US20050277982A1 - Articulated center post - Google Patents

Articulated center post Download PDF

Info

Publication number
US20050277982A1
US20050277982A1 US11/204,303 US20430305A US2005277982A1 US 20050277982 A1 US20050277982 A1 US 20050277982A1 US 20430305 A US20430305 A US 20430305A US 2005277982 A1 US2005277982 A1 US 2005277982A1
Authority
US
United States
Prior art keywords
occlusion device
ball
center
strut
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/204,303
Inventor
Joseph Marino
Michael Corcoran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardia Inc
Original Assignee
Cardia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardia Inc filed Critical Cardia Inc
Priority to US11/204,303 priority Critical patent/US20050277982A1/en
Publication of US20050277982A1 publication Critical patent/US20050277982A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening

Definitions

  • This invention relates to an occlusion device for the closure of physical apertures, such as vascular or septal apertures. More specifically, this invention relates to an occlusion device for the heart, having an articulated center post which allows the device to better conform to the contours of the heart.
  • modem occlusion devices are small, implantable devices capable of being delivered to the heart through a catheter. Rather than surgery, a catheter inserted into a major blood vessel allows an occlusion device to be deployed by moving the device through the catheter. This procedure is performed in a cardiac cathlab and avoids the risks and pain associated with open heart surgery.
  • These modern occlusion devices can repair a wide range of cardiac defects, including patent foramen ovale, patent ductus arteriosus, atrial septal defects, ventricular septal defects, and may occlude other cardiac and non-cardiac apertures.
  • occlusion devices capable of being inserted via a catheter
  • button devices collapsible umbrella-like structures, and plug-like devices.
  • a potential draw back to these devices is the difficulty in ensuring that the occluder conforms to the contours of the defect. Poor conformation to the defect results in poor seating of the device which decreases the ability of the device to occlude the defect.
  • Ensuring the proper seating of an occlusion device once it has been deployed poses a continuing challenge given the uneven topography of the vascular and septal walls of each patient's heart.
  • the challenge in designing an occluder which conforms to the uneven topography is compounded by the fact that the contours of each defect in each individual patient are unique.
  • the present invention allows occlusion devices to more effectively close a physical anomaly.
  • the present invention is an occlusion device having an articulated center section.
  • the articulated center section increases the ability of the occlusion device to more accurately conform to the defect.
  • the center section may consist of a post having left and right parts and a joint which links the left and right parts and provides articulation.
  • the joint includes a ball carried by a portion of the post and a sleeve forming a socket carried by another portion of the post.
  • FIG. 1 is a perspective view of an occlusion device with an articulated center post.
  • FIG. 2A is a diagram of the heart.
  • FIG. 2B is a diagram of an occlusion device being inserted into a defect.
  • FIG. 2C is a diagram of an occlusion device with an articulated center section being inserted into a defect.
  • FIG. 2D is a diagram demonstrating the conformation capabilities of an occlusion device with an articulated center.
  • FIG. 3A is a side view of an articulated center section having two joints.
  • FIG. 3B is a side view of an articulated center section having three joints.
  • FIG. 4 is a side view of an articulated center section.
  • FIG. 5 is a side view of a left part of an articulated center section.
  • FIG. 6 is a side view of a right part of an articulated center section.
  • FIG. 7 is a side view of left and right sleeves.
  • FIG. 8 is a cross sectional side view of an assembled articulated center section.
  • FIG. 1 is a top perspective view of an occlusion device 10 .
  • the device 10 comprises a center section 12 , proximal and distal fixation devices 14 , 30 (each comprised of six arms 16 ), atraumatic tips 18 , an proximal sheet 20 , and a distal sheet 22 .
  • the proximal and distal fixation devices 14 , 30 are attached to the sheets 20 , 22 using sutures 28 .
  • the proximal and distal fixation devices 14 , 30 are connected to the center post 12 .
  • One method of connecting the arms 16 to the post 12 is to provide the center post 12 with drill holes through which the arms 16 extend.
  • the atraumatic tips 18 are located at the distal end of each arm 16 and serve to minimize damage to the surrounding tissue.
  • the atraumatic tips 18 provide a place for the sutures 28 to attach the sheets 20 , 22 to the proximal and distal fixation devices 14 , 30 .
  • One method of suturing the sheets 20 , 22 to the proximal and distal fixation devices 14 , 30 is to provide the atraumatic tips 18 with drill holes through which the sutures 28 pass. In this way, the sheets 20 , 22 are sewn to the fixation devices 14 , 30 at the atraumatic tips 18 .
  • the occlusion device 10 is constructed so that the proximal and distal fixation devices 14 , 30 are easily collapsible about the center section 12 .
  • the occlusion device 10 can be folded so that the fixation devices 14 , 30 are folded in the axial direction.
  • the proximal and distal sheets 20 , 22 attached to the proximal and distal fixation devices 14 , 30 are flexible, and can likewise collapse as the proximal and distal devices 14 , 30 are folded.
  • the center post 12 further comprises a knob 24 .
  • the knob 24 allows for the device 10 to be grasped as it is inserted into the body through the catheter.
  • the fixation devices 14 , 30 serve to hold the proximal and distal sheets 20 , 22 in place to seal the defect.
  • the fixation devices 14 , 30 are made of a suitable material capable of shape memory, such as nickel-titanium alloy, commonly called Nitinol. Nitinol is preferably used because it is commercially available, very elastic, non-corrosive and has a fatigue life greater than that of stainless steel.
  • Nitinol is preferably used because it is commercially available, very elastic, non-corrosive and has a fatigue life greater than that of stainless steel.
  • one embodiment of the present invention relies on making the wire fixation devices 14 , 30 of stranded wire or cables.
  • the center section 12 shown in the device 10 is articulated.
  • the articulation can be accomplished by a variety of methods.
  • the articulation could comprise one or more joints, or hinges. It could also be a spring or a coil. Additionally, a spot specific reduction in the amount of material used to create the center section 12 could render portions of the section 12 sufficiently flexible.
  • the center section 12 is preferably formed to have a diameter of between about 8 millimeters and about 0.1 millimeters.
  • the length of the center section is preferably less than about 20 millimeters.
  • the sheets 20 , 22 are comprised of a medical grade polymer in the form of film, foam, gel, or a combination thereof.
  • a medical grade polymer in the form of film, foam, gel, or a combination thereof.
  • One suitable material is DACRON®.
  • a high density polyvinyl alcohol (PVA) foam is used, such as that offered under the trademark IVALON®.
  • PVA polyvinyl alcohol
  • the foam sheets 20 , 22 may be treated with a thrombosis inhibiting material.
  • heparin is heparin.
  • the size of the sheets 20 , 22 may vary to accommodate various sizes of defects. When measured diagonally, the size of the sheets 20 , 22 may range from about 15 millimeters to about 45 millimeters. In some instances, it maybe desirable to form the sheets 20 , 22 so that they are not both the same size. For instance, one sheet and its associated fixation device can be made smaller (25 millimeters) than the corresponding sheet and its associated fixation device (30 millimeters). This is particularly useful in situations where the occlusion device 10 is to be placed at a location in the heart which is close to other nearby cardiac structures. Making the sails 20 , 22 different sizes may assist in providing optimal occlusion of a defect, without affecting other structures of the heart which may be nearby.
  • FIGS. 2A through 2D illustrate the method by which the occlusion device 10 is deployed.
  • FIG. 2A is a diagrammatic view of a human heart 30 . Visible in FIG. 2A is the right atrium 32 , the left atrium 34 , the right ventricle 36 , the left ventricle 38 . The right atrium 32 is separated from the left atrium 34 by a atrial septal wall 40 . The right ventricle 36 is separated from the left ventricle 38 by a ventricular septal wall 42 . Also visible in FIG. 2A is an atrial septal defect 44 located in the atrial septal wall 40 , between the right atrium 32 and left atrium 34 of the heart 30 . An atrial septal defect 44 is one example of a cardiac defect that may be occluded using the occlusion device 10 .
  • FIG. 2B is a more detailed view of the septal wall 40 and the defect 44 , shown between the right atrium 32 and the left atrium 34 . Also shown is the occlusion device 10 of FIG. 1 , a catheter 50 , and a delivery forceps 52 . As viewed in FIG. 2B , the occlusion device 10 comprises a distal side 54 , a proximal side 56 , and a center section 12 . The occlusion device 10 is being inserted into the septal defect 44 from the catheter 50 . The device 10 is tethered to the delivery forceps 52 . To insert the occlusion device 10 , the catheter 50 is positioned proximate the septal defect 44 .
  • the delivery forceps 52 is used to push the occlusion device 10 through the catheter 50 so that the distal side 54 of the device 10 unfolds in the left atrium 34 .
  • the proximal side 56 is still folded in the catheter 50 .
  • the placement of the catheter 50 determines the location of and angle at which the occlusion device 10 is deployed. Once the catheter 50 is properly positioned at the defect, the delivery forceps 52 is used to push the device 10 through the defect 44 . The distal side 54 of the device 10 is then allowed to expand against septal walls 40 surrounding the defect 44 .
  • the center section 12 is articulated but the articulation remains inside the catheter 50 and is therefore immobilized. If the center section 12 of the occlusion device 10 is not articulated (or articulated but immobilized), the device's center section 12 must enter the defect 44 following the same angle of insertion as the catheter 50 or other delivery device. As a result, the insertion angle is limited by the catheter's angle of insertion FIG. 2B .
  • the catheter 50 enters the heart at an angle that is not perpendicular to the defective wall FIG. 2B .
  • the device 10 cannot enter the defect 44 properly because the line of the center section 12 must follow the same line as the catheter 50 .
  • the device 10 must be forced into the defect 44 at an angle, which may cause the tissue surrounding the defect 44 to become distorted. If the surrounding cardiac tissue is distorted by the catheter 50 , it is difficult to determine whether the device 10 will be properly seated once the catheter 50 is removed and the tissue returns to its normal state. If the device 10 is not seated properly, blood will continue to flow through the defect 44 and the device 10 may have to be retrieved and re-deployed. Both doctors and patients prefer to avoid retrieval and re-deployment because it causes additional expense and longer procedure time.
  • FIG. 2C shows an occlusion device 10 with an articulated center section 12 being inserted into a cardiac defect 44 . Shown once again are the defect 44 , septal walls 40 , catheter 50 , and occlusion device 10 comprising a distal side 54 , and a proximal side 56 . In FIG. 2C , the occlusion device 10 has been further advanced through the catheter 50 to expose the articulated center section 12 comprising a joint 62 .
  • the insertion angle of the device 10 is not restricted to that of the catheter 50 .
  • the device 10 can be more easily inserted, because once the joint 62 is outside the catheter 50 , the angle of insertion can be changed by allowing the joint 62 to move.
  • This variable insertion angle allows the device 10 to enter the defect 44 at an optimum angle, minimizing distortion of surrounding cardiac tissue. If the tissue is not distorted when the device 10 is deployed, the seating of the device 10 should not change drastically once the catheter 50 is removed. Because the device 10 can be properly seated at the first insertion, the number of cases that require retrieval and redeployment should decrease.
  • FIG. 2D shows an occlusion device 10 having an articulated center section 12 that is fully deployed and is occluding a cardiac defect 44 .
  • Shown in FIG. 2D is a distal side 54 , a proximal side 56 , a center post 12 , a joint 62 , septal walls 40 , and a defect 44 .
  • the distal side 54 has been properly positioned, the proximal side 56 has been deployed and the device 10 has been released.
  • FIG. 2D demonstrates the ability of an occlusion device 10 having an articulated center section 12 to conform to an irregularly shaped defect 44 .
  • the articulated center section 12 allows the distal and proximal sides 54 , 56 to conform more readily to the contours of the heart 30 after it is deployed, providing a custom fit to a variety of defects. Often, when implanted, an occlusion device 10 is located in an irregularly shaped defect 44 . Having an articulated center section 12 allows the occlusion device 12 to fit in a wider variety of defects, despite the shape or size of the defect.
  • the septal wall 40 on the bottom of the defect may be only a few millimeters thick, but on the top may be many more millimeters thick FIG. 2D .
  • one side of the occluding device 10 may be bent open further than the other side. The side that is more distorted carries a high static load which both increases pressure on the surrounding tissue and increases the possibility of breakage of the device 10 .
  • the center section 12 is articulated, it can bend such that the upper or lower fixation devices 14 , 30 need not be the only the only parts which adjust to fit the defect 44 .
  • the ability to conform to a variety of heart contours provides better seating, reduces tension (increasing fatigue life), and decreases the likelihood of damage to tissue resulting from breakage and from pressure the device places on surrounding tissue.
  • Another feature of the occlusion device 10 is that it is fully retrievable. To allow the device 10 to be retrievable, as well as ensure that the device 10 fits into as small a diameter catheter as possible, it is important to ensure that the arms 16 are not of a length that results in the tips 18 clustering at the same location. If the tips 18 all occur at the same location when the device 10 is inside the catheter 50 , the device will become too bulky to allow it to be easily moved through the catheter.
  • both the upper and lower arms 16 will be folded in the same direction. In such an instance, it is likewise important to vary the length of the upper arms from the length of the lower arms 16 so that when the device 10 is retrieved, the tips 18 on both the upper arms 16 do not cluster at the same location as the tips 18 on the lower arms 16 .
  • FIG. 3A is a perspective view of an example of an articulated center section 70 with double articulation.
  • the center section 70 comprises a right part 72 , left part 74 , and a center part 76 .
  • the left part 74 has a knob 24 located on one end.
  • Both right and left parts 72 , 74 have three holes 80 drilled through them.
  • the center section 70 further comprise two joints or hinges 78 on each end of the center part 76 .
  • the joints or hinges 78 connect the right and left parts 72 , 74 to the center 76 and allow for the right and left parts 72 , 74 to rotate relative to the center part 76 .
  • the wire arms 16 ( FIG. 1 ) attach to the center section by passing through the holes 80 drilled through the left and right parts 72 , 74 .
  • a joint 78 provides the articulation. Though shown with a double articulation, the articulated center section 70 is not so limited. The number of joints or hinges 78 maybe varied to accommodate a particular defect or a particular type of defect. For example, one joint or hinge may be best for an atrial septal defect while two or three articulations may be best for a larger defect such as patent foramen ovale or a long defect such as patent ductus arteriosus.
  • the articulation may be achieved in a variety of ways. Ball joints or hinges may create the articulation.
  • the articulation may also be created by the addition of a spring like coil to the center, a reduction of the amount of material used in a portion the center, or use of material that has ample flexibility when constructing the center.
  • FIG. 3B is a side view of an articulated center section 90 with triple articulation, which demonstrates the range of flexibility of the joints 100 . Shown is a right part 92 , a left part 94 with a knob 24 , two center parts 96 , a joining part 98 , and four joints 100 .
  • the large amount of flexibility allows the occlusion device to conform to a wide variety of defects. If less flexibility is needed, an center section 90 with one or two joints may be preferred.
  • FIG. 4 is an enlarged side view of one example of an articulated center section 70 , showing the section 70 in more detail.
  • the articulated center section 70 is comprised of a right part 72 , a left part 74 which has a knob 24 , a center part 76 , and two joints 116 , 118 .
  • the center part 76 is comprised of a left sleeve 112 and a right sleeve 114 .
  • the left part 74 connects to center section 76 at the left joint 116 .
  • the right part 72 connects to the center part 76 at the right joint 118 .
  • the joints or hinges 116 , 118 allow the right and left parts 72 , 74 to rotate relative to the center part 76 , giving them a full 360° of motion relative to the center part 76 .
  • the joints or hinges 116 , 118 are designed to allow for maximum three dimensional movement of both the right and left parts 72 , 74 relative to the center part 76 .
  • the joints 116 , 118 may also be configured to provide two dimensional movement of the right and left parts 72 , 74 relative to the center part 76 .
  • the range of motion need not be a full 360° to be an improvement. Other ranges of motion, such as two dimensional rotation may work also, depending on the type of defect.
  • FIG. 5 is an enlarged side view of the left part 74 .
  • the left part 74 comprises a ball 120 , a first neck 122 , a cylindrical body 124 , a second neck 126 , a knob 24 , and three holes 80 . As described above, three holes 80 are drilled through the part 74 to allow for attachment of the wire arms 16 .
  • the end ball 120 on one end of the left part 74 is connected to the cylindrical body 124 of the left part 74 at the first neck 122 .
  • the knob 24 is located on the other end of the cylindrical body 124 and is connected to the body 124 by a second neck 126 .
  • the cylindrical body 124 of the left part 124 is preferably smaller in diameter than the ball 120 .
  • the knob 24 has a smaller diameter than both the body 124 and the ball 120 .
  • the end ball 120 may have a diameter A of about 1.35 millimeters
  • the cylindrical body 124 may have a diameter B of about 1.2 millimeters
  • the knob 24 may have a diameter C of about 1.0 millimeter.
  • the knob 24 is configured to allow a delivery forceps 52 to attach to the occlusion device 10 as it is pushed through the catheter 50 and allows the forceps to manipulate the device 10 as it is delivered.
  • a guide forceps can be used to position the occlusion device 10 once it reaches the desired location or to retrieve the device 10 should it not be seated properly.
  • the knob 24 may additionally have a cross sectional area which allows the forceps to rotatably move the device while the device is inserted into a defect 44 .
  • the second neck 126 is grasped by a forceps so that there is at least some play between the forceps and the second neck 126 when pushing the device through a catheter.
  • the guide forceps may engage the second neck 126 by means of a claw-like or hook-like end.
  • the knob 24 is threaded to allow for attachment to a threaded guide forceps.
  • FIG. 6 is a side view of a right part 72 .
  • the right part 72 comprises a ball 130 , a first neck 132 , a cylindrical body 134 , and three holes 80 . Once again, three holes 80 are drilled through the part 72 to allow for attachment of the wire arms 16 .
  • the right part 72 is nearly identical to the left part 74 except that it does not require a knob 24 or second neck 86 . Because the occlusion device 10 only needs to be graspable at one end, a second knob is unnecessary.
  • the cylindrical body 124 of the left part 124 is preferably smaller in diameter than the ball 120 .
  • the end ball 130 may have a diameter D of about 1.35 millimeters
  • the cylindrical body 134 may have a diameter E of about 1.2 millimeters.
  • FIG. 7 is an exploded view of the center section. Shown is a right sleeve 112 and a left sleeve 114 .
  • the right sleeve 112 comprises a cuff 140 .
  • the cuff 140 is configured to fit inside the left sleeve 114 when the two sleeves are assembled.
  • the two sleeves 112 , 114 once assembled, the two sleeves 112 , 114 can be permanently attached at the cuff 140 , and secured by welding.
  • FIG. 8 shows a cross sectional view of an assembled articulated center post. Shown is the left part 74 , the right part 72 , and the center part 76 , which comprises the left sleeve 114 , and the right sleeve 112 having a cuff 140 . Also shown is a washer 150 . Each sleeve has a sleeve opening 152 . Also shown are the details of the left and right parts: a knob 24 , a second neck 126 , first necks 122 , 132 , cylindrical bodies 124 , 134 , end balls 120 , 130 , and holes 80 . The sleeves 112 , 114 have been welded together.
  • the left and right parts 74 , 72 are slipped into the corresponding left and right sleeves 114 , 112 .
  • the diameter of balls 120 , 130 is less than the diameter of bodies 124 , 134 .
  • the cylindrical bodies 124 , 134 are small enough to fit through the sleeve openings 152 , 154 but the end balls 120 , 130 are too large to fit through the sleeve openings 152 , 154 .
  • the left part 74 is placed through the left sleeve 114
  • the cylindrical body 124 extends out the sleeve opening 152 but the end ball 120 remains inside the sleeve 114 .
  • the body extends out the sleeve 112 but the end ball 120 remains inside the sleeve 112 .
  • the washer 150 may be inserted at the end of the cuff 140 of the right sleeve 112 .
  • the left sleeve 114 and the right sleeve 112 are joined by inserting the cuff 140 into the left sleeve 114 . Once assembled, the sleeves 112 , 114 are welded together.
  • the resulting assembly forms two ball joints which are able to rotate independently of each other relative to the center part 76 .
  • the first necks 122 , 132 sit at the sleeve opening 152 , 154 after the cylindrical bodies 124 , 134 have been pushed through the corresponding sleeve openings 152 , 154 .
  • the diameters of the necks 122 , 132 are smaller than the diameter of the sleeve openings 152 , 154 so the necks 122 , 132 have ample space to rotate freely in the sleeve openings 152 , 154 .
  • the end balls 120 , 130 are separated by the washer 150 so that they do not come in contact with each other and restrict each other's movement.
  • the washer 150 also prevents the end balls 120 , 130 from moving too far into the center of the sleeves 112 , 114 . If the end balls 120 were allowed to move too far back into the sleeves 112 , 114 , the left and right parts 74 , 72 could also move into the sleeves 112 , 114 , thereby restricting the movement of the joints 116 , 118 .
  • a hard metal such as titanium, is used to construct the parts of the center post because use of a hard material prevents binding within the ball joints.
  • a neck 122 , 132 is welded in place in the sleeve opening 152 , or formed integrally, to immobilize one joint if only a single movable joint is desired.
  • one of the end balls 120 , 130 could be welded to the washer 150 to immobilize one of the joints.
  • an articulated center post can be adapted for use in any occluding device, including those designed for atrial septal defects, patent ductus arteriosus, and ventricular septal defects.
  • the center post can also be adapted for use in an septal stabilization device.

Abstract

This invention relates to an occlusion device for the heart, having an articulated center post which allows the device to better conform to the contours of the heart to increase sealing abilities and reduce breakage resulting from conformation pressure.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a division of application Ser. No. 10/348,865, filed Jan. 22, 2003, entitled “Articulated Center Post”.
  • This application is related to U.S. patent application entitled Hoop Design for Occlusion Device, Ser. No. 10/349,118, Occlusion Device Having Five or More Arms, Ser. No. 10/348,701, Septal Stabilization Device, Ser. No. 10/349,744, and U.S. patent application entitled Laminated Sheets for use in a Fully Retrievable Occlusion Device, Ser. No. 10/348,864, all filed on Jan. 22, 2003.
  • BACKGROUND OF THE INVENTION
  • This invention relates to an occlusion device for the closure of physical apertures, such as vascular or septal apertures. More specifically, this invention relates to an occlusion device for the heart, having an articulated center post which allows the device to better conform to the contours of the heart.
  • Normally, permanently repairing certain cardiac defects in adults and children requires open heart surgery, a risky, expensive, and painful procedure. To avoid the risks and discomfort associated with open heart surgery, modem occlusion devices have been developed that are small, implantable devices capable of being delivered to the heart through a catheter. Rather than surgery, a catheter inserted into a major blood vessel allows an occlusion device to be deployed by moving the device through the catheter. This procedure is performed in a cardiac cathlab and avoids the risks and pain associated with open heart surgery. These modern occlusion devices can repair a wide range of cardiac defects, including patent foramen ovale, patent ductus arteriosus, atrial septal defects, ventricular septal defects, and may occlude other cardiac and non-cardiac apertures.
  • There are currently several types of occlusion devices capable of being inserted via a catheter including button devices, collapsible umbrella-like structures, and plug-like devices. A potential draw back to these devices is the difficulty in ensuring that the occluder conforms to the contours of the defect. Poor conformation to the defect results in poor seating of the device which decreases the ability of the device to occlude the defect. Ensuring the proper seating of an occlusion device once it has been deployed poses a continuing challenge given the uneven topography of the vascular and septal walls of each patient's heart. The challenge in designing an occluder which conforms to the uneven topography is compounded by the fact that the contours of each defect in each individual patient are unique.
  • Lack of conformation to the walls of the heart can place significant amounts of stress on the occlusion device and decrease fatigue life. Once deployed, different parts of the occluder may experience more or less stress as a result of the uneven topography. At some point, stressed parts of the occluder may break. Broken parts increase the likelihood of damage to the surrounding tissue and lead to patient anxiety.
  • Thus, there is a need in the art for an occlusion device that will occlude cardiac defects and will match the contours of the heart thereby increasing the life of the device and sealing ability while reducing damage the surrounding tissue.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention allows occlusion devices to more effectively close a physical anomaly. The present invention is an occlusion device having an articulated center section. The articulated center section increases the ability of the occlusion device to more accurately conform to the defect. The center section may consist of a post having left and right parts and a joint which links the left and right parts and provides articulation. The joint includes a ball carried by a portion of the post and a sleeve forming a socket carried by another portion of the post.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of an occlusion device with an articulated center post.
  • FIG. 2A is a diagram of the heart.
  • FIG. 2B is a diagram of an occlusion device being inserted into a defect.
  • FIG. 2C is a diagram of an occlusion device with an articulated center section being inserted into a defect.
  • FIG. 2D is a diagram demonstrating the conformation capabilities of an occlusion device with an articulated center.
  • FIG. 3A is a side view of an articulated center section having two joints.
  • FIG. 3B is a side view of an articulated center section having three joints.
  • FIG. 4 is a side view of an articulated center section.
  • FIG. 5 is a side view of a left part of an articulated center section.
  • FIG. 6 is a side view of a right part of an articulated center section.
  • FIG. 7 is a side view of left and right sleeves.
  • FIG. 8 is a cross sectional side view of an assembled articulated center section.
  • DETAILED DESCRIPTION
  • FIG. 1 is a top perspective view of an occlusion device 10. As viewed in FIG. 1, the device 10 comprises a center section 12, proximal and distal fixation devices 14, 30 (each comprised of six arms 16), atraumatic tips 18, an proximal sheet 20, and a distal sheet 22. The proximal and distal fixation devices 14, 30 are attached to the sheets 20, 22 using sutures 28. The proximal and distal fixation devices 14, 30 are connected to the center post 12. One method of connecting the arms 16 to the post 12 is to provide the center post 12 with drill holes through which the arms 16 extend. The atraumatic tips 18 are located at the distal end of each arm 16 and serve to minimize damage to the surrounding tissue. The atraumatic tips 18 provide a place for the sutures 28 to attach the sheets 20, 22 to the proximal and distal fixation devices 14, 30. One method of suturing the sheets 20, 22 to the proximal and distal fixation devices 14, 30 is to provide the atraumatic tips 18 with drill holes through which the sutures 28 pass. In this way, the sheets 20, 22 are sewn to the fixation devices 14, 30 at the atraumatic tips 18. More specifically, the occlusion device 10 is constructed so that the proximal and distal fixation devices 14, 30 are easily collapsible about the center section 12. Due to this construction, the occlusion device 10 can be folded so that the fixation devices 14, 30 are folded in the axial direction. The proximal and distal sheets 20, 22 attached to the proximal and distal fixation devices 14, 30 are flexible, and can likewise collapse as the proximal and distal devices 14, 30 are folded. In addition, the center post 12 further comprises a knob 24. The knob 24 allows for the device 10 to be grasped as it is inserted into the body through the catheter.
  • Once the device 10 is deployed, the fixation devices 14, 30 serve to hold the proximal and distal sheets 20, 22 in place to seal the defect. To ensure there is sufficient tension to hold the sheets 20, 22 in place, the fixation devices 14, 30 are made of a suitable material capable of shape memory, such as nickel-titanium alloy, commonly called Nitinol. Nitinol is preferably used because it is commercially available, very elastic, non-corrosive and has a fatigue life greater than that of stainless steel. To further ensure that the fixation devices 14, 30 do not suffer from fatigue failures, one embodiment of the present invention relies on making the wire fixation devices 14, 30 of stranded wire or cables.
  • The center section 12 shown in the device 10 is articulated. The articulation can be accomplished by a variety of methods. The articulation could comprise one or more joints, or hinges. It could also be a spring or a coil. Additionally, a spot specific reduction in the amount of material used to create the center section 12 could render portions of the section 12 sufficiently flexible.
  • The center section 12 is preferably formed to have a diameter of between about 8 millimeters and about 0.1 millimeters. In addition, the length of the center section is preferably less than about 20 millimeters.
  • The sheets 20, 22 are comprised of a medical grade polymer in the form of film, foam, gel, or a combination thereof. One suitable material is DACRON®. Preferably, a high density polyvinyl alcohol (PVA) foam is used, such as that offered under the trademark IVALON®. To minimize the chance of the occlusion device 10 causing a blood clot, the foam sheets 20, 22 may be treated with a thrombosis inhibiting material. One such suitable material is heparin.
  • The size of the sheets 20, 22 may vary to accommodate various sizes of defects. When measured diagonally, the size of the sheets 20, 22 may range from about 15 millimeters to about 45 millimeters. In some instances, it maybe desirable to form the sheets 20, 22 so that they are not both the same size. For instance, one sheet and its associated fixation device can be made smaller (25 millimeters) than the corresponding sheet and its associated fixation device (30 millimeters). This is particularly useful in situations where the occlusion device 10 is to be placed at a location in the heart which is close to other nearby cardiac structures. Making the sails 20, 22 different sizes may assist in providing optimal occlusion of a defect, without affecting other structures of the heart which may be nearby.
  • FIGS. 2A through 2D illustrate the method by which the occlusion device 10 is deployed. FIG. 2A is a diagrammatic view of a human heart 30. Visible in FIG. 2A is the right atrium 32, the left atrium 34, the right ventricle 36, the left ventricle 38. The right atrium 32 is separated from the left atrium 34 by a atrial septal wall 40. The right ventricle 36 is separated from the left ventricle 38 by a ventricular septal wall 42. Also visible in FIG. 2A is an atrial septal defect 44 located in the atrial septal wall 40, between the right atrium 32 and left atrium 34 of the heart 30. An atrial septal defect 44 is one example of a cardiac defect that may be occluded using the occlusion device 10.
  • FIG. 2B is a more detailed view of the septal wall 40 and the defect 44, shown between the right atrium 32 and the left atrium 34. Also shown is the occlusion device 10 of FIG. 1, a catheter 50, and a delivery forceps 52. As viewed in FIG. 2B, the occlusion device 10 comprises a distal side 54, a proximal side 56, and a center section 12. The occlusion device 10 is being inserted into the septal defect 44 from the catheter 50. The device 10 is tethered to the delivery forceps 52. To insert the occlusion device 10, the catheter 50 is positioned proximate the septal defect 44. Next, the delivery forceps 52 is used to push the occlusion device 10 through the catheter 50 so that the distal side 54 of the device 10 unfolds in the left atrium 34. Although the distal side 54 has been deployed, the proximal side 56 is still folded in the catheter 50.
  • The placement of the catheter 50, or other means that guides the device 10 to the defect 44, determines the location of and angle at which the occlusion device 10 is deployed. Once the catheter 50 is properly positioned at the defect, the delivery forceps 52 is used to push the device 10 through the defect 44. The distal side 54 of the device 10 is then allowed to expand against septal walls 40 surrounding the defect 44.
  • In FIG. 2 B, the center section 12 is articulated but the articulation remains inside the catheter 50 and is therefore immobilized. If the center section 12 of the occlusion device 10 is not articulated (or articulated but immobilized), the device's center section 12 must enter the defect 44 following the same angle of insertion as the catheter 50 or other delivery device. As a result, the insertion angle is limited by the catheter's angle of insertion FIG. 2B.
  • Often, due to limited space, the catheter 50 enters the heart at an angle that is not perpendicular to the defective wall FIG. 2B. In this situation, the device 10 cannot enter the defect 44 properly because the line of the center section 12 must follow the same line as the catheter 50. The device 10 must be forced into the defect 44 at an angle, which may cause the tissue surrounding the defect 44 to become distorted. If the surrounding cardiac tissue is distorted by the catheter 50, it is difficult to determine whether the device 10 will be properly seated once the catheter 50 is removed and the tissue returns to its normal state. If the device 10 is not seated properly, blood will continue to flow through the defect 44 and the device 10 may have to be retrieved and re-deployed. Both doctors and patients prefer to avoid retrieval and re-deployment because it causes additional expense and longer procedure time.
  • FIG. 2C shows an occlusion device 10 with an articulated center section 12 being inserted into a cardiac defect 44. Shown once again are the defect 44, septal walls 40, catheter 50, and occlusion device 10 comprising a distal side 54, and a proximal side 56. In FIG. 2C, the occlusion device 10 has been further advanced through the catheter 50 to expose the articulated center section 12 comprising a joint 62.
  • When the center section 12 is articulated or flexible, the insertion angle of the device 10 is not restricted to that of the catheter 50. The device 10 can be more easily inserted, because once the joint 62 is outside the catheter 50, the angle of insertion can be changed by allowing the joint 62 to move. This variable insertion angle allows the device 10 to enter the defect 44 at an optimum angle, minimizing distortion of surrounding cardiac tissue. If the tissue is not distorted when the device 10 is deployed, the seating of the device 10 should not change drastically once the catheter 50 is removed. Because the device 10 can be properly seated at the first insertion, the number of cases that require retrieval and redeployment should decrease.
  • FIG. 2D shows an occlusion device 10 having an articulated center section 12 that is fully deployed and is occluding a cardiac defect 44. Shown in FIG. 2D is a distal side 54, a proximal side 56, a center post 12, a joint 62, septal walls 40, and a defect 44. The distal side 54 has been properly positioned, the proximal side 56 has been deployed and the device 10 has been released. FIG. 2D demonstrates the ability of an occlusion device 10 having an articulated center section 12 to conform to an irregularly shaped defect 44.
  • Another important advantage of the present invention is that the articulated center section 12 allows the distal and proximal sides 54, 56 to conform more readily to the contours of the heart 30 after it is deployed, providing a custom fit to a variety of defects. Often, when implanted, an occlusion device 10 is located in an irregularly shaped defect 44. Having an articulated center section 12 allows the occlusion device 12 to fit in a wider variety of defects, despite the shape or size of the defect.
  • For instance, as viewed in FIG. 2D, the septal wall 40 on the bottom of the defect may be only a few millimeters thick, but on the top may be many more millimeters thick FIG. 2D. In such cases, one side of the occluding device 10 may be bent open further than the other side. The side that is more distorted carries a high static load which both increases pressure on the surrounding tissue and increases the possibility of breakage of the device 10. If the center section 12 is articulated, it can bend such that the upper or lower fixation devices 14, 30 need not be the only the only parts which adjust to fit the defect 44. The ability to conform to a variety of heart contours provides better seating, reduces tension (increasing fatigue life), and decreases the likelihood of damage to tissue resulting from breakage and from pressure the device places on surrounding tissue.
  • Another feature of the occlusion device 10 is that it is fully retrievable. To allow the device 10 to be retrievable, as well as ensure that the device 10 fits into as small a diameter catheter as possible, it is important to ensure that the arms 16 are not of a length that results in the tips 18 clustering at the same location. If the tips 18 all occur at the same location when the device 10 is inside the catheter 50, the device will become too bulky to allow it to be easily moved through the catheter.
  • In situations where the occlusion device 10 is not properly deployed and must be retrieved into the catheter 50, it is possible to withdraw the occlusion device 10 back into the catheter 50 by grasping either the center section 12 or by grasping any one of the arms 16. When the device 10 is retrieved into the catheter 50, both the upper and lower arms 16 will be folded in the same direction. In such an instance, it is likewise important to vary the length of the upper arms from the length of the lower arms 16 so that when the device 10 is retrieved, the tips 18 on both the upper arms 16 do not cluster at the same location as the tips 18 on the lower arms 16.
  • FIG. 3A is a perspective view of an example of an articulated center section 70 with double articulation. As viewed in FIG. 3A, the center section 70 comprises a right part 72, left part 74, and a center part 76. The left part 74 has a knob 24 located on one end. Both right and left parts 72, 74 have three holes 80 drilled through them. The center section 70 further comprise two joints or hinges 78 on each end of the center part 76. The joints or hinges 78 connect the right and left parts 72, 74 to the center 76 and allow for the right and left parts 72, 74 to rotate relative to the center part 76. The wire arms 16 (FIG. 1) attach to the center section by passing through the holes 80 drilled through the left and right parts 72, 74.
  • In this example, a joint 78 provides the articulation. Though shown with a double articulation, the articulated center section 70 is not so limited. The number of joints or hinges 78 maybe varied to accommodate a particular defect or a particular type of defect. For example, one joint or hinge may be best for an atrial septal defect while two or three articulations may be best for a larger defect such as patent foramen ovale or a long defect such as patent ductus arteriosus.
  • The articulation may be achieved in a variety of ways. Ball joints or hinges may create the articulation. The articulation may also be created by the addition of a spring like coil to the center, a reduction of the amount of material used in a portion the center, or use of material that has ample flexibility when constructing the center.
  • In addition, it is possible to provide the center section with more or less articulations. FIG. 3B is a side view of an articulated center section 90 with triple articulation, which demonstrates the range of flexibility of the joints 100. Shown is a right part 92, a left part 94 with a knob 24, two center parts 96, a joining part 98, and four joints 100. The large amount of flexibility allows the occlusion device to conform to a wide variety of defects. If less flexibility is needed, an center section 90 with one or two joints may be preferred.
  • FIG. 4 is an enlarged side view of one example of an articulated center section 70, showing the section 70 in more detail. The articulated center section 70 is comprised of a right part 72, a left part 74 which has a knob 24, a center part 76, and two joints 116, 118. The center part 76 is comprised of a left sleeve 112 and a right sleeve 114. The left part 74 connects to center section 76 at the left joint 116. The right part 72 connects to the center part 76 at the right joint 118.
  • The joints or hinges 116, 118 allow the right and left parts 72, 74 to rotate relative to the center part 76, giving them a full 360° of motion relative to the center part 76. Preferably, the joints or hinges 116, 118 are designed to allow for maximum three dimensional movement of both the right and left parts 72, 74 relative to the center part 76. However, the joints 116, 118 may also be configured to provide two dimensional movement of the right and left parts 72, 74 relative to the center part 76. The range of motion need not be a full 360° to be an improvement. Other ranges of motion, such as two dimensional rotation may work also, depending on the type of defect.
  • FIG. 5 is an enlarged side view of the left part 74. The left part 74 comprises a ball 120, a first neck 122, a cylindrical body 124, a second neck 126, a knob 24, and three holes 80. As described above, three holes 80 are drilled through the part 74 to allow for attachment of the wire arms 16.
  • The end ball 120 on one end of the left part 74 is connected to the cylindrical body 124 of the left part 74 at the first neck 122. The knob 24 is located on the other end of the cylindrical body 124 and is connected to the body 124 by a second neck 126. To assist in assembly, discussed in more detail below, the cylindrical body 124 of the left part 124 is preferably smaller in diameter than the ball 120. The knob 24 has a smaller diameter than both the body 124 and the ball 120. For example, the end ball 120 may have a diameter A of about 1.35 millimeters, the cylindrical body 124 may have a diameter B of about 1.2 millimeters, and the knob 24 may have a diameter C of about 1.0 millimeter.
  • The knob 24 is configured to allow a delivery forceps 52 to attach to the occlusion device 10 as it is pushed through the catheter 50 and allows the forceps to manipulate the device 10 as it is delivered. Likewise, a guide forceps can be used to position the occlusion device 10 once it reaches the desired location or to retrieve the device 10 should it not be seated properly. The knob 24 may additionally have a cross sectional area which allows the forceps to rotatably move the device while the device is inserted into a defect 44. The second neck 126 is grasped by a forceps so that there is at least some play between the forceps and the second neck 126 when pushing the device through a catheter. For example, the guide forceps may engage the second neck 126 by means of a claw-like or hook-like end. In an alternate embodiment, the knob 24 is threaded to allow for attachment to a threaded guide forceps.
  • FIG. 6 is a side view of a right part 72. The right part 72 comprises a ball 130, a first neck 132, a cylindrical body 134, and three holes 80. Once again, three holes 80 are drilled through the part 72 to allow for attachment of the wire arms 16.
  • The right part 72 is nearly identical to the left part 74 except that it does not require a knob 24 or second neck 86. Because the occlusion device 10 only needs to be graspable at one end, a second knob is unnecessary. To assist in assembly, the cylindrical body 124 of the left part 124 is preferably smaller in diameter than the ball 120. For example, the end ball 130 may have a diameter D of about 1.35 millimeters, and the cylindrical body 134 may have a diameter E of about 1.2 millimeters.
  • FIG. 7 is an exploded view of the center section. Shown is a right sleeve 112 and a left sleeve 114. The right sleeve 112 comprises a cuff 140. The cuff 140 is configured to fit inside the left sleeve 114 when the two sleeves are assembled. As shown more clearly on FIG. 8, the two sleeves 112, 114, once assembled, the two sleeves 112, 114 can be permanently attached at the cuff 140, and secured by welding.
  • FIG. 8 shows a cross sectional view of an assembled articulated center post. Shown is the left part 74, the right part 72, and the center part 76, which comprises the left sleeve 114, and the right sleeve 112 having a cuff 140. Also shown is a washer 150. Each sleeve has a sleeve opening 152. Also shown are the details of the left and right parts: a knob 24, a second neck 126, first necks 122, 132, cylindrical bodies 124, 134, end balls 120, 130, and holes 80. The sleeves 112, 114 have been welded together.
  • To assemble the center post, the left and right parts 74, 72 are slipped into the corresponding left and right sleeves 114, 112. As described above, the diameter of balls 120, 130 is less than the diameter of bodies 124, 134. As a result, the cylindrical bodies 124, 134 are small enough to fit through the sleeve openings 152, 154 but the end balls 120, 130 are too large to fit through the sleeve openings 152, 154. Once, the left part 74 is placed through the left sleeve 114, the cylindrical body 124 extends out the sleeve opening 152 but the end ball 120 remains inside the sleeve 114. Similarly, once the right part 72 is slipped through the right sleeve opening 154, the body extends out the sleeve 112 but the end ball 120 remains inside the sleeve 112. The washer 150 may be inserted at the end of the cuff 140 of the right sleeve 112. Next, the left sleeve 114 and the right sleeve 112 are joined by inserting the cuff 140 into the left sleeve 114. Once assembled, the sleeves 112, 114 are welded together.
  • The resulting assembly forms two ball joints which are able to rotate independently of each other relative to the center part 76. The first necks 122, 132 sit at the sleeve opening 152, 154 after the cylindrical bodies 124, 134 have been pushed through the corresponding sleeve openings 152, 154. The diameters of the necks 122, 132 are smaller than the diameter of the sleeve openings 152, 154 so the necks 122, 132 have ample space to rotate freely in the sleeve openings 152, 154. The end balls 120, 130 are separated by the washer 150 so that they do not come in contact with each other and restrict each other's movement. The washer 150 also prevents the end balls 120, 130 from moving too far into the center of the sleeves 112, 114. If the end balls 120 were allowed to move too far back into the sleeves 112, 114, the left and right parts 74, 72 could also move into the sleeves 112, 114, thereby restricting the movement of the joints 116, 118. Preferably, a hard metal, such as titanium, is used to construct the parts of the center post because use of a hard material prevents binding within the ball joints.
  • There may be occasions where an occlusion device with single articulation or one joint is preferred. In one embodiment a neck 122, 132 is welded in place in the sleeve opening 152, or formed integrally, to immobilize one joint if only a single movable joint is desired. Alternatively, one of the end balls 120, 130 could be welded to the washer 150 to immobilize one of the joints.
  • Though shown in a patent foramen ovale occlusion device, an articulated center post can be adapted for use in any occluding device, including those designed for atrial septal defects, patent ductus arteriosus, and ventricular septal defects. The center post can also be adapted for use in an septal stabilization device.
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. In particular, any of the applicable features disclosed in related applications U.S. patent application entitled Septal Stabilization Device, Ser. No. 10/349,744, U.S. patent application entitled Hoop Design for Occlusion Device, Ser. No. 10/349,118, Occlusion Device Having Five or More Arms, Ser. No. 10/348,701, and U.S. patent application entitled Laminated Sheets for Use in a Fully Retrievable Occlusion Device, Ser. No. 10/348,864, may be of use in the present invention. Each of these applications is hereby incorporated by reference.

Claims (7)

1. An occlusion device for the closure of a physical anomaly, the device comprising:
a first occluding body connected to a first support structure;
a second occluding body connected to a second support structure; and
a center post connecting the first and second support structure, the center post including a ball and socket joint.
2. An occlusion device comprising:
a jointed center strut including a first strut section having a body, a neck and a ball, and a first sleeve having a socket that forms a ball and socket joint with the ball of the first strut section and an opening through which the neck extends between the ball and the body;
a first plurality of fixation devices extending from the body of the first strut section of the jointed center strut; and
a first sheet attached to the first plurality of fixation devices.
3. The occlusion device of claim 2 wherein the center strut further includes a second strut section having a body, a neck and a ball, and a second sleeve having a socket that forms a ball and socket joint with the second strut section and an opening through which the neck extends between the ball and the body.
4. The occlusion device of claim 3 and further comprising:
a second plurality of fixation devices extending from the body of the second strut section.
5. The occlusion device of claim 4 and further comprising:
a second sheet attached to the second plurality of fixation devices.
6. An occlusion device comprising:
a jointed center strut having distal and proximal ends, the jointed center strut having a plurality of ball and socket joints;
a first set of wire support arms extending from the first part distal end of the jointed center strut;
a first sheet attached to the first set of arms;
a second set of wire support arms extending from the proximal end of the center strut; and
a second sheet attached to the second set of support arms.
7. An occlusion device comprising:
a jointed center piece having a plurality of ball and socket joints;
first and second collapsible support frames spaced from one another and extending from the jointed center piece; and
first and second sheets attached to the first and second collapsible support frames respectively.
US11/204,303 2003-01-22 2005-08-15 Articulated center post Abandoned US20050277982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/204,303 US20050277982A1 (en) 2003-01-22 2005-08-15 Articulated center post

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/348,865 US7087072B2 (en) 2003-01-22 2003-01-22 Articulated center post
US11/204,303 US20050277982A1 (en) 2003-01-22 2005-08-15 Articulated center post

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/348,865 Division US7087072B2 (en) 2003-01-22 2003-01-22 Articulated center post

Publications (1)

Publication Number Publication Date
US20050277982A1 true US20050277982A1 (en) 2005-12-15

Family

ID=32712643

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/348,865 Expired - Lifetime US7087072B2 (en) 2003-01-22 2003-01-22 Articulated center post
US11/204,303 Abandoned US20050277982A1 (en) 2003-01-22 2005-08-15 Articulated center post
US11/328,917 Abandoned US20060116717A1 (en) 2003-01-22 2006-01-06 Articulated center post

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/348,865 Expired - Lifetime US7087072B2 (en) 2003-01-22 2003-01-22 Articulated center post

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/328,917 Abandoned US20060116717A1 (en) 2003-01-22 2006-01-06 Articulated center post

Country Status (2)

Country Link
US (3) US7087072B2 (en)
WO (1) WO2004066810A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060069408A1 (en) * 2004-09-29 2006-03-30 Terumo Kabushiki Kaisha Device for treating a patent foramen ovale
US20090118745A1 (en) * 2007-11-06 2009-05-07 Cook Incorporated Patent foramen ovale closure apparatus and method
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20110303229A1 (en) * 2009-12-05 2011-12-15 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
US20120022507A1 (en) * 2009-12-05 2012-01-26 Integrated Sensing Systems Inc. Delivery system, method, and anchor for medical implant placement
US20130110228A1 (en) * 2007-06-08 2013-05-02 St. Jude Medical, Inc Devices for transcatheter prosthetic heart valve implantation and access closure
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US20180360432A1 (en) * 2017-06-16 2018-12-20 Michael Patrick Corcoran Uncoupled LAA Device
US10993807B2 (en) 2017-11-16 2021-05-04 Medtronic Vascular, Inc. Systems and methods for percutaneously supporting and manipulating a septal wall

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
EP1467661A4 (en) * 2001-12-19 2008-11-05 Nmt Medical Inc Septal occluder and associated methods
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US7115135B2 (en) * 2003-01-22 2006-10-03 Cardia, Inc. Occlusion device having five or more arms
US7780700B2 (en) * 2003-02-04 2010-08-24 ev3 Endovascular, Inc Patent foramen ovale closure system
US20040267306A1 (en) * 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US9498366B2 (en) * 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US8821521B2 (en) * 2003-07-28 2014-09-02 Baronova, Inc. Gastro-intestinal device and method for treating addiction
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US8048169B2 (en) * 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
DE602004009335T2 (en) * 2003-10-24 2008-07-03 ev3 Endovascular, Inc., Plymouth CLOSING SYSTEM FOR OPEN FORMS OVAL
US9039724B2 (en) * 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
US8777974B2 (en) 2004-03-19 2014-07-15 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US8398670B2 (en) * 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US8313505B2 (en) * 2004-03-19 2012-11-20 Aga Medical Corporation Device for occluding vascular defects
US8747453B2 (en) * 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
US20060241687A1 (en) * 2005-03-16 2006-10-26 Glaser Erik N Septal occluder with pivot arms and articulating joints
US20060217760A1 (en) * 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
US8372113B2 (en) * 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US7797056B2 (en) 2005-09-06 2010-09-14 Nmt Medical, Inc. Removable intracardiac RF device
DE102005053906A1 (en) * 2005-11-11 2007-05-24 Occlutech Gmbh Occlusion device e.g. for septal defects in medical technology, has interlaced structure of thin wires or threads whereby holder, on its free end, has top section with eyelet in form of cross bore
US7955354B2 (en) * 2005-11-14 2011-06-07 Occlutech Gmbh Occlusion device and surgical instrument and method for its implantation/explantation
DE102006036649A1 (en) * 2006-04-27 2007-10-31 Biophan Europe Gmbh Occluder for human or animal heart, has intermediate piece eccentrically connected with each closing body in edge area of bodies in closing condition, where occluder or its part forms electrical resonant oscillating circuit
US20080215089A1 (en) * 2006-09-21 2008-09-04 Williams Michael S Stomach wall closure devices
GB0625103D0 (en) * 2006-12-15 2007-01-24 Homerton University Hospital N Device for occluding a septal defect
WO2008094691A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method for occluding a bodily passageway
WO2008094706A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US8034061B2 (en) * 2007-07-12 2011-10-11 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US8308752B2 (en) * 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US8025495B2 (en) * 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) * 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
CA2698729C (en) * 2007-09-07 2014-04-22 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
US10219796B2 (en) * 2009-02-21 2019-03-05 Farideh Roshanali Device for percutaneous transcathertral closure of atrial septal defect by deploying pericardial patch
CH701394A2 (en) * 2009-07-10 2011-01-14 Carag Ag Occluder.
US8419767B2 (en) 2010-05-04 2013-04-16 Mustafa H. Al-Qbandi Steerable atrial septal occluder implantation device with flexible neck
WO2012051489A2 (en) 2010-10-15 2012-04-19 Cook Medical Technologies Llc Occlusion device for blocking fluid flow through bodily passages
US9186152B2 (en) 2010-11-12 2015-11-17 W. L. Gore & Associates, Inc. Left atrial appendage occlusive devices
WO2012127309A1 (en) 2011-03-21 2012-09-27 Ontorfano Matteo Disk-based valve apparatus and method for the treatment of valve dysfunction
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
ES2675373T3 (en) 2013-03-15 2018-07-10 Baronova, Inc. Gastric obstruction device with blockage
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
CN104173122A (en) * 2014-09-11 2014-12-03 山东省立医院 Plugging device suitable for postoperation perivalvular leakage
WO2016093877A1 (en) 2014-12-09 2016-06-16 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
EP4335415A2 (en) 2015-05-14 2024-03-13 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
CN105054980B (en) * 2015-09-11 2017-05-17 上海形状记忆合金材料有限公司 Self-adaptive variable angle plugging device
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
CA3051272C (en) 2017-01-23 2023-08-22 Cephea Valve Technologies, Inc. Replacement mitral valves
CN107126240A (en) * 2017-06-08 2017-09-05 有研医疗器械(北京)有限公司 A kind of occluder for left auricle and its application method
CN111000600B (en) * 2019-12-17 2022-03-22 先健科技(深圳)有限公司 Occluder and occlusion system

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4284166A (en) * 1979-04-13 1981-08-18 Gale George A Port devices for bass-reflex speaker enclosures
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5092424A (en) * 1990-12-03 1992-03-03 Bose Corporation Electroacoustical transducing with at least three cascaded subchambers
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5171259A (en) * 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5334217A (en) * 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5382260A (en) * 1992-10-30 1995-01-17 Interventional Therapeutics Corp. Embolization device and apparatus including an introducer cartridge and method for delivering the same
US5397331A (en) * 1991-11-25 1995-03-14 Cook Incorporated Supporting device and apparatus for inserting the device
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5702421A (en) * 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5904703A (en) * 1996-05-08 1999-05-18 Bard Connaught Occluder device formed from an open cell foam material
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6389146B1 (en) * 2000-02-17 2002-05-14 American Technology Corporation Acoustically asymmetric bandpass loudspeaker with multiple acoustic filters
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6634455B1 (en) * 1996-02-12 2003-10-21 Yi-Fu Yang Thin-wall multi-concentric sleeve speaker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE233303C (en) 1911-04-05
DE4222291C1 (en) 1992-07-07 1994-01-20 Krmek Mirko Prosthesis for closing atrial or ventricular-septal defect - comprises two equally shaped units of elastic sprung material with six radially running arms spaced apart by equal edges
GB2269321B (en) 1992-08-05 1996-06-26 Nat Heart & Lung Inst Implantable occluder devices for medical use

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4284166A (en) * 1979-04-13 1981-08-18 Gale George A Port devices for bass-reflex speaker enclosures
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5171259A (en) * 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5092424A (en) * 1990-12-03 1992-03-03 Bose Corporation Electroacoustical transducing with at least three cascaded subchambers
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5397331A (en) * 1991-11-25 1995-03-14 Cook Incorporated Supporting device and apparatus for inserting the device
US5334217A (en) * 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5334137A (en) * 1992-02-21 1994-08-02 Eagle Vision, Inc. Lacrimal fluid control device
US5382260A (en) * 1992-10-30 1995-01-17 Interventional Therapeutics Corp. Embolization device and apparatus including an introducer cartridge and method for delivering the same
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5702421A (en) * 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US6634455B1 (en) * 1996-02-12 2003-10-21 Yi-Fu Yang Thin-wall multi-concentric sleeve speaker
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US5904703A (en) * 1996-05-08 1999-05-18 Bard Connaught Occluder device formed from an open cell foam material
US5741297A (en) * 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US6174322B1 (en) * 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6206907B1 (en) * 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6379368B1 (en) * 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6389146B1 (en) * 2000-02-17 2002-05-14 American Technology Corporation Acoustically asymmetric bandpass loudspeaker with multiple acoustic filters
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758401B2 (en) 2001-09-06 2014-06-24 ProMed, Inc. Systems and methods for treating septal defects
US7678132B2 (en) 2001-09-06 2010-03-16 Ovalis, Inc. Systems and methods for treating septal defects
US7686828B2 (en) 2001-09-06 2010-03-30 Ovalis, Inc. Systems and methods for treating septal defects
US7740640B2 (en) 2001-09-06 2010-06-22 Ovalis, Inc. Clip apparatus for closing septal defects and methods of use
US8070826B2 (en) 2001-09-07 2011-12-06 Ovalis, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US8747483B2 (en) 2001-09-07 2014-06-10 ProMed, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US7758611B2 (en) * 2004-09-29 2010-07-20 Terumo Kabushiki Kaisha Device for treating a patent foramen ovale
US20060069408A1 (en) * 2004-09-29 2006-03-30 Terumo Kabushiki Kaisha Device for treating a patent foramen ovale
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US8915958B2 (en) * 2007-06-08 2014-12-23 St. Jude Medical, Inc. Devices for transcatheter prosthetic heart valve implantation and access closure
US20130110228A1 (en) * 2007-06-08 2013-05-02 St. Jude Medical, Inc Devices for transcatheter prosthetic heart valve implantation and access closure
US20090118745A1 (en) * 2007-11-06 2009-05-07 Cook Incorporated Patent foramen ovale closure apparatus and method
US8696693B2 (en) * 2009-12-05 2014-04-15 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
US8715300B2 (en) * 2009-12-05 2014-05-06 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
US20120022507A1 (en) * 2009-12-05 2012-01-26 Integrated Sensing Systems Inc. Delivery system, method, and anchor for medical implant placement
US20110303229A1 (en) * 2009-12-05 2011-12-15 Integrated Sensing Systems, Inc. Delivery system, method, and anchor for medical implant placement
US20180360432A1 (en) * 2017-06-16 2018-12-20 Michael Patrick Corcoran Uncoupled LAA Device
US10441258B2 (en) * 2017-06-16 2019-10-15 Cardia, Inc. Uncoupled LAA device
US11284871B2 (en) 2017-06-16 2022-03-29 Cardia, Inc. Uncoupled LAA device
US10993807B2 (en) 2017-11-16 2021-05-04 Medtronic Vascular, Inc. Systems and methods for percutaneously supporting and manipulating a septal wall

Also Published As

Publication number Publication date
US7087072B2 (en) 2006-08-08
WO2004066810A2 (en) 2004-08-12
WO2004066810A3 (en) 2005-04-14
US20040143293A1 (en) 2004-07-22
US20060116717A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US7087072B2 (en) Articulated center post
US6960220B2 (en) Hoop design for occlusion device
US20210378646A1 (en) Multi-layer braided structures for occluding vascular defects
US7582104B2 (en) Daisy design for occlusion device
US7905901B2 (en) Self-centering occlusion device
US7144410B2 (en) ASD closure device with self centering arm network
US6913614B2 (en) Delivery system with safety tether
US7115135B2 (en) Occlusion device having five or more arms
US7749238B2 (en) Occlusion device with flexible polymeric connector
US8366741B2 (en) Occlusion device with centering arm
US6174322B1 (en) Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US7413563B2 (en) Flexible medical device
CA2082224C (en) Occluder and method for repair of cardiac and vascular defects
US11284871B2 (en) Uncoupled LAA device
EP1018943B1 (en) Occlusion device for the closure of a physical anomaly
US7972361B2 (en) Occlusion device with flexible spring connector
US7691115B2 (en) Occlusion device with flexible fabric connector
US7927351B2 (en) Occlusion device with flexible wire connector
JP2000185048A (en) Closure plug for transcatheter operation and catheter assembly

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION