US20060030881A1 - Ventricular partitioning device - Google Patents

Ventricular partitioning device Download PDF

Info

Publication number
US20060030881A1
US20060030881A1 US10/913,608 US91360804A US2006030881A1 US 20060030881 A1 US20060030881 A1 US 20060030881A1 US 91360804 A US91360804 A US 91360804A US 2006030881 A1 US2006030881 A1 US 2006030881A1
Authority
US
United States
Prior art keywords
patient
partitioning
ribs
heart
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/913,608
Inventor
Hugh Sharkey
Alexander Khairkhkahan
Serjan Nikolic
Branislav Radovancevic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
CardioKinetix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CardioKinetix Inc filed Critical CardioKinetix Inc
Priority to US10/913,608 priority Critical patent/US20060030881A1/en
Assigned to CARDIOKINETIX, INC. reassignment CARDIOKINETIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RADOVANECEVIC, BRANISLAV, KHAIRKHAHAN, ALEXANDER, NIKOLIC, SERJIAN D., SHARKEY, HUGH R.
Priority to ES05779614T priority patent/ES2410795T3/en
Priority to JP2007525062A priority patent/JP4929172B2/en
Priority to PCT/US2005/028065 priority patent/WO2006017809A2/en
Priority to EP05779614A priority patent/EP1781186B1/en
Priority to CA002575509A priority patent/CA2575509A1/en
Priority to AU2005271261A priority patent/AU2005271261B2/en
Publication of US20060030881A1 publication Critical patent/US20060030881A1/en
Priority to US11/860,438 priority patent/US7897086B2/en
Assigned to CARDIOKINETIX, INC. reassignment CARDIOKINETIX, INC. RECORD TO CORRECT THE CONVEYING PARTIES NAMES, PREVIOUSLY RECORDED AT REEL 016049 FRAME 0473. Assignors: SHARKEY, HUGH R., KHAIRKHAHAN, ALEXANDER, NIKOLIC, SERJAN D., RADOVANCEVIC, BRANISLAV
Priority to US12/893,832 priority patent/US9078660B2/en
Priority to JP2011103163A priority patent/JP2011189140A/en
Priority to US13/828,184 priority patent/US9332993B2/en
Priority to US13/827,927 priority patent/US9332992B2/en
Priority to JP2013162564A priority patent/JP6047461B2/en
Priority to US14/731,161 priority patent/US20150265405A1/en
Priority to US15/133,080 priority patent/US10064696B2/en
Assigned to CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC reassignment CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIOKINETIX, INC.
Assigned to EDWARDS LIFESCIENCES CORPORATION reassignment EDWARDS LIFESCIENCES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12095Threaded connection

Definitions

  • the present invention relates generally to the field of treating congestive heart failure and more specifically, to a device and method for partitioning a patient's heart chamber and a system for delivering the treatment device.
  • Congestive heart failure is characterized by a progressive enlargement of the heart, particularly the left ventricle and is a major cause of death and disability in the United States. Approximately 500,000 cases occur annually in the U.S. alone. As the patient's heart enlarges, it cannot efficiently pump blood forward with each heart beat. In time, the heart becomes so enlarged the heart cannot adequately supply blood to the body. Even in healthy hearts only a certain percentage of the blood in a patient's left ventricle is pumped out or ejected from the chamber during each stroke of the heart. The pumped percentage, commonly referred to as the “ejection fraction”, is typically about sixty percent for a healthy heart. A patient with congestive heart failure can have an ejection fraction of less than 40% and sometimes lower.
  • a patient with congestive heart failure is fatigued, unable to perform even simple tasks requiring exertion and experiences pain and discomfort.
  • the internal heart valves such as the mitral valve, cannot adequately close.
  • An incompetent mitral valve allows regurgitation of blood from the left ventricle back into the left atrium, further reducing the heart's ability to pump blood forewardly.
  • Congestive heart failure can result from a variety of conditions, including viral infections, incompetent heart valves (e.g. mitral valve), ischemic conditions in the heart wall or a combination of these conditions.
  • Prolonged ischemia and occlusion of coronary arteries can result in myocardial tissue in the ventricular wall dying and becoming scar tissue. Once the myocardial tissue dies, it is less contractile (sometimes non-contractile) and no longer contributes to the pumping action of the heart. It is referred to as hypokinetic.
  • hypokinetic As the disease progresses, a local area of compromised myocardium may bulge out during the heart contractions, further decreasing the heart's ability to pump blood and further reducing the ejection fraction.
  • the heart wall is referred to as dyskinetic or akinetic. The dyskinetic region of the heart wall may stretch and eventually form an aneurysmic bulge.
  • Classes I, II, III and IV Patients suffering from congestive heart failure are commonly grouped into four classes, Classes I, II, III and IV.
  • Drug therapy is presently the most commonly prescribed treatment.
  • Drug therapy typically treats the symptoms of the disease and may slow the progression of the disease, but it can not cure the disease.
  • heart transplantation the only permanent treatment for congestive heart disease is heart transplantation, but heart transplant procedures are very risky, extremely invasive and expensive and are performed on a small percentage of patients.
  • Many patient's do not qualify for heart transplant for failure to meet any one of a number of qualifying criteria, and, furthermore, there are not enough hearts available for transplant to meet the needs of CHF patients who do qualify.
  • CHF CHF
  • an elastic support such as an artificial elastic sock placed around the heart to prevent further deleterious remodeling.
  • a left ventricular assist device includes a mechanical pump for increasing blood flow from the left ventricle into the aorta.
  • Total artificial heart devices such as the Jarvik heart, are usually used only as temporary measures while a patient awaits a donor heart for transplant.
  • the present invention is directed to a ventricular partitioning device and method of employing the device in the treatment of a patient with congestive heart failure (CHF). Specifically, the device partitions a chamber of the patient's heart into a main productive portion and a secondary non-productive portion. This partitioning reduces the total volume of the heart chamber, reduces the stress applied to the heart and, as a result, improves the ejection fraction thereof.
  • CHF congestive heart failure
  • a partitioning device embodying features of the invention has a reinforced partitioning component with a concave, pressure receiving surface which defines in part the main productive portion of the partitioned heart chamber when secured within the patient's heart chamber.
  • the reinforced partitioning component preferably includes a hub and a membrane forming the pressure receiving surface.
  • the partitioning component is reinforced by a radially expandable frame component formed of a plurality of ribs.
  • the ribs of the expandable frame have distal ends secured to the central hub and free proximal ends.
  • the distal ends are preferably secured to the central hub to facilitate radial self expansion of the free proximal ends of the ribs away from a centerline axis.
  • the distal ends of the ribs may be pivotally mounted to the hub and biased outwardly or fixed to the hub and formed of material such as superelastic NiTi alloy which allows for compressing the free proximal ends of the ribs toward a centerline axis into a contracted configuration and when released allow for their self expansion to an expanded configuration.
  • the free proximal ends of the ribs are configured to engage and preferably penetrate the tissue lining the heart chamber to be partitioned so as to secure the peripheral edge of the partitioning component to the heart wall and fix the partitioning component within the chamber so as to partition the chamber in a desired manner.
  • the tissue penetrating proximal tips are configured to penetrate the tissue lining at an angle approximately perpendicular to a center line axis of the partitioning device.
  • the tissue penetrating proximal tips of the ribs may be provided with barbs, hooks and the like which prevent withdrawal from the tips from the heart wall.
  • the ribs in their expanded configuration angle outwardly from the hub and the free proximal ends curve outwardly so that the membrane secured to the ribs of the expanded frame forms a trumpet-shaped, pressure receiving surface.
  • the partitioning membrane in the expanded configuration has radial dimensions from about 10 to about 160 mm, preferably about 50 to about 100 mm, as measured from the center line axis.
  • the partitioning device may be delivered percutaneously or intraoperatively.
  • One particularly suitable delivery catheter has an elongated shaft, a releasable securing device on the distal end of the shaft for holding the partitioning device on the distal end and an expandable member such as an inflatable balloon on a distal portion of the shaft proximal to the distal end to press the interior of the recess formed by the pressure receiving surface to ensure that the tissue penetrating tips or elements on the periphery of the partitioning device penetrate sufficiently into the heart wall to hold the partitioning device in a desired position to effectively partition the heart chamber.
  • the partitioning device embodying features of the invention is relatively easy to install and it substantially improves the pumping action of the heart and provides an increase in the ejection fraction of the patient's heart chamber.
  • FIG. 1 is an elevational view of a partitioning device embodying features of the invention in an expanded configuration.
  • FIG. 2 is a plan view of the partitioning device shown in FIG. 1 .
  • FIG. 3 is a partial longitudinal cross-sectional view of the hub of the partitioning device shown in FIG. 1 .
  • FIG. 4 is a transverse cross sectional view of the hub shown in FIG. 3 taken along the lines 4 - 4 .
  • FIG. 5 is a schematic elevational view of a delivery system for the partitioning device shown in FIGS. 1 and 2 .
  • FIG. 6 is a transverse cross-sectional view of the delivery system shown in FIG. 5 taken along the lines 6 - 6 .
  • FIG. 7 is an elevational view, partially in section, of the hub shown in FIG. 3 secured to the helical coil of the delivery system shown in FIG. 5 .
  • FIGS. 8A-8E are schematic views of a patient's left ventricular chamber illustrating the deployment of the partitioning device shown in FIGS. 1 and 2 with the delivery system shown in FIG. 5 to partition the heart chamber into a primary productive portion and a secondary, non-productive portion.
  • FIG. 9 is a partial schematic view of the expandable frame of the partitioning device shown in FIGS. 1 and 2 in an unrestricted configuration.
  • FIG. 10 is a top view of the expandable frame shown in FIG. 9 .
  • FIGS. 11-13 are schematic illustrations of a method of forming the partitioning device shown in FIGS. 1 and 2 from the expandable frame shown in FIGS. 9 and 10 .
  • FIGS. 1-4 illustrate a partitioning component 10 which embodies features of the invention and which includes a partitioning membrane 11 , a hub 12 , preferably centrally located on the partitioning device, and a radially expandable reinforcing frame 13 formed of a plurality of ribs 14 .
  • the partitioning membrane 11 is secured to the proximal or pressure side of the frame 13 as shown in FIG. 1 .
  • the ribs 14 have distal ends 15 which are secured to the hub 12 and free proximal ends 16 which are configured to curve or flare away from a center line axis 17 . Radial expansion of the free proximal ends 16 unfurls the membrane 11 secured to the frame 13 so that the membrane presents a relatively smooth, pressure receiving surface 18 which defines in part the productive portion of the patient's partitioned heart chamber.
  • the distal ends 15 of the ribs 14 are secured within the hub 12 and a transversely disposed connector bar 20 is secured within the hub which is configured to secure the hub 12 and thus the partitioning component 10 to a delivery system such as shown in FIG. 5 and 6 .
  • the curved free proximal ends 16 of ribs 14 are provided with sharp tip elements 21 which are configured to hold the frame 13 and the membrane 11 secured thereto in a deployed position within the patient's heart chamber.
  • the sharp tip elements 21 of the frame 13 penetrate into tissue of the patient's heart wall in order to secure the partitioning component 10 within the heart chamber so as to partition the ventricular chamber into a productive portion and a non-productive portion.
  • the connector bar 20 of the hub 12 allows the partitioning device 10 to be secured to a delivery system delivery and to be released from the delivery system within the patient's heart chamber.
  • the distal ends 15 of the reinforcing ribs 14 are secured within the hub 12 in a suitable manner or they may be secured to the surface defining the inner lumen or they may be disposed within channels or bores in the wall of the hub 12 .
  • the ribs 14 are preshaped so that when not constrained other than by the membrane 11 secured thereto (as shown in FIGS. 1 and 2 ), the free proximal ends 16 thereof expand to a desired angular displacement away from a center line axis 17 which is about 20° to about 90°, preferably about 50° to about 80°.
  • FIGS. 5-7 illustrate a suitable delivery system 30 delivering the partitioning component 10 shown in FIGS. 1 and 2 into a patient's heart chamber and deploying the partitioning component 10 to partition the heart chamber as shown in FIGS. 8A-8E .
  • the delivery system 30 includes a guide catheter 31 and a delivery catheter 32 .
  • the guide catheter has an inner lumen 33 extending between the proximal end 34 and distal end 35 .
  • a hemostatic valve (not shown) may be provided at the proximal end 34 of the guide catheter 31 .
  • a flush port 36 on the proximal end 34 of guide catheter 31 is in fluid communication with the inner lumen 33 .
  • the delivery catheter 32 has an outer shaft 40 with an inner lumen 41 and a proximal injection port 42 , an inner shaft 43 disposed within the inner lumen 41 with a first lumen 44 and a second lumen 45 .
  • Balloon inflation port 46 is in fluid communication with the first lumen 44 and flush port 47 is in fluid communication with the second lumen 45 .
  • Torque shaft 48 is rotatably disposed within the second lumen 44 of the inner shaft 43 and has an injection port 49 provided at its proximal end 50 in fluid communication with the inner lumen 51 of the torque shaft.
  • the torque shaft 48 is preferably formed at least in part of a hypotube formed of suitable material such as superelastic NITINOL or stainless steel.
  • a torque knob 52 is secured to the proximal end 50 of torque shaft 48 distal to the injection port 49 .
  • a helical coil screw 53 is secured to the distal end 54 of the torque shaft 48 and rotation of the torque knob 52 on the proximal end 50 of the torque shaft 48 rotates the screw 53 on the distal end 54 of torque shaft 48 to facilitate deployment of a partitioning device 10 .
  • a inflatable balloon 55 is sealingly secured to the distal end of the inner shaft 43 and has an interior 56 in fluid communication with the first lumen 44 . Inflation fluid may be delivered to the interior 56 through port 44 a in the portion of the inner shaft 43 extending through the balloon 55 . Inflation of the balloon 55 by inflation fluid through port 57 facilitates securing the partitioning component 10 .
  • the partitioning component 10 is secured to the distal end of the delivery catheter 32 by means of the helical coil screw 53 .
  • the partitioning component 10 is collapsed to a first, delivery configuration which has small enough transverse dimensions to be slidably advanced through the inner lumen 33 of the guide catheter 31 .
  • the guide catheter 31 has been previously percutaneously introduced and advanced through the patient's vasculature, such as the femoral artery, in a conventional manner to the desired heart chamber.
  • the delivery catheter 32 with the partitioning component 10 attached is advanced through the inner lumen 33 of the guide catheter 31 until the partitioning component 10 is ready for deployment from the distal end of the guide catheter 31 into the patient's heart chamber 58 to be partitioned.
  • the partitioning component 10 mounted on the screw 53 is urged partially out of the inner lumen 33 of the guide catheter 31 until the hub 12 engages the heart wall as shown in FIG. 8B with the free proximal ends 16 of the ribs 14 in a contracted configuration within the guide catheter.
  • the guiding catheter 31 is withdrawn while the delivery catheter 32 is held in place until the proximal ends 16 of the ribs 14 exit the distal end 35 of the guiding catheter.
  • the free proximal ends 16 of ribs 14 expand outwardly to press the sharp proximal tips 21 of the ribs 14 against and preferably into the tissue lining the heart chamber. This is shown in FIG. 8C .
  • inflation fluid is introduced through the inflation port 46 into first lumen 44 of inner shaft 43 of the delivery catheter 32 where it is directed through port 44 a into the balloon interior 56 to inflate the balloon.
  • the inflated balloon presses against the pressure receiving surface 18 of the partitioning component 10 to ensure that the sharp proximal tips 21 are pressed well into the tissue lining the heart chamber.
  • the knob 52 on the torque shaft 48 is rotated counter-clockwise to disengage the helical coil screw 53 of the delivery catheter 32 from the hub 12 .
  • the counter-clockwise rotation of the torque shaft 48 rotates the helical coil screw 53 which rides on the connector bar 20 secured within the hub 12 .
  • the delivery system 30 including the guide catheter 31 and the delivery catheter 32 , may then be removed from the patient.
  • the proximal end of the guide catheter 31 is provided with an flush port 36 to inject therapeutic or diagnostic fluids through the inner lumen 33 .
  • the proximal end of the delivery catheter 32 is provided with a flush port 42 in communication with inner lumen 41 for essentially the same purpose.
  • An inflation port 46 is provided on the proximal portion of the delivery catheter for delivery of inflation fluid through the first inner lumen 44 to the interior 56 of the balloon 55 .
  • Flush port 47 is provided in fluid communication with the second inner lumen 45 of the inner shaft 43 .
  • An injection port 49 is provided on the proximal end of the torque shaft 48 in fluid communication with the inner lumen 51 of the torque shaft for delivery of a variety of fluids.
  • the partitioning component 10 partitions the patient's heart chamber 57 into a main productive or operational portion 58 and a secondary, essentially non-productive portion 59 .
  • the operational portion 58 is much smaller than the original ventricular chamber 57 and provides for an improved ejection fraction.
  • the partitioning increases the ejection fraction and provides an improvement in blood flow.
  • the non-productive portion 59 fills first with thrombus and subsequently with cellular growth.
  • Bio-resorbable fillers such as polylactic acid, polyglycolic acid, polycaprolactone and copolymers and blends may be employed to initially fill the non-productive portion 59 . Fillers may be suitably supplied in a suitable solvent such as DMSO. Other materials which accelerate tissue growth or thrombus may be deployed in the non-productive portion 59 .
  • FIGS. 9 and 10 illustrate the reinforcing frame 13 in an unstressed configuration and includes the ribs 14 and the hub 12 .
  • the ribs 14 have a length L of about 1 to about 8 cm, preferably, about 1.5 to about 4 cm for most left ventricle deployments.
  • the proximal ends 16 have a flared construction.
  • parts, e.g. the distal extremity, of one or more of the ribs and/or the hub may be provided with markers at desirable locations that provide enhanced visualization by eye, by ultrasound, by X-ray, or other imaging or visualization means.
  • Radiopaque markers may be made with, for example, stainless steel, platinum, gold, iridium, tantalum, tungsten, silver, rhodium, nickel, bismuth, other radiopaque metals, alloys and oxides of these metals.
  • the partitioning device 10 is conveniently formed by placing a thermoplastic tube 60 , e.g. polyethylene, over the ribs 14 of the frame 13 as shown in FIG. 11 until the proximal ends 16 of the ribs 14 extend out the ends of the thermoplastic tubes as shown in FIG. 12 .
  • a first expanded PTFE sheet 61 of appropriate size is placed in the female platen 62 of the press 63 .
  • the frame 13 with tubes 60 slidably disposed over the ribs 14 is placed in platen 62 on top of the ePTFE sheet 61 .
  • the center portion of the sheet 61 may be provided with an opening through which the hub 12 extends.
  • a second ePTFE sheet 64 is placed on top of the ribs 14 of frame 13 as shown in FIG. 13 .
  • the male platen 65 is heated, preferably to about 500° F., so that the thermoplastic tubes 60 disposed over the ribs 14 fuse into the porous matrix of the ePTFE sheets 61 and 64 .
  • the fused thermoplastic material solidifies and secures the sheets 61 and 64 to the ribs 14 and prevents their delamination during use.
  • the membrane 11 may be formed of suitable biocompatitble polymeric material which include Nylon, PET (polyethylene terephthalate) and polyesters such as Hytrel.
  • the membrane 11 is preferably foraminous in nature to facilitate tissue ingrowth after deployment within the patient's heart.
  • the delivery catheter 32 and the guiding catheter 31 may be formed of suitable high strength polymeric material such as PEEK (polyetheretherketone), polycarbonate, PET, Nylon, and the like. Braided composite shafts may also be employed.
  • the various components of the partitioning device and delivery system may be formed of conventional materials and in a conventional manner as will be appreciated by those skilled in the art.

Abstract

This invention is directed to a partitioning device for separating a patient's heart chamber into a productive portion and a non-productive portion. The device is particularly suitable for treating patients with congestive heart failure. The partitioning device has a frame-reinforced, expandable membrane which separates the productive and non-productive portions of the heart chamber. The proximal ends of the ribs of the frame have tissue penetrating elements about the periphery thereof which are configured to penetrate tissue lining the heart wall at an angle approximately perpendicular to a longitudinal axis of the partitioning device. The partitioning device has a hub with a non-traumatic distal end to engage the ventricular wall.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to the field of treating congestive heart failure and more specifically, to a device and method for partitioning a patient's heart chamber and a system for delivering the treatment device.
  • BACKGROUND OF THE INVENTION
  • Congestive heart failure (CHF) is characterized by a progressive enlargement of the heart, particularly the left ventricle and is a major cause of death and disability in the United States. Approximately 500,000 cases occur annually in the U.S. alone. As the patient's heart enlarges, it cannot efficiently pump blood forward with each heart beat. In time, the heart becomes so enlarged the heart cannot adequately supply blood to the body. Even in healthy hearts only a certain percentage of the blood in a patient's left ventricle is pumped out or ejected from the chamber during each stroke of the heart. The pumped percentage, commonly referred to as the “ejection fraction”, is typically about sixty percent for a healthy heart. A patient with congestive heart failure can have an ejection fraction of less than 40% and sometimes lower. As a result of the low ejection fraction, a patient with congestive heart failure is fatigued, unable to perform even simple tasks requiring exertion and experiences pain and discomfort. Further, as the heart enlarges, the internal heart valves such as the mitral valve, cannot adequately close. An incompetent mitral valve allows regurgitation of blood from the left ventricle back into the left atrium, further reducing the heart's ability to pump blood forewardly.
  • Congestive heart failure can result from a variety of conditions, including viral infections, incompetent heart valves (e.g. mitral valve), ischemic conditions in the heart wall or a combination of these conditions. Prolonged ischemia and occlusion of coronary arteries can result in myocardial tissue in the ventricular wall dying and becoming scar tissue. Once the myocardial tissue dies, it is less contractile (sometimes non-contractile) and no longer contributes to the pumping action of the heart. It is referred to as hypokinetic. As the disease progresses, a local area of compromised myocardium may bulge out during the heart contractions, further decreasing the heart's ability to pump blood and further reducing the ejection fraction. In this instance, the heart wall is referred to as dyskinetic or akinetic. The dyskinetic region of the heart wall may stretch and eventually form an aneurysmic bulge.
  • Patients suffering from congestive heart failure are commonly grouped into four classes, Classes I, II, III and IV. In the early stages, Classes I and II, drug therapy is presently the most commonly prescribed treatment. Drug therapy typically treats the symptoms of the disease and may slow the progression of the disease, but it can not cure the disease. Presently, the only permanent treatment for congestive heart disease is heart transplantation, but heart transplant procedures are very risky, extremely invasive and expensive and are performed on a small percentage of patients. Many patient's do not qualify for heart transplant for failure to meet any one of a number of qualifying criteria, and, furthermore, there are not enough hearts available for transplant to meet the needs of CHF patients who do qualify.
  • Substantial effort has been made to find alternative treatments for congestive heart disease. For example, surgical procedures have been developed to dissect and remove weakened portions of the ventricular wall in order to reduce heart volume. This procedure is highly invasive, risky and expensive and is commonly only done in conjunction with other procedures (such as heart valve replacement or coronary artery by-pass graft). Additionally, the surgical treatment is usually limited to Class IV patients and, accordingly, is not an option for patients facing ineffective drug treatment prior to Class IV. Finally, if the procedure fails, emergency heart transplant is the only presently available option.
  • Other efforts to treat CHF include the use of an elastic support, such as an artificial elastic sock placed around the heart to prevent further deleterious remodeling.
  • Additionally, mechanical assist devices have been developed as intermediate procedures for treating congestive heart disease. Such devices include left ventricular assist devices and total artificial hearts. A left ventricular assist device includes a mechanical pump for increasing blood flow from the left ventricle into the aorta. Total artificial heart devices, such as the Jarvik heart, are usually used only as temporary measures while a patient awaits a donor heart for transplant.
  • Recently, improvements have been made in treating patient's with CHF by implanting pacing leads in both sides of the heart in order to coordinate the contraction of both ventricles of the heart. This technique has been shown to improve hemodynamic performance and can result in increased ejection fraction from the right ventricle to the patient's lungs and the ejection fraction from the left ventricle to the patient's aorta. While this procedure has been found to be successful in providing some relief from CHF symtoms and slowed the progression of the disease, it has not been able to stop the disease.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a ventricular partitioning device and method of employing the device in the treatment of a patient with congestive heart failure (CHF). Specifically, the device partitions a chamber of the patient's heart into a main productive portion and a secondary non-productive portion. This partitioning reduces the total volume of the heart chamber, reduces the stress applied to the heart and, as a result, improves the ejection fraction thereof.
  • A partitioning device embodying features of the invention has a reinforced partitioning component with a concave, pressure receiving surface which defines in part the main productive portion of the partitioned heart chamber when secured within the patient's heart chamber.
  • The reinforced partitioning component preferably includes a hub and a membrane forming the pressure receiving surface. The partitioning component is reinforced by a radially expandable frame component formed of a plurality of ribs.
  • The ribs of the expandable frame have distal ends secured to the central hub and free proximal ends. The distal ends are preferably secured to the central hub to facilitate radial self expansion of the free proximal ends of the ribs away from a centerline axis. The distal ends of the ribs may be pivotally mounted to the hub and biased outwardly or fixed to the hub and formed of material such as superelastic NiTi alloy which allows for compressing the free proximal ends of the ribs toward a centerline axis into a contracted configuration and when released allow for their self expansion to an expanded configuration.
  • The free proximal ends of the ribs are configured to engage and preferably penetrate the tissue lining the heart chamber to be partitioned so as to secure the peripheral edge of the partitioning component to the heart wall and fix the partitioning component within the chamber so as to partition the chamber in a desired manner. The tissue penetrating proximal tips are configured to penetrate the tissue lining at an angle approximately perpendicular to a center line axis of the partitioning device. The tissue penetrating proximal tips of the ribs may be provided with barbs, hooks and the like which prevent withdrawal from the tips from the heart wall.
  • The ribs in their expanded configuration angle outwardly from the hub and the free proximal ends curve outwardly so that the membrane secured to the ribs of the expanded frame forms a trumpet-shaped, pressure receiving surface.
  • The partitioning membrane in the expanded configuration has radial dimensions from about 10 to about 160 mm, preferably about 50 to about 100 mm, as measured from the center line axis.
  • The partitioning device may be delivered percutaneously or intraoperatively. One particularly suitable delivery catheter has an elongated shaft, a releasable securing device on the distal end of the shaft for holding the partitioning device on the distal end and an expandable member such as an inflatable balloon on a distal portion of the shaft proximal to the distal end to press the interior of the recess formed by the pressure receiving surface to ensure that the tissue penetrating tips or elements on the periphery of the partitioning device penetrate sufficiently into the heart wall to hold the partitioning device in a desired position to effectively partition the heart chamber.
  • The partitioning device embodying features of the invention is relatively easy to install and it substantially improves the pumping action of the heart and provides an increase in the ejection fraction of the patient's heart chamber. These and other advantages of the invention will become more apparent from the following detailed description of the invention and the accompanying exemplary drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an elevational view of a partitioning device embodying features of the invention in an expanded configuration.
  • FIG. 2 is a plan view of the partitioning device shown in FIG. 1.
  • FIG. 3 is a partial longitudinal cross-sectional view of the hub of the partitioning device shown in FIG. 1.
  • FIG. 4 is a transverse cross sectional view of the hub shown in FIG. 3 taken along the lines 4-4.
  • FIG. 5 is a schematic elevational view of a delivery system for the partitioning device shown in FIGS. 1 and 2.
  • FIG. 6 is a transverse cross-sectional view of the delivery system shown in FIG. 5 taken along the lines 6-6.
  • FIG. 7 is an elevational view, partially in section, of the hub shown in FIG. 3 secured to the helical coil of the delivery system shown in FIG. 5.
  • FIGS. 8A-8E are schematic views of a patient's left ventricular chamber illustrating the deployment of the partitioning device shown in FIGS. 1 and 2 with the delivery system shown in FIG. 5 to partition the heart chamber into a primary productive portion and a secondary, non-productive portion.
  • FIG. 9 is a partial schematic view of the expandable frame of the partitioning device shown in FIGS. 1 and 2 in an unrestricted configuration.
  • FIG. 10 is a top view of the expandable frame shown in FIG. 9.
  • FIGS. 11-13 are schematic illustrations of a method of forming the partitioning device shown in FIGS. 1 and 2 from the expandable frame shown in FIGS. 9 and 10.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • FIGS. 1-4 illustrate a partitioning component 10 which embodies features of the invention and which includes a partitioning membrane 11, a hub 12, preferably centrally located on the partitioning device, and a radially expandable reinforcing frame 13 formed of a plurality of ribs 14. Preferably, the partitioning membrane 11 is secured to the proximal or pressure side of the frame 13 as shown in FIG. 1. The ribs 14 have distal ends 15 which are secured to the hub 12 and free proximal ends 16 which are configured to curve or flare away from a center line axis 17. Radial expansion of the free proximal ends 16 unfurls the membrane 11 secured to the frame 13 so that the membrane presents a relatively smooth, pressure receiving surface 18 which defines in part the productive portion of the patient's partitioned heart chamber.
  • As shown in more detail in FIGS. 3 and 4, the distal ends 15 of the ribs 14 are secured within the hub 12 and a transversely disposed connector bar 20 is secured within the hub which is configured to secure the hub 12 and thus the partitioning component 10 to a delivery system such as shown in FIG. 5 and 6. The curved free proximal ends 16 of ribs 14 are provided with sharp tip elements 21 which are configured to hold the frame 13 and the membrane 11 secured thereto in a deployed position within the patient's heart chamber. Preferably, the sharp tip elements 21 of the frame 13 penetrate into tissue of the patient's heart wall in order to secure the partitioning component 10 within the heart chamber so as to partition the ventricular chamber into a productive portion and a non-productive portion.
  • The connector bar 20 of the hub 12, as will be described later, allows the partitioning device 10 to be secured to a delivery system delivery and to be released from the delivery system within the patient's heart chamber. The distal ends 15 of the reinforcing ribs 14 are secured within the hub 12 in a suitable manner or they may be secured to the surface defining the inner lumen or they may be disposed within channels or bores in the wall of the hub 12. The ribs 14 are preshaped so that when not constrained other than by the membrane 11 secured thereto (as shown in FIGS. 1 and 2), the free proximal ends 16 thereof expand to a desired angular displacement away from a center line axis 17 which is about 20° to about 90°, preferably about 50° to about 80°.
  • FIGS. 5-7 illustrate a suitable delivery system 30 delivering the partitioning component 10 shown in FIGS. 1 and 2 into a patient's heart chamber and deploying the partitioning component 10 to partition the heart chamber as shown in FIGS. 8A-8E. The delivery system 30 includes a guide catheter 31 and a delivery catheter 32.
  • The guide catheter has an inner lumen 33 extending between the proximal end 34 and distal end 35. A hemostatic valve (not shown) may be provided at the proximal end 34 of the guide catheter 31. A flush port 36 on the proximal end 34 of guide catheter 31 is in fluid communication with the inner lumen 33.
  • The delivery catheter 32 has an outer shaft 40 with an inner lumen 41 and a proximal injection port 42, an inner shaft 43 disposed within the inner lumen 41 with a first lumen 44 and a second lumen 45. Balloon inflation port 46 is in fluid communication with the first lumen 44 and flush port 47 is in fluid communication with the second lumen 45. Torque shaft 48 is rotatably disposed within the second lumen 44 of the inner shaft 43 and has an injection port 49 provided at its proximal end 50 in fluid communication with the inner lumen 51 of the torque shaft. The torque shaft 48 is preferably formed at least in part of a hypotube formed of suitable material such as superelastic NITINOL or stainless steel. A torque knob 52 is secured to the proximal end 50 of torque shaft 48 distal to the injection port 49. A helical coil screw 53 is secured to the distal end 54 of the torque shaft 48 and rotation of the torque knob 52 on the proximal end 50 of the torque shaft 48 rotates the screw 53 on the distal end 54 of torque shaft 48 to facilitate deployment of a partitioning device 10. A inflatable balloon 55 is sealingly secured to the distal end of the inner shaft 43 and has an interior 56 in fluid communication with the first lumen 44. Inflation fluid may be delivered to the interior 56 through port 44 a in the portion of the inner shaft 43 extending through the balloon 55. Inflation of the balloon 55 by inflation fluid through port 57 facilitates securing the partitioning component 10.
  • To deliver the partitioning component 10, it is secured to the distal end of the delivery catheter 32 by means of the helical coil screw 53. The partitioning component 10 is collapsed to a first, delivery configuration which has small enough transverse dimensions to be slidably advanced through the inner lumen 33 of the guide catheter 31. Preferably, the guide catheter 31 has been previously percutaneously introduced and advanced through the patient's vasculature, such as the femoral artery, in a conventional manner to the desired heart chamber. The delivery catheter 32 with the partitioning component 10 attached is advanced through the inner lumen 33 of the guide catheter 31 until the partitioning component 10 is ready for deployment from the distal end of the guide catheter 31 into the patient's heart chamber 58 to be partitioned.
  • The partitioning component 10 mounted on the screw 53 is urged partially out of the inner lumen 33 of the guide catheter 31 until the hub 12 engages the heart wall as shown in FIG. 8B with the free proximal ends 16 of the ribs 14 in a contracted configuration within the guide catheter. The guiding catheter 31 is withdrawn while the delivery catheter 32 is held in place until the proximal ends 16 of the ribs 14 exit the distal end 35 of the guiding catheter. The free proximal ends 16 of ribs 14 expand outwardly to press the sharp proximal tips 21 of the ribs 14 against and preferably into the tissue lining the heart chamber. This is shown in FIG. 8C.
  • With the partitioning component deployed within the heart chamber and preferably partially secured therein, inflation fluid is introduced through the inflation port 46 into first lumen 44 of inner shaft 43 of the delivery catheter 32 where it is directed through port 44 a into the balloon interior 56 to inflate the balloon. The inflated balloon presses against the pressure receiving surface 18 of the partitioning component 10 to ensure that the sharp proximal tips 21 are pressed well into the tissue lining the heart chamber.
  • With the partitioning device 10 properly positioned within the heart chamber, the knob 52 on the torque shaft 48 is rotated counter-clockwise to disengage the helical coil screw 53 of the delivery catheter 32 from the hub 12. The counter-clockwise rotation of the torque shaft 48 rotates the helical coil screw 53 which rides on the connector bar 20 secured within the hub 12. Once the helical coil screw 53 disengages the connector bar 20, the delivery system 30, including the guide catheter 31 and the delivery catheter 32, may then be removed from the patient.
  • The proximal end of the guide catheter 31 is provided with an flush port 36 to inject therapeutic or diagnostic fluids through the inner lumen 33. Similarly, the proximal end of the delivery catheter 32 is provided with a flush port 42 in communication with inner lumen 41 for essentially the same purpose. An inflation port 46 is provided on the proximal portion of the delivery catheter for delivery of inflation fluid through the first inner lumen 44 to the interior 56 of the balloon 55. Flush port 47 is provided in fluid communication with the second inner lumen 45 of the inner shaft 43. An injection port 49 is provided on the proximal end of the torque shaft 48 in fluid communication with the inner lumen 51 of the torque shaft for delivery of a variety of fluids.
  • The partitioning component 10 partitions the patient's heart chamber 57 into a main productive or operational portion 58 and a secondary, essentially non-productive portion 59. The operational portion 58 is much smaller than the original ventricular chamber 57 and provides for an improved ejection fraction. The partitioning increases the ejection fraction and provides an improvement in blood flow. Over time, the non-productive portion 59 fills first with thrombus and subsequently with cellular growth. Bio-resorbable fillers such as polylactic acid, polyglycolic acid, polycaprolactone and copolymers and blends may be employed to initially fill the non-productive portion 59. Fillers may be suitably supplied in a suitable solvent such as DMSO. Other materials which accelerate tissue growth or thrombus may be deployed in the non-productive portion 59.
  • FIGS. 9 and 10 illustrate the reinforcing frame 13 in an unstressed configuration and includes the ribs 14 and the hub 12. The ribs 14 have a length L of about 1 to about 8 cm, preferably, about 1.5 to about 4 cm for most left ventricle deployments. The proximal ends 16 have a flared construction. To assist in properly locating the device during advancement and placement thereof into a patient's heart chamber, parts, e.g. the distal extremity, of one or more of the ribs and/or the hub may be provided with markers at desirable locations that provide enhanced visualization by eye, by ultrasound, by X-ray, or other imaging or visualization means. Radiopaque markers may be made with, for example, stainless steel, platinum, gold, iridium, tantalum, tungsten, silver, rhodium, nickel, bismuth, other radiopaque metals, alloys and oxides of these metals.
  • The partitioning device 10 is conveniently formed by placing a thermoplastic tube 60, e.g. polyethylene, over the ribs 14 of the frame 13 as shown in FIG. 11 until the proximal ends 16 of the ribs 14 extend out the ends of the thermoplastic tubes as shown in FIG. 12. A first expanded PTFE sheet 61 of appropriate size is placed in the female platen 62 of the press 63. The frame 13 with tubes 60 slidably disposed over the ribs 14 is placed in platen 62 on top of the ePTFE sheet 61. The center portion of the sheet 61 may be provided with an opening through which the hub 12 extends. A second ePTFE sheet 64 is placed on top of the ribs 14 of frame 13 as shown in FIG. 13. The male platen 65 is heated, preferably to about 500° F., so that the thermoplastic tubes 60 disposed over the ribs 14 fuse into the porous matrix of the ePTFE sheets 61 and 64. The fused thermoplastic material solidifies and secures the sheets 61 and 64 to the ribs 14 and prevents their delamination during use.
  • While porous ePTFE material is preferred, the membrane 11 may be formed of suitable biocompatitble polymeric material which include Nylon, PET (polyethylene terephthalate) and polyesters such as Hytrel. The membrane 11 is preferably foraminous in nature to facilitate tissue ingrowth after deployment within the patient's heart. The delivery catheter 32 and the guiding catheter 31 may be formed of suitable high strength polymeric material such as PEEK (polyetheretherketone), polycarbonate, PET, Nylon, and the like. Braided composite shafts may also be employed.
  • To the extent not otherwise described herein, the various components of the partitioning device and delivery system may be formed of conventional materials and in a conventional manner as will be appreciated by those skilled in the art.
  • While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. Moreover, individual features of embodiments of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment of the invention can be combined with any or all the features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is intended that this invention to be defined by the scope of the appended claims as broadly as the prior art will permit.
  • Terms such a “element”, “member”, “device”, “section”, “portion”, “step”, “means” and words of similar import, when used herein shall not be construed as invoking the provisions of 35 U.S.C. §112(6) unless the following claims expressly use the terms “means” followed by a particular function without specific structure or “step” followed by a particular function without specific action. Accordingly, it is not intended that the invention be limited, except as by the appended claims. All patents and patent applications referred to above are hereby incorporated by reference in their entirety.

Claims (54)

1. A device for treating a patient with congestive heart failure by partitioning a chamber of the patient's heart into a primary productive portion and a secondary non-productive portion, comprising:
a. a partitioning component which has an expandable frame formed of a plurality of ribs having distal ends secured to a central hub and free outwardly flared proximal ends and which has a proximal, pressure receiving face forming a recess in an expanded, deployed configuration defining in part the primary productive portion of the patient's heart chamber to be partitioned; and
b. a plurality of tissue penetrating securing elements disposed at free ends of the ribs configured to penetrate tissue lining the heart chamber at an angle essentially perpendicular to the center line axis of the partitioning device to secure the periphery of the partitioning device to the heart chamber.
2. The device of claim 1 wherein reinforced partitioning component has a contracted configuration for delivery to patient's heart chamber to be partitioned.
3. The device of claim 1 wherein the pressure receiving surface of the partitioning component is formed at least in part of a membrane.
4. The device of claim 3 wherein the membrane is foraminous.
5. The device of claim 3 wherein the membrane is formed at least in part of a polymeric fabric.
6. The device of claim 5 wherein the polymeric fabric of the membrane is secured to the ribs by polymeric material fused in the polymeric fabric.
7. The device of claim 6 wherein the distal ends of the ribs are configured to facilitate abduction of the free proximal ends of the ribs away from a centerline axis to facilitate expansion of the reinforced partitioning component.
8. The device of claim 6 wherein the free proximal ends of the ribs are outwardly curved.
9. The device of claim 8 wherein the free proximal ends of the ribs have tips which penetrate the tissue lining the heart chamber at an angle of not more than 30° away from a line perpendicular to the center line axis of the partitioning device.
10. The device of claim 1 wherein the pressure receiving surface has radial dimensions from a center line axis of about 10 to about 160 mm.
11. The device of claim 1 wherein the pressure receiving surface has radial dimensions from a center line axis of about 5 to about 80 mm.
12. The device of claim 1 wherein the frame has about 3 to about 30 ribs.
13. The device of claim 1 wherein the frame has about 6 to about 16 ribs.
14. The device of claim 1 wherein the expandable frame is self expanding.
15. The device of claim 1 wherein the frame is formed of superelastic NiTi, alloy which is in an austenite phase when unstressed.
16. The device of claim 1 wherein the frame is in a stress maintained martensite phase when delivered through the patient's vasculature to the patient's heart chamber.
17. The device of claim 3 wherein the membrane is formed at least in part of expanded fluoropolymer.
18. The device of claim 17 wherein the expanded fluoropolymer is polytetrafluoroethylene.
19. A partitioning apparatus for a patients heart chamber to Improve cardiac ejection fraction, comprising:
a. a central hub component;
b. an expandable frame component having a plurality of ribs with free, outwardly flared proximal ends and distal ends secured to the central hub component;
c. a membrane component secured to the expandable frame ribs which defines a recessed, pressure receiving surface; and
d. tissue penetrating tips on a plurality of free, outwardly flared proximal ends which are configured to penetrate tissue lining the heart chamber to be partitioned at an angle essentially perpendicular to a center line axis of the partitioning device.
20. The partitioning apparatus of claim 30 wherein the hub has a non-traumatic distal tip to engage the region of the patients ventricular wall.
21. The partitioning apparatus of claim 30 wherein the non-traumatic distal tip has a bullet shape.
22. The partitioning apparatus of claim 30 wherein the membrane component is secured to the proximal side of the ribs.
23. The partitioning apparatus of claim 30 wherein the membrane component is secured to the distal side of the ribs.
24. An intracorporeal delivery catheter for a ventricular partitioning device for treating a patient with CHF, comprising:
a. an elongated shaft which has proximal and distal ends, a port proximal to the distal end and an inner lumen In fluid communication with the port;
b. a releasable securing element on the distal end of the elongated shaft configured to secure and release a ventricular partitioning device; and
c. an inflatable member on a distal portion of the elongated shaft having an interior in fluid communication with the inner lumen in the elongated shaft through the port therein which Is configured to expand a reinforced membrane of the partitioning device.
25. The intracorporeal delivery catheter of claim 24 wherein the elongated shaft has an outer shaft member with an inner lumen and an inner shaft member disposed within the inner lumen of the outer shaft, which has proximal and distal end, which has a first inner lumen extending within the inner shaft to the port proximal to the distal end of the inner shaft member to provide inflation fluid to the interior of the inflatable member, which has a second port in the distal end thereof and a second inner lumen extending within the inner shaft to the port in the distal end thereof.
26. The intracorporeal delivery catheter of claim 25 including a torque shaft which has proximal and distal ends, which is rotatably disposed within the second inner lumen of the inner shaft member and which has the releasable securing element on the distal end thereof for securing and releasing a ventricular partitioning device.
27. The intracorporeal delivery catheter of claim 26 wherein the releasable securing element on the distal end of the torque shaft is a helical screw connection element.
28. The intracorporeal delivery catheter of claim 27 wherein the helical screw connection element on the distal end of the torque shaft is configured to engage a connector bar on the partitioning device.
29. An intracorporeal delivery catheter for a ventricular partitioning device for treating a patient with CHF, comprising:
a. an elongated outer shaft with an inner lumen;
b. an inner shaft which is disposed within the inner lumen of the outer shaft, which has a first inner lumen extending within the inner shaft to a port proximal to the distal end thereof, which has a second inner lumen extending within the inner shaft to the distal end thereof; a balloon mounted on a distal portion of the inner shaft having an interior in fluid communication with the first inner lumen through the port;
c. a torque shaft which has proximal and distal ends, which is rotatably disposed within the second inner lumen of the inner shaft, which has a screw connection element on the distal end thereof extending out of the distal end of the inner shaft and configured to receive a partitioning device; and
d. an inflation port in fluid communication with the first inner lumen of the inner shaft for delivery of inflation fluid therethrough to the interior of the balloon.
30. An Intracorporeal partitioning component comprising:
a. a frame having a plurality of ribs with radially extending proximal ends and with distal ends secured to a hub; and
b. at least one porous sheet material secured to the ribs of the frame by fused thermoplastic material within the porous sheet material.
31. The intracorporeal partitioning component of claim 30 wherein at least one porous sheet is secured to the upper portion of the ribs of the frame and at least one sheet is secured to the lower portion of the ribs of the frame by thermoplastic material within the porous sheets.
32. A method of securing a porous polymeric sheet material to rib components of a frame structure, comprising:
a. sliding a thermoplastic tube over one or more rib components of the frame;
b. applying a porous sheet to the ribs covered with the thermoplastic polymeric tubes to form an assembly; and
c. heating the assembly to fuse the polymeric material of the thermoplastic tubes within the porous sheet.
33. The method of claim 32 wherein a porous sheet is applied to the upper surface of the frame.
34. The method of claim 32 wherein a porous sheet is applied to the lower surface of the frame.
35. The method of claim 32 wherein a first porous sheet is applied to the upper surface of the frame and a second porous sheet is applied to the lower surface of the frame.
36. The method of claim 35 wherein the assembly is placed onto a receiving platen of a press and a hot pressing platen is pressed against the assembly to fuse the thermoplastic polymeric material on the ribs of the frame within one or both of the porous membranes.
37. A method of treating a patient with congestive heart failure by partitioning the patient's heart chamber, comprising:
a. providing a reinforced membrane having a first contracted configuration for delivery to the patient's heart chamber and a second expanded configuration for deployment within the patient's heart chamber;
b. advancing the reinforced membrane in the first contracted configuration into the chamber of the patient's heart;
c. inflating an inflatable member disposed within the membrane to expand the reinforced membrane to the second expanded configuration to facilitate securing the reinforced membrane within the patient's heart chamber to partition the chamber into a primary productive portion and a secondary non-productive portion.
38. The method of claim 37 wherein the reinforced membrane is advanced into the patient's heart chamber through an inner lumen of a delivery catheter.
39. The method of claim 38 wherein the inflatable member is positioned on a distal portion of the delivery catheter.
40. The method of claim 37 wherein the expanding inflatable member secures a peripheral edge of the reinforced membrane to a wall defining at least in part the patients heart chamber.
41. The method of claim 37 wherein a central portion of the expanded reinforced membrane is spaced from a wall defining in part the patients heart chamber.
42. The method of claim 38 wherein the reinforced membrane is positioned within an inner lumen of the delivery catheter in the first contracted configuration, and advanced therein to a discharge port in the distal end of the delivery catheter and discharged from the discharge port into the patient's heart chamber where the contracted reinforced membrane expands to the second expanded configuration due at least in part to the expanding inflatable member.
43. The method of claim 38 wherein the delivery catheter is percutaneously introduced into the patient's vasculature and advanced therein until the distal end of the delivery catheter is disposed within the patients heart chamber.
44. The method of claim 40 wherein the edge of the reinforced membrane is secured to a wall defining at least in part the heart chamber by anchoring elements provided on the edge of the reinforced membrane.
45. The method of claim 37 wherein the reinforced membrane is in part self expanding.
46. A method of treating a patient with congestive heart failure, comprising:
a. providing an expandable reinforced membrane having a periphery with a plurality of anchoring elements thereon;
b. advancing the reinforced membrane in a contracted configuration within the patients vasculature until the reinforced member is disposed within a chamber of the patient's heart; and
c. inflating a balloon within the contracted reinforced membranes to expand the reinforced membrane into an expanded configuration within the heart chamber to secure the periphery of the reinforced membrane to the heart wall by the anchoring elements on the periphery of the reinforced membrane.
47. A method of treating a patient with congestive heart failure, comprising the steps of:
a. providing an expandable reinforced membrane having a periphery with a plurality of anchoring elements thereon;
b. advancing the reinforced membrane in a contracted configuration within the patient's vasculature until the reinforced member is disposed within a chamber of the patient's heart; and
c. inflating a balloon within the contracted reinforced membranes to expand the reinforced membrane into an expanded configuration within the heart chamber to secure the periphery of the reinforced membrane to the heart wall by the anchoring elements on the periphery of the reinforced membrane.
48. An intracorporeal product comprising:
a. a first component configured for intracorporeal deployment; and
b. at least one sheet of ePTFE material secured to the first component by fused thermoplastic material therebetween.
49. The intracorporeal product of claim 30 wherein a second ePTFE sheet is secured to the first component by thermoplastic material within the porous sheets.
50. A method of making an intracorporeal product securing a porous polymeric sheet material to rib components of a frame structure, comprising:
a. providing a ePTFE sheet;
b. providing an intracorporeal component;
c. deploying a thermoplastic element over at least part of the intracorporeal component;
d. applying the ePTFE sheet to at least a portion of the intracorporeal component covered by the at least one thermoplastic element to form an assembly; and
e. heating the assembly to fuse the thermoplastic material and secure the ePTFE sheet to the intracorporeal component.
51. The method of claim 50 wherein the ePTFE sheet is applied to an upper surface of the intracorporeal component.
52. The method of claim 50 wherein the ePTFE sheet is applied to a lower surface of the intracorporeal component.
53. The method of claim 51 wherein a second ePTFE sheet is applied to the lower surface of the intrecorporeal component.
54. The method of claim 50 wherein pressure is applied to the assembly at elevated temperature to fuse the thermoplastic polymeric material and secure the ePTFE sheet to the intracorporeal component.
US10/913,608 2000-08-09 2004-08-05 Ventricular partitioning device Abandoned US20060030881A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US10/913,608 US20060030881A1 (en) 2004-08-05 2004-08-05 Ventricular partitioning device
AU2005271261A AU2005271261B2 (en) 2004-08-05 2005-08-04 Ventricular partitioning device
CA002575509A CA2575509A1 (en) 2004-08-05 2005-08-04 Ventricular partitioning device
JP2007525062A JP4929172B2 (en) 2004-08-05 2005-08-04 Ventricular divider
PCT/US2005/028065 WO2006017809A2 (en) 2004-08-05 2005-08-04 Ventricular partitioning device
ES05779614T ES2410795T3 (en) 2004-08-05 2005-08-04 Ventricular partition device
EP05779614A EP1781186B1 (en) 2004-08-05 2005-08-04 Ventricular partitioning device
US11/860,438 US7897086B2 (en) 2004-08-05 2007-09-24 Method of making a laminar ventricular partitioning device
US12/893,832 US9078660B2 (en) 2000-08-09 2010-09-29 Devices and methods for delivering an endocardial device
JP2011103163A JP2011189140A (en) 2004-08-05 2011-05-02 Ventricular partitioning device
US13/827,927 US9332992B2 (en) 2004-08-05 2013-03-14 Method for making a laminar ventricular partitioning device
US13/828,184 US9332993B2 (en) 2004-08-05 2013-03-14 Devices and methods for delivering an endocardial device
JP2013162564A JP6047461B2 (en) 2004-08-05 2013-08-05 Ventricular divider
US14/731,161 US20150265405A1 (en) 2000-08-09 2015-06-04 Devices and methods for delivering an endocardial device
US15/133,080 US10064696B2 (en) 2000-08-09 2016-04-19 Devices and methods for delivering an endocardial device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/913,608 US20060030881A1 (en) 2004-08-05 2004-08-05 Ventricular partitioning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/509,289 Continuation-In-Part US8398537B2 (en) 2000-08-09 2009-07-24 Peripheral seal for a ventricular partitioning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/860,438 Continuation-In-Part US7897086B2 (en) 2000-08-09 2007-09-24 Method of making a laminar ventricular partitioning device

Publications (1)

Publication Number Publication Date
US20060030881A1 true US20060030881A1 (en) 2006-02-09

Family

ID=35159737

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/913,608 Abandoned US20060030881A1 (en) 2000-08-09 2004-08-05 Ventricular partitioning device
US11/860,438 Expired - Fee Related US7897086B2 (en) 2000-08-09 2007-09-24 Method of making a laminar ventricular partitioning device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/860,438 Expired - Fee Related US7897086B2 (en) 2000-08-09 2007-09-24 Method of making a laminar ventricular partitioning device

Country Status (7)

Country Link
US (2) US20060030881A1 (en)
EP (1) EP1781186B1 (en)
JP (3) JP4929172B2 (en)
AU (1) AU2005271261B2 (en)
CA (1) CA2575509A1 (en)
ES (1) ES2410795T3 (en)
WO (1) WO2006017809A2 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030050685A1 (en) * 1999-08-09 2003-03-13 Nikolic Serjan D. Method for improving cardiac function
US20030105384A1 (en) * 1999-08-09 2003-06-05 Sharkey Hugh R. Method of improving cardiac function using a porous membrane
US20050015109A1 (en) * 2003-07-16 2005-01-20 Samuel Lichtenstein Methods and devices for altering blood flow through the left ventricle
US20050154252A1 (en) * 2004-01-09 2005-07-14 Cardiokinetix, Inc. Ventricular partitioning device
US20050197716A1 (en) * 2004-03-03 2005-09-08 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US20060014998A1 (en) * 2002-08-01 2006-01-19 Sharkey Hugh R Multiple partitioning devices for heart treatment
US20060264980A1 (en) * 1999-08-09 2006-11-23 Alexander Khairkhahan System for improving cardiac function
US20060281965A1 (en) * 2005-06-10 2006-12-14 Alexander Khairkhahan Peripheral seal for a ventricular partitioning device
US20070161846A1 (en) * 1999-08-09 2007-07-12 Serjan Nikolic Cardiac device and methods of use thereof
US20070198058A1 (en) * 2006-02-21 2007-08-23 Daniel Gelbart Method and device for closing holes in tissue
US20070270688A1 (en) * 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
US20080004697A1 (en) * 2006-06-28 2008-01-03 Samuel Victor Lichtenstein Method for anchoring a mitral valve
US20080004534A1 (en) * 2006-06-28 2008-01-03 Daniel Gelbart Intra-cardiac mapping and ablation method
US20080015635A1 (en) * 2006-06-09 2008-01-17 Daniel Olsen Single disc occlusionary patent foramen ovale closure device
US20080045778A1 (en) * 2006-08-02 2008-02-21 Samuel Victor Lichtenstein System for improving diastolic dysfunction
US20080319254A1 (en) * 2002-08-01 2008-12-25 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US20090054723A1 (en) * 1999-08-09 2009-02-26 Alexander Khairkhahan Retrievable devices for improving cardiac function
US20090062845A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Barrel occlusion device
US20090062844A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider pfo closure device
US20090061136A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Apparatus and method for making a spider occlusion device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US20090076597A1 (en) * 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US20090131930A1 (en) * 2007-11-16 2009-05-21 Daniel Gelbart Medical device for use in bodily lumens, for example an atrium
US20090182352A1 (en) * 2005-07-06 2009-07-16 Adrian Paz Surgical Fasteners and Fastening Devices
US20090192441A1 (en) * 2008-01-25 2009-07-30 Daniel Gelbart Liposuction system
US20090254195A1 (en) * 1999-08-09 2009-10-08 Alexander Khairkhahan System for improving cardiac function by sealing a partitioning membrane within a ventricle
US20090287040A1 (en) * 2005-06-10 2009-11-19 Alexander Khairkhahan Peripheral seal for a ventricular partitioning device
US20090287304A1 (en) * 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
WO2010117367A1 (en) 2009-04-10 2010-10-14 Cardiokinetix, Inc. Sealing and filling ventricular partitioning devices to improve cardiac function
US20100274227A1 (en) * 2009-02-13 2010-10-28 Alexander Khairkhahan Delivery catheter handle cover
US7897086B2 (en) 2004-08-05 2011-03-01 Cardiokinetix, Inc. Method of making a laminar ventricular partitioning device
US20110087066A1 (en) * 2000-08-09 2011-04-14 Boutillette Michael P Devices and methods for delivering an endocardial device
WO2011041422A3 (en) * 2009-09-29 2011-09-09 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
KR101070809B1 (en) 2011-02-21 2011-10-06 강원대학교산학협력단 Ventricular partitioning device
KR101070811B1 (en) 2011-02-18 2011-10-06 강원대학교산학협력단 Ventricular partitioning device
CN102985120A (en) * 2010-06-08 2013-03-20 罗伯托·帕拉维奇尼 Cardiovascular device
KR101270235B1 (en) 2011-01-20 2013-05-31 강원대학교산학협력단 Ventricular Partitioning Device
CN103917174A (en) * 2011-09-30 2014-07-09 柯惠Lp公司 Implantable prosthesis for repairing or reinforcing an anatomical defect
CN103932753A (en) * 2014-05-05 2014-07-23 梅奇峰 Device and method for manufacturing isolating layer in cardiac tamping
US8790242B2 (en) 2009-10-26 2014-07-29 Cardiokinetix, Inc. Ventricular volume reduction
CN104042300A (en) * 2013-03-14 2014-09-17 卡迪欧凯尼迪克斯公司 Systems and methods for making a laminar ventricular partitioning device
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US9011423B2 (en) 2012-05-21 2015-04-21 Kardium, Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US9204964B2 (en) 2009-10-01 2015-12-08 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US9332992B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Method for making a laminar ventricular partitioning device
US9332993B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
US9480525B2 (en) 2011-01-21 2016-11-01 Kardium, Inc. High-density electrode-based medical device system
US9492227B2 (en) 2011-01-21 2016-11-15 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
US9592399B2 (en) 2013-06-20 2017-03-14 Cardiac Pacemakers, Inc. Deployable multi-electrode leadless electrostimulator
US9694121B2 (en) 1999-08-09 2017-07-04 Cardiokinetix, Inc. Systems and methods for improving cardiac function
EP3214966A4 (en) * 2014-11-04 2017-11-29 The Handwerker Umbrella Company LLC Umbrellas with inflatable portions
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10064696B2 (en) 2000-08-09 2018-09-04 Edwards Lifesciences Corporation Devices and methods for delivering an endocardial device
US10238487B2 (en) 2008-08-22 2019-03-26 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10307147B2 (en) 1999-08-09 2019-06-04 Edwards Lifesciences Corporation System for improving cardiac function by sealing a partitioning membrane within a ventricle
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10751183B2 (en) 2014-09-28 2020-08-25 Edwards Lifesciences Corporation Apparatuses for treating cardiac dysfunction
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US10898330B2 (en) 2017-03-28 2021-01-26 Edwards Lifesciences Corporation Positioning, deploying, and retrieving implantable devices
US10945716B2 (en) 2005-09-01 2021-03-16 Cordis Corporation Patent foramen ovale closure method
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
WO2022182637A1 (en) * 2021-02-23 2022-09-01 Mayo Foundation For Medical Education And Research Cardiac treatment devices and methods

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
EP1986735A4 (en) * 2006-02-06 2011-06-29 Northwind Ventures Systems and methods for volume reduction
JP5539368B2 (en) * 2008-10-20 2014-07-02 コーアシスト・カーデイオバスキユラー・リミテツド Ventricular assist device and method and apparatus for implanting it
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
US9579103B2 (en) 2009-05-01 2017-02-28 Endologix, Inc. Percutaneous method and device to treat dissections
WO2011017123A2 (en) 2009-07-27 2011-02-10 Endologix, Inc. Stent graft
WO2012068298A1 (en) 2010-11-17 2012-05-24 Endologix, Inc. Devices and methods to treat vascular dissections
CN103598902B (en) * 2013-11-14 2017-01-25 先健科技(深圳)有限公司 Left aurcle plugging device
CN103800045A (en) * 2014-02-24 2014-05-21 梅奇峰 Medical cardiac tamponade object

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4619246A (en) * 1984-05-23 1986-10-28 William Cook, Europe A/S Collapsible filter basket
US4832055A (en) * 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5104399A (en) * 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5192314A (en) * 1991-12-12 1993-03-09 Daskalakis Michael K Synthetic intraventricular implants and method of inserting
US5385156A (en) * 1993-08-27 1995-01-31 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5496277A (en) * 1990-04-12 1996-03-05 Schneider (Usa) Inc. Radially expandable body implantable device
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US5527338A (en) * 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5549621A (en) * 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US5634942A (en) * 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5791231A (en) * 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
US5797849A (en) * 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5797960A (en) * 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US5865730A (en) * 1997-10-07 1999-02-02 Ethicon Endo-Surgery, Inc. Tissue stabilization device for use during surgery having remotely actuated feet
US5871017A (en) * 1996-10-15 1999-02-16 Mayer; Paul W. Relative motion cancelling platform for surgery
US5875782A (en) * 1996-11-14 1999-03-02 Cardiothoracic Systems, Inc. Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5876449A (en) * 1995-04-01 1999-03-02 Variomed Ag Stent for the transluminal implantation in hollow organs
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5882340A (en) * 1992-04-15 1999-03-16 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5910150A (en) * 1996-12-02 1999-06-08 Angiotrax, Inc. Apparatus for performing surgery
US5916145A (en) * 1998-08-07 1999-06-29 Scimed Life Systems, Inc. Device and method of using a surgical assembly with mesh sheath
US5925076A (en) * 1995-05-19 1999-07-20 Inoue; Kanji Appliance to be implanted, method of collapsing the appliance to be implanted and method of using the appliance to be implanted
US5928260A (en) * 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US5961539A (en) * 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US6024096A (en) * 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6059715A (en) * 1997-01-02 2000-05-09 Myocor, Inc. Heart wall tension reduction apparatus
US6076013A (en) * 1999-01-14 2000-06-13 Brennan; Edward F. Apparatus and methods for treating congestive heart failure
US6077218A (en) * 1996-10-02 2000-06-20 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6095968A (en) * 1998-04-10 2000-08-01 Cardio Technologies, Inc. Reinforcement device
US6096347A (en) * 1996-11-05 2000-08-01 Purdue Research Foundation Myocardial graft constructs
US6099832A (en) * 1997-05-28 2000-08-08 Genzyme Corporation Transplants for myocardial scars
US6102887A (en) * 1998-08-11 2000-08-15 Biocardia, Inc. Catheter drug delivery system and method for use
US6125852A (en) * 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US6193731B1 (en) * 1998-10-27 2001-02-27 Fziomed, Inc. Laparoscopic insertion and deployment device
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6258021B1 (en) * 1993-06-17 2001-07-10 Peter J. Wilk Intrapericardial assist method
US6267772B1 (en) * 1992-05-20 2001-07-31 C. R. Bard, Inc. Implantable prosthesis
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6343605B1 (en) * 2000-08-08 2002-02-05 Scimed Life Systems, Inc. Percutaneous transluminal myocardial implantation device and method
US20020019580A1 (en) * 2000-03-10 2002-02-14 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US6348068B1 (en) * 1999-07-23 2002-02-19 Sulzer Carbomedics Inc. Multi-filament valve stent for a cardisc valvular prosthesis
US20020026092A1 (en) * 1998-05-01 2002-02-28 Buckberg Gerald D. Ventricular restoration patch
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US20020032481A1 (en) * 2000-09-12 2002-03-14 Shlomo Gabbay Heart valve prosthesis and sutureless implantation of a heart valve prosthesis
US6360749B1 (en) * 1998-10-09 2002-03-26 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6364896B1 (en) * 1998-11-24 2002-04-02 Embol-X, Inc. Compliant framework and methods of use
US20020055775A1 (en) * 1999-01-26 2002-05-09 Alain F. Carpentier Flexible heart valve
US20020055767A1 (en) * 2000-10-18 2002-05-09 Forde Sean T. Over-the-wire interlock attachment/detachment mechanism
US6387042B1 (en) * 1998-08-28 2002-05-14 Juan Hernandez Herrero Apparatus aiding physiologic systolic and diastolic dynamics of cardiac cavities
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US20020111647A1 (en) * 1999-11-08 2002-08-15 Khairkhahan Alexander K. Adjustable left atrial appendage occlusion device
US6450171B1 (en) * 1998-05-01 2002-09-17 Correstore, Inc. Anterior and inferior segment ventricular restoration apparatus and method
US6511496B1 (en) * 2000-09-12 2003-01-28 Advanced Cardiovascular Systems, Inc. Embolic protection device for use in interventional procedures
US20030050685A1 (en) * 1999-08-09 2003-03-13 Nikolic Serjan D. Method for improving cardiac function
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US20030109770A1 (en) * 1999-08-09 2003-06-12 Sharkey Hugh R. Device with a porous membrane for improving cardiac function
US6592608B2 (en) * 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
US20030181942A1 (en) * 2002-01-25 2003-09-25 Sutton Gregg S. Atrial appendage blood filtration systems
US20040002626A1 (en) * 2001-07-16 2004-01-01 Yair Feld In-vivo method and device for improving diastolic function of the left ventricle
US6685627B2 (en) * 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US20040064014A1 (en) * 2001-05-31 2004-04-01 Melvin David B. Devices and methods for assisting natural heart function
US20040127935A1 (en) * 1999-10-27 2004-07-01 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US20050007031A1 (en) * 2003-07-11 2005-01-13 Hubbell Incorporated Low voltage luminaire assembly
US20050015109A1 (en) * 2003-07-16 2005-01-20 Samuel Lichtenstein Methods and devices for altering blood flow through the left ventricle
US20050096498A1 (en) * 2001-04-24 2005-05-05 Houser Russell A. Sizing and shaping device for treating congestive heart failure
US20050154252A1 (en) * 2004-01-09 2005-07-14 Cardiokinetix, Inc. Ventricular partitioning device
US20050197716A1 (en) * 2004-03-03 2005-09-08 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US20060014998A1 (en) * 2002-08-01 2006-01-19 Sharkey Hugh R Multiple partitioning devices for heart treatment

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
US4685446A (en) * 1984-02-21 1987-08-11 Choy Daniel S J Method for using a ventricular assist device
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
FR2689388B1 (en) 1992-04-07 1999-07-16 Celsa Lg PERFECTIONALLY RESORBABLE BLOOD FILTER.
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US6776754B1 (en) * 2000-10-04 2004-08-17 Wilk Patent Development Corporation Method for closing off lower portion of heart ventricle
JPH10504738A (en) 1994-07-08 1998-05-12 マイクロベナ コーポレイション Medical device forming method and vascular embolization device
US5843170A (en) 1994-09-02 1998-12-01 Ahn; Sam Seunghae Apparatus and method for performing aneurysm repair
US5578069A (en) 1995-12-06 1996-11-26 Vnetritex, Inc. Electrode deployment mechanism and method using artificial muscle
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US5669933A (en) 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5833698A (en) 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
AU736989B2 (en) * 1997-10-27 2001-08-09 Illumenex Corporation Light delivery system with blood flushing capability
US6547821B1 (en) 1998-07-16 2003-04-15 Cardiothoracic Systems, Inc. Surgical procedures and devices for increasing cardiac output of the heart
US6342062B1 (en) * 1998-09-24 2002-01-29 Scimed Life Systems, Inc. Retrieval devices for vena cava filter
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US6152144A (en) * 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US7674222B2 (en) 1999-08-09 2010-03-09 Cardiokinetix, Inc. Cardiac device and methods of use thereof
US20060229491A1 (en) 2002-08-01 2006-10-12 Cardiokinetix, Inc. Method for treating myocardial rupture
US7582051B2 (en) 2005-06-10 2009-09-01 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US8257428B2 (en) 1999-08-09 2012-09-04 Cardiokinetix, Inc. System for improving cardiac function
WO2004012629A1 (en) * 1999-08-09 2004-02-12 Cardiokinetix, Inc. A device for improving cardiac function
US6652555B1 (en) 1999-10-27 2003-11-25 Atritech, Inc. Barrier device for covering the ostium of left atrial appendage
US8398537B2 (en) * 2005-06-10 2013-03-19 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US20060030881A1 (en) 2004-08-05 2006-02-09 Cardiokinetix, Inc. Ventricular partitioning device
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6681773B2 (en) * 2001-02-28 2004-01-27 Chase Medical, Inc. Kit and method for use during ventricular restoration
US20020133227A1 (en) * 2001-02-28 2002-09-19 Gregory Murphy Ventricular restoration patch apparatus and method of use
US20030057156A1 (en) * 2001-03-08 2003-03-27 Dean Peterson Atrial filter implants
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US20060025800A1 (en) * 2001-09-05 2006-02-02 Mitta Suresh Method and device for surgical ventricular repair
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US20050177180A1 (en) 2001-11-28 2005-08-11 Aptus Endosystems, Inc. Devices, systems, and methods for supporting tissue and/or structures within a hollow body organ
ATE378019T1 (en) 2002-03-05 2007-11-15 Salviac Ltd EMBOLIC FILTER AND RETRACTION LOOP SYSTEM
US20040260331A1 (en) 2003-06-20 2004-12-23 D'aquanni Peter Beta titanium embolic protection frame and guide wire
BR0302240B8 (en) 2003-06-24 2013-02-19 semi-stationary balloon in the gastric antrum with anchor rod for weight loss induction in humans.
US20050085826A1 (en) * 2003-10-21 2005-04-21 Scimed Life Systems, Inc. Unfolding balloon catheter for proximal embolus protection
WO2005046520A2 (en) * 2003-11-07 2005-05-26 Mayo Foundation For Medical Education And Research Device and method for treating congestive heart failure
US7566336B2 (en) 2003-11-25 2009-07-28 Cardia, Inc. Left atrial appendage closure device
US20050228434A1 (en) 2004-03-19 2005-10-13 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US7320665B2 (en) * 2005-03-02 2008-01-22 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
US9034006B2 (en) * 2005-12-01 2015-05-19 Atritech, Inc. Method and apparatus for retrieving an embolized implant
US8052715B2 (en) * 2005-12-01 2011-11-08 Atritech, Inc. Method and apparatus for recapturing an implant from the left atrial appendage
EP1986735A4 (en) * 2006-02-06 2011-06-29 Northwind Ventures Systems and methods for volume reduction
US7837610B2 (en) * 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4619246A (en) * 1984-05-23 1986-10-28 William Cook, Europe A/S Collapsible filter basket
US5104399A (en) * 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US4832055A (en) * 1988-07-08 1989-05-23 Palestrant Aubrey M Mechanically locking blood clot filter
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5496277A (en) * 1990-04-12 1996-03-05 Schneider (Usa) Inc. Radially expandable body implantable device
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5192314A (en) * 1991-12-12 1993-03-09 Daskalakis Michael K Synthetic intraventricular implants and method of inserting
US5882340A (en) * 1992-04-15 1999-03-16 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US6267772B1 (en) * 1992-05-20 2001-07-31 C. R. Bard, Inc. Implantable prosthesis
US5925062A (en) * 1992-09-02 1999-07-20 Board Of Regents, The University Of Texas System Intravascular device
US5527338A (en) * 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5797960A (en) * 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5924424A (en) * 1993-02-22 1999-07-20 Heartport, Inc. Method and apparatus for thoracoscopic intracardiac procedures
US6125852A (en) * 1993-02-22 2000-10-03 Heartport, Inc. Minimally-invasive devices and methods for treatment of congestive heart failure
US5549621A (en) * 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US5791231A (en) * 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
US6258021B1 (en) * 1993-06-17 2001-07-10 Peter J. Wilk Intrapericardial assist method
US5385156A (en) * 1993-08-27 1995-01-31 Rose Health Care Systems Diagnostic and treatment method for cardiac rupture and apparatus for performing the same
US5876325A (en) * 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5634942A (en) * 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5797849A (en) * 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5876449A (en) * 1995-04-01 1999-03-02 Variomed Ag Stent for the transluminal implantation in hollow organs
US5925076A (en) * 1995-05-19 1999-07-20 Inoue; Kanji Appliance to be implanted, method of collapsing the appliance to be implanted and method of using the appliance to be implanted
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US6132438A (en) * 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US6355052B1 (en) * 1996-02-09 2002-03-12 Pfm Produkte Fur Die Medizin Aktiengesellschaft Device for closure of body defect openings
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US20030149333A1 (en) * 1996-10-02 2003-08-07 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US6077218A (en) * 1996-10-02 2000-06-20 Acorn Cardiovascular, Inc. Cardiac reinforcement device
US5871017A (en) * 1996-10-15 1999-02-16 Mayer; Paul W. Relative motion cancelling platform for surgery
US6096347A (en) * 1996-11-05 2000-08-01 Purdue Research Foundation Myocardial graft constructs
US5875782A (en) * 1996-11-14 1999-03-02 Cardiothoracic Systems, Inc. Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass
US5910150A (en) * 1996-12-02 1999-06-08 Angiotrax, Inc. Apparatus for performing surgery
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6045497A (en) * 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6059715A (en) * 1997-01-02 2000-05-09 Myocor, Inc. Heart wall tension reduction apparatus
US5961539A (en) * 1997-01-17 1999-10-05 Segmed, Inc. Method and apparatus for sizing, stabilizing and/or reducing the circumference of an anatomical structure
US6099832A (en) * 1997-05-28 2000-08-08 Genzyme Corporation Transplants for myocardial scars
US5928260A (en) * 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US5865730A (en) * 1997-10-07 1999-02-02 Ethicon Endo-Surgery, Inc. Tissue stabilization device for use during surgery having remotely actuated feet
US6221092B1 (en) * 1998-03-30 2001-04-24 Nissho Corporation Closure device for transcatheter operations and catheter assembly therefor
US6095968A (en) * 1998-04-10 2000-08-01 Cardio Technologies, Inc. Reinforcement device
US20020026092A1 (en) * 1998-05-01 2002-02-28 Buckberg Gerald D. Ventricular restoration patch
US6024096A (en) * 1998-05-01 2000-02-15 Correstore Inc Anterior segment ventricular restoration apparatus and method
US6450171B1 (en) * 1998-05-01 2002-09-17 Correstore, Inc. Anterior and inferior segment ventricular restoration apparatus and method
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US5916145A (en) * 1998-08-07 1999-06-29 Scimed Life Systems, Inc. Device and method of using a surgical assembly with mesh sheath
US6102887A (en) * 1998-08-11 2000-08-15 Biocardia, Inc. Catheter drug delivery system and method for use
US6387042B1 (en) * 1998-08-28 2002-05-14 Juan Hernandez Herrero Apparatus aiding physiologic systolic and diastolic dynamics of cardiac cavities
US6685627B2 (en) * 1998-10-09 2004-02-03 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6360749B1 (en) * 1998-10-09 2002-03-26 Swaminathan Jayaraman Modification of properties and geometry of heart tissue to influence heart function
US6193731B1 (en) * 1998-10-27 2001-02-27 Fziomed, Inc. Laparoscopic insertion and deployment device
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US6364896B1 (en) * 1998-11-24 2002-04-02 Embol-X, Inc. Compliant framework and methods of use
US6076013A (en) * 1999-01-14 2000-06-13 Brennan; Edward F. Apparatus and methods for treating congestive heart failure
US20020055775A1 (en) * 1999-01-26 2002-05-09 Alain F. Carpentier Flexible heart valve
US6348068B1 (en) * 1999-07-23 2002-02-19 Sulzer Carbomedics Inc. Multi-filament valve stent for a cardisc valvular prosthesis
US20030050685A1 (en) * 1999-08-09 2003-03-13 Nikolic Serjan D. Method for improving cardiac function
US6852076B2 (en) * 1999-08-09 2005-02-08 Cardiokinetix, Inc. Method for improving cardiac function
US20030109770A1 (en) * 1999-08-09 2003-06-12 Sharkey Hugh R. Device with a porous membrane for improving cardiac function
US6436088B2 (en) * 1999-09-20 2002-08-20 Appriva Medical, Inc. Method and apparatus for closing a subcutaneous tissue opening
US6419669B1 (en) * 1999-09-20 2002-07-16 Appriva Medical, Inc. Method and apparatus for patching a tissue opening
US6290674B1 (en) * 1999-09-20 2001-09-18 Appriva Medical, Inc. Method and apparatus for closing intracardiac septal defects
US20010014800A1 (en) * 1999-09-20 2001-08-16 Frazier Andrew G.C. Method of reducing the volume of the heart
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US20040127935A1 (en) * 1999-10-27 2004-07-01 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US20030120337A1 (en) * 1999-10-27 2003-06-26 Atritech, Inc. Barrier device for ostium of left atrial appendage
US20020111647A1 (en) * 1999-11-08 2002-08-15 Khairkhahan Alexander K. Adjustable left atrial appendage occlusion device
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US20020028981A1 (en) * 1999-12-23 2002-03-07 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US20020019580A1 (en) * 2000-03-10 2002-02-14 Lilip Lau Expandable cardiac harness for treating congestive heart failure
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6334864B1 (en) * 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
US6343605B1 (en) * 2000-08-08 2002-02-05 Scimed Life Systems, Inc. Percutaneous transluminal myocardial implantation device and method
US6511496B1 (en) * 2000-09-12 2003-01-28 Advanced Cardiovascular Systems, Inc. Embolic protection device for use in interventional procedures
US20020032481A1 (en) * 2000-09-12 2002-03-14 Shlomo Gabbay Heart valve prosthesis and sutureless implantation of a heart valve prosthesis
US20020055767A1 (en) * 2000-10-18 2002-05-09 Forde Sean T. Over-the-wire interlock attachment/detachment mechanism
US20050096498A1 (en) * 2001-04-24 2005-05-05 Houser Russell A. Sizing and shaping device for treating congestive heart failure
US20040064014A1 (en) * 2001-05-31 2004-04-01 Melvin David B. Devices and methods for assisting natural heart function
US20040002626A1 (en) * 2001-07-16 2004-01-01 Yair Feld In-vivo method and device for improving diastolic function of the left ventricle
US6592608B2 (en) * 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
US20030181942A1 (en) * 2002-01-25 2003-09-25 Sutton Gregg S. Atrial appendage blood filtration systems
US20060014998A1 (en) * 2002-08-01 2006-01-19 Sharkey Hugh R Multiple partitioning devices for heart treatment
US20050007031A1 (en) * 2003-07-11 2005-01-13 Hubbell Incorporated Low voltage luminaire assembly
US20050015109A1 (en) * 2003-07-16 2005-01-20 Samuel Lichtenstein Methods and devices for altering blood flow through the left ventricle
US20050154252A1 (en) * 2004-01-09 2005-07-14 Cardiokinetix, Inc. Ventricular partitioning device
US20050197716A1 (en) * 2004-03-03 2005-09-08 Cardiokinetix, Inc. Inflatable ventricular partitioning device

Cited By (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090062601A1 (en) * 1999-08-09 2009-03-05 Alexander Khairkhahan System for improving cardiac function
US20070213578A1 (en) * 1999-08-09 2007-09-13 Alexander Khairkhahan System for improving cardiac function
US20030105384A1 (en) * 1999-08-09 2003-06-05 Sharkey Hugh R. Method of improving cardiac function using a porous membrane
US20030109770A1 (en) * 1999-08-09 2003-06-12 Sharkey Hugh R. Device with a porous membrane for improving cardiac function
US7887477B2 (en) 1999-08-09 2011-02-15 Cardiokinetix, Inc. Method of improving cardiac function using a porous membrane
US20100262168A1 (en) * 1999-08-09 2010-10-14 Alexander Khairkhahan Sealing and filling ventricular partitioning devices to improve cardiac function
US9017394B2 (en) 1999-08-09 2015-04-28 Cardiokinetix, Inc. Retrievable cardiac devices
US8192478B2 (en) 1999-08-09 2012-06-05 Cardiokinetix, Inc. System for improving cardiac function
US20060264980A1 (en) * 1999-08-09 2006-11-23 Alexander Khairkhahan System for improving cardiac function
US10307253B2 (en) 1999-08-09 2019-06-04 Edwards Lifesciences Corporation System for improving cardiac function by sealing a partitioning membrane within a ventricle
US10307147B2 (en) 1999-08-09 2019-06-04 Edwards Lifesciences Corporation System for improving cardiac function by sealing a partitioning membrane within a ventricle
US8246671B2 (en) 1999-08-09 2012-08-21 Cardiokinetix, Inc. Retrievable cardiac devices
US20070161846A1 (en) * 1999-08-09 2007-07-12 Serjan Nikolic Cardiac device and methods of use thereof
US20030050682A1 (en) * 1999-08-09 2003-03-13 Sharkey Hugh R. Device for improving cardiac function
US20070213815A1 (en) * 1999-08-09 2007-09-13 Alexander Khairkhahan System for improving cardiac function
US8500795B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable devices for improving cardiac function
US9872767B2 (en) 1999-08-09 2018-01-23 Edwards Lifesciences Corporation Retrievable cardiac devices
US9694121B2 (en) 1999-08-09 2017-07-04 Cardiokinetix, Inc. Systems and methods for improving cardiac function
US20100121132A1 (en) * 1999-08-09 2010-05-13 Serjan Nikolic Cardiac device and methods of use thereof
US20030050685A1 (en) * 1999-08-09 2003-03-13 Nikolic Serjan D. Method for improving cardiac function
US8257428B2 (en) 1999-08-09 2012-09-04 Cardiokinetix, Inc. System for improving cardiac function
US7674222B2 (en) 1999-08-09 2010-03-09 Cardiokinetix, Inc. Cardiac device and methods of use thereof
US20100048987A1 (en) * 1999-08-09 2010-02-25 Alexander Khairkhahan Retrievable cardiac devices
US20090054723A1 (en) * 1999-08-09 2009-02-26 Alexander Khairkhahan Retrievable devices for improving cardiac function
US8377114B2 (en) 1999-08-09 2013-02-19 Cardiokinetix, Inc. Sealing and filling ventricular partitioning devices to improve cardiac function
US8388672B2 (en) 1999-08-09 2013-03-05 Cardiokinetix, Inc. System for improving cardiac function by sealing a partitioning membrane within a ventricle
US20090254195A1 (en) * 1999-08-09 2009-10-08 Alexander Khairkhahan System for improving cardiac function by sealing a partitioning membrane within a ventricle
US8747454B2 (en) 1999-08-09 2014-06-10 Cardiokinetix, Inc. System for improving cardiac function
US8672827B2 (en) 1999-08-09 2014-03-18 Cardiokinetix, Inc. Cardiac device and methods of use thereof
US8657873B2 (en) * 1999-08-09 2014-02-25 Cardiokinetix, Inc. System for improving cardiac function
US8500790B2 (en) 1999-08-09 2013-08-06 Cardiokinetix, Inc. Retrievable cardiac devices
US10064696B2 (en) 2000-08-09 2018-09-04 Edwards Lifesciences Corporation Devices and methods for delivering an endocardial device
US9078660B2 (en) 2000-08-09 2015-07-14 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US20110087066A1 (en) * 2000-08-09 2011-04-14 Boutillette Michael P Devices and methods for delivering an endocardial device
US20060014998A1 (en) * 2002-08-01 2006-01-19 Sharkey Hugh R Multiple partitioning devices for heart treatment
US9592123B2 (en) 2002-08-01 2017-03-14 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US8529430B2 (en) 2002-08-01 2013-09-10 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US8827892B2 (en) 2002-08-01 2014-09-09 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US20080319254A1 (en) * 2002-08-01 2008-12-25 Cardiokinetix, Inc. Therapeutic methods and devices following myocardial infarction
US7862500B2 (en) 2002-08-01 2011-01-04 Cardiokinetix, Inc. Multiple partitioning devices for heart treatment
US20070083076A1 (en) * 2003-07-16 2007-04-12 Samuel Lichtenstein Methods and devices for altering blood flow through the left ventricle
US7513867B2 (en) 2003-07-16 2009-04-07 Kardium, Inc. Methods and devices for altering blood flow through the left ventricle
US20050015109A1 (en) * 2003-07-16 2005-01-20 Samuel Lichtenstein Methods and devices for altering blood flow through the left ventricle
US20080228205A1 (en) * 2004-01-09 2008-09-18 Cardiokinetix, Inc. Ventricular partitioning device
US20050154252A1 (en) * 2004-01-09 2005-07-14 Cardiokinetix, Inc. Ventricular partitioning device
US7762943B2 (en) * 2004-03-03 2010-07-27 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US20050197716A1 (en) * 2004-03-03 2005-09-08 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US7976455B2 (en) 2004-03-03 2011-07-12 Cardiokinetix, Inc. Inflatable ventricular partitioning device
US20090187063A1 (en) * 2004-03-03 2009-07-23 Alexander Khairkhahan Inflatable ventricular partitioning device
US9332993B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US9332992B2 (en) 2004-08-05 2016-05-10 Cardiokinetix, Inc. Method for making a laminar ventricular partitioning device
US7897086B2 (en) 2004-08-05 2011-03-01 Cardiokinetix, Inc. Method of making a laminar ventricular partitioning device
US20060281965A1 (en) * 2005-06-10 2006-12-14 Alexander Khairkhahan Peripheral seal for a ventricular partitioning device
US8398537B2 (en) 2005-06-10 2013-03-19 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US20090287040A1 (en) * 2005-06-10 2009-11-19 Alexander Khairkhahan Peripheral seal for a ventricular partitioning device
WO2006135747A2 (en) 2005-06-10 2006-12-21 Cardiokinetix, Inc. Peripheral seal for a ventricular partitioning device
US20090182352A1 (en) * 2005-07-06 2009-07-16 Adrian Paz Surgical Fasteners and Fastening Devices
US9241710B2 (en) * 2005-07-06 2016-01-26 I.B.I Israel Biomedical Innovations Ltd. Surgical fasteners and fastening devices
US8945179B2 (en) 2005-09-01 2015-02-03 Cordis Corporation Single disc occlusionary patent foramen ovale closure device
US10945716B2 (en) 2005-09-01 2021-03-16 Cordis Corporation Patent foramen ovale closure method
US20100222789A1 (en) * 2006-02-21 2010-09-02 Kardium Inc. Method and device for closing holes in tissue
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US9572557B2 (en) 2006-02-21 2017-02-21 Kardium Inc. Method and device for closing holes in tissue
US8337524B2 (en) 2006-02-21 2012-12-25 Kardium Inc. Method and device for closing holes in tissue
US20070198058A1 (en) * 2006-02-21 2007-08-23 Daniel Gelbart Method and device for closing holes in tissue
US8150499B2 (en) 2006-05-19 2012-04-03 Kardium Inc. Automatic atherectomy system
US20110125172A1 (en) * 2006-05-19 2011-05-26 Kardium Inc. Automatic atherectomy system
US8532746B2 (en) 2006-05-19 2013-09-10 Kardium Inc. Automatic atherectomy system
US20070270688A1 (en) * 2006-05-19 2007-11-22 Daniel Gelbart Automatic atherectomy system
US20080015635A1 (en) * 2006-06-09 2008-01-17 Daniel Olsen Single disc occlusionary patent foramen ovale closure device
US9119634B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389231B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10828094B2 (en) 2006-06-28 2020-11-10 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US20080004534A1 (en) * 2006-06-28 2008-01-03 Daniel Gelbart Intra-cardiac mapping and ablation method
US10828093B2 (en) 2006-06-28 2020-11-10 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US20080004697A1 (en) * 2006-06-28 2008-01-03 Samuel Victor Lichtenstein Method for anchoring a mitral valve
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US9192468B2 (en) 2006-06-28 2015-11-24 Kardium Inc. Method for anchoring a mitral valve
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8672998B2 (en) 2006-06-28 2014-03-18 Kardium Inc. Method for anchoring a mitral valve
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10820941B2 (en) 2006-06-28 2020-11-03 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11399890B2 (en) 2006-06-28 2022-08-02 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9987084B2 (en) 2006-06-28 2018-06-05 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9987083B2 (en) 2006-06-28 2018-06-05 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US11033392B2 (en) 2006-08-02 2021-06-15 Kardium Inc. System for improving diastolic dysfunction
US20110087203A1 (en) * 2006-08-02 2011-04-14 Kardium Inc. System for improving diastolic dysfunction
US20080045778A1 (en) * 2006-08-02 2008-02-21 Samuel Victor Lichtenstein System for improving diastolic dysfunction
JP2010512855A (en) * 2006-12-14 2010-04-30 カーディオキネティックス・インコーポレイテッド Heart disease device and method of use thereof
US8308752B2 (en) 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US20090062844A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider pfo closure device
US20090062845A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Barrel occlusion device
US20090061136A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Apparatus and method for making a spider occlusion device
US8025495B2 (en) 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US20090076597A1 (en) * 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US11331141B2 (en) 2007-11-16 2022-05-17 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US8932287B2 (en) 2007-11-16 2015-01-13 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US10828096B2 (en) 2007-11-16 2020-11-10 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11413091B2 (en) 2007-11-16 2022-08-16 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US20090131930A1 (en) * 2007-11-16 2009-05-21 Daniel Gelbart Medical device for use in bodily lumens, for example an atrium
US9877779B2 (en) 2007-11-16 2018-01-30 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9820810B2 (en) 2007-11-16 2017-11-21 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11304751B2 (en) 2007-11-16 2022-04-19 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11751940B2 (en) 2007-11-16 2023-09-12 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9750569B2 (en) 2007-11-16 2017-09-05 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11801091B2 (en) 2007-11-16 2023-10-31 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9839474B2 (en) 2007-11-16 2017-12-12 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US10499986B2 (en) 2007-11-16 2019-12-10 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11633231B2 (en) 2007-11-16 2023-04-25 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11432874B2 (en) 2007-11-16 2022-09-06 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9603661B2 (en) 2007-11-16 2017-03-28 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US11076913B2 (en) 2007-11-16 2021-08-03 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US10828098B2 (en) 2007-11-16 2020-11-10 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US10828095B2 (en) 2007-11-16 2020-11-10 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9585717B2 (en) 2007-11-16 2017-03-07 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US10828097B2 (en) 2007-11-16 2020-11-10 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US8489172B2 (en) 2008-01-25 2013-07-16 Kardium Inc. Liposuction system
US20090192441A1 (en) * 2008-01-25 2009-07-30 Daniel Gelbart Liposuction system
US9744038B2 (en) 2008-05-13 2017-08-29 Kardium Inc. Medical device for constricting tissue or a bodily orifice, for example a mitral valve
US20110022166A1 (en) * 2008-05-13 2011-01-27 Kardium Inc. Medical device for constricting tissue or a bodily orifice, for example a mitral valve
US20090287304A1 (en) * 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US11730597B2 (en) 2008-08-22 2023-08-22 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US11141270B2 (en) 2008-08-22 2021-10-12 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10952848B2 (en) 2008-08-22 2021-03-23 Edwards Lifesciences Corporation Methods of loading a prosthetic valve in a delivery apparatus
US11109970B2 (en) 2008-08-22 2021-09-07 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US11116632B2 (en) 2008-08-22 2021-09-14 Edwards Lifesciences Corporation Transvascular delivery systems
US10820994B2 (en) 2008-08-22 2020-11-03 Edwards Lifesciences Corporation Methods for delivering a prosthetic valve
US11116631B2 (en) 2008-08-22 2021-09-14 Edwards Lifesciences Corporation Prosthetic heart valve delivery methods
US11690718B2 (en) 2008-08-22 2023-07-04 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US11540918B2 (en) 2008-08-22 2023-01-03 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10945839B2 (en) 2008-08-22 2021-03-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10932906B2 (en) 2008-08-22 2021-03-02 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10238487B2 (en) 2008-08-22 2019-03-26 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100274227A1 (en) * 2009-02-13 2010-10-28 Alexander Khairkhahan Delivery catheter handle cover
WO2010117367A1 (en) 2009-04-10 2010-10-14 Cardiokinetix, Inc. Sealing and filling ventricular partitioning devices to improve cardiac function
EP2416736A4 (en) * 2009-04-10 2017-08-16 Cardiokinetix, Inc. Sealing and filling ventricular partitioning devices to improve cardiac function
WO2011041422A3 (en) * 2009-09-29 2011-09-09 Cardiokinetix, Inc. Devices and methods for delivering an endocardial device
US9867703B2 (en) 2009-10-01 2018-01-16 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US10813758B2 (en) 2009-10-01 2020-10-27 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US9204964B2 (en) 2009-10-01 2015-12-08 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US10687941B2 (en) 2009-10-01 2020-06-23 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US9039597B2 (en) 2009-10-26 2015-05-26 Cardiokinetix, Inc. Ventricular volume reduction
US8790242B2 (en) 2009-10-26 2014-07-29 Cardiokinetix, Inc. Ventricular volume reduction
US10028835B2 (en) 2009-10-26 2018-07-24 Edwards Lifesciences Corporation Ventricular volume reduction
US9364327B2 (en) 2009-10-26 2016-06-14 Cardiokinetix, Inc. Ventricular volume reduction
US10603022B2 (en) 2010-06-07 2020-03-31 Kardium Inc. Closing openings in anatomical tissue
US9918706B2 (en) 2010-06-07 2018-03-20 Kardium Inc. Closing openings in anatomical tissue
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
CN102985120A (en) * 2010-06-08 2013-03-20 罗伯托·帕拉维奇尼 Cardiovascular device
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
KR101270235B1 (en) 2011-01-20 2013-05-31 강원대학교산학협력단 Ventricular Partitioning Device
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
US11298173B2 (en) 2011-01-21 2022-04-12 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9492228B2 (en) 2011-01-21 2016-11-15 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9492227B2 (en) 2011-01-21 2016-11-15 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US11350989B2 (en) 2011-01-21 2022-06-07 Kardium Inc. Catheter system
US9486273B2 (en) 2011-01-21 2016-11-08 Kardium Inc. High-density electrode-based medical device system
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
US9675401B2 (en) 2011-01-21 2017-06-13 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US9480525B2 (en) 2011-01-21 2016-11-01 Kardium, Inc. High-density electrode-based medical device system
US11607261B2 (en) 2011-01-21 2023-03-21 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US11596463B2 (en) 2011-01-21 2023-03-07 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US11399881B2 (en) 2011-01-21 2022-08-02 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US10485608B2 (en) 2011-01-21 2019-11-26 Kardium Inc. Catheter system
US9526573B2 (en) 2011-01-21 2016-12-27 Kardium Inc. Enhanced medical device for use in bodily cavities, for example an atrium
US11896295B2 (en) 2011-01-21 2024-02-13 Kardium Inc. High-density electrode-based medical device system
KR101070811B1 (en) 2011-02-18 2011-10-06 강원대학교산학협력단 Ventricular partitioning device
KR101070809B1 (en) 2011-02-21 2011-10-06 강원대학교산학협력단 Ventricular partitioning device
US10058318B2 (en) 2011-03-25 2018-08-28 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US11813154B2 (en) 2011-09-30 2023-11-14 Covidien Lp Implantable prosthesis for repairing or reinforcing an anatomical defect
CN103917174A (en) * 2011-09-30 2014-07-09 柯惠Lp公司 Implantable prosthesis for repairing or reinforcing an anatomical defect
US9572649B2 (en) 2011-09-30 2017-02-21 Covidien Lp Implantable prosthesis for repairing or reinforcing an anatomical defect
US10588733B2 (en) 2011-09-30 2020-03-17 Covidien Lp Implantable prosthesis for repairing or reinforcing an anatomical defect
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
US9693832B2 (en) 2012-05-21 2017-07-04 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US11672485B2 (en) 2012-05-21 2023-06-13 Kardium Inc. Systems and methods for activating transducers
US10918446B2 (en) 2012-05-21 2021-02-16 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10470826B2 (en) 2012-05-21 2019-11-12 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US11805974B2 (en) 2012-05-21 2023-11-07 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10568576B2 (en) 2012-05-21 2020-02-25 Kardium Inc. Systems and methods for activating transducers
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US9572509B2 (en) 2012-05-21 2017-02-21 Kardium Inc. Systems and methods for activating transducers
US11690684B2 (en) 2012-05-21 2023-07-04 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9445862B2 (en) 2012-05-21 2016-09-20 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9439713B2 (en) 2012-05-21 2016-09-13 Kardium Inc. Systems and methods for activating transducers
US9259264B2 (en) 2012-05-21 2016-02-16 Kardium Inc. Systems and methods for activating transducers
US11154248B2 (en) 2012-05-21 2021-10-26 Kardium Inc. Systems and methods for activating transducers
US9980679B2 (en) 2012-05-21 2018-05-29 Kardium Inc. Systems and methods for activating transducers
US9532831B2 (en) 2012-05-21 2017-01-03 Kardium Inc. Systems and methods for activating transducers
US11633238B2 (en) 2012-05-21 2023-04-25 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US9888972B2 (en) 2012-05-21 2018-02-13 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US11589821B2 (en) 2012-05-21 2023-02-28 Kardium Inc. Systems and methods for activating transducers
US9017320B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9017321B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9011423B2 (en) 2012-05-21 2015-04-21 Kardium, Inc. Systems and methods for selecting, activating, or selecting and activating transducers
CN104042300A (en) * 2013-03-14 2014-09-17 卡迪欧凯尼迪克斯公司 Systems and methods for making a laminar ventricular partitioning device
EP2967570A2 (en) * 2013-03-14 2016-01-20 Cardiokinetix, Inc. Systems and methods for making a laminar ventricular partitioning device
WO2014152461A3 (en) * 2013-03-14 2014-12-04 Cardiokinetix, Inc. Systems and methods for making a laminar ventricular partitioning device
US9592399B2 (en) 2013-06-20 2017-03-14 Cardiac Pacemakers, Inc. Deployable multi-electrode leadless electrostimulator
CN103932753A (en) * 2014-05-05 2014-07-23 梅奇峰 Device and method for manufacturing isolating layer in cardiac tamping
US11690720B2 (en) 2014-09-28 2023-07-04 Edwards Lifesciences Corporation Systems and methods for treating cardiac dysfunction
US10751183B2 (en) 2014-09-28 2020-08-25 Edwards Lifesciences Corporation Apparatuses for treating cardiac dysfunction
US10244835B2 (en) 2014-11-04 2019-04-02 The Handwerker Umbrella Company Llc Umbrellas with inflatable portions
US10602816B2 (en) 2014-11-04 2020-03-31 The Handwerker Umbrella Company Llc Umbrellas with inflatable portions
EP3214966A4 (en) * 2014-11-04 2017-11-29 The Handwerker Umbrella Company LLC Umbrellas with inflatable portions
US9986798B2 (en) 2014-11-04 2018-06-05 The Handwerker Umbrella Company Llc Umbrellas with inflatable portions
US10751006B2 (en) 2014-11-17 2020-08-25 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10758191B2 (en) 2014-11-17 2020-09-01 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US11026638B2 (en) 2014-11-17 2021-06-08 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US11026637B2 (en) 2014-11-17 2021-06-08 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10898330B2 (en) 2017-03-28 2021-01-26 Edwards Lifesciences Corporation Positioning, deploying, and retrieving implantable devices
WO2022182637A1 (en) * 2021-02-23 2022-09-01 Mayo Foundation For Medical Education And Research Cardiac treatment devices and methods

Also Published As

Publication number Publication date
JP2008508955A (en) 2008-03-27
AU2005271261A1 (en) 2006-02-16
US7897086B2 (en) 2011-03-01
WO2006017809A3 (en) 2006-04-27
CA2575509A1 (en) 2006-02-16
EP1781186A2 (en) 2007-05-09
WO2006017809A8 (en) 2007-03-22
WO2006017809A2 (en) 2006-02-16
ES2410795T3 (en) 2013-07-03
JP6047461B2 (en) 2016-12-21
JP2011189140A (en) 2011-09-29
JP4929172B2 (en) 2012-05-09
US20080071298A1 (en) 2008-03-20
EP1781186B1 (en) 2013-03-13
AU2005271261B2 (en) 2012-03-01
JP2013233448A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
AU2005271261B2 (en) Ventricular partitioning device
US7582051B2 (en) Peripheral seal for a ventricular partitioning device
EP1708642B1 (en) Ventricular partitioning device
US8398537B2 (en) Peripheral seal for a ventricular partitioning device
US7762943B2 (en) Inflatable ventricular partitioning device
US10307253B2 (en) System for improving cardiac function by sealing a partitioning membrane within a ventricle
AU2006257973B2 (en) Multiple partitioning devices for heart treatment

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIOKINETIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHARKEY, HUGH R.;KHAIRKHAHAN, ALEXANDER;NIKOLIC, SERJIAN D.;AND OTHERS;REEL/FRAME:016049/0472;SIGNING DATES FROM 20041008 TO 20041013

AS Assignment

Owner name: CARDIOKINETIX, INC., CALIFORNIA

Free format text: RECORD TO CORRECT THE CONVEYING PARTIES NAMES, PREVIOUSLY RECORDED AT REEL 016049 FRAME 0473.;ASSIGNORS:KHAIRKHAHAN, ALEXANDER;NIKOLIC, SERJAN D.;RADOVANCEVIC, BRANISLAV;AND OTHERS;REEL/FRAME:020581/0133;SIGNING DATES FROM 20041008 TO 20041013

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIOKINETIX, INC.;REEL/FRAME:044599/0682

Effective date: 20170626

Owner name: CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIOKINETIX, INC.;REEL/FRAME:044599/0682

Effective date: 20170626

AS Assignment

Owner name: EDWARDS LIFESCIENCES CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIOKINETIX (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC;REEL/FRAME:044348/0922

Effective date: 20170921