US20050288764A1 - Devices and methods for controlling expandable prosthesis during develoyment - Google Patents

Devices and methods for controlling expandable prosthesis during develoyment Download PDF

Info

Publication number
US20050288764A1
US20050288764A1 US10/957,079 US95707904A US2005288764A1 US 20050288764 A1 US20050288764 A1 US 20050288764A1 US 95707904 A US95707904 A US 95707904A US 2005288764 A1 US2005288764 A1 US 2005288764A1
Authority
US
United States
Prior art keywords
prostheses
delivery catheter
prosthesis
stents
prosthesis delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/957,079
Inventor
David Snow
Joseph Karratt
Jeffry Grainger
Denise Demarais
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xtent Inc
Original Assignee
Xtent Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xtent Inc filed Critical Xtent Inc
Priority to US10/957,079 priority Critical patent/US20050288764A1/en
Assigned to XTENT, INC. reassignment XTENT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARRATT, JOSEPH, DEMARAIS, DENISE, GRAINGER, JEFFRY J., SNOW, DAVID W.
Priority to JP2007518394A priority patent/JP4891901B2/en
Priority to AU2005260787A priority patent/AU2005260787A1/en
Priority to CA002568733A priority patent/CA2568733A1/en
Priority to EP05778125.4A priority patent/EP1761206B1/en
Priority to PCT/US2005/024931 priority patent/WO2006005082A2/en
Publication of US20050288764A1 publication Critical patent/US20050288764A1/en
Priority to US11/752,448 priority patent/US8317859B2/en
Priority to US12/471,064 priority patent/US8986362B2/en
Priority to US13/684,006 priority patent/US9700448B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/97Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve the outer sleeve being splittable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • A61F2002/9583Means for holding the stent on the balloon, e.g. using protrusions, adhesives or an outer sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • A61F2002/9665Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod with additional retaining means

Definitions

  • Stents are tubular prostheses designed for implantation in a vessel to maintain patency of the vessel lumen. Stents are used in various vessels throughout the body, including the coronary arteries, femoral arteries, iliac arteries, renal artery, carotid artery, vascular grafts, biliary ducts, trachea, and urethra, to name some examples. Stents are typically implanted by means of long and flexible delivery catheters that carry the stents in a compact, collapsed shape to the treatment site and then deploy the stents into the vessel. In some applications, balloon expandable stents are used.
  • stents are made of a malleable metal such as stainless steel or cobalt chromium and are expanded by means of a balloon on the tip of the delivery catheter to plastically deform the stent into contact with the vessel wall.
  • self-expanding stents are used. These are made of a resilient material that can be collapsed into a compact shape for delivery via catheter and that will self-expand into contact with the vessel when deployed from the catheter. Materials commonly used for self-expanding stents include stainless steel and elastic or superelastic alloys such as nickel titanium (NitinolTM).
  • stents face a number of challenges.
  • One such challenge is that in some cases the disease in a vessel may be so extensive that a stent of very long length, e.g. 30-200 mm, is called for.
  • a stent of very long length e.g. 30-200 mm
  • Currently available stents are typically less than 30 mm in length, and suffer from excessive stiffness if made longer. Such stiffness is particularly problematic in peripheral vessels such as the femoral arteries, where limb movement requires a high degree of flexibility in any stent implanted in such vessels.
  • the problem is particularly acute because as the stent is released from the catheter, its resiliency tends to cause it to eject or “watermelon seed” distally from the catheter tip by an unpredictable distance. During such deployment, the stent may displace not only axially but rotationally relative to the delivery catheter resulting in inaccurate, uncontrollable, and unpredictable stent placement.
  • Interleaving stents or stent segments such as those disclosed in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference, present even greater challenges to conventional delivery systems.
  • Interleaving stents have axially extending elements on each end of the stent that interleave with similar structures on an adjacent stent. Such interleaving minimizes the gap between adjacent stents and increases vessel wall coverage to ensure adequate scaffolding and minimize protrusion of plaque from the vessel wall.
  • interleaving requires that the relative rotational as well as axial positions of the adjacent stents be maintained during deployment to avoid metal overlap and excessive gaps between stents.
  • Conventional delivery systems suffer from the inability to control both the axial and rotational positions of self-expanding stents as they are deployed.
  • the stents and stent delivery systems should facilitate stenting of long vascular regions of various lengths without requiring the use of multiple catheters. Such stents and delivery systems should also provide sufficient flexibility for use in peripheral vessels and other regions where long and highly flexible stents might be required. In addition, the stents and stent delivery systems should enable the delivery of multiple stents of various lengths to one or more treatment sites using a single catheter without requiring catheter exchanges.
  • the stents and stent delivery systems should facilitate accurate and repeatable control of stent placement and inter-stent spacing to enable deployment of multiple self-expanding stents end-to-end in a vessel at generally constant spacing and without overlap.
  • the stents and delivery systems should enable the deployment of interleaving stents or stent segments with precision and control over both the axial spacing and rotational position of each stent or segment.
  • the present invention provides prostheses, prosthesis delivery systems, and methods of prosthesis deployment that enable the precise and controllable delivery of multiple prostheses using a single delivery catheter.
  • the prostheses, delivery systems, and methods of the invention provide for the precise control of prosthesis placement so that inter-prosthesis spacing is maintained at a constant and optimum distance.
  • both axial and rotational displacement of the prostheses relative to the delivery catheter is controlled during deployment, enabling the delivery of multiple prostheses that interleave with one another without overlap.
  • the prostheses, prosthesis delivery systems, and methods of the invention further enable the length of prostheses to be customized in situ to match the length of the site to be treated.
  • the invention is particularly useful for delivery of self-expanding prostheses, but balloon expandable prostheses are also contemplated within the scope of the invention.
  • the invention is well-suited to delivery of stents to the coronary arteries and to peripheral vessels such as the popliteal, femoral, tibial, iliac, renal, and carotid arteries.
  • the invention is further useful for delivery of prostheses to other vessels including biliary, neurologic, urinary, reproductive, intestinal, pulmonary, and others, as well as for delivery of other types of prostheses to various anatomical regions, wherever precise control of prosthesis deployment is desirable.
  • a prosthesis delivery catheter in a first aspect of the present invention, includes an outer shaft forming a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, and a movable coil member interactive with the prostheses to control expansion of the prostheses when the prostheses are deployed from the first lumen.
  • the prostheses are generally adapted to radially expand upon deployment from the first lumen.
  • the coil member is removable from the deployed prostheses by rotating the coil member.
  • the prostheses have sidewalls with a plurality of openings, the coil member being threaded through the openings.
  • the prostheses may include a plurality of struts, at least one of the struts being bent inwardly, with the coil member being threaded through the inwardly bent struts.
  • the coil member may be radially expandable to allow controlled expansion of the prostheses.
  • a distal portion of the coil member is retractable into the outer shaft following deployment of the selected number of prostheses.
  • the prostheses are disposed within the coil member.
  • the coil member may include a plurality of loops forming a helix. For example, in some embodiments between 2 and 6 loops are disposed in each prosthesis. In other embodiments, more than 6 loops are disposed in each prosthesis. In some embodiments, the coil member comprises a plurality of loops contacting each other to form a continuous tube.
  • the delivery catheter may also include a deployment mechanism for deploying a selected number of prostheses from the inner lumen.
  • the deployment mechanism includes a pushing element slidably disposed in the first lumen, the pushing element being in engagement with at least one of the prostheses to advance the prostheses distally relative to the outer shaft.
  • adjacent ends of adjacent prostheses may be interleaved to resist rotation of the prostheses relative to each other.
  • a distal end of the pushing element is interleaved with a proximal end of a proximal-most prosthesis to resist rotation of the prostheses.
  • the coil member may optionally be configured to maintain rotational position of the prostheses relative to each other.
  • a prosthesis delivery catheter for delivering prostheses into a vessel lumen includes an outer shaft forming a first lumen, an inner shaft slidably disposed within the first lumen, an evertible tube having a first end coupled with a distal end of the outer shaft and a second end coupled with a distal end of the inner shaft, and a plurality of self-expanding tubular prostheses carried within the evertible tube.
  • the prostheses are generally adapted to radially expand upon deployment from the evertible tube. Moving the outer shaft proximally relative to the inner shaft everts a distal portion of the evertible tube so as to deploy one or more of the prostheses.
  • an inner surface of the inner shaft comprises at least one adherent element for releasably holding the prostheses to the inner surface.
  • the adherent element comprises a tacky surface coating.
  • the adherent element may comprise a softenable material into which the prostheses are removably embedded.
  • the adherent element comprises a plurality of inwardly-facing protrusions positioned to extend through openings in the prostheses.
  • protrusions may have any of a number of shapes in various embodiments, such as but not limited to mushroom-shaped, L-shaped, T-shaped, hook-shaped, rounded, spiked, pyramidal, barbed, arrow-shaped or linear.
  • the adherent element may comprise a structure such as but not limited to bumps, bristles, spines, ridges ribs, waves, grooves, pits, channels, detents or random surface irregularities.
  • a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses; selecting a desired number of the prostheses to deploy; deploying the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment; controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses with an expandable coil member coupled with the prostheses; and removing the expandable coil member from the deployed prostheses.
  • removing the coil member involves rotating the coil member.
  • the coil member may be helically threaded through the prostheses such that rotating the coil member unthreads the coil member from one or more prostheses.
  • the method also involves controlling the rotational displacement of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses.
  • the rotational displacement is controlled by interleaving adjacent ends of adjacent prostheses and interleaving a proximal end of a proximal-most prosthesis with a portion of the catheter device.
  • a distal portion of the coil member expands with the selected number of prostheses.
  • a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses within an evertible tube; selecting a desired number of the prostheses to deploy; and everting a distal portion of the evertible tube to deploy the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment.
  • the distal portion of the evertible tube is everted by sliding an outer shaft of the catheter device relative to an inner shaft of the catheter device.
  • a distal end of the outer shaft is coupled with a distal end of the evertible tube such that sliding the outer shaft proximally relative to the inner shaft causes the distal end of the evertible tube to bend outward and fold over on itself.
  • the method may further involve controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses by contacting an adherent inner surface of the evertible tube with the prostheses.
  • the adherent surface maintains engagement with the prostheses until the distal portion of the evertible tube is peeled away from the prostheses.
  • the adherent surface comprises a friction-inducing coating or friction-inducing surface feature.
  • contacting the adherent surface with the prostheses involves releasably coupling one or more retention structures on the inner surface with the prostheses.
  • contacting the adherent surface with the prostheses may involve embedding the prostheses in a deformable material on the adherent inner surface.
  • a prosthesis delivery catheter comprises an outer shaft having a distal end and a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, the prostheses being adapted to radially expand upon deployment from the first lumen, and a control member extending distally from the distal end of the outer shaft and defining an interior communicating with the first lumen for receiving one or more of the prostheses.
  • the control member has an undeflected shape when not engaged by one of the prostheses and is configured to deflect radially outwardly when engaged by a prosthesis during expansion thereof.
  • the control member is also configured to resiliently return to the undeflected shape when the prosthesis is removed from the interior.
  • control member generally includes a plurality of deflectable tines having free distal ends received within an aperture on the nose cone or nose piece of the catheter.
  • control member may further include a plurality of webs between the tines.
  • control member may comprise a distensible tubular structure.
  • FIG. 1 is a side cut-away view of a prosthesis delivery catheter according to the invention.
  • FIG. 2A is a side cross-sectional view of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 2B is a side cross-sectional view of the prosthesis delivery catheter of FIG. 2A showing the deployment of prostheses in a vessel.
  • FIGS. 3A-3C are perspective, side, and end views respectively of a prosthesis coupled to control wires according to further embodiments of the invention.
  • FIG. 4A is a side cross-section of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 4B is a side cross-section of the prosthesis delivery catheter of FIG. 4A showing the deployment of prostheses in a vessel.
  • FIG. 5 A is a side cross-section of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 5B is an oblique view of a distal portion of a prosthesis delivery catheter according to the invention in yet another embodiment thereof.
  • FIGS. 6A-6C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in still another embodiment thereof, showing the outer shaft unretracted, outer shaft retracted with sleeve unexpanded, and sleeve with stents expanded, respectively.
  • FIGS. 7A-7B are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in another embodiment thereof, showing outer shaft retracted with sleeve unexpanded, and outer shaft retracted with sleeve and stents expanded, respectively.
  • FIGS. 8A-8C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof, showing the outer shaft unretracted, outer shaft retracted with sleeve unexpanded, and sleeve with stents expanded, respectively.
  • FIGS. 9A-9B are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in another embodiment thereof, showing outer shaft retracted with prosthesis partially deployed, and prosthesis fully deployed, respectively.
  • FIGS. 10A-10B are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in yet another embodiment thereof, showing outer shaft retracted with prosthesis partially deployed, and prosthesis fully deployed, respectively.
  • FIGS. 11A-11C are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in yet another embodiment thereof, showing a first prosthesis deployed, an expandable member expanded within the first prosthesis, and a second stent deployed with expandable member expanded in the first prosthesis, respectively.
  • FIGS. 11D-11F are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to another embodiment of the invention, showing the delivery catheter prior to stent deployment, the deployment of a first prosthesis in a vessel, and a deployed prosthesis in the vessel, respectively.
  • FIG. 12 is a side cross-sectional view of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in still another embodiment thereof, showing a first prosthesis deployed in a lesion.
  • FIGS. 13A-13C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to another embodiment of the invention, demonstrating a method for delivering prostheses in a vessel.
  • FIG. 14 is a side view of a prosthesis coupled with a coil member according to one embodiment of the invention.
  • FIG. 15 is an end-on view of a prosthesis coupled with a coil member according to one embodiment of the invention.
  • FIG. 16 is an end-on view of a prosthesis coupled with a coil member according to another embodiment of the invention.
  • FIG. 17 is a cross-sectional side view of a distal end of a prosthesis delivery catheter having an evertible tube according to one embodiment of the present invention.
  • FIG. 18 is a cross-sectional side view of a portion of an evertible tube of a prosthesis delivery catheter according to one embodiment of the present invention.
  • FIG. 19 is a cross-sectional side view of a portion of an evertible tube of a prosthesis delivery catheter according to another embodiment of the present invention.
  • FIGS. 20A-20B are oblique views a prosthesis delivery catheter according to the invention in a further embodiment thereof, before and during deployment of a prosthesis, respectively.
  • FIGS. 21A-21E are side cross-sectional views of the prosthesis delivery catheter of FIGS. 20 A-B, illustrating the steps of deploying a prosthesis according to the invention.
  • FIG. 22 is an oblique view of a distal end of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 23 is an oblique view of a distal end of a prosthesis delivery catheter according to the invention in still another embodiment thereof.
  • Delivery catheter 20 may have any of various constructions, including that described in co-pending application Ser. No. 10/637,713, filed Aug. 8, 2003 (Attorney Docket No. 21629-000340), which is incorporated herein by reference.
  • Delivery catheter 20 has a handle assembly 21 and an elongated catheter body 22 that includes three concentric tubular shafts all axially slidable relative to one another: an outer shaft 24 , a pusher 26 , and an inner shaft 28 .
  • Pusher 26 has a distal extension 27 to which a pusher ring 29 is fixed.
  • a guidewire tube 30 extends slidably through a port 32 in outer shaft 24 and through pusher ring 29 and has a distal end 34 , to which is mounted a nosecone 36 and a stop member 38 .
  • Delivery catheter 20 further includes one or more stent expansion control members, which in the illustrated embodiment comprise a plurality of control wires 40 .
  • control wires 40 Preferably, one or more pairs of control wires 40 are mounted on opposing sides of delivery catheter 20 , e.g. four control wires 40 offset 90° from each other. Control wires 40 are fixed at their proximal ends 42 to inner shaft 28 , and have free distal ends 44 .
  • Outer shaft 24 has a distal extremity 46 defining a first lumen 48 .
  • a plurality of stents 50 are disposed in a collapsed configuration within first lumen 48 .
  • Stents 50 are preferably composed of a resilient material such as stainless steel or Nitinol so as to self-expand from the collapsed configuration to a radially expanded configuration when deployed from first lumen 48 .
  • stents 50 as illustrated have a wave-like or undulating pattern in a plurality of interconnected circumferential members, the pattern illustrated is merely exemplary and the stents of the invention may have any of a variety of strut shapes, patterns, and geometries. From 2 up to 10 or more stents may be carried by outer shaft 24 .
  • a valve member 49 is mounted within first lumen 48 to facilitate separating those stents 50 to be deployed from those to remain within outer shaft 24 , as described in co-pending application Ser. No. 10/412,714, filed Apr. 10, 2003, which is incorporated herein by reference.
  • Control wires 40 run along the outside of stents 50 or through the interior of stents 50 , are threaded through openings in the walls of stents 50 or are otherwise coupled with stents 50 to control the deployment thereof, as described more fully below.
  • Control wires 40 are composed of a resilient material such as stainless steel, Nitinol, or a suitable polymer, and are preferably generally straight and biased inwardly against guidewire tube 32 or to a position generally parallel to the axial direction.
  • outer shaft 24 has been retracted to expose a plurality of stents 50 which are partially expanded and remain coupled to or restrained by control wires 40 , as explained in greater detail below.
  • Handle assembly 21 has a rotatable retraction knob 52 coupled to a shaft housing 53 , to which outer shaft 24 is fixed. By rotating retraction knob 52 , outer shaft 24 may be retracted proximally relative to pusher 26 and inner shaft 28 .
  • a pull ring 54 is coupled to inner shaft 28 , allowing inner shaft 28 , and hence control wires 40 , to be retracted proximally relative to outer shaft 24 .
  • a switch 56 engages and disengages pusher 26 with outer shaft 28 , so that pusher 26 either moves with outer shaft 24 or remains stationary as outer shaft 24 is retracted.
  • Indicia 58 on shaft housing 53 indicate the extent of retraction of outer shaft 28 by distance, number of stents, or other suitable measure.
  • handle assembly 21 Other aspects of handle assembly 21 are described in co-pending application Ser. No. 10/746,466, filed Dec. 23, 2003 (Attorney Docket No. 21629-002200), which is incorporated herein by reference. Except as stated otherwise, any of the embodiments of the stent delivery catheter described below may incorporate the features and be otherwise constructed as just described.
  • FIGS. 2A-2B illustrate a distal extremity of a stent delivery catheter 60 according to the invention in a further embodiment thereof.
  • stents 62 have a series of diamond shaped openings 64 in the walls thereof through which a plurality of control wires 66 are threaded.
  • Stents 62 have a plurality of axially-extending V-shaped points 63 on their distal and proximal ends. These points 63 are configured to interleave or nest with the points 63 on the adjacent stent 62 , preferably both in the collapsed and expanded configurations.
  • Various suitable interleaving stent geometries are described in co-pending application Ser. No. 10/736,666, filed Dec.
  • control wires 66 keep adjacent stents 62 in rotational alignment as they are advanced forward through the catheter and during deployment.
  • each control wire 66 is threaded through at least two openings 64 in each stent 62 , one opening 64 a near the distal end of each stent 62 and one opening 64 b near the proximal end of each stent 62 .
  • control wires 66 may be threaded through only a single opening 64 or through three or more openings 64 on each stent 62 .
  • control wires 66 are threaded so that the distal and proximal ends of stents 64 will expand at a generally uniform rate when released, as described below.
  • Control wires 66 are constructed of a resilient and flexible metal or polymer with sufficient stiffness to provide controlled resistance to the expansion of stents 62 . This stiffness may be selected to allow the desired expansion behavior of stents 62 such that “watermelon seeding” is avoided, inter-stent spacing is maintained, and sufficient stent expansion occurs. Control wires 66 may have various cross-sectional geometries, and may be a flat ribbons or blades, round or oval wires, I-beams, or other suitable structures to control stent expansion, maintain spacing and rotational position, and facilitate withdrawal from stents 62 without interference.
  • Control wires 66 may be composed of or coated with a lubricious material such as PTFE to reduce friction during removal from stents 62 .
  • control wires 66 may have surface features, be wrapped with wire windings, or be coated with “sticky” material to increase friction with stents 62 . Coatings or surface structures such as scales with one-way frictional effects may also be applied to control wires 66 .
  • control wires 66 may comprise flexible hollow tubes which are pneumatically or hydraulically controllable to vary their rigidity or stiffness.
  • control wires 66 may comprise polymeric tubes that radially contract or flatten and are very flexible when evacuated of fluid, but which become more rigid when filled with pressurized fluid, such as saline, air, or other liquid or gas.
  • control wires 66 are fluidly connected to a pump, syringe, or other suitable fluid delivery mechanism at the proximal end of the delivery catheter. In this way, control wires 66 may be pressurized to increase stiffness as stents 62 are deployed, then evacuated of fluid to reduce their profile and stiffness during withdrawal from the deployed stents.
  • Stents 62 are slidably positioned over an inner shaft 68 , to which is attached a nosecone 70 at the distal end of the device.
  • An outer shaft 72 is slidably disposed over inner shaft 68 and surrounds stents 62 , maintaining them in a collapsed configuration, as shown in FIG. 2A .
  • a pusher shaft 74 is slidably disposed over inner shaft 68 and is configured to engage the proximal end of the proximal-most stent 62 .
  • Outer shaft 72 is retractable relative to inner shaft 68 in order to expose a desired number of stents 62 as shown in FIG. 2B .
  • the exposed stents 62 self-expand to a larger-diameter expanded shape in engagement with lesion L in vessel V.
  • at least the distal end of the distal-most stent 62 and more preferably a substantial portion of all stents 62 being deployed, is allowed to expand into engagement with lesion L while control wires 66 remain threaded through openings 64 .
  • Control wires 66 are then withdrawn from openings 62 , preferably by holding catheter 60 in position and pulling control wires 66 proximally using a suitable mechanism such as that described above with reference to FIG. 1 .
  • the entire catheter 60 may be retracted proximally relative to stents 62 to withdraw control wires 66 from openings 62 . Because at least a portion of stents 62 is in engagement with lesion L, stents 62 are held in position in the vessel as control wires 66 are withdrawn.
  • inner shaft 68 may have a balloon 76 mounted thereto near its distal end to enable pre- or post-dilatation of lesion L.
  • inner shaft 68 has an inflation lumen through which inflation fluid may be delivered to balloon 76 .
  • Balloon 76 is preferably as long as the longest lesion that might be treated using catheter 60 .
  • outer shaft 72 and those of stents 62 remaining therein are retracted relative to inner shaft 68 to expose a desired length of balloon 76 . The exposed portion of balloon 76 may then be inflated within the lesion L and/or the deployed stents 62 .
  • inner shaft 68 is retracted into outer shaft 72 while maintaining pressure against pusher shaft 74 . This slides stents 62 distally along control wires 66 and repositions stents 62 to the distal end of inner shaft 68 so as to be ready for deployment. Catheter 60 may then be repositioned to another vascular location for deployment of additional stents 62 .
  • Control wires 66 may be coupled to stents 62 in various ways, some of which depend upon the configuration of stents 62 .
  • the points 63 at the ends of each stent 62 may be bent inwardly such that a portion of the openings 64 ′ are oriented axially. Control wires 66 may then be threaded through these axially-oriented openings 64 ′.
  • points 63 are adapted to deform with stent expansion so as to be more parallel to the axial direction, thereby providing a smooth and open flow path through the stent.
  • stents 80 have axially-aligned eyelets 82 through which control wires 84 are threaded. These eyelets 82 may be in the interior of stents 82 as shown in FIG. 3C , or such eyelets may be on the exterior surface of stents 82 , or could be drilled through one or more of the struts of stents 82 .
  • Various other structures may also be used for coupling the stents of the invention to control wires, including hooks, channels, holes, sleeves, and others, disposed on the interior, exterior or end surfaces of the stent, or through the struts themselves.
  • Such structures may by integral with stent struts and of the same material, may be attached to the stent struts and be of same or different material, or may be a biodegradable material that erodes and eventually is absorbed into the body following deployment.
  • a stent delivery catheter 90 has an outer shaft 92 slidably disposed over an inner shaft 94 , and at least one stent 96 (shown schematically in FIG. 4A ) in a collapsed shape within outer shaft 92 .
  • a plurality of control wires 97 have an outer extremity 98 outside of inner shaft 94 and an inner extremity 100 extending through one or more lumens 102 and distal ports 103 in inner shaft 94 . Both outer portion 98 and inner portion 100 extend proximally to the proximal end of delivery catheter 90 .
  • Outer extremities 98 are threaded through openings in the wall of stent 96 or are otherwise coupled thereto as described above so as to resist expansion of stent 96 upon deployment.
  • Control wires 97 thus form a continuous loop from the proximal end of stent delivery catheter 90 , through stent 96 and back to the proximal end of the catheter.
  • FIG. 4B illustrates this embodiment of delivery catheter 90 positioned in a vessel V and carrying plurality of stents 96 ′.
  • Stents 96 ′ have axial projections 104 at their distal and proximal ends configured to interleave when stents 96 ′ are collapsed within outer shaft 92 and when deployed in vessel V.
  • outer shaft 92 is retracted to expose one or more stents 96 ′
  • the expansion of stents 96 ′ can be resisted and controlled by maintaining tension on control wires 97 .
  • Tension may be controllably relaxed to allow stents 96 ′ to expand into contact with lesion L, as shown in FIG. 4B .
  • each control wire 97 may be released at the proximal end of delivery catheter 90 while the other end is pulled to retract the control wires from stents 96 ′.
  • control wires 110 are releasably coupled to the distal end of an inner shaft 112 or to nose cone 114 .
  • control wires 110 have balls 116 at their distal ends configured to be received within slots 118 on the outer surface of nosecone 114 ( FIG. 5A ) or on the proximal face of nosecone 114 ( FIG. 5B ; outer shaft not shown for clarity).
  • Slots 118 have an enlarged portion 120 of sufficient size to receive ball 116 and a narrow portion 122 through which balls 116 may not pass.
  • Inner shaft 112 is axially rotatable relative to control wires 110 .
  • control wires 110 may resist expansion of stent 124 .
  • Stent 124 may be allowed to expand by gradually relaxing tension on control wires 110 . Once stent 124 is fully expanded tension on control wires 110 may be fully relaxed and nosecone 114 then rotated by rotating inner shaft 112 , thereby allowing balls 116 to pass through enlarged portions 120 . Control wires 110 may then be withdrawn from the deployed stent 124 . Nosecone 114 is then retracted or control wires 110 advanced so as to reinsert balls 116 into slots 118 . Nosecone 114 is then rotated to align balls 116 with narrow portions 122 , again securing the control wires to nosecone 114 . Delivery catheter 108 may then be repositioned to deploy additional stents.
  • delivery catheter 108 may include a middle shaft or balloon 126 over which stents 124 are positioned, as shown in FIG. 5A .
  • inner shaft 112 is slidably and rotatably disposed in an inner lumen though middle shaft or balloon 126 . If a balloon is included, it may be used for pre-dilatation of lesions prior to stent deployment, or for further expansion of stent 124 following deployment.
  • control wires 110 will be constructed to have sufficient stiffness to resist rotation, twisting or bending as nosecone 114 is rotated to release control wires 110 . Maintaining some tension on control wires 110 as nosecone 114 is rotated may facilitate the release process.
  • control wires 110 will have sufficient column strength to facilitate reinsertion into slots 118 following deployment of stents 124 . Thus the size, material and geometry of control wires 110 will be selected to enable these actions while providing the desired level of control of stent expansion.
  • an expandable sleeve 130 is slidably positioned within outer shaft 132 and carries stents 134 as shown in FIGS. 6 A-C.
  • a pusher shaft 136 is slidable within sleeve 130 and engages the proximal-most stent 134 .
  • An inner shaft 138 extends through pusher shaft 136 and has a nosecone 140 fixed to its distal end.
  • Sleeve 130 may be a tube constructed of a resilient deformable material such as urethane or other medical grade elastomer, or may be a tubular mesh, cage, grating, or other suitable structure of flexible and resilient polymer or metal such as stainless steel or Nitinol.
  • the elasticity and stiffness of sleeve 130 are selected to allow stents 134 to expand at the desired rate when deployed from outer shaft 132 without excessive axial or rotational displacement relative to each other or to outer shaft 132 .
  • Sleeve 130 is resiliently biased toward an unexpanded shape so that following stent deployment, sleeve 130 returns to a generally tubular shape.
  • Outer shaft 132 is constructed of a material with sufficient radial strength and stiffness to resist expansion of stents 134 and sleeve 130 , and may include a metallic or polymeric braid, ribs, rings or other structural reinforcement near its distal end for such purpose.
  • the interior surface of sleeve 130 optionally may have surface features such as bumps, scales, bristles, ribs, or roughness to enhance friction with stents 134 .
  • These features may be configured to have a grain such that they provide more friction against movement in the distal direction than in the proximal direction, or vice versa. Further, such features may be adapted to provide more friction when sleeve 130 is in an unexpanded shape than when it is expanded by stents 134 .
  • bristles may be provided that point more in the proximal direction when sleeve 130 is in its unexpanded cylindrical shape, but which point more distally or radially (perpendicular to the surface of sleeve 130 ) when sleeve 130 is expanded. This allows sleeve 130 to be more easily withdrawn from stents 134 when stents 134 are deployed.
  • delivery catheter 129 In order to deploy stents 134 , delivery catheter 129 is positioned across a vascular lesion so that nosecone 140 is disposed just distally of the distal end of the lesion. Outer shaft 132 is then retracted to expose the desired number of stents 134 (and the associated length of sleeve 130 ) which will cover the length of the lesion, as shown in FIG. 6B . As outer shaft 132 is retracted, stents 134 are allowed to expand into contact with the lesion as shown in FIG. 6C . Sleeve 130 controls the rate of expansion and maintains the positions of stents 134 so they are deployed precisely at the intended location.
  • sleeve 130 may be retracted from between the stents and the lesion until sleeve 130 is again disposed in outer shaft 132 . Pressure is maintained on pusher shaft 136 during this process so that the stents 134 remaining in delivery catheter 129 are advanced to the distal end of sleeve 130 and outer shaft 132 . Delivery catheter 129 may then be repositioned for deployment of additional stents at other locations.
  • a delivery catheter 142 may be constructed largely as described in connection with FIGS. 6 A-C, including an outer shaft 144 , an expandable sleeve 146 slidably disposed therein, a pusher shaft 148 , and inner shaft 150 .
  • a plurality of stents 152 are carried in expandable sleeve 146 (shown in FIG. 7B ).
  • expandable sleeve 146 includes a longitudinal slit 154 in at least a distal extremity thereof.
  • sleeve 146 When outer shaft 144 is retracted relative to sleeve 146 , sleeve 146 may be controllably expanded by axially twisting sleeve 146 such that the opposing edges 156 along longitudinal slit 154 pivot away from one another, forming a cone shape ( FIG. 7B ). In this way, the expansion of stents 152 is further controllable after retraction of outer shaft 144 by controlling the rate of twisting of sleeve 146 .
  • An actuator may be provided at the proximal end of delivery catheter 142 to control such twisting.
  • sleeve 146 may have a helical thread on its outer surface that mates with a complementary thread on the interior of outer shaft 144 such that sleeve 146 is automatically twisted as outer shaft 144 is retracted. As in the embodiment of FIGS. 6 A-C, following stent deployment, sleeve 146 is retracted from the space between the deployed stents and the vessel wall and returned within outer shaft 144 .
  • Sleeve 146 may be resiliently biased to return to its unexpanded configuration, or may be manually twisted back to an unexpanded shape by the operator.
  • delivery catheter 160 is again constructed much like delivery catheter 129 of FIGS. 6 A-C, including an outer shaft 162 , a slidable expandable sleeve 164 carrying stents 166 , a pusher shaft 168 , and an inner shaft 170 .
  • a nosecone 172 is attached to the distal end of inner shaft 170 and has a concavity 174 at its proximal end configured to receive the distal end of sleeve 164 .
  • a distal extremity of sleeve 164 includes a plurality of axial slits 176 defining separate deflectable longitudinal beams 178 .
  • Sleeve 164 includes at least two, preferably four, and as many as six, eight, or more slits 176 to provide a corresponding number of longitudinal beams 178 .
  • Longitudinal beams 178 are resiliently biased into an axial orientation wherein sleeve 164 is generally cylindrical. Longitudinal beams 178 have sufficient stiffness against lateral deflection to resist and control the expansion of stents 166 .
  • outer shaft 162 may be retracted to expose the desired number of stents to cover a target lesion without immediate expansion of stents 166 , as shown in FIG. 8B .
  • inner shaft 170 may be advanced distally relative to sleeve 164 , releasing longitudinal beams 178 from concavity 174 . This permits longitudinal beams 178 to laterally deflect, allowing stents 166 to expand, as shown in FIG. 8C .
  • longitudinal beams 178 may be retracted from between stents 166 and the vessel wall.
  • Longitudinal beams 178 then return to their undeflected axial orientation, allowing inner shaft 170 to be retracted so as to return the distal ends of longitudinal beams 178 into concavity 174 .
  • Inner shaft 170 and sleeve 164 may then be retracted into outer shaft 162 while maintaining pressure on pusher shaft 168 , thereby advancing additional stents 166 toward the distal end of sleeve 164 for additional deployments.
  • FIGS. 9A-9B illustrates a delivery catheter 180 having a plurality of stents 182 disposed in an outer shaft 184 .
  • An inner shaft 186 with optional balloon 188 and nosecone 190 extends through outer shaft 184 and stents 182 and is axially movable relative thereto.
  • a pusher shaft (not shown) is slidably disposed over inner shaft 186 and engages stents 182 for purposes of deploying stents 182 from outer shaft 186 and repositioning the remaining stents 182 within outer shaft 186 , as in earlier embodiments.
  • stents 182 comprise a plurality of struts 191 forming a series of rings 192 interconnected at joints 193 .
  • Each ring 192 has a series of closed cells 194 interconnected circumferentially and having an “I” shape in the unexpanded configuration.
  • distal ring 192 ′ is configured to expand into engagement with the vessel wall before the entire length of the stent 182 is deployed from outer shaft 184 ( FIG. 9A ).
  • distal ring 192 ′ anchors stent 182 in position as the remainder of the stent is deployed ( FIG. 9B ), preventing “watermelon seeding” of the stent from the catheter.
  • the axial length of stent 182 , the length of each ring 192 , the number of rings, the stiffness of struts 191 , and the flexibility of joints 193 are all selected to optimize this deployment behavior.
  • Each stent 182 has at least two, and preferably four or more rings 192 , each ring being about 2-5 mm in length, giving stent 182 an overall length of at least about 8-20 mm.
  • rings 192 are also contemplated within the scope of the invention.
  • Lesions longer than each stent 182 may be treated by deploying multiple stents 182 end-to-end.
  • each stent 182 can be deployed precisely at a desired spacing from a previously-deployed stent 182 because the distal ring 192 ′ of each stent 182 can be first allowed to expand into engagement with the vessel at the target location, anchoring the stent in position as the remainder is deployed.
  • Rings 192 are preferably formed from a common piece of material and are integrally interconnected at joints 193 , making joints 193 relatively rigid. In this embodiment, the majority of flexibility between rings 192 is provided by struts 191 rather than by joints 193 .
  • joints 193 may comprise welded connections between rings 192 which are also fairly rigid.
  • joints 193 may comprise hinge or spring structures to allow greater deflection between adjacent rings 192 , as exemplified in FIGS. 10A-10B , described below.
  • stents 200 are constructed similarly to stents 182 of FIGS. 9A-9B , including a plurality of interconnected rings 202 having I-shaped cells 204 .
  • some of rings 202 are interconnected by spring members 206 that may be elongated to increase the distance between rings 202 and that are resiliently biased into a shortened configuration to draw rings 202 toward each other.
  • spring members 206 have a wave-like shape and extend from the tip of an axial projection 208 on one ring 202 to a concave portion 210 between axial projections 208 on the adjacent ring 202 .
  • stent 200 comprises two pairs of rings 202 , with the rings of each pair interconnected by integral joints 212 as in FIGS. 9 A-B and the pairs of rings 202 being connected to each other by spring members 206 .
  • Stents 200 may alternatively include two, three, five, six or more rings 202 , and spring members 206 may interconnect all or only a portion of rings 202 .
  • Spring members 206 may be formed of the same or different material as that of rings 202 , depending upon the desired performance characteristics. In addition, spring members 206 may be biodegradable so as to erode and eventually disappear, leaving the adjacent pairs of rings 202 unconnected.
  • a delivery catheter 216 has an outer shaft 218 carrying a plurality of stents 220 .
  • An inner shaft 222 extends through outer shaft 218 to a nosecone 224 , and a pusher shaft 226 is slidably disposed over inner shaft 222 .
  • An anchoring balloon 228 is mounted to inner shaft 222 proximal to nosecone 224 .
  • Anchoring balloon 228 has an axial length sufficient to frictionally engage the wall of vessel V and remain stable so as to anchor delivery catheter 216 in place as further described below.
  • anchoring balloon 228 has a length about equal to the length of one of stents 220 .
  • outer shaft 218 is retracted so that a first stent 220 ′ is released therefrom and expands into engagement with lesion L ( FIG. 11A ).
  • Anchoring balloon 228 is then inflated until it engages the interior of stent 220 ′ ( FIG. 11B ). This not only stabilizes delivery catheter 216 , but may be used to further expand stent 220 ′ and/or dilate lesion L to firmly implant stent 220 ′.
  • outer shaft 218 is further retracted to release a second stent 220 ′′, which expands into engagement with lesion L ( FIG. 11C ).
  • anchoring balloon 228 stabilizes delivery catheter 216 and anchors it in position relative to first stent 220 ′ as second stent 220 ′′ is deployed. Second stent 220 ′′ is thus deployable precisely at the intended spacing and rotational position relative to first stent 220 ′. Anchoring balloon 228 may then be deflated and retracted into outer shaft 218 , with pressure maintained upon pusher shaft 226 to reposition remaining stents 220 at the distal end of inner shaft 222 .
  • delivery catheter 260 is positioned adjacent a lesion L in a vessel V.
  • Outer shaft 262 may then be retracted (solid-tipped arrows) to begin deployment of stents 268 .
  • outer shaft 262 has been retracted to expose two stents 268 ′, thus allowing them to expand within the vessel V.
  • Coil 266 expands along with expanding stents 268 ′ and remains coupled with them, thus helping prevent axial displacement (“watermelon seeding”) and in some cases rotation of stents 268 ′ relative to one another.
  • coil 266 is withdrawn from expanded stents 268 ′. This may be accomplished, in one embodiment, by rotating coil 266 (as shown by the solid-tipped arrow) to unscrew coil 266 from stents 268 ′. Alternatively, coil 266 may be configured to be simply pulled proximally without rotation to decouple it from stents 268 ′. Preferably, coil 266 has a radopaque marker at its distal tip and/or at other suitable locations along its length to allow visualization via fluoroscopy.
  • coil 266 may be coated or covered with a lubricious or other friction-reducing coating or sleeve. Rotation is continued to retract coil 266 back into outer shaft 262 and the remaining unexpanded stents 268 .
  • FIG. 13C coil 266 has been retracted out of expanded stents 268 ′, thus allowing them to fully expand into contact with the inner surface of the vessel V. The process just described may be repeated as many times as desired to treat a long lesion L and/or multiple lesions L.
  • balloon 223 may have surface features or coatings on its periphery that enhance retention of stents 221 thereon.
  • Such features may include structures such as scales or protuberances that are activated by pressurization of the balloon so that retention is lessened when the balloon is deflated, but heightened when the balloon is pressurized.
  • pressure can optionally be increased in balloon 223 for post-dilation of stents 221 and the target lesion L.
  • Balloon 223 is then deflated and retracted within sheath 229 as distal pressure is maintained against pusher 225 , repositioning stents 221 near the distal end of balloon 223 within sheath 229 for deployment at another location, as shown in FIG. 11C .
  • the stents in the delivery catheter of the invention may releasably interconnect with one another and/or with the pusher shaft to enable greater control and precision during deployment.
  • delivery catheter 230 carries a plurality of stents 232 having a structure much like that described above in connection with FIGS. 9A-9B .
  • the axial projections 234 extending distally and proximally from stents 232 are configured to interconnect with concavities 236 on adjacent stents 232 until expanded.
  • axial projections 234 have enlarged heads 246 and concavities 236 have necks 248 that retain heads 246 within concavities 236 in the unexpanded configuration.
  • Pusher shaft 250 has a distal end 252 having projections 254 and concavities 256 like those of stents 232 , thus being able to interconnect with the proximal-most stent 232 ′.
  • the interconnecting structures thereon are configured to separate from the adjacent stent or pusher shaft, thus releasing the deployed stent 232 ′′ from delivery catheter 230 .
  • interconnecting structures between adjacent stents and between the stents and the pusher shaft are possible within the scope of the invention, including those described in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference.
  • Such interconnecting structures may also be breakable or frangible to facilitate separation as the stent expands.
  • a mechanism such as an expandable balloon or cutting device may be disposed at the distal end of delivery catheter 230 to assist in separating stents 232 upon deployment.
  • the interconnections between stents may be different than the interconnection between the proximal-most stent and the pusher shaft.
  • the pusher shaft may have hooks, magnets, or other mechanisms suitable for releasably holding and maintaining traction on the proximal end of a stent until it is deployed.
  • a delivery catheter 260 includes an outer shaft 262 (or sheath), a pusher shaft 264 slidably disposed within outer shaft 262 , a plurality of stents 268 slidably disposed within outer shaft 262 , and a coil 266 extending through catheter 260 and coupled with stents 268 .
  • coil 266 may extend through pusher shaft 264 (as shown) or be disposed around pusher shaft 264 .
  • Coil 268 is constructed of a resilient material, such as but not limited to NitinolTM, spring stainless steel, resilient polymers, or other shape memory or super-elastic materials.
  • Coil 266 may have various pitches, depending upon the desired spacing between adjacent loops. Coil 266 may have a relatively high pitch (individual loops spread relatively far apart), e.g., between about 2 and 6 loops disposed in each stent 268 . In other embodiments, coil 266 may have a lower pitch (individual loops closer together), e.g., greater than 6 loops, or even greater than 10 loops disposed in each stent 268 . Of course, the number of loops will vary according to the length of each stent 268 , the thickness, diameter, and flexibility of coil 266 , and other factors. Adjacent loops in coil 266 may also be in contact with each other to form a tube having a substantially continuous wall without openings. Coupling of coil 266 with stents 268 is described further below with reference to FIGS. 14-16 .
  • delivery catheter 260 is positioned adjacent a lesion L in a vessel V.
  • Outer shaft 262 may then be retracted (solid-tipped arrows) to begin deployment of stents 268 .
  • outer shaft 262 has been retracted to expose two stents 268 ′, thus allowing them to expand within the vessel V.
  • Coil 266 expands along with expanding stents 268 ′ and remains coupled with them, thus helping prevent axial displacement (“watermelon seeding”) and in some cases rotation of stents 268 ′ relative to one another.
  • coil 266 is withdrawn from expanded stents 268 ′. This may be accomplished, in one embodiment, by rotating coil 266 (as shown by the solid-tipped arrow) to unscrew coil 266 from stents 268 ′.
  • coil 266 may be coated or covered with a lubricious or other friction-reducing coating or sleeve.
  • adjacent stents are “keyed,” or “interleaved,” to each other, meaning that fingers or other protrusions on each end of one stent interleave with complementary fingers/protrusions on immediately adjacent stents, as described above in reference to FIGS. 2 A-B, 4 B, 9 A-B, 10 A-B and 12 .
  • This feature helps prevent stents from rotating relative to one another during deployment.
  • the distal end of the pusher shaft may also include fingers/protrusions to interleave with the proximal end of the proximal-most stent, as shown in FIG. 12 above. Interleaving the stents with the pusher shaft helps prevent rotation of the stents relative to the outer shaft.
  • a stent 270 is shown in side view with a portion of a coil 272 coupled therewith.
  • coil 272 is threaded though openings 274 between struts 275 in stent 270 . This is shown in end-on cross section, in FIG. 15 .
  • coil 272 may be made of any of a number of resilient materials and may have a variety of different configurations in various embodiments. For example, coil 272 is shown having four loops for one stent 270 , whereas in alternative embodiments fewer or more loops per stent may be used. In an alternative embodiment (not shown), coil 272 may be disposed around the outside stents 270 , with stents 270 being capable of sliding axially through coil 272 or being helically (screw) driven by rotating coil 272 .
  • FIG. 16 shows and end-on view of another embodiment of a stent 280 coupled with a coil 282 .
  • stent 280 includes multiple, inwardly-bent struts 284 , through which coil 282 is threaded.
  • coil 282 is disposed entirely within the inner diameter of stent 280 .
  • Such struts 284 may be adapted to remain in the inwardly-bent configuration only when stent 280 is collapsed in the catheter, such that struts 284 return to a position even with the cylindrical surface of stent 280 when stent 280 expands.
  • struts 284 may remain in the inwardly bent configuration even when stents 280 expand.
  • struts 284 may be merely elastically deflected to the inwardly bent configuration to facilitate threading coil 282 therethrough, with struts 284 being biased to return to a position along the cylindrical surface of stent 280 when coil 282 is removed.
  • a delivery catheter 290 in another embodiment, illustrated in FIG. 17 , includes a tubular outer shaft 292 and a tubular inner shaft 294 slidably disposed in outer shaft 202 .
  • An evertible tube 295 is attached to the distal end of inner shaft 294 and extends distally therefrom.
  • Evertible tube 295 has a flexible distal portion 295 ′ configured to evert (fold over on itself), and a distal end 297 attached to the distal end of outer shaft 292 .
  • At least the flexible distal portion 295 ′ of evertible tube 295 may be made of a flexible polymer or other bendable material and may, in some embodiments, have thinner walls than inner shaft 294 or outer shaft 292 .
  • a pusher shaft 300 is slidably disposed in inner shaft 294 , and a plurality of stents 302 are slidably disposed within inner shaft 294 distally of pusher shaft 300 .
  • inner surface 296 may include adherent coatings or other surface features adapted to engage and retain stents 302 .
  • inner surface 296 may comprise a layer or coating of sticky, tacky or otherwise high-friction material.
  • inner surface 296 may include friction-inducing features such as roughened areas, bumps, spines, bristles, ridges, ribs, channels, grooves, or random surface irregularities. As flexible distal portion 294 ′ everts and moves proximally, stents 302 ′ peel off of adherent surface 296 in a controlled fashion.
  • stents 308 are partially embedded in an inner surface 306 of an evertible tube 304 .
  • evertible tube 304 may have an inner surface 306 that softens and/or becomes malleable when heated.
  • inner surface 306 is heated so that stents 308 are partially and releasably embedded in inner surface 306 , with portions of the softened surface material extending through the openings 307 between struts 309 in stent 308 .
  • evertible tube 304 is everted as described above, peeling inner surface 306 away from each stent 308 to release it into the vessel. Because stents 308 are embedded in inner surface 306 , they are not fully released from the catheter until evertible tube 304 is peeled completely off of stent 308 , at which time the distal end of stent 308 has expanded into contact with the vessel. Uncontrolled axial displacement of stent 308 is thus avoided.
  • an evertible tube 314 includes multiple retention structures 316 on an inner surface 319 , which extend through openings 317 between struts 315 in a stent 318 to releasably hold stent 318 .
  • Retention structures 316 are preferably adapted to extend through openings 317 and abut the inner surfaces of struts 315 to provide secure but releasable engagement with stents 318 .
  • retention structures 316 are adapted to be pulled out of openings 317 to release stent 318 .
  • Retention structures 316 may comprise, for example, multiple mushroom-shaped protrusions (as shown) or alternatively, or alternatively, L-shaped, T-shaped, barbed, pyramidal, arrow-shaped, linear or hook-shaped protrusions.
  • Retention structures 316 may be integrally formed with evertible tube 314 and made of the same flexible polymer, or alternatively may be separate structures of polymer, metal wire or other flexible material attached to evertible tube 314 . Such retention structures may be positioned to engage stent 318 at various locations along its length, e.g. at several locations along the entire length of the stent, e.g. near the proximal and distal ends (as shown), only near the proximal end, only near the distal end, only at the middle, or at another discreet location.
  • delivery catheter 400 has a tubular outer shaft 402 , a pusher shaft 404 slidably disposed within outer shaft 402 , and an inner shaft 406 slidably disposed within pusher shaft 402 .
  • Inner shaft 406 has a guidewire lumen extending axially therethrough for receiving a guidewire GW.
  • a plurality of self-expanding stents 420 are slidably disposed within outer shaft 402 distally of pusher shaft 404 , which can be used to exert a distal force against such stents for the deployment thereof, as described further below.
  • a nosecone 407 is fixed to the distal end of inner shaft 406 and has a proximally-facing aperture 409 in its proximal end.
  • Outer shaft 402 has a distal end 408 to which is attached a control member 410 defining an interior 411 in which a stent 420 may be received.
  • Control member 410 has a plurality of flexible tines 412 extending distally and having free distal ends 414 removably received within aperture 409 .
  • a wall 416 extending circumferentially around aperture 409 retains flexible tines 412 within aperture 409 .
  • Nosecone 407 is movable distally relative to control member 410 to release tines 412 from aperture 409 .
  • Control member 410 may be constructed of a polymer, metal, or other flexible and resilient material.
  • Tines 412 are deflectable outwardly under the expansion force of stents 420 .
  • Tines 412 are preferably biased inwardly into general alignment with the longitudinal axis of delivery catheter 400 such that free distal ends 414 remain positioned inwardly near inner shaft 406 even after release from aperture 409 .
  • Tines 412 may include a friction-enhancing coating, texture, cover, or other surface features on their inwardly-facing surfaces to create more friction with stents 420 .
  • a lubricious coating may be provided on the inner or outer surfaces of tines 412 for greater slidability.
  • Tines 412 may have an axial length which is less than or equal to the length of one stent 420 , a length greater than the length of one stent 420 , or a length as long as the length of 2, 3 or more stents 420 .
  • Aperture 409 may be relatively shallow, as shown, so as to receive only the free distal ends 414 of tines 412 , or may be somewhat deeper so that a portion or substantially all of the length of tines 412 is disposed within aperture 409 .
  • delivery catheter 400 is positioned in a vessel at the treatment site with tines 412 disposed within aperture 409 on nosecone 407 .
  • Nosecone 407 is then advanced distally relative to control member 410 (or outer shaft 402 is retracted proximally relative to nosecone 407 ) to release tines 412 from aperture 409 as shown in FIG. 21B .
  • Outer shaft 402 is then retracted relative to pusher shaft 404 (or pusher shaft 404 may be pushed distally) to advance one or more stents 420 out of outer shaft 402 into control member 410 , as shown in FIG. 21C .
  • Tines 412 exert an inward force on stents 420 to resist, but not prevent, the expansion thereof. This slows down the rate of stent expansion and also provides frictional resistance between tines 412 and the outer surface of stent 420 , thereby reducing the tendency of the stent to jump distally as it expands.
  • tines 412 preferably have a length selected so that before a first stent 420 A is fully expanded and released from control member 410 , a second stent 420 B is at least partially contained within control member 410 . In this way multiple stents 420 may be deployed end-to-end with a desired degree of inter-stent spacing and without overlaps or excessive gaps.
  • Outer shaft 402 is retracted until the desired number of stents 420 has been deployed at the treatment site. Outer shaft 402 and pusher shaft 404 are then retracted together to slidably decouple tines 412 from the deployed stents 420 , as shown in FIG. 21E . Nosecone 407 may then be retracted through the deployed stents until tines 412 are positioned in aperture 409 . The device can then be repositioned at a new treatment site for additional deployments.
  • FIG. 22 illustrates an alternative embodiment of control member 410 , in which multiple webs 422 are disposed between tines 412 .
  • Webs 422 are preferably made of a flexible, resilient and distensible elastomer configured to radially expand or stretch under the expansion force of a stent 420 .
  • Webs 422 may comprise a substantially continuous, non-porous sheet, or may have openings, or may be comprised of a plurality of woven strands.
  • webs 422 may extend over the outer and/or inner surfaces of tines 412 , and may connect to form a continuous tubular structure.
  • Webs 422 may serve to provide additional resistance to stent expansion, may provide a protective surface around stent 420 and/or tines 412 , and may also have lubricity on their outer and/or inner surfaces to facilitate withdrawal of tines 412 from stents 420 following deployment.
  • FIG. 23 illustrates a further embodiment in which control member 410 comprises a single distensible tubular member 424 rather than having tines 412 .
  • Tubular member 424 is preferably a flexible, resilient, and distensible elastomer configured to stretch or expand radially under the expansion force of a stent 420 .
  • Tubular member 424 is normally in a radially contracted, generally cylindrical shape without stents 420 positioned therein, with its distal end 426 adapted for positioning in aperture 409 in nosecone 407 .
  • tubular member 424 may be a substantially continuous, non-porous sheet, or it may have openings, or it may be comprised of a plurality of woven strands.
  • tubular member 424 may have a lubricious outer or inner surface to facilitate withdrawal from stents 420 following deployment.
  • the inner surface of tubular member 424 may also include friction enhancing coatings, textures, or features to enhance retention of stents 420 therein.

Abstract

Prosthesis delivery devices and methods are provided that enable precise control of prosthesis position during deployment. The prosthesis delivery devices may carry multiple prostheses and include deployment mechanisms for delivery of a selectable number of prostheses. Control mechanisms are provided in the prosthesis delivery devices that control either or both of the axial and rotational positions of the prostheses during deployment. This enables the deployment of multiple prostheses at a target site with precision and predictability, eliminating excessive spacing or overlap between prostheses. In particular embodiments, the prostheses of the invention are deployed in stenotic lesions in coronary or peripheral arteries, or in other vascular locations.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation-in-part of U.S. patent application Ser. No. 10/879,949 (Attorney Docket No. 021629-002700US), filed Jun. 28, 2004, the full disclosure of which is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • Stents are tubular prostheses designed for implantation in a vessel to maintain patency of the vessel lumen. Stents are used in various vessels throughout the body, including the coronary arteries, femoral arteries, iliac arteries, renal artery, carotid artery, vascular grafts, biliary ducts, trachea, and urethra, to name some examples. Stents are typically implanted by means of long and flexible delivery catheters that carry the stents in a compact, collapsed shape to the treatment site and then deploy the stents into the vessel. In some applications, balloon expandable stents are used. These stents are made of a malleable metal such as stainless steel or cobalt chromium and are expanded by means of a balloon on the tip of the delivery catheter to plastically deform the stent into contact with the vessel wall. In other applications, self-expanding stents are used. These are made of a resilient material that can be collapsed into a compact shape for delivery via catheter and that will self-expand into contact with the vessel when deployed from the catheter. Materials commonly used for self-expanding stents include stainless steel and elastic or superelastic alloys such as nickel titanium (Nitinol™).
  • While self-expanding stents have demonstrated promise in various applications, such stents face a number of challenges. One such challenge is that in some cases the disease in a vessel may be so extensive that a stent of very long length, e.g. 30-200 mm, is called for. Currently available stents are typically less than 30 mm in length, and suffer from excessive stiffness if made longer. Such stiffness is particularly problematic in peripheral vessels such as the femoral arteries, where limb movement requires a high degree of flexibility in any stent implanted in such vessels.
  • To overcome the stiffness problem, the idea of deploying multiple shorter stents end-to-end has been proposed. However, this approach has suffered from several drawbacks. First, currently available delivery catheters are capable of delivering only a single stent per catheter. In order to place multiple stents, multiple catheters must be inserted, removed and exchanged, heightening risks, lengthening procedure time, raising costs, and causing excessive material waste. In addition, the deployment of multiple stents end-to-end suffers from the inability to accurately control stent placement and the spacing between stents. This results in overlap of adjacent stents and/or excessive space between stents, which is thought to lead to complications such as restenosis, the renarrowing of a vessel following stent placement. With self-expanding stents the problem is particularly acute because as the stent is released from the catheter, its resiliency tends to cause it to eject or “watermelon seed” distally from the catheter tip by an unpredictable distance. During such deployment, the stent may displace not only axially but rotationally relative to the delivery catheter resulting in inaccurate, uncontrollable, and unpredictable stent placement.
  • Interleaving stents or stent segments such as those disclosed in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference, present even greater challenges to conventional delivery systems. Interleaving stents have axially extending elements on each end of the stent that interleave with similar structures on an adjacent stent. Such interleaving minimizes the gap between adjacent stents and increases vessel wall coverage to ensure adequate scaffolding and minimize protrusion of plaque from the vessel wall. However, such interleaving requires that the relative rotational as well as axial positions of the adjacent stents be maintained during deployment to avoid metal overlap and excessive gaps between stents. Conventional delivery systems suffer from the inability to control both the axial and rotational positions of self-expanding stents as they are deployed.
  • What are needed, therefore, are stents and stent delivery system that overcome the foregoing problems. In particular, the stents and stent delivery systems should facilitate stenting of long vascular regions of various lengths without requiring the use of multiple catheters. Such stents and delivery systems should also provide sufficient flexibility for use in peripheral vessels and other regions where long and highly flexible stents might be required. In addition, the stents and stent delivery systems should enable the delivery of multiple stents of various lengths to one or more treatment sites using a single catheter without requiring catheter exchanges. Further, the stents and stent delivery systems should facilitate accurate and repeatable control of stent placement and inter-stent spacing to enable deployment of multiple self-expanding stents end-to-end in a vessel at generally constant spacing and without overlap. Moreover, the stents and delivery systems should enable the deployment of interleaving stents or stent segments with precision and control over both the axial spacing and rotational position of each stent or segment.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides prostheses, prosthesis delivery systems, and methods of prosthesis deployment that enable the precise and controllable delivery of multiple prostheses using a single delivery catheter. The prostheses, delivery systems, and methods of the invention provide for the precise control of prosthesis placement so that inter-prosthesis spacing is maintained at a constant and optimum distance. In some embodiments, both axial and rotational displacement of the prostheses relative to the delivery catheter is controlled during deployment, enabling the delivery of multiple prostheses that interleave with one another without overlap. The prostheses, prosthesis delivery systems, and methods of the invention further enable the length of prostheses to be customized in situ to match the length of the site to be treated. The invention is particularly useful for delivery of self-expanding prostheses, but balloon expandable prostheses are also contemplated within the scope of the invention. The invention is well-suited to delivery of stents to the coronary arteries and to peripheral vessels such as the popliteal, femoral, tibial, iliac, renal, and carotid arteries. The invention is further useful for delivery of prostheses to other vessels including biliary, neurologic, urinary, reproductive, intestinal, pulmonary, and others, as well as for delivery of other types of prostheses to various anatomical regions, wherever precise control of prosthesis deployment is desirable.
  • In a first aspect of the present invention, a prosthesis delivery catheter includes an outer shaft forming a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, and a movable coil member interactive with the prostheses to control expansion of the prostheses when the prostheses are deployed from the first lumen. The prostheses are generally adapted to radially expand upon deployment from the first lumen.
  • In some embodiments, the coil member is removable from the deployed prostheses by rotating the coil member. In some embodiments, the prostheses have sidewalls with a plurality of openings, the coil member being threaded through the openings. Alternatively, the prostheses may include a plurality of struts, at least one of the struts being bent inwardly, with the coil member being threaded through the inwardly bent struts. Optionally, the coil member may be radially expandable to allow controlled expansion of the prostheses. In some embodiments, a distal portion of the coil member is retractable into the outer shaft following deployment of the selected number of prostheses. In some embodiments, the prostheses are disposed within the coil member.
  • In various embodiments, the coil member may include a plurality of loops forming a helix. For example, in some embodiments between 2 and 6 loops are disposed in each prosthesis. In other embodiments, more than 6 loops are disposed in each prosthesis. In some embodiments, the coil member comprises a plurality of loops contacting each other to form a continuous tube.
  • Optionally, the delivery catheter may also include a deployment mechanism for deploying a selected number of prostheses from the inner lumen. In some embodiments, for example, the deployment mechanism includes a pushing element slidably disposed in the first lumen, the pushing element being in engagement with at least one of the prostheses to advance the prostheses distally relative to the outer shaft. Optionally, adjacent ends of adjacent prostheses may be interleaved to resist rotation of the prostheses relative to each other. In one embodiment, a distal end of the pushing element is interleaved with a proximal end of a proximal-most prosthesis to resist rotation of the prostheses. In these or other embodiments, the coil member may optionally be configured to maintain rotational position of the prostheses relative to each other.
  • In another aspect of the present invention, a prosthesis delivery catheter for delivering prostheses into a vessel lumen includes an outer shaft forming a first lumen, an inner shaft slidably disposed within the first lumen, an evertible tube having a first end coupled with a distal end of the outer shaft and a second end coupled with a distal end of the inner shaft, and a plurality of self-expanding tubular prostheses carried within the evertible tube. Again, the prostheses are generally adapted to radially expand upon deployment from the evertible tube. Moving the outer shaft proximally relative to the inner shaft everts a distal portion of the evertible tube so as to deploy one or more of the prostheses.
  • In some embodiments, an inner surface of the inner shaft comprises at least one adherent element for releasably holding the prostheses to the inner surface. For example, in one embodiment, the adherent element comprises a tacky surface coating. Alternatively, the adherent element may comprise a softenable material into which the prostheses are removably embedded. In other embodiments, the adherent element comprises a plurality of inwardly-facing protrusions positioned to extend through openings in the prostheses. Such protrusions may have any of a number of shapes in various embodiments, such as but not limited to mushroom-shaped, L-shaped, T-shaped, hook-shaped, rounded, spiked, pyramidal, barbed, arrow-shaped or linear. In yet other embodiments, the adherent element may comprise a structure such as but not limited to bumps, bristles, spines, ridges ribs, waves, grooves, pits, channels, detents or random surface irregularities.
  • In another aspect of the present invention, a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses; selecting a desired number of the prostheses to deploy; deploying the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment; controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses with an expandable coil member coupled with the prostheses; and removing the expandable coil member from the deployed prostheses.
  • In some embodiments, removing the coil member involves rotating the coil member. For example, the coil member may be helically threaded through the prostheses such that rotating the coil member unthreads the coil member from one or more prostheses. In some embodiments, the method also involves controlling the rotational displacement of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses. In one embodiment, for example, the rotational displacement is controlled by interleaving adjacent ends of adjacent prostheses and interleaving a proximal end of a proximal-most prosthesis with a portion of the catheter device. In some embodiments, a distal portion of the coil member expands with the selected number of prostheses.
  • In yet another aspect of the present invention, a method of delivering one or more prostheses to a treatment site in a vessel involves: positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses within an evertible tube; selecting a desired number of the prostheses to deploy; and everting a distal portion of the evertible tube to deploy the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment. In some embodiments, the distal portion of the evertible tube is everted by sliding an outer shaft of the catheter device relative to an inner shaft of the catheter device. For example, in some embodiments, a distal end of the outer shaft is coupled with a distal end of the evertible tube such that sliding the outer shaft proximally relative to the inner shaft causes the distal end of the evertible tube to bend outward and fold over on itself.
  • Optionally, the method may further involve controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses by contacting an adherent inner surface of the evertible tube with the prostheses. In one embodiment, for example, the adherent surface maintains engagement with the prostheses until the distal portion of the evertible tube is peeled away from the prostheses. In some embodiments, the adherent surface comprises a friction-inducing coating or friction-inducing surface feature. In some embodiments, contacting the adherent surface with the prostheses involves releasably coupling one or more retention structures on the inner surface with the prostheses. Alternatively, contacting the adherent surface with the prostheses may involve embedding the prostheses in a deformable material on the adherent inner surface.
  • In a further aspect of the invention, a prosthesis delivery catheter comprises an outer shaft having a distal end and a first lumen, a plurality of self-expanding tubular prostheses carried within the first lumen, the prostheses being adapted to radially expand upon deployment from the first lumen, and a control member extending distally from the distal end of the outer shaft and defining an interior communicating with the first lumen for receiving one or more of the prostheses. The control member has an undeflected shape when not engaged by one of the prostheses and is configured to deflect radially outwardly when engaged by a prosthesis during expansion thereof. The control member is also configured to resiliently return to the undeflected shape when the prosthesis is removed from the interior. In one embodiment, the control member generally includes a plurality of deflectable tines having free distal ends received within an aperture on the nose cone or nose piece of the catheter. Optionally, the control member may further include a plurality of webs between the tines. In an alternative embodiment, the control member may comprise a distensible tubular structure.
  • Further aspects of the nature and advantages of the invention will be apparent from the following detailed description of various embodiments of the invention taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side cut-away view of a prosthesis delivery catheter according to the invention.
  • FIG. 2A is a side cross-sectional view of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 2B is a side cross-sectional view of the prosthesis delivery catheter of FIG. 2A showing the deployment of prostheses in a vessel.
  • FIGS. 3A-3C are perspective, side, and end views respectively of a prosthesis coupled to control wires according to further embodiments of the invention.
  • FIG. 4A is a side cross-section of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 4B is a side cross-section of the prosthesis delivery catheter of FIG. 4A showing the deployment of prostheses in a vessel.
  • FIG. 5 A is a side cross-section of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 5B is an oblique view of a distal portion of a prosthesis delivery catheter according to the invention in yet another embodiment thereof.
  • FIGS. 6A-6C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in still another embodiment thereof, showing the outer shaft unretracted, outer shaft retracted with sleeve unexpanded, and sleeve with stents expanded, respectively.
  • FIGS. 7A-7B are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in another embodiment thereof, showing outer shaft retracted with sleeve unexpanded, and outer shaft retracted with sleeve and stents expanded, respectively.
  • FIGS. 8A-8C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to the invention in a further embodiment thereof, showing the outer shaft unretracted, outer shaft retracted with sleeve unexpanded, and sleeve with stents expanded, respectively.
  • FIGS. 9A-9B are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in another embodiment thereof, showing outer shaft retracted with prosthesis partially deployed, and prosthesis fully deployed, respectively.
  • FIGS. 10A-10B are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in yet another embodiment thereof, showing outer shaft retracted with prosthesis partially deployed, and prosthesis fully deployed, respectively.
  • FIGS. 11A-11C are side cross-sectional views of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in yet another embodiment thereof, showing a first prosthesis deployed, an expandable member expanded within the first prosthesis, and a second stent deployed with expandable member expanded in the first prosthesis, respectively.
  • FIGS. 11D-11F are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to another embodiment of the invention, showing the delivery catheter prior to stent deployment, the deployment of a first prosthesis in a vessel, and a deployed prosthesis in the vessel, respectively.
  • FIG. 12 is a side cross-sectional view of a distal portion of a prosthesis delivery catheter in a vessel according to the invention in still another embodiment thereof, showing a first prosthesis deployed in a lesion.
  • FIGS. 13A-13C are side cross-sectional views of a distal portion of a prosthesis delivery catheter according to another embodiment of the invention, demonstrating a method for delivering prostheses in a vessel.
  • FIG. 14 is a side view of a prosthesis coupled with a coil member according to one embodiment of the invention.
  • FIG. 15 is an end-on view of a prosthesis coupled with a coil member according to one embodiment of the invention.
  • FIG. 16 is an end-on view of a prosthesis coupled with a coil member according to another embodiment of the invention.
  • FIG. 17 is a cross-sectional side view of a distal end of a prosthesis delivery catheter having an evertible tube according to one embodiment of the present invention.
  • FIG. 18 is a cross-sectional side view of a portion of an evertible tube of a prosthesis delivery catheter according to one embodiment of the present invention.
  • FIG. 19 is a cross-sectional side view of a portion of an evertible tube of a prosthesis delivery catheter according to another embodiment of the present invention.
  • FIGS. 20A-20B are oblique views a prosthesis delivery catheter according to the invention in a further embodiment thereof, before and during deployment of a prosthesis, respectively.
  • FIGS. 21A-21E are side cross-sectional views of the prosthesis delivery catheter of FIGS. 20A-B, illustrating the steps of deploying a prosthesis according to the invention.
  • FIG. 22 is an oblique view of a distal end of a prosthesis delivery catheter according to the invention in a further embodiment thereof.
  • FIG. 23 is an oblique view of a distal end of a prosthesis delivery catheter according to the invention in still another embodiment thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, a first embodiment of a prosthesis delivery catheter according to the invention is illustrated. Delivery catheter 20 may have any of various constructions, including that described in co-pending application Ser. No. 10/637,713, filed Aug. 8, 2003 (Attorney Docket No. 21629-000340), which is incorporated herein by reference. Delivery catheter 20 has a handle assembly 21 and an elongated catheter body 22 that includes three concentric tubular shafts all axially slidable relative to one another: an outer shaft 24, a pusher 26, and an inner shaft 28. Pusher 26 has a distal extension 27 to which a pusher ring 29 is fixed. In a distal region of the catheter body 22, a guidewire tube 30 extends slidably through a port 32 in outer shaft 24 and through pusher ring 29 and has a distal end 34, to which is mounted a nosecone 36 and a stop member 38.
  • Delivery catheter 20 further includes one or more stent expansion control members, which in the illustrated embodiment comprise a plurality of control wires 40. Preferably, one or more pairs of control wires 40 are mounted on opposing sides of delivery catheter 20, e.g. four control wires 40 offset 90° from each other. Control wires 40 are fixed at their proximal ends 42 to inner shaft 28, and have free distal ends 44.
  • Outer shaft 24 has a distal extremity 46 defining a first lumen 48. A plurality of stents 50 are disposed in a collapsed configuration within first lumen 48. Stents 50 are preferably composed of a resilient material such as stainless steel or Nitinol so as to self-expand from the collapsed configuration to a radially expanded configuration when deployed from first lumen 48. While stents 50 as illustrated have a wave-like or undulating pattern in a plurality of interconnected circumferential members, the pattern illustrated is merely exemplary and the stents of the invention may have any of a variety of strut shapes, patterns, and geometries. From 2 up to 10 or more stents may be carried by outer shaft 24. Optionally, a valve member 49 is mounted within first lumen 48 to facilitate separating those stents 50 to be deployed from those to remain within outer shaft 24, as described in co-pending application Ser. No. 10/412,714, filed Apr. 10, 2003, which is incorporated herein by reference.
  • Control wires 40 run along the outside of stents 50 or through the interior of stents 50, are threaded through openings in the walls of stents 50 or are otherwise coupled with stents 50 to control the deployment thereof, as described more fully below. Control wires 40 are composed of a resilient material such as stainless steel, Nitinol, or a suitable polymer, and are preferably generally straight and biased inwardly against guidewire tube 32 or to a position generally parallel to the axial direction. In FIG. 1, outer shaft 24 has been retracted to expose a plurality of stents 50 which are partially expanded and remain coupled to or restrained by control wires 40, as explained in greater detail below.
  • Handle assembly 21 has a rotatable retraction knob 52 coupled to a shaft housing 53, to which outer shaft 24 is fixed. By rotating retraction knob 52, outer shaft 24 may be retracted proximally relative to pusher 26 and inner shaft 28. A pull ring 54 is coupled to inner shaft 28, allowing inner shaft 28, and hence control wires 40, to be retracted proximally relative to outer shaft 24. A switch 56 engages and disengages pusher 26 with outer shaft 28, so that pusher 26 either moves with outer shaft 24 or remains stationary as outer shaft 24 is retracted. Indicia 58 on shaft housing 53 indicate the extent of retraction of outer shaft 28 by distance, number of stents, or other suitable measure. Other aspects of handle assembly 21 are described in co-pending application Ser. No. 10/746,466, filed Dec. 23, 2003 (Attorney Docket No. 21629-002200), which is incorporated herein by reference. Except as stated otherwise, any of the embodiments of the stent delivery catheter described below may incorporate the features and be otherwise constructed as just described.
  • FIGS. 2A-2B illustrate a distal extremity of a stent delivery catheter 60 according to the invention in a further embodiment thereof. In this embodiment, stents 62 have a series of diamond shaped openings 64 in the walls thereof through which a plurality of control wires 66 are threaded. Stents 62 have a plurality of axially-extending V-shaped points 63 on their distal and proximal ends. These points 63 are configured to interleave or nest with the points 63 on the adjacent stent 62, preferably both in the collapsed and expanded configurations. Various suitable interleaving stent geometries are described in co-pending application Ser. No. 10/736,666, filed Dec. 16, 2003, which is incorporated herein by reference. In order to maintain this interleaving, it is important to maintain the relative rotational and axial positions of the adjacent stents 62 both before and during deployment. By extending through the openings 64 in each stent, control wires 66 keep adjacent stents 62 in rotational alignment as they are advanced forward through the catheter and during deployment. Preferably, each control wire 66 is threaded through at least two openings 64 in each stent 62, one opening 64 a near the distal end of each stent 62 and one opening 64 b near the proximal end of each stent 62. Alternatively, control wires 66 may be threaded through only a single opening 64 or through three or more openings 64 on each stent 62. Preferably, however, control wires 66 are threaded so that the distal and proximal ends of stents 64 will expand at a generally uniform rate when released, as described below.
  • Control wires 66 are constructed of a resilient and flexible metal or polymer with sufficient stiffness to provide controlled resistance to the expansion of stents 62. This stiffness may be selected to allow the desired expansion behavior of stents 62 such that “watermelon seeding” is avoided, inter-stent spacing is maintained, and sufficient stent expansion occurs. Control wires 66 may have various cross-sectional geometries, and may be a flat ribbons or blades, round or oval wires, I-beams, or other suitable structures to control stent expansion, maintain spacing and rotational position, and facilitate withdrawal from stents 62 without interference. Control wires 66 may be composed of or coated with a lubricious material such as PTFE to reduce friction during removal from stents 62. In other embodiments, control wires 66 may have surface features, be wrapped with wire windings, or be coated with “sticky” material to increase friction with stents 62. Coatings or surface structures such as scales with one-way frictional effects may also be applied to control wires 66.
  • As a further alternative, control wires 66 may comprise flexible hollow tubes which are pneumatically or hydraulically controllable to vary their rigidity or stiffness. For example, control wires 66 may comprise polymeric tubes that radially contract or flatten and are very flexible when evacuated of fluid, but which become more rigid when filled with pressurized fluid, such as saline, air, or other liquid or gas. In such an embodiment, control wires 66 are fluidly connected to a pump, syringe, or other suitable fluid delivery mechanism at the proximal end of the delivery catheter. In this way, control wires 66 may be pressurized to increase stiffness as stents 62 are deployed, then evacuated of fluid to reduce their profile and stiffness during withdrawal from the deployed stents.
  • Stents 62 are slidably positioned over an inner shaft 68, to which is attached a nosecone 70 at the distal end of the device. An outer shaft 72 is slidably disposed over inner shaft 68 and surrounds stents 62, maintaining them in a collapsed configuration, as shown in FIG. 2A. A pusher shaft 74 is slidably disposed over inner shaft 68 and is configured to engage the proximal end of the proximal-most stent 62. Outer shaft 72 is retractable relative to inner shaft 68 in order to expose a desired number of stents 62 as shown in FIG. 2B. When outer shaft 72 is retracted, the exposed stents 62 self-expand to a larger-diameter expanded shape in engagement with lesion L in vessel V. Preferably, at least the distal end of the distal-most stent 62, and more preferably a substantial portion of all stents 62 being deployed, is allowed to expand into engagement with lesion L while control wires 66 remain threaded through openings 64. Control wires 66 are then withdrawn from openings 62, preferably by holding catheter 60 in position and pulling control wires 66 proximally using a suitable mechanism such as that described above with reference to FIG. 1. Alternatively, the entire catheter 60 may be retracted proximally relative to stents 62 to withdraw control wires 66 from openings 62. Because at least a portion of stents 62 is in engagement with lesion L, stents 62 are held in position in the vessel as control wires 66 are withdrawn.
  • Optionally, inner shaft 68 may have a balloon 76 mounted thereto near its distal end to enable pre- or post-dilatation of lesion L. In this embodiment, inner shaft 68 has an inflation lumen through which inflation fluid may be delivered to balloon 76. Balloon 76 is preferably as long as the longest lesion that might be treated using catheter 60. To dilate lesion L prior to stent deployment, or to further expand stents 62 after deployment, outer shaft 72 and those of stents 62 remaining therein are retracted relative to inner shaft 68 to expose a desired length of balloon 76. The exposed portion of balloon 76 may then be inflated within the lesion L and/or the deployed stents 62.
  • Following deployment and any post-dilatation, inner shaft 68 is retracted into outer shaft 72 while maintaining pressure against pusher shaft 74. This slides stents 62 distally along control wires 66 and repositions stents 62 to the distal end of inner shaft 68 so as to be ready for deployment. Catheter 60 may then be repositioned to another vascular location for deployment of additional stents 62.
  • Control wires 66 may be coupled to stents 62 in various ways, some of which depend upon the configuration of stents 62. For example, as shown in FIGS. 3A-B, the points 63 at the ends of each stent 62 may be bent inwardly such that a portion of the openings 64′ are oriented axially. Control wires 66 may then be threaded through these axially-oriented openings 64′. Preferably, upon deployment, points 63 are adapted to deform with stent expansion so as to be more parallel to the axial direction, thereby providing a smooth and open flow path through the stent.
  • In another embodiment, shown in FIG. 3C, stents 80 have axially-aligned eyelets 82 through which control wires 84 are threaded. These eyelets 82 may be in the interior of stents 82 as shown in FIG. 3C, or such eyelets may be on the exterior surface of stents 82, or could be drilled through one or more of the struts of stents 82. Various other structures may also be used for coupling the stents of the invention to control wires, including hooks, channels, holes, sleeves, and others, disposed on the interior, exterior or end surfaces of the stent, or through the struts themselves. Such structures may by integral with stent struts and of the same material, may be attached to the stent struts and be of same or different material, or may be a biodegradable material that erodes and eventually is absorbed into the body following deployment.
  • Referring now to FIGS. 4A-4B, in a further embodiment, a stent delivery catheter 90 has an outer shaft 92 slidably disposed over an inner shaft 94, and at least one stent 96 (shown schematically in FIG. 4A) in a collapsed shape within outer shaft 92. A plurality of control wires 97 have an outer extremity 98 outside of inner shaft 94 and an inner extremity 100 extending through one or more lumens 102 and distal ports 103 in inner shaft 94. Both outer portion 98 and inner portion 100 extend proximally to the proximal end of delivery catheter 90. Outer extremities 98 are threaded through openings in the wall of stent 96 or are otherwise coupled thereto as described above so as to resist expansion of stent 96 upon deployment. Control wires 97 thus form a continuous loop from the proximal end of stent delivery catheter 90, through stent 96 and back to the proximal end of the catheter.
  • FIG. 4B illustrates this embodiment of delivery catheter 90 positioned in a vessel V and carrying plurality of stents 96′. Stents 96′ have axial projections 104 at their distal and proximal ends configured to interleave when stents 96′ are collapsed within outer shaft 92 and when deployed in vessel V. When outer shaft 92 is retracted to expose one or more stents 96′, the expansion of stents 96′ can be resisted and controlled by maintaining tension on control wires 97. Tension may be controllably relaxed to allow stents 96′ to expand into contact with lesion L, as shown in FIG. 4B. By controlling the expansion in this way, the axial spacing and rotational positions of adjacent stents 96′ may be maintained so that gaps and overlaps are minimized and the interleaving of axial projections 104 is maintained. When stents 96′ are fully expanded, one end of each control wire 97 may be released at the proximal end of delivery catheter 90 while the other end is pulled to retract the control wires from stents 96′.
  • In a further embodiment, illustrated schematically in FIGS. 5A-B, delivery catheter 108 is constructed as described above except that control wires 110 are releasably coupled to the distal end of an inner shaft 112 or to nose cone 114. In an exemplary embodiment, control wires 110 have balls 116 at their distal ends configured to be received within slots 118 on the outer surface of nosecone 114 (FIG. 5A) or on the proximal face of nosecone 114 (FIG. 5B; outer shaft not shown for clarity). Slots 118 have an enlarged portion 120 of sufficient size to receive ball 116 and a narrow portion 122 through which balls 116 may not pass. Inner shaft 112 is axially rotatable relative to control wires 110. As in the embodiment of FIGS. 4A-B, with balls 116 held within slots 118, tension may be maintained on control wires 110 to resist expansion of stent 124. Stent 124 may be allowed to expand by gradually relaxing tension on control wires 110. Once stent 124 is fully expanded tension on control wires 110 may be fully relaxed and nosecone 114 then rotated by rotating inner shaft 112, thereby allowing balls 116 to pass through enlarged portions 120. Control wires 110 may then be withdrawn from the deployed stent 124. Nosecone 114 is then retracted or control wires 110 advanced so as to reinsert balls 116 into slots 118. Nosecone 114 is then rotated to align balls 116 with narrow portions 122, again securing the control wires to nosecone 114. Delivery catheter 108 may then be repositioned to deploy additional stents.
  • Optionally, delivery catheter 108 may include a middle shaft or balloon 126 over which stents 124 are positioned, as shown in FIG. 5A. In this case, inner shaft 112 is slidably and rotatably disposed in an inner lumen though middle shaft or balloon 126. If a balloon is included, it may be used for pre-dilatation of lesions prior to stent deployment, or for further expansion of stent 124 following deployment.
  • In the foregoing embodiment, control wires 110 will be constructed to have sufficient stiffness to resist rotation, twisting or bending as nosecone 114 is rotated to release control wires 110. Maintaining some tension on control wires 110 as nosecone 114 is rotated may facilitate the release process. In addition, control wires 110 will have sufficient column strength to facilitate reinsertion into slots 118 following deployment of stents 124. Thus the size, material and geometry of control wires 110 will be selected to enable these actions while providing the desired level of control of stent expansion.
  • In a further embodiment of a stent delivery catheter according to the invention, an expandable sleeve 130 is slidably positioned within outer shaft 132 and carries stents 134 as shown in FIGS. 6A-C. A pusher shaft 136 is slidable within sleeve 130 and engages the proximal-most stent 134. An inner shaft 138 extends through pusher shaft 136 and has a nosecone 140 fixed to its distal end. Sleeve 130, or at least a distal extremity thereof, may be a tube constructed of a resilient deformable material such as urethane or other medical grade elastomer, or may be a tubular mesh, cage, grating, or other suitable structure of flexible and resilient polymer or metal such as stainless steel or Nitinol. The elasticity and stiffness of sleeve 130 are selected to allow stents 134 to expand at the desired rate when deployed from outer shaft 132 without excessive axial or rotational displacement relative to each other or to outer shaft 132. Sleeve 130 is resiliently biased toward an unexpanded shape so that following stent deployment, sleeve 130 returns to a generally tubular shape. Outer shaft 132 is constructed of a material with sufficient radial strength and stiffness to resist expansion of stents 134 and sleeve 130, and may include a metallic or polymeric braid, ribs, rings or other structural reinforcement near its distal end for such purpose.
  • The interior surface of sleeve 130 optionally may have surface features such as bumps, scales, bristles, ribs, or roughness to enhance friction with stents 134. These features may be configured to have a grain such that they provide more friction against movement in the distal direction than in the proximal direction, or vice versa. Further, such features may be adapted to provide more friction when sleeve 130 is in an unexpanded shape than when it is expanded by stents 134. For example, bristles may be provided that point more in the proximal direction when sleeve 130 is in its unexpanded cylindrical shape, but which point more distally or radially (perpendicular to the surface of sleeve 130) when sleeve 130 is expanded. This allows sleeve 130 to be more easily withdrawn from stents 134 when stents 134 are deployed.
  • In order to deploy stents 134, delivery catheter 129 is positioned across a vascular lesion so that nosecone 140 is disposed just distally of the distal end of the lesion. Outer shaft 132 is then retracted to expose the desired number of stents 134 (and the associated length of sleeve 130) which will cover the length of the lesion, as shown in FIG. 6B. As outer shaft 132 is retracted, stents 134 are allowed to expand into contact with the lesion as shown in FIG. 6C. Sleeve 130 controls the rate of expansion and maintains the positions of stents 134 so they are deployed precisely at the intended location. Once stents 134 are fully expanded, sleeve 130 may be retracted from between the stents and the lesion until sleeve 130 is again disposed in outer shaft 132. Pressure is maintained on pusher shaft 136 during this process so that the stents 134 remaining in delivery catheter 129 are advanced to the distal end of sleeve 130 and outer shaft 132. Delivery catheter 129 may then be repositioned for deployment of additional stents at other locations.
  • Referring now to FIGS. 7A-B, in a further embodiment, a delivery catheter 142 may be constructed largely as described in connection with FIGS. 6A-C, including an outer shaft 144, an expandable sleeve 146 slidably disposed therein, a pusher shaft 148, and inner shaft 150. A plurality of stents 152 are carried in expandable sleeve 146 (shown in FIG. 7B). In order to facilitate expansion, expandable sleeve 146 includes a longitudinal slit 154 in at least a distal extremity thereof. When outer shaft 144 is retracted relative to sleeve 146, sleeve 146 may be controllably expanded by axially twisting sleeve 146 such that the opposing edges 156 along longitudinal slit 154 pivot away from one another, forming a cone shape (FIG. 7B). In this way, the expansion of stents 152 is further controllable after retraction of outer shaft 144 by controlling the rate of twisting of sleeve 146. An actuator may be provided at the proximal end of delivery catheter 142 to control such twisting. Optionally, sleeve 146 may have a helical thread on its outer surface that mates with a complementary thread on the interior of outer shaft 144 such that sleeve 146 is automatically twisted as outer shaft 144 is retracted. As in the embodiment of FIGS. 6A-C, following stent deployment, sleeve 146 is retracted from the space between the deployed stents and the vessel wall and returned within outer shaft 144. Sleeve 146 may be resiliently biased to return to its unexpanded configuration, or may be manually twisted back to an unexpanded shape by the operator.
  • In another embodiment, shown in FIGS. 8A-C, delivery catheter 160 is again constructed much like delivery catheter 129 of FIGS. 6A-C, including an outer shaft 162, a slidable expandable sleeve 164 carrying stents 166, a pusher shaft 168, and an inner shaft 170. A nosecone 172 is attached to the distal end of inner shaft 170 and has a concavity 174 at its proximal end configured to receive the distal end of sleeve 164. A distal extremity of sleeve 164 includes a plurality of axial slits 176 defining separate deflectable longitudinal beams 178. Sleeve 164 includes at least two, preferably four, and as many as six, eight, or more slits 176 to provide a corresponding number of longitudinal beams 178. Longitudinal beams 178 are resiliently biased into an axial orientation wherein sleeve 164 is generally cylindrical. Longitudinal beams 178 have sufficient stiffness against lateral deflection to resist and control the expansion of stents 166.
  • Advantageously, by containing the distal ends of longitudinal beams 178 in concavity 174, outer shaft 162 may be retracted to expose the desired number of stents to cover a target lesion without immediate expansion of stents 166, as shown in FIG. 8B. When the desired number of stents 166 is exposed, inner shaft 170 may be advanced distally relative to sleeve 164, releasing longitudinal beams 178 from concavity 174. This permits longitudinal beams 178 to laterally deflect, allowing stents 166 to expand, as shown in FIG. 8C. When full expansion is achieved, longitudinal beams 178 may be retracted from between stents 166 and the vessel wall. Longitudinal beams 178 then return to their undeflected axial orientation, allowing inner shaft 170 to be retracted so as to return the distal ends of longitudinal beams 178 into concavity 174. Inner shaft 170 and sleeve 164 may then be retracted into outer shaft 162 while maintaining pressure on pusher shaft 168, thereby advancing additional stents 166 toward the distal end of sleeve 164 for additional deployments.
  • In some embodiments of the stent delivery catheter of the invention, the stents themselves are configured to provide greater control and precision in stent deployment. For example, FIGS. 9A-9B illustrates a delivery catheter 180 having a plurality of stents 182 disposed in an outer shaft 184. An inner shaft 186 with optional balloon 188 and nosecone 190 extends through outer shaft 184 and stents 182 and is axially movable relative thereto. A pusher shaft (not shown) is slidably disposed over inner shaft 186 and engages stents 182 for purposes of deploying stents 182 from outer shaft 186 and repositioning the remaining stents 182 within outer shaft 186, as in earlier embodiments. In this embodiment, stents 182 comprise a plurality of struts 191 forming a series of rings 192 interconnected at joints 193. Each ring 192 has a series of closed cells 194 interconnected circumferentially and having an “I” shape in the unexpanded configuration.
  • As outer shaft 184 is retracted to deploy one or more stents 182, at least a distal ring 192′ is configured to expand into engagement with the vessel wall before the entire length of the stent 182 is deployed from outer shaft 184 (FIG. 9A). Once in engagement with the lesion L in vessel V, distal ring 192anchors stent 182 in position as the remainder of the stent is deployed (FIG. 9B), preventing “watermelon seeding” of the stent from the catheter. The axial length of stent 182, the length of each ring 192, the number of rings, the stiffness of struts 191, and the flexibility of joints 193 are all selected to optimize this deployment behavior. Each stent 182 has at least two, and preferably four or more rings 192, each ring being about 2-5 mm in length, giving stent 182 an overall length of at least about 8-20 mm. Of course, stents of shorter or longer length are also contemplated within the scope of the invention. Lesions longer than each stent 182 may be treated by deploying multiple stents 182 end-to-end. Advantageously, each stent 182 can be deployed precisely at a desired spacing from a previously-deployed stent 182 because the distal ring 192′ of each stent 182 can be first allowed to expand into engagement with the vessel at the target location, anchoring the stent in position as the remainder is deployed.
  • Rings 192 are preferably formed from a common piece of material and are integrally interconnected at joints 193, making joints 193 relatively rigid. In this embodiment, the majority of flexibility between rings 192 is provided by struts 191 rather than by joints 193. Alternatively, joints 193 may comprise welded connections between rings 192 which are also fairly rigid. As a further alternative, joints 193 may comprise hinge or spring structures to allow greater deflection between adjacent rings 192, as exemplified in FIGS. 10A-10B, described below.
  • In the embodiment of FIG. 10A-10B, stents 200 are constructed similarly to stents 182 of FIGS. 9A-9B, including a plurality of interconnected rings 202 having I-shaped cells 204. However, in this embodiment, some of rings 202 are interconnected by spring members 206 that may be elongated to increase the distance between rings 202 and that are resiliently biased into a shortened configuration to draw rings 202 toward each other. In one embodiment, spring members 206 have a wave-like shape and extend from the tip of an axial projection 208 on one ring 202 to a concave portion 210 between axial projections 208 on the adjacent ring 202. Of course a variety of spring configurations and connection locations are possible, including zig-zags, coils, spirals, accordian or telescoping structures, and the like. Further, resilient elongatable elastomeric elements may link the adjacent rings 202. In the illustrated embodiment, stent 200 comprises two pairs of rings 202, with the rings of each pair interconnected by integral joints 212 as in FIGS. 9A-B and the pairs of rings 202 being connected to each other by spring members 206. Stents 200 may alternatively include two, three, five, six or more rings 202, and spring members 206 may interconnect all or only a portion of rings 202.
  • Spring members 206 may be formed of the same or different material as that of rings 202, depending upon the desired performance characteristics. In addition, spring members 206 may be biodegradable so as to erode and eventually disappear, leaving the adjacent pairs of rings 202 unconnected.
  • During deployment, as outer shaft 184 is retracted to expose a stent 200, the distal pair of rings 202′ first expands into engagement with lesion L in vessel V (FIG. 10A). Spring members 206 elongate to allow rings 202′ to fully expand without pulling the second pair of rings 202″ from outer shaft 184. As retraction of outer shaft 184 continues, the second pair of rings 202″ expands and simultaneously is drawn toward distal ring pair 182′ by contraction of spring members 206 (FIG. 10B). This results in a predictable and constant axial spacing between the adjacent pairs of rings 202. In addition, spring members 206 maintain rotational alignment of rings 202 to maintain the interleaving of axial projections 208 without overlap. As in previous embodiments, multiple stents 200 may be deployed sequentially from delivery catheter 180 to cover longer lesions. The ability to precisely deploy each stent permits the relative axial spacing and rotational position of such stents to be controlled to avoid excessive space or overlap.
  • In a further embodiment, shown schematically in FIGS. 11A-11C, a delivery catheter 216 has an outer shaft 218 carrying a plurality of stents 220. An inner shaft 222 extends through outer shaft 218 to a nosecone 224, and a pusher shaft 226 is slidably disposed over inner shaft 222. An anchoring balloon 228 is mounted to inner shaft 222 proximal to nosecone 224. Anchoring balloon 228 has an axial length sufficient to frictionally engage the wall of vessel V and remain stable so as to anchor delivery catheter 216 in place as further described below. Preferably, anchoring balloon 228 has a length about equal to the length of one of stents 220.
  • In use, outer shaft 218 is retracted so that a first stent 220′ is released therefrom and expands into engagement with lesion L (FIG. 11A). Anchoring balloon 228 is then inflated until it engages the interior of stent 220′ (FIG. 11B). This not only stabilizes delivery catheter 216, but may be used to further expand stent 220′ and/or dilate lesion L to firmly implant stent 220′. While keeping anchoring balloon inflated within stent 220′, outer shaft 218 is further retracted to release a second stent 220″, which expands into engagement with lesion L (FIG. 11C). Advantageously, anchoring balloon 228 stabilizes delivery catheter 216 and anchors it in position relative to first stent 220′ as second stent 220″ is deployed. Second stent 220″ is thus deployable precisely at the intended spacing and rotational position relative to first stent 220′. Anchoring balloon 228 may then be deflated and retracted into outer shaft 218, with pressure maintained upon pusher shaft 226 to reposition remaining stents 220 at the distal end of inner shaft 222.
  • In FIG. 13A, delivery catheter 260 is positioned adjacent a lesion L in a vessel V. Outer shaft 262 may then be retracted (solid-tipped arrows) to begin deployment of stents 268. In FIG. 13B, outer shaft 262 has been retracted to expose two stents 268′, thus allowing them to expand within the vessel V. Coil 266 expands along with expanding stents 268′ and remains coupled with them, thus helping prevent axial displacement (“watermelon seeding”) and in some cases rotation of stents 268′ relative to one another. Once stents 268′ have been exposed, and stents 268′ and coil 266 have expanded so that at least a distal portion of the distal-most stent 268′ is contacting the vessel wall, coil 266 is withdrawn from expanded stents 268′. This may be accomplished, in one embodiment, by rotating coil 266 (as shown by the solid-tipped arrow) to unscrew coil 266 from stents 268′. Alternatively, coil 266 may be configured to be simply pulled proximally without rotation to decouple it from stents 268′. Preferably, coil 266 has a radopaque marker at its distal tip and/or at other suitable locations along its length to allow visualization via fluoroscopy. To facilitate retraction of coil 266 from stents 268′, coil 266 may be coated or covered with a lubricious or other friction-reducing coating or sleeve. Rotation is continued to retract coil 266 back into outer shaft 262 and the remaining unexpanded stents 268. In FIG. 13C, coil 266 has been retracted out of expanded stents 268′, thus allowing them to fully expand into contact with the inner surface of the vessel V. The process just described may be repeated as many times as desired to treat a long lesion L and/or multiple lesions L.
  • Optionally, balloon 223 may have surface features or coatings on its periphery that enhance retention of stents 221 thereon. Such features may include structures such as scales or protuberances that are activated by pressurization of the balloon so that retention is lessened when the balloon is deflated, but heightened when the balloon is pressurized. Following stent deployment, pressure can optionally be increased in balloon 223 for post-dilation of stents 221 and the target lesion L. Balloon 223 is then deflated and retracted within sheath 229 as distal pressure is maintained against pusher 225, repositioning stents 221 near the distal end of balloon 223 within sheath 229 for deployment at another location, as shown in FIG. 11C.
  • In a further embodiment, the stents in the delivery catheter of the invention may releasably interconnect with one another and/or with the pusher shaft to enable greater control and precision during deployment. As illustrated in FIG. 12, delivery catheter 230 carries a plurality of stents 232 having a structure much like that described above in connection with FIGS. 9A-9B. However, in this embodiment, the axial projections 234 extending distally and proximally from stents 232 are configured to interconnect with concavities 236 on adjacent stents 232 until expanded. In one embodiment, axial projections 234 have enlarged heads 246 and concavities 236 have necks 248 that retain heads 246 within concavities 236 in the unexpanded configuration. Pusher shaft 250 has a distal end 252 having projections 254 and concavities 256 like those of stents 232, thus being able to interconnect with the proximal-most stent 232′. When a stent 232″ expands, the interconnecting structures thereon are configured to separate from the adjacent stent or pusher shaft, thus releasing the deployed stent 232″ from delivery catheter 230. In the example shown, as stent 232″ expands, heads 246″ contract in size while necks 248″ enlarge, thereby allowing heads 246″ on the expanded stent to be released from concavities 236 in the adjacent unexpanded stent, and vice versa. By exerting traction on pusher shaft 250 during the deployment process, the line of stents 232 is kept from moving distally relative to outer shaft 231, thus preventing the deployed stent 232″ from “watermelon seeding” as it expands.
  • Various types of interconnecting structures between adjacent stents and between the stents and the pusher shaft are possible within the scope of the invention, including those described in co-pending application Ser. No. 10/738,666, filed Dec. 16, 2003, which is incorporated herein by reference. Such interconnecting structures may also be breakable or frangible to facilitate separation as the stent expands. In addition, a mechanism such as an expandable balloon or cutting device may be disposed at the distal end of delivery catheter 230 to assist in separating stents 232 upon deployment. Further, the interconnections between stents may be different than the interconnection between the proximal-most stent and the pusher shaft. For example, the pusher shaft may have hooks, magnets, or other mechanisms suitable for releasably holding and maintaining traction on the proximal end of a stent until it is deployed.
  • In another embodiment, as shown in FIGS. 13A-13C, a delivery catheter 260 includes an outer shaft 262 (or sheath), a pusher shaft 264 slidably disposed within outer shaft 262, a plurality of stents 268 slidably disposed within outer shaft 262, and a coil 266 extending through catheter 260 and coupled with stents 268. In various embodiments, coil 266 may extend through pusher shaft 264 (as shown) or be disposed around pusher shaft 264. Coil 268 is constructed of a resilient material, such as but not limited to Nitinol™, spring stainless steel, resilient polymers, or other shape memory or super-elastic materials. Coil 266 may have various pitches, depending upon the desired spacing between adjacent loops. Coil 266 may have a relatively high pitch (individual loops spread relatively far apart), e.g., between about 2 and 6 loops disposed in each stent 268. In other embodiments, coil 266 may have a lower pitch (individual loops closer together), e.g., greater than 6 loops, or even greater than 10 loops disposed in each stent 268. Of course, the number of loops will vary according to the length of each stent 268, the thickness, diameter, and flexibility of coil 266, and other factors. Adjacent loops in coil 266 may also be in contact with each other to form a tube having a substantially continuous wall without openings. Coupling of coil 266 with stents 268 is described further below with reference to FIGS. 14-16.
  • In FIG. 13A, delivery catheter 260 is positioned adjacent a lesion L in a vessel V. Outer shaft 262 may then be retracted (solid-tipped arrows) to begin deployment of stents 268. In FIG. 13B, outer shaft 262 has been retracted to expose two stents 268′, thus allowing them to expand within the vessel V. Coil 266 expands along with expanding stents 268′ and remains coupled with them, thus helping prevent axial displacement (“watermelon seeding”) and in some cases rotation of stents 268′ relative to one another. Once stents 268′ have been exposed, and stents 268′ and coil 266 have expanded so that at least a distal portion of the distal-most stent 268′ is contacting the vessel wall, coil 266 is withdrawn from expanded stents 268′. This may be accomplished, in one embodiment, by rotating coil 266 (as shown by the solid-tipped arrow) to unscrew coil 266 from stents 268′. To facilitate retraction of coil 266 from stents 268′, coil 266 may be coated or covered with a lubricious or other friction-reducing coating or sleeve. Rotation is continued to retract coil 266 back into outer shaft 262 and the remaining unexpanded stents 268. In FIG. 13C, coil 266 has been retracted out of expanded stents 268′, thus allowing them to fully expand into contact with the inner surface of the vessel V. The process just described may be repeated as many times as desired to treat a long lesion L and/or multiple lesions L.
  • In a preferred embodiment, adjacent stents are “keyed,” or “interleaved,” to each other, meaning that fingers or other protrusions on each end of one stent interleave with complementary fingers/protrusions on immediately adjacent stents, as described above in reference to FIGS. 2A-B, 4B, 9A-B, 10A-B and 12. This feature helps prevent stents from rotating relative to one another during deployment. Optionally, the distal end of the pusher shaft may also include fingers/protrusions to interleave with the proximal end of the proximal-most stent, as shown in FIG. 12 above. Interleaving the stents with the pusher shaft helps prevent rotation of the stents relative to the outer shaft.
  • Referring to FIG. 14, a stent 270 is shown in side view with a portion of a coil 272 coupled therewith. In some embodiments, coil 272 is threaded though openings 274 between struts 275 in stent 270. This is shown in end-on cross section, in FIG. 15. As described above, coil 272 may be made of any of a number of resilient materials and may have a variety of different configurations in various embodiments. For example, coil 272 is shown having four loops for one stent 270, whereas in alternative embodiments fewer or more loops per stent may be used. In an alternative embodiment (not shown), coil 272 may be disposed around the outside stents 270, with stents 270 being capable of sliding axially through coil 272 or being helically (screw) driven by rotating coil 272.
  • FIG. 16 shows and end-on view of another embodiment of a stent 280 coupled with a coil 282. In this embodiment, stent 280 includes multiple, inwardly-bent struts 284, through which coil 282 is threaded. Thus, coil 282 is disposed entirely within the inner diameter of stent 280. Such struts 284 may be adapted to remain in the inwardly-bent configuration only when stent 280 is collapsed in the catheter, such that struts 284 return to a position even with the cylindrical surface of stent 280 when stent 280 expands. Alternatively, struts 284 may remain in the inwardly bent configuration even when stents 280 expand. Or struts 284 may be merely elastically deflected to the inwardly bent configuration to facilitate threading coil 282 therethrough, with struts 284 being biased to return to a position along the cylindrical surface of stent 280 when coil 282 is removed.
  • In another embodiment, illustrated in FIG. 17, a delivery catheter 290 includes a tubular outer shaft 292 and a tubular inner shaft 294 slidably disposed in outer shaft 202. An evertible tube 295 is attached to the distal end of inner shaft 294 and extends distally therefrom. Evertible tube 295 has a flexible distal portion 295′ configured to evert (fold over on itself), and a distal end 297 attached to the distal end of outer shaft 292. To provide flexibility, at least the flexible distal portion 295′ of evertible tube 295 (and optionally all of evertible tube 295) may be made of a flexible polymer or other bendable material and may, in some embodiments, have thinner walls than inner shaft 294 or outer shaft 292. A pusher shaft 300 is slidably disposed in inner shaft 294, and a plurality of stents 302 are slidably disposed within inner shaft 294 distally of pusher shaft 300. When outer shaft 292 is retracted (slid proximally) relative to inner shaft 294, the flexible distal portion 295′ of evertible tube 295 everts (i.e., bends outward and folds back on itself) and thus follows outer shaft 292 proximally. This process of sliding outer shaft 292 proximally to evert and pull flexible distal portion 295′ proximally causes stents 302′ to deploy out of the distal end 299 of the delivery catheter 290.
  • Axial displacement of each stent 302′ is controlled (and watermelon seeding is avoided) due to frictional engagement with the inner surface 296 of evertible tube 295. To enhance retention of stents 302 in evertible tube 295, inner surface 296 may include adherent coatings or other surface features adapted to engage and retain stents 302. For example, inner surface 296 may comprise a layer or coating of sticky, tacky or otherwise high-friction material. Alternatively, inner surface 296 may include friction-inducing features such as roughened areas, bumps, spines, bristles, ridges, ribs, channels, grooves, or random surface irregularities. As flexible distal portion 294′ everts and moves proximally, stents 302′ peel off of adherent surface 296 in a controlled fashion.
  • In an alternative embodiment, shown in FIG. 18, stents 308 are partially embedded in an inner surface 306 of an evertible tube 304. For example, evertible tube 304 may have an inner surface 306 that softens and/or becomes malleable when heated. When stents 308 are loaded in evertible tube 304, inner surface 306 is heated so that stents 308 are partially and releasably embedded in inner surface 306, with portions of the softened surface material extending through the openings 307 between struts 309 in stent 308. To deploy stents 308, the distal end of evertible tube 304 is everted as described above, peeling inner surface 306 away from each stent 308 to release it into the vessel. Because stents 308 are embedded in inner surface 306, they are not fully released from the catheter until evertible tube 304 is peeled completely off of stent 308, at which time the distal end of stent 308 has expanded into contact with the vessel. Uncontrolled axial displacement of stent 308 is thus avoided.
  • In the embodiment shown in FIG. 19, an evertible tube 314 includes multiple retention structures 316 on an inner surface 319, which extend through openings 317 between struts 315 in a stent 318 to releasably hold stent 318. Retention structures 316 are preferably adapted to extend through openings 317 and abut the inner surfaces of struts 315 to provide secure but releasable engagement with stents 318. When the distal end of evertible tube 314 is peeled back to deploy stents 318, retention structures 316 are adapted to be pulled out of openings 317 to release stent 318. Retention structures 316 may comprise, for example, multiple mushroom-shaped protrusions (as shown) or alternatively, or alternatively, L-shaped, T-shaped, barbed, pyramidal, arrow-shaped, linear or hook-shaped protrusions.
  • Retention structures 316 may be integrally formed with evertible tube 314 and made of the same flexible polymer, or alternatively may be separate structures of polymer, metal wire or other flexible material attached to evertible tube 314. Such retention structures may be positioned to engage stent 318 at various locations along its length, e.g. at several locations along the entire length of the stent, e.g. near the proximal and distal ends (as shown), only near the proximal end, only near the distal end, only at the middle, or at another discreet location.
  • Referring now to FIGS. 20-23, a further embodiment of a prosthesis delivery catheter according to the invention will be described. In this embodiment, delivery catheter 400 has a tubular outer shaft 402, a pusher shaft 404 slidably disposed within outer shaft 402, and an inner shaft 406 slidably disposed within pusher shaft 402. Inner shaft 406 has a guidewire lumen extending axially therethrough for receiving a guidewire GW. A plurality of self-expanding stents 420 (not shown in FIG. 20A) are slidably disposed within outer shaft 402 distally of pusher shaft 404, which can be used to exert a distal force against such stents for the deployment thereof, as described further below. A nosecone 407 is fixed to the distal end of inner shaft 406 and has a proximally-facing aperture 409 in its proximal end. Outer shaft 402 has a distal end 408 to which is attached a control member 410 defining an interior 411 in which a stent 420 may be received. Control member 410 has a plurality of flexible tines 412 extending distally and having free distal ends 414 removably received within aperture 409. A wall 416 extending circumferentially around aperture 409 retains flexible tines 412 within aperture 409. Nosecone 407 is movable distally relative to control member 410 to release tines 412 from aperture 409.
  • Control member 410 may be constructed of a polymer, metal, or other flexible and resilient material. Tines 412 are deflectable outwardly under the expansion force of stents 420. Tines 412 are preferably biased inwardly into general alignment with the longitudinal axis of delivery catheter 400 such that free distal ends 414 remain positioned inwardly near inner shaft 406 even after release from aperture 409. Tines 412 may include a friction-enhancing coating, texture, cover, or other surface features on their inwardly-facing surfaces to create more friction with stents 420. Alternatively, a lubricious coating may be provided on the inner or outer surfaces of tines 412 for greater slidability. Tines 412 may have an axial length which is less than or equal to the length of one stent 420, a length greater than the length of one stent 420, or a length as long as the length of 2, 3 or more stents 420. Aperture 409 may be relatively shallow, as shown, so as to receive only the free distal ends 414 of tines 412, or may be somewhat deeper so that a portion or substantially all of the length of tines 412 is disposed within aperture 409.
  • As shown in FIGS. 21A-21E, in use, delivery catheter 400 is positioned in a vessel at the treatment site with tines 412 disposed within aperture 409 on nosecone 407. Nosecone 407 is then advanced distally relative to control member 410 (or outer shaft 402 is retracted proximally relative to nosecone 407) to release tines 412 from aperture 409 as shown in FIG. 21B. Outer shaft 402 is then retracted relative to pusher shaft 404 (or pusher shaft 404 may be pushed distally) to advance one or more stents 420 out of outer shaft 402 into control member 410, as shown in FIG. 21C. Tines 412 exert an inward force on stents 420 to resist, but not prevent, the expansion thereof. This slows down the rate of stent expansion and also provides frictional resistance between tines 412 and the outer surface of stent 420, thereby reducing the tendency of the stent to jump distally as it expands. As shown in FIG. 21D, tines 412 preferably have a length selected so that before a first stent 420A is fully expanded and released from control member 410, a second stent 420B is at least partially contained within control member 410. In this way multiple stents 420 may be deployed end-to-end with a desired degree of inter-stent spacing and without overlaps or excessive gaps. Outer shaft 402 is retracted until the desired number of stents 420 has been deployed at the treatment site. Outer shaft 402 and pusher shaft 404 are then retracted together to slidably decouple tines 412 from the deployed stents 420, as shown in FIG. 21E. Nosecone 407 may then be retracted through the deployed stents until tines 412 are positioned in aperture 409. The device can then be repositioned at a new treatment site for additional deployments.
  • FIG. 22 illustrates an alternative embodiment of control member 410, in which multiple webs 422 are disposed between tines 412. Webs 422 are preferably made of a flexible, resilient and distensible elastomer configured to radially expand or stretch under the expansion force of a stent 420. Webs 422 may comprise a substantially continuous, non-porous sheet, or may have openings, or may be comprised of a plurality of woven strands. Optionally, webs 422 may extend over the outer and/or inner surfaces of tines 412, and may connect to form a continuous tubular structure. Webs 422 may serve to provide additional resistance to stent expansion, may provide a protective surface around stent 420 and/or tines 412, and may also have lubricity on their outer and/or inner surfaces to facilitate withdrawal of tines 412 from stents 420 following deployment.
  • FIG. 23 illustrates a further embodiment in which control member 410 comprises a single distensible tubular member 424 rather than having tines 412. Tubular member 424 is preferably a flexible, resilient, and distensible elastomer configured to stretch or expand radially under the expansion force of a stent 420. Tubular member 424 is normally in a radially contracted, generally cylindrical shape without stents 420 positioned therein, with its distal end 426 adapted for positioning in aperture 409 in nosecone 407. As with web 422, tubular member 424 may be a substantially continuous, non-porous sheet, or it may have openings, or it may be comprised of a plurality of woven strands. In addition, tubular member 424 may have a lubricious outer or inner surface to facilitate withdrawal from stents 420 following deployment. The inner surface of tubular member 424 may also include friction enhancing coatings, textures, or features to enhance retention of stents 420 therein.
  • While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, improvements and additions are possible without departing from the scope thereof, which is defined by the claims.

Claims (49)

1. A prosthesis delivery catheter comprising:
an outer shaft forming a first lumen;
a plurality of self-expanding tubular prostheses carried within the first lumen, the prostheses being adapted to radially expand upon deployment from the first lumen; and
a movable coil member interactive with the prostheses to control expansion of the prostheses when the prostheses are deployed from the first lumen.
2. The prosthesis delivery catheter of claim 1, wherein the coil member is removable from the deployed prostheses by rotating the coil member.
3. The prosthesis delivery catheter of claim 1, wherein the prostheses have sidewalls with a plurality of openings, the coil member being threaded through the openings.
4. The prosthesis delivery catheter of claim 1, wherein the prostheses comprise a plurality of struts, at least one of the struts being bent inwardly, the coil member being threaded through the inwardly bent struts.
5. The prosthesis delivery catheter of claim 1, wherein the coil member is radially expandable to allow controlled expansion of the prostheses.
6. The prosthesis delivery catheter of claim 3, wherein a distal portion of the coil member is retractable into the outer shaft following deployment of the selected number of prostheses.
7. The prosthesis delivery catheter of claim 1, wherein the prostheses are disposed within the coil member.
8. The prosthesis delivery catheter of claim 1, wherein the coil member comprises a plurality of loops forming a helix.
9. The prosthesis delivery catheter of claim 8, wherein between 2 and 6 loops are disposed in each prosthesis.
10. The prosthesis delivery catheter of claim 8, wherein more than 6 loops are disposed in each prosthesis.
11. The prosthesis delivery catheter of claim 1, wherein the coil member comprises a plurality of loops contacting each other to form a continuous tube.
12. The prosthesis delivery catheter of claim 1, further comprising a deployment mechanism for deploying a selected number of prostheses from the inner lumen.
13. The prosthesis delivery catheter of claim 12, wherein the deployment mechanism comprises a pushing element slidably disposed in the first lumen, the pushing element being in engagement with at least one of the prostheses to advance the prostheses distally relative to the outer shaft.
14. The prosthesis delivery catheter of claim 13, wherein adjacent ends of adjacent prostheses are interleaved to resist rotation of the prostheses relative to each other.
15. The prosthesis delivery catheter of claim 14, wherein a distal end of the pushing element is interleaved with a proximal end of a proximal-most prosthesis to resist rotation of the prostheses.
16. The prosthesis delivery catheter of claim 1, wherein the coil member is configured to maintain rotational position of the prostheses relative to each other.
17. A prosthesis delivery catheter for delivering prostheses into a vessel lumen comprising:
an outer shaft forming a first lumen;
an inner shaft slidably disposed within the first lumen;
an evertible tube having a first end coupled with a distal end of the outer shaft and a second end coupled with a distal end of the inner shaft; and
a plurality of self-expanding tubular prostheses carried within the evertible tube, the prostheses being adapted to radially expand upon deployment from the evertible tube,
wherein moving the outer shaft proximally relative to the inner shaft everts a distal portion of the evertible tube so as to deploy one or more of the prostheses.
18. The prosthesis delivery catheter of claim 17, wherein an inner surface of the inner shaft comprises at least one adherent element for releasably holding the prostheses to the inner surface.
19. The prosthesis delivery catheter of claim 18, wherein the adherent element comprises a tacky surface coating.
20. The prosthesis delivery catheter of claim 18, wherein the adherent element comprises a softenable material into which the prostheses are removably embedded.
21. The prosthesis delivery catheter of claim 18, wherein the adherent element comprises a plurality of inwardly-facing protrusions positioned to extend through openings in the prostheses.
22. The prosthesis delivery catheter of claim 21, wherein the protrusions have a shape selected from the group consisting of mushroom-shaped, L-shaped, T-shaped, hook-shaped, rounded, spiked, pyramidal, barbed, arrow-shaped and linear.
23. The prosthesis delivery catheter of claim 18, wherein the adherent element comprises a structure selected from the group consisting of bumps, bristles, spines, ridges ribs, waves, grooves, pits, channels, detents and random surface irregularities.
24. A method of delivering one or more prostheses to a treatment site in a vessel comprising:
positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses;
selecting a desired number of the prostheses to deploy;
deploying the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment;
controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses with an expandable coil member coupled with the prostheses; and
removing the expandable coil member from the deployed prostheses.
25. A method as in claim 24, wherein removing the coil member comprises rotating the coil member.
26. A method as in claim 25, wherein the coil member is helically threaded through the prostheses, and rotating the coil member unthreads the coil member from one or more prostheses.
27. A method as in claim 24, further comprising controlling rotational displacement of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses.
28. A method as in claim 27, wherein the rotational displacement is controlled by interleaving adjacent ends of adjacent prostheses and interleaving a proximal end of a proximal-most prosthesis with a portion of the catheter device.
29. A method as in claim 24, wherein a distal portion of the coil member expands with the selected number of prostheses.
30. A method of delivering one or more prostheses to a treatment site in a vessel comprising:
positioning a delivery catheter at the treatment site, the delivery catheter carrying a plurality of self-expanding prostheses within an evertible tube;
selecting a desired number of the prostheses to deploy; and
everting a distal portion of the evertible tube to deploy the desired number of prostheses from the delivery catheter into the vessel, each prosthesis expanding into contact with the vessel upon deployment.
31. A method as in claim 30, wherein the distal portion of the evertible tube is everted by sliding an outer shaft of the catheter device relative to an inner shaft of the catheter device.
32. A method as in claim 31, wherein a distal end of the outer shaft is coupled with a distal end of the evertible tube, and wherein sliding the outer shaft proximally relative to the inner shaft causes the distal end of the evertible tube to bend outward and fold over on itself.
33. A method as in claim 30, further comprising controlling axial displacement of each of the selected number of prostheses relative to the delivery catheter during deployment of the prostheses by contacting an adherent inner surface of the evertible tube with the prostheses.
34. A method as in claim 33, wherein the adherent surface maintains engagement with the prostheses until the distal portion of the evertible tube is peeled away from the prostheses.
35. A method as in claim 33, wherein the adherent surface comprises a friction-inducing coating or friction-inducing surface feature.
36. A method as in claim 33, wherein contacting the adherent surface with the prostheses comprises releasably coupling one or more retention structures on the inner surface with the prostheses.
37. A method as in claim 33, wherein contacting the adherent surface with the prostheses comprises embedding the prostheses in a deformable material on the adherent inner surface.
38. A prosthesis delivery catheter comprising:
an outer shaft having a distal end and a first lumen;
a plurality of self-expanding tubular prostheses carried within the first lumen, the prostheses being adapted to radially expand upon deployment from the first lumen; and
a control member extending distally from the distal end of the outer shaft and defining an interior communicating with the first lumen for receiving one or more of the prostheses, the control member having an undeflected shape when not engaged by any of the prostheses and being configured to deflect radially outwardly when engaged by a prosthesis during the expansion thereof, the control member being configured to resiliently return to the undeflected shape when the prosthesis is removed from the interior.
39. The prosthesis delivery catheter of claim 38, wherein the control member comprises a plurality of tines arranged in a generally cylindrical pattern, the tines being outwardly deflectable as the prostheses expand.
40. The prosthesis delivery catheter of claim 39, wherein the control member further comprises a web extending between the tines.
41. The prosthesis delivery catheter of claim 40, wherein the web is a distensible elastomer.
42. The prosthesis delivery catheter of claim 38, wherein the control member comprises a radially distensible elastomeric tube.
43. The prosthesis delivery catheter of claim 38, further comprising:
an inner shaft slidable relative to the outer shaft; and
a nose piece at the distal end of the inner shaft disposed distally of the control member, the nose piece having a proximal opening adapted to receive a distal end of the control member.
44. The prosthesis delivery catheter of claim 43, wherein the control member comprises a plurality of tines arranged in a generally cylindrical pattern, the tines having inwardly-oriented distal tips for positioning in the proximal opening of the nose piece.
45. The prosthesis delivery catheter of claim 38, wherein the control member is adapted to be slidably removed from the prosthesis following the expansion thereof.
46. The prosthesis delivery catheter of claim 38, wherein the prostheses are adapted for deployment in groups of at least two at a single treatment site.
47. The prosthesis delivery catheter of claim 46, wherein each of the prostheses has axially extending elements configured to interleave with axially extending elements on an adjacent prosthesis.
48. The prosthesis delivery catheter of claim 47, wherein the control member is adapted to control expansion of the prostheses such that the axially extending elements remain interleaved when at least two prostheses are deployed adjacent to each other.
49. The prosthesis delivery catheter of claim 38, further comprising a pusher slidably disposed within the first lumen, the pusher engaging at least one of the prostheses to deploy the prostheses from the first lumen.
US10/957,079 2004-06-28 2004-09-30 Devices and methods for controlling expandable prosthesis during develoyment Abandoned US20050288764A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/957,079 US20050288764A1 (en) 2004-06-28 2004-09-30 Devices and methods for controlling expandable prosthesis during develoyment
PCT/US2005/024931 WO2006005082A2 (en) 2004-06-28 2005-06-23 Devices and methods for controlling expandable prostheses during deployment
EP05778125.4A EP1761206B1 (en) 2004-06-28 2005-06-23 Devices and methods for controlling expandable prostheses during deployment
AU2005260787A AU2005260787A1 (en) 2004-06-28 2005-06-23 Devices and methods for controlling expandable prostheses during deployment
CA002568733A CA2568733A1 (en) 2004-06-28 2005-06-23 Devices and methods for controlling expandable prostheses during deployment
JP2007518394A JP4891901B2 (en) 2004-06-28 2005-06-23 Device and method for controlling an expandable prosthesis during deployment
US11/752,448 US8317859B2 (en) 2004-06-28 2007-05-23 Devices and methods for controlling expandable prostheses during deployment
US12/471,064 US8986362B2 (en) 2004-06-28 2009-05-22 Devices and methods for controlling expandable prostheses during deployment
US13/684,006 US9700448B2 (en) 2004-06-28 2012-11-21 Devices and methods for controlling expandable prostheses during deployment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/879,949 US20050288766A1 (en) 2004-06-28 2004-06-28 Devices and methods for controlling expandable prostheses during deployment
US10/957,079 US20050288764A1 (en) 2004-06-28 2004-09-30 Devices and methods for controlling expandable prosthesis during develoyment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/879,949 Continuation-In-Part US20050288766A1 (en) 2004-06-28 2004-06-28 Devices and methods for controlling expandable prostheses during deployment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/752,448 Continuation-In-Part US8317859B2 (en) 2004-06-28 2007-05-23 Devices and methods for controlling expandable prostheses during deployment
US12/471,064 Continuation US8986362B2 (en) 2004-06-28 2009-05-22 Devices and methods for controlling expandable prostheses during deployment

Publications (1)

Publication Number Publication Date
US20050288764A1 true US20050288764A1 (en) 2005-12-29

Family

ID=35507044

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/879,949 Abandoned US20050288766A1 (en) 2004-06-28 2004-06-28 Devices and methods for controlling expandable prostheses during deployment
US10/944,282 Active 2025-04-07 US7300456B2 (en) 2004-06-28 2004-09-17 Custom-length self-expanding stent delivery systems with stent bumpers
US10/957,079 Abandoned US20050288764A1 (en) 2004-06-28 2004-09-30 Devices and methods for controlling expandable prosthesis during develoyment
US11/945,142 Abandoned US20080077229A1 (en) 2004-06-28 2007-11-26 Custom-length self-expanding stent delivery systems with stent bumpers
US12/471,064 Active US8986362B2 (en) 2004-06-28 2009-05-22 Devices and methods for controlling expandable prostheses during deployment

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/879,949 Abandoned US20050288766A1 (en) 2004-06-28 2004-06-28 Devices and methods for controlling expandable prostheses during deployment
US10/944,282 Active 2025-04-07 US7300456B2 (en) 2004-06-28 2004-09-17 Custom-length self-expanding stent delivery systems with stent bumpers

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/945,142 Abandoned US20080077229A1 (en) 2004-06-28 2007-11-26 Custom-length self-expanding stent delivery systems with stent bumpers
US12/471,064 Active US8986362B2 (en) 2004-06-28 2009-05-22 Devices and methods for controlling expandable prostheses during deployment

Country Status (2)

Country Link
US (5) US20050288766A1 (en)
JP (1) JP4891901B2 (en)

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060079805A1 (en) * 2004-10-13 2006-04-13 Miller Michael E Site marker visable under multiple modalities
US20060173296A1 (en) * 2004-10-13 2006-08-03 Miller Michael E Site marker visable under multiple modalities
US20060271151A1 (en) * 2005-05-31 2006-11-30 Xtent, Inc. In situ stent formation
US20070021820A1 (en) * 2005-07-21 2007-01-25 Med Institute, Inc. Stent delivery system with a retention wire
US20070060996A1 (en) * 2005-09-09 2007-03-15 Richard Goodin Coil shaft
US20070060999A1 (en) * 2005-08-17 2007-03-15 Michael Randall Variable speed stent delivery system
US20070093726A1 (en) * 2004-10-13 2007-04-26 Leopold Phillip M Site marker visible under multiple modalities
US20070156223A1 (en) * 2005-12-30 2007-07-05 Dennis Vaughan Stent delivery system with improved delivery force distribution
US20070213672A1 (en) * 2006-03-09 2007-09-13 Nippon Sherwood Medical Industries Ltd. Medical Tube Set
WO2007136946A2 (en) * 2001-12-03 2007-11-29 Xtent, Inc. Delivery catheter having active engagement mechanism for prosthesis
US20080027528A1 (en) * 2006-07-31 2008-01-31 Boston Scientific Scimed, Inc. Stent retaining mechanisms
US20080140098A1 (en) * 2006-11-15 2008-06-12 Monica Kumar Anastomosis Balloon Configurations and device
US20080161902A1 (en) * 2006-12-26 2008-07-03 William Cook Europe Aps Delivery system and sheath for endoluminal prosthesis
WO2008079638A1 (en) * 2006-12-21 2008-07-03 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20080207989A1 (en) * 2005-08-29 2008-08-28 Ams Research Corporation System For Positioning Support Mesh in a Patient
US20080269603A1 (en) * 2004-10-13 2008-10-30 Nicoson Zachary R Site marker visible under multiple modalities
US20080275540A1 (en) * 2005-11-09 2008-11-06 Ning Wen Artificial Heart Valve Stent and Weaving Method Thereof
WO2008137177A2 (en) * 2007-05-07 2008-11-13 Gore Enterprise Holdings, Inc. Stent delivery and deployment system
US20090048656A1 (en) * 2005-11-09 2009-02-19 Ning Wen Delivery Device for Delivering a Self-Expanding Stent
US20090069670A1 (en) * 2004-10-13 2009-03-12 Mark Joseph L Site marker
US20090099640A1 (en) * 2006-03-30 2009-04-16 Ning Weng Axial Pullwire Tension Mechanism for Self-Expanding Stent
US20090157159A1 (en) * 2007-12-12 2009-06-18 Peter Schneider Device and method for tacking plaque to blood vessel wall
US20090182407A1 (en) * 2008-01-14 2009-07-16 Boston Scientific Scimed, Inc. Luer or clamp-type suture release apparatus and method for loading and delivering a stent
US20090240270A1 (en) * 2008-03-21 2009-09-24 Peter Schneider Device and method for opening blood vessels by pre-angioplasty serration and dilatation of atherosclerotic plaque
US20100030255A1 (en) * 2008-06-30 2010-02-04 Humberto Berra Abdominal aortic aneurysms: systems and methods of use
US20100042121A1 (en) * 2008-03-21 2010-02-18 Peter Schneider Pre-angioplasty serration of atherosclerotic plaque enabling low-pressure balloon angioplasty and avoidance of stenting
US20100161605A1 (en) * 2008-12-23 2010-06-24 Yahoo! Inc. Context transfer in search advertising
US20100178643A1 (en) * 2009-01-14 2010-07-15 Lund Jonathan J Anastomosis deployment force training tool
US20100249815A1 (en) * 2009-03-25 2010-09-30 Cook Incorporated Everted sheath thrombectomy device
US20100256726A1 (en) * 2007-03-13 2010-10-07 Medtronic Vascular, Inc Braided Flange Branch Graft for Branch Vessel
US20100262225A1 (en) * 2007-12-12 2010-10-14 Peter Schneider Device and method for tacking plaque to a blood vessel wall
US20110034987A1 (en) * 2009-08-04 2011-02-10 Kennedy Kenneth C Roll sleeve mechanism for proximal release stent
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7892274B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7918881B2 (en) 2003-06-09 2011-04-05 Xtent, Inc. Stent deployment systems and methods
US7938852B2 (en) 2001-12-03 2011-05-10 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20110178588A1 (en) * 2008-09-05 2011-07-21 Kenneth Haselby Apparatus and methods for improved stent deployment
US20110184509A1 (en) * 2010-01-27 2011-07-28 Abbott Laboratories Dual sheath assembly and method of use
US20110208292A1 (en) * 2010-02-19 2011-08-25 Abbott Laboratories Hinged sheath assembly and method of use
US8016870B2 (en) 2001-12-03 2011-09-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US8016871B2 (en) 2001-12-03 2011-09-13 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20110224533A1 (en) * 2010-03-10 2011-09-15 Siemens Aktiengesellschaft Element That Can Be Fixed In A Blood Vessel And Is Provided With Biomarkers
US20110230954A1 (en) * 2009-06-11 2011-09-22 Peter Schneider Stent device having focal elevating elements for minimal surface area contact with lumen walls
US8062344B2 (en) 2001-04-30 2011-11-22 Angiomed Gmbh & Co. Medizintechnik Kg Variable speed self-expanding stent delivery system and luer locking connector
US20110301685A1 (en) * 2010-06-08 2011-12-08 Veniti, Inc. Bi-directional stent delivery system
US20110307049A1 (en) * 2010-06-08 2011-12-15 Stephen Kao Bi-directional stent delivery system
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US8083788B2 (en) 2001-12-03 2011-12-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20120035705A1 (en) * 2007-12-12 2012-02-09 Robert Giasolli Deployment device for placement of multiple intraluminal surgical staples
US20120071960A1 (en) * 2010-09-21 2012-03-22 Terumo Kabushiki Kaisha Artificial blood vessel and artificial blood vessel system
US8142487B2 (en) 2001-03-29 2012-03-27 Xtent, Inc. Balloon catheter for multiple adjustable stent deployment
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8177831B2 (en) 2001-12-03 2012-05-15 Xtent, Inc. Stent delivery apparatus and method
US8226710B2 (en) 2005-05-13 2012-07-24 Medtronic Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US20120197377A1 (en) * 2011-02-01 2012-08-02 Micrus Endovascular Corporation Wire with compliant sheath
US8257427B2 (en) 2001-09-11 2012-09-04 J.W. Medical Systems, Ltd. Expandable stent
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8282680B2 (en) 2003-01-17 2012-10-09 J. W. Medical Systems Ltd. Multiple independent nested stent structures and methods for their preparation and deployment
US8313525B2 (en) * 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8382825B2 (en) 2004-05-25 2013-02-26 Covidien Lp Flexible vascular occluding device
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US8403981B2 (en) * 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8460358B2 (en) 2004-03-30 2013-06-11 J.W. Medical Systems, Ltd. Rapid exchange interventional devices and methods
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US8500799B2 (en) 2006-06-20 2013-08-06 Cardiacmd, Inc. Prosthetic heart valves, support structures and systems and methods for implanting same
US20130245752A1 (en) * 2010-09-14 2013-09-19 Transcatheter Technologies Gmbh Device intended to be attached to or interconnected with a catheter, catheter and method
US20130261652A1 (en) * 2012-03-30 2013-10-03 Medtronic, Inc. Methods and Tools for Clearing the Epidural Space in Preparation for Medical Lead Implantation
US20130261729A1 (en) * 2012-03-30 2013-10-03 Abbott Caridovascular Systems Inc. Control of balloon inflation rate during deployment of scaffold
US20130274871A1 (en) * 2007-08-31 2013-10-17 Edwards Lifesciences Corporation Recoil inhibitor for prosthetic valve
US8585747B2 (en) 2003-12-23 2013-11-19 J.W. Medical Systems Ltd. Devices and methods for controlling and indicating the length of an interventional element
US8608770B2 (en) 2004-02-27 2013-12-17 Cardiacmd, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US8636756B2 (en) 2005-02-18 2014-01-28 Ams Research Corporation Anastomosis device and surgical tool actuation mechanism configurations
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US8673000B2 (en) 2008-01-24 2014-03-18 Medtronic, Inc. Stents for prosthetic heart valves
US8702781B2 (en) 2001-12-03 2014-04-22 J.W. Medical Systems Ltd. Apparatus and methods for delivery of multiple distributed stents
US20140121754A1 (en) * 2012-10-31 2014-05-01 Cook Medical Technologies Llc Apparatus and methods for improved stent deployment
US20140128969A1 (en) * 2007-02-05 2014-05-08 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8747386B2 (en) 2010-12-16 2014-06-10 Ams Research Corporation Anastomosis device and related methods
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
US8795347B2 (en) 2008-09-25 2014-08-05 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
US8808347B2 (en) 2008-09-25 2014-08-19 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US8920482B2 (en) 2011-06-30 2014-12-30 Cook Medical Technologies Llc Stent delivery system
US8932342B2 (en) 2010-07-30 2015-01-13 Cook Medical Technologies Llc Controlled release and recapture prosthetic deployment device
US8979917B2 (en) 2008-09-25 2015-03-17 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
US8980297B2 (en) 2007-02-20 2015-03-17 J.W. Medical Systems Ltd. Thermo-mechanically controlled implants and methods of use
US8986362B2 (en) 2004-06-28 2015-03-24 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
CN104519838A (en) * 2012-08-10 2015-04-15 W.L.戈尔及同仁股份有限公司 Systems of deployment of endoluminal devices
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9078779B2 (en) 2006-08-07 2015-07-14 C. R. Bard, Inc. Hand-held actuator device
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US9149379B2 (en) 2007-07-16 2015-10-06 Cook Medical Technologies Llc Delivery device
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US20150313739A1 (en) * 2012-12-11 2015-11-05 Carag Ag Stent Applicator
US9192500B1 (en) 2015-01-29 2015-11-24 Intact Vascular, Inc. Delivery device and method of delivery
US9198784B2 (en) 2005-06-08 2015-12-01 J.W. Medical Systems Ltd. Apparatus and methods for deployment of multiple custom-length prostheses
US20150374404A1 (en) * 2008-08-08 2015-12-31 Incept, Inc. Apparatus and methods for accessing and removing material from body lumens
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US20160030712A1 (en) * 2014-07-30 2016-02-04 Biotronik Ag Insertion device for insertion of a medical implant
US9254210B2 (en) 2011-02-08 2016-02-09 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
US9308108B2 (en) 2013-03-13 2016-04-12 Cook Medical Technologies Llc Controlled release and recapture stent-deployment device
US9314356B2 (en) 2010-01-29 2016-04-19 Cook Medical Technologies Llc Mechanically expandable delivery and dilation systems
US9320631B2 (en) 2003-09-03 2016-04-26 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9333104B2 (en) 2003-09-03 2016-05-10 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US20160135975A1 (en) * 2013-07-22 2016-05-19 Terumo Kabushiki Kaisha Stent delivery system
US9364356B2 (en) 2011-02-08 2016-06-14 Advanced Bifurcation System, Inc. System and methods for treating a bifurcation with a fully crimped stent
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US20160184118A1 (en) * 2014-12-30 2016-06-30 Cook Medical Technologies Llc Low profile prosthesis delivery device
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9456914B2 (en) 2015-01-29 2016-10-04 Intact Vascular, Inc. Delivery device and method of delivery
US9504829B2 (en) 2013-11-08 2016-11-29 Nuvectra Corporation Implantable medical lead with collapsible fixation member
US9554929B2 (en) 2012-04-12 2017-01-31 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US9561124B2 (en) 2003-09-03 2017-02-07 Bolton Medical, Inc. Methods of self-aligning stent grafts
CN106466205A (en) * 2010-07-08 2017-03-01 因特脉管有限公司 System for delivery of vascular prosthese
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US9615949B2 (en) 2008-12-30 2017-04-11 Cook Medical Technologies Llc Delivery device
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9730818B2 (en) 2007-12-12 2017-08-15 Intact Vascular, Inc. Endoluminal device and method
US9737424B2 (en) 2008-09-25 2017-08-22 Advanced Bifurcation Systems, Inc. Partially crimped stent
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US9827123B2 (en) 2009-03-13 2017-11-28 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
US20180098848A1 (en) * 2016-10-12 2018-04-12 Medtronic Vascular, Inc. Stented prosthetic heart valve delivery system having an expandable bumper
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US10105250B2 (en) 2003-09-03 2018-10-23 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US10166374B2 (en) 2015-09-17 2019-01-01 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US10201421B2 (en) * 2010-08-17 2019-02-12 St. Jude Medical, Llc Tip for medical implant delivery system
US10232147B2 (en) 2011-05-27 2019-03-19 Abbott Cardiovascular Systems Inc. Method for assembling a scaffold-balloon catheter
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
US10322020B2 (en) * 2015-09-18 2019-06-18 Terumo Corporation Pushable implant delivery system
US10433996B2 (en) 2014-03-13 2019-10-08 Abbott Cardiovascular Systems Inc. Striped sheaths for medical devices
US10471238B2 (en) 2014-11-03 2019-11-12 Cagent Vascular, Llc Serration balloon
US10470907B2 (en) 2011-06-21 2019-11-12 Abbott Cardiovascular Systems Inc. Sheaths used with polymer scaffolds
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US10653859B2 (en) * 2014-10-07 2020-05-19 Pacesetter, Inc. Delivery catheter systems and methods
US10687969B2 (en) 2016-06-29 2020-06-23 Boston Scientific Scimed, Inc. Stent delivery system
US10857016B2 (en) 2017-04-26 2020-12-08 Boston Scientific Scimed, Inc. Proximal and distal release delivery system
US10905863B2 (en) 2016-11-16 2021-02-02 Cagent Vascular, Llc Systems and methods of depositing drug into tissue through serrations
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US11219750B2 (en) 2008-03-21 2022-01-11 Cagent Vascular, Inc. System and method for plaque serration
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US11285001B2 (en) 2018-01-07 2022-03-29 Jc Medical, Inc. Heart valve prosthesis delivery system
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US11304799B2 (en) 2015-11-06 2022-04-19 Micor Limited Mitral valve prosthesis
US11369779B2 (en) 2018-07-25 2022-06-28 Cagent Vascular, Inc. Medical balloon catheters with enhanced pushability
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US11446144B2 (en) 2009-03-30 2022-09-20 Jc Medical, Inc. Devices and methods for delivery of valve prostheses
US11510769B2 (en) 2013-03-14 2022-11-29 Jc Medical, Inc. Embolic protection devices and methods of use
US11523924B2 (en) * 2015-04-28 2022-12-13 Cook Medical Technologies Llc Medical cannulae, delivery systems and methods
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
US11738181B2 (en) 2014-06-04 2023-08-29 Cagent Vascular, Inc. Cage for medical balloon

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
US20050080475A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US7192440B2 (en) * 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7403966B2 (en) * 2003-12-08 2008-07-22 Freescale Semiconductor, Inc. Hardware for performing an arithmetic function
US20050228477A1 (en) * 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
US20060069424A1 (en) * 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
WO2006096449A2 (en) * 2005-03-03 2006-09-14 Hines Richard A Endovascular aneurysm treatment device and delivery system
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US8118852B2 (en) * 2005-07-13 2012-02-21 Cook Medical Technologies Llc Introducer for self-expandable medical device
CA2625264C (en) 2005-10-13 2015-12-15 Synthes (U.S.A.) Drug-impregnated sleeve for a medical implant
US20070118079A1 (en) * 2005-11-21 2007-05-24 Moberg John R Medical devices and related systems and methods
US20070179587A1 (en) * 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
US20070208407A1 (en) * 2006-03-06 2007-09-06 Michael Gerdts Medical device delivery systems
US20070219617A1 (en) * 2006-03-17 2007-09-20 Sean Saint Handle for Long Self Expanding Stent
US20070293936A1 (en) * 2006-04-28 2007-12-20 Dobak John D Iii Systems and methods for creating customized endovascular stents and stent grafts
GB0700560D0 (en) * 2007-01-11 2007-02-21 Emcision Ltd Device and method for the treatment of diseased tissue such as tumours
US20080097620A1 (en) 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US20070282421A1 (en) * 2006-05-31 2007-12-06 Parker Fred T Stent Assembly for Protecting the Interior Surface of a Vessel
US8478437B2 (en) * 2006-06-16 2013-07-02 The Invention Science Fund I, Llc Methods and systems for making a blood vessel sleeve
US8147537B2 (en) * 2006-06-16 2012-04-03 The Invention Science Fund I, Llc Rapid-prototyped custom-fitted blood vessel sleeve
US8551155B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Stent customization system and method
US8095382B2 (en) * 2006-06-16 2012-01-10 The Invention Science Fund I, Llc Methods and systems for specifying a blood vessel sleeve
US8550344B2 (en) * 2006-06-16 2013-10-08 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US7818084B2 (en) * 2006-06-16 2010-10-19 The Invention Science Fund, I, LLC Methods and systems for making a blood vessel sleeve
US8163003B2 (en) 2006-06-16 2012-04-24 The Invention Science Fund I, Llc Active blood vessel sleeve methods and systems
US9089347B2 (en) 2006-07-07 2015-07-28 Orthophoenix, Llc Medical device with dual expansion mechanism
US20080269865A1 (en) * 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
US8177798B2 (en) 2006-12-05 2012-05-15 Tyco Healthcare Group Lp Adhesive coated stent and insertion instrument
US20080140175A1 (en) * 2006-12-07 2008-06-12 Boucher Donald D Spring stop for stent delivery system and delivery system provided with same
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US20080172120A1 (en) * 2007-01-12 2008-07-17 Calvin Fenn Endoprosthesis delivery systems and related methods
WO2008118896A1 (en) * 2007-03-26 2008-10-02 Dynamic Flowform Corp. Proximally self-locking long bone prosthesis
US20080255653A1 (en) * 2007-04-13 2008-10-16 Medtronic Vascular, Inc. Multiple Stent Delivery System and Method
US7766953B2 (en) * 2007-05-16 2010-08-03 Med Institute, Inc. Deployment system for an expandable stent
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US20090076584A1 (en) * 2007-09-19 2009-03-19 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses
WO2009086269A2 (en) * 2007-12-21 2009-07-09 Massachusetts Institute Of Technology Endovascular devices/catheter platforms and methods for achieving congruency in sequentially deployed devices
CA2961051C (en) 2008-02-29 2020-01-14 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
DE102008012113A1 (en) * 2008-03-02 2009-09-03 Transcatheter Technologies Gmbh Implant e.g. heart-valve-carrying stent, for e.g. arresting blood vessel, has fiber by which section of implant is reducible according to increasing of implant at extended diameter by unfolding or expansion of diameter with expansion unit
EP2259736B1 (en) 2008-03-14 2012-04-25 Synthes GmbH Nested expandable sleeve implant
US20090264987A1 (en) * 2008-04-18 2009-10-22 Medtronic Vascular, Inc. Stent Graft Delivery System and Method of Use
EP3970633A1 (en) 2008-04-21 2022-03-23 Covidien LP Braid-ball embolic devices and delivery systems
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
US8244352B2 (en) * 2008-06-19 2012-08-14 Cardiac Pacemakers, Inc. Pacing catheter releasing conductive liquid
US8639357B2 (en) 2008-06-19 2014-01-28 Cardiac Pacemakers, Inc. Pacing catheter with stent electrode
US9409012B2 (en) 2008-06-19 2016-08-09 Cardiac Pacemakers, Inc. Pacemaker integrated with vascular intervention catheter
US8457738B2 (en) 2008-06-19 2013-06-04 Cardiac Pacemakers, Inc. Pacing catheter for access to multiple vessels
US20090318943A1 (en) * 2008-06-19 2009-12-24 Tracee Eidenschink Vascular intervention catheters with pacing electrodes
US9037235B2 (en) * 2008-06-19 2015-05-19 Cardiac Pacemakers, Inc. Pacing catheter with expandable distal end
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
CN102137626A (en) 2008-07-22 2011-07-27 微治疗公司 Vascular remodeling device
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
JP2010082187A (en) * 2008-09-30 2010-04-15 Olympus Corp Surgical manipulator system
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US20100137966A1 (en) * 2008-12-01 2010-06-03 Cook Incorporated System and method for sequentially deploying two or more implantable medical devices
WO2010095519A1 (en) * 2009-02-17 2010-08-26 テルモ株式会社 Biological model for training and method for producing biological model for training
WO2010096570A2 (en) * 2009-02-23 2010-08-26 John To Stent strut appositioner
JP2010240203A (en) * 2009-04-07 2010-10-28 Jms Co Ltd Artificial blood vessel holder
US8876877B2 (en) * 2009-04-23 2014-11-04 Medtronic Vascular, Inc. Centering for a TAA
US20100318180A1 (en) * 2009-06-15 2010-12-16 Boston Scientific Scimed, Inc. Multi-layer stent assembly
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
AU2010328106A1 (en) 2009-12-08 2012-07-05 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
CN102740799A (en) 2010-01-28 2012-10-17 泰科保健集团有限合伙公司 Vascular remodeling device
US9561102B2 (en) 2010-06-02 2017-02-07 Medtronic, Inc. Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve
JP2012000327A (en) * 2010-06-18 2012-01-05 Kaneka Corp Stent delivery catheter
AU2014280976B2 (en) * 2010-07-08 2017-07-06 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
AT15630U1 (en) * 2010-07-08 2018-03-15 Intact Vascular Inc Device for using multiple intraluminal surgical clips
JP5672807B2 (en) * 2010-07-16 2015-02-18 株式会社カネカ Stent delivery catheter
KR101117524B1 (en) 2010-09-03 2012-03-20 신경민 A catheter for surgical stent
EP2428189A1 (en) * 2010-09-10 2012-03-14 Symetis Sa Catheter delivery system for stent valve
WO2012037327A1 (en) * 2010-09-16 2012-03-22 Mayo Foundation For Medical Education And Research Mechanically adjustable variable diameter stent
WO2012082755A1 (en) 2010-12-13 2012-06-21 Nanostim, Inc. Pacemaker retrieval systems and methods
FR2970864B1 (en) * 2011-02-01 2015-01-02 Stentys DELIVERY SYSTEM FOR A STENT
AU2012214240B2 (en) 2011-02-11 2015-03-12 Covidien Lp Two-stage deployment aneurysm embolization devices
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
US20120245674A1 (en) 2011-03-25 2012-09-27 Tyco Healthcare Group Lp Vascular remodeling device
WO2012142189A1 (en) * 2011-04-11 2012-10-18 Skardia, Llc Prostheses, systems and methods for percutaneous heart valve replacement
US20120290065A1 (en) * 2011-05-12 2012-11-15 Boston Scientific Scimed Inc. Pre-Positioned Anastomosis Device and Related Methods of Use
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US8577693B2 (en) 2011-07-13 2013-11-05 The Invention Science Fund I, Llc Specialty stents with flow control features or the like
US9339384B2 (en) 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9554904B2 (en) * 2011-09-28 2017-01-31 Medtronic CV Luxembourg S.a.r.l. Distal tip assembly for a heart valve delivery catheter
WO2013049448A1 (en) 2011-09-29 2013-04-04 Covidien Lp Vascular remodeling device
US9220620B2 (en) 2011-11-22 2015-12-29 Cook Medical Technologies Llc Endoluminal prosthesis introducer
CA3097364C (en) 2011-12-09 2023-08-01 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
TWI590843B (en) 2011-12-28 2017-07-11 信迪思有限公司 Films and methods of manufacture
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US20130226278A1 (en) * 2012-02-23 2013-08-29 Tyco Healthcare Group Lp Methods and apparatus for luminal stenting
US9254212B2 (en) * 2012-04-06 2016-02-09 Abbott Cardiovascular Systems Inc. Segmented scaffolds and delivery thereof for peripheral applications
US9078659B2 (en) 2012-04-23 2015-07-14 Covidien Lp Delivery system with hooks for resheathability
DE102012104544A1 (en) * 2012-05-25 2013-11-28 Acandis Gmbh & Co. Kg Delivery system for a medical functional element, set with such a delivery system and method for discharging a medical functional element from such a delivery system
US9724222B2 (en) * 2012-07-20 2017-08-08 Covidien Lp Resheathable stent delivery system
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US8834556B2 (en) * 2012-08-13 2014-09-16 Abbott Cardiovascular Systems Inc. Segmented scaffold designs
CN102793598B (en) * 2012-08-30 2015-09-09 吕文峰 The former expandable stent induction system of ball
US20140067048A1 (en) 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
US10524909B2 (en) * 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US20140180387A1 (en) * 2012-12-21 2014-06-26 Stryker Nv Operations Limited Stent delivery system
US10219924B2 (en) 2012-12-26 2019-03-05 Stryker Corporation Multilayer stent
US9295571B2 (en) * 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US9763819B1 (en) * 2013-03-05 2017-09-19 W. L. Gore & Associates, Inc. Tapered sleeve
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US9585761B2 (en) 2013-03-14 2017-03-07 DePuy Synthes Products, Inc. Angulated rings and bonded foils for use with balloons for fusion and dynamic stabilization
US9572676B2 (en) 2013-03-14 2017-02-21 DePuy Synthes Products, Inc. Adjustable multi-volume balloon for spinal interventions
US9351860B2 (en) 2013-03-14 2016-05-31 Cook Medical Technologies Llc Loading tool for capturing stent points
US9358120B2 (en) 2013-03-14 2016-06-07 DePuy Synthes Products, Inc. Expandable coil spinal implant
CN105142545B (en) 2013-03-15 2018-04-06 柯惠有限合伙公司 Locking device
US11291573B2 (en) 2013-03-15 2022-04-05 Cook Medical Technologies Llc Delivery system for a self-expanding medical device
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
CA2908342C (en) 2013-05-20 2021-11-30 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
EP3010560B1 (en) 2013-06-21 2020-01-01 DePuy Synthes Products, Inc. Films and methods of manufacture
CA2914856C (en) 2013-06-25 2021-03-09 Chad Perrin Thrombus management and structural compliance features for prosthetic heart valves
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US10130500B2 (en) 2013-07-25 2018-11-20 Covidien Lp Methods and apparatus for luminal stenting
CN105555231B (en) 2013-08-01 2018-02-09 坦迪尼控股股份有限公司 External membrane of heart anchor and method
US9974676B2 (en) 2013-08-09 2018-05-22 Cook Medical Technologies Llc Wire collection device with geared advantage
US9974677B2 (en) 2013-08-20 2018-05-22 Cook Medical Technologies Llc Wire collection device for stent delivery system
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US8968383B1 (en) 2013-08-27 2015-03-03 Covidien Lp Delivery of medical devices
JP2016535647A (en) 2013-09-13 2016-11-17 アボット カーディオバスキュラー システムズ インコーポレイテッド Braided scaffold
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
CA2924389C (en) 2013-10-28 2021-11-09 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
CN104605966A (en) * 2013-11-05 2015-05-13 朱霖 Tracheal stent conveyor
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
CN106170269B (en) * 2014-02-21 2019-01-11 爱德华兹生命科学卡迪尔克有限责任公司 The delivery apparatus of controlled deployment for valve substitutes
US10966850B2 (en) 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US9974678B2 (en) 2014-03-10 2018-05-22 Cook Medical Technologies Llc Wire collection device with varying collection diameter
CN106163459B (en) * 2014-04-08 2018-05-29 斯瑞克公司 Implantation material delivery system
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
WO2016093877A1 (en) 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
KR101669179B1 (en) * 2014-12-29 2016-10-27 (의료)길의료재단 Balloon-attached stent deployment apparatus and method of use thereof
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
US20180000619A1 (en) * 2015-01-29 2018-01-04 Intact Vascular, Inc. Delivery device and method of delivery
JP6718459B2 (en) 2015-02-05 2020-07-08 テンダイン ホールディングス,インコーポレイテッド Expandable epicardial pad and device and methods of delivery thereof
US20160242943A1 (en) 2015-02-20 2016-08-25 Cook Medical Technologies Llc Duet stent deployment system and method of performing a transjugular intrahepatic portosystemic shunting procedure using same
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
WO2016168609A1 (en) 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP4335415A2 (en) 2015-05-14 2024-03-13 Cephea Valve Technologies, Inc. Replacement mitral valves
JP6938471B2 (en) 2015-09-18 2021-09-22 マイクロベンション インコーポレイテッドMicrovention, Inc. Implant retention, separation and pressing system
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
DE102015116628A1 (en) 2015-09-30 2017-03-30 Möller Medical Gmbh Device for introducing a stent into a body vessel
US10350067B2 (en) * 2015-10-26 2019-07-16 Edwards Lifesciences Corporation Implant delivery capsule
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10500046B2 (en) * 2015-12-14 2019-12-10 Medtronic, Inc. Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
US10159568B2 (en) * 2015-12-14 2018-12-25 Medtronic, Inc. Delivery system having retractable wires as a coupling mechanism and a deployment mechanism for a self-expanding prosthesis
JP6795591B2 (en) 2015-12-28 2020-12-02 テンダイン ホールディングス,インコーポレイテッド Atrial pocket closure for artificial heart valve
EP3213714A1 (en) * 2016-03-03 2017-09-06 Biotronik AG Insertion catheter and catheter assembly
CN205612594U (en) * 2016-03-15 2016-10-05 北京奇伦天佑创业投资有限公司 Take ramose tectorial membrane support and implantation system thereof
EP3436090A4 (en) * 2016-03-29 2020-02-19 Boston Scientific Scimed, Inc. Mechanically assisted stent delivery system
WO2017176553A1 (en) 2016-04-05 2017-10-12 Boston Scientific Scimed, Inc. Stent delivery device
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
WO2017218375A1 (en) 2016-06-13 2017-12-21 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
CN106264807B (en) * 2016-08-16 2018-01-09 常州乐奥医疗科技股份有限公司 A kind of intravascular stent induction system
CN207871025U (en) * 2016-09-23 2018-09-18 杭州启明医疗器械有限公司 A kind of recyclable and resetting intervention apparatus transport system
CN106473850B (en) * 2016-11-02 2018-05-01 尹先哲 Complexity esophageal stricture particle stenter to implant device
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
CA3051272C (en) 2017-01-23 2023-08-22 Cephea Valve Technologies, Inc. Replacement mitral valves
EP3585305A1 (en) 2017-02-23 2020-01-01 Boston Scientific Scimed, Inc. Medical drain device
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11065009B2 (en) * 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
US11065136B2 (en) 2018-02-08 2021-07-20 Covidien Lp Vascular expandable devices
JP2021520873A (en) * 2018-04-09 2021-08-26 エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation Expandable sheath
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US10441449B1 (en) 2018-05-30 2019-10-15 Vesper Medical, Inc. Rotary handle stent delivery system and method
US10449073B1 (en) 2018-09-18 2019-10-22 Vesper Medical, Inc. Rotary handle stent delivery system and method
US11648115B2 (en) 2018-10-03 2023-05-16 Edwards Lifesciences Corporation Expandable introducer sheath
US10390982B1 (en) 2018-11-13 2019-08-27 Icad Endovascular Llc Systems and methods for delivery retrievable stents
JP7216578B2 (en) * 2019-03-05 2023-02-01 朝日インテック株式会社 stent delivery system
EP3934591A4 (en) * 2019-03-08 2022-11-23 Neovasc Tiara Inc. Retrievable prosthesis delivery system
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
CN111012557B (en) * 2019-11-21 2022-09-02 先健科技(深圳)有限公司 Balloon catheter
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
WO2021136167A1 (en) * 2019-12-30 2021-07-08 杭州诺茂医疗科技有限公司 Guidewire locking system and guidewire locking apparatus
WO2021207043A1 (en) * 2020-04-06 2021-10-14 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
US11219541B2 (en) 2020-05-21 2022-01-11 Vesper Medical, Inc. Wheel lock for thumbwheel actuated device
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
JP2023548982A (en) * 2020-11-09 2023-11-21 ヴェノヴァ メディカル、インコーポレイテッド Endovascular implants, devices, and accurate placement methods
CN116940311A (en) * 2022-02-23 2023-10-24 艾露姆技术股份有限公司 Neurovascular shunt and delivery system
CN116236684B (en) * 2023-04-26 2024-03-12 心擎医疗(苏州)股份有限公司 Catheter pump

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US619995A (en) * 1899-02-21 Carl richter
US4069825A (en) * 1976-01-28 1978-01-24 Taichiro Akiyama Surgical thread and cutting apparatus for the same
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4564014A (en) * 1980-01-30 1986-01-14 Thomas J. Fogarty Variable length dilatation catheter apparatus and method
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4988356A (en) * 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US4994066A (en) * 1988-10-07 1991-02-19 Voss Gene A Prostatic stent
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5013318A (en) * 1990-07-31 1991-05-07 Special Devices Incorporated Medical instrument for measuring depth of fastener hold in bone
US5092877A (en) * 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US5300085A (en) * 1986-04-15 1994-04-05 Advanced Cardiovascular Systems, Inc. Angioplasty apparatus facilitating rapid exchanges and method
US5490837A (en) * 1991-07-05 1996-02-13 Scimed Life Systems, Inc. Single operator exchange catheter having a distal catheter shaft section
US5496346A (en) * 1987-01-06 1996-03-05 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5593412A (en) * 1994-03-01 1997-01-14 Cordis Corporation Stent delivery method and apparatus
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5709701A (en) * 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US5723003A (en) * 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5722669A (en) * 1995-09-26 1998-03-03 Keeper Co., Ltd. Resin CVJ boot with distinct large and small crest portions
US5735869A (en) * 1994-11-30 1998-04-07 Schneider (Europe) A.G. Balloon catheter and stent delivery device
US5855563A (en) * 1992-11-02 1999-01-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5870381A (en) * 1995-07-10 1999-02-09 Matsushita Electric Industrial Co., Ltd. Method for transmitting signals from a plurality of transmitting units and receiving the signals
US5879370A (en) * 1994-02-25 1999-03-09 Fischell; Robert E. Stent having a multiplicity of undulating longitudinals
US5891190A (en) * 1989-08-24 1999-04-06 Boneau; Michael D. Endovascular support device and method
US5895398A (en) * 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
US6022374A (en) * 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6033434A (en) * 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US6042589A (en) * 1998-03-17 2000-03-28 Medicorp, S.A. Reversible-action endoprosthesis delivery device
US6179878B1 (en) * 1996-10-22 2001-01-30 Thomas Duerig Composite self expanding stent device having a restraining element
US6183509B1 (en) * 1995-05-04 2001-02-06 Alain Dibie Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device
US6187034B1 (en) * 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6190402B1 (en) * 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US6200337B1 (en) * 1996-03-10 2001-03-13 Terumo Kabushiki Kaisha Implanting stent
US6334871B1 (en) * 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US6357104B1 (en) * 1993-08-18 2002-03-19 David J. Myers Method of making an intraluminal stent graft
US20020037358A1 (en) * 1997-08-13 2002-03-28 Barry James J. Loading and release of water-insoluble drugs
US6375676B1 (en) * 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6379365B1 (en) * 1999-03-29 2002-04-30 Alexis Diaz Stent delivery catheter system having grooved shaft
US6511468B1 (en) * 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6520987B1 (en) * 1997-02-25 2003-02-18 Symbiotech Medical, Inc Expandable intravascular stent
US6527799B2 (en) * 1998-10-29 2003-03-04 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US20030045923A1 (en) * 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6676695B2 (en) * 2001-05-30 2004-01-13 Jan Otto Solem Vascular instrument and method
US6676693B1 (en) * 2001-06-27 2004-01-13 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent
US6679909B2 (en) * 2001-07-31 2004-01-20 Advanced Cardiovascular Systems, Inc. Rapid exchange delivery system for self-expanding stent
US20040024450A1 (en) * 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US20040030380A1 (en) * 2002-04-24 2004-02-12 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6692465B2 (en) * 1991-06-11 2004-02-17 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US6699280B2 (en) * 1999-04-15 2004-03-02 Mayo Foundation For Medical Education And Research Multi-section stent
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6709440B2 (en) * 2001-05-17 2004-03-23 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6709379B1 (en) * 1998-11-02 2004-03-23 Alcove Surfaces Gmbh Implant with cavities containing therapeutic agents
US6712827B2 (en) * 1996-08-23 2004-03-30 Scimed Life Systems, Inc. Stent delivery system
US6712846B1 (en) * 1997-04-30 2004-03-30 Schering Aktiengesellschaft Polymer-coated stents, processes for producing the same and their use for restenosis prevention
US6723071B2 (en) * 2001-03-14 2004-04-20 Scimed Life Systems, Inc. Rapid exchange stent delivery system and associated components
US6837901B2 (en) * 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US20050010276A1 (en) * 2001-12-03 2005-01-13 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US20050028477A1 (en) * 2003-07-28 2005-02-10 Freyssinet International (Stup) Method for strengthening a structure and associated anchorage unit
US6855125B2 (en) * 1999-05-20 2005-02-15 Conor Medsystems, Inc. Expandable medical device delivery system and method
US20050038505A1 (en) * 2001-11-05 2005-02-17 Sun Biomedical Ltd. Drug-delivery endovascular stent and method of forming the same
US20050049673A1 (en) * 2001-12-03 2005-03-03 Xtent, Inc. A Delaware Corporation Apparatus and methods for delivery of braided prostheses
US6878161B2 (en) * 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US20050080474A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. Fixed stent delivery devices and methods
US20050080475A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US20050090846A1 (en) * 2003-07-18 2005-04-28 Wesley Pedersen Valvuloplasty devices and methods
US6994721B2 (en) * 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US20060069424A1 (en) * 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
US7192440B2 (en) * 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US20070067012A1 (en) * 2001-12-03 2007-03-22 Xtent, Inc. Custom length stent apparatus
US20070088420A1 (en) * 2003-06-09 2007-04-19 Xtent, Inc. Stent deployment systems and methods
US20070088422A1 (en) * 2001-12-03 2007-04-19 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20070088368A1 (en) * 2001-12-03 2007-04-19 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7208001B2 (en) * 2003-04-24 2007-04-24 Medtronic Vascular, Inc. Catheter with detached proximal inflation and guidewire shafts
US7314480B2 (en) * 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
US7320702B2 (en) * 2005-06-08 2008-01-22 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US7326236B2 (en) * 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20080077229A1 (en) * 2004-06-28 2008-03-27 Xtent, Inc. Custom-length self-expanding stent delivery systems with stent bumpers
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method

Family Cites Families (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468224A (en) 1982-01-28 1984-08-28 Advanced Cardiovascular Systems, Inc. System and method for catheter placement in blood vessels of a human patient
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4891225A (en) * 1984-05-21 1990-01-02 Massachusetts Institute Of Technology Bioerodible polyanhydrides for controlled drug delivery
DE3442736A1 (en) 1984-11-23 1986-06-05 Tassilo Dr.med. 7800 Freiburg Bonzel DILATATION CATHETER
US4690684A (en) 1985-07-12 1987-09-01 C. R. Bard, Inc. Meltable stent for anastomosis
US4770176A (en) 1985-07-12 1988-09-13 C. R. Bard, Inc. Vessel anastomosis using meltable stent
US4681110A (en) 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US5061273A (en) 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4775337A (en) 1986-12-02 1988-10-04 Universal Manufacturing Corporation Conductive wire with integral electrical terminal
ES2043796T3 (en) 1987-02-27 1994-01-01 Bard Inc C R CATHETER AND CHUCK EXCHANGE SYSTEM.
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5171222A (en) 1988-03-10 1992-12-15 Scimed Life Systems, Inc. Interlocking peel-away dilation catheter
US4994298A (en) * 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
US6730105B2 (en) 1988-07-29 2004-05-04 Samuel Shiber Clover leaf shaped tubular medical device
US5226913A (en) 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
US4950227A (en) 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
DE68915150T2 (en) 1989-01-30 1994-10-13 Bard Inc C R Quickly replaceable coronary catheter.
US5217495A (en) 1989-05-10 1993-06-08 United States Surgical Corporation Synthetic semiabsorbable composite yarn
US5035706A (en) 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
US5158548A (en) 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5122154A (en) * 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
AR246020A1 (en) * 1990-10-03 1994-03-30 Hector Daniel Barone Juan Carl A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms.
US5533968A (en) * 1991-05-15 1996-07-09 Advanced Cardiovascular Systems, Inc. Low profile catheter with expandable outer tubular member
US5527354A (en) 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5976107A (en) 1991-07-05 1999-11-02 Scimed Life Systems. Inc. Catheter having extendable guide wire lumen
DK0533960T3 (en) 1991-07-29 1995-01-30 Brandes Bernd Method for Detecting Leakages in Liquid Media Pipes
US5443498A (en) 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5456713A (en) 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5628775A (en) * 1991-11-08 1997-05-13 Ep Technologies, Inc. Flexible bond for sleeves enclosing a bendable electrode tip assembly
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
CA2117386A1 (en) 1992-01-09 1993-07-22 Motasim M. Sirhan Guidewire replacement device
US5261887A (en) 1992-01-22 1993-11-16 Baxter International Inc. Easy-to-handle, self-guiding catheter stripper
US5246421A (en) 1992-02-12 1993-09-21 Saab Mark A Method of treating obstructed regions of bodily passages
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5273536A (en) 1992-04-02 1993-12-28 Vicky Savas Tapered balloon catheter
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5562725A (en) 1992-09-14 1996-10-08 Meadox Medicals Inc. Radially self-expanding implantable intraluminal device
US5312415A (en) * 1992-09-22 1994-05-17 Target Therapeutics, Inc. Assembly for placement of embolic coils using frictional placement
EP0596145B1 (en) 1992-10-31 1996-05-08 Schneider (Europe) Ag Disposition for implanting a self-expanding endoprothesis
WO1994015549A1 (en) 1992-12-30 1994-07-21 Schneider (Usa) Inc. Apparatus for deploying body implantable stents
US5328469A (en) * 1993-03-19 1994-07-12 Roger Coletti Hybrid balloon angioplasty catheter and methods of use
CA2161776C (en) * 1993-04-28 2005-12-20 Chandrashekhar P. Pathak Apparatus and methods for intraluminal photothermoforming
US5549553A (en) 1993-04-29 1996-08-27 Scimed Life Systems, Inc. Dilation ballon for a single operator exchange intravascular catheter or similar device
US5480423A (en) 1993-05-20 1996-01-02 Boston Scientific Corporation Prosthesis delivery
US5334187A (en) 1993-05-21 1994-08-02 Cathco, Inc. Balloon catheter system with slit opening handle
US5391172A (en) * 1993-05-24 1995-02-21 Advanced Cardiovascular Systems, Inc. Stent delivery system with coaxial catheter handle
US5458615A (en) 1993-07-06 1995-10-17 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5445646A (en) 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
US5549635A (en) 1994-01-24 1996-08-27 Solar, Rita & Gaterud, Ltd. Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
EP0997115B1 (en) 1994-04-01 2003-10-29 Prograft Medical, Inc. Self-expandable stent and stent-graft and method of preparing them
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5478349A (en) 1994-04-28 1995-12-26 Boston Scientific Corporation Placement of endoprostheses and stents
JP3647456B2 (en) 1994-04-29 2005-05-11 ボストン・サイエンティフィック・コーポレーション Medical artificial stent and method for producing the same
US5693085A (en) 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5554181A (en) 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5514093A (en) 1994-05-19 1996-05-07 Scimed Life Systems, Inc. Variable length balloon dilatation catheter
US5683451A (en) * 1994-06-08 1997-11-04 Cardiovascular Concepts, Inc. Apparatus and methods for deployment release of intraluminal prostheses
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5636641A (en) 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5470315A (en) 1994-09-20 1995-11-28 Scimed Life Systems, Inc. Over-the-wire type balloon catheter with proximal hypotube
US5702419A (en) 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US5531735A (en) * 1994-09-27 1996-07-02 Hercules Incorporated Medical devices containing triggerable disintegration agents
US5549563A (en) 1994-10-11 1996-08-27 Kronner; Richard F. Reinforcing insert for uterine manipulator
US5522882A (en) * 1994-10-21 1996-06-04 Impra, Inc. Method and apparatus for balloon expandable stent-graft delivery
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
CA2163823A1 (en) 1994-11-28 1996-05-29 Richard S. Stack System and method for delivering multiple stents
US5628755A (en) * 1995-02-20 1997-05-13 Schneider (Europe) A.G. Balloon catheter and stent delivery system
CA2163708C (en) 1994-12-07 2007-08-07 Robert E. Fischell Integrated dual-function catheter system for balloon angioplasty and stent delivery
US5549551A (en) 1994-12-22 1996-08-27 Advanced Cardiovascular Systems, Inc. Adjustable length balloon catheter
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
ATE220308T1 (en) 1995-03-01 2002-07-15 Scimed Life Systems Inc LONGITUDONLY FLEXIBLE AND EXPANDABLE STENT
US7204848B1 (en) * 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US5709713A (en) 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
WO1996032078A1 (en) 1995-04-14 1996-10-17 Schneider (Usa) Inc. Rolling membrane stent delivery device
US5807398A (en) 1995-04-28 1998-09-15 Shaknovich; Alexander Shuttle stent delivery catheter
US5534007A (en) * 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5681347A (en) 1995-05-23 1997-10-28 Boston Scientific Corporation Vena cava filter delivery system
WO1996037167A1 (en) 1995-05-25 1996-11-28 Raychem Corporation Stent assembly
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
AU6093096A (en) 1995-06-06 1996-12-24 Corvita Corporation Endovascular measuring apparatus, loading and deployment means
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5877224A (en) 1995-07-28 1999-03-02 Rutgers, The State University Of New Jersey Polymeric drug formulations
US5797951A (en) 1995-08-09 1998-08-25 Mueller; Edward Gene Expandable support member
US5776141A (en) 1995-08-28 1998-07-07 Localmed, Inc. Method and apparatus for intraluminal prosthesis delivery
DE19531659C2 (en) 1995-08-29 1998-07-02 Ernst Peter Prof Dr M Strecker Stent
US6899728B1 (en) * 1998-01-26 2005-05-31 Bridport (Uk) Limited Reinforced graft
US5769882A (en) 1995-09-08 1998-06-23 Medtronic, Inc. Methods and apparatus for conformably sealing prostheses within body lumens
US5702418A (en) 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
WO1997010778A1 (en) 1995-09-18 1997-03-27 W.L. Gore & Associates, Inc. A delivery system for intraluminal vascular grafts
US5868704A (en) * 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US5749848A (en) 1995-11-13 1998-05-12 Cardiovascular Imaging Systems, Inc. Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and method of use for guided stent deployment
US5755697A (en) * 1995-11-22 1998-05-26 Jones; Calvin E. Self-tunneling, self-securing percutaneous catheterization device and method of use thereof
US6090063A (en) 1995-12-01 2000-07-18 C. R. Bard, Inc. Device, system and method for implantation of filaments and particles in the body
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6579305B1 (en) 1995-12-07 2003-06-17 Medtronic Ave, Inc. Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US5749921A (en) 1996-02-20 1998-05-12 Medtronic, Inc. Apparatus and methods for compression of endoluminal prostheses
CA2199890C (en) 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US6783543B2 (en) 2000-06-05 2004-08-31 Scimed Life Systems, Inc. Intravascular stent with increasing coating retaining capacity
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
FR2749500B1 (en) 1996-06-06 1998-11-20 Jacques Seguin DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US6666883B1 (en) 1996-06-06 2003-12-23 Jacques Seguin Endoprosthesis for vascular bifurcation
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
DE19630469C2 (en) 1996-07-27 2000-12-21 Michael Betzler Vascular endoprosthesis, especially for the endovascular treatment of aortic aneurysms
US6090136A (en) 1996-07-29 2000-07-18 Radiance Medical Systems, Inc. Self expandable tubular support
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US5755781A (en) 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US6217585B1 (en) * 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US6007517A (en) 1996-08-19 1999-12-28 Anderson; R. David Rapid exchange/perfusion angioplasty catheter
JP3968444B2 (en) * 1996-08-23 2007-08-29 ボストン サイエンティフィック サイムド,インコーポレイテッド Stent delivery mechanism with stent fixation device
US6123712A (en) 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
US20030093143A1 (en) * 1999-03-01 2003-05-15 Yiju Zhao Medical device having surface depressions containing nitric oxide releasing compound
US5921971A (en) * 1996-09-13 1999-07-13 Boston Scientific Corporation Single operator exchange biliary catheter
US6254628B1 (en) 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US5772669A (en) 1996-09-27 1998-06-30 Scimed Life Systems, Inc. Stent deployment catheter with retractable sheath
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US5843119A (en) 1996-10-23 1998-12-01 United States Surgical Corporation Apparatus and method for dilatation of a body lumen and delivery of a prothesis therein
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US5843090A (en) 1996-11-05 1998-12-01 Schneider (Usa) Inc. Stent delivery device
WO1998020810A1 (en) 1996-11-12 1998-05-22 Medtronic, Inc. Flexible, radially expansible luminal prostheses
DE59610631D1 (en) 1996-11-15 2003-09-04 Schneider Europ Gmbh Buelach Balloon catheter and stent delivery device
US5749890A (en) * 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
CN1626048B (en) 1997-01-24 2012-09-12 帕拉贡知识产权有限责任公司 Expandable device having bistable spring construction
JP3523765B2 (en) 1997-01-24 2004-04-26 テルモ株式会社 Living organ dilator
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US6035856A (en) 1997-03-06 2000-03-14 Scimed Life Systems Percutaneous bypass with branching vessel
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
IL128261A0 (en) 1999-01-27 1999-11-30 Disc O Tech Medical Tech Ltd Expandable element
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US6852252B2 (en) * 1997-03-12 2005-02-08 William Marsh Rice University Use of metalnanoshells to impede the photo-oxidation of conjugated polymer
US5817101A (en) 1997-03-13 1998-10-06 Schneider (Usa) Inc Fluid actuated stent delivery system
US5792144A (en) 1997-03-31 1998-08-11 Cathco, Inc. Stent delivery catheter system
US5843172A (en) 1997-04-15 1998-12-01 Advanced Cardiovascular Systems, Inc. Porous medicated stent
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6143016A (en) * 1997-04-21 2000-11-07 Advanced Cardiovascular Systems, Inc. Sheath and method of use for a stent delivery system
US5965879A (en) 1997-05-07 1999-10-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding
DE59711575D1 (en) 1997-06-10 2004-06-03 Schneider Europ Gmbh Buelach catheter system
US6004328A (en) 1997-06-19 1999-12-21 Solar; Ronald J. Radially expandable intraluminal stent and delivery catheter therefore and method of using the same
FR2764794B1 (en) 1997-06-20 1999-11-12 Nycomed Lab Sa EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS
DE19728337A1 (en) 1997-07-03 1999-01-07 Inst Mikrotechnik Mainz Gmbh Implantable stent
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US5899935A (en) 1997-08-04 1999-05-04 Schneider (Usa) Inc. Balloon expandable braided stent with restraint
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
DE69838256T2 (en) 1997-09-24 2008-05-15 Med Institute, Inc., West Lafayette RADIAL EXPANDABLE STENT
US5972027A (en) 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system
US5961536A (en) 1997-10-14 1999-10-05 Scimed Life Systems, Inc. Catheter having a variable length balloon and method of using the same
NO311781B1 (en) 1997-11-13 2002-01-28 Medinol Ltd Metal multilayer stents
US6241691B1 (en) * 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6027519A (en) * 1997-12-15 2000-02-22 Stanford; Ulf Harry Catheter with expandable multiband segment
US6050999A (en) * 1997-12-18 2000-04-18 Keravision, Inc. Corneal implant introducer and method of use
US6159178A (en) * 1998-01-23 2000-12-12 Heartport, Inc. Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6699724B1 (en) * 1998-03-11 2004-03-02 Wm. Marsh Rice University Metal nanoshells for biosensing applications
US6428811B1 (en) 1998-03-11 2002-08-06 Wm. Marsh Rice University Temperature-sensitive polymer/nanoshell composites for photothermally modulated drug delivery
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6425898B1 (en) 1998-03-13 2002-07-30 Cordis Corporation Delivery apparatus for a self-expanding stent
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
US6132460A (en) 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent
US6558415B2 (en) * 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US6102942A (en) 1998-03-30 2000-08-15 Endovascular Technologies, Inc. Stent/graft deployment catheter with a stent/graft attachment mechanism
US6063111A (en) * 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
IE980241A1 (en) * 1998-04-02 1999-10-20 Salviac Ltd Delivery catheter with split sheath
US6037647A (en) 1998-05-08 2000-03-14 Fujitsu Limited Semiconductor device having an epitaxial substrate and a fabrication process thereof
JP2002515308A (en) * 1998-05-15 2002-05-28 メジネイション,インク. Enhanced balloon expansion system
US6036725A (en) 1998-06-10 2000-03-14 General Science And Technology Expandable endovascular support device
US6171334B1 (en) * 1998-06-17 2001-01-09 Advanced Cardiovascular Systems, Inc. Expandable stent and method of use
DE19829702C1 (en) 1998-07-03 2000-03-16 Heraeus Gmbh W C Radially expandable support device V
WO2000012832A2 (en) 1998-08-26 2000-03-09 Molecular Geodesics, Inc. Radially expandable device
US6120522A (en) * 1998-08-27 2000-09-19 Scimed Life Systems, Inc. Self-expanding stent delivery catheter
WO2000015151A1 (en) 1998-09-16 2000-03-23 Isostent, Inc. Linkage stent
US5997563A (en) 1998-09-28 1999-12-07 Medtronic, Inc. Implantable stent having variable diameter
US6196995B1 (en) * 1998-09-30 2001-03-06 Medtronic Ave, Inc. Reinforced edge exchange catheter
US6254612B1 (en) 1998-10-22 2001-07-03 Cordis Neurovascular, Inc. Hydraulic stent deployment system
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
SG75982A1 (en) 1998-12-03 2000-10-24 Medinol Ltd Controlled detachment stents
US6340366B2 (en) 1998-12-08 2002-01-22 Bandula Wijay Stent with nested or overlapping rings
US6022359A (en) * 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6350277B1 (en) * 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6558414B2 (en) 1999-02-02 2003-05-06 Impra, Inc. Partial encapsulation of stents using strips and bands
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
EP1156758B1 (en) 1999-02-26 2008-10-15 LeMaitre Vascular, Inc. Coiled stent
US6251134B1 (en) 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6613074B1 (en) 1999-03-10 2003-09-02 Cordis Corporation Endovascular aneurysm embolization device
US6730116B1 (en) 1999-04-16 2004-05-04 Medtronic, Inc. Medical device for intraluminal endovascular stenting
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6585756B1 (en) 1999-05-14 2003-07-01 Ernst P. Strecker Implantable lumen prosthesis
US6858034B1 (en) * 1999-05-20 2005-02-22 Scimed Life Systems, Inc. Stent delivery system for prevention of kinking, and method of loading and using same
US6241758B1 (en) * 1999-05-28 2001-06-05 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system and method of use
DE19938377A1 (en) 1999-08-06 2001-03-01 Biotronik Mess & Therapieg Stent for vascular branching
US6415696B1 (en) 1999-09-01 2002-07-09 Kennametal Pc Inc. Toolholder assembly
US6605062B1 (en) 1999-09-02 2003-08-12 Advanced Cardiovascular Systems, Inc. Catheter for guidewire support or exchange
US6203551B1 (en) * 1999-10-04 2001-03-20 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implant device
US6383171B1 (en) * 1999-10-12 2002-05-07 Allan Will Methods and devices for protecting a passageway in a body when advancing devices through the passageway
EP1225935A4 (en) 1999-10-12 2009-07-29 Allan R Will Methods and devices for protecting a passageway in a body
US6409753B1 (en) 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6325823B1 (en) 1999-10-29 2001-12-04 Revasc Corporation Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US6287291B1 (en) 1999-11-09 2001-09-11 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
US6428569B1 (en) 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
JP4473390B2 (en) 2000-01-07 2010-06-02 川澄化学工業株式会社 Stent and stent graft
US6322586B1 (en) 2000-01-10 2001-11-27 Scimed Life Systems, Inc. Catheter tip designs and method of manufacture
US6312458B1 (en) 2000-01-19 2001-11-06 Scimed Life Systems, Inc. Tubular structure/stent/stent securement member
JP2003521334A (en) 2000-02-04 2003-07-15 ウィルソン−クック メディカル インコーポレイテッド Stent introducer device
US6530944B2 (en) * 2000-02-08 2003-03-11 Rice University Optically-active nanoparticles for use in therapeutic and diagnostic methods
US7373197B2 (en) 2000-03-03 2008-05-13 Intramedical Imaging, Llc Methods and devices to expand applications of intraoperative radiation probes
KR20030025222A (en) 2000-03-08 2003-03-28 기븐 이미징 리미티드 A device and system for in vivo imaging
DE10012460A1 (en) 2000-03-15 2001-09-20 Biotronik Mess & Therapieg Stent consists of several adjacent lengthwise tubular sections joined by first and second connections consisting of cell-type elements of one orientation.
US6264683B1 (en) 2000-03-17 2001-07-24 Advanced Cardiovascular Systems, Inc. Stent delivery catheter with bumpers for improved retention of balloon expandable stents
AUPQ641400A0 (en) 2000-03-23 2000-04-15 Kleiner, Daniel E. A device incorporating a hollow member for being positioned along a body cavity of a patient and method of positioning same
US6315708B1 (en) 2000-03-31 2001-11-13 Cordis Corporation Stent with self-expanding end sections
US6964676B1 (en) 2000-04-14 2005-11-15 Scimed Life Systems, Inc. Stent securement system
US6825203B2 (en) 2000-04-28 2004-11-30 Memorial Sloan-Kettering Cancer Center Topical anesthetic/opioid formulations and uses thereof
US6451050B1 (en) 2000-04-28 2002-09-17 Cardiovasc, Inc. Stent graft and method
JP4939717B2 (en) 2000-05-02 2012-05-30 ウィルソン−クック メディカル インコーポレイテッド Catheter with reversible sleeve O.D. T.A. Introducing device for L
US6602282B1 (en) 2000-05-04 2003-08-05 Avantec Vascular Corporation Flexible stent structure
WO2001091918A1 (en) 2000-05-31 2001-12-06 Advanced Cardiovascular Systems, Inc. An apparatus and method for forming a coating onto a surface of a prosthesis
JP4754714B2 (en) * 2000-06-01 2011-08-24 テルモ株式会社 Intraluminal indwelling
US6569180B1 (en) * 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US6554848B2 (en) 2000-06-02 2003-04-29 Advanced Cardiovascular Systems, Inc. Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6529549B1 (en) * 2000-07-27 2003-03-04 2Wire, Inc. System and method for an equalizer-based symbol timing loop
US6773446B1 (en) 2000-08-02 2004-08-10 Cordis Corporation Delivery apparatus for a self-expanding stent
US6629992B2 (en) 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
AU2002212621A1 (en) 2000-09-14 2002-03-26 Tuborg Engineering Nv Adaptive balloon with improved flexibility
US6945989B1 (en) 2000-09-18 2005-09-20 Endotex Interventional Systems, Inc. Apparatus for delivering endoluminal prostheses and methods of making and using them
JP5053501B2 (en) 2000-09-22 2012-10-17 ボストン サイエンティフィック リミテッド Flexible and expandable stent
US6589273B1 (en) * 2000-10-02 2003-07-08 Impra, Inc. Apparatus and method for relining a blood vessel
US6602226B1 (en) 2000-10-12 2003-08-05 Scimed Life Systems, Inc. Low-profile stent delivery system and apparatus
WO2002059226A2 (en) 2000-11-03 2002-08-01 Wm. Marsh Rice University Partial coverage metal nanoshells and method of making same
US6582394B1 (en) * 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US6743251B1 (en) * 2000-11-15 2004-06-01 Scimed Life Systems, Inc. Implantable devices with polymeric detachment junction
US6607553B1 (en) 2000-11-17 2003-08-19 B. Braun Medical, Inc. Method for deploying a thermo-mechanically expandable stent
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US6884257B1 (en) * 2000-11-28 2005-04-26 Advanced Cardiovascular Systems, Inc. Stent delivery system with adjustable length balloon
US6468298B1 (en) 2000-12-28 2002-10-22 Advanced Cardiovascular Systems, Inc. Gripping delivery system for self-expanding stents and method of using the same
US6565599B1 (en) * 2000-12-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Hybrid stent
US7208002B2 (en) * 2001-01-04 2007-04-24 Boston Scientific Scimed, Inc. Expansion-assisting delivery system for self-expanding stent
DE10103000B4 (en) 2001-01-24 2007-08-30 Qualimed Innovative Medizinprodukte Gmbh Radially re-expandable vascular support
DE10105160B4 (en) 2001-02-06 2005-09-01 Osypka, Peter, Dr.-Ing. Implantable vascular support
US6540777B2 (en) * 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
NZ540000A (en) 2001-02-16 2007-05-31 Abbott Lab Vascular Entpr Ltd Implants with tacrolimus
WO2002067816A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent and delivery system
AU2002250189A1 (en) * 2001-02-26 2002-09-12 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US6790227B2 (en) * 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
US20020123786A1 (en) 2001-03-02 2002-09-05 Ventrica, Inc. Methods and devices for bypassing an obstructed target vessel by placing the vessel in communication with a heart chamber containing blood
CA2708603C (en) 2001-03-13 2015-02-17 Yoram Richter Method and apparatus for stenting
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
US6660031B2 (en) * 2001-04-11 2003-12-09 Scimed Life Systems, Inc. Multi-length delivery system
WO2002085253A1 (en) 2001-04-20 2002-10-31 The Board Of Trustees Of The Leland Stanford Junior University Drug delivery platform and methods for the inhibition of neointima formation
US6712845B2 (en) * 2001-04-24 2004-03-30 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
GB0110551D0 (en) 2001-04-30 2001-06-20 Angiomed Ag Self-expanding stent delivery service
EP1254644A1 (en) 2001-05-01 2002-11-06 Pan Medical Limited Variable form stent and deployment arrangement for use therewith
US8337540B2 (en) 2001-05-17 2012-12-25 Advanced Cardiovascular Systems, Inc. Stent for treating bifurcations and method of use
US6599314B2 (en) 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
ES2266148T5 (en) * 2001-07-20 2012-11-06 Sorin Biomedica Cardio S.R.L. Stent
US6599296B1 (en) 2001-07-27 2003-07-29 Advanced Cardiovascular Systems, Inc. Ratcheting handle for intraluminal catheter systems
JP4525958B2 (en) * 2001-08-27 2010-08-18 独立行政法人産業技術総合研究所 Manufacturing method of semiconductor device
US6796999B2 (en) 2001-09-06 2004-09-28 Medinol Ltd. Self articulating stent
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US20030055485A1 (en) 2001-09-17 2003-03-20 Intra Therapeutics, Inc. Stent with offset cell geometry
ATE519438T1 (en) * 2001-09-26 2011-08-15 Rice University OPTICALLY ABSORBING NANOPARTICLES FOR IMPROVED TISSUE REPAIR
US6778316B2 (en) 2001-10-24 2004-08-17 William Marsh Rice University Nanoparticle-based all-optical sensors
JP4043216B2 (en) * 2001-10-30 2008-02-06 オリンパス株式会社 Stent
US7014654B2 (en) * 2001-11-30 2006-03-21 Scimed Life Systems, Inc. Stent designed for the delivery of therapeutic substance or other agents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
WO2007136946A2 (en) 2001-12-03 2007-11-29 Xtent, Inc. Delivery catheter having active engagement mechanism for prosthesis
US7270668B2 (en) 2001-12-03 2007-09-18 Xtent, Inc. Apparatus and methods for delivering coiled prostheses
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US20040186551A1 (en) * 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US20030114919A1 (en) * 2001-12-10 2003-06-19 Mcquiston Jesse Polymeric stent with metallic rings
US6991646B2 (en) * 2001-12-18 2006-01-31 Linvatec Biomaterials, Inc. Method and apparatus for delivering a stent into a body lumen
WO2003053284A1 (en) 2001-12-20 2003-07-03 White Geoffrey H An intraluminal stent and graft
US7537607B2 (en) 2001-12-21 2009-05-26 Boston Scientific Scimed, Inc. Stent geometry for improved flexibility
AU2003205148A1 (en) 2002-01-16 2003-09-02 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6939368B2 (en) 2002-01-17 2005-09-06 Scimed Life Systems, Inc. Delivery system for self expanding stents for use in bifurcated vessels
US6981985B2 (en) 2002-01-22 2006-01-03 Boston Scientific Scimed, Inc. Stent bumper struts
US6911040B2 (en) 2002-01-24 2005-06-28 Cordis Corporation Covered segmented stent
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7004964B2 (en) * 2002-02-22 2006-02-28 Scimed Life Systems, Inc. Apparatus and method for deployment of an endoluminal device
US7887573B2 (en) 2002-02-22 2011-02-15 Boston Scientific Scimed, Inc. Method and apparatus for deployment of an endoluminal device
US6866679B2 (en) 2002-03-12 2005-03-15 Ev3 Inc. Everting stent and stent delivery system
GB0206061D0 (en) 2002-03-14 2002-04-24 Angiomed Ag Metal structure compatible with MRI imaging, and method of manufacturing such a structure
US7052511B2 (en) 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Delivery system and method for deployment of foreshortening endoluminal devices
US6800065B2 (en) 2002-04-04 2004-10-05 Medtronic Ave, Inc. Catheter and guide wire exchange system
US20030195609A1 (en) 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
WO2003088848A2 (en) 2002-04-16 2003-10-30 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US7470281B2 (en) 2002-04-26 2008-12-30 Medtronic Vascular, Inc. Coated stent with crimpable coating
US6645547B1 (en) 2002-05-02 2003-11-11 Labcoat Ltd. Stent coating device
WO2003101346A1 (en) 2002-05-29 2003-12-11 William A. Cook Australia Pty. Ltd. Multi-piece prosthesis deployment apparatus
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US20040015224A1 (en) * 2002-07-22 2004-01-22 Armstrong Joseph R. Endoluminal expansion system
US6761734B2 (en) 2002-07-22 2004-07-13 William S. Suhr Segmented balloon catheter for stenting bifurcation lesions
US7141063B2 (en) * 2002-08-06 2006-11-28 Icon Medical Corp. Stent with micro-latching hinge joints
US6945995B2 (en) 2002-08-29 2005-09-20 Boston Scientific Scimed, Inc. Stent overlap point markers
US8518096B2 (en) * 2002-09-03 2013-08-27 Lifeshield Sciences Llc Elephant trunk thoracic endograft and delivery system
AU2003270070A1 (en) 2002-09-04 2004-03-29 Reva Medical, Inc. A slide and lock stent and method of manufacture from a single piece shape
US6893417B2 (en) 2002-09-20 2005-05-17 Medtronic Vascular, Inc. Catheter and guide wire exchange system with improved proximal shaft and transition section
JP4033747B2 (en) 2002-09-30 2008-01-16 テルモ株式会社 Biological organ expansion device
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
US7169172B2 (en) * 2002-11-01 2007-01-30 Counter Clockwise, Inc. Method and apparatus for caged stent delivery
WO2004043298A1 (en) 2002-11-07 2004-05-27 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
CA2513721C (en) 2002-11-08 2013-04-16 Conor Medsystems, Inc. Method and apparatus for reducing tissue damage after ischemic injury
ITRM20020596A1 (en) 2002-11-27 2004-05-28 Mauro Ferrari IMPLANT VASCULAR PROSTHESIS WITH COMBINED, LAPAROSCOPIC AND ENDOVASCULAR TECHNIQUES, FOR THE TREATMENT OF ABDOMINAL AORTIC ANEURYSMS, AND OPERATIONAL EQUIPMENT FOR THE RELEASE OF A PROSTHESIS EQUIPPED WITH ANCHORING STENTS.
CA2506423C (en) 2002-12-04 2011-04-19 Cook Incorporated Method and device for treating aortic dissection
AU2003297832A1 (en) 2002-12-09 2004-06-30 Medtronic Vascular Modular stent having polymer bridges at modular unit contact sites
EP1613242B1 (en) 2003-03-26 2013-02-20 The Foundry, LLC Devices for treatment of abdominal aortic aneurysms
ATE467402T1 (en) 2003-03-26 2010-05-15 Cardiomind Inc IMPLANT DEPOSIT CATHETER WITH ELECTROLYTICALLY DEGRADABLE COMPOUNDS
US7131993B2 (en) 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US8784472B2 (en) 2003-08-15 2014-07-22 Boston Scientific Scimed, Inc. Clutch driven stent delivery system
US20050055077A1 (en) * 2003-09-05 2005-03-10 Doron Marco Very low profile medical device system having an adjustable balloon
US20050209674A1 (en) 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US20070219613A1 (en) 2003-10-06 2007-09-20 Xtent, Inc. Apparatus and methods for interlocking stent segments
US7175654B2 (en) 2003-10-16 2007-02-13 Cordis Corporation Stent design having stent segments which uncouple upon deployment
US20050085897A1 (en) * 2003-10-17 2005-04-21 Craig Bonsignore Stent design having independent stent segments which uncouple upon deployment
US20060257558A1 (en) * 2003-10-31 2006-11-16 Hiroshi Nomura Plasma polymerization of atomically modified surfaces
US7220755B2 (en) 2003-11-12 2007-05-22 Biosensors International Group, Ltd. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US7090694B1 (en) 2003-11-19 2006-08-15 Advanced Cardiovascular Systems, Inc. Portal design for stent for treating bifurcated vessels
US8157855B2 (en) 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US7244336B2 (en) * 2003-12-17 2007-07-17 Lam Research Corporation Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift
US9232948B2 (en) * 2003-12-23 2016-01-12 Stryker Corporation Catheter with distal occlusion apparatus
US20070156225A1 (en) 2003-12-23 2007-07-05 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20050149168A1 (en) 2003-12-30 2005-07-07 Daniel Gregorich Stent to be deployed on a bend
US20050171568A1 (en) 2004-01-30 2005-08-04 Niall Duffy Catheter and guidewire exchange system with improved catheter design
US20050222671A1 (en) 2004-03-31 2005-10-06 Schaeffer Darin G Partially biodegradable stent
US20050228477A1 (en) 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US20050278011A1 (en) 2004-06-10 2005-12-15 Peckham John E Stent delivery system
JP4844394B2 (en) 2004-06-25 2011-12-28 日本ゼオン株式会社 Stent
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7534449B2 (en) * 2004-07-01 2009-05-19 Yale University Targeted and high density drug loaded polymeric materials
EP1827304B1 (en) 2004-10-25 2011-04-20 Merit Medical Systems, Inc. Stent removal and repositioning device
US9050393B2 (en) 2005-02-08 2015-06-09 Bruce N. Saffran Medical devices and methods for modulation of physiology using device-based surface chemistry
US7402168B2 (en) 2005-04-11 2008-07-22 Xtent, Inc. Custom-length stent delivery system with independently operable expansion elements
US8460357B2 (en) 2005-05-31 2013-06-11 J.W. Medical Systems Ltd. In situ stent formation
US7938851B2 (en) * 2005-06-08 2011-05-10 Xtent, Inc. Devices and methods for operating and controlling interventional apparatus
US8021426B2 (en) 2005-06-15 2011-09-20 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
JP4797473B2 (en) * 2005-07-11 2011-10-19 ニプロ株式会社 Flexible stent with excellent expandability
US20080249607A1 (en) 2005-09-20 2008-10-09 Thomas Jay Webster Biocompatable Nanophase Materials
US20070179587A1 (en) 2006-01-30 2007-08-02 Xtent, Inc. Apparatus and methods for deployment of custom-length prostheses
CA2646885A1 (en) 2006-03-20 2007-09-27 Xtent, Inc. Apparatus and methods for deployment of linked prosthetic segments
WO2007124289A2 (en) 2006-04-21 2007-11-01 Xtent, Inc. Devices and methods for controlling and counting interventional elements
US20070281117A1 (en) * 2006-06-02 2007-12-06 Xtent, Inc. Use of plasma in formation of biodegradable stent coating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
JP2009542319A (en) * 2006-06-30 2009-12-03 ボストン サイエンティフィック リミテッド Stent with variable expansion column along circumference
US20080269865A1 (en) 2006-08-07 2008-10-30 Xtent, Inc. Custom Length Stent Apparatus
FR2911063B1 (en) 2007-01-09 2009-03-20 Stentys S A S Soc Par Actions RUPTIBLE BRIDGE STRUCTURE FOR STENT, AND STENT INCLUDING SUCH BRIDGE STRUCTURES.
US20080199510A1 (en) * 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US9370642B2 (en) 2007-06-29 2016-06-21 J.W. Medical Systems Ltd. Adjustable-length drug delivery balloon
US20090076584A1 (en) 2007-09-19 2009-03-19 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US619995A (en) * 1899-02-21 Carl richter
US4069825A (en) * 1976-01-28 1978-01-24 Taichiro Akiyama Surgical thread and cutting apparatus for the same
US4564014A (en) * 1980-01-30 1986-01-14 Thomas J. Fogarty Variable length dilatation catheter apparatus and method
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4739762B1 (en) * 1985-11-07 1998-10-27 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4739762A (en) * 1985-11-07 1988-04-26 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5300085A (en) * 1986-04-15 1994-04-05 Advanced Cardiovascular Systems, Inc. Angioplasty apparatus facilitating rapid exchanges and method
US5501227A (en) * 1986-04-15 1996-03-26 Yock; Paul G. Angioplasty apparatus facilitating rapid exchange and method
US5496346A (en) * 1987-01-06 1996-03-05 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4988356A (en) * 1987-02-27 1991-01-29 C. R. Bard, Inc. Catheter and guidewire exchange system
US5092877A (en) * 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5195984A (en) * 1988-10-04 1993-03-23 Expandable Grafts Partnership Expandable intraluminal graft
US4994066A (en) * 1988-10-07 1991-02-19 Voss Gene A Prostatic stent
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US5891190A (en) * 1989-08-24 1999-04-06 Boneau; Michael D. Endovascular support device and method
US5104404A (en) * 1989-10-02 1992-04-14 Medtronic, Inc. Articulated stent
US5013318A (en) * 1990-07-31 1991-05-07 Special Devices Incorporated Medical instrument for measuring depth of fastener hold in bone
US5282824A (en) * 1990-10-09 1994-02-01 Cook, Incorporated Percutaneous stent assembly
US6527789B1 (en) * 1991-01-28 2003-03-04 Advanced Cardiovascular Systems, Inc. Stent delivery system
US5507768A (en) * 1991-01-28 1996-04-16 Advanced Cardiovascular Systems, Inc. Stent delivery system
US6692465B2 (en) * 1991-06-11 2004-02-17 Advanced Cardiovascular Systems, Inc. Catheter system with catheter and guidewire exchange
US5490837A (en) * 1991-07-05 1996-02-13 Scimed Life Systems, Inc. Single operator exchange catheter having a distal catheter shaft section
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5855563A (en) * 1992-11-02 1999-01-05 Localmed, Inc. Method and apparatus for sequentially performing multiple intraluminal procedures
US5607463A (en) * 1993-03-30 1997-03-04 Medtronic, Inc. Intravascular medical device
US6357104B1 (en) * 1993-08-18 2002-03-19 David J. Myers Method of making an intraluminal stent graft
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
US5879370A (en) * 1994-02-25 1999-03-09 Fischell; Robert E. Stent having a multiplicity of undulating longitudinals
US5593412A (en) * 1994-03-01 1997-01-14 Cordis Corporation Stent delivery method and apparatus
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US5723003A (en) * 1994-09-13 1998-03-03 Ultrasonic Sensing And Monitoring Systems Expandable graft assembly and method of use
US5735869A (en) * 1994-11-30 1998-04-07 Schneider (Europe) A.G. Balloon catheter and stent delivery device
US6183509B1 (en) * 1995-05-04 2001-02-06 Alain Dibie Endoprosthesis for the treatment of blood-vessel bifurcation stenosis and purpose-built installation device
US6033434A (en) * 1995-06-08 2000-03-07 Ave Galway Limited Bifurcated endovascular stent and methods for forming and placing
US5870381A (en) * 1995-07-10 1999-02-09 Matsushita Electric Industrial Co., Ltd. Method for transmitting signals from a plurality of transmitting units and receiving the signals
US5722669A (en) * 1995-09-26 1998-03-03 Keeper Co., Ltd. Resin CVJ boot with distinct large and small crest portions
US6878161B2 (en) * 1996-01-05 2005-04-12 Medtronic Vascular, Inc. Stent graft loading and deployment device and method
US5895398A (en) * 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
US6200337B1 (en) * 1996-03-10 2001-03-13 Terumo Kabushiki Kaisha Implanting stent
US6334871B1 (en) * 1996-03-13 2002-01-01 Medtronic, Inc. Radiopaque stent markers
US5709701A (en) * 1996-05-30 1998-01-20 Parodi; Juan C. Apparatus for implanting a prothesis within a body passageway
US6190402B1 (en) * 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US6039721A (en) * 1996-07-24 2000-03-21 Cordis Corporation Method and catheter system for delivering medication with an everting balloon catheter
US6712827B2 (en) * 1996-08-23 2004-03-30 Scimed Life Systems, Inc. Stent delivery system
US6179878B1 (en) * 1996-10-22 2001-01-30 Thomas Duerig Composite self expanding stent device having a restraining element
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US6520987B1 (en) * 1997-02-25 2003-02-18 Symbiotech Medical, Inc Expandable intravascular stent
US6712846B1 (en) * 1997-04-30 2004-03-30 Schering Aktiengesellschaft Polymer-coated stents, processes for producing the same and their use for restenosis prevention
US20020037358A1 (en) * 1997-08-13 2002-03-28 Barry James J. Loading and release of water-insoluble drugs
US6511468B1 (en) * 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6022374A (en) * 1997-12-16 2000-02-08 Cardiovasc, Inc. Expandable stent having radiopaque marker and method
US6042589A (en) * 1998-03-17 2000-03-28 Medicorp, S.A. Reversible-action endoprosthesis delivery device
US6527799B2 (en) * 1998-10-29 2003-03-04 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6709379B1 (en) * 1998-11-02 2004-03-23 Alcove Surfaces Gmbh Implant with cavities containing therapeutic agents
US6187034B1 (en) * 1999-01-13 2001-02-13 John J. Frantzen Segmented stent for flexible stent delivery system
US6379365B1 (en) * 1999-03-29 2002-04-30 Alexis Diaz Stent delivery catheter system having grooved shaft
US6699280B2 (en) * 1999-04-15 2004-03-02 Mayo Foundation For Medical Education And Research Multi-section stent
US6375676B1 (en) * 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6855125B2 (en) * 1999-05-20 2005-02-15 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6702843B1 (en) * 2000-04-12 2004-03-09 Scimed Life Systems, Inc. Stent delivery means with balloon retraction means
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
US6723071B2 (en) * 2001-03-14 2004-04-20 Scimed Life Systems, Inc. Rapid exchange stent delivery system and associated components
US6837901B2 (en) * 2001-04-27 2005-01-04 Intek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
US6709440B2 (en) * 2001-05-17 2004-03-23 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6676695B2 (en) * 2001-05-30 2004-01-13 Jan Otto Solem Vascular instrument and method
US6676693B1 (en) * 2001-06-27 2004-01-13 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent
US6679909B2 (en) * 2001-07-31 2004-01-20 Advanced Cardiovascular Systems, Inc. Rapid exchange delivery system for self-expanding stent
US20030045923A1 (en) * 2001-08-31 2003-03-06 Mehran Bashiri Hybrid balloon expandable/self expanding stent
US20050038505A1 (en) * 2001-11-05 2005-02-17 Sun Biomedical Ltd. Drug-delivery endovascular stent and method of forming the same
US20050049673A1 (en) * 2001-12-03 2005-03-03 Xtent, Inc. A Delaware Corporation Apparatus and methods for delivery of braided prostheses
US7182779B2 (en) * 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20050010276A1 (en) * 2001-12-03 2005-01-13 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7351255B2 (en) * 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US20070088422A1 (en) * 2001-12-03 2007-04-19 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20070067012A1 (en) * 2001-12-03 2007-03-22 Xtent, Inc. Custom length stent apparatus
US20070088368A1 (en) * 2001-12-03 2007-04-19 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20040030380A1 (en) * 2002-04-24 2004-02-12 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US20040024450A1 (en) * 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6994721B2 (en) * 2002-10-21 2006-02-07 Israel Henry M Stent assembly
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US7314480B2 (en) * 2003-02-27 2008-01-01 Boston Scientific Scimed, Inc. Rotating balloon expandable sheath bifurcation delivery
US7208001B2 (en) * 2003-04-24 2007-04-24 Medtronic Vascular, Inc. Catheter with detached proximal inflation and guidewire shafts
US20070088420A1 (en) * 2003-06-09 2007-04-19 Xtent, Inc. Stent deployment systems and methods
US20050090846A1 (en) * 2003-07-18 2005-04-28 Wesley Pedersen Valvuloplasty devices and methods
US20050028477A1 (en) * 2003-07-28 2005-02-10 Freyssinet International (Stup) Method for strengthening a structure and associated anchorage unit
US20050080475A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. A Delaware Corporation Stent delivery devices and methods
US20050080474A1 (en) * 2003-10-14 2005-04-14 Xtent, Inc. Fixed stent delivery devices and methods
US7192440B2 (en) * 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US20080097574A1 (en) * 2003-10-15 2008-04-24 Xtent, Inc. Implantable stent delivery devices and methods
US7326236B2 (en) * 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US20080091257A1 (en) * 2003-12-23 2008-04-17 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US20080097299A1 (en) * 2004-03-30 2008-04-24 Xtent, Inc. Rapid exchange interventional devices and methods
US20080077229A1 (en) * 2004-06-28 2008-03-27 Xtent, Inc. Custom-length self-expanding stent delivery systems with stent bumpers
US20060069424A1 (en) * 2004-09-27 2006-03-30 Xtent, Inc. Self-constrained segmented stents and methods for their deployment
US7320702B2 (en) * 2005-06-08 2008-01-22 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US20080071345A1 (en) * 2005-06-08 2008-03-20 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (iii)

Cited By (396)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US8142487B2 (en) 2001-03-29 2012-03-27 Xtent, Inc. Balloon catheter for multiple adjustable stent deployment
US10912665B2 (en) 2001-03-29 2021-02-09 J.W. Medical Systems Ltd. Balloon catheter for multiple adjustable stent deployment
US9119739B2 (en) 2001-03-29 2015-09-01 J.W. Medical Systems Ltd. Balloon catheter for multiple adjustable stent deployment
US8147536B2 (en) 2001-03-29 2012-04-03 Xtent, Inc. Balloon catheter for multiple adjustable stent deployment
US9980839B2 (en) 2001-03-29 2018-05-29 J.W. Medical Systems Ltd. Balloon catheter for multiple adjustable stent deployment
US8062344B2 (en) 2001-04-30 2011-11-22 Angiomed Gmbh & Co. Medizintechnik Kg Variable speed self-expanding stent delivery system and luer locking connector
US8257427B2 (en) 2001-09-11 2012-09-04 J.W. Medical Systems, Ltd. Expandable stent
WO2007136946A3 (en) * 2001-12-03 2008-03-20 Xtent Inc Delivery catheter having active engagement mechanism for prosthesis
US8177831B2 (en) 2001-12-03 2012-05-15 Xtent, Inc. Stent delivery apparatus and method
WO2007136946A2 (en) * 2001-12-03 2007-11-29 Xtent, Inc. Delivery catheter having active engagement mechanism for prosthesis
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7892274B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US8083788B2 (en) 2001-12-03 2011-12-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US8070789B2 (en) 2001-12-03 2011-12-06 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US8956398B2 (en) 2001-12-03 2015-02-17 J.W. Medical Systems Ltd. Custom length stent apparatus
US8702781B2 (en) 2001-12-03 2014-04-22 J.W. Medical Systems Ltd. Apparatus and methods for delivery of multiple distributed stents
US8016871B2 (en) 2001-12-03 2011-09-13 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US8574282B2 (en) 2001-12-03 2013-11-05 J.W. Medical Systems Ltd. Apparatus and methods for delivery of braided prostheses
US9326876B2 (en) 2001-12-03 2016-05-03 J.W. Medical Systems Ltd. Apparatus and methods for delivery of multiple distributed stents
US8016870B2 (en) 2001-12-03 2011-09-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7938852B2 (en) 2001-12-03 2011-05-10 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US8740968B2 (en) 2003-01-17 2014-06-03 J.W. Medical Systems Ltd. Multiple independent nested stent structures and methods for their preparation and deployment
US8282680B2 (en) 2003-01-17 2012-10-09 J. W. Medical Systems Ltd. Multiple independent nested stent structures and methods for their preparation and deployment
US7918881B2 (en) 2003-06-09 2011-04-05 Xtent, Inc. Stent deployment systems and methods
US9655712B2 (en) 2003-09-03 2017-05-23 Bolton Medical, Inc. Vascular repair devices
US10213291B2 (en) 2003-09-03 2019-02-26 Bolto Medical, Inc. Vascular repair devices
US9408734B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis
US11813158B2 (en) 2003-09-03 2023-11-14 Bolton Medical, Inc. Stent graft delivery device
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9333104B2 (en) 2003-09-03 2016-05-10 Bolton Medical, Inc. Delivery systems for delivering and deploying stent grafts
US11103341B2 (en) 2003-09-03 2021-08-31 Bolton Medical, Inc. Stent graft delivery device
US10945827B2 (en) 2003-09-03 2021-03-16 Bolton Medical, Inc. Vascular repair devices
US10646365B2 (en) 2003-09-03 2020-05-12 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US10918509B2 (en) 2003-09-03 2021-02-16 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9320631B2 (en) 2003-09-03 2016-04-26 Bolton Medical, Inc. Aligning device for stent graft delivery system
US9561124B2 (en) 2003-09-03 2017-02-07 Bolton Medical, Inc. Methods of self-aligning stent grafts
US9408735B2 (en) 2003-09-03 2016-08-09 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US11413173B2 (en) 2003-09-03 2022-08-16 Bolton Medical, Inc. Stent graft with a longitudinal support member
US10390929B2 (en) 2003-09-03 2019-08-27 Bolton Medical, Inc. Methods of self-aligning stent grafts
US10182930B2 (en) 2003-09-03 2019-01-22 Bolton Medical, Inc. Aligning device for stent graft delivery system
US10105250B2 (en) 2003-09-03 2018-10-23 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US9925080B2 (en) 2003-09-03 2018-03-27 Bolton Medical, Inc. Methods of implanting a prosthesis
US9913743B2 (en) 2003-09-03 2018-03-13 Bolton Medical, Inc. Methods of implanting a prosthesis and treating an aneurysm
US9907686B2 (en) 2003-09-03 2018-03-06 Bolton Medical, Inc. System for implanting a prosthesis
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US9877857B2 (en) 2003-09-03 2018-01-30 Bolton Medical, Inc. Sheath capture device for stent graft delivery system and method for operating same
US8585747B2 (en) 2003-12-23 2013-11-19 J.W. Medical Systems Ltd. Devices and methods for controlling and indicating the length of an interventional element
US9566179B2 (en) 2003-12-23 2017-02-14 J.W. Medical Systems Ltd. Devices and methods for controlling and indicating the length of an interventional element
US8728156B2 (en) 2004-02-27 2014-05-20 Cardiac MD, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US8608770B2 (en) 2004-02-27 2013-12-17 Cardiacmd, Inc. Prosthetic heart valves, scaffolding structures, and systems and methods for implantation of same
US9168134B2 (en) 2004-02-27 2015-10-27 Cardiacmd, Inc. Method for delivering a prosthetic heart valve with an expansion member
US8460358B2 (en) 2004-03-30 2013-06-11 J.W. Medical Systems, Ltd. Rapid exchange interventional devices and methods
US8628564B2 (en) 2004-05-25 2014-01-14 Covidien Lp Methods and apparatus for luminal stenting
US9295568B2 (en) 2004-05-25 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9125659B2 (en) 2004-05-25 2015-09-08 Covidien Lp Flexible vascular occluding device
US10004618B2 (en) 2004-05-25 2018-06-26 Covidien Lp Methods and apparatus for luminal stenting
US10765542B2 (en) 2004-05-25 2020-09-08 Covidien Lp Methods and apparatus for luminal stenting
US8398701B2 (en) 2004-05-25 2013-03-19 Covidien Lp Flexible vascular occluding device
US9050205B2 (en) 2004-05-25 2015-06-09 Covidien Lp Methods and apparatus for luminal stenting
US8382825B2 (en) 2004-05-25 2013-02-26 Covidien Lp Flexible vascular occluding device
US9393021B2 (en) 2004-05-25 2016-07-19 Covidien Lp Flexible vascular occluding device
US11771433B2 (en) 2004-05-25 2023-10-03 Covidien Lp Flexible vascular occluding device
US10918389B2 (en) 2004-05-25 2021-02-16 Covidien Lp Flexible vascular occluding device
US9855047B2 (en) 2004-05-25 2018-01-02 Covidien Lp Flexible vascular occluding device
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US9801744B2 (en) 2004-05-25 2017-10-31 Covidien Lp Methods and apparatus for luminal stenting
US8986362B2 (en) 2004-06-28 2015-03-24 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US9700448B2 (en) 2004-06-28 2017-07-11 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8280486B2 (en) 2004-10-13 2012-10-02 Suros Surgical Systems, Inc. Site marker visable under multiple modalities
US20060173296A1 (en) * 2004-10-13 2006-08-03 Miller Michael E Site marker visable under multiple modalities
US20080269603A1 (en) * 2004-10-13 2008-10-30 Nicoson Zachary R Site marker visible under multiple modalities
US8352014B2 (en) 2004-10-13 2013-01-08 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US20090069670A1 (en) * 2004-10-13 2009-03-12 Mark Joseph L Site marker
US20060079805A1 (en) * 2004-10-13 2006-04-13 Miller Michael E Site marker visable under multiple modalities
US8060183B2 (en) * 2004-10-13 2011-11-15 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US20070093726A1 (en) * 2004-10-13 2007-04-26 Leopold Phillip M Site marker visible under multiple modalities
US8442623B2 (en) 2004-10-13 2013-05-14 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US8433391B2 (en) 2004-10-13 2013-04-30 Suros Surgical Systems, Inc. Site marker
US8636756B2 (en) 2005-02-18 2014-01-28 Ams Research Corporation Anastomosis device and surgical tool actuation mechanism configurations
US9060857B2 (en) 2005-05-13 2015-06-23 Medtronic Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8226710B2 (en) 2005-05-13 2012-07-24 Medtronic Corevalve, Inc. Heart valve prosthesis and methods of manufacture and use
US8257421B2 (en) 2005-05-25 2012-09-04 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9204983B2 (en) 2005-05-25 2015-12-08 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8236042B2 (en) 2005-05-25 2012-08-07 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8147534B2 (en) 2005-05-25 2012-04-03 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20120221095A1 (en) * 2005-05-25 2012-08-30 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US9095343B2 (en) * 2005-05-25 2015-08-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10064747B2 (en) 2005-05-25 2018-09-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9198666B2 (en) 2005-05-25 2015-12-01 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US10322018B2 (en) 2005-05-25 2019-06-18 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9381104B2 (en) 2005-05-25 2016-07-05 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US20060271151A1 (en) * 2005-05-31 2006-11-30 Xtent, Inc. In situ stent formation
US8460357B2 (en) 2005-05-31 2013-06-11 J.W. Medical Systems Ltd. In situ stent formation
US11439524B2 (en) 2005-06-08 2022-09-13 J.W. Medical Systems Ltd. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US9198784B2 (en) 2005-06-08 2015-12-01 J.W. Medical Systems Ltd. Apparatus and methods for deployment of multiple custom-length prostheses
US10219923B2 (en) 2005-06-08 2019-03-05 J.W. Medical Systems Ltd. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US20070021820A1 (en) * 2005-07-21 2007-01-25 Med Institute, Inc. Stent delivery system with a retention wire
US8414633B2 (en) * 2005-07-21 2013-04-09 Cook Medical Technologies Llc Stent delivery system with a retention wire
US7935141B2 (en) * 2005-08-17 2011-05-03 C. R. Bard, Inc. Variable speed stent delivery system
US20070060999A1 (en) * 2005-08-17 2007-03-15 Michael Randall Variable speed stent delivery system
US20080207989A1 (en) * 2005-08-29 2008-08-28 Ams Research Corporation System For Positioning Support Mesh in a Patient
US9084694B2 (en) * 2005-09-09 2015-07-21 Boston Scientific Scimed, Inc. Coil shaft
US20070060996A1 (en) * 2005-09-09 2007-03-15 Richard Goodin Coil shaft
US20080275540A1 (en) * 2005-11-09 2008-11-06 Ning Wen Artificial Heart Valve Stent and Weaving Method Thereof
US20090048656A1 (en) * 2005-11-09 2009-02-19 Ning Wen Delivery Device for Delivering a Self-Expanding Stent
US20070156223A1 (en) * 2005-12-30 2007-07-05 Dennis Vaughan Stent delivery system with improved delivery force distribution
US8808346B2 (en) 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US9675486B2 (en) 2006-01-13 2017-06-13 C.R. Bard, Inc. Stent delivery system
US9610181B2 (en) 2006-02-22 2017-04-04 Covidien Lp Stents having radiopaque mesh
US9320590B2 (en) 2006-02-22 2016-04-26 Covidien Lp Stents having radiopaque mesh
US8394119B2 (en) 2006-02-22 2013-03-12 Covidien Lp Stents having radiopaque mesh
US10433988B2 (en) 2006-02-22 2019-10-08 Covidien Lp Stents having radiopaque mesh
US11382777B2 (en) 2006-02-22 2022-07-12 Covidien Lp Stents having radiopaque mesh
US20140316517A1 (en) * 2006-02-27 2014-10-23 Cardiacmd, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8147541B2 (en) * 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) * 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8177752B2 (en) * 2006-03-09 2012-05-15 Tyco Healthcare Group Lp Medical tube set
US20070213672A1 (en) * 2006-03-09 2007-09-13 Nippon Sherwood Medical Industries Ltd. Medical Tube Set
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US9883957B2 (en) 2006-03-20 2018-02-06 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US20090099640A1 (en) * 2006-03-30 2009-04-16 Ning Weng Axial Pullwire Tension Mechanism for Self-Expanding Stent
US8500799B2 (en) 2006-06-20 2013-08-06 Cardiacmd, Inc. Prosthetic heart valves, support structures and systems and methods for implanting same
US20080027528A1 (en) * 2006-07-31 2008-01-31 Boston Scientific Scimed, Inc. Stent retaining mechanisms
US8439961B2 (en) * 2006-07-31 2013-05-14 Boston Scientific Scimed, Inc. Stent retaining mechanisms
US10993822B2 (en) 2006-08-07 2021-05-04 C. R. Bard, Inc. Hand-held actuator device
US9078779B2 (en) 2006-08-07 2015-07-14 C. R. Bard, Inc. Hand-held actuator device
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US20080140098A1 (en) * 2006-11-15 2008-06-12 Monica Kumar Anastomosis Balloon Configurations and device
WO2008079638A1 (en) * 2006-12-21 2008-07-03 Xtent, Inc. Automated control mechanisms and methods for custom length stent apparatus
US20080161902A1 (en) * 2006-12-26 2008-07-03 William Cook Europe Aps Delivery system and sheath for endoluminal prosthesis
US20140128969A1 (en) * 2007-02-05 2014-05-08 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8980297B2 (en) 2007-02-20 2015-03-17 J.W. Medical Systems Ltd. Thermo-mechanically controlled implants and methods of use
US9457133B2 (en) 2007-02-20 2016-10-04 J.W. Medical Systems Ltd. Thermo-mechanically controlled implants and methods of use
US20100256726A1 (en) * 2007-03-13 2010-10-07 Medtronic Vascular, Inc Braided Flange Branch Graft for Branch Vessel
US8262719B2 (en) * 2007-03-13 2012-09-11 Medtronic Vascular, Inc. Braided flange branch graft for branch vessel
US9339404B2 (en) 2007-03-22 2016-05-17 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8764816B2 (en) 2007-05-07 2014-07-01 W. L. Gore & Associates, Inc. Stent delivery and deployment system
WO2008137177A2 (en) * 2007-05-07 2008-11-13 Gore Enterprise Holdings, Inc. Stent delivery and deployment system
WO2008137177A3 (en) * 2007-05-07 2008-12-31 Gore Enterprise Holdings Inc Stent delivery and deployment system
US11026821B2 (en) 2007-07-11 2021-06-08 C. R. Bard, Inc. Device for catheter sheath retraction
US8500789B2 (en) 2007-07-11 2013-08-06 C. R. Bard, Inc. Device for catheter sheath retraction
US9421115B2 (en) 2007-07-11 2016-08-23 C. R. Bard, Inc. Device for catheter sheath retraction
US10206800B2 (en) 2007-07-11 2019-02-19 C.R. Bard, Inc. Device for catheter sheath retraction
US9149379B2 (en) 2007-07-16 2015-10-06 Cook Medical Technologies Llc Delivery device
US8808370B2 (en) * 2007-08-31 2014-08-19 Edwards Lifesciences Corporation Recoil inhibitor for prosthetic valve
US20130274871A1 (en) * 2007-08-31 2013-10-17 Edwards Lifesciences Corporation Recoil inhibitor for prosthetic valve
US10835395B2 (en) 2007-12-12 2020-11-17 Intact Vascular, Inc. Method of treating atherosclerotic occlusive disease
US20100262225A1 (en) * 2007-12-12 2010-10-14 Peter Schneider Device and method for tacking plaque to a blood vessel wall
AU2008335140B2 (en) * 2007-12-12 2012-06-28 Intact Vascular, Inc. Device and method for tacking plaque to blood vessel wall
US10278839B2 (en) 2007-12-12 2019-05-07 Intact Vascular, Inc. Endovascular impant
US9603730B2 (en) 2007-12-12 2017-03-28 Intact Vascular, Inc. Endoluminal device and method
US10022250B2 (en) * 2007-12-12 2018-07-17 Intact Vascular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US10660771B2 (en) 2007-12-12 2020-05-26 Intact Vacsular, Inc. Deployment device for placement of multiple intraluminal surgical staples
US9375327B2 (en) 2007-12-12 2016-06-28 Intact Vascular, Inc. Endovascular implant
US20090157159A1 (en) * 2007-12-12 2009-06-18 Peter Schneider Device and method for tacking plaque to blood vessel wall
US20120035705A1 (en) * 2007-12-12 2012-02-09 Robert Giasolli Deployment device for placement of multiple intraluminal surgical staples
US9974670B2 (en) 2007-12-12 2018-05-22 Intact Vascular, Inc. Method of treating atherosclerotic occlusive disease
US10166127B2 (en) 2007-12-12 2019-01-01 Intact Vascular, Inc. Endoluminal device and method
US7896911B2 (en) * 2007-12-12 2011-03-01 Innovasc Llc Device and method for tacking plaque to blood vessel wall
US9545322B2 (en) 2007-12-12 2017-01-17 Intact Vascular, Inc. Device and method for tacking plaque to blood vessel wall
US8128677B2 (en) 2007-12-12 2012-03-06 Intact Vascular LLC Device and method for tacking plaque to a blood vessel wall
US10299945B2 (en) 2007-12-12 2019-05-28 Intact Vascular, Inc. Method of treating atherosclerotic occlusive disease
US10188533B2 (en) * 2007-12-12 2019-01-29 Intact Vascular, Inc. Minimal surface area contact device for holding plaque to blood vessel wall
US20110004237A1 (en) * 2007-12-12 2011-01-06 Peter Schneider Minimal surface area contact device for holding plaque to blood vessel wall
US10799374B2 (en) 2007-12-12 2020-10-13 Intact Vascular, Inc. Device and method for tacking plaque to blood vessel wall
US9730818B2 (en) 2007-12-12 2017-08-15 Intact Vascular, Inc. Endoluminal device and method
US10117762B2 (en) 2007-12-12 2018-11-06 Intact Vascular, Inc. Endoluminal device and method
US20090182407A1 (en) * 2008-01-14 2009-07-16 Boston Scientific Scimed, Inc. Luer or clamp-type suture release apparatus and method for loading and delivering a stent
US8157852B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157853B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9339382B2 (en) 2008-01-24 2016-05-17 Medtronic, Inc. Stents for prosthetic heart valves
US11786367B2 (en) 2008-01-24 2023-10-17 Medtronic, Inc. Stents for prosthetic heart valves
US8673000B2 (en) 2008-01-24 2014-03-18 Medtronic, Inc. Stents for prosthetic heart valves
US11284999B2 (en) 2008-01-24 2022-03-29 Medtronic, Inc. Stents for prosthetic heart valves
US10820993B2 (en) 2008-01-24 2020-11-03 Medtronic, Inc. Stents for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US10016274B2 (en) 2008-01-24 2018-07-10 Medtronic, Inc. Stent for prosthetic heart valves
US8685077B2 (en) 2008-01-24 2014-04-01 Medtronics, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US10758343B2 (en) 2008-01-24 2020-09-01 Medtronic, Inc. Stent for prosthetic heart valves
US11259919B2 (en) 2008-01-24 2022-03-01 Medtronic, Inc. Stents for prosthetic heart valves
US11083573B2 (en) 2008-01-24 2021-08-10 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US10646335B2 (en) 2008-01-24 2020-05-12 Medtronic, Inc. Stents for prosthetic heart valves
US11607311B2 (en) 2008-01-24 2023-03-21 Medtronic, Inc. Stents for prosthetic heart valves
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US9592120B2 (en) 2008-03-18 2017-03-14 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US11602430B2 (en) 2008-03-18 2023-03-14 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US11278408B2 (en) 2008-03-18 2022-03-22 Medtronic Venter Technologies, Ltd. Valve suturing and implantation procedures
US8313525B2 (en) * 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US10856979B2 (en) 2008-03-18 2020-12-08 Medtronic Ventor Technologies Ltd. Valve suturing and implantation procedures
US11219750B2 (en) 2008-03-21 2022-01-11 Cagent Vascular, Inc. System and method for plaque serration
US11166742B2 (en) 2008-03-21 2021-11-09 Cagent Vascular, Inc. Method of enhancing drug uptake from a drug-eluting balloon
US20090240270A1 (en) * 2008-03-21 2009-09-24 Peter Schneider Device and method for opening blood vessels by pre-angioplasty serration and dilatation of atherosclerotic plaque
US20100042121A1 (en) * 2008-03-21 2010-02-18 Peter Schneider Pre-angioplasty serration of atherosclerotic plaque enabling low-pressure balloon angioplasty and avoidance of stenting
US11229777B2 (en) 2008-03-21 2022-01-25 Cagent Vascular, Inc. System and method for plaque serration
US8323243B2 (en) 2008-03-21 2012-12-04 Innovasc Llc Device and method for opening blood vessels by pre-angioplasty serration and dilatation of atherosclerotic plaque
US11141573B2 (en) 2008-03-21 2021-10-12 Cagent Vascular, Inc. Method for plaque serration
US9480826B2 (en) 2008-03-21 2016-11-01 Cagent Vascular, Llc Intravascular device
US9393386B2 (en) 2008-03-21 2016-07-19 Cagent Vascular, Llc Intravascular device
US11529501B2 (en) 2008-03-21 2022-12-20 Gagent Vascular, Inc. System and method for plaque serration
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US10610389B2 (en) 2008-05-13 2020-04-07 Covidien Lp Braid implant delivery systems
US10864097B2 (en) 2008-06-30 2020-12-15 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US20100030255A1 (en) * 2008-06-30 2010-02-04 Humberto Berra Abdominal aortic aneurysms: systems and methods of use
US10105248B2 (en) 2008-06-30 2018-10-23 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10307275B2 (en) 2008-06-30 2019-06-04 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US11382779B2 (en) 2008-06-30 2022-07-12 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US9364314B2 (en) * 2008-06-30 2016-06-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
US10085765B2 (en) * 2008-08-08 2018-10-02 Incept, Inc. Apparatus and methods for accessing and removing material from body lumens
US20150374404A1 (en) * 2008-08-08 2015-12-31 Incept, Inc. Apparatus and methods for accessing and removing material from body lumens
US10849647B2 (en) 2008-08-08 2020-12-01 Incept, Inc. Apparatus and methods for accessing and removing material from body lumens
US9192497B2 (en) * 2008-09-05 2015-11-24 Cook Medical Technologies Llc Apparatus and methods for improved stent deployment
US20110178588A1 (en) * 2008-09-05 2011-07-21 Kenneth Haselby Apparatus and methods for improved stent deployment
US11426297B2 (en) 2008-09-25 2022-08-30 Advanced Bifurcation Systems Inc. Selective stent crimping
US9724218B2 (en) 2008-09-25 2017-08-08 Advanced Bifurcation Systems, Inc. Methods and systems for ostial stenting of a bifurcation
US10918506B2 (en) 2008-09-25 2021-02-16 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation
US11839562B2 (en) 2008-09-25 2023-12-12 Advanced Bifurcation Systems Inc. Partially crimped stent
US9855158B2 (en) 2008-09-25 2018-01-02 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
US11857442B2 (en) 2008-09-25 2024-01-02 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation
US10610391B2 (en) 2008-09-25 2020-04-07 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US11000392B2 (en) 2008-09-25 2021-05-11 Advanced Bifurcation Systems Inc. Partially crimped stent
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
US9737424B2 (en) 2008-09-25 2017-08-22 Advanced Bifurcation Systems, Inc. Partially crimped stent
US9730821B2 (en) 2008-09-25 2017-08-15 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
US10219926B2 (en) 2008-09-25 2019-03-05 Advanced Bifurcation Systems Inc. Selective stent crimping
US8979917B2 (en) 2008-09-25 2015-03-17 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
US8795347B2 (en) 2008-09-25 2014-08-05 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
US10219927B2 (en) 2008-09-25 2019-03-05 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation
US8808347B2 (en) 2008-09-25 2014-08-19 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US8828071B2 (en) 2008-09-25 2014-09-09 Advanced Bifurcation Systems, Inc. Methods and systems for ostial stenting of a bifurcation
US20100161605A1 (en) * 2008-12-23 2010-06-24 Yahoo! Inc. Context transfer in search advertising
US9615949B2 (en) 2008-12-30 2017-04-11 Cook Medical Technologies Llc Delivery device
US8388349B2 (en) 2009-01-14 2013-03-05 Ams Research Corporation Anastomosis deployment force training tool
US20100178643A1 (en) * 2009-01-14 2010-07-15 Lund Jonathan J Anastomosis deployment force training tool
US9827123B2 (en) 2009-03-13 2017-11-28 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US10898357B2 (en) 2009-03-13 2021-01-26 Bolton Medical, Inc. System for deploying an endoluminal prosthesis at a surgical site
US20100249815A1 (en) * 2009-03-25 2010-09-30 Cook Incorporated Everted sheath thrombectomy device
US11589984B2 (en) 2009-03-30 2023-02-28 Jc Medical, Inc. Devices and methods for delivery of valve prostheses
US11446144B2 (en) 2009-03-30 2022-09-20 Jc Medical, Inc. Devices and methods for delivery of valve prostheses
US8636760B2 (en) 2009-04-20 2014-01-28 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10888443B2 (en) 2009-06-11 2021-01-12 Intact Vascular, Inc. Device for holding plaque to blood vessel wall
US20110230954A1 (en) * 2009-06-11 2011-09-22 Peter Schneider Stent device having focal elevating elements for minimal surface area contact with lumen walls
US10779971B2 (en) 2009-06-11 2020-09-22 Intact Vascular, Inc. Endovascular implant
US20110034987A1 (en) * 2009-08-04 2011-02-10 Kennedy Kenneth C Roll sleeve mechanism for proximal release stent
US10744012B2 (en) 2009-11-04 2020-08-18 Boston Scientific Scimed, Inc. Alternating circumferential bridge stent design and methods for use thereof
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9649211B2 (en) 2009-11-04 2017-05-16 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
US20110184509A1 (en) * 2010-01-27 2011-07-28 Abbott Laboratories Dual sheath assembly and method of use
US9314356B2 (en) 2010-01-29 2016-04-19 Cook Medical Technologies Llc Mechanically expandable delivery and dilation systems
US20110208292A1 (en) * 2010-02-19 2011-08-25 Abbott Laboratories Hinged sheath assembly and method of use
US8529615B2 (en) * 2010-03-10 2013-09-10 Siemens Aktiengesellschaft Element that can be fixed in a blood vessel and is provided with biomarkers
US20110224533A1 (en) * 2010-03-10 2011-09-15 Siemens Aktiengesellschaft Element That Can Be Fixed In A Blood Vessel And Is Provided With Biomarkers
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US10137013B2 (en) 2010-05-29 2018-11-27 Intact Vascular, Inc. Endoluminal device and method
US10779968B2 (en) 2010-05-29 2020-09-22 Intact Vascular, Inc. Endoluminal device and method
US8864811B2 (en) * 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9301864B2 (en) * 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US20160128857A1 (en) * 2010-06-08 2016-05-12 Veniti, Inc. Bi-directional stent delivery system
US20110307049A1 (en) * 2010-06-08 2011-12-15 Stephen Kao Bi-directional stent delivery system
US9314360B2 (en) * 2010-06-08 2016-04-19 Veniti, Inc. Bi-directional stent delivery system
US20110301685A1 (en) * 2010-06-08 2011-12-08 Veniti, Inc. Bi-directional stent delivery system
US20150005867A1 (en) * 2010-06-08 2015-01-01 Veniti, Inc. Bi-directional stent delivery system
CN110934675A (en) * 2010-07-08 2020-03-31 因特脉管有限公司 System for delivering a vascular prosthesis
CN106466205A (en) * 2010-07-08 2017-03-01 因特脉管有限公司 System for delivery of vascular prosthese
US8932342B2 (en) 2010-07-30 2015-01-13 Cook Medical Technologies Llc Controlled release and recapture prosthetic deployment device
US10201421B2 (en) * 2010-08-17 2019-02-12 St. Jude Medical, Llc Tip for medical implant delivery system
US20130245752A1 (en) * 2010-09-14 2013-09-19 Transcatheter Technologies Gmbh Device intended to be attached to or interconnected with a catheter, catheter and method
US9918839B2 (en) * 2010-09-14 2018-03-20 Venus Medtech (Hangzhou), Inc. Device intended to be attached to or interconnected with a catheter, catheter and method
US20120071960A1 (en) * 2010-09-21 2012-03-22 Terumo Kabushiki Kaisha Artificial blood vessel and artificial blood vessel system
US8652195B2 (en) * 2010-09-21 2014-02-18 Terumo Kabushiki Kaisha Artificial blood vessel and artificial blood vessel system
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
US10952879B2 (en) 2010-10-21 2021-03-23 C. R. Bard, Inc. System to deliver a bodily implant
US9801745B2 (en) 2010-10-21 2017-10-31 C.R. Bard, Inc. System to deliver a bodily implant
US8747386B2 (en) 2010-12-16 2014-06-10 Ams Research Corporation Anastomosis device and related methods
US20120197377A1 (en) * 2011-02-01 2012-08-02 Micrus Endovascular Corporation Wire with compliant sheath
US9364356B2 (en) 2011-02-08 2016-06-14 Advanced Bifurcation System, Inc. System and methods for treating a bifurcation with a fully crimped stent
US9254210B2 (en) 2011-02-08 2016-02-09 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
US11484424B2 (en) 2011-02-08 2022-11-01 Advanced Bifurcation Systems Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
US10285832B2 (en) 2011-02-08 2019-05-14 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation with a fully crimped stent
US11000393B2 (en) 2011-02-08 2021-05-11 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation with a fully crimped stent
US10406010B2 (en) 2011-02-08 2019-09-10 Advanced Bifurcation Systems Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
US11717428B2 (en) 2011-02-08 2023-08-08 Advanced Bifurcation Systems Inc. System and methods for treating a bifurcation with a fully crimped stent
US10232147B2 (en) 2011-05-27 2019-03-19 Abbott Cardiovascular Systems Inc. Method for assembling a scaffold-balloon catheter
US10271973B2 (en) 2011-06-03 2019-04-30 Intact Vascular, Inc. Endovascular implant
US10779969B2 (en) 2011-06-03 2020-09-22 Intact Vascular, Inc. Endovascular implant and deployment devices
US10285831B2 (en) 2011-06-03 2019-05-14 Intact Vascular, Inc. Endovascular implant
US10390977B2 (en) 2011-06-03 2019-08-27 Intact Vascular, Inc. Endovascular implant
US10470907B2 (en) 2011-06-21 2019-11-12 Abbott Cardiovascular Systems Inc. Sheaths used with polymer scaffolds
US8920482B2 (en) 2011-06-30 2014-12-30 Cook Medical Technologies Llc Stent delivery system
US10751081B2 (en) * 2012-03-30 2020-08-25 Medtronic, Inc. Methods and tools for clearing the epidural space in preparation for medical lead implantation
US20130261729A1 (en) * 2012-03-30 2013-10-03 Abbott Caridovascular Systems Inc. Control of balloon inflation rate during deployment of scaffold
US9517151B2 (en) * 2012-03-30 2016-12-13 Abbott Cardiovascular Systems Inc. Control of balloon inflation rate during deployment of scaffold
US20130261652A1 (en) * 2012-03-30 2013-10-03 Medtronic, Inc. Methods and Tools for Clearing the Epidural Space in Preparation for Medical Lead Implantation
US9554929B2 (en) 2012-04-12 2017-01-31 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US10299951B2 (en) 2012-04-12 2019-05-28 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US11351049B2 (en) 2012-04-12 2022-06-07 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9877856B2 (en) 2012-07-18 2018-01-30 Covidien Lp Methods and apparatus for luminal stenting
CN104519838A (en) * 2012-08-10 2015-04-15 W.L.戈尔及同仁股份有限公司 Systems of deployment of endoluminal devices
US9907643B2 (en) 2012-10-30 2018-03-06 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9301831B2 (en) 2012-10-30 2016-04-05 Covidien Lp Methods for attaining a predetermined porosity of a vascular device
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US10206798B2 (en) 2012-10-31 2019-02-19 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US20140121754A1 (en) * 2012-10-31 2014-05-01 Cook Medical Technologies Llc Apparatus and methods for improved stent deployment
US10952878B2 (en) 2012-10-31 2021-03-23 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9750626B2 (en) * 2012-10-31 2017-09-05 Cook Medical Technologies Llc Apparatus and methods for improved stent deployment
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US20150313739A1 (en) * 2012-12-11 2015-11-05 Carag Ag Stent Applicator
US9925077B2 (en) * 2012-12-11 2018-03-27 Carag Ag Stent applicator
US9561122B2 (en) 2013-02-05 2017-02-07 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
US9308108B2 (en) 2013-03-13 2016-04-12 Cook Medical Technologies Llc Controlled release and recapture stent-deployment device
US11510769B2 (en) 2013-03-14 2022-11-29 Jc Medical, Inc. Embolic protection devices and methods of use
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US10555826B2 (en) 2013-03-15 2020-02-11 Bolton Medical, Inc. Hemostasis valve and delivery systems
US11666467B2 (en) 2013-03-15 2023-06-06 Bolton Medical, Inc. Hemostasis valve and delivery systems
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
US10064748B2 (en) * 2013-07-22 2018-09-04 Terumo Kabushiki Kaisha Stent delivery system
US20160135975A1 (en) * 2013-07-22 2016-05-19 Terumo Kabushiki Kaisha Stent delivery system
US9849278B2 (en) 2013-11-08 2017-12-26 Nuvectra Corporation Implantable medical lead with collapsible fixation member
US9504829B2 (en) 2013-11-08 2016-11-29 Nuvectra Corporation Implantable medical lead with collapsible fixation member
US10449074B2 (en) 2014-03-13 2019-10-22 Abbott Cardiovascular Systems Inc. Striped sheaths for medical devices
US10433996B2 (en) 2014-03-13 2019-10-08 Abbott Cardiovascular Systems Inc. Striped sheaths for medical devices
US11738181B2 (en) 2014-06-04 2023-08-29 Cagent Vascular, Inc. Cage for medical balloon
US20160030712A1 (en) * 2014-07-30 2016-02-04 Biotronik Ag Insertion device for insertion of a medical implant
US11020562B2 (en) * 2014-07-30 2021-06-01 Biotronik Ag Insertion device for insertion of a medical implant
US11779731B2 (en) 2014-10-07 2023-10-10 Pacesetter, Inc. Delivery catheter systems and methods
US10653859B2 (en) * 2014-10-07 2020-05-19 Pacesetter, Inc. Delivery catheter systems and methods
US11040178B2 (en) 2014-11-03 2021-06-22 Cagent Vascular, Llc Serration balloon
US10471238B2 (en) 2014-11-03 2019-11-12 Cagent Vascular, Llc Serration balloon
US11298513B2 (en) 2014-11-03 2022-04-12 Cagent Vascular, Inc. Serration balloon
US11701502B2 (en) 2014-11-03 2023-07-18 Cagent Vascular, Inc. Serration balloon
US20160184118A1 (en) * 2014-12-30 2016-06-30 Cook Medical Technologies Llc Low profile prosthesis delivery device
US10092428B2 (en) * 2014-12-30 2018-10-09 Cook Medical Technologies Llc Low profile prosthesis delivery device
US9375336B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9585782B2 (en) 2015-01-29 2017-03-07 Intact Vascular, Inc. Delivery device and method of delivery
US9345603B1 (en) 2015-01-29 2016-05-24 Intact Vascular, Inc. Delivery device and method of delivery
US10610392B2 (en) 2015-01-29 2020-04-07 Intact Vascular, Inc. Delivery device and method of delivery
US10245167B2 (en) 2015-01-29 2019-04-02 Intact Vascular, Inc. Delivery device and method of delivery
US9320632B1 (en) 2015-01-29 2016-04-26 Intact Vascular, Inc. Delivery device and method of delivery
US9375337B1 (en) 2015-01-29 2016-06-28 Intact Vascular, Inc. Delivery device and method of delivery
US9602786B2 (en) 2015-01-29 2017-03-21 Intact Vascular, Inc. Delivery device and method of delivery
US9433520B2 (en) 2015-01-29 2016-09-06 Intact Vascular, Inc. Delivery device and method of delivery
US10898356B2 (en) 2015-01-29 2021-01-26 Intact Vascular, Inc. Delivery device and method of delivery
US9192500B1 (en) 2015-01-29 2015-11-24 Intact Vascular, Inc. Delivery device and method of delivery
US11304836B2 (en) 2015-01-29 2022-04-19 Intact Vascular, Inc. Delivery device and method of delivery
US9445929B2 (en) 2015-01-29 2016-09-20 Intact Vascular, Inc. Delivery device and method of delivery
US9584777B2 (en) 2015-01-29 2017-02-28 Intact Vascular, Inc. Delivery device and method of delivery
US9456914B2 (en) 2015-01-29 2016-10-04 Intact Vascular, Inc. Delivery device and method of delivery
US11523924B2 (en) * 2015-04-28 2022-12-13 Cook Medical Technologies Llc Medical cannulae, delivery systems and methods
US10689154B2 (en) 2015-09-17 2020-06-23 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US10166374B2 (en) 2015-09-17 2019-01-01 Cagent Vascular, Llc Wedge dissectors for a medical balloon
US11266819B2 (en) 2015-09-17 2022-03-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US11717654B2 (en) 2015-09-17 2023-08-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US11266818B2 (en) 2015-09-17 2022-03-08 Cagent Vascular, Inc. Wedge dissectors for a medical balloon
US11491314B2 (en) 2015-09-17 2022-11-08 Cagent Vascular Lac. Wedge dissectors for a medical balloon
US10322020B2 (en) * 2015-09-18 2019-06-18 Terumo Corporation Pushable implant delivery system
US11304799B2 (en) 2015-11-06 2022-04-19 Micor Limited Mitral valve prosthesis
US10993824B2 (en) 2016-01-01 2021-05-04 Intact Vascular, Inc. Delivery device and method of delivery
US10687969B2 (en) 2016-06-29 2020-06-23 Boston Scientific Scimed, Inc. Stent delivery system
US20180098848A1 (en) * 2016-10-12 2018-04-12 Medtronic Vascular, Inc. Stented prosthetic heart valve delivery system having an expandable bumper
US11426276B2 (en) * 2016-10-12 2022-08-30 Medtronic Vascular, Inc. Stented prosthetic heart valve delivery system having an expandable bumper
CN109803611A (en) * 2016-10-12 2019-05-24 美敦力瓦斯科尔勒公司 The prosthetic heart valve delivery system of belt supporting frame with expansible bolster
US10905863B2 (en) 2016-11-16 2021-02-02 Cagent Vascular, Llc Systems and methods of depositing drug into tissue through serrations
US10857016B2 (en) 2017-04-26 2020-12-08 Boston Scientific Scimed, Inc. Proximal and distal release delivery system
US11660218B2 (en) 2017-07-26 2023-05-30 Intact Vascular, Inc. Delivery device and method of delivery
USD968607S1 (en) 2018-01-07 2022-11-01 Jc Medical, Inc. Prosthetic heart valve
US11357626B2 (en) 2018-01-07 2022-06-14 Jc Medical, Inc. Heart valve prosthesis delivery system
US11819407B2 (en) 2018-01-07 2023-11-21 Jc Medical, Inc. Heart valve prosthesis delivery system
US11285001B2 (en) 2018-01-07 2022-03-29 Jc Medical, Inc. Heart valve prosthesis delivery system
US11369779B2 (en) 2018-07-25 2022-06-28 Cagent Vascular, Inc. Medical balloon catheters with enhanced pushability

Also Published As

Publication number Publication date
JP4891901B2 (en) 2012-03-07
US20050288763A1 (en) 2005-12-29
US7300456B2 (en) 2007-11-27
US20090234428A1 (en) 2009-09-17
US8986362B2 (en) 2015-03-24
US20080077229A1 (en) 2008-03-27
JP2008504078A (en) 2008-02-14
US20050288766A1 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
US8986362B2 (en) Devices and methods for controlling expandable prostheses during deployment
EP1761206B1 (en) Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) Devices and methods for controlling expandable prostheses during deployment
JP4907339B2 (en) Apparatus and method for delivering multiple distributed stents
US8083788B2 (en) Apparatus and methods for positioning prostheses for deployment from a catheter
US6468298B1 (en) Gripping delivery system for self-expanding stents and method of using the same
CA2163026C (en) Prosthesis delivery
US8956398B2 (en) Custom length stent apparatus
US6019779A (en) Multi-filar coil medical stent
US20070219613A1 (en) Apparatus and methods for interlocking stent segments
EP2033603A1 (en) Stent with varying strut geometry

Legal Events

Date Code Title Description
AS Assignment

Owner name: XTENT, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SNOW, DAVID W.;KARRATT, JOSEPH;GRAINGER, JEFFRY J.;AND OTHERS;REEL/FRAME:016137/0161;SIGNING DATES FROM 20050120 TO 20050127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION