US20060191269A1 - Catalytic fuel-air injector with bluff-body flame stabilization - Google Patents

Catalytic fuel-air injector with bluff-body flame stabilization Download PDF

Info

Publication number
US20060191269A1
US20060191269A1 US11/361,626 US36162606A US2006191269A1 US 20060191269 A1 US20060191269 A1 US 20060191269A1 US 36162606 A US36162606 A US 36162606A US 2006191269 A1 US2006191269 A1 US 2006191269A1
Authority
US
United States
Prior art keywords
flow
conduit
pilot
combustion
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/361,626
Inventor
Lance Smith
Hasan Karim
Shahrokh Etemad
William Pfefferle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRICISION COMBUSTION Inc
Precision Combustion Inc
Original Assignee
PRICISION COMBUSTION Inc
Precision Combustion Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRICISION COMBUSTION Inc, Precision Combustion Inc filed Critical PRICISION COMBUSTION Inc
Priority to US11/361,626 priority Critical patent/US20060191269A1/en
Assigned to PRICISION COMBUSTION, INC. reassignment PRICISION COMBUSTION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETEMAD, SHAHROKH, SMITH, LANCE, KARIM, HASAN, PFEFFERLE, WILLIAM C.
Publication of US20060191269A1 publication Critical patent/US20060191269A1/en
Priority to PCT/US2007/004813 priority patent/WO2007100710A2/en
Assigned to PRECISION COMBUSTION, INC. reassignment PRECISION COMBUSTION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETEMAD, SHAHROKH, SMITH, LANCE, KARIM, HASAN, PFEFFERLE, WILLIAM C.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/06Apparatus in which combustion takes place in the presence of catalytic material in which non-catalytic combustion takes place in addition to catalytic combustion, e.g. downstream of a catalytic element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • This invention relates to a fuel-air injection device for use in a combustion system, as in a gas turbine engine. More specifically this invention is directed toward a shaped duct for injecting catalyst effluent into a combustion chamber, the shaped duct containing a small bluff-body for stabilizing (anchoring) combustion of the effluent.
  • the catalyst effluent is directed outward toward the walls of the combustor, even in the absence of swirl, forming a flame-anchoring recirculation zone with dimensions much greater than the bluff body diameter.
  • a swirler In conventional (non-catalytic) lean-premixed combustion, a swirler would typically be used to inject the fuel-lean mixture into the combustor.
  • the flame When a swirler is used, the flame is anchored because the swirler induces recirculation (backmixing) of hot combustion products within the combustor.
  • the recirculating, hot combustion products continuously contact and ignite the incoming fuel-air mixture, thus anchoring the flame in the vicinity of the recirculation zone, as is well known in the art.
  • An additional effect of the swirler is to direct the incoming fuel-air mixture outwards toward the walls of the combustor, thus rapidly “diffusing” the mixture into the combustor, making effective use of the combustor's volume.
  • the simplest means of flame anchoring is the use of a dump.
  • injecting a combustible fuel-air mixture axially into a combustion chamber without swirl, in the same direction as the bulk flow through the combustor leads to a high-velocity jet transiting the combustor from inlet to exit, without significant expansion into the combustion chamber volume.
  • velocities in the jet remain high and the residence time for a fluid particle transiting the combustor, from inlet to exit, remains relatively short even with an overly long combustor.
  • the term “large” means that the bluff body (cone) diameter is a significant fraction of the injector duct diameter, i.e. sufficiently large to redirect flow direction.
  • a “large” bluff body to be one that has a diameter (at its largest cross-sectional) greater than about 70% of the injector duct's diameter (at its smallest cross-sectional).
  • the disadvantage of a large cone is that it requires significant cooling air to ensure that it will not overheat in the event of flashback or autoignition. In many low-emissions combustion systems very little cooling air is available, and the use of significant cooling air can increase NOx emissions since cooling air must be taken from the primary fuel-air mixture, making it less lean.
  • combustors in aeroderivative machines typically have residence times below 10-20 ms
  • industrial or large-frame machines typically have combustor residence times below 20-30 ms.
  • having an additional fuel-air stage will provide system flexibility for the gas turbine operation.
  • the additional fuel-air stage (pilot) provides a means of starting the engine and provide a means of assuring flame stability during the load shedding. In load shedding, the engine load is suddenly removed and the main fuel through catalytic modules will be suddenly be reduced to respond back to this sudden change in load. In this transient operation the system should not loose the flame.
  • the pilot flame (extra fuel-air stage) will provide this stability.
  • pilot fuel injector placed within the post catalyst duct of a catalytic reactor can serve as a small bluff body to stabilize not only a pilot flame but direct the surrounding flow outward towards the combustor wall if placed within a flared injector duct.
  • Such placement induces outward motion of the primary flow towards the combustor walls for effective “fill” of the combustor volume without the need for swirler vanes or large cones. Combustion is stabilized by the resulting gas recirculation and by contact with the pilot flame.
  • the present patent thus provides a system to fully utilize combustor volume and minimize the combustor size required for required burnout of fuel values.
  • FIG. 1 provides a schematic of a combustion system according to the present invention.
  • FIGS. 2 through 5 provide a depiction of CFD results for respective curvatures as described hereinbelow.
  • exit flow from RCL reactor 20 flows through postmix duct 21 and enters combustion zone 22 .
  • Flow duct 42 in pilot 41 supplies the pilot flow of fuel and air to combustion zone 22 .
  • Central pilot 41 is located within duct 21 .
  • Flow Surface 43 of pilot 41 serves as a small bluff body for dump stabilized combustion and provides an area of pilot flow recirculation. The combustion heating and resulting expansion of the pilot flow together with flared exit 32 of duct 21 wall 31 forces the postmix flow from reactor 20 to follow the flared exit and fill combustion zone 22 volume.
  • pilot 41 located at the center of duct 22 .
  • Pilot 41 has flow duct 42 , where fuel and air may enter the combustion zone as premixed for low NOx emission operation.
  • the end surface 43 of pilot 41 provides an area of flow recirculation to anchor the flame at the end of pilot 41 .
  • the resulting heating and expansion of the pilot flow pushes the surrounding flow outward the nature of flared exit 32 with radius R on duct 31 expands the flow to fill the combustor and at the time creates a large scale recirculation in the combustion zone 22 .
  • Axial Location The best optimum operations are when the axial location of the pilot surface 43 is in line (flushed) or recessed with respect to the beginning of the curvature 32 .
  • the central pilot flow through pilot duct 42 may used for engine start up and for load shedding.
  • R curvature radius

Abstract

A method is provided for expanding a non-swirling gaseous flow exiting a conduit into a larger chamber. The flow conduit exhibits a curved flare exiting into the chamber and a gaseous flow is passed through the conduit along with a separate pilot flow centrally located within the conduit. The pilot flow is expanded by heating thus forcing the gaseous flow outward along the flared exit.

Description

    CROSS-REFERENCE
  • This application claims the benefit of U.S. Provisional Patent Application No. 60/656,320 filed on Feb. 25, 2005, which application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to a fuel-air injection device for use in a combustion system, as in a gas turbine engine. More specifically this invention is directed toward a shaped duct for injecting catalyst effluent into a combustion chamber, the shaped duct containing a small bluff-body for stabilizing (anchoring) combustion of the effluent. When the bluff body is properly positioned within the duct, and when the duct is properly shaped, as explained herein, the catalyst effluent is directed outward toward the walls of the combustor, even in the absence of swirl, forming a flame-anchoring recirculation zone with dimensions much greater than the bluff body diameter.
  • BACKGROUND OF THE INVENTION
  • One attractive option for low-emissions combustion of fuel with air is to use the method and apparatus described in U.S. Pat. Nos. 6,358,040 and 6,394,791. These patents describe an air-cooled catalytic reactor comprising metal tubes having catalyst-coated exterior surfaces. In operation fuel is mixed with air in fuel-rich proportions and contacted with the catalyst, while a separate air stream passes through the tubes' interiors to cool the catalyst. At the reactor exit (the downstream end of the tubes) the cooling air stream mixes with the catalytically-reacted fuel-rich stream to create a fuel-lean mixture for combustion completion.
  • In conventional (non-catalytic) lean-premixed combustion, a swirler would typically be used to inject the fuel-lean mixture into the combustor. When a swirler is used, the flame is anchored because the swirler induces recirculation (backmixing) of hot combustion products within the combustor. The recirculating, hot combustion products continuously contact and ignite the incoming fuel-air mixture, thus anchoring the flame in the vicinity of the recirculation zone, as is well known in the art. An additional effect of the swirler is to direct the incoming fuel-air mixture outwards toward the walls of the combustor, thus rapidly “diffusing” the mixture into the combustor, making effective use of the combustor's volume.
  • In the catalytic combustion system described by the '040 and '791 patents, however, the use of a swirler is undesirable since all fuel and air would typically be premixed (and partially pre-reacted) upstream of the swirler, at the catalyst exit. This premixed mixture is highly reactive, and may combust upstream of the swirler vanes if it auto-ignites or if a flame propagates upstream from the main combustor (flashback). This puts the swirler vanes at risk of overheating, and it is therefore preferable to avoid placing swirler vanes in the premixed fuel-air mixture downstream of the catalyst.
  • Without swirl, an alternate method must be used to provide for flame anchoring. The simplest means of flame anchoring is the use of a dump. Although effective in stabilizing combustion, injecting a combustible fuel-air mixture axially into a combustion chamber without swirl, in the same direction as the bulk flow through the combustor, leads to a high-velocity jet transiting the combustor from inlet to exit, without significant expansion into the combustion chamber volume. In this case, velocities in the jet remain high and the residence time for a fluid particle transiting the combustor, from inlet to exit, remains relatively short even with an overly long combustor. One might consider correcting this problem by using a diffuser duct just upstream of the combustor, but without swirl a diffuser duct would be impractically long since it would be constrained to a spread angle of less than about 10-degrees (half-angle) to prevent flow separation.
  • One solution that does not require swirl is the large flame-holding cone to direct the flow outward. Here, the term “large” means that the bluff body (cone) diameter is a significant fraction of the injector duct diameter, i.e. sufficiently large to redirect flow direction. In general, we shall consider a “large” bluff body to be one that has a diameter (at its largest cross-sectional) greater than about 70% of the injector duct's diameter (at its smallest cross-sectional). The disadvantage of a large cone is that it requires significant cooling air to ensure that it will not overheat in the event of flashback or autoignition. In many low-emissions combustion systems very little cooling air is available, and the use of significant cooling air can increase NOx emissions since cooling air must be taken from the primary fuel-air mixture, making it less lean.
  • At low flame temperatures, such as are possible with a catalytic combustor, long combustor residence times are needed for combustion completion in the gas-phase, downstream of the catalyst. Thus it is known in the art that a large flame holding cone can stabilize ultra-low emissions in a catalytic combustion system of the type described in the '040 and '791 patents. In prior studies, a large flame-holding cone 2.6-inchs in diameter in a 3-inch diameter injector duct, followed by an 8-inch diameter combustor was used to anchor combustion downstream of the catalyst, and gas-phase combustion was completed in a cylindrical combustor having about 30 ms residence time. For comparison, combustors in aeroderivative machines typically have residence times below 10-20 ms, and industrial or large-frame machines typically have combustor residence times below 20-30 ms. Thus, it is yet to be demonstrated that even large cones can achieve low enough residence times for many engines.
  • It is the purpose of this invention to provide such an alternate means of flame anchoring and to further provide an alternate means of “diffusing” the non-swirling mixture into the combustor, making effective use of the combustor's volume. This is especially important for ultra-low emissions combustion, where burning occurs at low flame temperatures, as would typically be the case in applications of catalytic combustion. In fact, the advantage of the catalytic combustion system described in the '040 and '791 patents is that catalytic pre-reaction of a portion of the fuel enables complete combustion (with low emissions of CO and unburned hydrocarbons) even at flame temperatures below 2600 F where “thermal” NOx emissions are negligible.
  • In addition to a flame stabilization mechanism, having an additional fuel-air stage will provide system flexibility for the gas turbine operation. The additional fuel-air stage (pilot) provides a means of starting the engine and provide a means of assuring flame stability during the load shedding. In load shedding, the engine load is suddenly removed and the main fuel through catalytic modules will be suddenly be reduced to respond back to this sudden change in load. In this transient operation the system should not loose the flame. The pilot flame (extra fuel-air stage) will provide this stability.
  • SUMMARY OF THE INVENTION
  • It has now been found a pilot fuel injector placed within the post catalyst duct of a catalytic reactor can serve as a small bluff body to stabilize not only a pilot flame but direct the surrounding flow outward towards the combustor wall if placed within a flared injector duct. Such placement induces outward motion of the primary flow towards the combustor walls for effective “fill” of the combustor volume without the need for swirler vanes or large cones. Combustion is stabilized by the resulting gas recirculation and by contact with the pilot flame.
  • The present patent thus provides a system to fully utilize combustor volume and minimize the combustor size required for required burnout of fuel values.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 provides a schematic of a combustion system according to the present invention.
  • FIGS. 2 through 5 provide a depiction of CFD results for respective curvatures as described hereinbelow.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As shown in FIG. 1, exit flow from RCL reactor 20 flows through postmix duct 21 and enters combustion zone 22. Flow duct 42 in pilot 41 supplies the pilot flow of fuel and air to combustion zone 22. Downstream combustion zone 22. Central pilot 41 is located within duct 21. Flow Surface 43 of pilot 41 serves as a small bluff body for dump stabilized combustion and provides an area of pilot flow recirculation. The combustion heating and resulting expansion of the pilot flow together with flared exit 32 of duct 21 wall 31 forces the postmix flow from reactor 20 to follow the flared exit and fill combustion zone 22 volume.
  • In this configuration, gas exiting from the reactor 20 flows through a postmix channel 21 and enters the downstream combustion zone 22. There is a central pilot 41, located at the center of duct 22. Pilot 41, has flow duct 42, where fuel and air may enter the combustion zone as premixed for low NOx emission operation. The end surface 43 of pilot 41 provides an area of flow recirculation to anchor the flame at the end of pilot 41. The resulting heating and expansion of the pilot flow pushes the surrounding flow outward the nature of flared exit 32 with radius R on duct 31 expands the flow to fill the combustor and at the time creates a large scale recirculation in the combustion zone 22.
  • In general, for a given RCL and central pilot, there are several key parameters for an effective downstream system design. (a) The axial location of the pilot surface 43 with respect to the curvature 32 (b) The curvature R of flared end 32 (c) the mass flow rate through the central pilot 42.
  • Pilot Design:
  • Axial Location—The best optimum operations are when the axial location of the pilot surface 43 is in line (flushed) or recessed with respect to the beginning of the curvature 32.
  • Mass flow through Pilot Hole 42—Ideally, for a stable flame, the surface area 43 requires no mass flow in order to maintain a stable central recirculation. However, during the engine start up and load shedding there is a requirement for having a second flame. In addition, the pilot surface area, such as surface 43 is required to be cooled. Thus a value such as 1-5% of the RCL air flow is recommended to flow through hole 42. The phi (=equivalence ratio) for this flow may be below 0.45 to minimize NOx level at typical combustor inlet temperatures.
  • The central pilot flow through pilot duct 42 may used for engine start up and for load shedding.
  • Flared Post Mix Design:
  • Ideally one needs to select a large curvature radius, R for location 32. For a given RCL exit diameter, the minimum acceptable value for R is readily selected by trial and error to achieve the flow such that the downstream combustor zone is filled. This can be achieved experimentally by fabricating different size R curvature for 32 or by running analytical tools, such as CFD to determine acceptable flow expansion. FIG. 2 shows the flow field for four different R values.
  • CFD Test Results for Curvature R=0.1″, 0.3″, 0.75″, 1.4″ are provided in FIGS. 2, 3, 4, and 5, respectively. The relevant parameters in generating the CFD models are as follows:
      • V=141.16 ft/s=44 m/s
      • Pressure=17 atm
      • T=950 K=677 C
      • Reynolds stress model
      • Incompressible ideal gas
      • Pilot diameter—1.63 inches
      • Postmix diameter—3.4 inches
      • Combustor diameter—8 inches
  • Although the present invention has been described in considerable detail with reference to certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the invention should not be limited to the description of the preferred versions contained herein.

Claims (5)

1. A method of expanding a non-swirling gaseous flow exiting a conduit into a larger chamber comprising:
a) providing the flow conduit with a curved flare exit into the chamber;
b) passing a gaseous flow through the conduit;
c) providing a separate pilot flow centrally located within the conduit; and
d) expanding the pilot flow by heating thus forcing the gaseous flow outward along the flared exit.
2. The method of claim 1 wherein the flows comprise a lean mixture of fuel and air entering a combustion chamber.
3. The method of claim 2 wherein the conduit flow expands to fill the combustion chamber and creates a central recirculation zone.
4. The method of claim 2 wherein the pilot flow is heated by dump stabilized combustion.
5. A method of expanding a non-swirling gaseous flow exiting a conduit into a larger chamber comprising:
a) providing the flow conduit with a curved flare exit into the chamber;
b) passing a gaseous flow through the conduit; and
c) providing a separate pilot flow centrally located within the conduit.
US11/361,626 2005-02-25 2006-02-24 Catalytic fuel-air injector with bluff-body flame stabilization Abandoned US20060191269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/361,626 US20060191269A1 (en) 2005-02-25 2006-02-24 Catalytic fuel-air injector with bluff-body flame stabilization
PCT/US2007/004813 WO2007100710A2 (en) 2006-02-24 2007-02-23 Catalytic fuel-air injector with bluff-body flame stabilization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65632005P 2005-02-25 2005-02-25
US11/361,626 US20060191269A1 (en) 2005-02-25 2006-02-24 Catalytic fuel-air injector with bluff-body flame stabilization

Publications (1)

Publication Number Publication Date
US20060191269A1 true US20060191269A1 (en) 2006-08-31

Family

ID=38459587

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/361,626 Abandoned US20060191269A1 (en) 2005-02-25 2006-02-24 Catalytic fuel-air injector with bluff-body flame stabilization

Country Status (2)

Country Link
US (1) US20060191269A1 (en)
WO (1) WO2007100710A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528334B2 (en) 2008-01-16 2013-09-10 Solar Turbines Inc. Flow conditioner for fuel injector for combustor and method for low-NOx combustor
US20140123665A1 (en) * 2012-10-25 2014-05-08 Alstom Technology Ltd Reheat burner arrangement
CN104566460A (en) * 2014-12-26 2015-04-29 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Fuel and air mixer with sudden-expansion channel
US11236711B2 (en) * 2018-04-02 2022-02-01 Caterpillar Inc. Bluff body combustion system for an internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518697A (en) * 1994-03-02 1996-05-21 Catalytica, Inc. Process and catalyst structure employing intergal heat exchange with optional downstream flameholder
US5601426A (en) * 1991-01-09 1997-02-11 Pfefferle; William C. Catalytic method
US5628181A (en) * 1995-06-07 1997-05-13 Precision Combustion, Inc. Flashback system
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
US6179608B1 (en) * 1999-05-28 2001-01-30 Precision Combustion, Inc. Swirling flashback arrestor
US6358040B1 (en) * 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
US20050037305A1 (en) * 1999-12-15 2005-02-17 Koji Moriya Fluid distributor, burner apparatus, gas turbine engine and co-generation system
US6966186B2 (en) * 2002-05-01 2005-11-22 Siemens Westinghouse Power Corporation Non-catalytic combustor for reducing NOx emissions
US7093445B2 (en) * 2002-05-31 2006-08-22 Catalytica Energy Systems, Inc. Fuel-air premixing system for a catalytic combustor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601426A (en) * 1991-01-09 1997-02-11 Pfefferle; William C. Catalytic method
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
US5720609A (en) * 1991-01-09 1998-02-24 Pfefferle; William Charles Catalytic method
US5518697A (en) * 1994-03-02 1996-05-21 Catalytica, Inc. Process and catalyst structure employing intergal heat exchange with optional downstream flameholder
US5628181A (en) * 1995-06-07 1997-05-13 Precision Combustion, Inc. Flashback system
US6179608B1 (en) * 1999-05-28 2001-01-30 Precision Combustion, Inc. Swirling flashback arrestor
US20050037305A1 (en) * 1999-12-15 2005-02-17 Koji Moriya Fluid distributor, burner apparatus, gas turbine engine and co-generation system
US6358040B1 (en) * 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
US6966186B2 (en) * 2002-05-01 2005-11-22 Siemens Westinghouse Power Corporation Non-catalytic combustor for reducing NOx emissions
US7093445B2 (en) * 2002-05-31 2006-08-22 Catalytica Energy Systems, Inc. Fuel-air premixing system for a catalytic combustor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528334B2 (en) 2008-01-16 2013-09-10 Solar Turbines Inc. Flow conditioner for fuel injector for combustor and method for low-NOx combustor
US20140123665A1 (en) * 2012-10-25 2014-05-08 Alstom Technology Ltd Reheat burner arrangement
US9976744B2 (en) * 2012-10-25 2018-05-22 Ansaldo Energia Switzerland AG Reheat burner arrangement having an increasing flow path cross-section
CN104566460A (en) * 2014-12-26 2015-04-29 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Fuel and air mixer with sudden-expansion channel
US11236711B2 (en) * 2018-04-02 2022-02-01 Caterpillar Inc. Bluff body combustion system for an internal combustion engine

Also Published As

Publication number Publication date
WO2007100710A2 (en) 2007-09-07
WO2007100710A3 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
RU2455569C1 (en) Burner
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
US6826913B2 (en) Airflow modulation technique for low emissions combustors
EP1985926B1 (en) Combustion equipment and combustion method
US8033112B2 (en) Swirler with gas injectors
JP5400936B2 (en) Method and apparatus for burning fuel in a gas turbine engine
EP2257743B1 (en) Burner
EP2171356B1 (en) Cool flame combustion
US20070107437A1 (en) Low emission combustion and method of operation
EP2263043B1 (en) Quarls in a burner
US20090249789A1 (en) Burner tube premixer and method for mixing air and gas in a gas turbine engine
JP2006145194A (en) Trapped vortex combustor cavity manifold for gas turbine engine
JP2008292138A (en) Combustion equipment and combustion method of burner
EP2107313A1 (en) Fuel staging in a burner
CN110878947A (en) Gas turbine combustor
JP2009074706A (en) Gas turbine combustor
EP2263044B1 (en) Size scaling of a burner
EP2434218A1 (en) Burner with low NOx emissions
US5791137A (en) Radial inflow dual fuel injector
US20060191269A1 (en) Catalytic fuel-air injector with bluff-body flame stabilization
US20060218932A1 (en) Fuel injector
JPH08128636A (en) Gas combustion apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRICISION COMBUSTION, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMITH, LANCE;KARIM, HASAN;ETEMAD, SHAHROKH;AND OTHERS;REEL/FRAME:017822/0912;SIGNING DATES FROM 20060314 TO 20060404

AS Assignment

Owner name: PRECISION COMBUSTION, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SMITH, LANCE;KARIM, HASAN;ETEMAD, SHAHROKH;AND OTHERS;REEL/FRAME:018999/0575;SIGNING DATES FROM 20060314 TO 20060404

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION