α are as defined above, and δ/δx=is the partial derivative with respect to position x.
      • Again, proportionality may be linear and of the form Hct=m(δA(x,t)/δx)+C; where m and C are constants determined empirically. Proportionality may also be non-linear and represented by logarithmic, polynomial, exponential or other equations.
      • 3. Hematocrit α δA(x,t)δx δt; where Hct and α are as defined above, and δ/δx δt=is the partial derivative with respect to position x and time t.
      • 4. Hematocrit α δ2A(x,t)/δ2x δ2t;, where Hct and α are as defined above, and δ/δ2x δ2t=is the second order partial derivative with respect to position x and time t.
  • Pixel position x ranges from the lower to upper limits and in the case of a 256 pixel array, would range from 1 to 256. For a variety of reasons, the algorithm may be limited to the evaluation of specific positions or ranges within the array, such as between x=x_lower and x=x_upper, where x_lower may be 40 and x_upper may be 80.
  • Time t as referred to in these algorithms can refer to the time elapsed between known events within the analyte quantification process. For example, t=0 may be defined at the point in which blood is first presented to the reagent membrane, or when the imaging array first detects a predetermined threshold change corresponding to the arrival of the analyte to the reagent membrane.
  • Array signal strength A(x,t) corresponds to a measure of the color of the reagent membrane. Typically, this signal is initially processed as a voltage or a current. Those skilled in the art of photometric reagent signal process will appreciate that subsequent transformation of this data into a measure of normalized reflectance R and/or to absorption via the well-known calculation of K/S may be represented by A(x,t). For example:
  • K/S (x,t)=(1−R)2/2R; where R=A(x,t)Reacted/A(x,t)Unreacted, where A(x,t)Unreacted refers to the array signal corresponding to the reagent membrane prior to any reaction with the analyte, and A(x,t)Reacted the array signal corresponding to the membrane as it reacts with the analyte at array position x at time t.
  • Those skilled in the art will appreciate that combinations of these and/or other similar algorithms would mathematically capture the relation between hematocrit and the rate of change of spot development in the membrane. Furthermore, the skilled reader would appreciate that the proportionality constants (m and C) are dependent upon the conditions of the reagent membrane (material, chemistry, lighting), the hardware and software specifications, and the nature and method in which the analyte is delivered to the membrane.
  • Thus, the appropriate calibration factor relating reflected light to glucose concentration would then be chosen based on the hematocrit level. When the consumer uses the device, the meter detects color change and applies the correct calibration factor for the user's hematocrit level to the calculation of glucose content made by an algorithm also contained in the same, or a different memory device.
  • As an example of the above, if the glucose calibration curve is of the form:
  • R=m×[Glucose Concentration]+b; where R=the as-measured reflected light signal, and m and b are empirically determined constants.
  • A corrected signal Rc, could be derived from a look-up table of correction factors, Fh, as a function of hematocrit level:
    R c =F h ×R
  • This corrected signal would then be substituted into the above equation to calculate the hematocrit-adjusted glucose concentration.
  • Processing the data generated by the change in color caused by the reaction between the analyte and reagent chemistry in conjunction with the speed and capacity of today's microprocessors would not add to the required time to process the sample, yet would substantially increase the accuracy and reduce the variability for analyte concentration measurements associated with different whole blood hematocrit levels.
  • Various alternatives and modifications to the above-described embodiment related to detector data analysis to determine hematocrit levels are possible. For example, such alternatives and modifications include one or more of: evaluating the rate of pixel signal changes with respect to time; evaluating the rate of pixel change with respect to time and with respect to associated pixels that also are changing (i.e., spatial and temporal rate of change); evaluating the rate of pixel change with respect to time for an individual pixel; evaluating the rate of pixel change with respect to time for multiple pixels; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color when enzymatic reaction and color change is complete; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color during the ongoing enzymatic reaction; evaluating the rate of pixel change with respect to time for the pixel that detects the largest change in color after a lapse of a predetermined amount of time before any enzymatic reaction has actually occurred; and evaluating the resolved volume of the sample (as described earlier) at a specific time for which a fixed, prescribed amount of blood has been delivered to the reagent pad (since measured sample size is proportional to plasma volume, which is inversely proportional to hematocrit).
  • Using the aforementioned detector array, the invention also contemplates novel arrangements, devices and methods for quantifying, in real-time, the amount of sample delivered to an analyte quantification member, such as an assay pad. This method takes advantage of the discrete data provided by individual detector elements or pixels. As a reaction spot begins to develop in the assay pad, the system described earlier can resolve a particular dimension associated with the size of the spot, such as width. This invention does not require that the spot be of a particular shape, such as round, square, or rectangular, as long as the detector array is oriented to resolve at least one dimension of the spot that is proportional to sample volume. Assuming the assay pad and the method by which the blood is delivered to the pad has been optimized to reduce the variability in spot development, the spot size will be proportional to the volume of blood sample.
  • The imaging system can resolve the spot size by identifying how many pixels or detector elements have detected a color change. Although the color change associated with the chemical reaction between analyte and enzyme may not be completed or reached equilibrium, the quantification of the number of pixels that have detected a predetermined threshold change in color will be proportional to the spot size. Thus, a real-time assessment of the spot size and thus volume can be computed.
  • Accordingly, the effect on glucose concentration calculations associated with various sample volumes may be empirically determined, and a lookup table, equation, or calculation incorporated in a memory device which may then be used to select an appropriate predetermined calibration factor to provide a more accurate reading of the analyte concentration for a particular sample volume. Thus, an appropriate calibration factor based on the actual sample volume may be applied to an algorithm used to calculate glucose concentration.
  • As an example of the above, if the glucose calibration curve is of the form:
  • R=m×[Glucose Concentration]+b; where R=the as-measured reflected light signal, and m and b are empirically determined constants. A corrected signal Rc, could be derived from a look-up table of correction factors, Fv, as a function of sample volume:
    R c =F v ×R
  • This corrected signal would then be substituted into the above equation to calculate the volume-adjusted glucose concentration.
  • Various alternatives and modifications to the above-described embodiment related to detector array data analysis to determine sample size are possible, for example, such alternatives and modifications include one or more of: computing the number of pixels that have detected a change in color above a prescribed constant threshold at a particular point in time during the enzymatic reaction; computing the number of pixels that have detected a change in color above a prescribed constant threshold at multiple points in time during the enzymatic reaction; computing the number of pixels that have detected a change in color above a prescribed constant threshold at a time in which the enzymatic reaction is complete; computing the number of pixels that have detected a change in color above a variable threshold across the array; using above strategies to correlate output to actual sample volume at reagent pad; and using above strategies to predict sample volume to be delivered to assay pad after a predetermined amount of time.
  • Using the aforementioned detector array to detect the volume of the sample, the volume information can be used as feedback information, and utilized in devices such as an integrated meter. The definition of an integrated device or meter in this context includes one which includes the functions of acquiring a sample of body fluid or blood from the skin, transporting the body fluid or blood from the skin to a quantification area or assay pad, and quantifying the analyte (e.g.—glucose) in the sample via a photometric method.
  • In this embodiment, a catalyst such as vacuum, heat, pressure, vibration or similar action is preferably applied to the sampling site to facilitate the acquisition of sufficient sample volume of blood. Catalysts such as these can be effective in expressing sufficiently large volumes of blood even from alternative body sites that are less perfused than the fingertips. To ensure that the catalyst is applied with sufficient magnitude and duration, this invention provides a construction and method to control the catalyst such that it operates for exactly as long as necessary. By quantifying the sample volume delivered to the reagent pad in real-time, the detector array and associated on-board data processing within the integrated device can provide a feedback signal via a digital microprocessor controller or similar device which indicates either to increase, decrease, or keep constant the magnitude of the catalyst, as well as to either continue or stop the application of the catalyst. Those experienced in the art of controlling such catalyst mechanisms will appreciate that the control signal may be either binary or analog and use this information accordingly to control a pump (for vacuum/pressure), a motor (for vibration), a heating element (for increasing skin temperature) or combinations thereof.
  • One such exemplary mode of operation is illustrated in FIG. 1. As illustrated therein, a suitable catalyst, such as a vacuum created by a suitable mechanism or pump is initiated. Shortly thereafter the signals from the detector array are analyzed and the sample volume estimated. This volume is compared with a target sample volume. If the volume is sufficient, the catalyst is turned off. If the volume is insufficient, the reading and calculating processes are repeated until such time as the target sample volume is reached. Once the target sample volume is reached, the analyte concentration determination may continue.
  • Various alternatives and modifications to the above-described embodiment related to detector array data analysis to provide feedback are possible. For example, such alternatives and modifications may include one or more of: providing a feedback signal corresponding to actual sample volume received at the assay pad; providing a feedback signal corresponding to predicted volume anticipated to be delivered to assay pad; providing an analog feedback signal that is proportional to the volume received at the assay pad; providing a digital feedback signal that indicates either sufficient or insufficient quantity of sample volume received; providing feedback signal based on imaging of an alternative location within the meter that is not necessarily the reagent pad, but can also be imaged by the detector array to detect whether a specific threshold of blood will be delivered to the reagent pad; and providing feedback signal based on imaging of an alternative location outside of the meter (such as on the skin) that can also be imaged by the detector array to detect whether a specific threshold of blood will be delivered to the assay pad.
  • The discrete nature of the detection elements or pixels also allows for detection of flaws and to distinguish them from regions of the reaction spot that are developing an appropriate or more ideal photometric reaction, even if they are randomly distributed.
  • For example, a detector array is arranged to scan the reaction spot, optionally coupled with appropriate optical magnification. An ideal spot will produce little or no variation in signal response across the array. In the case of a non-ideal spot, the response of the pixels will vary spatially and temporally. A quantification algorithm which has one or more of the following features could correct and/or ignore the reaction spot flaw(s) and have the potential to provide a more accurate measurement of the analyte concentration: identification and inclusion of data only from pixels which correspond to the appropriate and expected color (e.g., screen for data corresponding to various shades of blue only); identification and exclusion of data from pixels which do not correspond to the appropriate and expected color (e.g., screen out data corresponding to shades of red); inclusion/exclusion of pixel information which does not change at a rate with respect to time expected for the appropriate color (e.g., rate of change of blue is not the same as that of non-blue pixels); and inclusion/exclusion of pixel information which does not change at a rate with respect to time after a specific elapsed time or during a specific time window expected for the appropriate color (e.g., blue pixels change from time t1 to t2 by x %, whereas non-blue pixels do not change by x % between time t1 through t2).
  • Combinations of the above strategies or similar ones may allow the algorithm to successfully correct for non-ideal spots. It may even be the case that a relatively small percentage of the spot area actually is ideal, yet if the detector array can image this area, even 1 pixel could be sufficient to provide an accurate reading of the analyte.
  • FIGS. 2-3 are schematic illustrations of at least some of the aspects of arrangements, devices and methods of the present invention. As illustrated therein, an arrangement 10, such as an integrated device or meter may include a detector array 20, which can be provided in the form of a linear array of individual detection elements 30. Each detection element 30 is capable of producing a signal. The detection elements 30 may comprise one or more CMOS-based detection elements or pixels. The linear array 20 is generally in optical registry with an assay pad 40. The relative vertical position of the assay pad and detector array 20 may, of course, differ from the illustrated embodiment. In addition, the assay pad 40 and the detector array 20 may have a geometry that differs from that of the illustrated embodiment. The detector array 20 may be larger than the assay pad 40.
  • The assay pad 40 preferably contains at least one reagent. A mechanism may be provided to transport a sample of body fluid, such as blood, to the assay pad 40. According to the illustrated embodiment, a hollow member 60, such as a needle, having one end in fluid communication with the assay pad may provide a mechanism for transport. As a sample of body fluid is applied to the assay pad 40, a reaction between the reagent and the analyte of interest (e.g., glucose) results in a color change on a surface of the assay pad 40 forming a reaction spot 50 in optical registry with the array of detector elements 30. The detector array 20 corresponds in location to the spot 50 produces a signal in response to the color change that is indicative of the presence of the analyte of interest. The signal can be used to estimate the volume of the sample applied to the reagent pad, monitor the kinetics of the reaction between the reagent and the analyte, and ascertain irregularities in the reaction spot 50, as described above. This information can then be used to correct the output (e.g., concentration of analyte present in the sample) of the device to account for the hematocrit level, volume of sample presented to the assay pad 40, and/or irregularities in the reaction spot 50. The above-described arrangement 10 of features may all be contained or integrated within a single device or meter. Alternatively, one or a combination of any of the above-described features may be incorporated into such a device.
  • The detector array 20 forms part of an arrangement 70 present in the device 10 for carrying out the various operations described herein. As best illustrated in FIG. 3, the detector 20 may contain a plurality of detector elements in signal communication with a device 72 having timing and control logic. The timing and control logic may include internal as well external control signals. These signals typically include clock and frame start signals. External timing and control signals may be generated by a microprocessor/microcontroller or other external circuitry. The detector array 20 may have analog signal output. Alternatively, the detector 20 may have a digital data interface.
  • As illustrated, the detector may comprise an internal signal amplifier 74. Alternatively, the signal amplifier 74 may be external, as indicated by the amplifier 74 shown in broken line. According to another alternative, the amplifier 74 may be entirely omitted. According to yet another alternative, both an internal and external amplifiers 74 may be provided.
  • The signal from the detector 20 is outputted to an analog/digital converter 76 (where no digital data interface is provided by the detector). The converter 76 is connected to a bus 78, along with a memory 80 and an input/output device 82. The memory 80 may comprise one or more of RAM, ROM or EEPROM, as well as other conventional memory devices. Whatever its form, the memory 80 preferably contains at least one value indicative of hematocrit level, sample volume or reagent spot imperfections. In this regard the memory may contain one or more of the algorithms and look-up tables described herein.
  • The converter 76, the bus 78, the memory 80 and input/output device 82 may be components of a microprocessor/microcontroller 84. According to an alternative embodiment, the converter 76, memory 80 and input/output device 82 are external to the microprocessor/microcontroller 84.
  • The input/output device 82 is in signal communication with various output devices 86, 88, 90, 92, and can provide control signals thereto. These output devices may include a device providing a catalyst to facilitate sample acquisition, as described herein. For example, these devices may include one or more of a vacuum pump, an actuation trigger device, a light source, a heat source, a vibration motor, or combinations of any of the foregoing. Regardless of the form of these devices, they are configured and arranged such that they are in signal communication with input/output device 82 so as to be responsive to the control signals. These control signals may be based on sample volume calculations made with the assistance of the detector array, as described herein.
  • An integrated device formed according to the principles of the present invention may have a number of suitable configurations. According to certain embodiments the device is configured to perform testing by acquiring a sample of blood from the user, transfer the sample to an analysis site, and determine the concentration of a target analyte contained in the sample. These operations are all performed with little or no user input. For example, these operations may commence automatically according to a specified or predetermined schedule. Alternatively, these operations may commence at the command of the user via, for example, pressing a start button on the device.
  • The device may include disposable and reusable portions. The disposable portion may include at least one skin piercing element/transport member and analysis site (which may include an assay pad). The disposable portion may provide the capability to perform a single test. After testing is complete, the disposable portion is discarded and replaced with a new disposable portion before performing another test. Alternatively, the disposable portion includes a plurality of skin piercing elements/transport members and analysis sites. Such disposable units permit a plurality of tests to be performed before it is necessary to discard and replace the disposable unit. The device may be either wearable or handheld, or both.
  • A non-limiting exemplary integrated device 100 is illustrated in FIGS. 4-5. As illustrated therein the device 100 generally comprises a functional portion 102, and an optional attachment means or band 104. Thus according to the present invention, the integrated device 100 may be wearable. In addition, or alternatively, the integrated device may be operable as a hand-held device. For example, according to the illustrated embodiment, the band 104 can be separated and/or otherwise removed from the user, and the device 100 stored in a suitable case or in the user's pocket. The band can then be grasped and used to hold the device against the skin to perform a testing operation.
  • The device 100 preferably includes at least one arrangement for performing a measurement of the concentration of an analyte contained in a sample of blood. According to the illustrated embodiment, the device 100 comprises at least one skin-piercing element, at least one actuation member, such as a torsional spring element as described in further detail herein, and at least one analysis site 110, which may contain an assay pad. The at least one arrangement may form part of a disposable portion or unit. According to one embodiment, the disposable unit allows for at least one measurement of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced. According to a further embodiment, the disposable unit allows for a plurality of measurements of the concentration of an analyte contained in a sample of blood prior to being discarded and replaced.
  • According to certain alternative embodiments, the device may additionally contain one or more of the features disclosed in U.S. Pat. No. 6,540,975, U.S. Patent Application Publications 2003/0153900, 2004/0191119, and published PCT applications WO 04/085995 and WO 04/0191693, the entire contents of which are incorporated herein by reference.
  • While this invention is satisfied by embodiments in many different forms, as described in detail in connection with preferred embodiments of the invention, it is understood that the present disclosure is to be considered as exemplary of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated and described herein. Numerous variations may be made by persons skilled in the art without departure from the spirit of the invention. The abstract and the title are not to be construed as limiting the scope of the present invention, as their purpose is to enable the appropriate authorities, as well as the general public, to quickly determine the general nature of the invention. Unless the term “means” is expressly used, none of the features or elements recited herein should be construed as means-plus-function limitations pursuant to 35 U.S.C. §112, ¶16.

Claims (36)

1. An arrangement for measuring the concentration of an analyte contained in a sample of body fluid, the arrangement comprising:
an assay pad comprising at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot formed upon reaction with the analyte;
a light source;
a detector array;
a processor; and
a memory in communication with the processor, the memory comprising:
(a) at least one value indicative of one or more of:
(i) the level of hematocrit contained in the sample;
(ii) the volume of the sample applied to the assay pad; or
(iii) imperfections present in the reaction spot; and
(b) at least one algorithm for calculating the concentration of the analyte contained in the sample.
2. The arrangement of claim 1, wherein the analyte comprises glucose and the body fluid comprises blood.
3. The arrangement of claim 1, wherein the detector array is a linear array.
4. The arrangement of claim 1, wherein the detector array comprises at least one of a linear array, a polar array, and an area array.
5. The arrangement of claim 1, wherein the detector array comprises a plurality of detector elements, the detector elements comprising CMOS, CCD, photodiode, infrared, fluorescent, ultraviolet or electrochemical elements.
6. The arrangement of claim 1, further comprising at least one catalyst device.
7. The arrangement of claim δ, wherein the at least one catalyst device comprises at least one of a vacuum pump, a vibration motor and a heating element.
8. The arrangement of claim 1, wherein the at least once catalyst device is constructed and arranged to be responsive to control signals, the control signals based on sample volume calculations.
9. The arrangement of claim 5, wherein at least a portion of the plurality of detector elements are not in optical registry with the reagent spot and are configured and arranged to analyze one or more of a control solution having a known concentration of analyte introduced onto an area of the assay pad that is different from the area of the reagent spot, a standard color producing a known signal, and calibration information specific to the lot of the assay pad.
10. The arrangement of claim 1, wherein the memory comprises at least one look-up table, and the at least one value is stored in the at least one look-up table.
11. The arrangement of claim 1, wherein the memory comprises a formula for deriving a corrected signal, the formula comprising:

R c =F x ×R
where Rc is the corrected signal, Fx is the at least one value indicative of the level of hematocrit or the volume of the sample.
12. The arrangement of claim 1, further comprising a needle having a first end configured to pierce the skin, and a second end in fluid communication with the assay pad.
13. An analyte monitoring device comprising the arrangement of claim 1.
14. The analyte monitoring device of claim 13, wherein the arrangement comprises a plurality of assay pads and a plurality of needles, thereby enabling the performance of a plurality of analyte concentration measurements.
15. The analyte monitoring device of claim 13, further comprising a band for attaching the device to the body of the user.
16. A method of measuring the content of analyte contained in a sample of body fluid, the method comprising:
providing an assay pad comprising at least one chemical reagent;
introducing a sample onto the assay pad;
producing a detectable signal in the form of a reaction spot formed upon reaction of the at least one chemical reagent with the analyte;
generating a signal based on light reflected off the assay pad;
calculating at least one value indicative to one or more of:
(i) the level of hematocrit contained in the sample;
(ii) the volume of the sample applied to the assay pad; or
(iii) imperfections present in the reaction spot; and
calculating the concentration of analyte contained in the sample by factoring in the at least one value.
17. The method of claim 16, wherein the analyte comprises glucose and the body fluid comprises blood.
18. The method of claim 16, wherein the step of generating a signal based on light reflected off the assay pad comprises providing a detector array in optical registry with at least the reaction spot on the assay pad.
19. The method of claim 18, wherein the detector array comprises at least one of a linear array, a polar array, and an area array.
20. The method of claim 19, wherein the detector array comprises a plurality of detector elements, the detector elements comprising CMOS, CCD, photodiode, infrared, fluorescent, ultraviolet or electrochemical elements.
21. The method of claim 16, further comprising applying at least one catalyst to the surface of the skin of the user to facilitate sample acquisition.
22. The method of claim 21, wherein the at least one catalyst comprises at least one of a vacuum pressure, positive pressure, vibration, and heat.
23. The method of claim 21, wherein the step of applying at least once catalyst comprises controlling application of the catalyst with a control signal based on sample volume calculations.
24. The method of claim 20, further comprising using at least a portion of the plurality of detector elements not in optical registry with the reagent spot to analyze one or more of a control solution having a known concentration of analyte introduced onto an area of the assay pad that is different from the area of the reagent spot, reading a standard color producing a known signal, and reading calibration information specific to the lot of the assay pad.
25. The method of claim 16, wherein the step of calculating comprises acquiring the at least one value from at least one look-up table.
26. The method of claim 16, wherein the step of calculating the concentration of analyte comprises deriving a corrected signal from the formula comprising:

R c =F x ×R
where Rc, is the corrected signal, Fx is the at least one value indicative of the level of hematocrit or the volume of the sample.
27. The method of claim 16, further comprising piercing the skin of the user with a first end of a needle, and transporting a sample of blood through a second end of the needle to the assay pad.
28. An arrangement for measuring the concentration of an analyte contained in a sample of body fluid, the arrangement comprising:
an assay pad comprising at least one chemical reagent capable of producing a detectable signal in the form of a reaction spot formed upon reaction with the analyte;
a light source;
a detector array;
a processor;
a memory in communication with the processor; and
at least one catalyst device constructed and arranged to be responsive to control signals.
29. The arrangement of claim 28, wherein the detector array comprises a linear array of detector elements, the detector elements comprising CMOS, CCD, photodiode, infrared, fluorescent, ultraviolet or electrochemical elements.
30. The arrangement of claim 28, wherein the at least one catalyst device comprises at least one of a vacuum pump, a vibration motor and a heating element.
31. The arrangement of claim 28, wherein the at least one catalyst device is constructed and arranged to be responsive to control signals derived from a signal based on light reflected off the assay pad and detected by the detector array.
32. The arrangement of claim 28, wherein a lease one catalyst device is constructed and arranged to be responsive to control signals derived from a signal based on imaging of a surface on the skin of the user.
33. The arrangement of claim 28, wherein the detector array, processor and memory are constructed and arranged to predict sample volume be delivered to the assay pad.
34. The arrangement of claim 33, wherein the sample volume to be delivered to the assay pad is predicted based at least in part on a signal generated by light reflected off the assay pad and detected by the detector array.
35. An integrated meter comprising:
at least one piercing element;
at least one actuation member; and
the arrangement of claim 1.
36. An integrated meter comprising:
at least one piercing element;
at least one actuation member; and
the arrangement of claim 28.
US11/239,122 2005-06-13 2005-09-30 Analyte detection devices and methods with hematocrit/volume correction and feedback control Abandoned US20060281187A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/239,122 US20060281187A1 (en) 2005-06-13 2005-09-30 Analyte detection devices and methods with hematocrit/volume correction and feedback control
JP2008516982A JP5802361B2 (en) 2005-06-13 2006-06-13 Hematocrit / analyte detection apparatus and method with volume correction and feedback adjustment
EP19187252.2A EP3629005A1 (en) 2005-06-13 2006-06-13 Analyte detection device and method with hematocrit correction
EP06772943.4A EP1893994B1 (en) 2005-06-13 2006-06-13 Analyte detection device and method with hematocrit/volume correction
PCT/US2006/022840 WO2006138226A2 (en) 2005-06-13 2006-06-13 Analyte detection devices and methods with hematocrit/volume correction and feedback control
CA2611891A CA2611891C (en) 2005-06-13 2006-06-13 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US13/037,089 US8969097B2 (en) 2005-06-13 2011-02-28 Analyte detection devices and methods with hematocrit-volume correction and feedback control
US14/614,177 US9366636B2 (en) 2005-06-13 2015-02-04 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US15/177,041 US10226208B2 (en) 2005-06-13 2016-06-08 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US16/159,546 US11419532B2 (en) 2005-06-13 2018-10-12 Analyte detection devices and methods with hematocrit/volume correction and feedback control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68954605P 2005-06-13 2005-06-13
US11/239,122 US20060281187A1 (en) 2005-06-13 2005-09-30 Analyte detection devices and methods with hematocrit/volume correction and feedback control

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/037,089 Continuation US8969097B2 (en) 2005-06-13 2011-02-28 Analyte detection devices and methods with hematocrit-volume correction and feedback control

Publications (1)

Publication Number Publication Date
US20060281187A1 true US20060281187A1 (en) 2006-12-14

Family

ID=37524552

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/239,122 Abandoned US20060281187A1 (en) 2005-06-13 2005-09-30 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US13/037,089 Active US8969097B2 (en) 2005-06-13 2011-02-28 Analyte detection devices and methods with hematocrit-volume correction and feedback control
US14/614,177 Active US9366636B2 (en) 2005-06-13 2015-02-04 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US15/177,041 Active US10226208B2 (en) 2005-06-13 2016-06-08 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US16/159,546 Active US11419532B2 (en) 2005-06-13 2018-10-12 Analyte detection devices and methods with hematocrit/volume correction and feedback control

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/037,089 Active US8969097B2 (en) 2005-06-13 2011-02-28 Analyte detection devices and methods with hematocrit-volume correction and feedback control
US14/614,177 Active US9366636B2 (en) 2005-06-13 2015-02-04 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US15/177,041 Active US10226208B2 (en) 2005-06-13 2016-06-08 Analyte detection devices and methods with hematocrit/volume correction and feedback control
US16/159,546 Active US11419532B2 (en) 2005-06-13 2018-10-12 Analyte detection devices and methods with hematocrit/volume correction and feedback control

Country Status (5)

Country Link
US (5) US20060281187A1 (en)
EP (2) EP1893994B1 (en)
JP (1) JP5802361B2 (en)
CA (1) CA2611891C (en)
WO (1) WO2006138226A2 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060000646A1 (en) * 2002-10-04 2006-01-05 Joseph Purcell Down-the hole hammer
US20070083131A1 (en) * 2005-09-30 2007-04-12 Rosedale Medical, Inc. Catalysts for body fluid sample extraction
WO2008114060A1 (en) * 2007-03-22 2008-09-25 Quotient Diagnostics Limited Whole blood assay
WO2009148624A1 (en) * 2008-06-06 2009-12-10 Intuity Medical, Inc. Detection meter and mode of operation
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
WO2011065981A1 (en) 2009-11-30 2011-06-03 Intuity Medical, Inc. Calibration material delivery devices and methods
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8092385B2 (en) 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8231832B2 (en) 2003-03-24 2012-07-31 Intuity Medical, Inc. Analyte concentration detection devices and methods
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8292826B1 (en) 2011-06-21 2012-10-23 YofiMETER, Inc. Cocking and advancing mechanism for analyte testing device
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8333716B1 (en) 2011-06-21 2012-12-18 Yofimeter, Llc Methods for using an analyte testing device
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8517941B1 (en) * 2007-10-23 2013-08-27 Pacesetter, Inc. Implantable cardiac device and method for monitoring blood-glucose concentration
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8753290B2 (en) 2009-03-27 2014-06-17 Intellectual Inspiration, Llc Fluid transfer system and method
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US8961432B2 (en) 2011-06-21 2015-02-24 Yofimeter, Llc Analyte testing devices
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8969097B2 (en) 2005-06-13 2015-03-03 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit-volume correction and feedback control
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9782114B2 (en) 2011-08-03 2017-10-10 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9833183B2 (en) 2008-05-30 2017-12-05 Intuity Medical, Inc. Body fluid sampling device—sampling site interface
EP3114462A4 (en) * 2014-03-05 2017-12-20 Scanadu Incorporated Analyte concentration by quantifying and interpreting color
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
US10422806B1 (en) 2013-07-25 2019-09-24 Theranos Ip Company, Llc Methods for improving assays of biological samples
US10670588B2 (en) * 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US10729386B2 (en) 2013-06-21 2020-08-04 Intuity Medical, Inc. Analyte monitoring system with audible feedback
US10772550B2 (en) 2002-02-08 2020-09-15 Intuity Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
WO2021255268A1 (en) * 2020-06-18 2021-12-23 Gentian As Methods for determining the concentration of an analyte in the plasma fraction of a sample of whole blood
CN115081949A (en) * 2022-07-28 2022-09-20 深圳赛桥生物创新技术有限公司 Sample process operation method, device, equipment and medium with adjustable sample injection volume
US11933789B2 (en) 2021-05-05 2024-03-19 Intuity Medical, Inc. Calibration material delivery devices and methods

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2865678C (en) 2012-04-19 2018-03-13 Susanne BALDUS Method and device for determining an analyte concentration in blood
US9075042B2 (en) 2012-05-15 2015-07-07 Wellstat Diagnostics, Llc Diagnostic systems and cartridges
US9625465B2 (en) 2012-05-15 2017-04-18 Defined Diagnostics, Llc Clinical diagnostic systems
US9213043B2 (en) 2012-05-15 2015-12-15 Wellstat Diagnostics, Llc Clinical diagnostic system including instrument and cartridge
CN107024474B (en) 2012-06-22 2020-11-06 霍夫曼-拉罗奇有限公司 Method and device for detecting an analyte in a body fluid
US9778200B2 (en) 2012-12-18 2017-10-03 Ixensor Co., Ltd. Method and apparatus for analyte measurement
EP2936155B1 (en) 2012-12-20 2018-12-12 Roche Diabetes Care GmbH Method for analyzing a sample of a body fluid
JP6462585B2 (en) 2012-12-20 2019-01-30 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Evaluation method of medical measurement curve
EP3575781A3 (en) * 2013-01-07 2020-02-26 Ixensor Co., Ltd. Test strips and method for reading test strips
EP2781919A1 (en) 2013-03-19 2014-09-24 Roche Diagniostics GmbH Method / device for generating a corrected value of an analyte concentration in a sample of a body fluid
EP3074524B1 (en) 2013-11-27 2019-11-06 Roche Diabetes Care GmbH Composition comprising up-converting phosphors for detecting an analyte
JP6291875B2 (en) * 2014-01-31 2018-03-14 セイコーエプソン株式会社 Blood sugar level measuring device and blood sugar level measuring method
CN114028666A (en) 2015-03-31 2022-02-11 费雪派克医疗保健有限公司 User interface and system for supplying gas to an airway
US10136848B2 (en) * 2016-05-20 2018-11-27 Winnoz Technology, Inc. Device and system of blood collection, and method thereof
EP3995168A1 (en) 2016-08-11 2022-05-11 Fisher & Paykel Healthcare Limited A collapsible conduit, patient interface and headgear connector

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092465A (en) * 1960-03-25 1963-06-04 Miles Lab Diagnostic test device for blood sugar
US3630957A (en) * 1966-11-22 1971-12-28 Boehringer Mannheim Gmbh Diagnostic agent
US3723064A (en) * 1971-07-26 1973-03-27 L Liotta Method and device for determining the concentration of a material in a liquid
US4042335A (en) * 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4637406A (en) * 1984-08-09 1987-01-20 Hesston Corporation Chaff and straw spreading attachment for combines
US4815843A (en) * 1985-05-29 1989-03-28 Oerlikon-Buhrle Holding Ag Optical sensor for selective detection of substances and/or for the detection of refractive index changes in gaseous, liquid, solid and porous samples
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5049487A (en) * 1986-08-13 1991-09-17 Lifescan, Inc. Automated initiation of timing of reflectance readings
US5059394A (en) * 1986-08-13 1991-10-22 Lifescan, Inc. Analytical device for the automated determination of analytes in fluids
US5223219A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Analytical cartridge and system for detecting analytes in liquid samples
US5506200A (en) * 1992-02-06 1996-04-09 Biomagnetic Technologies, Inc. Compact superconducting magnetometer having no vacuum insulation
US5701181A (en) * 1995-05-12 1997-12-23 Bayer Corporation Fiber optic diffuse light reflectance sensor utilized in the detection of occult blood
US5841126A (en) * 1994-01-28 1998-11-24 California Institute Of Technology CMOS active pixel sensor type imaging system on a chip
US5846837A (en) * 1996-07-23 1998-12-08 Boehringer Mannheim Gmbh Volume-independent diagnostic test carrier and methods in which it is used to determine an analyte
US5968765A (en) * 1996-11-08 1999-10-19 Mercury Diagnostics, Inc. Opaque reaction matrix for the analysis of the whole blood
US6061128A (en) * 1997-09-04 2000-05-09 Avocet Medical, Inc. Verification device for optical clinical assay systems
US6206841B1 (en) * 1996-12-06 2001-03-27 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6241862B1 (en) * 1996-02-14 2001-06-05 Inverness Medical Technology, Inc. Disposable test strips with integrated reagent/blood separation layer
US6271045B1 (en) * 1997-06-17 2001-08-07 Amira Medical Device for determination of an analyte in a body fluid
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US20030012693A1 (en) * 2000-08-24 2003-01-16 Imego Ab Systems and methods for localizing and analyzing samples on a bio-sensor chip
US6555061B1 (en) * 2000-10-05 2003-04-29 Lifescan, Inc. Multi-layer reagent test strip
US20030083685A1 (en) * 2001-06-12 2003-05-01 Freeman Dominique M. Sampling module device and method
US6558624B1 (en) * 2000-07-25 2003-05-06 General Electric Company Method and analytical system for rapid screening of combinatorial libraries
US20030153900A1 (en) * 2002-02-08 2003-08-14 Sarnoff Corporation Autonomous, ambulatory analyte monitor or drug delivery device
US20030175987A1 (en) * 2002-03-18 2003-09-18 Edward Verdonk Biochemical assay with programmable array detection
US20030207441A1 (en) * 2002-05-01 2003-11-06 Eyster Curt R. Devices and methods for analyte concentration determination
US20040092842A1 (en) * 2001-06-12 2004-05-13 Dick Boecker Integrated blood sampling analysis system with multi-use sampling module
US6753187B2 (en) * 2001-05-09 2004-06-22 Lifescan, Inc. Optical component based temperature measurement in analyte detection devices
US6836678B2 (en) * 2003-02-13 2004-12-28 Xiang Zheng Tu Non-invasive blood glucose monitor
US6847451B2 (en) * 2002-05-01 2005-01-25 Lifescan, Inc. Apparatuses and methods for analyte concentration determination
US6919960B2 (en) * 1997-05-05 2005-07-19 Chemometec A/S Method and a system for determination of particles in a liquid sample
US7052652B2 (en) * 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods

Family Cites Families (594)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US842690A (en) * 1905-12-18 1907-01-29 Eugene B Oswalt Printing-type.
US2310002A (en) * 1937-06-24 1943-02-02 Hartford Nat Bank & Trust Co Method of making blocking layer electrode systems
US2749797A (en) 1950-03-21 1956-06-12 Bowser Inc Sample holder
US3310002A (en) 1965-10-18 1967-03-21 Robbin Lab Inc Pipette pump
CH500707A (en) 1968-07-26 1970-12-31 Micromedic Systems Inc Device for performing percutaneous and digital blood sampling
CH522395A (en) 1968-07-26 1972-05-15 Micromedic Systems Inc Test tube intended for percutaneous and digital blood sampling
US3620209A (en) 1970-05-08 1971-11-16 Harvey Kravitz Device for reducing the pain of injections of medicines and other biologicals
CH538277A (en) 1970-09-04 1973-06-30 Micromedic Systems Inc Percutaneous blood test device
US3961898A (en) 1975-01-14 1976-06-08 The United States Of America As Represented By The Secretary Of The Army Comparator circuit for automatic analysis apparatus
US4014328A (en) * 1975-06-23 1977-03-29 Cluff Kenneth C Blood sampling and infusion chamber
OA05448A (en) 1975-10-16 1981-03-31 Manufrance Manufacture Francai Multi-penetrating vaccine device.
US4057394A (en) 1976-05-24 1977-11-08 Miles Laboratories, Inc. Test device and method for determining blood hemoglobin
US4250257A (en) * 1978-08-24 1981-02-10 Technicon Instruments Corporation Whole blood analyses in porous media
US4254083A (en) * 1979-07-23 1981-03-03 Eastman Kodak Company Structural configuration for transport of a liquid drop through an ingress aperture
US4258001A (en) * 1978-12-27 1981-03-24 Eastman Kodak Company Element, structure and method for the analysis or transport of liquids
US4321397A (en) * 1979-01-31 1982-03-23 Millipore Corporation 4-Aminoantipyrine dye for the analytic determination of hydrogen peroxide
US4260257A (en) 1979-05-29 1981-04-07 Neeley William E Flow cell
US4289459A (en) 1979-08-13 1981-09-15 Neeley William E Proportioning pump
IT1130252B (en) 1980-02-04 1986-06-11 Elvi Spa METHOD FOR THE ELIMINATION OF BILIRIBUNA INTERFERENCE IN THE DOSAGE OF HYDROGEN PEROXIDE THROUGH A MODIFIED TRINDER REACTION
DE3004011A1 (en) * 1980-02-04 1981-08-13 Philips Patentverwaltung Gmbh, 2000 Hamburg BLOOD PRESSURE MEASURING DEVICE
US4394512A (en) 1980-02-05 1983-07-19 Boehringer Mannheim Gmbh 1-(Substituted phenyl) aminoantipyrin compounds
AU546785B2 (en) 1980-07-23 1985-09-19 Commonwealth Of Australia, The Open-loop controlled infusion of diabetics
US4422941A (en) 1980-09-08 1983-12-27 University Of Pittsburgh Apparatus for liquid-solid column centrifugation chromatography and method
JPS57174099A (en) 1981-04-17 1982-10-26 Fuji Photo Film Co Ltd Color indicator composition for detecting hydrogen peroxide and quantitative analytical film having reagent layer containing the same
US4414975A (en) 1981-05-15 1983-11-15 Ryder International Corp. Blood lancet
US4416279A (en) 1981-06-19 1983-11-22 Lindner James A Capillary blood sampling device
US4447546A (en) 1982-08-23 1984-05-08 Myron J. Block Fluorescent immunoassay employing optical fiber in capillary tube
DE3318505C2 (en) 1982-10-23 1985-07-11 Wilhelm Geiger GmbH & Co, 8980 Oberstdorf Method for filling cavities located below the surface of the earth, such as storage containers that are no longer required or the like.
US5183741A (en) * 1983-10-13 1993-02-02 Fuji Photo Film Co., Ltd. Integral multilayer element for glucose analysis
IT1177513B (en) 1984-01-27 1987-08-26 Menarini Sas READY TO USE LIQUID REACTIVE FOR THE DETERMINATION OF THE CONTENT OF BLOOD IN THE BLOOD
CA1265963A (en) 1984-03-02 1990-02-20 George Joseph Duffy Injection device
US4661319A (en) 1984-04-06 1987-04-28 Boehringer Mannheim Diagnostics, Inc. Blood transfer assembly
US4747687A (en) 1984-06-08 1988-05-31 Milton Roy Company Ball cell windows for spectrophotometers
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
DE3422732A1 (en) 1984-06-19 1985-12-19 Boehringer Mannheim Gmbh, 6800 Mannheim NEW AMINOPYRAZOLINONES, THEIR PRODUCTION AND USE
DE3446637A1 (en) * 1984-12-20 1986-07-03 Boehringer Mannheim Gmbh, 6800 Mannheim MEANS TO IMPROVE THE DETECTION H (DOWN ARROW) 2 (DOWN ARROW) 0 (DOWN ARROW) 2 (DOWN ARROW) - SUPPLYING OXIDASE REACTIONS AND ITS USE
US4627445A (en) * 1985-04-08 1986-12-09 Garid, Inc. Glucose medical monitoring system
JPS61290342A (en) 1985-06-14 1986-12-20 バリアン・アソシエイツ・インコ−ポレイテツド Detector for absorbancy of eluent for liquid chromatography
US4702261A (en) 1985-07-03 1987-10-27 Sherwood Medical Company Biopsy device and method
US4653513A (en) * 1985-08-09 1987-03-31 Dombrowski Mitchell P Blood sampler
US4829470A (en) 1985-12-12 1989-05-09 International Business Machines Corp. Text flow around irregular shaped graphic objects
US5029583A (en) 1986-07-22 1991-07-09 Personal Diagnostics, Inc. Optical analyzer
GB8618578D0 (en) 1986-07-30 1986-09-10 Turner R C Lancet device
US4790979A (en) 1986-08-29 1988-12-13 Technimed Corporation Test strip and fixture
US4711250A (en) 1986-09-09 1987-12-08 Gilbaugh Jr James H Hand-held medical syringe actuator device
US4966646A (en) 1986-09-24 1990-10-30 Board Of Trustees Of Leland Stanford University Method of making an integrated, microminiature electric-to-fluidic valve
US5308767A (en) 1986-10-31 1994-05-03 Fuji Photo Film Co., Ltd. Method for control or calibration in a chemical analytical determination
US4794926A (en) * 1986-11-24 1989-01-03 Invictus, Inc. Lancet cartridge
FR2609885B1 (en) 1987-01-22 1989-04-14 Cassou Robert INSTRUMENT FOR ARTIFICIAL INSEMINATION, TRANSFER OF EMBRYOS OR COLLECTION OF FOLLICULAR LIQUIDS FROM MAMMALS
US4774192A (en) 1987-01-28 1988-09-27 Technimed Corporation A dry reagent delivery system with membrane having porosity gradient
US4849340A (en) 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
JPS63305841A (en) 1987-06-09 1988-12-13 Omron Tateisi Electronics Co Digital electronic hemomanometer
US5218966A (en) 1987-06-12 1993-06-15 Omron Tateisi Electronics Co. Electronic blood pressure meter
AT390803B (en) 1988-08-24 1990-07-10 Avl Verbrennungskraft Messtech METHOD FOR DETERMINING THE CONCENTRATION OF AN ENZYME SUBSTRATE AND SENSOR FOR IMPLEMENTING THE METHOD
NL8702370A (en) 1987-10-05 1989-05-01 Groningen Science Park METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY.
US4929426A (en) 1987-11-02 1990-05-29 Biologix, Inc. Portable blood chemistry measuring apparatus
US4887306A (en) 1987-11-04 1989-12-12 Advanced Technology Laboratories, Inc. Adaptive temporal filter for ultrasound imaging system
DK163194C (en) * 1988-12-22 1992-06-22 Radiometer As METHOD OF PHOTOMETRIC IN VITRO DETERMINING A BLOOD GAS PARAMETER IN A BLOOD TEST
AU3375789A (en) 1988-04-28 1989-11-02 Lifescan, Inc. Determination of glucose in whole blood
JPH0752170B2 (en) 1988-05-27 1995-06-05 ダイキン工業株式会社 Diffusion limiting membrane holder storage container
US5302513A (en) 1988-06-29 1994-04-12 Kyowa Medex Co., Ltd. Method for determination of components
FI81120C (en) 1988-09-26 1990-09-10 Kone Oy FOERFARANDE FOER BESTAEMNING AV GLUKOS UR BIOLOGISKA VAETSKA SAMT REAGENSBLANDNING FOER TILLAEMPNING AV FOERFARANDET.
US5108889A (en) * 1988-10-12 1992-04-28 Thorne, Smith, Astill Technologies, Inc. Assay for determining analyte using mercury release followed by detection via interaction with aluminum
US4920977A (en) 1988-10-25 1990-05-01 Becton, Dickinson And Company Blood collection assembly with lancet and microcollection tube
US5037199A (en) 1989-02-22 1991-08-06 Linear Instruments Corporation Ball lens micro-cell
US5114350A (en) 1989-03-08 1992-05-19 Cholestech Corporation Controlled-volume assay apparatus
US4930525A (en) 1989-03-28 1990-06-05 Palestrant Aubrey M Method for performing C.T. guided drainage and biopsy procedures
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
SE466157B (en) 1989-04-25 1992-01-07 Migrata Uk Ltd DETERMINED TO DETERMINE THE GLUCOSE CONTENT OF WHOLE BLOOD AND DISPOSABLE BEFORE THIS
US5145565A (en) 1989-05-01 1992-09-08 Spacelabs, Inc. Contamination-free method and apparatus for measuring body fluid chemical parameters
IT1231916B (en) * 1989-05-29 1992-01-15 Ampliscientifica S R L WEARABLE ARTIFICIAL PANCREAS
DE3923921A1 (en) 1989-07-19 1991-01-24 Biotechnolog Forschung Gmbh OPTICAL BIOSENSOR
US5306623A (en) 1989-08-28 1994-04-26 Lifescan, Inc. Visual blood glucose concentration test strip
JPH0393189A (en) 1989-09-04 1991-04-18 Matsushita Electron Corp Manufacture of thin film el element
US5153416A (en) 1989-09-20 1992-10-06 Neeley William E Procedure and assembly for drawing blood
US5166498A (en) 1989-09-20 1992-11-24 Neeley William E Procedure and assembly for drawing blood
EP0429907B1 (en) 1989-11-21 1994-06-01 Bayer Ag Optical biosensor
US5697901A (en) 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection
US6090790A (en) 1989-12-14 2000-07-18 Eriksson; Elof Gene delivery by microneedle injection
DE3942357A1 (en) 1989-12-21 1991-06-27 Boehringer Mannheim Gmbh 3-AMINOPYRAZOLO-HETEROCYCLES, THEIR USES FOR THE DETERMINATION OF HYDROGEN PEROXIDE, HYDROGEN PEROXIDE-FORMING SYSTEMS, PEROXIDASE, PEROXIDATIALLY ACTIVE SUBSTANCES OR OF ELECTRONIC AROMATIC COMPOUNDS, CORRESPONDING PROCEDURES AND COMPOUNDS THEREOF
JPH0767861A (en) 1989-12-27 1995-03-14 2 モスコフスキ ゴスダルストベンニ メディツィンスキ インスティテュト イメニ エヌ.イー.ピロゴバ Disposable type blood laser irradiation device
US5050617A (en) 1990-02-20 1991-09-24 Eastman Kodak Company Removable handle and means for attachment to a syringe or phlebotomy device
US5115805A (en) 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
FR2659759B1 (en) 1990-03-14 1995-03-17 Boucheron REMOVABLE STRAP WATCH.
US5110724A (en) 1990-04-02 1992-05-05 Cholestech Corporation Multi-analyte assay device
US5054878A (en) 1990-06-04 1991-10-08 Conoco Inc. Device for source compensating a fiber optic coupler output
US5116759A (en) 1990-06-27 1992-05-26 Fiberchem Inc. Reservoir chemical sensors
US5208163A (en) 1990-08-06 1993-05-04 Miles Inc. Self-metering fluid analysis device
US5196302A (en) * 1990-08-29 1993-03-23 The United States Of America As Represented By The Sectetary Of The Navy Enzymatic assays using superabsorbent materials
US5251126A (en) 1990-10-29 1993-10-05 Miles Inc. Diabetes data analysis and interpretation method
US5312456A (en) 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
DE4138702A1 (en) * 1991-03-22 1992-09-24 Madaus Medizin Elektronik METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES
US5164575A (en) 1991-04-23 1992-11-17 Neeley William E Blood sampling procedure and apparatus
US5167238A (en) 1991-05-02 1992-12-01 Cobe Laboratories, Inc. Fluid sampling device
US5401110A (en) * 1991-07-15 1995-03-28 Neeley; William E. Custom label printer
US5131404A (en) 1991-07-15 1992-07-21 Neeley William E Capillary tube carrier with putty-filled cap
US5402798A (en) 1991-07-18 1995-04-04 Swierczek; Remi Disposable skin perforator and blood testing device
JP2601075B2 (en) 1991-10-21 1997-04-16 株式会社日立製作所 Analysis method and analyzer using test piece
USD341848S (en) 1991-12-09 1993-11-30 Microsoft Corporation Typeface
JP2572823Y2 (en) 1992-02-13 1998-05-25 株式会社アドバンス Simple blood sampler
US5441513A (en) 1992-03-12 1995-08-15 United States Surgical Corporation Retracting tip trocar assembly
JP3382632B2 (en) * 1992-03-13 2003-03-04 オリンパス光学工業株式会社 Method for measuring biological substance and reaction vessel used for the method
US5460777A (en) 1992-03-16 1995-10-24 Fuji Photo Film Co., Ltd. Analytical element for whole blood analysis
US5354537A (en) 1992-04-27 1994-10-11 Akzo N.V. Piercing and sampling probe
DE4217733A1 (en) 1992-05-29 1993-12-02 Boehringer Mannheim Gmbh Test carrier for analyte determination and method for its production
US5217480A (en) 1992-06-09 1993-06-08 Habley Medical Technology Corporation Capillary blood drawing device
US5241969A (en) 1992-06-10 1993-09-07 Carson Jay W Controlled and safe fine needle aspiration device
US5278079A (en) * 1992-09-02 1994-01-11 Enzymatics, Inc. Sealing device and method for inhibition of flow in capillary measuring devices
US5508200A (en) 1992-10-19 1996-04-16 Tiffany; Thomas Method and apparatus for conducting multiple chemical assays
DK148592D0 (en) 1992-12-10 1992-12-10 Novo Nordisk As APPARATUS
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5383512A (en) * 1993-01-27 1995-01-24 Midwest Research Institute Method for fabricating a substrate having spaced apart microcapillaries thereon
IT1272109B (en) 1993-03-19 1997-06-11 Eniricerche Spa PROCESS FOR THE PREPARATION OF APG
DE4313253A1 (en) 1993-04-23 1994-10-27 Boehringer Mannheim Gmbh System for analyzing the contents of liquid samples
DE59410066D1 (en) 1993-04-23 2002-04-11 Boehringer Mannheim Gmbh System for analyzing the contents of liquid samples
JP2630197B2 (en) 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
DE4318519C2 (en) 1993-06-03 1996-11-28 Fraunhofer Ges Forschung Electrochemical sensor
JP3343156B2 (en) 1993-07-14 2002-11-11 アークレイ株式会社 Optical component concentration measuring apparatus and method
US5360595A (en) 1993-08-19 1994-11-01 Miles Inc. Preparation of diagnostic test strips containing tetrazolium salt indicators
US5582184A (en) 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
HU219921B (en) 1993-10-20 2001-09-28 Ervin Lipscher Device for making blood test, especially from fingers
KR960705501A (en) 1993-10-28 1996-11-08 윌리암 모피트 FLUID SAMPLE COLLECTION AND INTRODUCTION DEVICE
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US20020169394A1 (en) 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US5458140A (en) 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
JP3393920B2 (en) 1993-12-09 2003-04-07 富士写真フイルム株式会社 Wearing equipment for small-volume fixed-volume blood sampling points
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
DE4415896A1 (en) 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5591139A (en) * 1994-06-06 1997-01-07 The Regents Of The University Of California IC-processed microneedles
US5771890A (en) 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
US5514152A (en) 1994-08-16 1996-05-07 Specialized Health Products, Inc. Multiple segment encapsulated medical lancing device
US6335203B1 (en) * 1994-09-08 2002-01-01 Lifescan, Inc. Optically readable strip for analyte detection having on-strip orientation index
KR100397405B1 (en) * 1994-09-12 2003-11-20 코닌클리케 필립스 일렉트로닉스 엔.브이. How to allow users to choose a service, the system that performs it, the server for that system, and the device for that system
US5577499A (en) 1994-10-03 1996-11-26 Teves; Leonides Y. Blood analyzer
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
GB9422260D0 (en) * 1994-11-04 1994-12-21 Owen Mumford Ltd Improvements relating to skin prickers
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5575403A (en) 1995-01-13 1996-11-19 Bayer Corporation Dispensing instrument for fluid monitoring sensors
WO1996022580A1 (en) 1995-01-17 1996-07-25 Sega Enterprises, Ltd. Image processor and electronic apparatus
US5568806A (en) 1995-02-16 1996-10-29 Minimed Inc. Transcutaneous sensor insertion set
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
CN1185747A (en) 1995-04-13 1998-06-24 阿德范斯德·西托梅特里克斯公司 Aspiration needle apparatus incorporation its own vaccum and method and adapter for use therewith
CA2170560C (en) 1995-04-17 2005-10-25 Joseph L. Moulton Means of handling multiple sensors in a glucose monitoring instrument system
FR2733745B1 (en) 1995-05-02 1997-07-04 Asulab Sa IMPROVED APPARATUS FOR THE DISTRIBUTION OF SUCCESSIVE AREAS OF A CONSUMABLE BAND
US5510266A (en) 1995-05-05 1996-04-23 Bayer Corporation Method and apparatus of handling multiple sensors in a glucose monitoring instrument system
AU5740496A (en) * 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
JPH08317917A (en) 1995-05-25 1996-12-03 Advance Co Ltd Blood drawing device
US5708787A (en) * 1995-05-29 1998-01-13 Matsushita Electric Industrial Menu display device
US5647851A (en) 1995-06-12 1997-07-15 Pokras; Norman M. Method and apparatus for vibrating an injection device
US6041253A (en) * 1995-12-18 2000-03-21 Massachusetts Institute Of Technology Effect of electric field and ultrasound for transdermal drug delivery
WO1997004707A1 (en) * 1995-07-28 1997-02-13 Apls Co., Ltd. Assembly for adjusting piercing depth of lancet
US5518689A (en) 1995-09-05 1996-05-21 Bayer Corporation Diffused light reflectance readhead
US5611999A (en) 1995-09-05 1997-03-18 Bayer Corporation Diffused light reflectance readhead
US6058321A (en) 1995-09-07 2000-05-02 Swayze; Claude R. Instrument for continuously monitoring fetal heart rate and intermittently monitoring fetal blood pH and method of use
WO1997010745A1 (en) * 1995-09-08 1997-03-27 Integ, Inc. Body fluid sampler
US5879367A (en) * 1995-09-08 1999-03-09 Integ, Inc. Enhanced interstitial fluid collection
US5682233A (en) 1995-09-08 1997-10-28 Integ, Inc. Interstitial fluid sampler
US5989409A (en) 1995-09-11 1999-11-23 Cygnus, Inc. Method for glucose sensing
US5735273A (en) 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
US5658515A (en) 1995-09-25 1997-08-19 Lee; Abraham P. Polymer micromold and fabrication process
KR100458978B1 (en) 1995-10-17 2005-05-11 라이프스캔, 인코포레이티드 The blood glucose strip with low sensitivity to hematocrit
AU722471B2 (en) 1995-10-17 2000-08-03 Lifescan, Inc. Blood glucose strip having reduced sensitivity to hematocrit
JPH09168530A (en) 1995-10-17 1997-06-30 Dainippon Printing Co Ltd Body fluid collecting tool and body fluid analyzer using the same
US5746720A (en) 1995-10-18 1998-05-05 Stouder, Jr.; Albert E. Method and apparatus for insertion of a cannula and trocar
US5741211A (en) 1995-10-26 1998-04-21 Medtronic, Inc. System and method for continuous monitoring of diabetes-related blood constituents
US5705018A (en) * 1995-12-13 1998-01-06 Hartley; Frank T. Micromachined peristaltic pump
ATE396644T1 (en) * 1995-12-19 2008-06-15 Abbott Lab DEVICE FOR DETECTING AN ANALYTE AND ADMINISTERING A THERAPEUTIC SUBSTANCE
US5926271A (en) 1995-12-20 1999-07-20 Zeta Technology Laser-induced fluorescence detector having a capillary detection cell and method for identifying trace compounds implemented by the same device
JP3316820B2 (en) 1995-12-28 2002-08-19 シィグナス インコーポレィティド Apparatus and method for continuous monitoring of a physiological analyte of a subject
FI118509B (en) 1996-02-12 2007-12-14 Nokia Oyj A method and apparatus for predicting blood glucose levels in a patient
US5989917A (en) 1996-02-13 1999-11-23 Selfcare, Inc. Glucose monitor and test strip containers for use in same
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US5801057A (en) 1996-03-22 1998-09-01 Smart; Wilson H. Microsampling device and method of construction
JP3605225B2 (en) 1996-04-01 2004-12-22 大日本印刷株式会社 Body fluid analyzer
AU706862B2 (en) 1996-04-03 1999-06-24 Applied Biosystems, Llc Device and method for multiple analyte detection
IL120587A (en) 1996-04-04 2000-10-31 Lifescan Inc Reagent test strip for determination of blood glucose
US5753452A (en) 1996-04-04 1998-05-19 Lifescan, Inc. Reagent test strip for blood glucose determination
US5989845A (en) 1996-04-05 1999-11-23 Mercury Diagnostics, Inc. Diagnostic compositions and devices utilizing same
US5962215A (en) 1996-04-05 1999-10-05 Mercury Diagnostics, Inc. Methods for testing the concentration of an analyte in a body fluid
AU725643B2 (en) 1996-04-30 2000-10-19 Metrika, Inc. Method and device for measuring reflected optical radiation
JP3604804B2 (en) 1996-05-07 2004-12-22 大日本印刷株式会社 Body fluid analyzer
US7666150B2 (en) * 1996-05-17 2010-02-23 Roche Diagnostics Operations, Inc. Blood and interstitial fluid sampling device
US6048352A (en) * 1996-05-17 2000-04-11 Mercury Diagnostics, Inc. Disposable element for use in a body fluid sampling device
US5951493A (en) 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
US5951492A (en) 1996-05-17 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
EP1579814A3 (en) * 1996-05-17 2006-06-14 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
US5879311A (en) 1996-05-17 1999-03-09 Mercury Diagnostics, Inc. Body fluid sampling device and methods of use
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
US20020010406A1 (en) 1996-05-17 2002-01-24 Douglas Joel S. Methods and apparatus for expressing body fluid from an incision
US5945678A (en) 1996-05-21 1999-08-31 Hamamatsu Photonics K.K. Ionizing analysis apparatus
US5954685A (en) 1996-05-24 1999-09-21 Cygnus, Inc. Electrochemical sensor with dual purpose electrode
JP3604808B2 (en) 1996-05-28 2004-12-22 大日本印刷株式会社 Body fluid analyzer
US5766066A (en) 1996-06-05 1998-06-16 Ranniger; Richard L. Skinning machine
US5660791A (en) 1996-06-06 1997-08-26 Bayer Corporation Fluid testing sensor for use in dispensing instrument
US6230051B1 (en) 1996-06-18 2001-05-08 Alza Corporation Device for enhancing transdermal agent delivery or sampling
US5797898A (en) 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US6183434B1 (en) * 1996-07-03 2001-02-06 Spectrx, Inc. Multiple mechanical microporation of skin or mucosa
JP3604819B2 (en) 1996-07-11 2004-12-22 大日本印刷株式会社 Body fluid analyzer
AT404513B (en) 1996-07-12 1998-12-28 Avl Verbrennungskraft Messtech METHOD AND MEASURING ARRANGEMENT FOR THE OPTICAL DETERMINATION OF TOTAL HEMOGLOBIN CONCENTRATION
US5858194A (en) * 1996-07-18 1999-01-12 Beckman Instruments, Inc. Capillary, interface and holder
JPH1033196A (en) 1996-07-23 1998-02-10 Unitika Ltd Test piece
US5736103A (en) 1996-08-09 1998-04-07 Lifescan, Inc. Remote-dosing analyte concentration meter
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US6015969A (en) 1996-09-16 2000-01-18 The Regents Of The University Of California Multiple-wavelength spectroscopic quantitation of light-absorbing species in scattering media
US5772677A (en) * 1996-09-24 1998-06-30 International Technidyne Corporation Incision device capable of automatic assembly and a method of assembly
US6146361A (en) * 1996-09-26 2000-11-14 Becton Dickinson And Company Medication delivery pen having a 31 gauge needle
IT240946Y1 (en) 1996-10-11 2001-04-20 Lascor Spa CLOCK SYSTEM FOR A WATCH CASE BRACELET
US5856195A (en) * 1996-10-30 1999-01-05 Bayer Corporation Method and apparatus for calibrating a sensor element
ES2401046T3 (en) 1996-10-30 2013-04-16 F.Hoffmann-La Roche Ag Synchronized analyte test system
DE19648844C1 (en) 1996-11-26 1997-09-18 Jenoptik Jena Gmbh Forming microstructured components for embossing tool and formable material between chamber walls
US5866281A (en) * 1996-11-27 1999-02-02 Wisconsin Alumni Research Foundation Alignment method for multi-level deep x-ray lithography utilizing alignment holes and posts
US6063039A (en) 1996-12-06 2000-05-16 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
DE19652784A1 (en) 1996-12-19 1998-06-25 Dade Behring Marburg Gmbh Device (cuvette) for holding and storing liquids and for carrying out optical measurements
ES2124186B1 (en) 1997-01-20 1999-08-01 Carpe Diem Salud S L SECTION AND TELEMATIC CONTROL SYSTEM OF PHYSIOLOGICAL PARAMETERS OF PATIENTS.
EP0958495B1 (en) 1997-02-06 2002-11-13 Therasense, Inc. Small volume in vitro analyte sensor
US6056734A (en) 1997-02-07 2000-05-02 Sarcos Lc Method for automatic dosing of drugs
US5911737A (en) 1997-02-28 1999-06-15 The Regents Of The University Of California Microfabricated therapeutic actuators
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6014135A (en) * 1997-04-04 2000-01-11 Netscape Communications Corp. Collaboration centric document processing environment using an information centric visual user interface and information presentation method
US5885839A (en) 1997-04-15 1999-03-23 Lxn Corporation Methods of determining initiation and variable end points for measuring a chemical reaction
IL123182A (en) 1997-04-28 2001-01-28 Bayer Ag Dispensing instrument for fluid monitoring sensors
US5759364A (en) 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US6391645B1 (en) 1997-05-12 2002-05-21 Bayer Corporation Method and apparatus for correcting ambient temperature effect in biosensors
USD403975S (en) * 1997-06-17 1999-01-12 Mercury Diagnostics, Inc. Test strip device
US5928207A (en) * 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
US5893870A (en) 1997-07-21 1999-04-13 Actilife L.L.C. Device and method for restricting venous flow for improved blood sampling
US6066243A (en) 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
JPH1156822A (en) 1997-08-19 1999-03-02 Omron Corp Blood sugar measuring instrument
US6121050A (en) 1997-08-29 2000-09-19 Han; Chi-Neng Arthur Analyte detection systems
WO1999017117A1 (en) 1997-09-30 1999-04-08 Amira Medical Analytical device with capillary reagent carrier
US6001239A (en) 1998-09-30 1999-12-14 Mercury Diagnostics, Inc. Membrane based electrochemical test device and related methods
US6097831A (en) 1997-10-14 2000-08-01 Chiron Corporation Non-contract method for assay reagent volume dispense verification
US5938679A (en) 1997-10-14 1999-08-17 Hewlett-Packard Company Apparatus and method for minimally invasive blood sampling
EP1027607A1 (en) 1997-10-31 2000-08-16 Sarnoff Corporation Method for enhancing fluorescence
JPH11146325A (en) 1997-11-10 1999-05-28 Hitachi Ltd Video retrieval method, device therefor, video information generating method and storage medium storing its processing program
US6706000B2 (en) 1997-11-21 2004-03-16 Amira Medical Methods and apparatus for expressing body fluid from an incision
US5971941A (en) 1997-12-04 1999-10-26 Hewlett-Packard Company Integrated system and method for sampling blood and analysis
US5871494A (en) * 1997-12-04 1999-02-16 Hewlett-Packard Company Reproducible lancing for sampling blood
US6036924A (en) * 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6071294A (en) 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US5986754A (en) 1997-12-08 1999-11-16 Lifescan, Inc. Medical diagnostic apparatus using a Fresnel reflector
ATE221400T1 (en) 1997-12-11 2002-08-15 Alza Corp DEVICE FOR INCREASE THE TRANSDERMAL FLOW OF ACTIVE INGREDIENTS
DK1037686T3 (en) 1997-12-11 2006-01-02 Alza Corp Apparatus for enhancing transdermal flow of agents
KR100557261B1 (en) 1997-12-11 2006-03-07 알자 코포레이션 Device for enhancing transdermal agent flux
EP1038176B1 (en) 1997-12-19 2003-11-12 Amira Medical Embossed test strip system
US6030827A (en) * 1998-01-23 2000-02-29 I-Stat Corporation Microfabricated aperture-based sensor
US6394952B1 (en) 1998-02-03 2002-05-28 Adeza Biomedical Corporation Point of care diagnostic systems
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
ATE375752T1 (en) 1998-03-06 2007-11-15 Spectrx Inc INTEGRATED TISSUE PORATION, FLUID COLLECTION AND ANALYSIS DEVICE
JP3109470B2 (en) * 1998-03-11 2000-11-13 日本電気株式会社 Stratum corneum puncture needle and stratum corneum puncture member
US6106751A (en) 1998-03-18 2000-08-22 The Regents Of The University Of California Method for fabricating needles via conformal deposition in two-piece molds
WO1999047037A2 (en) 1998-03-19 1999-09-23 Sims Portex Inc. Anticoagulant internally coated needle
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6139562A (en) * 1998-03-30 2000-10-31 Agilent Technologies, Inc. Apparatus and method for incising
US6091975A (en) 1998-04-01 2000-07-18 Alza Corporation Minimally invasive detecting device
US6246966B1 (en) 1998-04-06 2001-06-12 Bayer Corporation Method and apparatus for data management authentication in a clinical analyzer
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
CA2329411C (en) * 1998-05-13 2004-01-27 Cygnus, Inc. Collection assemblies for transdermal sampling system
US6272364B1 (en) 1998-05-13 2001-08-07 Cygnus, Inc. Method and device for predicting physiological values
CA2332112C (en) 1998-05-13 2004-02-10 Cygnus, Inc. Monitoring of physiological analytes
US6662031B1 (en) 1998-05-18 2003-12-09 Abbott Laboratoies Method and device for the noninvasive determination of hemoglobin and hematocrit
US6077660A (en) 1998-06-10 2000-06-20 Abbott Laboratories Diagnostic assay requiring a small sample of biological fluid
US6312888B1 (en) 1998-06-10 2001-11-06 Abbott Laboratories Diagnostic assay for a sample of biological fluid
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US5911711A (en) 1998-06-29 1999-06-15 Becton, Dickinson And Company Lubricant system for hypodermic needles and method for its application
DE69903306T2 (en) 1998-07-07 2003-05-22 Lightouch Medical Inc METHOD FOR TISSUE MODULATION FOR QUANTITATIVE NON-INVASIVE IN VIVO SPECTROSCOPIC ANALYSIS OF TISSUE
US6493069B1 (en) 1998-07-24 2002-12-10 Terumo Kabushiki Kaisha Method and instrument for measuring blood sugar level
US6540975B2 (en) 1998-07-27 2003-04-01 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US6100107A (en) 1998-08-06 2000-08-08 Industrial Technology Research Institute Microchannel-element assembly and preparation method thereof
GB9817662D0 (en) 1998-08-13 1998-10-07 Crocker Peter J Substance delivery
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6197257B1 (en) 1998-08-20 2001-03-06 Microsense Of St. Louis, Llc Micro sensor device
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
ATE237277T1 (en) 1998-09-04 2003-05-15 Powderject Res Ltd SECOND MEDICAL INDICATION OF A PARTICLE ADMINISTRATION METHOD
AU6035299A (en) 1998-09-09 2000-03-27 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
US6254586B1 (en) 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
DE19844500A1 (en) 1998-09-29 2000-03-30 Roche Diagnostics Gmbh Process for the photometric evaluation of test elements
EP1118856A4 (en) 1998-09-29 2008-07-23 Omron Healthcare Co Ltd Sample component analysis system and sensor chip and sensor pack used for the system
CA2653180C (en) 1998-09-30 2013-11-19 Medtronic Minimed, Inc. Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like
JP2000116629A (en) * 1998-10-15 2000-04-25 Kdk Corp Mounting body
JP3633317B2 (en) 1998-10-22 2005-03-30 ニプロ株式会社 Blood test tool with puncture needle
JP3093189B2 (en) 1998-12-01 2000-10-03 大阪シーリング印刷株式会社 Label sticking apparatus and label sticking method
JP2000175699A (en) 1998-12-15 2000-06-27 Fuji Photo Film Co Ltd Integration type multilayer chemical analytical element and measuring
US6388750B1 (en) 1998-12-17 2002-05-14 Beckman Coulter, Inc. Device and method for preliminary testing a neat serum sample in a primary collection tube
JP3659832B2 (en) 1999-03-10 2005-06-15 テルモ株式会社 Body fluid component measuring device
US6475372B1 (en) 2000-02-02 2002-11-05 Lifescan, Inc. Electrochemical methods and devices for use in the determination of hematocrit corrected analyte concentrations
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US6132449A (en) 1999-03-08 2000-10-17 Agilent Technologies, Inc. Extraction and transportation of blood for analysis
US6660018B2 (en) 1999-03-08 2003-12-09 Agilent Technologies, Inc. Multiple lancet device
US6368563B1 (en) 1999-03-12 2002-04-09 Integ, Inc. Collection well for body fluid tester
JP2000262298A (en) 1999-03-15 2000-09-26 Fuji Photo Film Co Ltd Determination of glucose or cholesterol concentration in whole blood
US6086544A (en) 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device
US6231531B1 (en) 1999-04-09 2001-05-15 Agilent Technologies, Inc. Apparatus and method for minimizing pain perception
US6192891B1 (en) * 1999-04-26 2001-02-27 Becton Dickinson And Company Integrated system including medication delivery pen, blood monitoring device, and lancer
US6748275B2 (en) 1999-05-05 2004-06-08 Respironics, Inc. Vestibular stimulation system and method
EP1060768A3 (en) 1999-05-05 2003-01-08 Hans Peter Kneubühler Carrier for roller skates and ice skates
DE19922413A1 (en) 1999-05-14 2000-11-23 Volkswagen Ag Watch mounting arrangement in which the watch casing is held by two semi-circular brackets that are held together by a threaded rod that is mounted in the ends of the brackets
CA2376128C (en) 1999-06-04 2009-01-06 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6256533B1 (en) 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US6152942A (en) 1999-06-14 2000-11-28 Bayer Corporation Vacuum assisted lancing device
WO2000078208A1 (en) 1999-06-18 2000-12-28 Spectrx, Inc. System and method for monitoring glucose to assist in weight management and fitness training
JP2003517588A (en) 1999-08-27 2003-05-27 エム−バイオテック インコーポレイテッド Glucose biosensor
US6251083B1 (en) 1999-09-07 2001-06-26 Amira Medical Interstitial fluid methods and devices for determination of an analyte in the body
US6331266B1 (en) 1999-09-29 2001-12-18 Becton Dickinson And Company Process of making a molded device
US6228100B1 (en) 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
JP4184572B2 (en) 2000-04-27 2008-11-19 松下電器産業株式会社 Biosensor
JP2001159618A (en) 1999-12-03 2001-06-12 Matsushita Electric Ind Co Ltd Biosensor
ATE508687T1 (en) 1999-12-13 2011-05-15 Arkray Inc BODY FLUID MEASUREMENT DEVICE WITH LANCET AND LANCET HOLDER USED THEREFOR
US7156809B2 (en) * 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6184990B1 (en) 1999-12-22 2001-02-06 Beckman Coulter, Inc. Miniature multiple wavelength excitation and emission optical system and method for laser-induced fluorescence detectors in capillary electrophoresis
US20010053891A1 (en) 1999-12-30 2001-12-20 Ackley Donald E. Stacked microneedle systems
JP4144019B2 (en) 2000-01-07 2008-09-03 ニプロ株式会社 Puncture needle
US6733446B2 (en) * 2000-01-21 2004-05-11 Medtronic Minimed, Inc. Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
DE10003093C2 (en) 2000-01-25 2002-05-16 Goltz Volker Freiherr Von Device for investigating properties of the global hemostasis function in whole blood or platelet-rich plasma
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
US6375627B1 (en) 2000-03-02 2002-04-23 Agilent Technologies, Inc. Physiological fluid extraction with rapid analysis
US6612111B1 (en) 2000-03-27 2003-09-02 Lifescan, Inc. Method and device for sampling and analyzing interstitial fluid and whole blood samples
JP4443718B2 (en) 2000-03-30 2010-03-31 パナソニック株式会社 Biological sample measuring device
DE10020352A1 (en) 2000-04-26 2001-10-31 Simons Hans Juergen Implantable blood glucose meter
US6690467B1 (en) 2000-05-05 2004-02-10 Pe Corporation Optical system and method for optically analyzing light from a sample
US6659982B2 (en) 2000-05-08 2003-12-09 Sterling Medivations, Inc. Micro infusion drug delivery device
JP2001330581A (en) 2000-05-19 2001-11-30 Matsushita Electric Ind Co Ltd Substrate concentration determination method
DE10026172A1 (en) * 2000-05-26 2001-11-29 Roche Diagnostics Gmbh Body fluid withdrawal system
DE10026170A1 (en) * 2000-05-26 2001-12-06 Roche Diagnostics Gmbh Body fluid withdrawal system
US6506168B1 (en) 2000-05-26 2003-01-14 Abbott Laboratories Apparatus and method for obtaining blood for diagnostic tests
US7641856B2 (en) 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
AU6676601A (en) 2000-06-09 2001-12-24 Inverness Medical Technology Cap for a lancing device
US6409679B2 (en) 2000-06-13 2002-06-25 Pacific Paragon Investment Fund Ltd. Apparatus and method for collecting bodily fluid
US6428664B1 (en) 2000-06-19 2002-08-06 Roche Diagnostics Corporation Biosensor
US6540675B2 (en) 2000-06-27 2003-04-01 Rosedale Medical, Inc. Analyte monitor
DE10033457A1 (en) 2000-07-10 2002-01-24 Bayer Ag Transmission spectroscopic device for containers
US6603987B2 (en) * 2000-07-11 2003-08-05 Bayer Corporation Hollow microneedle patch
US6358265B1 (en) * 2000-07-18 2002-03-19 Specialized Health Products, Inc. Single-step disposable safety lancet apparatus and methods
US6500134B1 (en) 2000-07-19 2002-12-31 Alphonse Cassone Method for treating circulatory disorders with acoustic waves
DE10035911A1 (en) 2000-07-21 2002-02-07 Abb Research Ltd Method and sensor for monitoring liquids
US6520973B1 (en) * 2000-08-30 2003-02-18 Ethicon Endo-Surgery, Inc. Anastomosis device having an improved needle driver
DE10047419A1 (en) 2000-09-26 2002-04-11 Roche Diagnostics Gmbh Lancet system
US6537243B1 (en) * 2000-10-12 2003-03-25 Abbott Laboratories Device and method for obtaining interstitial fluid from a patient for diagnostic tests
EP1203563A3 (en) 2000-10-31 2004-01-02 Boehringer Mannheim Gmbh Analyzing mean with integrated lancet
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE10057832C1 (en) 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
JP2002168861A (en) * 2000-11-28 2002-06-14 Terumo Corp Apparatus for measuring component
JP4409753B2 (en) * 2000-12-04 2010-02-03 テルモ株式会社 Body fluid measuring device
GB0030929D0 (en) 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
EP1347705B1 (en) 2000-12-21 2005-12-07 Insulet Corporation Medical apparatus remote control
AU2002247008B2 (en) 2001-01-22 2006-02-09 F. Hoffmann-La Roche Ag Lancet device having capillary action
USD450711S1 (en) 2001-01-25 2001-11-20 Digeo, Inc. User interface for a television display screen
US6530892B1 (en) * 2001-03-07 2003-03-11 Helen V. Kelly Automatic skin puncturing system
US20020160520A1 (en) 2001-03-16 2002-10-31 Phoenix Bioscience Silicon nano-collection analytic device
US7310543B2 (en) 2001-03-26 2007-12-18 Kumetrix, Inc. Silicon microprobe with integrated biosensor
US6896850B2 (en) 2001-03-26 2005-05-24 Kumetrix, Inc. Silicon nitride window for microsampling device and method of construction
WO2002082052A2 (en) 2001-04-06 2002-10-17 B. Braun Medical Inc. Blood testing device
US20020183102A1 (en) 2001-04-21 2002-12-05 Withers James G. RBDS method and device for processing promotional opportunities
US6783502B2 (en) 2001-04-26 2004-08-31 Phoenix Bioscience Integrated lancing and analytic device
US6712792B2 (en) 2001-05-02 2004-03-30 Becton, Dickinson And Company Flashback blood collection needle
WO2002093144A1 (en) 2001-05-10 2002-11-21 Regents Of The University Of Minnesota Imaging of biological samples using electronic light detector
US6591124B2 (en) 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
US20020188223A1 (en) 2001-06-08 2002-12-12 Edward Perez Devices and methods for the expression of bodily fluids from an incision
ATE335435T1 (en) * 2001-06-08 2006-09-15 Hoffmann La Roche BODY FLUID EXTRACTION DEVICE AND TEST MEDIA CASSETTE
US6793632B2 (en) 2001-06-12 2004-09-21 Lifescan, Inc. Percutaneous biological fluid constituent sampling and measurement devices and methods
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US20070100255A1 (en) 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
CA2448905C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Blood sampling apparatus and method
DE10128956A1 (en) 2001-06-15 2003-01-02 Juergen Schomakers Tablet stick for therapy-appropriate individual dosing
WO2003000127A2 (en) 2001-06-22 2003-01-03 Cygnus, Inc. Method for improving the performance of an analyte monitoring system
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US6766817B2 (en) 2001-07-25 2004-07-27 Tubarc Technologies, Llc Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action
US20030028087A1 (en) * 2001-08-01 2003-02-06 Yuzhakov Vadim Vladimirovich Devices for analyte concentration determination and methods of using the same
US20030028125A1 (en) * 2001-08-06 2003-02-06 Yuzhakov Vadim V. Physiological sample collection devices and methods of using the same
US7323141B2 (en) 2001-08-13 2008-01-29 Bayer Healthcare Llc Button layout for a testing instrument
US20030039587A1 (en) * 2001-08-22 2003-02-27 Volker Niermann Transfer device
WO2003039369A1 (en) * 2001-09-26 2003-05-15 Roche Diagnostics Gmbh Method and apparatus for sampling bodily fluid
CA2500452A1 (en) 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Switchable microneedle arrays and systems and methods relating to same
US6744502B2 (en) 2001-09-28 2004-06-01 Pe Corporation (Ny) Shaped illumination geometry and intensity using a diffractive optical element
US6689100B2 (en) 2001-10-05 2004-02-10 Becton, Dickinson And Company Microdevice and method of delivering or withdrawing a substance through the skin of an animal
US6903815B2 (en) 2001-11-22 2005-06-07 Kabushiki Kaisha Toshiba Optical waveguide sensor, device, system and method for glucose measurement
US20030166259A1 (en) 2001-12-04 2003-09-04 Dave Smith Method for accurately mixing sample and buffer solutions
EP1627662B1 (en) 2004-06-10 2011-03-02 Candela Corporation Apparatus for vacuum-assisted light-based treatments of the skin
JP3887228B2 (en) 2001-12-21 2007-02-28 セイコーインスツル株式会社 Mounting mechanism with position adjustment function for arm-mounted electronic device and arm-mounted electronic device
DE10257439A1 (en) 2001-12-21 2003-09-18 Seiko Instr Inc Portable electronic device
EP1475630A4 (en) 2002-02-12 2007-10-24 Arkray Inc Measuring device and removal device for stored object
DE10208575C1 (en) 2002-02-21 2003-08-14 Hartmann Paul Ag Blood analyzer device comprises needles, test media, analyzer and display, and has carrier turned with respect to main body, to position needle and test media
US6775001B2 (en) 2002-02-28 2004-08-10 Lambda Control, Inc. Laser-based spectrometer for use with pulsed and unstable wavelength laser sources
US6780171B2 (en) 2002-04-02 2004-08-24 Becton, Dickinson And Company Intradermal delivery device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7141058B2 (en) 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2004054455A1 (en) 2002-12-13 2004-07-01 Pelikan Technologies, Inc. Method and apparatus for measuring analytes
US20030211619A1 (en) 2002-05-09 2003-11-13 Lorin Olson Continuous strip of fluid sampling and testing devices and methods of making, packaging and using the same
US7303726B2 (en) 2002-05-09 2007-12-04 Lifescan, Inc. Minimal procedure analyte test system
US20030212344A1 (en) 2002-05-09 2003-11-13 Vadim Yuzhakov Physiological sample collection devices and methods of using the same
US20030143113A2 (en) 2002-05-09 2003-07-31 Lifescan, Inc. Physiological sample collection devices and methods of using the same
US7343188B2 (en) * 2002-05-09 2008-03-11 Lifescan, Inc. Devices and methods for accessing and analyzing physiological fluid
AU2003240260B2 (en) 2002-05-16 2008-05-22 F. Hoffmann-La Roche Ag Method and reagent system having a non-regenerative enzyme-coenzyme complex
US20040010207A1 (en) * 2002-07-15 2004-01-15 Flaherty J. Christopher Self-contained, automatic transcutaneous physiologic sensing system
US7090580B2 (en) 2002-09-11 2006-08-15 Igt Gaming device including a game having a wild symbol related award
GB2393356B (en) * 2002-09-18 2006-02-01 E San Ltd Telemedicine system
US7192405B2 (en) 2002-09-30 2007-03-20 Becton, Dickinson And Company Integrated lancet and bodily fluid sensor
US7501053B2 (en) 2002-10-23 2009-03-10 Abbott Laboratories Biosensor having improved hematocrit and oxygen biases
US7572237B2 (en) 2002-11-06 2009-08-11 Abbott Diabetes Care Inc. Automatic biological analyte testing meter with integrated lancing device and methods of use
US7334714B2 (en) 2002-11-18 2008-02-26 Callkeeper Company, Inc. Wearable personal item carrier
US20040120848A1 (en) 2002-12-20 2004-06-24 Maria Teodorczyk Method for manufacturing a sterilized and calibrated biosensor-based medical device
EP1479344A1 (en) 2003-05-22 2004-11-24 Roche Diagnostics GmbH Direct monitoring of interstitial fluid composition
AU2003297853A1 (en) 2002-12-24 2004-07-29 F. Hoffmann-La Roche Ag A sampling device utilizing biased capillary action
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US20040132167A1 (en) 2003-01-06 2004-07-08 Peter Rule Cartridge lance
US7238160B2 (en) 2003-01-17 2007-07-03 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring biological component
DE10302501A1 (en) 2003-01-23 2004-08-05 Roche Diagnostics Gmbh Device and method for absorbing a body fluid for analysis purposes
EP1589873B1 (en) 2003-01-29 2011-12-21 Roche Diagnostics GmbH Integrated lancing test strip
US20060189908A1 (en) 2003-01-31 2006-08-24 Jay Kennedy Pelvic traction harness
CA2455669A1 (en) 2003-02-04 2004-08-04 Bayer Healthcare, Llc Method and test strip for determining glucose in blood
US7379167B2 (en) * 2003-02-11 2008-05-27 International Technidyne Corporation Hemoglobin test strip and analysis system
US7154592B2 (en) 2003-02-11 2006-12-26 Bayer Healthcare Llc. Multiwavelength readhead for use in the determination of analytes in body fluids
EP1447665B1 (en) 2003-02-11 2016-06-29 Bayer HealthCare LLC Method for reducing effect of hematocrit on measurement of an analyte in whole blood
US6740800B1 (en) 2003-02-13 2004-05-25 Robert Felder Cunningham Portable keyboard tremolo musical instrument
WO2004074827A1 (en) 2003-02-21 2004-09-02 Matsushita Electric Industrial Co., Ltd. Measuring instrument for biosensor and measuring method using same
US7183552B2 (en) 2003-03-07 2007-02-27 Ric Investments, Llc Optical system for a gas measurement system
JP2006521555A (en) 2003-03-24 2006-09-21 ローズデイル メディカル インコーポレイテッド Apparatus and method for analyte concentration detection
US20050070819A1 (en) 2003-03-31 2005-03-31 Rosedale Medical, Inc. Body fluid sampling constructions and techniques
US7225008B1 (en) 2003-05-21 2007-05-29 Isense Corporation Multiple use analyte sensing assembly
US7150425B2 (en) 2003-05-28 2006-12-19 Reelcraft Industries, Inc. Adjustable reel assembly
US7374949B2 (en) 2003-05-29 2008-05-20 Bayer Healthcare Llc Diagnostic test strip for collecting and detecting an analyte in a fluid sample
ATE476137T1 (en) 2003-05-30 2010-08-15 Pelikan Technologies Inc METHOD AND DEVICE FOR INJECTING LIQUID
DE10325699B3 (en) 2003-06-06 2005-02-10 Roche Diagnostics Gmbh System for analyzing a sample to be tested and using such a system
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
US20060241666A1 (en) 2003-06-11 2006-10-26 Briggs Barry D Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US20050033340A1 (en) 2003-06-20 2005-02-10 Lipoma Michael V. Concealed lancet cartridge for lancing device
US7597793B2 (en) 2003-06-20 2009-10-06 Roche Operations Ltd. System and method for analyte measurement employing maximum dosing time delay
US7488601B2 (en) 2003-06-20 2009-02-10 Roche Diagnostic Operations, Inc. System and method for determining an abused sensor during analyte measurement
AU2004203280A1 (en) 2003-07-28 2005-02-17 Bayer Healthcare Llc Swing Lance with Integrated Sensor
PL207804B1 (en) 2003-07-29 2011-02-28 Htl Strefa Społka Z Ograniczoną Odpowiedzialnością Piercing apparatus
US7655019B2 (en) 2003-08-20 2010-02-02 Facet Technologies, Llc Blood sampling device
US20060224172A1 (en) 2003-08-20 2006-10-05 Facet Technologies, Llc Blood sampling device
WO2005018709A2 (en) 2003-08-20 2005-03-03 Facet Technologies, Llc Lancing device with replaceable multi-lancet carousel
EP1663023A4 (en) 2003-08-20 2010-01-27 Facet Technologies Llc Lancing device with multi-lancet magazine
US9133024B2 (en) 2003-09-03 2015-09-15 Brigitte Chau Phan Personal diagnostic devices including related methods and systems
JP4312559B2 (en) 2003-09-19 2009-08-12 株式会社フジクラ Sensor built-in needle, sample collection device, and sample inspection system
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US7192061B2 (en) 2003-10-16 2007-03-20 Martin Judy A Birthday calendar
US20050096686A1 (en) 2003-10-31 2005-05-05 Allen John J. Lancing device with trigger mechanism for penetration depth control
US7351228B2 (en) 2003-11-06 2008-04-01 Becton, Dickinson And Company Plunger rod for arterial blood collection syringes
US20050109386A1 (en) 2003-11-10 2005-05-26 Practical Technology, Inc. System and method for enhanced thermophotovoltaic generation
WO2005046477A2 (en) 2003-11-12 2005-05-26 Facet Technologies, Llc Lancing device and multi-lancet cartridge
EP1691192B1 (en) 2003-12-04 2015-07-01 Panasonic Healthcare Holdings Co., Ltd. Blood component measuring method
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
BRPI0507376A (en) 2004-02-06 2007-07-10 Bayer Healthcare Llc oxidizable species as an internal reference for biosensors and method of use
US20050187532A1 (en) 2004-02-24 2005-08-25 Medex, Inc. Diaphragm-based reservoir for a closed blood sampling system
US8105849B2 (en) 2004-02-27 2012-01-31 Board Of Regents, The University Of Texas System Integration of fluids and reagents into self-contained cartridges containing sensor elements
JP2005237938A (en) 2004-02-29 2005-09-08 Ogawa Hiroteru Device and method to collect blood
WO2005084557A1 (en) 2004-03-02 2005-09-15 Facet Technologies, Llc Compact multi-use lancing device
US7819822B2 (en) 2004-03-06 2010-10-26 Roche Diagnostics Operations, Inc. Body fluid sampling device
PL1725168T3 (en) 2004-03-06 2016-10-31 Body fluid sampling device
US7437741B2 (en) 2004-03-08 2008-10-14 International Business Machines Corporation Method, system, and program for invoking methods between computer languages
JP2005257337A (en) 2004-03-09 2005-09-22 Brother Ind Ltd Inspection object receiver, inspection device, and inspection method
US7201723B2 (en) 2004-03-25 2007-04-10 Roche Diagnostics Operations, Inc. Pulsating expression cap
US20050215923A1 (en) 2004-03-26 2005-09-29 Wiegel Christopher D Fingertip conforming fluid expression cap
EP1733043B1 (en) 2004-03-31 2016-06-01 Bayer HealthCare LLC Method for implementing threshold based correction functions for biosensors
JP4944770B2 (en) 2004-04-16 2012-06-06 ファセット・テクノロジーズ・エルエルシー Cap displacement mechanism for puncture device and multi-lancet cartridge
CA2559297C (en) 2004-04-19 2012-05-22 Matsushita Electric Industrial Co., Ltd. Method for measuring blood components and biosensor and measuring instrument for use therein
WO2005102166A1 (en) 2004-04-26 2005-11-03 Asahi Polyslider Co., Ltd. Lancet device for forming incision
US8591436B2 (en) 2004-04-30 2013-11-26 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US9101302B2 (en) 2004-05-03 2015-08-11 Abbott Diabetes Care Inc. Analyte test device
BRPI0510779A (en) 2004-05-14 2007-11-20 Bayer Healthcare Llc methods for performing hematocrit adjustment in assays and devices for same
DE102004024970A1 (en) 2004-05-21 2005-12-08 Roche Diagnostics Gmbh Device and method for positioning a body part
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US7384402B2 (en) 2004-06-10 2008-06-10 Roche Diagnostics Operations, Inc. Expression pad
EP1776035A2 (en) 2004-07-01 2007-04-25 Vivomedical, Inc. Non-invasive glucose measurement
US7727166B2 (en) 2004-07-26 2010-06-01 Nova Biomedical Corporation Lancet, lancet assembly and lancet-sensor combination
US7645241B2 (en) 2004-09-09 2010-01-12 Roche Diagnostics Operations, Inc. Device for sampling bodily fluids
EP1804651B1 (en) 2004-09-15 2016-03-30 Sanofi-Aventis Deutschland GmbH Apparatus for an improved sample capture
US8211038B2 (en) 2004-09-17 2012-07-03 Abbott Diabetes Care Inc. Multiple-biosensor article
US7608042B2 (en) * 2004-09-29 2009-10-27 Intellidx, Inc. Blood monitoring system
US7380357B2 (en) 2004-12-03 2008-06-03 Adstracts, Inc. Promotional badge holding apparatus
DE102004059491B4 (en) 2004-12-10 2008-11-06 Roche Diagnostics Gmbh Lancet device for creating a puncture wound and lancet drive assembly
ATE553213T1 (en) 2004-12-13 2012-04-15 Bayer Healthcare Llc COMPOSITIONS WITH OWN SIZE LIMITS AND TEST DEVICES FOR MEASURING ANALYTES IN BIOLOGICAL LIQUIDS
RU2400733C2 (en) 2004-12-13 2010-09-27 Байер Хелткэр Ллк Transmission spectroscopy system for use in determining analysed substances in body fluids
JP4595525B2 (en) 2004-12-20 2010-12-08 オムロンヘルスケア株式会社 Sphygmomanometer cuff and sphygmomanometer equipped with the same
CA2602259A1 (en) 2005-03-29 2006-10-05 Arkal Medical, Inc. Devices, systems, methods and tools for continuous glucose monitoring
US20060281187A1 (en) 2005-06-13 2006-12-14 Rosedale Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
EP1743577A1 (en) 2005-06-23 2007-01-17 Roche Diagnostics GmbH Hand-held apparatus for the analysis of bodily fluids
FI121698B (en) 2005-07-19 2011-03-15 Ihq Innovation Headquarters Oy Health monitoring device and sensor cartridge for the health monitoring device
US20070017824A1 (en) * 2005-07-19 2007-01-25 Rippeth John J Biosensor and method of manufacture
UY29721A1 (en) 2005-08-05 2007-03-30 Bayer Healthcare Llc METER WITH POSTPRANDIAL TIME ALARM TO PERFORM DETERMINATIONS
JP4717557B2 (en) 2005-08-30 2011-07-06 三菱電機株式会社 Communication system and transmitter / receiver
US7066890B1 (en) 2005-08-31 2006-06-27 Lam Phillip L Combined computer mouse and blood pressure sphygmomanometer
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US7887494B2 (en) 2005-09-30 2011-02-15 Intuity Medical, Inc. Fluid sample transport devices and methods
CA2623589C (en) 2005-09-30 2014-07-22 Intuity Medical, Inc. Catalysts for body fluid sample extraction
WO2007045412A1 (en) 2005-10-15 2007-04-26 F. Hoffmann-La Roche Ag Test element and test system for examining a body fluid
WO2007054317A1 (en) 2005-11-09 2007-05-18 Medizinische Universität Graz Determining a value of a physiological parameter
US9149215B2 (en) 2005-12-30 2015-10-06 Roche Diabetes Care, Inc. Portable analytical device
US20070255180A1 (en) 2006-04-27 2007-11-01 Lifescan Scotland, Ltd. Lancing device cap with integrated light source
JP2007311196A (en) 2006-05-18 2007-11-29 Ritsutoku Denshi Kofun Yugenkoshi Power plug changing installation direction
USD551243S1 (en) 2006-06-30 2007-09-18 Microsoft Corporation Graphical user interface for a display screen
EP1878386A1 (en) 2006-07-15 2008-01-16 Roche Diagnostics GmbH Process to produce lancet; lancet, lancet band and device for pricking the skin
USD540343S1 (en) 2006-08-16 2007-04-10 Microsoft Corporation Icon for a portion of a display screen
JP4285704B2 (en) * 2006-08-16 2009-06-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Information processing apparatus, information processing method, and information processing program
US8372015B2 (en) 2006-08-28 2013-02-12 Intuity Medical, Inc. Body fluid sampling device with pivotable catalyst member
EP1917909A1 (en) 2006-10-12 2008-05-07 Roche Diagnostics GmbH Sampling system and method to obtain liquid samples
WO2008100818A1 (en) 2007-02-09 2008-08-21 Stat Medical Devices, Inc Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US9597019B2 (en) 2007-02-09 2017-03-21 Lifescan, Inc. Method of ensuring date and time on a test meter is accurate
JP4973242B2 (en) 2007-03-02 2012-07-11 パナソニック株式会社 Blood collection apparatus and blood test apparatus using the same
US20110092854A1 (en) 2009-10-20 2011-04-21 Uwe Kraemer Instruments and system for producing a sample of a body fluid and for analysis thereof
EP1990001A1 (en) 2007-05-10 2008-11-12 Roche Diagnostics GmbH Piercing system and fleam conveyor
ATE534328T1 (en) 2007-05-29 2011-12-15 Hoffmann La Roche FLEXIBLE LANCET IN A LANCET SYSTEM
EP2162169A1 (en) 2007-05-30 2010-03-17 Eli Lilly & Company Cartridge with multiple injection needles for a medication injection device
US8961431B2 (en) 2009-09-28 2015-02-24 Roche Diagnostics Operations, Inc. Body fluid lancing, acquiring, and testing cartridge design
US9186097B2 (en) 2007-09-17 2015-11-17 Roche Diabetes Care, Inc. Body fluid lancing, acquiring, and testing cartridge design
USD599373S1 (en) 2007-10-31 2009-09-01 Brother Industries, Ltd. Computer icon image for a portion of a display screen
USD601578S1 (en) 2007-12-04 2009-10-06 Somfy Sas Icon for a portion of a display screen
CA2709210A1 (en) 2007-12-10 2009-06-18 Igor Gofman Integrated fluid analyte meter system
US9392968B2 (en) 2008-01-23 2016-07-19 Stat Medical Devices, Inc. Lancet needle cartridge, cartridge lancet device, and method of using and making the same
US7766846B2 (en) 2008-01-28 2010-08-03 Roche Diagnostics Operations, Inc. Rapid blood expression and sampling
US9332932B2 (en) 2008-03-18 2016-05-10 Panasonic Healthcare Holdings Co., Ltd. Blood collecting puncture device and magazine used for the same
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
EP2111786A1 (en) 2008-04-23 2009-10-28 F. Hoffmann-Roche AG Test system
DK2117267T3 (en) 2008-05-07 2012-08-27 Ericsson Telefon Ab L M Procedure, test systems and devices for checking compliance with requirements specifications
USD601257S1 (en) 2008-05-30 2009-09-29 Intuity Medical, Inc. Hand-held meter
WO2009145920A1 (en) 2008-05-30 2009-12-03 Intuity Medical, Inc. Body fluid sampling device -- sampling site interface
USD601444S1 (en) 2008-05-30 2009-10-06 Intuity Medical, Inc. Cartridge for use in hand-held meter
ES2907152T3 (en) * 2008-06-06 2022-04-22 Intuity Medical Inc Blood glucose meter and method of operation
JP5642066B2 (en) 2008-06-06 2014-12-17 インテュイティ メディカル インコーポレイテッド Method and apparatus for performing an assay to determine the presence or concentration of an analyte contained in a sample of body fluid
EP2130493B1 (en) 2008-06-07 2013-09-25 Roche Diagnostics GmbH Analysis system for detecting an analyte in a bodily fluid, cartridge for an analytic device and method for manufacturing a cartridge for an analysis system.
US8551320B2 (en) 2008-06-09 2013-10-08 Lifescan, Inc. System and method for measuring an analyte in a sample
US20100095229A1 (en) 2008-09-18 2010-04-15 Abbott Diabetes Care, Inc. Graphical user interface for glucose monitoring system
EP2174591B1 (en) 2008-10-09 2019-01-16 Roche Diabetes Care GmbH Puncture instrument
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
EP2398388B1 (en) 2009-02-19 2020-04-08 Roche Diabetes Care GmbH Compact storage of auxiliary analytical devices in a cartridge
EP2230018A1 (en) 2009-02-26 2010-09-22 Roche Diagnostics GmbH Consumption element cartridge for an analyte concentration measuring system
WO2010120563A1 (en) 2009-03-31 2010-10-21 Abbott Diabetes Care Inc. Integrated analyte devices and processes
ATE535189T1 (en) 2009-04-03 2011-12-15 Hoffmann La Roche DEVICE FOR COLLECTING AND ANALYZING A BLOOD SAMPLE
USD622393S1 (en) 2009-06-04 2010-08-24 Intuity Medical, Inc. Hand-held meter
US9517027B2 (en) 2009-07-10 2016-12-13 Facet Techonologies, Llc Advancement mechanism for cartridge-based devices
CN102481124B (en) 2009-07-14 2015-01-07 霍夫曼-拉罗奇有限公司 Optimized lancet strip
EP2506768B1 (en) 2009-11-30 2016-07-06 Intuity Medical, Inc. Calibration material delivery devices and methods
EP2553441B1 (en) 2010-03-31 2019-10-23 Lifescan Scotland Limited Electrochemical analyte measurement method and system
TW201214425A (en) 2010-06-19 2012-04-01 Hoffmann La Roche Tape cassette and method for the manufacture thereof
USD642191S1 (en) 2010-06-24 2011-07-26 Microsoft Corporation Display screen with transitional user interface
USD654926S1 (en) 2010-06-25 2012-02-28 Intuity Medical, Inc. Display with a graphic user interface
EP2584964B1 (en) 2010-06-25 2021-08-04 Intuity Medical, Inc. Analyte monitoring devices
EP2603256B1 (en) 2010-08-13 2015-07-22 Seventh Sense Biosystems, Inc. Clinical and/or consumer techniques and devices
US9717452B2 (en) 2010-12-30 2017-08-01 Roche Diabetes Care, Inc. Handheld medical diagnostic devices with lancing speed control
US8158428B1 (en) 2010-12-30 2012-04-17 General Electric Company Methods, systems and apparatus for detecting material defects in combustors of combustion turbine engines
DE102011015656B3 (en) 2011-03-30 2012-06-21 Gerresheimer Regensburg Gmbh Lancet magazine for lancing devices
US9931478B2 (en) 2011-04-10 2018-04-03 David Hirshberg Needles system
CA2830997C (en) 2011-04-12 2018-06-26 F. Hoffmann-La Roche Ag Analytical aid
EP4339613A2 (en) 2011-08-03 2024-03-20 Intuity Medical, Inc. Body fluid sampling arrangement
US9880254B2 (en) 2011-09-22 2018-01-30 Sanofi-Aventis Deutschland Gmbh Detecting a blood sample
US8920455B2 (en) 2011-10-24 2014-12-30 Roche Diagnostics Operations, Inc. Collecting technique and device to concentrate a blood sample on a test pad
US9968284B2 (en) 2011-12-02 2018-05-15 Clinitech, Llc Anti-interferent barrier layers for non-invasive transdermal sampling and analysis device
US9194859B2 (en) 2011-12-23 2015-11-24 Abbott Point Of Care Inc. Reader devices for optical and electrochemical test devices
EP2802268B1 (en) 2012-01-10 2015-11-04 Sanofi-Aventis Deutschland GmbH Apparatus having a light emitting part
CN104144645B (en) 2012-01-10 2017-07-07 赛诺菲-安万特德国有限公司 Blood analyser
EP2617356A1 (en) 2012-01-18 2013-07-24 Roche Diagniostics GmbH Analytic system for testing a bodily fluid and method for its operation
WO2013156134A1 (en) 2012-04-16 2013-10-24 Roche Diagnostics Gmbh Methods and structures for assembling lancet housing assemblies for handheld medical diagnostic devices
CA2865678C (en) 2012-04-19 2018-03-13 Susanne BALDUS Method and device for determining an analyte concentration in blood
CN107024474B (en) 2012-06-22 2020-11-06 霍夫曼-拉罗奇有限公司 Method and device for detecting an analyte in a body fluid
CN104838258B (en) 2012-12-04 2017-09-15 霍夫曼-拉罗奇有限公司 The blood glucose meter being adapted to for the method for hematocrit adjustment and for this
US9949679B2 (en) 2012-12-07 2018-04-24 Ascilion Ab Microfabricated sensor and a method of sensing the level of a component in bodily fluid
EP2781919A1 (en) 2013-03-19 2014-09-24 Roche Diagniostics GmbH Method / device for generating a corrected value of an analyte concentration in a sample of a body fluid
JP2016522070A (en) 2013-06-21 2016-07-28 インテュイティ メディカル インコーポレイテッド Analyte monitoring system using audible feedback
US9965587B2 (en) 2013-07-08 2018-05-08 Roche Diabetes Care, Inc. Reminder, classification, and pattern identification systems and methods for handheld diabetes management devices
US20180338713A1 (en) 2013-11-11 2018-11-29 Sandia Corporation Integrated fluidic chip for transdermal sensing of physiological markers
US9603561B2 (en) 2013-12-16 2017-03-28 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
US20150182157A1 (en) 2013-12-30 2015-07-02 CardioCanary, Inc. On-Patient Autonomous Blood Sampler and Analyte Measurement Device
EP3116400A4 (en) 2014-03-12 2017-10-25 Yofimeter, LLC Analyte testing devices with lancet advancement tracking and color touchscreen user interface
TWI571242B (en) 2014-04-16 2017-02-21 光寶電子(廣州)有限公司 Glucose test device and its carrying unit
US20150335272A1 (en) 2014-05-20 2015-11-26 Nicholas R. Natale Blood sugar concentration (bsc) testing and monitoring system and method
US9987427B1 (en) 2014-06-24 2018-06-05 National Technology & Engineering Solutions Of Sandia, Llc Diagnostic/drug delivery “sense-respond” devices, systems, and uses thereof
US9974471B1 (en) 2014-10-24 2018-05-22 Verily Life Sciences Llc Analyte detection system and method for intradermal implantation of biocompatible optode nanosensors
US9730625B2 (en) 2015-03-02 2017-08-15 Verily Life Sciences Llc Automated blood sampling device
US10765361B2 (en) 2015-03-02 2020-09-08 Verily Life Sciences Llc Automated sequential injection and blood draw
US9939404B2 (en) 2016-02-05 2018-04-10 Figaro Engineering Inc. CO sensor having electromotive force response
US11147486B2 (en) 2016-08-12 2021-10-19 Medtrum Technologies Inc. One step all-in-one apparatus for body fluid sampling and sensing
WO2018085699A1 (en) 2016-11-04 2018-05-11 Nueon Inc. Combination blood lancet and analyzer
WO2018132515A1 (en) 2017-01-10 2018-07-19 Drawbridge Health, Inc. Devices, systems, and methods for sample collection
JP7418213B2 (en) 2017-04-13 2024-01-19 インテュイティ メディカル インコーポレイテッド Systems and methods for managing chronic diseases using analytes and patient data

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092465A (en) * 1960-03-25 1963-06-04 Miles Lab Diagnostic test device for blood sugar
US3630957A (en) * 1966-11-22 1971-12-28 Boehringer Mannheim Gmbh Diagnostic agent
US3723064A (en) * 1971-07-26 1973-03-27 L Liotta Method and device for determining the concentration of a material in a liquid
US4042335A (en) * 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4637406A (en) * 1984-08-09 1987-01-20 Hesston Corporation Chaff and straw spreading attachment for combines
US4815843A (en) * 1985-05-29 1989-03-28 Oerlikon-Buhrle Holding Ag Optical sensor for selective detection of substances and/or for the detection of refractive index changes in gaseous, liquid, solid and porous samples
US5059394A (en) * 1986-08-13 1991-10-22 Lifescan, Inc. Analytical device for the automated determination of analytes in fluids
US5049487A (en) * 1986-08-13 1991-09-17 Lifescan, Inc. Automated initiation of timing of reflectance readings
US5843692A (en) * 1986-08-13 1998-12-01 Lifescan, Inc. Automatic initiation of a time interval for measuring glucose concentration in a sample of whole blood
US5968760A (en) * 1986-08-13 1999-10-19 Lifescan, Inc. Temperature-Independent Blood Glucose Measurement
US6268162B1 (en) * 1986-08-13 2001-07-31 Lifescan, Inc. Reflectance measurement of analyte concentration with automatic initiation of timing
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5506200A (en) * 1992-02-06 1996-04-09 Biomagnetic Technologies, Inc. Compact superconducting magnetometer having no vacuum insulation
US5223219A (en) * 1992-04-10 1993-06-29 Biotrack, Inc. Analytical cartridge and system for detecting analytes in liquid samples
US5841126A (en) * 1994-01-28 1998-11-24 California Institute Of Technology CMOS active pixel sensor type imaging system on a chip
US5701181A (en) * 1995-05-12 1997-12-23 Bayer Corporation Fiber optic diffuse light reflectance sensor utilized in the detection of occult blood
US6241862B1 (en) * 1996-02-14 2001-06-05 Inverness Medical Technology, Inc. Disposable test strips with integrated reagent/blood separation layer
US5846837A (en) * 1996-07-23 1998-12-08 Boehringer Mannheim Gmbh Volume-independent diagnostic test carrier and methods in which it is used to determine an analyte
US5968765A (en) * 1996-11-08 1999-10-19 Mercury Diagnostics, Inc. Opaque reaction matrix for the analysis of the whole blood
US6206841B1 (en) * 1996-12-06 2001-03-27 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6919960B2 (en) * 1997-05-05 2005-07-19 Chemometec A/S Method and a system for determination of particles in a liquid sample
US6271045B1 (en) * 1997-06-17 2001-08-07 Amira Medical Device for determination of an analyte in a body fluid
US6061128A (en) * 1997-09-04 2000-05-09 Avocet Medical, Inc. Verification device for optical clinical assay systems
US6379969B1 (en) * 2000-03-02 2002-04-30 Agilent Technologies, Inc. Optical sensor for sensing multiple analytes
US6558624B1 (en) * 2000-07-25 2003-05-06 General Electric Company Method and analytical system for rapid screening of combinatorial libraries
US20030012693A1 (en) * 2000-08-24 2003-01-16 Imego Ab Systems and methods for localizing and analyzing samples on a bio-sensor chip
US6555061B1 (en) * 2000-10-05 2003-04-29 Lifescan, Inc. Multi-layer reagent test strip
US6753187B2 (en) * 2001-05-09 2004-06-22 Lifescan, Inc. Optical component based temperature measurement in analyte detection devices
US20040092842A1 (en) * 2001-06-12 2004-05-13 Dick Boecker Integrated blood sampling analysis system with multi-use sampling module
US20030083686A1 (en) * 2001-06-12 2003-05-01 Freeman Dominique M. Tissue penetration device
US20030083685A1 (en) * 2001-06-12 2003-05-01 Freeman Dominique M. Sampling module device and method
US20030153900A1 (en) * 2002-02-08 2003-08-14 Sarnoff Corporation Autonomous, ambulatory analyte monitor or drug delivery device
US20030175987A1 (en) * 2002-03-18 2003-09-18 Edward Verdonk Biochemical assay with programmable array detection
US20030207441A1 (en) * 2002-05-01 2003-11-06 Eyster Curt R. Devices and methods for analyte concentration determination
US6847451B2 (en) * 2002-05-01 2005-01-25 Lifescan, Inc. Apparatuses and methods for analyte concentration determination
US6836678B2 (en) * 2003-02-13 2004-12-28 Xiang Zheng Tu Non-invasive blood glucose monitor
US7052652B2 (en) * 2003-03-24 2006-05-30 Rosedale Medical, Inc. Analyte concentration detection devices and methods

Cited By (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439872B2 (en) 1998-03-30 2013-05-14 Sanofi-Aventis Deutschland Gmbh Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US8845550B2 (en) 2001-06-12 2014-09-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9694144B2 (en) 2001-06-12 2017-07-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US8382683B2 (en) 2001-06-12 2013-02-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360991B2 (en) 2001-06-12 2013-01-29 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8123700B2 (en) 2001-06-12 2012-02-28 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8721671B2 (en) 2001-06-12 2014-05-13 Sanofi-Aventis Deutschland Gmbh Electric lancet actuator
US8679033B2 (en) 2001-06-12 2014-03-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909775B2 (en) 2001-06-12 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8641643B2 (en) 2001-06-12 2014-02-04 Sanofi-Aventis Deutschland Gmbh Sampling module device and method
US9937298B2 (en) 2001-06-12 2018-04-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8622930B2 (en) 2001-06-12 2014-01-07 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8016774B2 (en) 2001-06-12 2011-09-13 Pelikan Technologies, Inc. Tissue penetration device
US9802007B2 (en) 2001-06-12 2017-10-31 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8162853B2 (en) 2001-06-12 2012-04-24 Pelikan Technologies, Inc. Tissue penetration device
US8343075B2 (en) 2001-06-12 2013-01-01 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337421B2 (en) 2001-06-12 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8282577B2 (en) 2001-06-12 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US8216154B2 (en) 2001-06-12 2012-07-10 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981055B2 (en) 2001-06-12 2011-07-19 Pelikan Technologies, Inc. Tissue penetration device
US7988645B2 (en) 2001-06-12 2011-08-02 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8211037B2 (en) 2001-06-12 2012-07-03 Pelikan Technologies, Inc. Tissue penetration device
US8206317B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8206319B2 (en) 2001-06-12 2012-06-26 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9560993B2 (en) 2001-11-21 2017-02-07 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US10772550B2 (en) 2002-02-08 2020-09-15 Intuity Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
US8235915B2 (en) 2002-04-19 2012-08-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8845549B2 (en) 2002-04-19 2014-09-30 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US9907502B2 (en) 2002-04-19 2018-03-06 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8062231B2 (en) 2002-04-19 2011-11-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8157748B2 (en) 2002-04-19 2012-04-17 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9839386B2 (en) 2002-04-19 2017-12-12 Sanofi-Aventis Deustschland Gmbh Body fluid sampling device with capacitive sensor
US8197423B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8197421B2 (en) 2002-04-19 2012-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8202231B2 (en) 2002-04-19 2012-06-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8007446B2 (en) 2002-04-19 2011-08-30 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7988644B2 (en) 2002-04-19 2011-08-02 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9724021B2 (en) 2002-04-19 2017-08-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9498160B2 (en) 2002-04-19 2016-11-22 Sanofi-Aventis Deutschland Gmbh Method for penetrating tissue
US9339612B2 (en) 2002-04-19 2016-05-17 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9186468B2 (en) 2002-04-19 2015-11-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089678B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9089294B2 (en) 2002-04-19 2015-07-28 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8333710B2 (en) 2002-04-19 2012-12-18 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7959582B2 (en) 2002-04-19 2011-06-14 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337420B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9072842B2 (en) 2002-04-19 2015-07-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8905945B2 (en) 2002-04-19 2014-12-09 Dominique M. Freeman Method and apparatus for penetrating tissue
US8079960B2 (en) 2002-04-19 2011-12-20 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7875047B2 (en) 2002-04-19 2011-01-25 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8366637B2 (en) 2002-04-19 2013-02-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7938787B2 (en) 2002-04-19 2011-05-10 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8808201B2 (en) 2002-04-19 2014-08-19 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for penetrating tissue
US8382682B2 (en) 2002-04-19 2013-02-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8388551B2 (en) 2002-04-19 2013-03-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for multi-use body fluid sampling device with sterility barrier release
US8403864B2 (en) 2002-04-19 2013-03-26 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8414503B2 (en) 2002-04-19 2013-04-09 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8430828B2 (en) 2002-04-19 2013-04-30 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8435190B2 (en) 2002-04-19 2013-05-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7914465B2 (en) 2002-04-19 2011-03-29 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8491500B2 (en) 2002-04-19 2013-07-23 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8496601B2 (en) 2002-04-19 2013-07-30 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8556829B2 (en) 2002-04-19 2013-10-15 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8562545B2 (en) 2002-04-19 2013-10-22 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8574168B2 (en) 2002-04-19 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909777B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8636673B2 (en) 2002-04-19 2014-01-28 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909774B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8690796B2 (en) 2002-04-19 2014-04-08 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7901365B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20060000646A1 (en) * 2002-10-04 2006-01-05 Joseph Purcell Down-the hole hammer
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9034639B2 (en) 2002-12-30 2015-05-19 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US9095292B2 (en) 2003-03-24 2015-08-04 Intuity Medical, Inc. Analyte concentration detection devices and methods
US8231832B2 (en) 2003-03-24 2012-07-31 Intuity Medical, Inc. Analyte concentration detection devices and methods
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US8251921B2 (en) 2003-06-06 2012-08-28 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9144401B2 (en) 2003-06-11 2015-09-29 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US10034628B2 (en) 2003-06-11 2018-07-31 Sanofi-Aventis Deutschland Gmbh Low pain penetrating member
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US8945910B2 (en) 2003-09-29 2015-02-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US9561000B2 (en) 2003-12-31 2017-02-07 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US8296918B2 (en) 2003-12-31 2012-10-30 Sanofi-Aventis Deutschland Gmbh Method of manufacturing a fluid sampling device with improved analyte detecting member configuration
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9261476B2 (en) 2004-05-20 2016-02-16 Sanofi Sa Printable hydrogel for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US9366636B2 (en) 2005-06-13 2016-06-14 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US10226208B2 (en) 2005-06-13 2019-03-12 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US8969097B2 (en) 2005-06-13 2015-03-03 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit-volume correction and feedback control
US11419532B2 (en) 2005-06-13 2022-08-23 Intuity Medical, Inc. Analyte detection devices and methods with hematocrit/volume correction and feedback control
US8360993B2 (en) 2005-09-30 2013-01-29 Intuity Medical, Inc. Method for body fluid sample extraction
US8012104B2 (en) 2005-09-30 2011-09-06 Intuity Medical, Inc. Catalysts for body fluid sample extraction
US10441205B2 (en) 2005-09-30 2019-10-15 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US10433780B2 (en) 2005-09-30 2019-10-08 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US9060723B2 (en) 2005-09-30 2015-06-23 Intuity Medical, Inc. Body fluid sampling arrangements
US20070083131A1 (en) * 2005-09-30 2007-04-12 Rosedale Medical, Inc. Catalysts for body fluid sample extraction
US10842427B2 (en) 2005-09-30 2020-11-24 Intuity Medical, Inc. Body fluid sampling arrangements
US8012103B2 (en) 2005-09-30 2011-09-06 Intuity Medical, Inc. Catalysts for body fluid sample extraction
US8360994B2 (en) 2005-09-30 2013-01-29 Intuity Medical, Inc. Arrangement for body fluid sample extraction
US8795201B2 (en) 2005-09-30 2014-08-05 Intuity Medical, Inc. Catalysts for body fluid sample extraction
US9380974B2 (en) 2005-09-30 2016-07-05 Intuity Medical, Inc. Multi-site body fluid sampling and analysis cartridge
US9839384B2 (en) 2005-09-30 2017-12-12 Intuity Medical, Inc. Body fluid sampling arrangements
US20080064987A1 (en) * 2005-09-30 2008-03-13 Intuity Medical, Inc. Catalysts for body fluid sample extraction
US8382681B2 (en) 2005-09-30 2013-02-26 Intuity Medical, Inc. Fully integrated wearable or handheld monitor
US8801631B2 (en) 2005-09-30 2014-08-12 Intuity Medical, Inc. Devices and methods for facilitating fluid transport
US8092385B2 (en) 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US20100075338A1 (en) * 2007-03-22 2010-03-25 Quotient Diagnostics Limited Whole Blood Assay
US7943331B2 (en) 2007-03-22 2011-05-17 Quotient Diagnostics Limited Whole blood assay
WO2008114060A1 (en) * 2007-03-22 2008-09-25 Quotient Diagnostics Limited Whole blood assay
US10670588B2 (en) * 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US8517941B1 (en) * 2007-10-23 2013-08-27 Pacesetter, Inc. Implantable cardiac device and method for monitoring blood-glucose concentration
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9833183B2 (en) 2008-05-30 2017-12-05 Intuity Medical, Inc. Body fluid sampling device—sampling site interface
US11045125B2 (en) 2008-05-30 2021-06-29 Intuity Medical, Inc. Body fluid sampling device-sampling site interface
US10383556B2 (en) 2008-06-06 2019-08-20 Intuity Medical, Inc. Medical diagnostic devices and methods
US11553860B2 (en) 2008-06-06 2023-01-17 Intuity Medical, Inc. Medical diagnostic devices and methods
WO2009148624A1 (en) * 2008-06-06 2009-12-10 Intuity Medical, Inc. Detection meter and mode of operation
US20170354355A1 (en) * 2008-06-06 2017-12-14 Intuity Medical, Inc. Detection meter and mode of operation
EP3900615A3 (en) * 2008-06-06 2022-03-30 Intuity Medical, Inc. Detection meter and mode of operation
US11399744B2 (en) 2008-06-06 2022-08-02 Intuity Medical, Inc. Detection meter and mode of operation
US9636051B2 (en) 2008-06-06 2017-05-02 Intuity Medical, Inc. Detection meter and mode of operation
US20100021947A1 (en) * 2008-06-06 2010-01-28 Intuity Medical, Inc. Detection meter and mode of operation
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8753290B2 (en) 2009-03-27 2014-06-17 Intellectual Inspiration, Llc Fluid transfer system and method
EP3106871A1 (en) 2009-11-30 2016-12-21 Intuity Medical, Inc. A method of verifying the accuracy of the operation of an analyte monitoring device
US9897610B2 (en) 2009-11-30 2018-02-20 Intuity Medical, Inc. Calibration material delivery devices and methods
US8919605B2 (en) 2009-11-30 2014-12-30 Intuity Medical, Inc. Calibration material delivery devices and methods
WO2011065981A1 (en) 2009-11-30 2011-06-03 Intuity Medical, Inc. Calibration material delivery devices and methods
US11002743B2 (en) 2009-11-30 2021-05-11 Intuity Medical, Inc. Calibration material delivery devices and methods
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US10330667B2 (en) 2010-06-25 2019-06-25 Intuity Medical, Inc. Analyte monitoring methods and systems
US8333717B1 (en) 2011-06-21 2012-12-18 Yofimeter, Llc Test unit cartridge for analyte testing device
US8961432B2 (en) 2011-06-21 2015-02-24 Yofimeter, Llc Analyte testing devices
US8292826B1 (en) 2011-06-21 2012-10-23 YofiMETER, Inc. Cocking and advancing mechanism for analyte testing device
US8333716B1 (en) 2011-06-21 2012-12-18 Yofimeter, Llc Methods for using an analyte testing device
US11382544B2 (en) 2011-08-03 2022-07-12 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US11051734B2 (en) 2011-08-03 2021-07-06 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US9782114B2 (en) 2011-08-03 2017-10-10 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US11672452B2 (en) 2011-08-03 2023-06-13 Intuity Medical, Inc. Devices and methods for body fluid sampling and analysis
US10729386B2 (en) 2013-06-21 2020-08-04 Intuity Medical, Inc. Analyte monitoring system with audible feedback
US10422806B1 (en) 2013-07-25 2019-09-24 Theranos Ip Company, Llc Methods for improving assays of biological samples
EP3114462A4 (en) * 2014-03-05 2017-12-20 Scanadu Incorporated Analyte concentration by quantifying and interpreting color
WO2021255268A1 (en) * 2020-06-18 2021-12-23 Gentian As Methods for determining the concentration of an analyte in the plasma fraction of a sample of whole blood
US11933789B2 (en) 2021-05-05 2024-03-19 Intuity Medical, Inc. Calibration material delivery devices and methods
CN115081949A (en) * 2022-07-28 2022-09-20 深圳赛桥生物创新技术有限公司 Sample process operation method, device, equipment and medium with adjustable sample injection volume

Also Published As

Publication number Publication date
WO2006138226A3 (en) 2009-04-30
CA2611891C (en) 2016-08-02
US9366636B2 (en) 2016-06-14
CA2611891A1 (en) 2006-12-28
JP5802361B2 (en) 2015-10-28
US11419532B2 (en) 2022-08-23
JP2009501316A (en) 2009-01-15
US20150212006A1 (en) 2015-07-30
US20170095188A1 (en) 2017-04-06
EP1893994A4 (en) 2013-08-21
US20110201909A1 (en) 2011-08-18
US20190209064A1 (en) 2019-07-11
EP1893994A2 (en) 2008-03-05
US10226208B2 (en) 2019-03-12
EP3629005A1 (en) 2020-04-01
EP1893994B1 (en) 2019-07-24
US8969097B2 (en) 2015-03-03
WO2006138226A2 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US11419532B2 (en) Analyte detection devices and methods with hematocrit/volume correction and feedback control
CN106062544B (en) Quantification of assay changes
US20120165626A1 (en) Devices, methods, and kits for determining analyte concentrations
US20060099703A1 (en) Device for quantitative analysis of biological materials
US20050037482A1 (en) Dual measurement analyte detection system
JP4785611B2 (en) Method and apparatus for measuring the concentration of a specific component in a blood sample
US8068217B2 (en) Apparatus for testing component concentration of a test sample
JP6811729B2 (en) Component measuring device, component measuring method and component measuring program
KR20150038603A (en) Method and device for determining sample application
US20080044842A1 (en) Biological Test Strip
US8570519B2 (en) Method and device for analyzing a body fluid
US11740181B2 (en) Preparation device, diagnostic apparatus, diagnostic kit and diagnostic system
US20230408418A1 (en) Multi-Modal Diagnostic Test Apparatus
KR102605420B1 (en) How to measure the concentration of an analyte in body fluids
KR101090947B1 (en) Test strip and living creature analyzing device and analyzing method using it
KR20180080396A (en) Bio-sensor
EP1889568A1 (en) Mobile communication terminal equipped with temperature compensation function for use in bioinformation measurement
KR20110041025A (en) The bio chip and the sensing method thereof
KR20090027322A (en) Sample taking device having temperature measurement means and analysis system furnishing it

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROSEDALE MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EMERY, JEFFREY L.;STIVERS, CAROLE R.;REEL/FRAME:017158/0308;SIGNING DATES FROM 20050928 TO 20051003

AS Assignment

Owner name: INTUITY MEDICAL, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ROSEDALE MEDICAL, INC.;REEL/FRAME:020436/0198

Effective date: 20070607

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION