US20050283660A1 - Mechanism to handle events in a machine with isolated execution - Google Patents

Mechanism to handle events in a machine with isolated execution Download PDF

Info

Publication number
US20050283660A1
US20050283660A1 US11/187,731 US18773105A US2005283660A1 US 20050283660 A1 US20050283660 A1 US 20050283660A1 US 18773105 A US18773105 A US 18773105A US 2005283660 A1 US2005283660 A1 US 2005283660A1
Authority
US
United States
Prior art keywords
execution mode
processor
event
isolated
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/187,731
Inventor
Francis McKeen
Lawrence Smith
Benjamin Chaffin
Michael Cornaby
Bryant Bigbee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/187,731 priority Critical patent/US20050283660A1/en
Publication of US20050283660A1 publication Critical patent/US20050283660A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/74Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information operating in dual or compartmented mode, i.e. at least one secure mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1416Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights
    • G06F12/145Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights the protection being virtual, e.g. for virtual blocks or segments before a translation mechanism
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1458Protection against unauthorised use of memory or access to memory by checking the subject access rights
    • G06F12/1491Protection against unauthorised use of memory or access to memory by checking the subject access rights in a hierarchical protection system, e.g. privilege levels, memory rings

Definitions

  • the invention relates to platform security. More specifically, the invention relates to handling asynchronous events in a secure manner.
  • FIG. 1A is a diagram illustrating an embodiment of the logical operating architecture for the IsOXTM architecture of the platform.
  • FIG. 1B is an illustrative diagram showing the accessibility of various elements in the operating system and the processor according to one embodiment of the invention.
  • FIG. 1C is a first block diagram of an illustrative embodiment of a platform utilizing the present invention.
  • FIG. 2 is a block diagram of a memory map selection unit of one embodiment of the invention.
  • FIG. 3 is a flow diagram of operation response to an asynchronous event in one embodiment of the invention.
  • the present invention relates to a platform and method for secure handling of asynchronous events in an isolated environment.
  • a processor executing in isolated execution “IsoX” mode may leak data when an asynchronous event occurs as a result of the event being handled in a traditional manner based on the exception vector.
  • IsoX isolated execution
  • a “platform” includes components that perform different functions on stored information. Examples of a platform include, but are not limited or restricted to a computer (e.g., desktop, a laptop, a hand-held, a server, a workstation, etc.), desktop office equipment (e.g., printer, scanner, a facsimile machine, etc.), a wireless telephone handset, a television set-top box, and the like. Examples of a “component” include hardware (e.g., an integrated circuit, etc.) and/or one or more software modules. A “software module” is code that, when executed, performs a certain function.
  • This code may include an operating system, an application, an applet or even a nub being a series of code instructions, possibly a subset of code from an applet.
  • a “link” is broadly defined as one or more information-carrying mediums (e.g., electrical wire, optical fiber, cable, bus, or air in combination with wireless signaling technology) to establish a communication pathway. This pathway is deemed “protected” when it is virtually impossible to modify information routed over the pathway without detection.
  • the term “information” is defined as one or more bits of data, address, and/or control and a “segment” is one or more bytes of information.
  • a “message” is a grouping of information, possibly packetized information.
  • Keying material includes any information needed for a specific cryptographic algorithm such as a Digital Signature Algorithm.
  • a “one-way function” is a function, mathematical or otherwise, that converts information from a variable-length to a fixed-length (referred to as a “hash value” or “digest”). The term “one-way” indicates that there does not readily exist an inverse function to recover any discernible portion of the original information from the fixed-length hash value.
  • Examples of a hash function include MD5 provided by RSA Data Security of Redwood City, Calif., or Secure Hash Algorithm (SHA-1) as specified in a 1995 publication Secure Hash Standard FIPS 180 - 1 entitled “Federal Information Processing Standards Publication” (Apr. 17, 1995).
  • MD5 provided by RSA Data Security of Redwood City, Calif.
  • SHA-1 Secure Hash Algorithm
  • FIPS 180 - 1 entitled “Federal Information Processing Standards Publication” (Apr. 17, 1995).
  • a platform utilizing an embodiment of the invention may be configured with an isolated execution (IsOXTM) architecture.
  • the IsOXTM architecture includes logical and physical definitions of hardware and software components that interact directly or indirectly with an operating system of the platform.
  • the operating system and a processor of the platform may have several levels of hierarchy, referred to as rings, which correspond to various operational modes.
  • a “ring” is a logical division of hardware and software components that are designed to perform dedicated tasks within the platform. The division is typically based on the degree or level of privilege, namely the ability to make changes to the platform. For example, a ring-0 is the innermost ring, being at the highest level of the hierarchy. Ring-0 encompasses the most critical, privileged components.
  • Ring-3 is the outermost ring, being at the lowest level of the hierarchy. Ring-3 typically encompasses user level applications, which are normally given the lowest level of privilege.
  • Ring-1 and ring-2 represent the intermediate rings with decreasing levels of privilege.
  • FIG. 1A is a diagram illustrating an embodiment of a logical operating architecture 50 of the IsOXTM architecture.
  • the logical operating architecture 50 is an abstraction of the components of the operating system and processor.
  • the logical operating architecture 50 includes ring-0 10 , ring-1 20 , ring-2 30 , ring-3 40 , and a processor nub loader 52 .
  • Each ring in the logical operating architecture 50 can operate in either (i) a normal execution mode or (ii) an IsoX mode.
  • the processor nub loader 52 is an instance of a processor executive (PE) handler.
  • PE processor executive
  • the Ring-0 10 includes two portions: a normal execution Ring-0 11 and an isolated execution Ring-0 15 .
  • the normal execution Ring-0 11 includes software modules that are critical for the operating system, usually referred to as the “kernel”. These software modules include a primary operating system 12 (e.g., kernel), software drivers 13 , and hardware drivers 14 .
  • the isolated execution Ring-0 15 includes an operating system (OS) nub 16 and a processor nub 18 as described below.
  • the OS nub 16 and the processor nub 18 are instances of an OS executive (OSE) and processor executive (PE), respectively.
  • the OSE and the PE are part of executive entities that operate in a protected environment associated with the isolated area 70 and the IsoX mode.
  • the processor nub loader 52 is a bootstrap loader code that is responsible for loading the processor nub 18 from the processor or chipset into an isolated area as explained below.
  • ring-1 20 , ring-2 30 , and ring-3 40 include normal execution ring-1 21 , ring-2 31 , ring-3 41 , and isolated execution ring-1 25 , ring-2 35 , and ring-3 45 , respectively.
  • normal execution ring-3 includes N applications 421 - 42 N and isolated execution ring-3 includes M applets 461 - 46 M (where “N” and “M” are positive whole numbers).
  • IsOXTM architecture One concept of the IsOXTM architecture is the creation of an isolated region in the system memory, which is protected by components of the platform (e.g., the processor and chipset). This isolated region, referred to herein as an “isolated area,” may also be in cache memory that is protected by a translation look aside (TLB) access check. Access to this isolated area is permitted only from a front side bus (FSB) of the processor, using special bus cycles (referred to as “isolated read and write cycles”) issued by the processor executing in IsoX mode.
  • FFB front side bus
  • Isolated read and write cycles special bus cycles issued by the processor executing in IsoX mode.
  • the IsoX mode is initialized using a privileged instruction in the processor, combined with the processor nub loader 52 .
  • the processor nub loader 52 verifies and loads a ring-0 nub software module (e.g., processor nub 18 ) into the isolated area.
  • the processor nub loader 52 is non-modifiable, tamper-resistant and non-substitutable.
  • the processor nub loader 52 is implemented in read only memory (ROM).
  • the OS nub 16 provides links to services in the primary operating system 12 (e.g., the unprotected segments of the operating system), provides page management within the isolated area, and has the responsibility for loading ring-3 application modules 45 , including applets 461 to 46 M, into protected pages allocated in the isolated area.
  • the OS nub 16 may also support paging of data between the isolated area and ordinary (e.g., non-isolated) memory. If so, then the OS nub 16 is also responsible for the integrity and confidentiality of the isolated area pages before evicting the page to the ordinary memory, and for checking the page contents upon restoration of the page.
  • FIG. 1B a diagram of the illustrative elements associated with the operating system 10 and the processor for one embodiment of the invention is shown. For illustration purposes, only elements of ring-0 10 and ring-3 40 are shown. The various elements in the logical operating architecture 50 access an accessible physical memory 60 according to their ring hierarchy and the execution mode.
  • the accessible physical memory 60 includes an isolated area 70 and a non-isolated area 80 .
  • the isolated area 70 includes applet pages 72 and nub pages 74 .
  • the non-isolated area 80 includes application pages 82 and operating system pages 84 .
  • the isolated area 70 is accessible only to components of the operating system and processor operating in the IsoX mode.
  • the non-isolated area 80 is accessible to all elements of the ring-0 operating system and processor.
  • the normal execution ring-0 11 including the primary OS 12 , the software drivers 13 , and the hardware drivers 14 , can access both the OS pages 84 and the application pages 82 .
  • the normal execution ring-3 including applications 421 to 42 N, can access only to the application pages 82 . Both the normal execution ring-0 11 and ring-3 41 , however, cannot access the isolated area 70 .
  • the isolated execution ring-0 15 can access to both of the isolated area 70 , including the applet pages 72 and the nub pages 74 , and the non-isolated area 80 , including the application pages 82 and the OS pages 84 .
  • the isolated execution ring-3 45 including applets 461 to 46 M, can access only to the application pages 82 and the applet pages 72 .
  • the applets 461 to 46 M reside in the isolated area 70 .
  • platform 100 comprises a processor 110 , a chipset 120 , a system memory 140 and peripheral components (e.g., tokens 180 / 182 coupled to a token link 185 and/or a token reader 190 ) in communication with each other. It is further contemplated that the platform 100 may contain optional components such as a non-volatile memory (e.g., flash) 160 and additional peripheral components. Examples of these additional peripheral components include, but are not limited or restricted to a mass storage device 170 and one or more input/output (I/O) devices 175 .
  • I/O input/output
  • peripheral components e.g., a Peripheral Component Interconnect (PCI) bus, an accelerated graphics port (AGP) bus, an Industry Standard Architecture (ISA) bus, a Universal Serial Bus (USB) bus, wireless transmitter/receiver combinations, etc.
  • PCI Peripheral Component Interconnect
  • AGP accelerated graphics port
  • ISA Industry Standard Architecture
  • USB Universal Serial Bus
  • the processor 110 represents a central processing unit of any type of architecture, such as complex instruction set computers (CISC), reduced instruction set computers (RISC), very long instruction word (VLIW), or hybrid architecture.
  • the processor 110 includes multiple logical processors.
  • a “logical processor,” sometimes referred to as a thread, is a functional unit within a physical processor having an architectural state and physical resources allocated according to a specific partitioning functionality.
  • a multi-threaded processor includes multiple logical processors.
  • the processor 110 is compatible with the Intel Architecture (IA) processor, such as a PENTIUM® series, the IA-32TM and IA-64TM. It will be appreciated by those skilled in the art that the basic description and operation of the processor 110 applies to either a single processor platform or a multi-processor platform.
  • IA Intel Architecture
  • the processor 110 may operate in a normal execution mode or an IsoX mode.
  • an isolated execution circuit 115 provides a mechanism to allow the processor 110 to operate in an IsoX mode.
  • the isolated execution circuit 115 provides hardware and software support for the IsoX mode. This support includes configuration for isolated execution, definition of the isolated area, definition (e.g., decoding and execution) of isolated instructions, generation of isolated access bus cycles, and generation of isolated mode interrupts.
  • a memory map selection unit 112 exists within the processor 110 to select dynamically between alternative memory maps that may be employed by the processor 110 .
  • a host link 116 is a front side bus that provides interface signals to allow the processor 110 to communicate with other processors or the chipset 120 .
  • the host link 116 supports an isolated access link mode with corresponding interface signals for isolated read and write cycles when the processor 110 is configured in the IsoX mode.
  • the isolated access link mode is asserted on memory accesses initiated while the processor 110 is in the IsoX mode if the physical address falls within the isolated area address range.
  • the isolated access link mode is also asserted on instruction pre-fetch and cache write-back cycles if the address is within the isolated area address range.
  • the processor 110 responds to snoop cycles to a cached address within the isolated area address range if the isolated access bus cycle is asserted.
  • the chipset 120 includes a memory control hub (MCH) 130 and an input/output control hub (ICH) 150 described below.
  • MCH memory control hub
  • ICH input/output control hub
  • the MCH 130 and the ICH 150 may be integrated into the same chip or placed in separate chips operating together.
  • a MCH 130 provides control and configuration of memory and input/output devices such as the system memory 140 and the ICH 150 .
  • the MCH 130 provides interface circuits to recognize and service attestation cycles and/or isolated memory read and write cycles.
  • the MCH 130 has memory range registers (e.g., base and length registers) to represent the isolated area in the system memory 140 . Once configured, the MCH 130 aborts any access to the isolated area when the isolated access link mode is not asserted.
  • the system memory 140 stores code and data.
  • the system memory 140 is typically implemented with dynamic random access memory (DRAM) or static random access memory (SRAM).
  • the system memory 140 includes the accessible physical memory 60 (shown in FIG. 1B ).
  • the accessible physical memory 60 includes the isolated area 70 and the non-isolated area 80 as shown in FIG. 1B .
  • the isolated area 70 is the memory area that is defined by the processor 110 when operating in the IsoX mode. Access to the isolated area 70 is restricted and is enforced by the processor 110 and/or the chipset 120 that integrates the isolated area functionality.
  • the non-isolated area 80 includes a loaded operating system (OS).
  • the loaded OS 142 is the portion of the operating system that is typically loaded from the mass storage device 170 via some boot code in a boot storage such as a boot read only memory (ROM).
  • ROM boot read only memory
  • the system memory 140 may also include other programs or data which are not shown.
  • the ICH 150 supports isolated execution in addition to traditional I/O functions.
  • the ICH 150 comprises at least the processor nub loader 52 (shown in FIG. 1A ), a hardware-protected memory 152 , an isolated execution logical processing manager 154 , and a token link interface 158 .
  • the processor nub loader 52 shown in FIG. 1A
  • a hardware-protected memory 152 for clarity, only one ICH 150 is shown although platform 100 may be implemented with multiple ICHs.
  • a designated ICH is selected to control the isolated area configuration and status. This selection may be performed by an external strapping pin. As is known by one skilled in the art, other methods of selecting can be used.
  • the processor nub loader 52 includes a processor nub loader code and its hash value (or digest). After being invoked by execution of an appropriated isolated instruction (e.g., ISO_INIT) by the processor 110 , the processor nub loader 52 is transferred to the isolated area 70 . Thereafter, the processor nub loader 52 copies the processor nub 18 from the non-volatile memory 160 into the isolated area 70 , verifies and places a representation of the processor nub 18 (e.g., a hash value) into the protected memory 152 .
  • the protected memory 152 is implemented as a memory array with single write, multiple read capability. This non-modifiable capability is controlled by logic or is part of the inherent nature of the memory itself. For example, as shown, the protected memory 152 may include a plurality of single write, multiple read registers.
  • the protected memory 152 is configured to support an audit log 156 .
  • An “audit log” 156 is information concerning the operating environment of the platform 100 ; namely, a listing of data that represents what information has been successfully loaded into the system memory 140 after power-on of the platform 100 .
  • the representative data may be hash values of each software module loaded into the system memory 140 .
  • These software modules may include the processor nub 18 , the OS nub 16 , and/or any other critical software modules (e.g., ring-0 modules) loaded into the isolated area 70 .
  • the audit log 156 can act as a fingerprint that identifies information loaded into the platform (e.g., the ring-0 code controlling the isolated execution configuration and operation), and is used to attest or prove the state of the current isolated execution.
  • both the protected memory 152 and unprotected memory may collectively provide a protected audit log 156 .
  • the audit log 156 and information concerning the state of the audit log 156 are stored in the protected memory 152 .
  • the non-volatile memory 160 stores non-volatile information.
  • the non-volatile memory 160 is implemented in flash memory.
  • the non-volatile memory 160 includes the processor nub 18 as described above. Additionally, the processor nub 18 may also provide application programming interface (API) abstractions to low-level security services provided by other hardware and may be distributed by the original equipment manufacturer (OEM) or operating system vendor (OSV) via a boot disk.
  • API application programming interface
  • the mass storage device 170 stores archive information such as code (e.g., processor nub 18 ), programs, files, data, applications (e.g., applications 421 - 42 N), applets (e.g., applets 461 to 46 M) and operating systems.
  • the mass storage device 170 may include a compact disk (CD) ROM 172 , a hard drive 176 , or any other magnetic or optic storage devices.
  • the mass storage device 170 also provides a mechanism to read platform-readable media. When implemented in software, the elements of the present invention are stored in a processor readable medium.
  • the “processor readable medium” may include any medium that can store or transfer information.
  • processor readable medium examples include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable ROM (EPROM), a fiber optic medium, a radio frequency (RF) link, and any platform readable media such as a floppy diskette, a CD-ROM, an optical disk, a hard disk, etc.
  • ROM read only memory
  • EPROM erasable programmable ROM
  • RF radio frequency
  • I/O devices 175 include stationary or portable user input devices, each of which performs one or more I/O functions.
  • a stationary user input device include a keyboard, a keypad, a mouse, a trackball, a touch pad, and a stylus.
  • a portable user input device include a handset, beeper, hand-held (e.g., personal digital assistant) or any wireless device.
  • FIG. 2 is a block diagram of a memory map selection unit of one embodiment of the invention.
  • a set of current control registers 200 defines the memory map currently employed by the processor.
  • This set of control registers includes a current interrupt descriptor table (IDT) register 234 , a current global descriptor table (GDT) register 236 , and a page table map base address register 238 (also referred to herein as control register 3, abbreviated CR3).
  • IDT current interrupt descriptor table
  • GDT current global descriptor table
  • CR3 page table map base address register
  • a set of control registers 202 from which the current control registers 200 may be loaded are also retained with the processor.
  • the set of control registers 202 includes two subsets, an IsoX subset, and a normal subset, including IsoX IDT 204 , IsoX GDT 206 and IsoX CR3 208 and IDT 218 , GDT 216 and CR3 218 , respectively.
  • a plurality of selection units, such as multiplexers 220 , 222 , 224 are used to select between the first and second subset of the set of control registers 202 .
  • the selection signal is provided by selection signal generation unit 230 , which employs the IsoX mode bit in conjunction with an event vector to generate the selection signal to the multiplexers 220 , 222 and 224 .
  • the events to be handled in IsoX mode are stored in a lookup table (LUT), and the event vector is used as an index to the LUT to identify if the event should be handled in an IsoX mode.
  • LUT lookup table
  • the OS nub can ensure that any event (whether synchronous or asynchronous) is handled in isolated execution mode if desired. It is also within the scope and contemplation of the invention for the OS nub to dynamically modify the LUT from time to time.
  • the current memory map corresponding to IDT 234 , GDT 216 , and CR3 238 can be dynamically changed responsive to the receipt of an event. Accordingly, it is possible to ensure that an asynchronous event, such as a machine check, which might otherwise cause a data leakage, is always handled in isolated mode using an appropriate memory map.
  • selection signal generation unit 230 asserts a selection signal to select control registers 204 , 206 and 208 to have their contents loaded into current IDT register 234 , current GDT register 236 and current CR3 register 238 , respectively. The exception vector may then be dispatched and will be handled using the IsoX memory map.
  • NMI non-maskable interrupts
  • clock interrupts may be, at the discretion of the OS nub handled in isolated execution mode, even where data leakage is not a concern.
  • NMI non-maskable interrupts
  • clock interrupts may be, at the discretion of the OS nub handled in isolated execution mode, even where data leakage is not a concern.
  • clock interrupt requiring that it be handled by the isolated environment avoids denial of service conditions in the OS nub.
  • the IsoX mode bit is also used to control writes to the first subset of control registers in control register set 202 .
  • FIG. 3 is a flow diagram of operation response to an asynchronous event in one embodiment of the invention.
  • an asynchronous event is received.
  • a determination is made at functional block 304 if the event is of a class to be handled in IsoX mode. This determination may be implicit, such as by applying the vector to a logic block or explicit such as where the vector is used to index into a LUT. If the event is not of the class, a determination is made at decision block 306 if the platform is currently in IsoX mode. If it is, the memory map selection unit is activated to reload the current control registers selecting the normal memory map at functional block 308 .

Abstract

A platform and method for secure handling of events in an isolated execution environment. A processor executing in isolated execution “IsoX” mode may leak data when an event occurs as a result of the event being handled in a traditional manner based on the exception vector. By defining a class of events to be handled in IsoX mode, and switching between a normal memory map and an IsoX memory map dynamically in response to receipt of an event of the class, data security may be maintained in the face of such events.

Description

    RELATED APPLICATIONS
  • The application is a divisional of U.S. patent application Ser. No. 09/672,368, filed Sep. 28, 2000, by Applicants Francis X. McKeen, Lawrence O. Smith, Benjamin Crawford Chaffin, Michael P. Cornaby, and Bryant Bigbee, which is currently pending.
  • FIELD OF THE INVENTION
  • The invention relates to platform security. More specifically, the invention relates to handling asynchronous events in a secure manner.
  • BACKGROUND
  • Data security is an ongoing concern in our increasingly data-driven society. To that end, multimode platforms have been developed to support both normal execution and isolated execution. A section of memory is allocated for use only in the isolated execution mode. Encryption and authentication are used any time isolated data is moved into a non-isolated section of memory. In this manner, data used and maintained in isolated execution mode is not security compromised. However, during isolated execution that data may reside, for example, in the processor cache in an unencrypted form. Certain asynchronous events may cause that data to be accessible in a normal execution mode thereby compromising the data security.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The invention is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
  • FIG. 1A is a diagram illustrating an embodiment of the logical operating architecture for the IsOX™ architecture of the platform.
  • FIG. 1B is an illustrative diagram showing the accessibility of various elements in the operating system and the processor according to one embodiment of the invention.
  • FIG. 1C is a first block diagram of an illustrative embodiment of a platform utilizing the present invention.
  • FIG. 2 is a block diagram of a memory map selection unit of one embodiment of the invention.
  • FIG. 3 is a flow diagram of operation response to an asynchronous event in one embodiment of the invention.
  • DETAILED DESCRIPTION
  • The present invention relates to a platform and method for secure handling of asynchronous events in an isolated environment. A processor executing in isolated execution “IsoX” mode may leak data when an asynchronous event occurs as a result of the event being handled in a traditional manner based on the exception vector. By defining a class of asynchronous events to be handled in IsoX mode, and switching between a normal memory map and an IsoX memory map dynamically in response to receipt of an asynchronous event of the class, data security may be maintained in the face of such events.
  • In the following description, certain terminology is used to discuss features of the present invention. For example, a “platform” includes components that perform different functions on stored information. Examples of a platform include, but are not limited or restricted to a computer (e.g., desktop, a laptop, a hand-held, a server, a workstation, etc.), desktop office equipment (e.g., printer, scanner, a facsimile machine, etc.), a wireless telephone handset, a television set-top box, and the like. Examples of a “component” include hardware (e.g., an integrated circuit, etc.) and/or one or more software modules. A “software module” is code that, when executed, performs a certain function. This code may include an operating system, an application, an applet or even a nub being a series of code instructions, possibly a subset of code from an applet. A “link” is broadly defined as one or more information-carrying mediums (e.g., electrical wire, optical fiber, cable, bus, or air in combination with wireless signaling technology) to establish a communication pathway. This pathway is deemed “protected” when it is virtually impossible to modify information routed over the pathway without detection.
  • In addition, the term “information” is defined as one or more bits of data, address, and/or control and a “segment” is one or more bytes of information. A “message” is a grouping of information, possibly packetized information. “Keying material” includes any information needed for a specific cryptographic algorithm such as a Digital Signature Algorithm. A “one-way function” is a function, mathematical or otherwise, that converts information from a variable-length to a fixed-length (referred to as a “hash value” or “digest”). The term “one-way” indicates that there does not readily exist an inverse function to recover any discernible portion of the original information from the fixed-length hash value. Examples of a hash function include MD5 provided by RSA Data Security of Redwood City, Calif., or Secure Hash Algorithm (SHA-1) as specified in a 1995 publication Secure Hash Standard FIPS 180-1 entitled “Federal Information Processing Standards Publication” (Apr. 17, 1995).
  • Architecture Overview
  • A platform utilizing an embodiment of the invention may be configured with an isolated execution (IsOX™) architecture. The IsOX™ architecture includes logical and physical definitions of hardware and software components that interact directly or indirectly with an operating system of the platform. Herein, the operating system and a processor of the platform may have several levels of hierarchy, referred to as rings, which correspond to various operational modes. A “ring” is a logical division of hardware and software components that are designed to perform dedicated tasks within the platform. The division is typically based on the degree or level of privilege, namely the ability to make changes to the platform. For example, a ring-0 is the innermost ring, being at the highest level of the hierarchy. Ring-0 encompasses the most critical, privileged components. Ring-3 is the outermost ring, being at the lowest level of the hierarchy. Ring-3 typically encompasses user level applications, which are normally given the lowest level of privilege. Ring-1 and ring-2 represent the intermediate rings with decreasing levels of privilege.
  • FIG. 1A is a diagram illustrating an embodiment of a logical operating architecture 50 of the IsOX™ architecture. The logical operating architecture 50 is an abstraction of the components of the operating system and processor. The logical operating architecture 50 includes ring-0 10, ring-1 20, ring-2 30, ring-3 40, and a processor nub loader 52. Each ring in the logical operating architecture 50 can operate in either (i) a normal execution mode or (ii) an IsoX mode. The processor nub loader 52 is an instance of a processor executive (PE) handler.
  • Ring-0 10 includes two portions: a normal execution Ring-0 11 and an isolated execution Ring-0 15. The normal execution Ring-0 11 includes software modules that are critical for the operating system, usually referred to as the “kernel”. These software modules include a primary operating system 12 (e.g., kernel), software drivers 13, and hardware drivers 14. The isolated execution Ring-0 15 includes an operating system (OS) nub 16 and a processor nub 18 as described below. The OS nub 16 and the processor nub 18 are instances of an OS executive (OSE) and processor executive (PE), respectively. The OSE and the PE are part of executive entities that operate in a protected environment associated with the isolated area 70 and the IsoX mode. The processor nub loader 52 is a bootstrap loader code that is responsible for loading the processor nub 18 from the processor or chipset into an isolated area as explained below.
  • Similarly, ring-1 20, ring-2 30, and ring-3 40 include normal execution ring-1 21, ring-2 31, ring-3 41, and isolated execution ring-1 25, ring-2 35, and ring-3 45, respectively. In particular, normal execution ring-3 includes N applications 421-42N and isolated execution ring-3 includes M applets 461-46M (where “N” and “M” are positive whole numbers).
  • One concept of the IsOX™ architecture is the creation of an isolated region in the system memory, which is protected by components of the platform (e.g., the processor and chipset). This isolated region, referred to herein as an “isolated area,” may also be in cache memory that is protected by a translation look aside (TLB) access check. Access to this isolated area is permitted only from a front side bus (FSB) of the processor, using special bus cycles (referred to as “isolated read and write cycles”) issued by the processor executing in IsoX mode.
  • The IsoX mode is initialized using a privileged instruction in the processor, combined with the processor nub loader 52. The processor nub loader 52 verifies and loads a ring-0 nub software module (e.g., processor nub 18) into the isolated area. For security purposes, the processor nub loader 52 is non-modifiable, tamper-resistant and non-substitutable. In one embodiment, the processor nub loader 52 is implemented in read only memory (ROM).
  • One task of the processor nub 18 is to verify and load the ring-0 OS nub 16 into the isolated area. The OS nub 16 provides links to services in the primary operating system 12 (e.g., the unprotected segments of the operating system), provides page management within the isolated area, and has the responsibility for loading ring-3 application modules 45, including applets 461 to 46M, into protected pages allocated in the isolated area. The OS nub 16 may also support paging of data between the isolated area and ordinary (e.g., non-isolated) memory. If so, then the OS nub 16 is also responsible for the integrity and confidentiality of the isolated area pages before evicting the page to the ordinary memory, and for checking the page contents upon restoration of the page.
  • Referring now to FIG. 1B, a diagram of the illustrative elements associated with the operating system 10 and the processor for one embodiment of the invention is shown. For illustration purposes, only elements of ring-0 10 and ring-3 40 are shown. The various elements in the logical operating architecture 50 access an accessible physical memory 60 according to their ring hierarchy and the execution mode.
  • The accessible physical memory 60 includes an isolated area 70 and a non-isolated area 80. The isolated area 70 includes applet pages 72 and nub pages 74. The non-isolated area 80 includes application pages 82 and operating system pages 84. The isolated area 70 is accessible only to components of the operating system and processor operating in the IsoX mode. The non-isolated area 80 is accessible to all elements of the ring-0 operating system and processor.
  • The normal execution ring-0 11 including the primary OS 12, the software drivers 13, and the hardware drivers 14, can access both the OS pages 84 and the application pages 82. The normal execution ring-3, including applications 421 to 42N, can access only to the application pages 82. Both the normal execution ring-0 11 and ring-3 41, however, cannot access the isolated area 70.
  • The isolated execution ring-0 15, including the OS nub 16 and the processor nub 18, can access to both of the isolated area 70, including the applet pages 72 and the nub pages 74, and the non-isolated area 80, including the application pages 82 and the OS pages 84. The isolated execution ring-3 45, including applets 461 to 46M, can access only to the application pages 82 and the applet pages 72. The applets 461 to 46M reside in the isolated area 70.
  • Referring to FIG. 1C, a block diagram of an illustrative embodiment of a platform utilizing the present invention is shown. In this embodiment, platform 100 comprises a processor 110, a chipset 120, a system memory 140 and peripheral components (e.g., tokens 180/182 coupled to a token link 185 and/or a token reader 190) in communication with each other. It is further contemplated that the platform 100 may contain optional components such as a non-volatile memory (e.g., flash) 160 and additional peripheral components. Examples of these additional peripheral components include, but are not limited or restricted to a mass storage device 170 and one or more input/output (I/O) devices 175. For clarity, the specific links for these peripheral components (e.g., a Peripheral Component Interconnect (PCI) bus, an accelerated graphics port (AGP) bus, an Industry Standard Architecture (ISA) bus, a Universal Serial Bus (USB) bus, wireless transmitter/receiver combinations, etc.) are not shown.
  • In general, the processor 110 represents a central processing unit of any type of architecture, such as complex instruction set computers (CISC), reduced instruction set computers (RISC), very long instruction word (VLIW), or hybrid architecture. In one embodiment, the processor 110 includes multiple logical processors. A “logical processor,” sometimes referred to as a thread, is a functional unit within a physical processor having an architectural state and physical resources allocated according to a specific partitioning functionality. Thus, a multi-threaded processor includes multiple logical processors. The processor 110 is compatible with the Intel Architecture (IA) processor, such as a PENTIUM® series, the IA-32™ and IA-64™. It will be appreciated by those skilled in the art that the basic description and operation of the processor 110 applies to either a single processor platform or a multi-processor platform.
  • The processor 110 may operate in a normal execution mode or an IsoX mode. In particular, an isolated execution circuit 115 provides a mechanism to allow the processor 110 to operate in an IsoX mode. The isolated execution circuit 115 provides hardware and software support for the IsoX mode. This support includes configuration for isolated execution, definition of the isolated area, definition (e.g., decoding and execution) of isolated instructions, generation of isolated access bus cycles, and generation of isolated mode interrupts. In one embodiment, a memory map selection unit 112 exists within the processor 110 to select dynamically between alternative memory maps that may be employed by the processor 110.
  • As shown in FIG. 1C, a host link 116 is a front side bus that provides interface signals to allow the processor 110 to communicate with other processors or the chipset 120. In addition to normal mode, the host link 116 supports an isolated access link mode with corresponding interface signals for isolated read and write cycles when the processor 110 is configured in the IsoX mode. The isolated access link mode is asserted on memory accesses initiated while the processor 110 is in the IsoX mode if the physical address falls within the isolated area address range. The isolated access link mode is also asserted on instruction pre-fetch and cache write-back cycles if the address is within the isolated area address range. The processor 110 responds to snoop cycles to a cached address within the isolated area address range if the isolated access bus cycle is asserted.
  • Herein, the chipset 120 includes a memory control hub (MCH) 130 and an input/output control hub (ICH) 150 described below. The MCH 130 and the ICH 150 may be integrated into the same chip or placed in separate chips operating together.
  • With respect to the chipset 120, a MCH 130 provides control and configuration of memory and input/output devices such as the system memory 140 and the ICH 150. The MCH 130 provides interface circuits to recognize and service attestation cycles and/or isolated memory read and write cycles. In addition, the MCH 130 has memory range registers (e.g., base and length registers) to represent the isolated area in the system memory 140. Once configured, the MCH 130 aborts any access to the isolated area when the isolated access link mode is not asserted.
  • The system memory 140 stores code and data. The system memory 140 is typically implemented with dynamic random access memory (DRAM) or static random access memory (SRAM). The system memory 140 includes the accessible physical memory 60 (shown in FIG. 1B). The accessible physical memory 60 includes the isolated area 70 and the non-isolated area 80 as shown in FIG. 1B. The isolated area 70 is the memory area that is defined by the processor 110 when operating in the IsoX mode. Access to the isolated area 70 is restricted and is enforced by the processor 110 and/or the chipset 120 that integrates the isolated area functionality. The non-isolated area 80 includes a loaded operating system (OS). The loaded OS 142 is the portion of the operating system that is typically loaded from the mass storage device 170 via some boot code in a boot storage such as a boot read only memory (ROM). Of course, the system memory 140 may also include other programs or data which are not shown.
  • As shown in FIG. 1C, the ICH 150 supports isolated execution in addition to traditional I/O functions. In this embodiment, the ICH 150 comprises at least the processor nub loader 52 (shown in FIG. 1A), a hardware-protected memory 152, an isolated execution logical processing manager 154, and a token link interface 158. For clarity, only one ICH 150 is shown although platform 100 may be implemented with multiple ICHs. When there are multiple ICHs, a designated ICH is selected to control the isolated area configuration and status. This selection may be performed by an external strapping pin. As is known by one skilled in the art, other methods of selecting can be used.
  • The processor nub loader 52, as shown in FIGS. 1A and 1C, includes a processor nub loader code and its hash value (or digest). After being invoked by execution of an appropriated isolated instruction (e.g., ISO_INIT) by the processor 110, the processor nub loader 52 is transferred to the isolated area 70. Thereafter, the processor nub loader 52 copies the processor nub 18 from the non-volatile memory 160 into the isolated area 70, verifies and places a representation of the processor nub 18 (e.g., a hash value) into the protected memory 152. Herein, the protected memory 152 is implemented as a memory array with single write, multiple read capability. This non-modifiable capability is controlled by logic or is part of the inherent nature of the memory itself. For example, as shown, the protected memory 152 may include a plurality of single write, multiple read registers.
  • As shown in FIG. 1C, the protected memory 152 is configured to support an audit log 156. An “audit log” 156 is information concerning the operating environment of the platform 100; namely, a listing of data that represents what information has been successfully loaded into the system memory 140 after power-on of the platform 100. For example, the representative data may be hash values of each software module loaded into the system memory 140. These software modules may include the processor nub 18, the OS nub 16, and/or any other critical software modules (e.g., ring-0 modules) loaded into the isolated area 70. Thus, the audit log 156 can act as a fingerprint that identifies information loaded into the platform (e.g., the ring-0 code controlling the isolated execution configuration and operation), and is used to attest or prove the state of the current isolated execution.
  • In another embodiment, both the protected memory 152 and unprotected memory (e.g., a memory array in the non-isolated area 80 of the system memory 140 of FIG. 1C) may collectively provide a protected audit log 156. The audit log 156 and information concerning the state of the audit log 156 (e.g., a total hash value for the representative data within the audit log 156) are stored in the protected memory 152.
  • Referring still to FIG. 1C, the non-volatile memory 160 stores non-volatile information. Typically, the non-volatile memory 160 is implemented in flash memory. The non-volatile memory 160 includes the processor nub 18 as described above. Additionally, the processor nub 18 may also provide application programming interface (API) abstractions to low-level security services provided by other hardware and may be distributed by the original equipment manufacturer (OEM) or operating system vendor (OSV) via a boot disk.
  • The mass storage device 170 stores archive information such as code (e.g., processor nub 18), programs, files, data, applications (e.g., applications 421-42N), applets (e.g., applets 461 to 46M) and operating systems. The mass storage device 170 may include a compact disk (CD) ROM 172, a hard drive 176, or any other magnetic or optic storage devices. The mass storage device 170 also provides a mechanism to read platform-readable media. When implemented in software, the elements of the present invention are stored in a processor readable medium. The “processor readable medium” may include any medium that can store or transfer information. Examples of the processor readable medium include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable programmable ROM (EPROM), a fiber optic medium, a radio frequency (RF) link, and any platform readable media such as a floppy diskette, a CD-ROM, an optical disk, a hard disk, etc.
  • In communication with the platform 100, I/O devices 175 include stationary or portable user input devices, each of which performs one or more I/O functions. Examples of a stationary user input device include a keyboard, a keypad, a mouse, a trackball, a touch pad, and a stylus. Examples of a portable user input device include a handset, beeper, hand-held (e.g., personal digital assistant) or any wireless device.
  • FIG. 2 is a block diagram of a memory map selection unit of one embodiment of the invention. A set of current control registers 200 defines the memory map currently employed by the processor. This set of control registers includes a current interrupt descriptor table (IDT) register 234, a current global descriptor table (GDT) register 236, and a page table map base address register 238 (also referred to herein as control register 3, abbreviated CR3). By changing the values in these current control registers 200, the memory map used by the processor is changed. Thus, for example, by changing current CR3 238, a different page table map comes into use.
  • A set of control registers 202 from which the current control registers 200 may be loaded are also retained with the processor. The set of control registers 202 includes two subsets, an IsoX subset, and a normal subset, including IsoX IDT 204, IsoX GDT 206 and IsoX CR3 208 and IDT 218, GDT 216 and CR3 218, respectively. A plurality of selection units, such as multiplexers 220, 222, 224, are used to select between the first and second subset of the set of control registers 202. The selection signal is provided by selection signal generation unit 230, which employs the IsoX mode bit in conjunction with an event vector to generate the selection signal to the multiplexers 220, 222 and 224. In one embodiment, the events to be handled in IsoX mode are stored in a lookup table (LUT), and the event vector is used as an index to the LUT to identify if the event should be handled in an IsoX mode. By appropriately populating the LUT the OS nub can ensure that any event (whether synchronous or asynchronous) is handled in isolated execution mode if desired. It is also within the scope and contemplation of the invention for the OS nub to dynamically modify the LUT from time to time.
  • In this manner, the current memory map corresponding to IDT 234, GDT 216, and CR3 238, can be dynamically changed responsive to the receipt of an event. Accordingly, it is possible to ensure that an asynchronous event, such as a machine check, which might otherwise cause a data leakage, is always handled in isolated mode using an appropriate memory map. Thus, on receipt of a machine check, selection signal generation unit 230 asserts a selection signal to select control registers 204, 206 and 208 to have their contents loaded into current IDT register 234, current GDT register 236 and current CR3 register 238, respectively. The exception vector may then be dispatched and will be handled using the IsoX memory map. Other types of events such as non-maskable interrupts (NMI) or clock interrupts may be, at the discretion of the OS nub handled in isolated execution mode, even where data leakage is not a concern. For example, in the context of the clock interrupt requiring that it be handled by the isolated environment avoids denial of service conditions in the OS nub.
  • The IsoX mode bit is also used to control writes to the first subset of control registers in control register set 202. By requiring isolated execution mode for any changes to the IsoX subset 204, 206 and 208, software attack by corrupting the memory mapping for asynchronous event handling is prevented.
  • FIG. 3 is a flow diagram of operation response to an asynchronous event in one embodiment of the invention. At function block 302, an asynchronous event is received. A determination is made at functional block 304 if the event is of a class to be handled in IsoX mode. This determination may be implicit, such as by applying the vector to a logic block or explicit such as where the vector is used to index into a LUT. If the event is not of the class, a determination is made at decision block 306 if the platform is currently in IsoX mode. If it is, the memory map selection unit is activated to reload the current control registers selecting the normal memory map at functional block 308.
  • If at decision block 304 the event is of a class to be handled in an IsoX mode, a determination is made at decision 310 whether the platform is in IsoX mode. If it is not in IsoX mode, the selection signal generation unit causes the memory map selection unit to load the current control registers with the IsoX memory map at functional block 312. After the appropriate memory map is loaded, or is determined to already be loaded, the vector is dispatched and the asynchronous event is handled at function block 314.
  • In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims (15)

1. A method comprising:
distinguishing between at least two execution modes of a central processing unit in an information processing system;
maintaining at least two sets of processor control registers within the central processing unit;
recognizing an asynchronous event;
determining which execution mode is desired for responding to the asynchronous event; and
if the current execution mode is not the same as the desired execution mode for responding to the asynchronous event, altering the current execution mode to the desired execution mode before responding to the asynchronous event, wherein
at least one set of processor control registers is inaccessible to the processor in at least one of the execution modes.
2. The method of claim 1 wherein the at least two sets of processor control registers comprise virtual memory management registers.
3. The method of claim 1 wherein the at least two sets of processor control registers comprise interrupt vector table registers.
4. The method of claim 1 wherein the asynchronous event is a machine check event.
5. The method of claim 1 wherein the asynchronous event is a clock interrupt.
6. The method of claim 1 wherein the asynchronous event is a hardware interrupt.
7. An apparatus comprising:
a central processing unit (CPU) capable of operating in one of at least two execution modes;
a storage location that identifies a current execution mode of the CPU;
a plurality of resources operatively joined to the CPU; and
a mechanism to restrict access to a subset of the plurality of resources based on the current execution mode of the CPU.
8. The apparatus of claim 7 wherein the mechanism to restrict access to a subset of the plurality of resources comprises a signal provided by the CPU that indicates whether the current execution mode permits access to the plurality of resources.
9. The apparatus of claim 7 wherein the resource to which access is restricted is a special-purpose control register.
10. The apparatus of claim 9 wherein the special purpose control register is a virtual memory management descriptor.
11. The apparatus of claim 9 wherein the special purpose control register is an interrupt vector table descriptor.
12. The apparatus of claim 7 wherein the resource to which access is restricted is a device located outside the CPU.
13. The apparatus of claim 7 wherein the resource to which access is restricted is a random-access memory location.
14. A method of preventing inadvertent disclosure of information contained within a CPU comprising:
distinguishing between a normal and an isolated execution mode;
maintaining a separate set of control registers that are only accessible when the CPU is operating in the isolated execution mode;
defining a set of events that should be handled in the isolated execution mode;
determining if an event is a member of the set of events when the event occurs; and
if the event is a member of the set of events and the CPU is operating in the normal execution mode, switching to the isolated execution mode before executing instructions in response to said event.
15. The method of claim 14 wherein the set of events comprises machine check exceptions and clock events.
US11/187,731 2000-09-28 2005-07-21 Mechanism to handle events in a machine with isolated execution Abandoned US20050283660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/187,731 US20050283660A1 (en) 2000-09-28 2005-07-21 Mechanism to handle events in a machine with isolated execution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/672,368 US7793111B1 (en) 2000-09-28 2000-09-28 Mechanism to handle events in a machine with isolated execution
US11/187,731 US20050283660A1 (en) 2000-09-28 2005-07-21 Mechanism to handle events in a machine with isolated execution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/672,368 Division US7793111B1 (en) 2000-09-28 2000-09-28 Mechanism to handle events in a machine with isolated execution

Publications (1)

Publication Number Publication Date
US20050283660A1 true US20050283660A1 (en) 2005-12-22

Family

ID=35481964

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/672,368 Expired - Lifetime US7793111B1 (en) 2000-09-28 2000-09-28 Mechanism to handle events in a machine with isolated execution
US11/187,731 Abandoned US20050283660A1 (en) 2000-09-28 2005-07-21 Mechanism to handle events in a machine with isolated execution
US12/869,568 Expired - Fee Related US8671275B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution
US12/869,544 Expired - Fee Related US8522044B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution
US12/869,639 Expired - Fee Related US8458464B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/672,368 Expired - Lifetime US7793111B1 (en) 2000-09-28 2000-09-28 Mechanism to handle events in a machine with isolated execution

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/869,568 Expired - Fee Related US8671275B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution
US12/869,544 Expired - Fee Related US8522044B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution
US12/869,639 Expired - Fee Related US8458464B2 (en) 2000-09-28 2010-08-26 Mechanism to handle events in a machine with isolated execution

Country Status (1)

Country Link
US (5) US7793111B1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276152A1 (en) * 2007-05-03 2008-11-06 Sun Microsystems, Inc. System and Method for Error Detection in a Data Storage System
US20100325727A1 (en) * 2009-06-17 2010-12-23 Microsoft Corporation Security virtual machine for advanced auditing
US20110154501A1 (en) * 2009-12-23 2011-06-23 Banginwar Rajesh P Hardware attestation techniques
US20120216244A1 (en) * 2011-02-17 2012-08-23 Taasera, Inc. System and method for application attestation
WO2014018575A2 (en) 2012-07-24 2014-01-30 Sprint Communications Company L.P. Trusted security zone access to peripheral devices
US8776180B2 (en) 2012-05-01 2014-07-08 Taasera, Inc. Systems and methods for using reputation scores in network services and transactions to calculate security risks to computer systems and platforms
US9443088B1 (en) 2013-04-15 2016-09-13 Sprint Communications Company L.P. Protection for multimedia files pre-downloaded to a mobile device
US9454723B1 (en) 2013-04-04 2016-09-27 Sprint Communications Company L.P. Radio frequency identity (RFID) chip electrically and communicatively coupled to motherboard of mobile communication device
US9473945B1 (en) 2015-04-07 2016-10-18 Sprint Communications Company L.P. Infrastructure for secure short message transmission
US9560519B1 (en) 2013-06-06 2017-01-31 Sprint Communications Company L.P. Mobile communication device profound identity brokering framework
US9578664B1 (en) 2013-02-07 2017-02-21 Sprint Communications Company L.P. Trusted signaling in 3GPP interfaces in a network function virtualization wireless communication system
EP3025268A4 (en) * 2013-07-23 2017-03-01 Intel Corporation Feature licensing in a secure processing environment
US9613208B1 (en) 2013-03-13 2017-04-04 Sprint Communications Company L.P. Trusted security zone enhanced with trusted hardware drivers
US9712999B1 (en) 2013-04-04 2017-07-18 Sprint Communications Company L.P. Digest of biographical information for an electronic device with static and dynamic portions
US9779232B1 (en) 2015-01-14 2017-10-03 Sprint Communications Company L.P. Trusted code generation and verification to prevent fraud from maleficent external devices that capture data
US9811672B2 (en) 2012-08-10 2017-11-07 Sprint Communications Company L.P. Systems and methods for provisioning and using multiple trusted security zones on an electronic device
US9819679B1 (en) 2015-09-14 2017-11-14 Sprint Communications Company L.P. Hardware assisted provenance proof of named data networking associated to device data, addresses, services, and servers
US9817992B1 (en) 2015-11-20 2017-11-14 Sprint Communications Company Lp. System and method for secure USIM wireless network access
US9838868B1 (en) 2015-01-26 2017-12-05 Sprint Communications Company L.P. Mated universal serial bus (USB) wireless dongles configured with destination addresses
US9838869B1 (en) 2013-04-10 2017-12-05 Sprint Communications Company L.P. Delivering digital content to a mobile device via a digital rights clearing house
US9906958B2 (en) 2012-05-11 2018-02-27 Sprint Communications Company L.P. Web server bypass of backend process on near field communications and secure element chips
CN108292340A (en) * 2016-02-19 2018-07-17 惠普发展公司,有限责任合伙企业 Data are written to secure data storage equipment security during runtime
US10154019B2 (en) 2012-06-25 2018-12-11 Sprint Communications Company L.P. End-to-end trusted communications infrastructure
US10282719B1 (en) 2015-11-12 2019-05-07 Sprint Communications Company L.P. Secure and trusted device-based billing and charging process using privilege for network proxy authentication and audit
US10499249B1 (en) 2017-07-11 2019-12-03 Sprint Communications Company L.P. Data link layer trust signaling in communication network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069442B2 (en) * 2002-03-29 2006-06-27 Intel Corporation System and method for execution of a secured environment initialization instruction
WO2012021698A2 (en) 2010-08-12 2012-02-16 Janssen Biotech, Inc. Treatment of diabetes with pancreatic endocrine precursor cells
US8819067B2 (en) * 2010-11-19 2014-08-26 Oracle International Corporation Non-deterministic audit log protection
US8973158B2 (en) 2011-07-20 2015-03-03 Microsoft Technology Licensing Llc Trust level activation
US20150278512A1 (en) * 2014-03-28 2015-10-01 Intel Corporation Virtualization based intra-block workload isolation
US10754967B1 (en) * 2014-12-15 2020-08-25 Marvell Asia Pte, Ltd. Secure interrupt handling between security zones
US10114958B2 (en) * 2015-06-16 2018-10-30 Microsoft Technology Licensing, Llc Protected regions
CN107563224B (en) * 2017-09-04 2020-07-28 浪潮集团有限公司 Multi-user physical isolation method and device

Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037214A (en) * 1976-04-30 1977-07-19 International Business Machines Corporation Key register controlled accessing system
US4162536A (en) * 1976-01-02 1979-07-24 Gould Inc., Modicon Div. Digital input/output system and method
US4247905A (en) * 1977-08-26 1981-01-27 Sharp Kabushiki Kaisha Memory clear system
US4276594A (en) * 1978-01-27 1981-06-30 Gould Inc. Modicon Division Digital computer with multi-processor capability utilizing intelligent composite memory and input/output modules and method for performing the same
US4278837A (en) * 1977-10-31 1981-07-14 Best Robert M Crypto microprocessor for executing enciphered programs
US4319323A (en) * 1980-04-04 1982-03-09 Digital Equipment Corporation Communications device for data processing system
US4347565A (en) * 1978-12-01 1982-08-31 Fujitsu Limited Address control system for software simulation
US4430709A (en) * 1980-09-13 1984-02-07 Robert Bosch Gmbh Apparatus for safeguarding data entered into a microprocessor
US4521852A (en) * 1982-06-30 1985-06-04 Texas Instruments Incorporated Data processing device formed on a single semiconductor substrate having secure memory
US4571672A (en) * 1982-12-17 1986-02-18 Hitachi, Ltd. Access control method for multiprocessor systems
US4759064A (en) * 1985-10-07 1988-07-19 Chaum David L Blind unanticipated signature systems
US4795893A (en) * 1986-07-11 1989-01-03 Bull, Cp8 Security device prohibiting the function of an electronic data processing unit after a first cutoff of its electrical power
US4795863A (en) * 1983-08-16 1989-01-03 Omron Tateisi Electronics Co. Electrical switch
US4802084A (en) * 1985-03-11 1989-01-31 Hitachi, Ltd. Address translator
US4825052A (en) * 1985-12-31 1989-04-25 Bull Cp8 Method and apparatus for certifying services obtained using a portable carrier such as a memory card
US4907270A (en) * 1986-07-11 1990-03-06 Bull Cp8 Method for certifying the authenticity of a datum exchanged between two devices connected locally or remotely by a transmission line
US4907272A (en) * 1986-07-11 1990-03-06 Bull Cp8 Method for authenticating an external authorizing datum by a portable object, such as a memory card
US4910774A (en) * 1987-07-10 1990-03-20 Schlumberger Industries Method and system for suthenticating electronic memory cards
US5007082A (en) * 1988-08-03 1991-04-09 Kelly Services, Inc. Computer software encryption apparatus
US5022077A (en) * 1989-08-25 1991-06-04 International Business Machines Corp. Apparatus and method for preventing unauthorized access to BIOS in a personal computer system
US5079737A (en) * 1988-10-25 1992-01-07 United Technologies Corporation Memory management unit for the MIL-STD 1750 bus
US5187802A (en) * 1988-12-26 1993-02-16 Hitachi, Ltd. Virtual machine system with vitual machine resetting store indicating that virtual machine processed interrupt without virtual machine control program intervention
US5230069A (en) * 1990-10-02 1993-07-20 International Business Machines Corporation Apparatus and method for providing private and shared access to host address and data spaces by guest programs in a virtual machine computer system
US5293424A (en) * 1992-10-14 1994-03-08 Bull Hn Information Systems Inc. Secure memory card
US5295251A (en) * 1989-09-21 1994-03-15 Hitachi, Ltd. Method of accessing multiple virtual address spaces and computer system
US5317705A (en) * 1990-10-24 1994-05-31 International Business Machines Corporation Apparatus and method for TLB purge reduction in a multi-level machine system
US5319760A (en) * 1991-06-28 1994-06-07 Digital Equipment Corporation Translation buffer for virtual machines with address space match
US5386552A (en) * 1991-10-21 1995-01-31 Intel Corporation Preservation of a computer system processing state in a mass storage device
US5421006A (en) * 1992-05-07 1995-05-30 Compaq Computer Corp. Method and apparatus for assessing integrity of computer system software
US5434999A (en) * 1988-11-09 1995-07-18 Bull Cp8 Safeguarded remote loading of service programs by authorizing loading in protected memory zones in a terminal
US5437033A (en) * 1990-11-16 1995-07-25 Hitachi, Ltd. System for recovery from a virtual machine monitor failure with a continuous guest dispatched to a nonguest mode
US5442645A (en) * 1989-06-06 1995-08-15 Bull Cp8 Method for checking the integrity of a program or data, and apparatus for implementing this method
US5504922A (en) * 1989-06-30 1996-04-02 Hitachi, Ltd. Virtual machine with hardware display controllers for base and target machines
US5506975A (en) * 1992-12-18 1996-04-09 Hitachi, Ltd. Virtual machine I/O interrupt control method compares number of pending I/O interrupt conditions for non-running virtual machines with predetermined number
US5511217A (en) * 1992-11-30 1996-04-23 Hitachi, Ltd. Computer system of virtual machines sharing a vector processor
US5522075A (en) * 1991-06-28 1996-05-28 Digital Equipment Corporation Protection ring extension for computers having distinct virtual machine monitor and virtual machine address spaces
US5528231A (en) * 1993-06-08 1996-06-18 Bull Cp8 Method for the authentication of a portable object by an offline terminal, and apparatus for implementing the process
US5533126A (en) * 1993-04-22 1996-07-02 Bull Cp8 Key protection device for smart cards
US5604805A (en) * 1994-02-28 1997-02-18 Brands; Stefanus A. Privacy-protected transfer of electronic information
US5606617A (en) * 1994-10-14 1997-02-25 Brands; Stefanus A. Secret-key certificates
US5615263A (en) * 1995-01-06 1997-03-25 Vlsi Technology, Inc. Dual purpose security architecture with protected internal operating system
US5617263A (en) * 1993-05-10 1997-04-01 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for recording data suitable for a digital recording in a multiplexed fashion
US5628022A (en) * 1993-06-04 1997-05-06 Hitachi, Ltd. Microcomputer with programmable ROM
US5657445A (en) * 1996-01-26 1997-08-12 Dell Usa, L.P. Apparatus and method for limiting access to mass storage devices in a computer system
US5717903A (en) * 1995-05-15 1998-02-10 Compaq Computer Corporation Method and appartus for emulating a peripheral device to allow device driver development before availability of the peripheral device
US5720609A (en) * 1991-01-09 1998-02-24 Pfefferle; William Charles Catalytic method
US5721222A (en) * 1992-04-16 1998-02-24 Zeneca Limited Heterocyclic ketones
US5729760A (en) * 1996-06-21 1998-03-17 Intel Corporation System for providing first type access to register if processor in first mode and second type access to register if processor not in first mode
US5737604A (en) * 1989-11-03 1998-04-07 Compaq Computer Corporation Method and apparatus for independently resetting processors and cache controllers in multiple processor systems
US5737760A (en) * 1995-10-06 1998-04-07 Motorola Inc. Microcontroller with security logic circuit which prevents reading of internal memory by external program
US5757919A (en) * 1996-12-12 1998-05-26 Intel Corporation Cryptographically protected paging subsystem
US5759064A (en) * 1995-07-28 1998-06-02 Yazaki Corporation Waterproof lamp socket structure
US5764969A (en) * 1995-02-10 1998-06-09 International Business Machines Corporation Method and system for enhanced management operation utilizing intermixed user level and supervisory level instructions with partial concept synchronization
US5867577A (en) * 1994-03-09 1999-02-02 Bull Cp8 Method and apparatus for authenticating a data carrier intended to enable a transaction or access to a service or a location, and corresponding carrier
US5872994A (en) * 1995-11-10 1999-02-16 Nec Corporation Flash memory incorporating microcomputer having on-board writing function
US5890189A (en) * 1991-11-29 1999-03-30 Kabushiki Kaisha Toshiba Memory management and protection system for virtual memory in computer system
US5900606A (en) * 1995-03-10 1999-05-04 Schlumberger Industries, S.A. Method of writing information securely in a portable medium
US5901225A (en) * 1996-12-05 1999-05-04 Advanced Micro Devices, Inc. System and method for performing software patches in embedded systems
US5903752A (en) * 1994-10-13 1999-05-11 Intel Corporation Method and apparatus for embedding a real-time multi-tasking kernel in a non-real-time operating system
US6014745A (en) * 1997-07-17 2000-01-11 Silicon Systems Design Ltd. Protection for customer programs (EPROM)
US6044478A (en) * 1997-05-30 2000-03-28 National Semiconductor Corporation Cache with finely granular locked-down regions
US6055637A (en) * 1996-09-27 2000-04-25 Electronic Data Systems Corporation System and method for accessing enterprise-wide resources by presenting to the resource a temporary credential
US6058478A (en) * 1994-09-30 2000-05-02 Intel Corporation Apparatus and method for a vetted field upgrade
US6061794A (en) * 1997-09-30 2000-05-09 Compaq Computer Corp. System and method for performing secure device communications in a peer-to-peer bus architecture
US6075938A (en) * 1997-06-10 2000-06-13 The Board Of Trustees Of The Leland Stanford Junior University Virtual machine monitors for scalable multiprocessors
US6085296A (en) * 1997-11-12 2000-07-04 Digital Equipment Corporation Sharing memory pages and page tables among computer processes
US6088262A (en) * 1997-02-27 2000-07-11 Seiko Epson Corporation Semiconductor device and electronic equipment having a non-volatile memory with a security function
US6092095A (en) * 1996-01-08 2000-07-18 Smart Link Ltd. Real-time task manager for a personal computer
US6173417B1 (en) * 1998-04-30 2001-01-09 Intel Corporation Initializing and restarting operating systems
US6175925B1 (en) * 1996-06-13 2001-01-16 Intel Corporation Tamper resistant player for scrambled contents
US6175924B1 (en) * 1997-06-20 2001-01-16 International Business Machines Corp. Method and apparatus for protecting application data in secure storage areas
US6178509B1 (en) * 1996-06-13 2001-01-23 Intel Corporation Tamper resistant methods and apparatus
US6182089B1 (en) * 1997-09-23 2001-01-30 Silicon Graphics, Inc. Method, system and computer program product for dynamically allocating large memory pages of different sizes
US6188257B1 (en) * 1999-02-01 2001-02-13 Vlsi Technology, Inc. Power-on-reset logic with secure power down capability
US6192455B1 (en) * 1998-03-30 2001-02-20 Intel Corporation Apparatus and method for preventing access to SMRAM space through AGP addressing
US6205550B1 (en) * 1996-06-13 2001-03-20 Intel Corporation Tamper resistant methods and apparatus
US6212635B1 (en) * 1997-07-18 2001-04-03 David C. Reardon Network security system allowing access and modification to a security subsystem after initial installation when a master token is in place
US6222923B1 (en) * 1996-11-28 2001-04-24 Deutsche Telekom Ag Method for securing system protected by a key hierarchy
US6249872B1 (en) * 1996-02-09 2001-06-19 Intel Corporation Method and apparatus for increasing security against unauthorized write access to a protected memory
US6252650B1 (en) * 1999-09-09 2001-06-26 Nikon Corporation Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
US6269392B1 (en) * 1994-11-15 2001-07-31 Christian Cotichini Method and apparatus to monitor and locate an electronic device using a secured intelligent agent
US6339815B1 (en) * 1998-08-14 2002-01-15 Silicon Storage Technology, Inc. Microcontroller system having allocation circuitry to selectively allocate and/or hide portions of a program memory address space
US6339816B1 (en) * 1997-08-19 2002-01-15 Siemens Noxdorf Informationssysteme Aktiengesellschaft Method for improving controllability in data processing system with address translation
US6357004B1 (en) * 1997-09-30 2002-03-12 Intel Corporation System and method for ensuring integrity throughout post-processing
US6363485B1 (en) * 1998-09-09 2002-03-26 Entrust Technologies Limited Multi-factor biometric authenticating device and method
US6374286B1 (en) * 1998-04-06 2002-04-16 Rockwell Collins, Inc. Real time processor capable of concurrently running multiple independent JAVA machines
US6374317B1 (en) * 1999-10-07 2002-04-16 Intel Corporation Method and apparatus for initializing a computer interface
US6378068B1 (en) * 1991-05-17 2002-04-23 Nec Corporation Suspend/resume capability for a protected mode microprocesser
US6378072B1 (en) * 1998-02-03 2002-04-23 Compaq Computer Corporation Cryptographic system
US6389537B1 (en) * 1999-04-23 2002-05-14 Intel Corporation Platform and method for assuring integrity of trusted agent communications
US6397242B1 (en) * 1998-05-15 2002-05-28 Vmware, Inc. Virtualization system including a virtual machine monitor for a computer with a segmented architecture
US6412035B1 (en) * 1997-02-03 2002-06-25 Real Time, Inc. Apparatus and method for decreasing the response times of interrupt service routines
US6421702B1 (en) * 1998-06-09 2002-07-16 Advanced Micro Devices, Inc. Interrupt driven isochronous task scheduler system
US6505279B1 (en) * 1998-08-14 2003-01-07 Silicon Storage Technology, Inc. Microcontroller system having security circuitry to selectively lock portions of a program memory address space
US6507904B1 (en) * 2000-03-31 2003-01-14 Intel Corporation Executing isolated mode instructions in a secure system running in privilege rings
US20030018892A1 (en) * 2001-07-19 2003-01-23 Jose Tello Computer with a modified north bridge, security engine and smart card having a secure boot capability and method for secure booting a computer
US6535988B1 (en) * 1999-09-29 2003-03-18 Intel Corporation System for detecting over-clocking uses a reference signal thereafter preventing over-clocking by reducing clock rate
US6557104B2 (en) * 1997-05-02 2003-04-29 Phoenix Technologies Ltd. Method and apparatus for secure processing of cryptographic keys
US6570004B1 (en) * 1996-12-23 2003-05-27 Vanderbilt University dapE gene on Helicobacter pylori and dapE− mutant strains of Helicobacter pylori

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996449A (en) 1975-08-25 1976-12-07 International Business Machines Corporation Operating system authenticator
US4307447A (en) 1979-06-19 1981-12-22 Gould Inc. Programmable controller
US4366537A (en) 1980-05-23 1982-12-28 International Business Machines Corp. Authorization mechanism for transfer of program control or data between different address spaces having different storage protect keys
US4975836A (en) 1984-12-19 1990-12-04 Hitachi, Ltd. Virtual computer system
FR2640798B1 (en) 1988-12-20 1993-01-08 Bull Cp8 DATA PROCESSING DEVICE COMPRISING AN ELECTRICALLY ERASABLE AND REPROGRAMMABLE NON-VOLATILE MEMORY
JPH02208740A (en) 1989-02-09 1990-08-20 Fujitsu Ltd Virtual computer control system
US5781753A (en) 1989-02-24 1998-07-14 Advanced Micro Devices, Inc. Semi-autonomous RISC pipelines for overlapped execution of RISC-like instructions within the multiple superscalar execution units of a processor having distributed pipeline control for speculative and out-of-order execution of complex instructions
CA2010591C (en) 1989-10-20 1999-01-26 Phillip M. Adams Kernels, description tables and device drivers
US5075842A (en) 1989-12-22 1991-12-24 Intel Corporation Disabling tag bit recognition and allowing privileged operations to occur in an object-oriented memory protection mechanism
EP0473913A3 (en) 1990-09-04 1992-12-16 International Business Machines Corporation Method and apparatus for providing a service pool of virtual machines for a plurality of vm users
US5108590A (en) 1990-09-12 1992-04-28 Disanto Dennis Water dispenser
US5255379A (en) 1990-12-28 1993-10-19 Sun Microsystems, Inc. Method for automatically transitioning from V86 mode to protected mode in a computer system using an Intel 80386 or 80486 processor
JPH04348434A (en) 1991-05-27 1992-12-03 Hitachi Ltd Virtual computer system
US5455909A (en) 1991-07-05 1995-10-03 Chips And Technologies Inc. Microprocessor with operation capture facility
US5574936A (en) 1992-01-02 1996-11-12 Amdahl Corporation Access control mechanism controlling access to and logical purging of access register translation lookaside buffer (ALB) in a computer system
US5610981A (en) 1992-06-04 1997-03-11 Integrated Technologies Of America, Inc. Preboot protection for a data security system with anti-intrusion capability
US5796835A (en) 1992-10-27 1998-08-18 Bull Cp8 Method and system for writing information in a data carrier making it possible to later certify the originality of this information
EP0600112A1 (en) 1992-11-30 1994-06-08 Siemens Nixdorf Informationssysteme Aktiengesellschaft Data processing system with virtual memory addressing and memory access controlled by keys
US5469557A (en) 1993-03-05 1995-11-21 Microchip Technology Incorporated Code protection in microcontroller with EEPROM fuses
FR2703800B1 (en) 1993-04-06 1995-05-24 Bull Cp8 Method for signing a computer file, and device for implementing it.
US5555385A (en) 1993-10-27 1996-09-10 International Business Machines Corporation Allocation of address spaces within virtual machine compute system
US5459869A (en) 1994-02-17 1995-10-17 Spilo; Michael L. Method for providing protected mode services for device drivers and other resident software
US5684881A (en) 1994-05-23 1997-11-04 Matsushita Electric Industrial Co., Ltd. Sound field and sound image control apparatus and method
US5473692A (en) 1994-09-07 1995-12-05 Intel Corporation Roving software license for a hardware agent
US5539828A (en) 1994-05-31 1996-07-23 Intel Corporation Apparatus and method for providing secured communications
US5533123A (en) 1994-06-28 1996-07-02 National Semiconductor Corporation Programmable distributed personal security
US5978481A (en) 1994-08-16 1999-11-02 Intel Corporation Modem compatible method and apparatus for encrypting data that is transparent to software applications
JP3713312B2 (en) * 1994-09-09 2005-11-09 株式会社ルネサステクノロジ Data processing device
EP0706275B1 (en) 1994-09-15 2006-01-25 International Business Machines Corporation System and method for secure storage and distribution of data using digital signatures
FR2725537B1 (en) 1994-10-11 1996-11-22 Bull Cp8 METHOD FOR LOADING A PROTECTED MEMORY AREA OF AN INFORMATION PROCESSING DEVICE AND ASSOCIATED DEVICE
US5564040A (en) 1994-11-08 1996-10-08 International Business Machines Corporation Method and apparatus for providing a server function in a logically partitioned hardware machine
US5555414A (en) 1994-12-14 1996-09-10 International Business Machines Corporation Multiprocessing system including gating of host I/O and external enablement to guest enablement at polling intervals
JP3451595B2 (en) 1995-06-07 2003-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Microprocessor with architectural mode control capable of supporting extension to two distinct instruction set architectures
EP0880840A4 (en) 1996-01-11 2002-10-23 Mrj Inc System for controlling access and distribution of digital property
IL117085A (en) 1996-02-08 2005-07-25 Milsys Ltd Secure computer system
US5978892A (en) 1996-05-03 1999-11-02 Digital Equipment Corporation Virtual memory allocation in a virtual address space having an inaccessible gap
US5844986A (en) 1996-09-30 1998-12-01 Intel Corporation Secure BIOS
US5937063A (en) 1996-09-30 1999-08-10 Intel Corporation Secure boot
SE9603962D0 (en) * 1996-10-30 1996-10-30 Christian Wettergren Device and method of communication
JPH10134008A (en) 1996-11-05 1998-05-22 Mitsubishi Electric Corp Semiconductor device and computer system
US5852717A (en) 1996-11-20 1998-12-22 Shiva Corporation Performance optimizations for computer networks utilizing HTTP
US5818939A (en) 1996-12-18 1998-10-06 Intel Corporation Optimized security functionality in an electronic system
US6148401A (en) 1997-02-05 2000-11-14 At&T Corp. System and method for providing assurance to a host that a piece of software possesses a particular property
US5953502A (en) 1997-02-13 1999-09-14 Helbig, Sr.; Walter A Method and apparatus for enhancing computer system security
EP0970411B1 (en) 1997-03-27 2002-05-15 BRITISH TELECOMMUNICATIONS public limited company Copy protection of data
US6272637B1 (en) 1997-04-14 2001-08-07 Dallas Semiconductor Corporation Systems and methods for protecting access to encrypted information
US5987557A (en) 1997-06-19 1999-11-16 Sun Microsystems, Inc. Method and apparatus for implementing hardware protection domains in a system with no memory management unit (MMU)
US5978475A (en) * 1997-07-18 1999-11-02 Counterpane Internet Security, Inc. Event auditing system
US6188995B1 (en) 1997-07-28 2001-02-13 Apple Computer, Inc. Method and apparatus for enforcing software licenses
US6282657B1 (en) 1997-09-16 2001-08-28 Safenet, Inc. Kernel mode protection
US6148379A (en) 1997-09-19 2000-11-14 Silicon Graphics, Inc. System, method and computer program product for page sharing between fault-isolated cells in a distributed shared memory system
US5970147A (en) 1997-09-30 1999-10-19 Intel Corporation System and method for configuring and registering a cryptographic device
US5987604A (en) 1997-10-07 1999-11-16 Phoenix Technologies, Ltd. Method and apparatus for providing execution of system management mode services in virtual mode
US6098133A (en) * 1997-11-28 2000-08-01 Motorola, Inc. Secure bus arbiter interconnect arrangement
US6219787B1 (en) 1997-12-22 2001-04-17 Texas Instruments Incorporated Method and apparatus for extending security model to native code
US6308270B1 (en) 1998-02-13 2001-10-23 Schlumberger Technologies, Inc. Validating and certifying execution of a software program with a smart card
US6339826B2 (en) 1998-05-05 2002-01-15 International Business Machines Corp. Client-server system for maintaining a user desktop consistent with server application user access permissions
FR2778998B1 (en) 1998-05-20 2000-06-30 Schlumberger Ind Sa METHOD FOR AUTHENTICATING A PERSONAL CODE OF A USER OF AN INTEGRATED CIRCUIT CARD
DE69942712D1 (en) 1998-05-29 2010-10-14 Texas Instruments Inc Secure computing device
NZ509018A (en) 1998-06-17 2002-06-28 Aristocrat Technologies Au Software verification and authentication
JP2000076139A (en) 1998-08-28 2000-03-14 Nippon Telegr & Teleph Corp <Ntt> Portable information storage medium
US6463535B1 (en) 1998-10-05 2002-10-08 Intel Corporation System and method for verifying the integrity and authorization of software before execution in a local platform
US6230248B1 (en) 1998-10-12 2001-05-08 Institute For The Development Of Emerging Architectures, L.L.C. Method and apparatus for pre-validating regions in a virtual addressing scheme
US6330670B1 (en) 1998-10-26 2001-12-11 Microsoft Corporation Digital rights management operating system
US6445797B1 (en) 1998-12-16 2002-09-03 Secure Choice Llc Method and system for performing secure electronic digital streaming
US6463537B1 (en) 1999-01-04 2002-10-08 Codex Technologies, Inc. Modified computer motherboard security and identification system
US6282650B1 (en) 1999-01-25 2001-08-28 Intel Corporation Secure public digital watermark
EP1030237A1 (en) 1999-02-15 2000-08-23 Hewlett-Packard Company Trusted hardware device in a computer
US6272533B1 (en) 1999-02-16 2001-08-07 Hendrik A. Browne Secure computer system and method of providing secure access to a computer system including a stand alone switch operable to inhibit data corruption on a storage device
CA2368858A1 (en) 1999-04-12 2000-10-19 Digital Media On Demand, Inc. Secure electronic commerce system
US6275933B1 (en) 1999-04-30 2001-08-14 3Com Corporation Security system for a computerized apparatus
US6321314B1 (en) 1999-06-09 2001-11-20 Ati International S.R.L. Method and apparatus for restricting memory access
US6633981B1 (en) 1999-06-18 2003-10-14 Intel Corporation Electronic system and method for controlling access through user authentication
US6158546A (en) 1999-06-25 2000-12-12 Tenneco Automotive Inc. Straight through muffler with conically-ended output passage
US6745306B1 (en) * 1999-07-29 2004-06-01 Microsoft Corporation Method and system for restricting the load of physical address translations of virtual addresses
US6301646B1 (en) 1999-07-30 2001-10-09 Curl Corporation Pointer verification system and method
EP1085396A1 (en) 1999-09-17 2001-03-21 Hewlett-Packard Company Operation of trusted state in computing platform
GB9923804D0 (en) 1999-10-08 1999-12-08 Hewlett Packard Co Electronic commerce system
GB9923802D0 (en) 1999-10-08 1999-12-08 Hewlett Packard Co User authentication
US6292874B1 (en) 1999-10-19 2001-09-18 Advanced Technology Materials, Inc. Memory management method and apparatus for partitioning homogeneous memory and restricting access of installed applications to predetermined memory ranges
WO2001063994A2 (en) 2000-02-23 2001-08-30 Iridian Technologies, Inc. Tamper proof case for electronic devices having memories with sensitive information
WO2001063567A2 (en) 2000-02-25 2001-08-30 Identix Incorporated Secure transaction system
AU2001243365A1 (en) 2000-03-02 2001-09-12 Alarity Corporation System and method for process protection
CA2341931C (en) 2000-03-24 2006-05-30 Contentguard Holdings, Inc. System and method for protection of digital works
US6990579B1 (en) 2000-03-31 2006-01-24 Intel Corporation Platform and method for remote attestation of a platform
US6633963B1 (en) 2000-03-31 2003-10-14 Intel Corporation Controlling access to multiple memory zones in an isolated execution environment
US6795905B1 (en) 2000-03-31 2004-09-21 Intel Corporation Controlling accesses to isolated memory using a memory controller for isolated execution
US20020062452A1 (en) 2000-08-18 2002-05-23 Warwick Ford Countering credentials copying
WO2002086684A2 (en) 2001-04-24 2002-10-31 Hewlett-Packard Company An information security system
EP1271277A3 (en) 2001-06-26 2003-02-05 Redstrike B.V. Security system and software to prevent unauthorized use of a computing device

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4162536A (en) * 1976-01-02 1979-07-24 Gould Inc., Modicon Div. Digital input/output system and method
US4037214A (en) * 1976-04-30 1977-07-19 International Business Machines Corporation Key register controlled accessing system
US4247905A (en) * 1977-08-26 1981-01-27 Sharp Kabushiki Kaisha Memory clear system
US4278837A (en) * 1977-10-31 1981-07-14 Best Robert M Crypto microprocessor for executing enciphered programs
US4276594A (en) * 1978-01-27 1981-06-30 Gould Inc. Modicon Division Digital computer with multi-processor capability utilizing intelligent composite memory and input/output modules and method for performing the same
US4347565A (en) * 1978-12-01 1982-08-31 Fujitsu Limited Address control system for software simulation
US4319323A (en) * 1980-04-04 1982-03-09 Digital Equipment Corporation Communications device for data processing system
US4430709A (en) * 1980-09-13 1984-02-07 Robert Bosch Gmbh Apparatus for safeguarding data entered into a microprocessor
US4521852A (en) * 1982-06-30 1985-06-04 Texas Instruments Incorporated Data processing device formed on a single semiconductor substrate having secure memory
US4571672A (en) * 1982-12-17 1986-02-18 Hitachi, Ltd. Access control method for multiprocessor systems
US4795863A (en) * 1983-08-16 1989-01-03 Omron Tateisi Electronics Co. Electrical switch
US4802084A (en) * 1985-03-11 1989-01-31 Hitachi, Ltd. Address translator
US4759064A (en) * 1985-10-07 1988-07-19 Chaum David L Blind unanticipated signature systems
US4825052A (en) * 1985-12-31 1989-04-25 Bull Cp8 Method and apparatus for certifying services obtained using a portable carrier such as a memory card
US4907272A (en) * 1986-07-11 1990-03-06 Bull Cp8 Method for authenticating an external authorizing datum by a portable object, such as a memory card
US4907270A (en) * 1986-07-11 1990-03-06 Bull Cp8 Method for certifying the authenticity of a datum exchanged between two devices connected locally or remotely by a transmission line
US4795893A (en) * 1986-07-11 1989-01-03 Bull, Cp8 Security device prohibiting the function of an electronic data processing unit after a first cutoff of its electrical power
US4910774A (en) * 1987-07-10 1990-03-20 Schlumberger Industries Method and system for suthenticating electronic memory cards
US5007082A (en) * 1988-08-03 1991-04-09 Kelly Services, Inc. Computer software encryption apparatus
US5079737A (en) * 1988-10-25 1992-01-07 United Technologies Corporation Memory management unit for the MIL-STD 1750 bus
US5434999A (en) * 1988-11-09 1995-07-18 Bull Cp8 Safeguarded remote loading of service programs by authorizing loading in protected memory zones in a terminal
US5187802A (en) * 1988-12-26 1993-02-16 Hitachi, Ltd. Virtual machine system with vitual machine resetting store indicating that virtual machine processed interrupt without virtual machine control program intervention
US5442645A (en) * 1989-06-06 1995-08-15 Bull Cp8 Method for checking the integrity of a program or data, and apparatus for implementing this method
US5504922A (en) * 1989-06-30 1996-04-02 Hitachi, Ltd. Virtual machine with hardware display controllers for base and target machines
US5022077A (en) * 1989-08-25 1991-06-04 International Business Machines Corp. Apparatus and method for preventing unauthorized access to BIOS in a personal computer system
US5295251A (en) * 1989-09-21 1994-03-15 Hitachi, Ltd. Method of accessing multiple virtual address spaces and computer system
US5737604A (en) * 1989-11-03 1998-04-07 Compaq Computer Corporation Method and apparatus for independently resetting processors and cache controllers in multiple processor systems
US5230069A (en) * 1990-10-02 1993-07-20 International Business Machines Corporation Apparatus and method for providing private and shared access to host address and data spaces by guest programs in a virtual machine computer system
US5317705A (en) * 1990-10-24 1994-05-31 International Business Machines Corporation Apparatus and method for TLB purge reduction in a multi-level machine system
US5437033A (en) * 1990-11-16 1995-07-25 Hitachi, Ltd. System for recovery from a virtual machine monitor failure with a continuous guest dispatched to a nonguest mode
US5720609A (en) * 1991-01-09 1998-02-24 Pfefferle; William Charles Catalytic method
US6378068B1 (en) * 1991-05-17 2002-04-23 Nec Corporation Suspend/resume capability for a protected mode microprocesser
US5319760A (en) * 1991-06-28 1994-06-07 Digital Equipment Corporation Translation buffer for virtual machines with address space match
US5522075A (en) * 1991-06-28 1996-05-28 Digital Equipment Corporation Protection ring extension for computers having distinct virtual machine monitor and virtual machine address spaces
US5386552A (en) * 1991-10-21 1995-01-31 Intel Corporation Preservation of a computer system processing state in a mass storage device
US5890189A (en) * 1991-11-29 1999-03-30 Kabushiki Kaisha Toshiba Memory management and protection system for virtual memory in computer system
US5721222A (en) * 1992-04-16 1998-02-24 Zeneca Limited Heterocyclic ketones
US5421006A (en) * 1992-05-07 1995-05-30 Compaq Computer Corp. Method and apparatus for assessing integrity of computer system software
US5293424A (en) * 1992-10-14 1994-03-08 Bull Hn Information Systems Inc. Secure memory card
US5511217A (en) * 1992-11-30 1996-04-23 Hitachi, Ltd. Computer system of virtual machines sharing a vector processor
US5506975A (en) * 1992-12-18 1996-04-09 Hitachi, Ltd. Virtual machine I/O interrupt control method compares number of pending I/O interrupt conditions for non-running virtual machines with predetermined number
US5533126A (en) * 1993-04-22 1996-07-02 Bull Cp8 Key protection device for smart cards
US5617263A (en) * 1993-05-10 1997-04-01 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for recording data suitable for a digital recording in a multiplexed fashion
US5628022A (en) * 1993-06-04 1997-05-06 Hitachi, Ltd. Microcomputer with programmable ROM
US5528231A (en) * 1993-06-08 1996-06-18 Bull Cp8 Method for the authentication of a portable object by an offline terminal, and apparatus for implementing the process
US5604805A (en) * 1994-02-28 1997-02-18 Brands; Stefanus A. Privacy-protected transfer of electronic information
US5867577A (en) * 1994-03-09 1999-02-02 Bull Cp8 Method and apparatus for authenticating a data carrier intended to enable a transaction or access to a service or a location, and corresponding carrier
US6058478A (en) * 1994-09-30 2000-05-02 Intel Corporation Apparatus and method for a vetted field upgrade
US5903752A (en) * 1994-10-13 1999-05-11 Intel Corporation Method and apparatus for embedding a real-time multi-tasking kernel in a non-real-time operating system
US5606617A (en) * 1994-10-14 1997-02-25 Brands; Stefanus A. Secret-key certificates
US6269392B1 (en) * 1994-11-15 2001-07-31 Christian Cotichini Method and apparatus to monitor and locate an electronic device using a secured intelligent agent
US5615263A (en) * 1995-01-06 1997-03-25 Vlsi Technology, Inc. Dual purpose security architecture with protected internal operating system
US5764969A (en) * 1995-02-10 1998-06-09 International Business Machines Corporation Method and system for enhanced management operation utilizing intermixed user level and supervisory level instructions with partial concept synchronization
US5900606A (en) * 1995-03-10 1999-05-04 Schlumberger Industries, S.A. Method of writing information securely in a portable medium
US5717903A (en) * 1995-05-15 1998-02-10 Compaq Computer Corporation Method and appartus for emulating a peripheral device to allow device driver development before availability of the peripheral device
US5759064A (en) * 1995-07-28 1998-06-02 Yazaki Corporation Waterproof lamp socket structure
US5737760A (en) * 1995-10-06 1998-04-07 Motorola Inc. Microcontroller with security logic circuit which prevents reading of internal memory by external program
US5872994A (en) * 1995-11-10 1999-02-16 Nec Corporation Flash memory incorporating microcomputer having on-board writing function
US6092095A (en) * 1996-01-08 2000-07-18 Smart Link Ltd. Real-time task manager for a personal computer
US5657445A (en) * 1996-01-26 1997-08-12 Dell Usa, L.P. Apparatus and method for limiting access to mass storage devices in a computer system
US6249872B1 (en) * 1996-02-09 2001-06-19 Intel Corporation Method and apparatus for increasing security against unauthorized write access to a protected memory
US6175925B1 (en) * 1996-06-13 2001-01-16 Intel Corporation Tamper resistant player for scrambled contents
US6205550B1 (en) * 1996-06-13 2001-03-20 Intel Corporation Tamper resistant methods and apparatus
US6178509B1 (en) * 1996-06-13 2001-01-23 Intel Corporation Tamper resistant methods and apparatus
US5729760A (en) * 1996-06-21 1998-03-17 Intel Corporation System for providing first type access to register if processor in first mode and second type access to register if processor not in first mode
US6055637A (en) * 1996-09-27 2000-04-25 Electronic Data Systems Corporation System and method for accessing enterprise-wide resources by presenting to the resource a temporary credential
US6222923B1 (en) * 1996-11-28 2001-04-24 Deutsche Telekom Ag Method for securing system protected by a key hierarchy
US5901225A (en) * 1996-12-05 1999-05-04 Advanced Micro Devices, Inc. System and method for performing software patches in embedded systems
US5757919A (en) * 1996-12-12 1998-05-26 Intel Corporation Cryptographically protected paging subsystem
US6570004B1 (en) * 1996-12-23 2003-05-27 Vanderbilt University dapE gene on Helicobacter pylori and dapE− mutant strains of Helicobacter pylori
US6412035B1 (en) * 1997-02-03 2002-06-25 Real Time, Inc. Apparatus and method for decreasing the response times of interrupt service routines
US6088262A (en) * 1997-02-27 2000-07-11 Seiko Epson Corporation Semiconductor device and electronic equipment having a non-volatile memory with a security function
US6557104B2 (en) * 1997-05-02 2003-04-29 Phoenix Technologies Ltd. Method and apparatus for secure processing of cryptographic keys
US6044478A (en) * 1997-05-30 2000-03-28 National Semiconductor Corporation Cache with finely granular locked-down regions
US6075938A (en) * 1997-06-10 2000-06-13 The Board Of Trustees Of The Leland Stanford Junior University Virtual machine monitors for scalable multiprocessors
US6175924B1 (en) * 1997-06-20 2001-01-16 International Business Machines Corp. Method and apparatus for protecting application data in secure storage areas
US6014745A (en) * 1997-07-17 2000-01-11 Silicon Systems Design Ltd. Protection for customer programs (EPROM)
US6212635B1 (en) * 1997-07-18 2001-04-03 David C. Reardon Network security system allowing access and modification to a security subsystem after initial installation when a master token is in place
US6339816B1 (en) * 1997-08-19 2002-01-15 Siemens Noxdorf Informationssysteme Aktiengesellschaft Method for improving controllability in data processing system with address translation
US6182089B1 (en) * 1997-09-23 2001-01-30 Silicon Graphics, Inc. Method, system and computer program product for dynamically allocating large memory pages of different sizes
US6061794A (en) * 1997-09-30 2000-05-09 Compaq Computer Corp. System and method for performing secure device communications in a peer-to-peer bus architecture
US6357004B1 (en) * 1997-09-30 2002-03-12 Intel Corporation System and method for ensuring integrity throughout post-processing
US6085296A (en) * 1997-11-12 2000-07-04 Digital Equipment Corporation Sharing memory pages and page tables among computer processes
US6378072B1 (en) * 1998-02-03 2002-04-23 Compaq Computer Corporation Cryptographic system
US6192455B1 (en) * 1998-03-30 2001-02-20 Intel Corporation Apparatus and method for preventing access to SMRAM space through AGP addressing
US6374286B1 (en) * 1998-04-06 2002-04-16 Rockwell Collins, Inc. Real time processor capable of concurrently running multiple independent JAVA machines
US6173417B1 (en) * 1998-04-30 2001-01-09 Intel Corporation Initializing and restarting operating systems
US6397242B1 (en) * 1998-05-15 2002-05-28 Vmware, Inc. Virtualization system including a virtual machine monitor for a computer with a segmented architecture
US6421702B1 (en) * 1998-06-09 2002-07-16 Advanced Micro Devices, Inc. Interrupt driven isochronous task scheduler system
US6339815B1 (en) * 1998-08-14 2002-01-15 Silicon Storage Technology, Inc. Microcontroller system having allocation circuitry to selectively allocate and/or hide portions of a program memory address space
US6505279B1 (en) * 1998-08-14 2003-01-07 Silicon Storage Technology, Inc. Microcontroller system having security circuitry to selectively lock portions of a program memory address space
US6363485B1 (en) * 1998-09-09 2002-03-26 Entrust Technologies Limited Multi-factor biometric authenticating device and method
US6188257B1 (en) * 1999-02-01 2001-02-13 Vlsi Technology, Inc. Power-on-reset logic with secure power down capability
US6389537B1 (en) * 1999-04-23 2002-05-14 Intel Corporation Platform and method for assuring integrity of trusted agent communications
US6252650B1 (en) * 1999-09-09 2001-06-26 Nikon Corporation Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
US6535988B1 (en) * 1999-09-29 2003-03-18 Intel Corporation System for detecting over-clocking uses a reference signal thereafter preventing over-clocking by reducing clock rate
US6374317B1 (en) * 1999-10-07 2002-04-16 Intel Corporation Method and apparatus for initializing a computer interface
US6507904B1 (en) * 2000-03-31 2003-01-14 Intel Corporation Executing isolated mode instructions in a secure system running in privilege rings
US20030018892A1 (en) * 2001-07-19 2003-01-23 Jose Tello Computer with a modified north bridge, security engine and smart card having a secure boot capability and method for secure booting a computer

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8316258B2 (en) * 2007-05-03 2012-11-20 Oracle America, Inc. System and method for error detection in a data storage system
US20080276152A1 (en) * 2007-05-03 2008-11-06 Sun Microsystems, Inc. System and Method for Error Detection in a Data Storage System
US8955108B2 (en) * 2009-06-17 2015-02-10 Microsoft Corporation Security virtual machine for advanced auditing
US20100325727A1 (en) * 2009-06-17 2010-12-23 Microsoft Corporation Security virtual machine for advanced auditing
CN102123031A (en) * 2009-12-23 2011-07-13 英特尔公司 Hardware attestation techniques
US20110154501A1 (en) * 2009-12-23 2011-06-23 Banginwar Rajesh P Hardware attestation techniques
US20120216244A1 (en) * 2011-02-17 2012-08-23 Taasera, Inc. System and method for application attestation
US8327441B2 (en) * 2011-02-17 2012-12-04 Taasera, Inc. System and method for application attestation
US8776180B2 (en) 2012-05-01 2014-07-08 Taasera, Inc. Systems and methods for using reputation scores in network services and transactions to calculate security risks to computer systems and platforms
US8850588B2 (en) 2012-05-01 2014-09-30 Taasera, Inc. Systems and methods for providing mobile security based on dynamic attestation
US8990948B2 (en) 2012-05-01 2015-03-24 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
US9027125B2 (en) 2012-05-01 2015-05-05 Taasera, Inc. Systems and methods for network flow remediation based on risk correlation
US9092616B2 (en) 2012-05-01 2015-07-28 Taasera, Inc. Systems and methods for threat identification and remediation
US9906958B2 (en) 2012-05-11 2018-02-27 Sprint Communications Company L.P. Web server bypass of backend process on near field communications and secure element chips
US10154019B2 (en) 2012-06-25 2018-12-11 Sprint Communications Company L.P. End-to-end trusted communications infrastructure
EP2859498A4 (en) * 2012-07-24 2016-04-06 Sprint Communications Co Trusted security zone access to peripheral devices
WO2014018575A2 (en) 2012-07-24 2014-01-30 Sprint Communications Company L.P. Trusted security zone access to peripheral devices
US9811672B2 (en) 2012-08-10 2017-11-07 Sprint Communications Company L.P. Systems and methods for provisioning and using multiple trusted security zones on an electronic device
US9578664B1 (en) 2013-02-07 2017-02-21 Sprint Communications Company L.P. Trusted signaling in 3GPP interfaces in a network function virtualization wireless communication system
US9769854B1 (en) 2013-02-07 2017-09-19 Sprint Communications Company L.P. Trusted signaling in 3GPP interfaces in a network function virtualization wireless communication system
US9613208B1 (en) 2013-03-13 2017-04-04 Sprint Communications Company L.P. Trusted security zone enhanced with trusted hardware drivers
US9454723B1 (en) 2013-04-04 2016-09-27 Sprint Communications Company L.P. Radio frequency identity (RFID) chip electrically and communicatively coupled to motherboard of mobile communication device
US9712999B1 (en) 2013-04-04 2017-07-18 Sprint Communications Company L.P. Digest of biographical information for an electronic device with static and dynamic portions
US9838869B1 (en) 2013-04-10 2017-12-05 Sprint Communications Company L.P. Delivering digital content to a mobile device via a digital rights clearing house
US9443088B1 (en) 2013-04-15 2016-09-13 Sprint Communications Company L.P. Protection for multimedia files pre-downloaded to a mobile device
US9560519B1 (en) 2013-06-06 2017-01-31 Sprint Communications Company L.P. Mobile communication device profound identity brokering framework
US9949304B1 (en) 2013-06-06 2018-04-17 Sprint Communications Company L.P. Mobile communication device profound identity brokering framework
EP3025268A4 (en) * 2013-07-23 2017-03-01 Intel Corporation Feature licensing in a secure processing environment
US9698989B2 (en) 2013-07-23 2017-07-04 Intel Corporation Feature licensing in a secure processing environment
US9779232B1 (en) 2015-01-14 2017-10-03 Sprint Communications Company L.P. Trusted code generation and verification to prevent fraud from maleficent external devices that capture data
US9838868B1 (en) 2015-01-26 2017-12-05 Sprint Communications Company L.P. Mated universal serial bus (USB) wireless dongles configured with destination addresses
US9473945B1 (en) 2015-04-07 2016-10-18 Sprint Communications Company L.P. Infrastructure for secure short message transmission
US9819679B1 (en) 2015-09-14 2017-11-14 Sprint Communications Company L.P. Hardware assisted provenance proof of named data networking associated to device data, addresses, services, and servers
US10282719B1 (en) 2015-11-12 2019-05-07 Sprint Communications Company L.P. Secure and trusted device-based billing and charging process using privilege for network proxy authentication and audit
US9817992B1 (en) 2015-11-20 2017-11-14 Sprint Communications Company Lp. System and method for secure USIM wireless network access
US10311246B1 (en) 2015-11-20 2019-06-04 Sprint Communications Company L.P. System and method for secure USIM wireless network access
CN108292340A (en) * 2016-02-19 2018-07-17 惠普发展公司,有限责任合伙企业 Data are written to secure data storage equipment security during runtime
EP3356987B1 (en) * 2016-02-19 2021-02-17 Hewlett-Packard Development Company, L.P. Securely writing data to a secure data storage device during runtime
US11537757B2 (en) 2016-02-19 2022-12-27 Hewlett-Packard Development Company, L.P. Securely writing data to a secure data storage device during runtime
US10499249B1 (en) 2017-07-11 2019-12-03 Sprint Communications Company L.P. Data link layer trust signaling in communication network

Also Published As

Publication number Publication date
US8671275B2 (en) 2014-03-11
US20100325354A1 (en) 2010-12-23
US7793111B1 (en) 2010-09-07
US8458464B2 (en) 2013-06-04
US20100325445A1 (en) 2010-12-23
US20100332760A1 (en) 2010-12-30
US8522044B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
US8522044B2 (en) Mechanism to handle events in a machine with isolated execution
US7254707B2 (en) Platform and method for remote attestation of a platform
US6507904B1 (en) Executing isolated mode instructions in a secure system running in privilege rings
JP4822646B2 (en) Generating a key hierarchy for use in an isolated execution environment
US11784786B2 (en) Mitigating security vulnerabilities with memory allocation markers in cryptographic computing systems
US6795905B1 (en) Controlling accesses to isolated memory using a memory controller for isolated execution
US6957332B1 (en) Managing a secure platform using a hierarchical executive architecture in isolated execution mode
US6678825B1 (en) Controlling access to multiple isolated memories in an isolated execution environment
US7082615B1 (en) Protecting software environment in isolated execution
US6633963B1 (en) Controlling access to multiple memory zones in an isolated execution environment
US11669625B2 (en) Data type based cryptographic computing
US6996710B1 (en) Platform and method for issuing and certifying a hardware-protected attestation key
US6934817B2 (en) Controlling access to multiple memory zones in an isolated execution environment
US7194634B2 (en) Attestation key memory device and bus
US7013484B1 (en) Managing a secure environment using a chipset in isolated execution mode
US11580035B2 (en) Fine-grained stack protection using cryptographic computing
US7013481B1 (en) Attestation key memory device and bus
JP2004504663A (en) Controlling access to multiple isolated memories in an isolated execution environment
US6754815B1 (en) Method and system for scrubbing an isolated area of memory after reset of a processor operating in isolated execution mode if a cleanup flag is set
US7073071B1 (en) Platform and method for generating and utilizing a protected audit log
US7389427B1 (en) Mechanism to secure computer output from software attack using isolated execution
US7089418B1 (en) Managing accesses in a processor for isolated execution
US7111176B1 (en) Generating isolated bus cycles for isolated execution
US6769058B1 (en) Resetting a processor in an isolated execution environment
GB2405973A (en) Retrieving audit log with attestation cycles

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION