US20050209977A1 - Apparatus and methods for reading an identification code from a mailpiece - Google Patents

Apparatus and methods for reading an identification code from a mailpiece Download PDF

Info

Publication number
US20050209977A1
US20050209977A1 US11/130,177 US13017705A US2005209977A1 US 20050209977 A1 US20050209977 A1 US 20050209977A1 US 13017705 A US13017705 A US 13017705A US 2005209977 A1 US2005209977 A1 US 2005209977A1
Authority
US
United States
Prior art keywords
identification code
mailpiece
reader
code
sorter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/130,177
Inventor
Oscar Avant
Bruce Brandt
Jay Fadely
Michael Lilltle
Simon Reidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Postal Service (USPS)
Original Assignee
US Postal Service (USPS)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Postal Service (USPS) filed Critical US Postal Service (USPS)
Priority to US11/130,177 priority Critical patent/US20050209977A1/en
Publication of US20050209977A1 publication Critical patent/US20050209977A1/en
Priority to US12/314,907 priority patent/US20090173672A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10851Circuits for pulse shaping, amplifying, eliminating noise signals, checking the function of the sensing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10683Arrangement of fixed elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B17/00Franking apparatus
    • G07B17/00459Details relating to mailpieces in a franking system
    • G07B17/00661Sensing or measuring mailpieces
    • G07B2017/00709Scanning mailpieces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/90Sorting flat-type mail

Definitions

  • the present invention relates to apparatus and methods for identifying and processing mail. More particularly, the present invention relates to apparatus and methods for using an identification code on a mailpiece as a redundant source of identification for identifying and processing the mailpiece in a mail sorting system.
  • Conventional systems for identifying and processing (e.g., sorting) mail require both human and mechanical operations. Human operations are initially required to load the mail from a mail delivery repository into a mechanical identification and processing system. Mechanical operations then attempt to identify the delivery address for each mailpiece and, if successful, to then process each mailpiece based on the delivery address. Processing a mailpiece can be, for example, sorting the mailpiece. If there is a failure to identify the delivery address of a mailpiece mechanically, human operators are required again to identify the delivery address. Likewise, if there is a failure to process the mailpiece based on the delivery address, human operators are also required again to process the mailpiece. Therefore, conventional systems for identifying and processing mail are dependent upon human operators, if the mechanical systems are unable to identify or process a mailpiece.
  • OCR optical character reader
  • the OCR machine attempts to “electronically read” the delivery address from the mailpiece in order to place the delivery address in a computer. If the OCR machine cannot read the delivery address (e.g., the ZIP code), the mechanical device rejects the mailpiece. The rejected mailpiece may then be fed into another mechanical device, which presents the mailpiece to a human operator, who “physically reads” the delivery address off the mailpiece and key punches the delivery address into a computer. Once the delivery address has been either electronically or physically read and placed into a computer, the computer prints the delivery address on the mailpiece, using a special code (e.g., a bar code, such as, a POSTNET code).
  • a special code e.g., a bar code, such as, a POSTNET code
  • a mechanical processing system which automatically sorts each mailpiece by the destination address.
  • the majority of conventional mechanical processing systems sort each mailpiece based on a special code, such as, a ZIP code or a bar code (i.e., a POSTNET code).
  • These mechanical processing systems may contain an OCR machine, which can read and sort a mailpiece based on the ZIP code.
  • These mechanical processing systems may also contain a Bar Code Sorter, which can read and sort a mailpiece based on the POSTNET code. If the mechanical processing system cannot read either the ZIP code or the POSTNET code, the system rejects the mailpiece.
  • the rejected mailpiece may then be processed by a human operator. The human operator may then determine why the mechanical processing system rejected the mailpiece, solve the problem (e.g., determine the ZIP code or reaffix the POSTNET code to the mailpiece), and then reload the mailpiece into the mechanical processing system for processing.
  • the United States Postal Service developed an automated sorting system, described in U.S. Pat. No. 4,992,649 (the '649 patent), which is herein incorporated by reference.
  • One embodiment of the system disclosed in the '649 patent is a Remote Bar Code System (RBCS).
  • the embodiment of the RBCS described in the '649 patent provides for the electronic sorting of mail using a bar code that is placed on the front of each mailpiece, known as the POSTNET code, and another bar code that is placed on the back of each mailpiece, known as the ITEM code.
  • the POSTNET code corresponds to the delivery address for the mailpiece
  • the ITEM code corresponds to the mailpiece itself (i.e., the ITEM code is a means to “identify” each particular mailpiece).
  • the POSTNET code represents a copy of the ZIP code in bar code format, and the POSTNET code can be used to route a mailpiece, if the ZIP code cannot be read.
  • the ITEM code represents a unique code in bar code format, and the ITEM code can be used to identify each particular mailpiece, if the RBCS cannot otherwise identify the mailpiece.
  • the ITEM code can be linked to an electronic image of the mailpiece taken at the time the mailpiece is marked with the ITEM code by the RBCS. So, if the RBCS cannot identify a mailpiece, the RBCS can recall the electronic image of the mailpiece, which contains a destination address, including the POSTNET code.
  • the identification and processing of mail in the RBCS is dependent upon the use of either the POSTNET code or the ITEM code.
  • the ITEM code is first stored temporarily until the mailpiece receives the POSTNET code and has been processed by the RBCS. If the POSTNET code becomes illegible during processing, the ITEM code may be used to obtain the POSTNET code.
  • the ITEM code is used to store a copy of the POSTNET code in a short-term memory until the RBCS has processed the mailpiece based on the POSTNET code.
  • the RBCS can no longer access the ITEM code, because the RBCS cannot store the ITEM code locally or transmit the ITEM code to other RBCS sites.
  • the POSTNET code on a mailpiece might be illegible as soon as it is applied due to the color or pattern of the mailpiece. If so, the mailpiece may be fed into a letter mail labeling machine that applies a white label to cover the illegible POSTNET code, and then, the mailpiece may be again fed into the RBCS system for identification (and printing of a new POSTNET code on the white label). Additionally, the POSTNET code might be legible when applied, but become illegible during subsequent processing of the mailpiece.
  • the RBCS cannot use the ITEM code to identify the POSTNET code during subsequent processing and sorting. Therefore, if the POSTNET code becomes illegible during subsequent processing, the mailpiece can no longer be sorted automatically by the RBCS.
  • Apparatus and methods consistent with the present invention overcome the shortcomings of the conventional systems by using an identification code on the back of each mailpiece as a redundant source of identification for identifying and processing mail in a mail sorting system.
  • Apparatus and methods consistent with the present invention read an identification code from a mailpiece.
  • a signal is generated in response to the mailpiece being placed in front of an infrared receiver at a reader head assembly.
  • the signal is sent from the reader head assembly to a microprocessor in a reader unit over a signal cable, and a light source is illuminated to scan an identification code from the mailpiece.
  • the scanned identification code is focused at a fiber bundle that transmits the scanned identification code to a light filter unit.
  • An output signal from the light filter unit is sent to a signal converter that converts the output signal to a digital signal, and the digital signal is sent from the signal converter to the microprocessor.
  • the digital signal is processed at the microprocessor to obtain the identification code, and the identification code is output from the microprocessor to an output port.
  • FIG. 1 illustrates a simplified overview of the initial components or steps in apparatus or methods for identifying and processing a mailpiece consistent with the present invention
  • FIGS. 2A and 2B illustrate embodiments of a mailpiece, consistent with apparatus or methods for identifying and processing mail consistent with one embodiment of the present invention
  • FIG. 3 shows an embodiment of an ID Tag in greater detail, as shown in FIG. 2B ;
  • FIG. 4A depicts a simplified overview of a mailpiece as it enters a Post Office in a Remote Bar Code System (RBCS);
  • RBCS Remote Bar Code System
  • FIG. 4B depicts a simplified overview of a mailpiece as it enters a Post Office in an Identification Code Sorting (ICS) system;
  • ICS Identification Code Sorting
  • FIG. 5 shows one embodiment of a Remote Bar Code System (RBCS), as shown in FIGS. 2A and 4A ;
  • RBCS Remote Bar Code System
  • FIG. 6A shows one embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B ;
  • ICS Identification Code Sorting
  • FIG. 6B shows an alternative embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B ;
  • ICS Identification Code Sorting
  • FIG. 7 is a detailed view of one embodiment of the section of an ICS system in which a mailpiece image (including an ID Tag) is processed to determine a POSTNET code (or ZIP code) corresponding to the destination address of a mailpiece, as shown in FIG. 6A ;
  • FIG. 8 is a block diagram of one embodiment of an Image Control Unit (ICU) in greater detail
  • FIG. 9 is a block diagram of one embodiment of a Remote Computer Reader (RCR) in greater detail.
  • RCR Remote Computer Reader
  • FIG. 10 is a block diagram of one embodiment of an Image Buffer in greater detail
  • FIG. 11 is a block diagram of one embodiment of a Keying Site in greater detail
  • FIG. 12 is a block diagram of one embodiment of a Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system, as shown in FIGS. 6A and 6B ;
  • PICS/SICS Primary Identification Code Server/Secondary Identification Code Server
  • FIG. 13 is a block diagram of one embodiment of a Primary Identification Code Server (PICS), as shown in FIG. 12 ;
  • PICS Primary Identification Code Server
  • FIG. 14 shows one embodiment of how a PICS functions, as shown in FIG. 13 ;
  • FIG. 15 is a block diagram of one embodiment of a Secondary Identification Code Server (SICS), as shown in FIG. 14 ;
  • SCS Secondary Identification Code Server
  • FIG. 15A is a diagram of one embodiment of a plurality of Primary Identification Code Servers operating in national mode
  • FIG. 15B illustrates one embodiment of a process by which the sharing of mailpiece identification files takes place in national mode, as shown in FIG. 15A ;
  • FIG. 16 depicts one embodiment of a PICS/SICS system incorporating Common Sorter Software
  • FIG. 17 is a block diagram of one embodiment of a Bar Code Sorter (BCS) system using Common Sorter Software to connect to a PICS;
  • BCS Bar Code Sorter
  • FIG. 18 illustrates various embodiments of Bar Code Sorters using Common Sorter Software to connect to a PICS/SICS such as the BCS systems shown in FIG. 17 ;
  • FIGS. 19A-19C illustrate one embodiment for a process used by one embodiment of Common Sorter Software during the identification and processing of a mailpiece by any of the Bar Code Sorters (BCS), such as those shown in FIG. 18 ;
  • BCS Bar Code Sorters
  • FIG. 20 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by a RBCS, which includes, for example, an RBCS ID Tag Reader;
  • BCS Bar Code Sorter
  • FIG. 21 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by an ICS system, which includes, for example, a Universal ID Tag Reader;
  • BCS Bar Code Sorter
  • FIG. 22 is a block diagram of one embodiment of a Universal ID Tag Reader (UIDTR);
  • UIDTR Universal ID Tag Reader
  • FIG. 23 illustrates one embodiment of a UIDTR in greater detail, as shown in FIG. 22 ;
  • FIGS. 24A-24D illustrate the operation of one embodiment of a UIDTR while processing a mailpiece, according to one embodiment of the invention
  • FIG. 25 shows optional components of an embodiment of a UIDTR such as the UIDTR in FIG. 22 ;
  • FIG. 26 shows still additional optional components of another embodiment of a UIDTR, such as the UIDTR in FIG. 22 .
  • Apparatus and methods consistent with the present invention provide for identifying and processing mail using an identification code on a mailpiece as a redundant source of identification information in a mail sorting system.
  • this information is stored in a temporary database and used for the identification and processing of mail in a Remote Bar Code System (RBCS).
  • RBCS Remote Bar Code System
  • the identification code enables the automation of mail sorting and other processing tasks, reducing costs and delays in mail delivery services.
  • the identification and processing of mail occurs in an Identification Code Sorting (ICS) system.
  • ICS Identification Code Sorting
  • a long-term database allows for mail sorting and other processing tasks on a national or global level.
  • FIG. 1 illustrates a simplified overview of the initial components or steps in apparatus or methods for identifying and processing a mailpiece consistent with the present invention.
  • a mailpiece 100 is delivered by a postal customer 102 to a Post Office 104 .
  • Mailpiece 100 can be, for example, a letter or a package that postal customer 102 wishes to send to a destination address. To do so, postal customer 102 marks mailpiece 100 with a destination address and delivers it to Post Office 104 .
  • Post Office 104 can be a United States Postal Service (USPS) Post Office, a USPS mailbox, or any other facility or location capable of receiving a mailpiece or other item for delivery to a destination address using a system for identifying and processing mail.
  • USPS United States Postal Service
  • FIGS. 2A and 2B illustrate embodiments of a mailpiece, consistent with apparatus or methods for identifying and processing mail consistent with one embodiment of the present invention.
  • mailpiece 100 contains two sources of delivery information, a destination address 200 and a POSTNET code 202 corresponding to destination address 200 .
  • POSTNET code 202 can correspond to the ZIP code portion of destination address 200 .
  • POSTNET code 202 can be placed on mailpiece 100 by postal customer 102 or by the USPS at a processing center, e.g., Post Office 104 .
  • POSTNET code 202 can be read and used to route mailpiece 100 to a delivery facility, such as a Post Office, corresponding to destination address 200 for the delivery information. Therefore, if destination address 200 is illegible, POSTNET code 202 provides an alternative source of delivery information.
  • mailpiece 100 includes an identification code 204 , also known as an identification tag (ID Tag), which is unique to mailpiece 100 .
  • ID Tag 204 provides an alternative source of delivery information in one embodiment of systems using apparatus or methods for identifying and processing mail consistent with the present invention.
  • ID Tag 204 is printed on the back of mailpiece 100 and represents a unique identification source for identifying mailpiece 100 .
  • ID Tag 204 may be printed on mailpiece 100 in fluorescent ink. As described below, in one embodiment of systems consistent with the present invention, ID Tag 204 is used as a redundant source of identification throughout all phases of a mail identification and processing system.
  • FIG. 3 shows an embodiment of an ID Tag in greater detail, as shown in FIG. 2B .
  • ID Tag 204 is represented by ID Tag bar code 300 .
  • ID Tag bar code 300 can contain bars and spaces indicating various information about mailpiece 100 , including class of mail 304 , origin optical character reader (OCR) number 306 , day of the month 308 , time of day 310 , and mailpiece sequence number 312 .
  • Class of mail code 304 can be represented by a single bit, representing either a 0 or a 1 to indicate mail classification.
  • Origin OCR number 306 can be a series of 14 bits representing a machine ID number between 1 and 3,999.
  • Day of month code 308 can be a series of 7 bits representing a day of the month between 1 and 31.
  • Time of day code 310 can be a series of 7 bits representing a time of day, measured in half hour increments, between 0 and 47.
  • Mailpiece sequence number 312 can be a series of 18 bits representing a mailpiece sequence order from 1 to 25,000.
  • ID Tag bar code 300 representing ID Tag 204 also contains a start code (such as a start bit) and a stop code (such as a stop bit).
  • start code 302 is represented by a single bit
  • stop code 314 is represented by two bits.
  • the combination of information represented in ID Tag bar code 300 uniquely identifies mailpiece 100 .
  • ID Tag 204 may be represented by formats other than ID Tag bar code 300 .
  • FIG. 4A depicts a simplified overview of a mailpiece as it enters a Post Office in a Remote Bar Code System (RBCS).
  • mailpiece 100 enters a RBCS 500 for identification and processing to a destination address.
  • mailpiece 100 can be identified by POSTNET code 202 , which represents the ZIP code of the destination address, or ID Tag 204 , which is stored temporarily within RBCS 500 during the initial identification and processing, as an identification code.
  • RBCS 500 actually applies both POSTNET code 202 and ID Tag 204 to mailpiece 100 .
  • RBCS 500 first marks mailpiece 100 with ID Tag 204 , and then RBCS 500 marks mailpiece 100 with POSTNET code 202 . Then, after mailpiece 100 has been marked with POSTNET code 202 by RBCS 500 , mailpiece 100 is then sorted in RBCS 500 based on POSTNET code 202 , provided POSTNET code 202 is legible.
  • RBCS 500 may use a special machine or a manual process to identify and process mailpiece 100 to a destination address. To use the special machine (described in detail herein), RBCS 500 may identify and process mailpiece 100 based on ID Tag 204 . If ID Tag 204 is legible to this special machine, RBCS 500 can obtain POSTNET code 202 from a temporary database and thereby identify and continue to process mailpiece 100 to the destination address. Specifically, if this occurs, RBCS 500 reapplies POSTNET code 202 to mailpiece 100 and then again attempts to identify and process mailpiece 100 to the destination address.
  • ID Tag 204 is no longer stored within RBCS 500 . Therefore, once mailpiece 100 has been marked with POSTNET code 202 (and has been verified by RBCS 500 ), ID Tag 204 can no longer be used to identify mailpiece 100 .
  • FIG. 4B depicts a simplified overview of a mailpiece as it enters a Post Office in an Identification Code Sorting (ICS) system.
  • mailpiece 100 enters an ICS system 600 for identification and processing to a destination address, like mailpiece 100 enters RBCS 500 .
  • ICS system 600 mailpiece 100 can be identified by POSTNET code 202 and ID Tag 204 , and ICS system 600 applies both POSTNET code 202 and ID Tag 204 to mailpiece 100 .
  • mailpiece 100 is also sorted by ICS system 600 based on POSTNET code 202 , once ICS system 600 has marked mailpiece 100 with POSTNET code 202 .
  • ID Tag 204 can be used in ICS system 600 at any time during the processing of mailpiece 100 from Post Office 104 to the destination address.
  • ICS system 600 utilizes computer hardware and software to maintain a long-term database for a plurality of ID Tags 204 .
  • ID Tag 204 provides a source by which mailpiece 100 can be automatically identified and processed in ICS system 600 throughout the entire mail identification and processing system, whereby ICS system 600 references a long-term database stored within ICS system 600 .
  • ICS system 600 also enables many advanced processing capabilities based on ID Tag 204 , including, for example, redundant ZIP code confirmation.
  • FIG. 5 shows one embodiment of a Remote Bar Code System (RBCS), as shown in FIGS. 2A and 4A .
  • RBCS Remote Bar Code System
  • FIGS. 2A and 4A processing begins at an Input Subsystem (ISS) 502 .
  • ISS 502 Input Subsystem
  • a piece of equipment at ISS 502 such as a MultiLine Optical Character Reader Input Subsystem, sprays (i.e., prints) ID Tag 204 onto the back of mailpiece 100 using, for example, fluorescent ink.
  • ISS 502 also takes an image of mailpiece 100 (e.g., a digital image) and attempts to resolve the ZIP code portion of destination address 200 , that is, ISS 502 attempts to determine POSTNET code 202 in sufficient detail to enable delivery of mailpiece 100 to destination address 200 . Sufficient detail may be, for example, a ZIP code with 5, 9, or 11 digits. If ISS 502 successfully resolves the ZIP code portion of destination address 200 , ISS 502 then also sprays POSTNET code 202 corresponding to destination address 200 onto the front of mailpiece 100 , for example, using nonfluorescent ink.
  • ISS 502 then sends the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 to Image Control Unit (ICU) 508 , where the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 is stored in Decision Storage Unit (DSU) 514 .
  • ICU Image Control Unit
  • DSU Decision Storage Unit
  • ISS 502 can resolve the ZIP code from destination address 200 , and obtain POSTNET code 202 on mailpiece 100 , ISS 502 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. POSTNET code 202 may not be legible and may result in a verify error, if, for instance, mailpiece 100 is a color other than white or has a pattern that obscures POSTNET code 202 . If ISS 502 cannot verify POSTNET code 202 , mailpiece 100 is sent to an Output Subsystem 504 and marked for processing by a Letter Mail Labeling Machine (LMLM) 506 .
  • LMLM Letter Mail Labeling Machine
  • a white label is applied over the illegible POSTNET code, and mailpiece 100 is manually fed into OSS 504 .
  • the white label creates a clear area on mailpiece 100 , and RBCS 500 then reapplies POSTNET code 202 onto the while label on mailpiece 100 .
  • OSS 504 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. Once POSTNET code 202 is verified, ID Tag 204 has no further use.
  • ICU 508 receives delivery address data from a Central Database 510 and forwards the data along with the mailpiece image, including ID Tag 204 , to a Remote Computer Reader (RCR) 512 .
  • This delivery address data may include ZIP code data, POSTNET data, or temporary ID Tag files, as described in more detail herein.
  • RCR 512 first attempts to use the data from the central database to automatically resolve the ZIP code corresponding to mailpiece 100 .
  • RCR 512 uses ID Tag 204 to determine if there is a temporary file on mailpiece 100 in RBCS 500 , which contains the ZIP code data. If RCR 512 is successful, it returns the ZIP code data to ICU 508 , where the data is stored in a Decision Storage Unit (DSU) 514 . If RCR 512 does not successfully resolve the ZIP code corresponding to mailpiece 100 , the mailpiece image, including ID Tag 204 , is sent from ICU 508 to a Keying Site 516 , where a human operator views the mailpiece image and keys in the ZIP code data, which is returned to ICU 508 and stored in DSU 514 .
  • DSU Decision Storage Unit
  • the ZIP code data in the form of POSTNET code 202 , is linked to ID Tag 204 . All of this information, which is identified by ID Tag 204 , is temporarily stored in DSU 514 .
  • ISS 502 cannot resolve the ZIP code from destination address 200 , and while the mailpiece image is processed by ICU 508 , mailpiece 100 is routed from ISS 502 to an Output Subsystem (OSS) 504 .
  • a Bar Code Sorter at OSS 504 reads ID Tag 204 from mailpiece 100 and transmits a lookup request to DSU 514 . Once the ZIP code has been resolved for mailpiece 100 , DSU 514 then retrieves and returns the ZIP code corresponding to ID Tag 204 to OSS 504 , and OSS 504 then applies POSTNET code 202 to mailpiece 100 , if necessary. OSS 504 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible.
  • OSS 504 cannot verify POSTNET code 202 , mailpiece 100 is sent to LMLM 506 for manual processing as described above. OSS 504 then re-sprays and verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. Once POSTNET code 202 is verified, ID Tag 204 has no further use and is no longer stored in RBCS 500 .
  • initial mail processing of mailpiece 100 by RBCS 500 is complete at Post Office 104 . If destination address 200 of mailpiece 100 indicates that mailpiece 100 is local mail, then RBCS 500 directs mailpiece 100 to mail carriers 518 . However, if destination address 200 indicates that mailpiece 100 is not local mail, then RBCS 500 dispatches mailpiece 100 via one or more modes of transportation 520 to remote delivery sites 522 .
  • FIG. 6A shows one embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B .
  • ICS Identification Code Sorting
  • FIGS. 2A and 4B processing begins at an ISS 602 .
  • a piece of equipment at ISS 602 such as a MultiLine Optical Character Reader Input Subsystem, sprays ID Tag 204 onto the back of mailpiece 100 , for example, using fluorescent ink.
  • ISS 602 also takes an image (e.g., a digital image) of mailpiece 100 and attempts to resolve the ZIP code portion of destination address 200 .
  • ISS 602 If ISS 602 successfully resolves the ZIP code portion of destination address 200 , ISS 602 then sprays POSTNET code 202 corresponding to destination address 200 onto the front of mailpiece 100 , for example, using nonfluorescent ink.
  • ICS system 600 has affixed ID Tag 204 and POSTNET code 202 to mailpiece 100 , ISS 602 then sends the POSTNET code information from POSTNET code 202 and ID Tag information from ID Tag 204 to ICU 608 , where the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 is stored in DSU 614 and ICS Buffer 616 .
  • ISS 602 If ISS 602 can resolve the ZIP code from destination address 200 and obtain POSTNET code 202 on mailpiece 100 , ISS 602 then verifies POSTNET code 202 . This may result in a verify error if, for instance, mailpiece 100 is a color other than white or has a pattern that obscures POSTNET code 202 . If ISS 602 cannot verify POSTNET code 202 , mailpiece 100 is sent to an Output Subsystem (OSS) 604 . OSS 604 determines whether mailpiece 100 is bound for an ICS-enabled destination. If mailpiece 100 is bound for an ICS-enabled destination, then mailpiece 100 stays within ICS system 600 and does not require initial manual intervention.
  • OSS Output Subsystem
  • a letter mail labeling machine is not necessary in ICS system 600 .
  • mailpiece 100 is not bound for an ICS-enabled destination, then mailpiece 100 is processed as in RBCS 500 , as described above.
  • ISS 602 may attempt to resolve the ZIP code from destination address 200 on mailpiece 100 . If ISS 602 cannot resolve the ZIP code from destination address 200 , then the mailpiece image, including ID Tag 204 , is sent from ISS 602 to an Image Control Unit (ICU) 608 .
  • ICU 608 receives delivery address data from a Central Database 610 and forwards the data along with the mailpiece image, including ID Tag 204 , to a Remote Computer Reader (RCR) 612 .
  • This delivery address data may include ZIP code data, POSTNET data, and/or ID Tag files, as described in more detail herein.
  • RCR 612 first attempts to use the data from the central database to automatically resolve the ZIP code corresponding to mailpiece 100 .
  • RCR 612 uses ID Tag 204 to determine if there is a file on mailpiece 100 in ICS system 600 , which contains the ZIP code data. There should be a file for each mailpiece 100 , so there should be a file in ICS system 600 , which allows the ZIP code for mailpiece 100 to be resolved automatically by ICS system 600 without any human intervention. If RCR 612 is successful, it returns the ZIP code data to ICU 608 , where the data is stored in a Decision Storage Unit (DSU) 614 and an ICS Buffer 616 . If RCR 612 does not successfully resolve the ZIP code corresponding to mailpiece 100 , then mailpiece 100 is processed as in RBCS 500 , as described above. Also, if RCR 612 is not successful, ICS system 600 may use an Image Buffer 618 for priority designation, as described in more detail herein.
  • DSU Decision Storage Unit
  • ISS 602 cannot resolve the ZIP code from destination address 200 , and while the mailpiece image is processed by ICU 608 , mailpiece 100 is routed from ISS 602 to OSS 604 .
  • a Bar Code Sorter at OSS 604 reads ID Tag 204 from mailpiece 100 and transmits a lookup request to DSU 614 . Once the ZIP code has been resolved for mailpiece 100 , DSU 614 then retrieves and returns the ZIP code corresponding to ID Tag 204 to OSS 604 , and OSS 604 then applies POSTNET code 202 to mailpiece 100 , if necessary. OSS 604 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible.
  • ICS system 600 simply uses ID Tag 204 as the identification code (instead of POSTNET code 202 ).
  • ICS system 600 provides for the long-term storage of ID Tags 204 and corresponding POSTNET codes 202 , which allows for the automation of tasks previously required to be performed by human operators. In addition, ICS system 600 provides for the sharing of this information throughout all phases of the identification and processing of mailpiece 100 . This capability is made possible by Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system 622 . As described below, PICS/SICS system 622 enables downstream mailpiece identification and processing based on ID Tag 204 , even if POSTNET code 202 becomes illegible.
  • PICS/SICS system 622 enables downstream mailpiece identification and processing based on ID Tag 204 , even if POSTNET code 202 becomes illegible.
  • RBCS 500 after mailpiece 100 is processed by ISS 602 and OSS 604 in ICS system 600 , initial mail processing is complete. Thereafter, mailpiece 100 is processed as in RBCS 500 , a described above.
  • FIG. 6B shows an alternative embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B .
  • ICS Identification Code Sorting
  • FIG. 7 is a detailed view of one embodiment of the section of an ICS system in which a mailpiece image (including an ID Tag) is processed to determine a POSTNET code (or ZIP code) corresponding to the destination address of a mailpiece, as shown in FIG. 6A .
  • the mailpiece image (along with ID Tag 204 ), taken at ISS 602 , is passed from ISS 602 to ICU 608 for processing. From ICU 608 , the mailpiece image (and ID Tag 204 ) is passed to RCR 612 .
  • Central Database 610 e.g., a USPS master address database
  • data e.g., POSTNET data and/or ZIP code data
  • RCR 612 processes the mailpiece image to resolve ZIP code data using the data received from Central Database 610 .
  • RCR 612 is able to resolve ZIP code data based on a file contained within Central Database 610 —the file is identified by ID Tag 204 .
  • ID Tag 204 is used to match the mailpiece image to a file in Central Database 610 .
  • ID Tag 204 may be used to match the proper file in Central Database 610 throughout the identification and processing system.
  • RCR 612 fails, then the mailpiece image (and ID Tag 204 ) is stored in Image Buffer 618 in one embodiment, as shown in FIG. 6A , which may include a priority designation, and is then sent to Keying Site 620 , where it is processed according to the priority designation (if any).
  • FIG. 6B if RCR 612 does not resolve the ZIP code corresponding to mailpiece 100 , RCR 612 sends the mailpiece image (and ID Tag 204 ) to ICU 608 indicating that the ZIP code has not been resolved, and ICU 608 then transmits this data to Keying Site 620 .
  • ICS system 600 when a ZIP code for the mailpiece image is resolved, either by RCR 612 or Keying Site 620 , the ZIP code data is returned to ICU 608 .
  • ICU 608 then uses the ZIP code data to resolve the ZIP code for mailpiece 100 .
  • DSU 614 in ICU 608 sends the ZIP code data to OSS 604 .
  • ICU 608 also saves the ZIP code data in a storage system.
  • ICU 608 informs Central Database 610 of the ZIP code data, which is mapped to ID Tag 204 , which maintains a long-term storage capability.
  • ICU 608 may also retain a local copy of the ZIP code data, which is mapped to ID Tag 204 , at Image Buffer 618 .
  • ICS system 600 retains the ability to identify and process mailpiece 100 automatically throughout the delivery stages in a mail sorting system.
  • FIG. 8 is a block diagram of one embodiment of an Image Control Unit (ICU) in greater detail.
  • ICU 608 directs the processing of a mailpiece image corresponding to a mailpiece 100 in ICS system 600 to resolve a POSTNET code 202 (or ZIP code data), using ID Tag 204 .
  • ICU 608 receives from ISS 602 and stores the mailpiece image and ID Tag 204 .
  • ICU 608 also receives data, such as a master reference table, from Central Database 610 .
  • Central Database 610 can be, for example, a USPS master address database or a USPS address change service database.
  • Central Database 610 can also contain identification files corresponding to a plurality of ID Tags 204 .
  • ICU 608 passes the mailpiece image (including ID Tag 204 , not shown) and the master reference table to RCR 612 .
  • RCR 612 Processing by RCR 612 is described below, with reference to FIG. 9 . If RCR 612 resolves the identification information, such as, POSTNET code 202 (or ZIP code data) corresponding to the mailpiece image, RCR 612 passes POSTNET code 202 to ICU 608 , and POSTNET code 202 is stored along with ID Tag 204 in both DSU 614 and ICS Buffer 616 . If RCR 612 does not resolve the identification information, such as, POSTNET code 202 , then RCR 612 passes the mailpiece image and ID Tag 204 to Image Buffer 618 . Processing by Image Buffer 618 is described below, with reference to FIG. 10 .
  • POSTNET code 202 or ZIP code data
  • Image Buffer 618 passes the mailpiece image (and ID Tag 204 , not shown) to ICU 608 , which passes the mailpiece image to Keying Site 620 . Processing by Keying Site 620 is described below, with reference to FIG. 11 .
  • Keying Site 620 returns an identification file, including POSTNET code 202 , to ICU 608 , where it is stored with ID Tag 204 in both DSU 614 and ICS Buffer 616 .
  • DSU 614 supplies identification information, such as ID Tag 204 and POSTNET code 202 for mailpiece 100 , to OSS 604 during initial mail processing.
  • ICS Buffer 616 retains a copy of this identification information locally for ICS system 600 . A copy of ICS Buffer 616 may be sent to Central Database 610 for long-term storage.
  • FIG. 9 is a block diagram of one embodiment of a Remote Computer Reader (RCR) in greater detail.
  • RCR 612 receives the mailpiece image (including ID Tag 204 , not shown) and the master reference table from ICU 608 , as described above with reference to FIG. 8 .
  • RCR 612 first attempts to compare the mailpiece image to data in the master reference table to resolve a POSTNET code for the mailpiece (i.e., mailpiece 100 ) corresponding to the mailpiece image. In doing so, RCR 612 uses ID Tag 204 to determine if there is a file on mailpiece 100 , which contains identification information, such as, POSTNET code 202 , for mailpiece 100 .
  • identification information such as, POSTNET code 202
  • RCR 612 If RCR 612 succeeds, then RCR 612 sends POSTNET code 202 to ICU 608 . If RCR 612 does not resolve the identification information, then, in one embodiment, RCR 612 assigns a priority designation to the mailpiece image and passes the mailpiece image (including ID Tag 204 , not shown) and the priority designation to Image Buffer 618 . Processing by Image Buffer 618 is described below, with reference to FIG. 10 . In an alternative embodiment (not shown), if RCR 612 does not resolve the POSTNET code, RCR 612 can send the mailpiece image or data indicating that the identification information has not been resolved back to ICU 608 . Processing by ICU 608 is described above, with reference to FIG. 8 .
  • FIG. 10 is a block diagram of one embodiment of an Image Buffer in greater detail.
  • Image Buffer 618 receives a Buffer File 1002 containing a mailpiece image (including ID Tag 204 , not shown) and a priority designation from RCR 612 .
  • Image Buffer 618 stores Buffer File 1002 .
  • a condition not shown
  • Image Buffer 618 Upon the expiration of a condition (not shown), such as the end of a sort run or the end of the day, or upon receipt of a prompt from (as shown in FIG. 10 ), for example, RCR 612 , Image Buffer 618 sends Buffer File 1002 to ICU 608 for processing.
  • Image Buffer 618 may also retain a copy of the identification information corresponding to a plurality of mailpieces 100 (i.e., a copy of a plurality of Buffer Files 1002 ). Alternatively, in certain other embodiments of ICS system 600 , Image Buffer 618 is not implemented.
  • FIG. 11 is a block diagram of one embodiment of a Keying Site in greater detail.
  • Keying Site 620 receives a Buffer File 1002 from ICU 608 that contains a mailpiece image (including ID Tag 204 , not shown) and a corresponding priority designation, which is forwarded to a human operator for manual processing according to the priority designation.
  • the mailpiece image from Buffer File 1002 is presented to an operator at a keying station 1102 .
  • the operator views the mailpiece image and keys the identification information into a computer at Keying Site 620 , such as the ZIP code information for the POSTNET code corresponding to the mailpiece image.
  • Keying Site 620 then returns the identification information to ICU 608 as an identification file. It is to be understood that a priority designation is not necessary.
  • Keying Site 620 could process mailpiece images on a first-received, first-processed basis, if priority designations are not used.
  • FIG. 12 is a block diagram of one embodiment of a Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system, as shown in FIGS. 6A and 6B .
  • PICS/SICS Primary Identification Code Server/Secondary Identification Code Server
  • ICU 608 maintains ICS Buffer 616 , which stores ID Tags and corresponding POSTNET codes for mailpieces. ICU 608 may share this information with PICS/SICS system 622 .
  • ICU 608 shares identification information with a Primary Identification Code Server (PICS) 1200 via a telecommunications connection 1202 .
  • PICS 1200 in turn shares the identification information with a Secondary Identification Code Server (SICS) 1204 via a telecommunications connection 1206 .
  • PICS Primary Identification Code Server
  • SCS Secondary Identification Code Server
  • PICS 1200 can also communicate with a Value Added Service System 1208 via telecommunications link 1210 .
  • Value Added Service System 1208 can be, for example, a system to track and report the performance of PICS/SICS system 622 .
  • Telecommunications connections 1202 , 1206 , and 1210 can be, for example, an Internet connection, a telephone line with a modem, a local area network (LAN), or a wide area network (WAN).
  • PICS 1200 can communicate with multiple SICS to share a plurality of identification information about a plurality of mailpieces. As also shown in FIG.
  • PICS 1200 communicates with Bar Code Sorters (BCS) 1212 , 1214 , and 1216 .
  • SICS 1204 communicates with BCS 1218 and 1220 .
  • BCS Bar Code Sorters
  • each PICS and SICS can interface with any number of BCS consistent with the present invention.
  • the communication with Bar Code Sorters is described in further detail below, with reference to FIGS. 14 and 15 .
  • PICS system 1230 which contains PICS 1200 and BCS 1212 , 1214 , and 1216 , is in the same physical location, such as, for example, a USPS Mail Processing & Distribution Center.
  • a dedicated ICS local area network connects BCS 1212 , 1214 , and 1216 to PICS 1200 .
  • SICS system 1240 which contains SICS 1204 and BCS 1218 and 1220 , is in a different physical location, such as, for example, a USPS Associate Office.
  • a dedicated ICS local area network connects BCS 1218 and 1220 to SICS 1204 .
  • Other configurations of PICS system 1230 and/or SICS system 1240 are possible.
  • FIG. 13 is a block diagram of one embodiment of a Primary Identification Code Server (PICS), as shown in FIG. 12 .
  • PICS 1200 communicates with ICU 608 via telecommunications connection 1202 .
  • PICS 1200 maintains a Local.Sat file 1306 that includes all of the geographic areas, i.e., ZIP code zones, served by PICS 1200 .
  • PICS 1200 also includes a Mode Indicator 1308 that can be set to either local or national mode.
  • PICS 1200 communicates with one or more Bar Code Sorters (BCS) 1302 , one or more Secondary Identification Code Servers (SICS) 1304 , and one or more PICS.
  • BCS Bar Code Sorters
  • SCS Secondary Identification Code Servers
  • PICS 1200 may additionally communicate with PICS 1200 via one or more Electronic Post Offices (EPOs) (not shown).
  • EPOs Electronic Post Offices
  • PICS 1200 maintains a Lookup Table 1310 . Identification files, or ID files, containing ID Tag and POSTNET data, are stored in the identification files in Lookup Table 1310 .
  • PICS 1200 includes a SICS_ZIP Data File Generator 1312 and a SICS Service Area Table Database 1314 .
  • SICS_ZIP Data File Generator 1312 is used by PICS 1200 to create a SICS_ZIP Data File (not shown here, but see below) for each SICS connected to PICS 1200 by matching identification files from Lookup Table 1310 to the service area of each SICS.
  • the service area of each SICS connected to PICS 1200 i.e., the geographic area served by each SICS, is stored in a SICS Service Area Table in SICS Service Area Table Database 1314 .
  • FIG. 14 shows one embodiment of how a PICS functions, as shown in FIG. 13 .
  • PICS 1200 receives an identification file, including ID Tag 204 and POSTNET code 202 , from ICU 608 via telecommunications link 1202 .
  • PICS 1200 stores the identification file in Lookup Table 1310 .
  • each identification file 1420 contains an identification code (ID code) 1422 , such as, for example, ID Tag 204 , and a postal code 1424 , such as, for example, POSTNET code 202 .
  • ID code identification code
  • identification file 1420 can include additional information, such as, for example, an image capture time or status bits indicating various aspects of the identification file.
  • PICS 1200 contains SICS_ZIP Data File Generator 1312 .
  • SICS_ZIP Data File Generator 1312 is used by PICS 1200 to create a SICS_ZIP Data File 1406 for each SICS connected to PICS 1200 by matching identification files 1420 from Lookup Table 1310 to the service area of each SICS from SICS Service Area Table Database 1314 .
  • PICS 1200 maintains SICS Service Area Table Database 1314 , which includes a set of SICS Service Area Tables corresponding to each SICS served by PICS 1200 . For example, SICS 1404 would have a corresponding SICS Service Area Table 1315 in SICS Service Area Table Database 1314 .
  • PICS 1200 has two functions.
  • a first function of PICS 1200 is to resolve mailpiece information for Bar Code Sorter (BCS) 1402 .
  • BCS 1402 reads an identification code 1410 from a mailpiece and sends the identification code (or ID code or ID Tag) to PICS 1200 , such as, for example, via a dedicated ICS local area network (not shown).
  • PICS 1200 looks up identification code 1410 in Lookup Table 1310 , and returns identification information, i.e., the ZIP code or the POSTNET code, corresponding to identification code 1410 to BCS 1402 .
  • PICS 1200 matches identification code 1410 with an identification code contained in an identification file, such as identification code 1422 in identification file 1420 . Because ICS system 600 had previously created identification file 1420 corresponding to a single mailpiece (using the unique identification code 1422 ), PICS 1200 can accurately obtain the identification information using identification file 1420 , which matches identification code 1422 to identification code 1410 . Thereby, PICS 1200 can also determine that postal code 1424 corresponds to identification code 1410 . PICS 1200 then returns identification information 1430 to BCS 1402 . In one embodiment, identification information 1430 is postal code 1424 . In an alternative embodiment, identification information 1430 is identification code 1422 . In another alternative embodiment, identification information 1430 is identification file 1420 . In still another alternative embodiment, identification information 1430 can be an entirely different code.
  • a second function of PICS 1200 is to share information with one or more SICS 1404 .
  • PICS 1200 sends information to SICS 1404 via a telecommunications connection. These intervals can be based on time (e.g., every twenty minutes, every hour, etc.) or on another measurement (e.g., once 20 , 000 identification files are stored in Lookup Table 1310 , etc.).
  • PICS 1200 uses SICS_ZIP Data File Generator 1312 to create a SICS_ZIP Data File 1406 .
  • SICS_ZIP Data File 1406 contains the identification files from Lookup Table 1310 for a particular SICS 1404 .
  • SICS_ZIP Data File Generator 1312 uses the appropriate SICS Service Area Table 1315 corresponding to SICS 1404 to determine which identification files are included in SICS_ZIP Data File 1406 .
  • SICS Service Area Table Database 1314 there is a SICS Service Area Table 1315 that identifies the service area for a particular SICS, e.g., the ZIP codes for the zones served by SICS 1404 .
  • SICS_ZIP Data File Generator 1312 collects all identification files (e.g., identification files 1407 ) with the ZIP codes from SICS Service Area Table 1315 and creates SICS_ZIP Data File 1406 .
  • PICS 1200 then sends SICS_ZIP Data File 1406 containing identification files 1407 to SICS 1404 .
  • FIG. 15 is a block diagram of one embodiment of a Secondary Identification Code Server (SICS), as shown in FIG. 14 .
  • SICS 1404 performs the same basic function as PICS 1200 with respect to Bar Code Sorters.
  • SICS 1404 resolves mailpiece information for one or more Bar Code Sorters, e.g., Bar Code Sorter (BCS) 1502 .
  • BCS Bar Code Sorter
  • SICS 1404 receives a SICS_ZIP Data File 1406 from PICS 1200 .
  • SICS_ZIP Data File 1406 may include a collection of identification files 1407 corresponding to mailpieces destined for postal codes within the service area of SICS 1404 .
  • BCS 1502 when BCS 1502 reads an identification code 1510 from a mailpiece, BCS 1502 sends identification code 1510 to SICS 1404 , such as, for example, over a dedicated ICS local area network (not shown). SICS 1404 looks up identification code 1510 in SICS_ZIP Data File 1406 and returns identification information, e.g., the ZIP code or the POSTNET code, to BCS 1502 in the form of identification information 1520 . Accordingly, in this implementation, BCS 1502 can use identification information 1520 to identify and process the mailpiece even if the ZIP code or the POSTNET code is illegible. Thus, like PICS 1200 , SICS 1404 can determine mailpiece information for a Bar Code Sorter 1502 .
  • FIG. 15A is a diagram of one embodiment of a plurality of Primary Identification Code Servers operating in national mode. As in local mode, in which a PICS shares mailpiece identification information with one or more SICS and one or more PICS (see FIG. 13 ), in national mode, a PICS additionally shares mailpiece identification with other PICS via one or more Electronic Post Offices (EPOs). As shown in FIG. 15A , a plurality of PICS 1505 are connected to a plurality of EPOs 1502 . In one implementation, PICS 1510 , PICS 1511 , and PICS 1512 are connected to ICS Electronic Post Office West 1504 , ICS Electronic Post Office Central 1506 , and ICS Electronic Post Office East 1508 via a network (not shown).
  • EPOs Electronic Post Offices
  • PICS 1510 may receive identification files for all mailpieces processed by all PICS in an ICS system 600 .
  • EPOs 1504 , 1506 , and 1508 the identification files for mailpieces bound for areas served by PICS 1511 and PICS 1512 are also sent from PICS 1510 to PICS 1511 and PICS 1512 . Therefore, national mode allows for complete interoperability among all the components of an ICS system 600 .
  • FIG. 15B illustrates one embodiment of a process by which the sharing of mailpiece identification files takes place in national mode, as shown in FIG. 15A .
  • PICS 1510 collects identification files in Lookup Table 1512 , as described above. PICS 1510 then determines which of the identification files in Lookup Table 1512 are served by other PICS/SICS systems using a Local.Sat file 1514 , as described above. PICS 1510 maintains an EPO.Sat file 1513 to define what records are to be sent to other PICS via EPOs.
  • Local.Sat file 1514 can contain a list of all ZIP codes served by PICS 1510 (as well as any SICS connected to PICS 1510 ).
  • EPO.Sat file 1513 can be the inverse of Local.Sat file 1514 .
  • PICS 1510 can have a National Mode indicator 1511 . In national mode, PICS 1510 periodically sends these identification files to a primary EPO 1520 via a network connection (not depicted). PICS 1510 also sends a copy of Local.Sat file 1514 to primary EPO 1520 . Local.Sat file 1514 contains a list of all the ZIP codes served by PICS 1510 . In one implementation, PICS 1510 may also have a secondary EPO for use in case primary EPO 1520 is unavailable or inoperative (not shown).
  • EPO 1520 collects and stores the identification files in a Storage Buffer 1514 .
  • EPO 1520 also collects and stores any Local.Sat files 1514 in a plurality of Table Buffers 1516 .
  • Each PICS table 1518 in PICS Table Buffer 1516 is created using the Local.Sat files received from the plurality of PICS operating in national mode, such as, PICS 1510 .
  • EPO 1520 receives Local.Sat file 1514 from PICS 1510
  • EPO 1520 creates a PICS Table 1518 corresponding to PICS 1510 .
  • EPO 1520 stores the identification files matching the ZIP codes in PICS Table Buffer 1516 in the corresponding PICS Table for each respective PICS (e.g., if the ZIP code matches the ZIP codes in PICS Table 1518 corresponding to Local.Sat file 1514 , the identification file is matched to PICS Table 1518 ). At predetermined intervals (similar to the predetermined intervals described above), EPO 1520 then sends a copy of each PICS Table in PICS Table Buffer 1516 to its corresponding PICS.
  • EPO 1520 may send PICS table 1519 to PICS 1530 . Additionally, EPO 1520 may also send a copy of National.Sat file 1515 to PICS 1530 .
  • National.Sat file 1515 is a compilation of all Local.Sat files received by EPO 1520 .
  • National.Sat file 1518 can be used by EPO 1520 to monitor all areas services by ICS system 600 . If a copy is transferred from EPO 1520 to PICS 1530 , National.Sat file 1518 can also be used by PICS 1530 to monitor all areas that are served by ICS system 600 .
  • both PICS and SICS exchange information with Bar Code Sorters (BCS).
  • BCS Bar Code Sorters
  • PICS 1200 in FIG. 13 exchanges information with a plurality of BCS 1302
  • a plurality of SICS 1304 exchange information with a plurality of BCS 1306 .
  • different types of BCS are used to read identification information from a mailpiece and process the mailpiece through a PICS or a SICS. Accordingly, using the same example from FIG. 13 , a common sorter software is needed to allow PICS 1200 and SICS 1304 to exchange information with BCS 1302 and BCS 1306 , respectively.
  • FIG. 16 depicts one embodiment of a PICS/SICS system incorporating Common Sorter Software.
  • Common Sorter Software 1602 performs a number of tasks, including, for example, initiating a connection between a BCS and a PICS and/or SICS, transmitting information between the BCS and the PICS and/or SICS, and terminating the connection between the BCS and the PICS and/or SICS.
  • PICS 1200 processes mailpiece information for BCS 1212 , 1214 , and 1216 , using Common Sorter Software 1602 .
  • SICS 1204 processes mailpiece information for BCS 1218 and 1220 , using Common Sorter Software 1602 .
  • Common Sorter Software 1602 provides a common interface between the BCS and a PICS and/or SICS. Therefore, Common Sorter Software 1602 is infinitely compatible (with any BCS) and infinitely expandable (to any number of BCS devices). Notably, in one implementation, Common Sorter Software 1602 is software, but Common Sorter Software 1602 may also be hardware.
  • FIG. 17 is a block diagram of one embodiment of a Bar Code Sorter (BCS) system using Common Sorter Software to connect to a PICS.
  • BCS system 1700 includes BCS 1212 and Common Sorter Software 1602 .
  • Common Sorter Software 1602 provides an interface between BCS system 1700 and PICS 1710 .
  • BCS 1212 may use Common Sorter Software 1602 to interface with a SICS rather than a PICS (i.e., PICS 1700 ).
  • FIG. 18 illustrates various embodiments of Bar Code Sorters using Common Sorter Software to connect to a PICS/SICS such as the BCS systems shown in FIG. 17 .
  • Common Sorter Software 1602 can be used with a Mail Processing Bar Code Sorter (MPBCS) 1802 , a Downstream Bar Code Sorter (DBCS) 1804 , a Carrier Sequence Bar Code Sorter (CSBCS) 1806 , an Output Subsystem/Bar Code Sorter (OSS/BCS) 1808 , or any other type of Bar Code Sorter.
  • MPBCS Mail Processing Bar Code Sorter
  • DBCS Downstream Bar Code Sorter
  • CSBCS Carrier Sequence Bar Code Sorter
  • OSS/BCS Output Subsystem/Bar Code Sorter
  • FIGS. 19A-19C illustrate one embodiment for a process used by one embodiment of Common Sorter Software during the identification and processing of a mailpiece by any of the Bar Code Sorters (BCS), such as those shown in FIG. 18 .
  • BCS 1212 After an operator 1900 has loaded the mailpieces into BCS 1212 , operator 1900 enters a ‘Start Run’ command into BCS 1212 . BCS 1212 then begins the process of attempting to identify and process the mailpieces. During this process, a connection with a PICS/SICS 1810 may become necessary. BCS 1212 uses Common Sorter Software 1602 to establish a connection with PICS/SICS 1810 . As shown in FIG.
  • operator 1900 can constantly supervise the identification and processing of the mailpieces on BCS 1212 (i.e., throughout the “mail sort run”). During this period, BCS 1212 uses Common Sorter Software 1602 to communicate with PICS/SICS 1810 throughout the mail sort run. As shown in FIG. 19C , once the mail sort run is complete, operator 1900 enters an ‘End Run’ command into BCS 1212 , and Common Sorter Software 1602 breaks the connection with PICS/SICS 1810 until the next mail sort run.
  • Common Sorter Software 1602 breaks the connection with PICS/SICS 1810 until the next mail sort run.
  • a Bar Code Sorter is used by ICS system 600 to read information from a mailpiece and to identify and process the mailpiece according to the information.
  • ICS system 600 uses special codes for the identification and processing of mail, namely, the POSTNET code (on the front of the mailpiece) and the identification code (on the back of the mailpiece).
  • POSTNET code on the front of the mailpiece
  • identification code on the back of the mailpiece.
  • RBCS 500 and ICS system 600 include special apparatus and processes, such as an ID Tag Reader (in RBCS 500 ) and an Universal ID Tag Reader (in ICS system 600 ).
  • FIG. 20 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by a RBCS, which includes, for example, an RBCS ID Tag Reader.
  • BCS 1212 includes a Bar Code Sorting System 2002 , Common Sorter Software 1602 , and a RBCS ID Tag Reader 2000 .
  • RBCS 500 makes only limited use of an identification code, because identification files are temporary and may only be used locally. For this reason, RBCS ID Tag Reader 2000 is generally used with a single type of BCS, namely, the OSS/BCS 1808 , as shown in FIG. 18 .
  • FIG. 21 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by an ICS system, which includes, for example, a Universal ID Tag Reader.
  • BCS 1212 in ICS system 600 includes Bar Code Sorting System 2002 , Common Sorter Software 1602 , and a Universal ID Tag Reader 2100 .
  • ICS system 600 makes widespread use of an identification code, and therefore, Universal ID Tag Reader 2100 has many applications.
  • Universal ID Tag Reader 2100 can be used on any type of BCS, including MPBCS 1802 , DBCS 1804 , CSBCS 1806 , and OSS/BCS 1808 , as shown in FIG. 18 .
  • FIG. 22 is a block diagram of one embodiment of a Universal ID Tag Reader (UIDTR).
  • UIDTR 2100 includes two main components: a Reader Head Assembly 2200 and a Reader Unit 2202 connected by a Fiber Optic Cable 2204 .
  • Reader Head Assembly 2200 may be placed in an assortment of different positions within ICS system 600 , connected by Fiber Optic Cable 2204 .
  • UIDTR 2100 has increased flexibility and usability in ICS system 600 .
  • FIG. 23 illustrates one embodiment of a UIDTR in greater detail, as shown in FIG. 22 .
  • Reader Head Assembly 2200 includes an Infrared Receiver 2302 and a Lens 2304 .
  • Reader Unit 2202 includes a Reader Logic Unit 2306 , a Light Source 2308 , a Light Filter Unit 2310 , a Signal Converter 2318 , and a Port 2320 .
  • Light Filter Unit 2310 includes a first Light Filter 2312 , a second Light Filter 2314 , and a third Light Filter 2316 .
  • Reader Head Assembly 2200 is connected to Reader Unit 2202 via Fiber Optic Bundle 2204 .
  • FIGS. 24A-24D illustrate the operation of one embodiment of a UIDTR while processing a mailpiece, according to one embodiment of the invention.
  • mailpiece 100 includes an identification code, i.e., an ID code.
  • an identification code i.e., an ID code.
  • a light barrier signal is generated at Infrared Receiver 2302 .
  • Infrared Receiver 2302 passes the light barrier signal to Reader Logic Unit 2306 .
  • the light barrier signal indicates that there is a mailpiece ready to be processed.
  • reader Logic Unit 2306 then supplies power to Light Source 2308 .
  • the light from Light Source 2308 travels over Fiber Optic Bundle 2204 and illuminates the ID code on the mailpiece.
  • FIG. 24A illustrates the operation of one embodiment of a UIDTR while processing a mailpiece, according to one embodiment of the invention.
  • FIG. 24A mailpiece 100 includes an identification code, i.e., an ID code.
  • a light barrier signal is generated at Infrared Receive
  • Fiber Optic Bundle 2204 may divide the light into at least three bundles.
  • Each bundle is directed a light filter in Light Filter Unit 2310 .
  • the first bundle is filtered through a First Light Filter 2312
  • the second bundle is filtered through a Second Light Filter 2314
  • the third bundle is filtered through a Third Light Filter 2316 .
  • the light filters i.e., First Light Filter 2312 , Second Light Filter 2314 , and Third Light Filter 2316 ) respond to different frequencies of the fluorescent spectrum.
  • the analog signals output by Light Filter Unit 2310 are then converted into digital signals by Signal Converter 2318 , e.g., an analog/digital converter.
  • Signal Converter 2318 e.g., an analog/digital converter.
  • the digital signal from Signal Converter 2318 is passed to Reader Logic Unit 2306 , where the digital signal is converted into an ID code corresponding to the ID code on mailpiece 100 .
  • Reader Logic Unit 2306 passes the ID code to Port 2320 , and the ID code is passed back to BCS 1212 .
  • FIG. 25 shows optional components of an embodiment of a UIDTR such as the UIDTR in FIG. 22 .
  • an operator 2500 can operate Universal ID Tag Reader 2100 using one or more Light Emitting Diodes 2502 on Reader Head Assembly 2200 and one or more Light Emitting Diodes 2504 and Push Buttons 2506 , located on Reader Unit 2202 .
  • Light Emitting Diodes 2502 and/or Light Emitting Diodes 2504 can display diagnostic information, such as ‘System OK’ or ‘Power OK,’ or function options, such as ‘Reset,’ to operator 2500 .
  • Operator 2500 can use Push Buttons 2506 to display diagnostic information, to select function options or to input other data.
  • FIG. 26 shows still additional optional components of another embodiment of a UIDTR, such as the UIDTR in FIG. 22 .
  • Port 2602 can support, for example, transistor transistor logic (TTL) and Port 2604 can support, for example, differential logic.
  • TTL transistor transistor logic
  • Port 2604 can support, for example, differential logic.
  • TTL transistor transistor logic
  • These optional component ports may enable, for example, UIDTR 2100 to function with an expanded variety of Bar Code Sorters.

Abstract

Apparatus and methods consistent with the present invention provide for reading an identification code from a mailpiece. In one embodiment, there are a reader unit and a reader head assembly connected by an optical cable, which provide for the identification of a mailpiece in an identification code sorting system.

Description

    I. RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 60/152,194, filed Aug. 31, 1999, which is herein incorporated by reference.
  • II. BACKGROUND OF THE INVENTION
  • A. Field of the Invention
  • The present invention relates to apparatus and methods for identifying and processing mail. More particularly, the present invention relates to apparatus and methods for using an identification code on a mailpiece as a redundant source of identification for identifying and processing the mailpiece in a mail sorting system.
  • B. Description of the Related Art
  • Conventional systems for identifying and processing (e.g., sorting) mail require both human and mechanical operations. Human operations are initially required to load the mail from a mail delivery repository into a mechanical identification and processing system. Mechanical operations then attempt to identify the delivery address for each mailpiece and, if successful, to then process each mailpiece based on the delivery address. Processing a mailpiece can be, for example, sorting the mailpiece. If there is a failure to identify the delivery address of a mailpiece mechanically, human operators are required again to identify the delivery address. Likewise, if there is a failure to process the mailpiece based on the delivery address, human operators are also required again to process the mailpiece. Therefore, conventional systems for identifying and processing mail are dependent upon human operators, if the mechanical systems are unable to identify or process a mailpiece.
  • To identify mail with the conventional systems, mail is loaded into a mechanical identification system, which automatically feeds each mailpiece into an optical character reader (OCR) machine. The OCR machine then attempts to “electronically read” the delivery address from the mailpiece in order to place the delivery address in a computer. If the OCR machine cannot read the delivery address (e.g., the ZIP code), the mechanical device rejects the mailpiece. The rejected mailpiece may then be fed into another mechanical device, which presents the mailpiece to a human operator, who “physically reads” the delivery address off the mailpiece and key punches the delivery address into a computer. Once the delivery address has been either electronically or physically read and placed into a computer, the computer prints the delivery address on the mailpiece, using a special code (e.g., a bar code, such as, a POSTNET code).
  • To process mail with the conventional systems, mail is loaded into a mechanical processing system, which automatically sorts each mailpiece by the destination address. The majority of conventional mechanical processing systems sort each mailpiece based on a special code, such as, a ZIP code or a bar code (i.e., a POSTNET code). These mechanical processing systems may contain an OCR machine, which can read and sort a mailpiece based on the ZIP code. These mechanical processing systems may also contain a Bar Code Sorter, which can read and sort a mailpiece based on the POSTNET code. If the mechanical processing system cannot read either the ZIP code or the POSTNET code, the system rejects the mailpiece. The rejected mailpiece may then be processed by a human operator. The human operator may then determine why the mechanical processing system rejected the mailpiece, solve the problem (e.g., determine the ZIP code or reaffix the POSTNET code to the mailpiece), and then reload the mailpiece into the mechanical processing system for processing.
  • To improve upon these conventional systems for identifying and processing mail, the United States Postal Service developed an automated sorting system, described in U.S. Pat. No. 4,992,649 (the '649 patent), which is herein incorporated by reference. One embodiment of the system disclosed in the '649 patent is a Remote Bar Code System (RBCS). The embodiment of the RBCS described in the '649 patent provides for the electronic sorting of mail using a bar code that is placed on the front of each mailpiece, known as the POSTNET code, and another bar code that is placed on the back of each mailpiece, known as the ITEM code.
  • In the RBCS, the POSTNET code corresponds to the delivery address for the mailpiece, and the ITEM code corresponds to the mailpiece itself (i.e., the ITEM code is a means to “identify” each particular mailpiece). The POSTNET code represents a copy of the ZIP code in bar code format, and the POSTNET code can be used to route a mailpiece, if the ZIP code cannot be read. The ITEM code represents a unique code in bar code format, and the ITEM code can be used to identify each particular mailpiece, if the RBCS cannot otherwise identify the mailpiece. For example, in the RBCS, the ITEM code can be linked to an electronic image of the mailpiece taken at the time the mailpiece is marked with the ITEM code by the RBCS. So, if the RBCS cannot identify a mailpiece, the RBCS can recall the electronic image of the mailpiece, which contains a destination address, including the POSTNET code.
  • The identification and processing of mail in the RBCS is dependent upon the use of either the POSTNET code or the ITEM code. When each mailpiece is identified by the RBCS, the ITEM code is first stored temporarily until the mailpiece receives the POSTNET code and has been processed by the RBCS. If the POSTNET code becomes illegible during processing, the ITEM code may be used to obtain the POSTNET code. The ITEM code is used to store a copy of the POSTNET code in a short-term memory until the RBCS has processed the mailpiece based on the POSTNET code. However, once the mailpiece has been processed and sorted based on the POSTNET code, the RBCS can no longer access the ITEM code, because the RBCS cannot store the ITEM code locally or transmit the ITEM code to other RBCS sites.
  • As a result, a number of problems can arise if the POSTNET code cannot be read by the RBCS. For instance, the POSTNET code on a mailpiece might be illegible as soon as it is applied due to the color or pattern of the mailpiece. If so, the mailpiece may be fed into a letter mail labeling machine that applies a white label to cover the illegible POSTNET code, and then, the mailpiece may be again fed into the RBCS system for identification (and printing of a new POSTNET code on the white label). Additionally, the POSTNET code might be legible when applied, but become illegible during subsequent processing of the mailpiece. Because the ITEM code is only stored until the completion of the initial processing, the RBCS cannot use the ITEM code to identify the POSTNET code during subsequent processing and sorting. Therefore, if the POSTNET code becomes illegible during subsequent processing, the mailpiece can no longer be sorted automatically by the RBCS. These problems with the RBCS result in severe disadvantages, including diminishing the efficiency of the systems for identifying and processing mail and requiring excessive human intervention.
  • As indicated above, there are a number of shortcomings incumbent with these conventional systems for identifying and processing mail. It is therefore desirable to overcome these shortcomings by developing apparatus and methods to identify and process mail when the ZIP code is illegible. It is also desirable to overcome these shortcomings by developing apparatus and methods to identify and process mail when the POSTNET code is illegible. It is further desirable to overcome these shortcomings by developing apparatus and methods to identify and process mail when the ITEM code is illegible. It is still further desirable to overcome these shortcomings by developing apparatus and methods to establish a redundant identification code, which may be globally used by a system for identifying and processing mail. It is additionally desirable to overcome these shortcomings by developing apparatus and methods to read an identification code by a system for identifying and processing mail. It is still additionally desirable to overcome these shortcomings by developing apparatus and methods to identify and process mail where a redundant identification code is used with a global system for identifying and processing mail, where one or more the nodes of the system are connected via hardware or software.
  • III. SUMMARY OF THE INVENTION
  • Apparatus and methods consistent with the present invention overcome the shortcomings of the conventional systems by using an identification code on the back of each mailpiece as a redundant source of identification for identifying and processing mail in a mail sorting system.
  • Apparatus and methods consistent with the present invention read an identification code from a mailpiece. In one embodiment, a signal is generated in response to the mailpiece being placed in front of an infrared receiver at a reader head assembly. The signal is sent from the reader head assembly to a microprocessor in a reader unit over a signal cable, and a light source is illuminated to scan an identification code from the mailpiece. The scanned identification code is focused at a fiber bundle that transmits the scanned identification code to a light filter unit. An output signal from the light filter unit is sent to a signal converter that converts the output signal to a digital signal, and the digital signal is sent from the signal converter to the microprocessor. The digital signal is processed at the microprocessor to obtain the identification code, and the identification code is output from the microprocessor to an output port.
  • Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
  • IV. BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • In the drawings:
  • FIG. 1 illustrates a simplified overview of the initial components or steps in apparatus or methods for identifying and processing a mailpiece consistent with the present invention;
  • FIGS. 2A and 2B illustrate embodiments of a mailpiece, consistent with apparatus or methods for identifying and processing mail consistent with one embodiment of the present invention;
  • FIG. 3 shows an embodiment of an ID Tag in greater detail, as shown in FIG. 2B;
  • FIG. 4A depicts a simplified overview of a mailpiece as it enters a Post Office in a Remote Bar Code System (RBCS);
  • FIG. 4B depicts a simplified overview of a mailpiece as it enters a Post Office in an Identification Code Sorting (ICS) system;
  • FIG. 5 shows one embodiment of a Remote Bar Code System (RBCS), as shown in FIGS. 2A and 4A;
  • FIG. 6A shows one embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B;
  • FIG. 6B shows an alternative embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B;
  • FIG. 7 is a detailed view of one embodiment of the section of an ICS system in which a mailpiece image (including an ID Tag) is processed to determine a POSTNET code (or ZIP code) corresponding to the destination address of a mailpiece, as shown in FIG. 6A;
  • FIG. 8 is a block diagram of one embodiment of an Image Control Unit (ICU) in greater detail;
  • FIG. 9 is a block diagram of one embodiment of a Remote Computer Reader (RCR) in greater detail;
  • FIG. 10 is a block diagram of one embodiment of an Image Buffer in greater detail;
  • FIG. 11 is a block diagram of one embodiment of a Keying Site in greater detail;
  • FIG. 12 is a block diagram of one embodiment of a Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system, as shown in FIGS. 6A and 6B;
  • FIG. 13 is a block diagram of one embodiment of a Primary Identification Code Server (PICS), as shown in FIG. 12;
  • FIG. 14 shows one embodiment of how a PICS functions, as shown in FIG. 13;
  • FIG. 15 is a block diagram of one embodiment of a Secondary Identification Code Server (SICS), as shown in FIG. 14;
  • FIG. 15A is a diagram of one embodiment of a plurality of Primary Identification Code Servers operating in national mode;
  • FIG. 15B illustrates one embodiment of a process by which the sharing of mailpiece identification files takes place in national mode, as shown in FIG. 15A;
  • FIG. 16 depicts one embodiment of a PICS/SICS system incorporating Common Sorter Software;
  • FIG. 17 is a block diagram of one embodiment of a Bar Code Sorter (BCS) system using Common Sorter Software to connect to a PICS;
  • FIG. 18 illustrates various embodiments of Bar Code Sorters using Common Sorter Software to connect to a PICS/SICS such as the BCS systems shown in FIG. 17;
  • FIGS. 19A-19C illustrate one embodiment for a process used by one embodiment of Common Sorter Software during the identification and processing of a mailpiece by any of the Bar Code Sorters (BCS), such as those shown in FIG. 18;
  • FIG. 20 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by a RBCS, which includes, for example, an RBCS ID Tag Reader;
  • FIG. 21 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by an ICS system, which includes, for example, a Universal ID Tag Reader;
  • FIG. 22 is a block diagram of one embodiment of a Universal ID Tag Reader (UIDTR);
  • FIG. 23 illustrates one embodiment of a UIDTR in greater detail, as shown in FIG. 22;
  • FIGS. 24A-24D illustrate the operation of one embodiment of a UIDTR while processing a mailpiece, according to one embodiment of the invention;
  • FIG. 25 shows optional components of an embodiment of a UIDTR such as the UIDTR in FIG. 22; and
  • FIG. 26 shows still additional optional components of another embodiment of a UIDTR, such as the UIDTR in FIG. 22.
  • V. DETAILED DESCRIPTION
  • A. Introduction
  • Apparatus and methods consistent with the present invention provide for identifying and processing mail using an identification code on a mailpiece as a redundant source of identification information in a mail sorting system. In one embodiment, this information is stored in a temporary database and used for the identification and processing of mail in a Remote Bar Code System (RBCS). In this embodiment, the identification code enables the automation of mail sorting and other processing tasks, reducing costs and delays in mail delivery services. In another embodiment, the identification and processing of mail occurs in an Identification Code Sorting (ICS) system. In this embodiment, a long-term database allows for mail sorting and other processing tasks on a national or global level.
  • Reference will now be made in detail to various embodiments of the invention, examples of which are illustrated in the accompanying drawings. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the appended claims.
  • B. Overview of a System for Identifying and Processing Mail
  • FIG. 1 illustrates a simplified overview of the initial components or steps in apparatus or methods for identifying and processing a mailpiece consistent with the present invention. In FIG. 1, a mailpiece 100 is delivered by a postal customer 102 to a Post Office 104. Mailpiece 100 can be, for example, a letter or a package that postal customer 102 wishes to send to a destination address. To do so, postal customer 102 marks mailpiece 100 with a destination address and delivers it to Post Office 104. Post Office 104 can be a United States Postal Service (USPS) Post Office, a USPS mailbox, or any other facility or location capable of receiving a mailpiece or other item for delivery to a destination address using a system for identifying and processing mail.
  • 1. POSTNET Code
  • FIGS. 2A and 2B illustrate embodiments of a mailpiece, consistent with apparatus or methods for identifying and processing mail consistent with one embodiment of the present invention. As shown in FIG. 2A, mailpiece 100 contains two sources of delivery information, a destination address 200 and a POSTNET code 202 corresponding to destination address 200. For example, POSTNET code 202 can correspond to the ZIP code portion of destination address 200. POSTNET code 202 can be placed on mailpiece 100 by postal customer 102 or by the USPS at a processing center, e.g., Post Office 104. In systems consistent with apparatus or methods for identifying and processing mail consistent with one embodiment of the present invention, POSTNET code 202 can be read and used to route mailpiece 100 to a delivery facility, such as a Post Office, corresponding to destination address 200 for the delivery information. Therefore, if destination address 200 is illegible, POSTNET code 202 provides an alternative source of delivery information.
  • 2. Identification Tag (ID. Tag)
  • As shown in FIG. 2B, in one embodiment, mailpiece 100 includes an identification code 204, also known as an identification tag (ID Tag), which is unique to mailpiece 100. ID Tag 204 provides an alternative source of delivery information in one embodiment of systems using apparatus or methods for identifying and processing mail consistent with the present invention. ID Tag 204 is printed on the back of mailpiece 100 and represents a unique identification source for identifying mailpiece 100. ID Tag 204 may be printed on mailpiece 100 in fluorescent ink. As described below, in one embodiment of systems consistent with the present invention, ID Tag 204 is used as a redundant source of identification throughout all phases of a mail identification and processing system.
  • FIG. 3 shows an embodiment of an ID Tag in greater detail, as shown in FIG. 2B. In this embodiment of the present invention, ID Tag 204 is represented by ID Tag bar code 300. ID Tag bar code 300 can contain bars and spaces indicating various information about mailpiece 100, including class of mail 304, origin optical character reader (OCR) number 306, day of the month 308, time of day 310, and mailpiece sequence number 312. Class of mail code 304 can be represented by a single bit, representing either a 0 or a 1 to indicate mail classification. Origin OCR number 306 can be a series of 14 bits representing a machine ID number between 1 and 3,999. Day of month code 308 can be a series of 7 bits representing a day of the month between 1 and 31. Time of day code 310 can be a series of 7 bits representing a time of day, measured in half hour increments, between 0 and 47. Mailpiece sequence number 312 can be a series of 18 bits representing a mailpiece sequence order from 1 to 25,000. In addition, ID Tag bar code 300 representing ID Tag 204 also contains a start code (such as a start bit) and a stop code (such as a stop bit). In ID Tag bar code 300, start code 302 is represented by a single bit and stop code 314 is represented by two bits. In one embodiment of systems consistent with the present invention, the combination of information represented in ID Tag bar code 300 uniquely identifies mailpiece 100. However, ID Tag 204 may be represented by formats other than ID Tag bar code 300.
  • C. Overview of Code-Based Systems for Identification and Processing Mail
  • 1. Overview of RBCS
  • FIG. 4A depicts a simplified overview of a mailpiece as it enters a Post Office in a Remote Bar Code System (RBCS). As shown in FIG. 4A, mailpiece 100 enters a RBCS 500 for identification and processing to a destination address. In RBCS 500, mailpiece 100 can be identified by POSTNET code 202, which represents the ZIP code of the destination address, or ID Tag 204, which is stored temporarily within RBCS 500 during the initial identification and processing, as an identification code. RBCS 500 actually applies both POSTNET code 202 and ID Tag 204 to mailpiece 100. RBCS 500 first marks mailpiece 100 with ID Tag 204, and then RBCS 500 marks mailpiece 100 with POSTNET code 202. Then, after mailpiece 100 has been marked with POSTNET code 202 by RBCS 500, mailpiece 100 is then sorted in RBCS 500 based on POSTNET code 202, provided POSTNET code 202 is legible.
  • In RBCS 500, if POSTNET code 202 is not legible, RBCS 500 may use a special machine or a manual process to identify and process mailpiece 100 to a destination address. To use the special machine (described in detail herein), RBCS 500 may identify and process mailpiece 100 based on ID Tag 204. If ID Tag 204 is legible to this special machine, RBCS 500 can obtain POSTNET code 202 from a temporary database and thereby identify and continue to process mailpiece 100 to the destination address. Specifically, if this occurs, RBCS 500 reapplies POSTNET code 202 to mailpiece 100 and then again attempts to identify and process mailpiece 100 to the destination address. Notably, once mailpiece 100 leaves RBCS 500, ID Tag 204 is no longer stored within RBCS 500. Therefore, once mailpiece 100 has been marked with POSTNET code 202 (and has been verified by RBCS 500), ID Tag 204 can no longer be used to identify mailpiece 100.
  • 2. Overview of ICS
  • FIG. 4B depicts a simplified overview of a mailpiece as it enters a Post Office in an Identification Code Sorting (ICS) system. As shown in FIG. 4B, mailpiece 100 enters an ICS system 600 for identification and processing to a destination address, like mailpiece 100 enters RBCS 500. In addition, in ICS system 600, mailpiece 100 can be identified by POSTNET code 202 and ID Tag 204, and ICS system 600 applies both POSTNET code 202 and ID Tag 204 to mailpiece 100. And, mailpiece 100 is also sorted by ICS system 600 based on POSTNET code 202, once ICS system 600 has marked mailpiece 100 with POSTNET code 202. However, in contrast to RBCS 500, ID Tag 204 can be used in ICS system 600 at any time during the processing of mailpiece 100 from Post Office 104 to the destination address.
  • Consistent with one embodiment of the present invention, ICS system 600 utilizes computer hardware and software to maintain a long-term database for a plurality of ID Tags 204. In ICS system 600, if POSTNET code 202 becomes illegible, ID Tag 204 provides a source by which mailpiece 100 can be automatically identified and processed in ICS system 600 throughout the entire mail identification and processing system, whereby ICS system 600 references a long-term database stored within ICS system 600. In addition, ICS system 600 also enables many advanced processing capabilities based on ID Tag 204, including, for example, redundant ZIP code confirmation.
  • 3. Detailed Description of RBCS
  • FIG. 5 shows one embodiment of a Remote Bar Code System (RBCS), as shown in FIGS. 2A and 4A. When mailpiece 100 with destination address 200 enters Post Office 104 using RBCS 500, as shown in FIGS. 2A and 4A, processing begins at an Input Subsystem (ISS) 502. A piece of equipment at ISS 502, such as a MultiLine Optical Character Reader Input Subsystem, sprays (i.e., prints) ID Tag 204 onto the back of mailpiece 100 using, for example, fluorescent ink. ISS 502 also takes an image of mailpiece 100 (e.g., a digital image) and attempts to resolve the ZIP code portion of destination address 200, that is, ISS 502 attempts to determine POSTNET code 202 in sufficient detail to enable delivery of mailpiece 100 to destination address 200. Sufficient detail may be, for example, a ZIP code with 5, 9, or 11 digits. If ISS 502 successfully resolves the ZIP code portion of destination address 200, ISS 502 then also sprays POSTNET code 202 corresponding to destination address 200 onto the front of mailpiece 100, for example, using nonfluorescent ink. Once RBCS 500 has affixed ID Tag 204 and POSTNET code 202 to mailpiece 100, ISS 502 then sends the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 to Image Control Unit (ICU) 508, where the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 is stored in Decision Storage Unit (DSU) 514.
  • If ISS 502 can resolve the ZIP code from destination address 200, and obtain POSTNET code 202 on mailpiece 100, ISS 502 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. POSTNET code 202 may not be legible and may result in a verify error, if, for instance, mailpiece 100 is a color other than white or has a pattern that obscures POSTNET code 202. If ISS 502 cannot verify POSTNET code 202, mailpiece 100 is sent to an Output Subsystem 504 and marked for processing by a Letter Mail Labeling Machine (LMLM) 506. At LMLM 506, a white label is applied over the illegible POSTNET code, and mailpiece 100 is manually fed into OSS 504. The white label creates a clear area on mailpiece 100, and RBCS 500 then reapplies POSTNET code 202 onto the while label on mailpiece 100. OSS 504 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. Once POSTNET code 202 is verified, ID Tag 204 has no further use.
  • If ISS 502 cannot resolve the ZIP code from destination address 200, then the mailpiece image, including ID Tag 204, is sent from ISS 502 to an Image Control Unit (ICU) 508. ICU 508 receives delivery address data from a Central Database 510 and forwards the data along with the mailpiece image, including ID Tag 204, to a Remote Computer Reader (RCR) 512. This delivery address data may include ZIP code data, POSTNET data, or temporary ID Tag files, as described in more detail herein. RCR 512 first attempts to use the data from the central database to automatically resolve the ZIP code corresponding to mailpiece 100. For example, RCR 512 uses ID Tag 204 to determine if there is a temporary file on mailpiece 100 in RBCS 500, which contains the ZIP code data. If RCR 512 is successful, it returns the ZIP code data to ICU 508, where the data is stored in a Decision Storage Unit (DSU) 514. If RCR 512 does not successfully resolve the ZIP code corresponding to mailpiece 100, the mailpiece image, including ID Tag 204, is sent from ICU 508 to a Keying Site 516, where a human operator views the mailpiece image and keys in the ZIP code data, which is returned to ICU 508 and stored in DSU 514. Therefore, in RBCS 500, regardless whether RCR 512 or Keying Site 516 resolves the ZIP code data, the ZIP code data, in the form of POSTNET code 202, is linked to ID Tag 204. All of this information, which is identified by ID Tag 204, is temporarily stored in DSU 514.
  • If ISS 502 cannot resolve the ZIP code from destination address 200, and while the mailpiece image is processed by ICU 508, mailpiece 100 is routed from ISS 502 to an Output Subsystem (OSS) 504. A Bar Code Sorter at OSS 504 reads ID Tag 204 from mailpiece 100 and transmits a lookup request to DSU 514. Once the ZIP code has been resolved for mailpiece 100, DSU 514 then retrieves and returns the ZIP code corresponding to ID Tag 204 to OSS 504, and OSS 504 then applies POSTNET code 202 to mailpiece 100, if necessary. OSS 504 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. If OSS 504 cannot verify POSTNET code 202, mailpiece 100 is sent to LMLM 506 for manual processing as described above. OSS 504 then re-sprays and verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. Once POSTNET code 202 is verified, ID Tag 204 has no further use and is no longer stored in RBCS 500.
  • After mailpiece 100 is processed by ISS 502 and OSS 504, initial mail processing of mailpiece 100 by RBCS 500 is complete at Post Office 104. If destination address 200 of mailpiece 100 indicates that mailpiece 100 is local mail, then RBCS 500 directs mailpiece 100 to mail carriers 518. However, if destination address 200 indicates that mailpiece 100 is not local mail, then RBCS 500 dispatches mailpiece 100 via one or more modes of transportation 520 to remote delivery sites 522.
  • 4. Detailed Description of ICS
  • FIG. 6A shows one embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B. When mailpiece 100 enters Post Office 104 using ICS system 600, as shown in FIGS. 2A and 4B, processing begins at an ISS 602. A piece of equipment at ISS 602, such as a MultiLine Optical Character Reader Input Subsystem, sprays ID Tag 204 onto the back of mailpiece 100, for example, using fluorescent ink. ISS 602 also takes an image (e.g., a digital image) of mailpiece 100 and attempts to resolve the ZIP code portion of destination address 200. If ISS 602 successfully resolves the ZIP code portion of destination address 200, ISS 602 then sprays POSTNET code 202 corresponding to destination address 200 onto the front of mailpiece 100, for example, using nonfluorescent ink. Once ICS system 600 has affixed ID Tag 204 and POSTNET code 202 to mailpiece 100, ISS 602 then sends the POSTNET code information from POSTNET code 202 and ID Tag information from ID Tag 204 to ICU 608, where the POSTNET code information from POSTNET code 202 and the ID Tag information from ID Tag 204 is stored in DSU 614 and ICS Buffer 616.
  • If ISS 602 can resolve the ZIP code from destination address 200 and obtain POSTNET code 202 on mailpiece 100, ISS 602 then verifies POSTNET code 202. This may result in a verify error if, for instance, mailpiece 100 is a color other than white or has a pattern that obscures POSTNET code 202. If ISS 602 cannot verify POSTNET code 202, mailpiece 100 is sent to an Output Subsystem (OSS) 604. OSS 604 determines whether mailpiece 100 is bound for an ICS-enabled destination. If mailpiece 100 is bound for an ICS-enabled destination, then mailpiece 100 stays within ICS system 600 and does not require initial manual intervention. Therefore, in contrast to RBCS 500, a letter mail labeling machine is not necessary in ICS system 600. However, if mailpiece 100 is not bound for an ICS-enabled destination, then mailpiece 100 is processed as in RBCS 500, as described above.
  • If ISS 602 cannot verify POSTNET code 202, ISS 602 may attempt to resolve the ZIP code from destination address 200 on mailpiece 100. If ISS 602 cannot resolve the ZIP code from destination address 200, then the mailpiece image, including ID Tag 204, is sent from ISS 602 to an Image Control Unit (ICU) 608. ICU 608 receives delivery address data from a Central Database 610 and forwards the data along with the mailpiece image, including ID Tag 204, to a Remote Computer Reader (RCR) 612. This delivery address data may include ZIP code data, POSTNET data, and/or ID Tag files, as described in more detail herein. RCR 612 first attempts to use the data from the central database to automatically resolve the ZIP code corresponding to mailpiece 100. For example, RCR 612 uses ID Tag 204 to determine if there is a file on mailpiece 100 in ICS system 600, which contains the ZIP code data. There should be a file for each mailpiece 100, so there should be a file in ICS system 600, which allows the ZIP code for mailpiece 100 to be resolved automatically by ICS system 600 without any human intervention. If RCR 612 is successful, it returns the ZIP code data to ICU 608, where the data is stored in a Decision Storage Unit (DSU) 614 and an ICS Buffer 616. If RCR 612 does not successfully resolve the ZIP code corresponding to mailpiece 100, then mailpiece 100 is processed as in RBCS 500, as described above. Also, if RCR 612 is not successful, ICS system 600 may use an Image Buffer 618 for priority designation, as described in more detail herein.
  • If ISS 602 cannot resolve the ZIP code from destination address 200, and while the mailpiece image is processed by ICU 608, mailpiece 100 is routed from ISS 602 to OSS 604. A Bar Code Sorter at OSS 604 reads ID Tag 204 from mailpiece 100 and transmits a lookup request to DSU 614. Once the ZIP code has been resolved for mailpiece 100, DSU 614 then retrieves and returns the ZIP code corresponding to ID Tag 204 to OSS 604, and OSS 604 then applies POSTNET code 202 to mailpiece 100, if necessary. OSS 604 then verifies POSTNET code 202 to confirm that POSTNET code 202 is legible. However, in contrast to RBCS 500, even if OSS 604 cannot verify POSTNET code 202, mailpiece 100 can still be identified and processed in ICS system 600, if OSS 604 determines that mailpiece 100 is bound for an ICS-enabled destination. In this scenario, ICS system 600 simply uses ID Tag 204 as the identification code (instead of POSTNET code 202).
  • Therefore, in contrast to RBCS 500, ICS system 600 provides for the long-term storage of ID Tags 204 and corresponding POSTNET codes 202, which allows for the automation of tasks previously required to be performed by human operators. In addition, ICS system 600 provides for the sharing of this information throughout all phases of the identification and processing of mailpiece 100. This capability is made possible by Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system 622. As described below, PICS/SICS system 622 enables downstream mailpiece identification and processing based on ID Tag 204, even if POSTNET code 202 becomes illegible. As in RBCS 500, after mailpiece 100 is processed by ISS 602 and OSS 604 in ICS system 600, initial mail processing is complete. Thereafter, mailpiece 100 is processed as in RBCS 500, a described above.
  • FIG. 6B shows an alternative embodiment of an Identification Code Sorting (ICS) system, as shown in FIGS. 2A and 4B. In this embodiment, if RCR 612 does not successfully resolve the ZIP code corresponding to mailpiece 100, the mailpiece image is not stored in an image buffer (e.g., Image Buffer 618 in FIG. 6A). Instead, RCR 612 sends the mailpiece image to ICU 608 indicating that the ZIP code has not been resolved, and ICU 608 transmits the mailpiece image to Keying Site 620. At Keying Site 620, processing occurs as described above with reference to FIG. 6A.
  • a. Overview of Processing for Mailpiece Image
  • FIG. 7 is a detailed view of one embodiment of the section of an ICS system in which a mailpiece image (including an ID Tag) is processed to determine a POSTNET code (or ZIP code) corresponding to the destination address of a mailpiece, as shown in FIG. 6A. The mailpiece image (along with ID Tag 204), taken at ISS 602, is passed from ISS 602 to ICU 608 for processing. From ICU 608, the mailpiece image (and ID Tag 204) is passed to RCR 612. Also, Central Database 610 (e.g., a USPS master address database) passes data (e.g., POSTNET data and/or ZIP code data) via ICU 608 to RCR 612. RCR 612 processes the mailpiece image to resolve ZIP code data using the data received from Central Database 610. Generally, RCR 612 is able to resolve ZIP code data based on a file contained within Central Database 610—the file is identified by ID Tag 204. In effect, ID Tag 204 is used to match the mailpiece image to a file in Central Database 610. In ICS system 600, in contrast to RBCS 500, ID Tag 204 may be used to match the proper file in Central Database 610 throughout the identification and processing system.
  • Nonetheless, if RCR 612 fails, then the mailpiece image (and ID Tag 204) is stored in Image Buffer 618 in one embodiment, as shown in FIG. 6A, which may include a priority designation, and is then sent to Keying Site 620, where it is processed according to the priority designation (if any). In an alternative embodiment without Image Buffer 618, as shown in FIG. 6B, if RCR 612 does not resolve the ZIP code corresponding to mailpiece 100, RCR 612 sends the mailpiece image (and ID Tag 204) to ICU 608 indicating that the ZIP code has not been resolved, and ICU 608 then transmits this data to Keying Site 620.
  • During the subsequent processing in ICS system 600, when a ZIP code for the mailpiece image is resolved, either by RCR 612 or Keying Site 620, the ZIP code data is returned to ICU 608. ICU 608 then uses the ZIP code data to resolve the ZIP code for mailpiece 100. To do this, DSU 614 in ICU 608 sends the ZIP code data to OSS 604. ICU 608 also saves the ZIP code data in a storage system. ICU 608 informs Central Database 610 of the ZIP code data, which is mapped to ID Tag 204, which maintains a long-term storage capability. ICU 608 may also retain a local copy of the ZIP code data, which is mapped to ID Tag 204, at Image Buffer 618. As a result, ICS system 600 retains the ability to identify and process mailpiece 100 automatically throughout the delivery stages in a mail sorting system.
  • b. Detailed Description of Processing for Mailpiece Image
  • FIG. 8 is a block diagram of one embodiment of an Image Control Unit (ICU) in greater detail. ICU 608 directs the processing of a mailpiece image corresponding to a mailpiece 100 in ICS system 600 to resolve a POSTNET code 202 (or ZIP code data), using ID Tag 204. ICU 608 receives from ISS 602 and stores the mailpiece image and ID Tag 204. ICU 608 also receives data, such as a master reference table, from Central Database 610. Central Database 610 can be, for example, a USPS master address database or a USPS address change service database. Central Database 610 can also contain identification files corresponding to a plurality of ID Tags 204. ICU 608 passes the mailpiece image (including ID Tag 204, not shown) and the master reference table to RCR 612.
  • Processing by RCR 612 is described below, with reference to FIG. 9. If RCR 612 resolves the identification information, such as, POSTNET code 202 (or ZIP code data) corresponding to the mailpiece image, RCR 612 passes POSTNET code 202 to ICU 608, and POSTNET code 202 is stored along with ID Tag 204 in both DSU 614 and ICS Buffer 616. If RCR 612 does not resolve the identification information, such as, POSTNET code 202, then RCR 612 passes the mailpiece image and ID Tag 204 to Image Buffer 618. Processing by Image Buffer 618 is described below, with reference to FIG. 10. At a particular time, such as, for example, the end of a mail sort run or the end of the day, Image Buffer 618 passes the mailpiece image (and ID Tag 204, not shown) to ICU 608, which passes the mailpiece image to Keying Site 620. Processing by Keying Site 620 is described below, with reference to FIG. 11. Keying Site 620 returns an identification file, including POSTNET code 202, to ICU 608, where it is stored with ID Tag 204 in both DSU 614 and ICS Buffer 616. DSU 614 supplies identification information, such as ID Tag 204 and POSTNET code 202 for mailpiece 100, to OSS 604 during initial mail processing. ICS Buffer 616 retains a copy of this identification information locally for ICS system 600. A copy of ICS Buffer 616 may be sent to Central Database 610 for long-term storage.
  • FIG. 9 is a block diagram of one embodiment of a Remote Computer Reader (RCR) in greater detail. RCR 612 receives the mailpiece image (including ID Tag 204, not shown) and the master reference table from ICU 608, as described above with reference to FIG. 8. RCR 612 first attempts to compare the mailpiece image to data in the master reference table to resolve a POSTNET code for the mailpiece (i.e., mailpiece 100) corresponding to the mailpiece image. In doing so, RCR 612 uses ID Tag 204 to determine if there is a file on mailpiece 100, which contains identification information, such as, POSTNET code 202, for mailpiece 100. If RCR 612 succeeds, then RCR 612 sends POSTNET code 202 to ICU 608. If RCR 612 does not resolve the identification information, then, in one embodiment, RCR 612 assigns a priority designation to the mailpiece image and passes the mailpiece image (including ID Tag 204, not shown) and the priority designation to Image Buffer 618. Processing by Image Buffer 618 is described below, with reference to FIG. 10. In an alternative embodiment (not shown), if RCR 612 does not resolve the POSTNET code, RCR 612 can send the mailpiece image or data indicating that the identification information has not been resolved back to ICU 608. Processing by ICU 608 is described above, with reference to FIG. 8.
  • FIG. 10 is a block diagram of one embodiment of an Image Buffer in greater detail. Image Buffer 618 receives a Buffer File 1002 containing a mailpiece image (including ID Tag 204, not shown) and a priority designation from RCR 612. Image Buffer 618 stores Buffer File 1002. Upon the expiration of a condition (not shown), such as the end of a sort run or the end of the day, or upon receipt of a prompt from (as shown in FIG. 10), for example, RCR 612, Image Buffer 618 sends Buffer File 1002 to ICU 608 for processing. Image Buffer 618 may also retain a copy of the identification information corresponding to a plurality of mailpieces 100 (i.e., a copy of a plurality of Buffer Files 1002). Alternatively, in certain other embodiments of ICS system 600, Image Buffer 618 is not implemented.
  • FIG. 11 is a block diagram of one embodiment of a Keying Site in greater detail. In this embodiment, Keying Site 620 receives a Buffer File 1002 from ICU 608 that contains a mailpiece image (including ID Tag 204, not shown) and a corresponding priority designation, which is forwarded to a human operator for manual processing according to the priority designation. As shown in FIG. 11, the mailpiece image from Buffer File 1002 is presented to an operator at a keying station 1102. The operator views the mailpiece image and keys the identification information into a computer at Keying Site 620, such as the ZIP code information for the POSTNET code corresponding to the mailpiece image. Keying Site 620 then returns the identification information to ICU 608 as an identification file. It is to be understood that a priority designation is not necessary. Alternatively, Keying Site 620 could process mailpiece images on a first-received, first-processed basis, if priority designations are not used.
  • D. Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) System
  • FIG. 12 is a block diagram of one embodiment of a Primary Identification Code Server/Secondary Identification Code Server (PICS/SICS) system, as shown in FIGS. 6A and 6B. As described above in FIGS. 6A and 6B, ICU 608 maintains ICS Buffer 616, which stores ID Tags and corresponding POSTNET codes for mailpieces. ICU 608 may share this information with PICS/SICS system 622. As shown in FIG. 12, ICU 608 shares identification information with a Primary Identification Code Server (PICS) 1200 via a telecommunications connection 1202. PICS 1200 in turn shares the identification information with a Secondary Identification Code Server (SICS) 1204 via a telecommunications connection 1206.
  • As shown in FIG. 12, PICS 1200 can also communicate with a Value Added Service System 1208 via telecommunications link 1210. Value Added Service System 1208 can be, for example, a system to track and report the performance of PICS/SICS system 622. Telecommunications connections 1202, 1206, and 1210 can be, for example, an Internet connection, a telephone line with a modem, a local area network (LAN), or a wide area network (WAN). In systems consistent with the present invention, PICS 1200 can communicate with multiple SICS to share a plurality of identification information about a plurality of mailpieces. As also shown in FIG. 12, PICS 1200 communicates with Bar Code Sorters (BCS) 1212, 1214, and 1216. SICS 1204 communicates with BCS 1218 and 1220. Of course, each PICS and SICS can interface with any number of BCS consistent with the present invention. The communication with Bar Code Sorters is described in further detail below, with reference to FIGS. 14 and 15.
  • Additionally, as shown in FIG. 12, PICS system 1230, which contains PICS 1200 and BCS 1212, 1214, and 1216, is in the same physical location, such as, for example, a USPS Mail Processing & Distribution Center. In one implementation, a dedicated ICS local area network connects BCS 1212, 1214, and 1216 to PICS 1200. SICS system 1240, which contains SICS 1204 and BCS 1218 and 1220, is in a different physical location, such as, for example, a USPS Associate Office. In one implementation, a dedicated ICS local area network connects BCS 1218 and 1220 to SICS 1204. Other configurations of PICS system 1230 and/or SICS system 1240 are possible.
  • FIG. 13 is a block diagram of one embodiment of a Primary Identification Code Server (PICS), as shown in FIG. 12. As described above, PICS 1200 communicates with ICU 608 via telecommunications connection 1202. In one implementation, PICS 1200 maintains a Local.Sat file 1306 that includes all of the geographic areas, i.e., ZIP code zones, served by PICS 1200. PICS 1200 also includes a Mode Indicator 1308 that can be set to either local or national mode. In local mode, PICS 1200 communicates with one or more Bar Code Sorters (BCS) 1302, one or more Secondary Identification Code Servers (SICS) 1304, and one or more PICS. In national mode, PICS 1200 may additionally communicate with PICS 1200 via one or more Electronic Post Offices (EPOs) (not shown). National mode is described below, with reference to FIGS. 15A and 15B.
  • As shown in the depicted implementation in FIG. 13, to identify information processed between ICU 608 and PICS 1200, PICS 1200 maintains a Lookup Table 1310. Identification files, or ID files, containing ID Tag and POSTNET data, are stored in the identification files in Lookup Table 1310. To serve one or more SICS 1304, PICS 1200 includes a SICS_ZIP Data File Generator 1312 and a SICS Service Area Table Database 1314. SICS_ZIP Data File Generator 1312 is used by PICS 1200 to create a SICS_ZIP Data File (not shown here, but see below) for each SICS connected to PICS 1200 by matching identification files from Lookup Table 1310 to the service area of each SICS. The service area of each SICS connected to PICS 1200, i.e., the geographic area served by each SICS, is stored in a SICS Service Area Table in SICS Service Area Table Database 1314.
  • FIG. 14 shows one embodiment of how a PICS functions, as shown in FIG. 13. PICS 1200 receives an identification file, including ID Tag 204 and POSTNET code 202, from ICU 608 via telecommunications link 1202. PICS 1200 stores the identification file in Lookup Table 1310. As shown in FIG. 14, each identification file 1420 contains an identification code (ID code) 1422, such as, for example, ID Tag 204, and a postal code 1424, such as, for example, POSTNET code 202. In addition, identification file 1420 can include additional information, such as, for example, an image capture time or status bits indicating various aspects of the identification file. PICS 1200 contains SICS_ZIP Data File Generator 1312. SICS_ZIP Data File Generator 1312 is used by PICS 1200 to create a SICS_ZIP Data File 1406 for each SICS connected to PICS 1200 by matching identification files 1420 from Lookup Table 1310 to the service area of each SICS from SICS Service Area Table Database 1314. PICS 1200 maintains SICS Service Area Table Database 1314, which includes a set of SICS Service Area Tables corresponding to each SICS served by PICS 1200. For example, SICS 1404 would have a corresponding SICS Service Area Table 1315 in SICS Service Area Table Database 1314.
  • In one implementation of ICS system 600, referring to FIG. 14, PICS 1200 has two functions. A first function of PICS 1200 is to resolve mailpiece information for Bar Code Sorter (BCS) 1402. To do this, BCS 1402 reads an identification code 1410 from a mailpiece and sends the identification code (or ID code or ID Tag) to PICS 1200, such as, for example, via a dedicated ICS local area network (not shown). PICS 1200 looks up identification code 1410 in Lookup Table 1310, and returns identification information, i.e., the ZIP code or the POSTNET code, corresponding to identification code 1410 to BCS 1402.
  • To do so, PICS 1200 matches identification code 1410 with an identification code contained in an identification file, such as identification code 1422 in identification file 1420. Because ICS system 600 had previously created identification file 1420 corresponding to a single mailpiece (using the unique identification code 1422), PICS 1200 can accurately obtain the identification information using identification file 1420, which matches identification code 1422 to identification code 1410. Thereby, PICS 1200 can also determine that postal code 1424 corresponds to identification code 1410. PICS 1200 then returns identification information 1430 to BCS 1402. In one embodiment, identification information 1430 is postal code 1424. In an alternative embodiment, identification information 1430 is identification code 1422. In another alternative embodiment, identification information 1430 is identification file 1420. In still another alternative embodiment, identification information 1430 can be an entirely different code.
  • A second function of PICS 1200 is to share information with one or more SICS 1404. To do this, at predetermined intervals, PICS 1200 sends information to SICS 1404 via a telecommunications connection. These intervals can be based on time (e.g., every twenty minutes, every hour, etc.) or on another measurement (e.g., once 20,000 identification files are stored in Lookup Table 1310, etc.). PICS 1200 uses SICS_ZIP Data File Generator 1312 to create a SICS_ZIP Data File 1406. SICS_ZIP Data File 1406 contains the identification files from Lookup Table 1310 for a particular SICS 1404. SICS_ZIP Data File Generator 1312 uses the appropriate SICS Service Area Table 1315 corresponding to SICS 1404 to determine which identification files are included in SICS_ZIP Data File 1406. For example, in SICS Service Area Table Database 1314, there is a SICS Service Area Table 1315 that identifies the service area for a particular SICS, e.g., the ZIP codes for the zones served by SICS 1404. Thus, using this information (for purposes of this example), SICS_ZIP Data File Generator 1312 collects all identification files (e.g., identification files 1407) with the ZIP codes from SICS Service Area Table 1315 and creates SICS_ZIP Data File 1406. At the predetermined interval (described above), PICS 1200 then sends SICS_ZIP Data File 1406 containing identification files 1407 to SICS 1404.
  • FIG. 15 is a block diagram of one embodiment of a Secondary Identification Code Server (SICS), as shown in FIG. 14. In FIG. 15, SICS 1404 performs the same basic function as PICS 1200 with respect to Bar Code Sorters. SICS 1404 resolves mailpiece information for one or more Bar Code Sorters, e.g., Bar Code Sorter (BCS) 1502. To do this, SICS 1404 receives a SICS_ZIP Data File 1406 from PICS 1200. For example, SICS_ZIP Data File 1406 may include a collection of identification files 1407 corresponding to mailpieces destined for postal codes within the service area of SICS 1404. In one implementation, when BCS 1502 reads an identification code 1510 from a mailpiece, BCS 1502 sends identification code 1510 to SICS 1404, such as, for example, over a dedicated ICS local area network (not shown). SICS 1404 looks up identification code 1510 in SICS_ZIP Data File 1406 and returns identification information, e.g., the ZIP code or the POSTNET code, to BCS 1502 in the form of identification information 1520. Accordingly, in this implementation, BCS 1502 can use identification information 1520 to identify and process the mailpiece even if the ZIP code or the POSTNET code is illegible. Thus, like PICS 1200, SICS 1404 can determine mailpiece information for a Bar Code Sorter 1502.
  • FIG. 15A is a diagram of one embodiment of a plurality of Primary Identification Code Servers operating in national mode. As in local mode, in which a PICS shares mailpiece identification information with one or more SICS and one or more PICS (see FIG. 13), in national mode, a PICS additionally shares mailpiece identification with other PICS via one or more Electronic Post Offices (EPOs). As shown in FIG. 15A, a plurality of PICS 1505 are connected to a plurality of EPOs 1502. In one implementation, PICS 1510, PICS 1511, and PICS 1512 are connected to ICS Electronic Post Office West 1504, ICS Electronic Post Office Central 1506, and ICS Electronic Post Office East 1508 via a network (not shown). Any number of PICS can be connected to any number of EPOs. This national mode implementation allows for broad interoperability among an unlimited number of PICS and EPOs. For example, as shown in FIG. 15A, PICS 1510 may receive identification files for all mailpieces processed by all PICS in an ICS system 600. By allowing PICS 1510 to communicate with one or more of EPOs 1504, 1506, and 1508, the identification files for mailpieces bound for areas served by PICS 1511 and PICS 1512 are also sent from PICS 1510 to PICS 1511 and PICS 1512. Therefore, national mode allows for complete interoperability among all the components of an ICS system 600.
  • FIG. 15B illustrates one embodiment of a process by which the sharing of mailpiece identification files takes place in national mode, as shown in FIG. 15A. As shown in FIG. 15B, in national mode, PICS 1510 collects identification files in Lookup Table 1512, as described above. PICS 1510 then determines which of the identification files in Lookup Table 1512 are served by other PICS/SICS systems using a Local.Sat file 1514, as described above. PICS 1510 maintains an EPO.Sat file 1513 to define what records are to be sent to other PICS via EPOs. In one embodiment, Local.Sat file 1514 can contain a list of all ZIP codes served by PICS 1510 (as well as any SICS connected to PICS 1510). In this embodiment, EPO.Sat file 1513 can be the inverse of Local.Sat file 1514. PICS 1510 can have a National Mode indicator 1511. In national mode, PICS 1510 periodically sends these identification files to a primary EPO 1520 via a network connection (not depicted). PICS 1510 also sends a copy of Local.Sat file 1514 to primary EPO 1520. Local.Sat file 1514 contains a list of all the ZIP codes served by PICS 1510. In one implementation, PICS 1510 may also have a secondary EPO for use in case primary EPO 1520 is unavailable or inoperative (not shown).
  • Once PICS 1510 has transferred the identification files to EPO 1520, EPO 1520 collects and stores the identification files in a Storage Buffer 1514. EPO 1520 also collects and stores any Local.Sat files 1514 in a plurality of Table Buffers 1516. Each PICS table 1518 in PICS Table Buffer 1516 is created using the Local.Sat files received from the plurality of PICS operating in national mode, such as, PICS 1510. For example, when EPO 1520 receives Local.Sat file 1514 from PICS 1510, EPO 1520 creates a PICS Table 1518 corresponding to PICS 1510. Thereafter, in an implementation based on ZIP codes, as EPO 1520 receives identification files from other PICS, EPO 1520 stores the identification files matching the ZIP codes in PICS Table Buffer 1516 in the corresponding PICS Table for each respective PICS (e.g., if the ZIP code matches the ZIP codes in PICS Table 1518 corresponding to Local.Sat file 1514, the identification file is matched to PICS Table 1518). At predetermined intervals (similar to the predetermined intervals described above), EPO 1520 then sends a copy of each PICS Table in PICS Table Buffer 1516 to its corresponding PICS. For example, if EPO 1520 collects identification files corresponding to PICS 1530 into a PICS Table 1519, EPO 1520 may send PICS table 1519 to PICS 1530. Additionally, EPO 1520 may also send a copy of National.Sat file 1515 to PICS 1530. National.Sat file 1515 is a compilation of all Local.Sat files received by EPO 1520. National.Sat file 1518 can be used by EPO 1520 to monitor all areas services by ICS system 600. If a copy is transferred from EPO 1520 to PICS 1530, National.Sat file 1518 can also be used by PICS 1530 to monitor all areas that are served by ICS system 600.
  • E. Common Sorter Software
  • As described above, as shown in FIGS. 12 and 13, both PICS and SICS exchange information with Bar Code Sorters (BCS). For example, PICS 1200 in FIG. 13 exchanges information with a plurality of BCS 1302, and a plurality of SICS 1304 exchange information with a plurality of BCS 1306. Throughout ICS system 600, different types of BCS are used to read identification information from a mailpiece and process the mailpiece through a PICS or a SICS. Accordingly, using the same example from FIG. 13, a common sorter software is needed to allow PICS 1200 and SICS 1304 to exchange information with BCS 1302 and BCS 1306, respectively.
  • FIG. 16 depicts one embodiment of a PICS/SICS system incorporating Common Sorter Software. Common Sorter Software 1602 performs a number of tasks, including, for example, initiating a connection between a BCS and a PICS and/or SICS, transmitting information between the BCS and the PICS and/or SICS, and terminating the connection between the BCS and the PICS and/or SICS. In this way, PICS 1200 processes mailpiece information for BCS 1212, 1214, and 1216, using Common Sorter Software 1602. Additionally, SICS 1204 processes mailpiece information for BCS 1218 and 1220, using Common Sorter Software 1602. Regardless of the type of BCS, Common Sorter Software 1602 provides a common interface between the BCS and a PICS and/or SICS. Therefore, Common Sorter Software 1602 is infinitely compatible (with any BCS) and infinitely expandable (to any number of BCS devices). Notably, in one implementation, Common Sorter Software 1602 is software, but Common Sorter Software 1602 may also be hardware.
  • FIG. 17 is a block diagram of one embodiment of a Bar Code Sorter (BCS) system using Common Sorter Software to connect to a PICS. BCS system 1700 includes BCS 1212 and Common Sorter Software 1602. Common Sorter Software 1602 provides an interface between BCS system 1700 and PICS 1710. Of course, one skilled in the art would understand that other BCS may be similarly configured or that BCS 1212 may use Common Sorter Software 1602 to interface with a SICS rather than a PICS (i.e., PICS 1700).
  • FIG. 18 illustrates various embodiments of Bar Code Sorters using Common Sorter Software to connect to a PICS/SICS such as the BCS systems shown in FIG. 17. As illustrated in FIG. 18, Common Sorter Software 1602 can be used with a Mail Processing Bar Code Sorter (MPBCS) 1802, a Downstream Bar Code Sorter (DBCS) 1804, a Carrier Sequence Bar Code Sorter (CSBCS) 1806, an Output Subsystem/Bar Code Sorter (OSS/BCS) 1808, or any other type of Bar Code Sorter.
  • FIGS. 19A-19C illustrate one embodiment for a process used by one embodiment of Common Sorter Software during the identification and processing of a mailpiece by any of the Bar Code Sorters (BCS), such as those shown in FIG. 18. First, as shown in FIG. 19A, after an operator 1900 has loaded the mailpieces into BCS 1212, operator 1900 enters a ‘Start Run’ command into BCS 1212. BCS 1212 then begins the process of attempting to identify and process the mailpieces. During this process, a connection with a PICS/SICS 1810 may become necessary. BCS 1212 uses Common Sorter Software 1602 to establish a connection with PICS/SICS 1810. As shown in FIG. 19B, operator 1900 can constantly supervise the identification and processing of the mailpieces on BCS 1212 (i.e., throughout the “mail sort run”). During this period, BCS 1212 uses Common Sorter Software 1602 to communicate with PICS/SICS 1810 throughout the mail sort run. As shown in FIG. 19C, once the mail sort run is complete, operator 1900 enters an ‘End Run’ command into BCS 1212, and Common Sorter Software 1602 breaks the connection with PICS/SICS 1810 until the next mail sort run. One skilled in the art would be aware of alternative processes by which BCS 1212 could connect with PICS/SICS 1810 via Common Sorter Software 1602.
  • F. Universal ID Tag Reader
  • As described above, as shown in FIGS. 12 and 13, a Bar Code Sorter (BCS) is used by ICS system 600 to read information from a mailpiece and to identify and process the mailpiece according to the information. As also described above, ICS system 600 uses special codes for the identification and processing of mail, namely, the POSTNET code (on the front of the mailpiece) and the identification code (on the back of the mailpiece). To read the identification code off the back of the mailpiece, RBCS 500 and ICS system 600 include special apparatus and processes, such as an ID Tag Reader (in RBCS 500) and an Universal ID Tag Reader (in ICS system 600).
  • FIG. 20 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by a RBCS, which includes, for example, an RBCS ID Tag Reader. BCS 1212 includes a Bar Code Sorting System 2002, Common Sorter Software 1602, and a RBCS ID Tag Reader 2000. As described above, RBCS 500 makes only limited use of an identification code, because identification files are temporary and may only be used locally. For this reason, RBCS ID Tag Reader 2000 is generally used with a single type of BCS, namely, the OSS/BCS 1808, as shown in FIG. 18.
  • FIG. 21 is a block diagram of a Bar Code Sorter (BCS) consistent with one embodiment of the present invention, for example, as used by an ICS system, which includes, for example, a Universal ID Tag Reader. BCS 1212 in ICS system 600 includes Bar Code Sorting System 2002, Common Sorter Software 1602, and a Universal ID Tag Reader 2100. As described above, ICS system 600 makes widespread use of an identification code, and therefore, Universal ID Tag Reader 2100 has many applications. For example, Universal ID Tag Reader 2100 can be used on any type of BCS, including MPBCS 1802, DBCS 1804, CSBCS 1806, and OSS/BCS 1808, as shown in FIG. 18.
  • FIG. 22 is a block diagram of one embodiment of a Universal ID Tag Reader (UIDTR). UIDTR 2100 includes two main components: a Reader Head Assembly 2200 and a Reader Unit 2202 connected by a Fiber Optic Cable 2204. Notably, because Reader Head Assembly 2200 is separate from Reader Unit 2202, Reader Head Assembly 2200 may be placed in an assortment of different positions within ICS system 600, connected by Fiber Optic Cable 2204. In contrast to RBCS ID Tag Reader 2000, therefore, UIDTR 2100 has increased flexibility and usability in ICS system 600.
  • FIG. 23 illustrates one embodiment of a UIDTR in greater detail, as shown in FIG. 22. Reader Head Assembly 2200 includes an Infrared Receiver 2302 and a Lens 2304. Reader Unit 2202 includes a Reader Logic Unit 2306, a Light Source 2308, a Light Filter Unit 2310, a Signal Converter 2318, and a Port 2320. In this embodiment, Light Filter Unit 2310 includes a first Light Filter 2312, a second Light Filter 2314, and a third Light Filter 2316. One skilled in the art would recognize that other embodiments may be used for the arrangement of light filters in Reader Unit 2202. Reader Head Assembly 2200 is connected to Reader Unit 2202 via Fiber Optic Bundle 2204.
  • FIGS. 24A-24D illustrate the operation of one embodiment of a UIDTR while processing a mailpiece, according to one embodiment of the invention. As shown in FIG. 24A, mailpiece 100 includes an identification code, i.e., an ID code. When mailpiece 100 is placed before Universal ID Tag Reader 2100, a light barrier signal is generated at Infrared Receiver 2302. Infrared Receiver 2302 passes the light barrier signal to Reader Logic Unit 2306. The light barrier signal indicates that there is a mailpiece ready to be processed. As shown in FIG. 24B, reader Logic Unit 2306 then supplies power to Light Source 2308. The light from Light Source 2308 travels over Fiber Optic Bundle 2204 and illuminates the ID code on the mailpiece. As shown in FIG. 24C, lens 2304 then focuses the ID code onto Fiber Optic Bundle 2204. In one embodiment, Fiber Optic Bundle 2204 may divide the light into at least three bundles. One skilled in the art would recognize that other embodiments may be used, including less than three bundles. Each bundle is directed a light filter in Light Filter Unit 2310. The first bundle is filtered through a First Light Filter 2312, the second bundle is filtered through a Second Light Filter 2314, and the third bundle is filtered through a Third Light Filter 2316. In this embodiment, the light filters (i.e., First Light Filter 2312, Second Light Filter 2314, and Third Light Filter 2316) respond to different frequencies of the fluorescent spectrum. The analog signals output by Light Filter Unit 2310 are then converted into digital signals by Signal Converter 2318, e.g., an analog/digital converter. Finally, as shown in FIG. 24D, the digital signal from Signal Converter 2318 is passed to Reader Logic Unit 2306, where the digital signal is converted into an ID code corresponding to the ID code on mailpiece 100. Reader Logic Unit 2306 passes the ID code to Port 2320, and the ID code is passed back to BCS 1212.
  • FIG. 25 shows optional components of an embodiment of a UIDTR such as the UIDTR in FIG. 22. As shown in FIG. 25, an operator 2500 can operate Universal ID Tag Reader 2100 using one or more Light Emitting Diodes 2502 on Reader Head Assembly 2200 and one or more Light Emitting Diodes 2504 and Push Buttons 2506, located on Reader Unit 2202. Light Emitting Diodes 2502 and/or Light Emitting Diodes 2504 can display diagnostic information, such as ‘System OK’ or ‘Power OK,’ or function options, such as ‘Reset,’ to operator 2500. Operator 2500 can use Push Buttons 2506 to display diagnostic information, to select function options or to input other data.
  • FIG. 26 shows still additional optional components of another embodiment of a UIDTR, such as the UIDTR in FIG. 22. Port 2602 can support, for example, transistor transistor logic (TTL) and Port 2604 can support, for example, differential logic. These optional component ports may enable, for example, UIDTR 2100 to function with an expanded variety of Bar Code Sorters.
  • VI. CONCLUSION
  • As described above, therefore, it will be apparent to those skilled in the art that various modifications and variations can be made in the methods and apparatus of the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention, provided they come within the scope of the appended claims and their equivalents. In this context, equivalents mean each and every implementation for carrying out the functions recited in the claims, even if not explicitly described herein.

Claims (44)

1. An identification code reader for reading an identification code from a mailpiece, comprising:
a reader unit, which further comprises:
a reader logic unit;
a light filter unit; and
a signal converter for converting an output of the light filter unit to an electrical signal;
a reader head assembly, which further comprises:
an infrared light source;
a lens focusing output of a light source on the mailpiece; and
an infrared receiver receiving light through the lens reflected by the mailpiece; and
an optical cable connecting the reader head assembly to the reader unit.
2. The identification code reader of claim 1, further comprising:
a mounting unit for mounting the identification code reader on a mail sorter.
3. The identification code reader of claim 1, wherein the signal converter converts an analog signal from the light filter unit into a digital signal.
4. The identification code reader of claim 1, wherein the reader unit further comprises a synchronous serial port.
5. The identification code reader of claim 4, wherein the synchronous serial port uses transistor transistor logic.
6. The identification code reader of claim 4, wherein the synchronous serial port uses differential logic.
7. The identification code reader of claim 1, wherein the reader head assembly further comprises an input device receiving operator-entered function selections.
8. The identification code reader of claim 1, wherein the reader unit further comprises a set of push buttons used by an operator to select functions.
9. The identification code reader of claim 1, wherein the reader head assembly further comprises one or more light emitting diodes.
10. The identification code reader of claim 1, further comprising a power supply.
11. The identification code reader of claim 1, wherein the reader unit further comprises the light source.
12. The identification code reader of claim 1, wherein the reader head assembly further comprises the light source.
13. The identification code reader of claim 1, wherein the optical cable is a fiber optic bundle.
14. The identification code reader of claim 1, wherein the reader unit further comprises one or more light emitting diodes.
15-84. (canceled)
85. A mail processing system for processing a mailpiece, comprising:
a mail processing device;
a two-part identification code reader connected to the mail processing device; and
sorter application software for communicating between the mail processing device and an identification code server.
86. The system of claim 85, wherein the mail processing device is a Mail Processing Bar Code Sorter.
87. The system of claim 85, wherein the mail processing device is a Delivery Bar Code Sorter.
88. The system of claim 85, wherein the mail processing device is a Carrier Sequence Bar Code Sorter.
89. The system of claim 85, wherein the mail processing device is an Output Subsystem/Bar Code Sorter.
90. The system of claim 85, wherein the identification code reader is a RBCS ID Tag Reader.
91. The system of claim 85, wherein the identification code reader is a Universal ID Tag Reader.
92. The system of claim 85, wherein the identification code server is a PICS server.
93. The system of claim 85, wherein the identification code server is a SICS server.
94. A method for processing a mailpiece by a mail processing device, comprising the steps of:
reading an identification code from the mailpiece, using a two-part identification code reader;
transmitting the identification code to an identification code server, via sorter application software; and
processing mailpiece information between the mail processing device and the identification code server, via the sorter application software.
95. The method of claim 94, wherein the mail processing device is a Mail Processing Bar Code Sorter.
96. The method of claim 94, wherein the mail processing device is a Delivery Bar Code Sorter.
97. The method of claim 94, wherein the mail processing device is a Carrier Sequence Bar Code Sorter.
98. The method of claim 94, wherein the mail processing device is an Output Subsystem/Bar Code Sorter.
99. The system of claim 94, wherein the identification code reader is a RBCS ID Tag Reader.
100. The method of claim 94, wherein the identification code reader is a Universal ID Tag Reader.
101. The method of claim 94, wherein the identification code server is a PICS server.
102. The method of claim 94, wherein the identification code server is a SICS server.
103. A system for processing a mailpiece by a mail processing device, comprising:
a reading component configured to read an identification code from the mailpiece, using a two-part identification code reader;
a transmitting component configured to transmit the identification code to an identification code server, via sorter application software; and
a processing component configured to process mailpiece information between the mail processing device and the identification code server, via the sorter application software.
104. The system of claim 103, wherein the mail processing device is a Mail Processing Bar Code Sorter.
105. The system of claim 103, wherein the mail processing device is a Delivery Bar Code Sorter.
106. The system of claim 103, wherein the mail processing device is a Carrier Sequence Bar Code Sorter.
107. The system of claim 103, wherein the mail processing device is an Output Subsystem/Bar Code Sorter.
108. The system of claim 103, wherein the identification code reader is a RBCS ID Tag Reader.
109. The system of claim 103, wherein the identification code reader is a Universal ID Tag Reader.
110. The system of claim 103, wherein the identification code server is a PICS server.
111. The system of claim 103, wherein the identification code server is a SICS server.
112. A system for processing a mailpiece by a mail processing device, comprising:
means for reading an identification code from the mailpiece, using a two-part identification code reader;
means for transmitting the identification code to an identification code server, via sorter application software; and
means for processing mailpiece information between the mail processing device and the identification code server, via the sorter application software.
113. A computer usable medium having computer readable code embodied therein for processing a mailpiece by a mail processing device, the computer readable code comprising:
a reading module configured to read an identification code from the mailpiece, using a two-part identification code reader;
a transmitting module configured to transmit the identification code to an identification code server, via sorter application software; and
a processing module configured to process mailpiece information between the mail processing device and the identification code server, via the sorter application
US11/130,177 1999-08-31 2005-05-17 Apparatus and methods for reading an identification code from a mailpiece Abandoned US20050209977A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/130,177 US20050209977A1 (en) 1999-08-31 2005-05-17 Apparatus and methods for reading an identification code from a mailpiece
US12/314,907 US20090173672A1 (en) 1999-08-31 2008-12-18 Apparatus and methods for reading an identification code from a mailpiece

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15219499P 1999-08-31 1999-08-31
US09/652,708 US6894243B1 (en) 1999-08-31 2000-08-31 Identification coder reader and method for reading an identification code from a mailpiece
US11/130,177 US20050209977A1 (en) 1999-08-31 2005-05-17 Apparatus and methods for reading an identification code from a mailpiece

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/652,708 Division US6894243B1 (en) 1999-08-31 2000-08-31 Identification coder reader and method for reading an identification code from a mailpiece

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/314,907 Division US20090173672A1 (en) 1999-08-31 2008-12-18 Apparatus and methods for reading an identification code from a mailpiece

Publications (1)

Publication Number Publication Date
US20050209977A1 true US20050209977A1 (en) 2005-09-22

Family

ID=34576194

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/652,708 Expired - Lifetime US6894243B1 (en) 1999-08-31 2000-08-31 Identification coder reader and method for reading an identification code from a mailpiece
US11/130,177 Abandoned US20050209977A1 (en) 1999-08-31 2005-05-17 Apparatus and methods for reading an identification code from a mailpiece
US12/314,907 Abandoned US20090173672A1 (en) 1999-08-31 2008-12-18 Apparatus and methods for reading an identification code from a mailpiece

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/652,708 Expired - Lifetime US6894243B1 (en) 1999-08-31 2000-08-31 Identification coder reader and method for reading an identification code from a mailpiece

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/314,907 Abandoned US20090173672A1 (en) 1999-08-31 2008-12-18 Apparatus and methods for reading an identification code from a mailpiece

Country Status (1)

Country Link
US (3) US6894243B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070007328A1 (en) * 2005-06-03 2007-01-11 Cole John J Methods and apparatus for recognizing and processing barcodes associated with mail
WO2007053679A2 (en) * 2005-11-01 2007-05-10 United States Postal Service Method and system for load balancing remote image processing in a universal coding system
US20080110810A1 (en) * 2006-11-01 2008-05-15 Raf Technology, Inc. Mailpiece reject processing and labeling
US20080275936A1 (en) * 1999-08-31 2008-11-06 United States Postal Service Apparatus and methods for processing mailpiece information by an identification code server
US20090285486A1 (en) * 2005-08-26 2009-11-19 Siemens Aktiengesellschaft Method for identifying postal mailings
US20100106290A1 (en) * 2008-10-24 2010-04-29 Bowe Bell + Howell Company Method and system for applying a postal authority barcode on a document processing system
US20100111356A1 (en) * 2006-11-02 2010-05-06 Siemens Aktiengesellschaft Device and method for identifying mail items
US20100223195A1 (en) * 2008-02-28 2010-09-02 Jonathan Cherneff System and method for analyzing transportation data
WO2010107501A1 (en) * 2009-03-20 2010-09-23 Goss International Americas, Inc. Automated product transporting and sorting apparatus and method
US7826922B2 (en) 1999-08-31 2010-11-02 United States Postal Service Apparatus and methods for processing mailpiece information in a mail processing device using sorter application software
US20110215035A1 (en) * 2008-07-11 2011-09-08 Solystic Method of storing a plurality of articles with information being scrutinized
US8489231B2 (en) 2009-09-18 2013-07-16 Raf Technology, Inc. Loop mail processing
US9878825B1 (en) 2015-06-02 2018-01-30 Ecoenvelopes, Llc Reusable top flap envelope with dual opposing seal flaps

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977353B1 (en) 1999-08-31 2005-12-20 United States Postal Service Apparatus and methods for identifying and processing mail using an identification code
US6894243B1 (en) * 1999-08-31 2005-05-17 United States Postal Service Identification coder reader and method for reading an identification code from a mailpiece
US6613998B2 (en) * 2001-03-23 2003-09-02 Opex Corporation Method and apparatus for processing outgoing bulk mail
US7739202B2 (en) * 2003-04-22 2010-06-15 United Parcel Service Of America, Inc. Computer system for routing package deliveries
US20060237125A1 (en) * 2005-04-26 2006-10-26 Montgomery Bruce G Method and apparatus for applying labels to documents
US7765131B2 (en) 2006-06-20 2010-07-27 United Parcel Service Of America, Inc. Systems and methods for providing personalized delivery services
US7657466B2 (en) 2005-06-21 2010-02-02 United Parcel Service Of America, Inc. Systems and methods for providing personalized delivery services
US8020770B2 (en) * 2005-09-07 2011-09-20 International Business Machines Corporation Display method and display apparatus
US20070131765A1 (en) * 2005-12-09 2007-06-14 Park Moon-Sung System and method for automatic processing of special service logistic
US20070143232A1 (en) * 2005-12-19 2007-06-21 Pitney Bowes Incorporated Mail markings with key encoding
KR100879614B1 (en) * 2006-09-29 2009-01-21 한국전자통신연구원 System and Method for real-time postal logistics flow control
US9916557B1 (en) 2012-12-07 2018-03-13 United Parcel Service Of America, Inc. Systems and methods for item delivery and pick-up using social networks
US11144872B2 (en) 2012-12-21 2021-10-12 United Parcel Service Of America, Inc. Delivery to an unattended location
US10387824B2 (en) 2012-12-21 2019-08-20 United Parcel Service Of America, Inc. Systems and methods for delivery of an item
EP2951765A4 (en) 2013-02-01 2016-08-10 United Parcel Service Inc Systems and methods for package delivery to alternate delivery locations
US10521761B2 (en) 2013-03-12 2019-12-31 United Parcel Service Of America, Inc. Systems and methods of delivering parcels using attended delivery/pickup locations
US20150066795A1 (en) 2013-08-30 2015-03-05 United Parcel Service Of America, Inc. Systems, methods, and computer program products for providing a customized content exchange platform between two or more parties
US10664787B2 (en) 2013-10-09 2020-05-26 United Parcel Service Of America, Inc. Customer controlled management of shipments
US11562318B2 (en) 2013-10-14 2023-01-24 United Parcel Service Of America, Inc. Systems and methods for conveying a parcel to a consignee, for example, after an unsuccessful delivery attempt
US10192190B2 (en) 2013-11-20 2019-01-29 United Parcel Service Of America, Inc. Concepts for electronic door hangers
WO2015123630A1 (en) 2014-02-16 2015-08-20 United Parcel Service Of America, Inc. Determining a delivery location and time based on the schedule or location of a consignee
US10733563B2 (en) 2014-03-13 2020-08-04 United Parcel Service Of America, Inc. Determining alternative delivery destinations
US10410164B2 (en) 2014-11-14 2019-09-10 United Parcel Service Of America, Inc Systems and methods for facilitating shipping of parcels
WO2016077807A2 (en) 2014-11-14 2016-05-19 United Parcel Service Of America, Inc. Systems and methods for facilitating shipping of parcels for returning items
US10600022B2 (en) 2016-08-31 2020-03-24 United Parcel Service Of America, Inc. Systems and methods for synchronizing delivery of related parcels via a computerized locker bank
CN113546852B (en) * 2020-04-24 2023-06-02 菜鸟智能物流控股有限公司 Logistics object sorting system, method, equipment and storage medium

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709001A (en) * 1952-10-10 1955-05-24 Walter A Stahl Sorting stamp
US2895588A (en) * 1956-06-04 1959-07-21 Andriessen Tech Nv Mail facing machine
US3015389A (en) * 1959-12-18 1962-01-02 Maurice M Levy Feeding mechanism and method for flat articles
US3038607A (en) * 1958-06-20 1962-06-12 Pitney Bowes Inc Article marking and orienting
US3266626A (en) * 1963-11-21 1966-08-16 Universal Match Corp Document handling system
US3320593A (en) * 1964-03-06 1967-05-16 Cutler Hammer Inc Memory type control system for mail sorting machine
US3384755A (en) * 1965-08-04 1968-05-21 Molins Machine Co Ltd Optical inspection devices
US3750167A (en) * 1971-07-22 1973-07-31 Gen Dynamics Corp Postal tracking system
US3933094A (en) * 1973-11-19 1976-01-20 United States Envelope Company Substrate having colored indicia thereon for read-out by infrared scanning apparatus
US3953730A (en) * 1973-07-03 1976-04-27 Thomson-Csf Visualisation Et Traitement Des Informations (T-Vt) Optical reading head
US3981590A (en) * 1975-08-28 1976-09-21 Amf Incorporated Optical system to optimize field of view uniformity in a multi-color produce sorter
US4247008A (en) * 1978-12-28 1981-01-27 Stephens Industries, Inc. Method and system for sorting envelopes
US4310754A (en) * 1976-07-14 1982-01-12 Pitney Bowes Inc. Communication means with transducer physically spaced from interior wall of secure housing
US4317030A (en) * 1979-07-24 1982-02-23 Berghell Robin C Mailing package for facilitating automatic sorting of mail
US4388994A (en) * 1979-11-14 1983-06-21 Nippon Electric Co., Ltd. Flat-article sorting apparatus
US4516264A (en) * 1982-01-29 1985-05-07 United States Of America Postal Service Apparatus and process for scanning and analyzing mail information
US4520932A (en) * 1982-01-29 1985-06-04 Nippon Electric Co., Ltd. Stamp detection in a mail processing apparatus
US4660221A (en) * 1983-07-18 1987-04-21 Pitney Bowes Inc. System for printing encrypted messages with bar-code representation
US4731741A (en) * 1985-10-25 1988-03-15 Allen Paul M Bulk mail label printing
US4741047A (en) * 1986-03-20 1988-04-26 Computer Entry Systems Corporation Information storage, retrieval and display system
US4743747A (en) * 1985-08-06 1988-05-10 Pitney Bowes Inc. Postage and mailing information applying system
US4752675A (en) * 1985-12-23 1988-06-21 Zetmeir Karl D Method of collecting response data from direct mail advertising
US4796196A (en) * 1987-03-13 1989-01-03 Pitney Bowes Inc. Letter processing apparatus
US4800505A (en) * 1987-03-13 1989-01-24 Pitney Bowes Inc. Mail preparation system
US4800504A (en) * 1987-03-13 1989-01-24 Pitney Bowes Inc. Interactive outgoing and incoming mailpiece processing system
US4801789A (en) * 1986-07-07 1989-01-31 Videx, Inc. Replaceable reader head for optical code reader
US4811325A (en) * 1987-10-15 1989-03-07 Personics Corporation High-speed reproduction facility for audio programs
US4832204A (en) * 1986-07-11 1989-05-23 Roadway Package System, Inc. Package handling and sorting system
US4838435A (en) * 1987-06-11 1989-06-13 Societe Inter-Color Installation for processing photograph envelopes
US4843233A (en) * 1987-05-11 1989-06-27 Photonetics S.A. Device for detecting vibrations including a multimode optical fiber as sensitive element
US5005124A (en) * 1988-08-23 1991-04-02 Pitney Bowes Inc. Method and apparatus for categorizing and certifying mail
US5009321A (en) * 1989-11-13 1991-04-23 Pitney Bowes Inc. Sorting system for organizing randomly ordered route grouped mail in delivery order sequence
US5018072A (en) * 1987-08-18 1991-05-21 Hitachi, Ltd. Optically readable mail system with general and receiver specific information
US5025475A (en) * 1987-02-24 1991-06-18 Kabushiki Kaisha Toshiba Processing machine
US5031223A (en) * 1989-10-24 1991-07-09 International Business Machines Corporation System and method for deferred processing of OCR scanned mail
US5042667A (en) * 1989-11-13 1991-08-27 Pitney Bowes Inc. Sorting system for organizing in one pass randomly order route grouped mail in delivery order
US5043908A (en) * 1989-10-03 1991-08-27 Pitney Bowes Inc. Mail delivery system with arrival monitoring
US5098130A (en) * 1987-08-28 1992-03-24 Ameer Mikhail G Postal stamp, and metering device thereof
US5142482A (en) * 1989-10-03 1992-08-25 Pitney Bowes Inc. Mailing system with information feedback
US5186336A (en) * 1991-01-22 1993-02-16 Electrocom Automation L.P. Product sorting apparatus
US5198655A (en) * 1990-01-17 1993-03-30 Matsushita Electric Industrial Co., Ltd. Image reading device having a light waveguide means widened toward an end nearest to an image surface
US5216620A (en) * 1991-09-23 1993-06-01 Pitney Bowes Inc. Requesting, reporting and verification system and method for mail carrier payment
US5287271A (en) * 1991-08-22 1994-02-15 International Business Machines Corporation Data processing system for optimized mail piece sorting and mapping to carrier walk sequence using real time statistical data
US5291002A (en) * 1989-06-28 1994-03-01 Z Mark International Inc. System for generating machine readable codes to facilitate routing of correspondence using automatic mail sorting apparatus
US5292004A (en) * 1988-02-03 1994-03-08 Roger Cesarini Process for addressing to a recipient
US5306901A (en) * 1991-06-02 1994-04-26 Pinchas Schechner Production control by multiple branch bar-code readers
US5313051A (en) * 1992-04-06 1994-05-17 International Business Machines Corp. Paperless parcel tracking system
US5313070A (en) * 1989-10-10 1994-05-17 Unisys Corporation Check imaging illumination with focus/defocus and fibre optic light guide means
US5324927A (en) * 1993-01-08 1994-06-28 Board Of Regents-Univ. Of Nebraska Return mail piece and method of marking the same
US5341505A (en) * 1990-10-30 1994-08-23 Whitehouse Harry T System and method for accessing remotely located ZIP+4 zipcode database
US5388049A (en) * 1993-08-11 1995-02-07 Pitney Bowes Inc. Value mail monitoring system and method
US5420403A (en) * 1992-05-26 1995-05-30 Canada Post Corporation Mail encoding and processing system
US5422821A (en) * 1992-04-06 1995-06-06 Electrocom Automation, L.P. Apparatus for intercepting and forwarding incorrectly addressed postal mail
US5428305A (en) * 1992-04-29 1995-06-27 Hughes Aircraft Company Differential logic level translator circuit with dual output logic levels selectable by power connector options
US5445667A (en) * 1992-01-24 1995-08-29 A. Ahlstrom Corporation Method for reducing material containing metal oxide in solid phase
US5518122A (en) * 1991-08-09 1996-05-21 Westinghouse Electric Corp. Modular mail processing method and control system
US5538138A (en) * 1993-07-20 1996-07-23 Licentia Patent-Verwaltungs Gmbh Method and device for sorting items provided with address information
US5541863A (en) * 1994-09-30 1996-07-30 Rockwell International Virtual integrated software testbed for avionics
US5593044A (en) * 1993-12-28 1997-01-14 Hitachi, Ltd. Apparatus for sorting sheets or the like
US5602382A (en) * 1994-10-31 1997-02-11 Canada Post Corporation Mail piece bar code having a data content identifier
US5607187A (en) * 1991-10-09 1997-03-04 Kiwisoft Programs Limited Method of identifying a plurality of labels having data fields within a machine readable border
US5612888A (en) * 1995-04-13 1997-03-18 Pitney Bowes Inc. Method and apparatus for generating a mailpiece
US5612889A (en) * 1994-10-04 1997-03-18 Pitney Bowes Inc. Mail processing system with unique mailpiece authorization assigned in advance of mailpieces entering carrier service mail processing stream
US5627517A (en) * 1995-11-01 1997-05-06 Xerox Corporation Decentralized tracking and routing system wherein packages are associated with active tags
US5630072A (en) * 1994-08-30 1997-05-13 Dobbins; Larry D. Relia process: integrated relational object unit identification and location addressing processes
US5633487A (en) * 1995-12-15 1997-05-27 Adaptive Optics Associates, Inc. Multi-focal vision system
US5635694A (en) * 1995-09-27 1997-06-03 Xerox Corporation System and method for embedding machine coded destination information into a postal mark
US5659163A (en) * 1995-02-01 1997-08-19 Publisher's Clearing House Method for processing mail
US5712789A (en) * 1995-08-28 1998-01-27 K&T Ltd. Container monitoring system and method
US5712787A (en) * 1995-07-10 1998-01-27 Canada Post Corporation Electronic postal counter
US5734568A (en) * 1992-08-21 1998-03-31 International Business Machines Corporation Data processing system for merger of sorting information and redundancy information to provide contextual predictive keying for postal addresses
US5745590A (en) * 1996-08-08 1998-04-28 U S West, Inc. Closed loop mail piece processing method
US5758574A (en) * 1992-04-15 1998-06-02 Bernardo; Joseph A. Manually written, machine readable code system
US5770841A (en) * 1995-09-29 1998-06-23 United Parcel Service Of America, Inc. System and method for reading package information
US5794790A (en) * 1994-05-24 1998-08-18 United Parcel Service Of America, Inc. Apparatus and method of sorting objects
US5875050A (en) * 1997-03-14 1999-02-23 Lucent Technologies Inc. Burst mode digital optical receiver
US5925864A (en) * 1997-09-05 1999-07-20 Pitney Bowes Inc. Metering incoming deliverable mail to automatically enable address correction
US6039257A (en) * 1997-04-28 2000-03-21 Pitney Bowes Inc. Postage metering system that utilizes secure invisible bar codes for postal verification
US6075873A (en) * 1996-10-11 2000-06-13 Nec Corporation Apparatus for entering sorting information
US6175826B1 (en) * 1997-12-18 2001-01-16 Pitney Bowes Inc. Postage metering system and method for a stand-alone meter having virtual meter functionality
US6178411B1 (en) * 1996-05-28 2001-01-23 Joshua J. Reiter Interactive process for applying or printing information on letters or parcels
US6205373B1 (en) * 1999-08-30 2001-03-20 Pitney Bowes Inc. Method and system for tracking manually repaired mailpieces or the like
US6208910B1 (en) * 1999-04-23 2001-03-27 Pitney Bowes Inc. System and method for determining the location of a mail piece
US6224527B1 (en) * 1999-06-21 2001-05-01 Profold, Inc. Apparatus for blocking tabbing feature of mail handling system and associated methods
US6236009B1 (en) * 1999-11-18 2001-05-22 Jonathan D. Emigh Apparatus and method for detecting and marking indicia on articles
US6239397B1 (en) * 1996-12-07 2001-05-29 Siemens Aktiengesellschaft Process for sorting mailings
US6266575B1 (en) * 1998-10-27 2001-07-24 Bell & Howell Mail And Messaging Technologies Company Client-server system, method and computer product for managing database driven insertion (DDI) and mail piece tracking (MPT) data
US6269171B1 (en) * 1995-04-12 2001-07-31 Lockheed Martin Corporation Method for exploiting correlated mail streams using optical character recognition
US6279750B1 (en) * 1996-11-20 2001-08-28 Siemens Aktiengesellschaft Method and device for distributing mail items
US20020069187A1 (en) * 2000-12-01 2002-06-06 Barnum Timothy B. System and method for directly connecting an advanced facer canceler system to a delivery bar code sorter
US6403906B1 (en) * 1998-11-10 2002-06-11 Elsag Spa Method for controlling an accumulating device
US6421451B2 (en) * 1997-09-16 2002-07-16 Kabushiki Kaisha Toshiba Step difference detection apparatus and processing apparatus using the same
US6437272B2 (en) * 1999-03-17 2002-08-20 Hitachi, Ltd. Article delivery system
US6549892B1 (en) * 1999-05-21 2003-04-15 Pitney Bowes Inc. System for delivering mail
US6557755B1 (en) * 2000-08-10 2003-05-06 Bell & Howell Mail And Messaging Technologies Company Methods and systems for tracking and controlling mailpiece processing using postal service mailpiece code
US6610955B2 (en) * 2002-01-31 2003-08-26 Steven W. Lopez Method and apparatus for multi-task processing and sorting of mixed and non-machinable mailpieces and related methods
US6674038B1 (en) * 1999-09-24 2004-01-06 Siemens Dematic Postal Automation, L.P. Information based network process for mail sorting/distribution
US6697500B2 (en) * 2002-03-11 2004-02-24 Bowe Bell + Howell Postal Systems Company Method and system for mail detection and tracking of categorized mail pieces

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719629A (en) 1951-09-01 1955-10-04 Roy O Robinson Mail sorting and cancelling means
US3215271A (en) 1962-11-20 1965-11-02 Donald G Cecchini Mail sorting machine
US3320059A (en) * 1964-02-04 1967-05-16 Labounsky Alex Voltage-pressure bonding
FR1540967A (en) * 1967-06-29 1968-10-04 Bull General Electric Reader-selector device for optical reading of perforations and marks on recording media
DE2136044C3 (en) * 1971-07-19 1974-03-28 Standard Elektrik Lorenz Ag, 7000 Stuttgart Optical arrangement for projecting characters onto an image field
US4058217A (en) 1973-05-01 1977-11-15 Unisearch Limited Automatic article sorting system
CA1064065A (en) 1976-07-19 1979-10-09 Gerald C. Freeman System and apparatus for the orientation and bidirectional feed of indicia bearing mail
US4514815A (en) 1979-07-27 1985-04-30 Honeywell Information Systems Inc. Computerized system and method of material control
JPS60147887A (en) 1984-01-12 1985-08-03 Toshiba Corp Sorter of mail
US4783825A (en) 1985-04-30 1988-11-08 Kabushiki Kaisha Toshiba Postal material reading apparatus
JPH0632788B2 (en) 1986-10-21 1994-05-02 日本電気株式会社 Paper sheet transport device
US4796195A (en) * 1987-05-13 1989-01-03 Cincinnati Milacron Inc. Method for machining with improved accuracy
US4868570A (en) 1988-01-15 1989-09-19 Arthur D. Little, Inc. Method and system for storing and retrieving compressed data
US4992649A (en) * 1988-09-30 1991-02-12 United States Postal Service Remote video scanning automated sorting system
US5008827A (en) 1988-12-16 1991-04-16 Pitney Bowes Inc. Central postage data communication network
US5050078A (en) 1989-10-03 1991-09-17 Pitney Bowes Inc. Mail processing and accounting system with communication among processing units and data reformatting
US5072400A (en) 1989-10-03 1991-12-10 Pitney Bowes Inc. Mail delivery system with package integrity monitoring
US5143225A (en) 1990-03-27 1992-09-01 Bell & Howell Company Carrier sequenced bar code sorter for documents
CA2059472C (en) 1991-01-16 1997-11-18 Dennis A. Mikel On site destination label printing system for postal trays and sacks
CA2059078C (en) * 1991-02-27 1995-10-03 Alexander G. Fraser Mediation of transactions by a communications system
US5586037A (en) 1991-04-01 1996-12-17 Pi Electronics, Inc. Automated self-service mail processing and storing systems
US5249687A (en) 1991-04-19 1993-10-05 International Business Machines Corporation Barcode translation for deferred optical character recognition mail processing
US5340968A (en) 1991-05-07 1994-08-23 Nippondenso Company, Ltd. Information storage medium with electronic and visual areas
WO1993002810A1 (en) 1991-08-09 1993-02-18 Westinghouse Electric Corporation Modular mail processing method and control system
US5703783A (en) 1992-04-06 1997-12-30 Electrocom Automation, L.P. Apparatus for intercepting and forwarding incorrectly addressed postal mail
US5446667A (en) 1992-06-18 1995-08-29 Pitney Bowes Inc. Just-in-time mail delivery system and method
US5264665A (en) 1992-06-24 1993-11-23 Delfer Iii Frank W Postal processing system
JP3168756B2 (en) * 1993-02-24 2001-05-21 ミノルタ株式会社 Email management method of email system
US5558232A (en) 1994-01-05 1996-09-24 Opex Corporation Apparatus for sorting documents
US5468945A (en) 1994-02-25 1995-11-21 Intermec Corporation Method and apparatus for locating and decoding a postnet forwarding bar code in a field of postnet bar codes
US5469362A (en) 1994-05-16 1995-11-21 Pitney Bowes Inc. Dispatching method and apparatus for monitoring scheduled mail
GB2289966A (en) 1994-05-24 1995-12-06 Ibm Mail sorting
US5586036A (en) 1994-07-05 1996-12-17 Pitney Bowes Inc. Postage payment system with security for sensitive mailer data and enhanced carrier data functionality
US5554842A (en) 1994-12-22 1996-09-10 Pitney Bowes Inc. Luminescent facing marks for enhanced postal indicia discrimination
US5668990A (en) 1995-03-30 1997-09-16 Pitney Bowes Inc. Apparatus and method for generating 100% United States Postal Service bar coded lists
US5754671A (en) 1995-04-12 1998-05-19 Lockheed Martin Corporation Method for improving cursive address recognition in mail pieces using adaptive data base management
DE19520057C2 (en) 1995-06-06 2000-05-18 Siemens Ag Method and device for distributing letters
FR2735995B1 (en) * 1995-06-29 1997-09-12 Poste MAIL-SORTING OBJECT-SORTING MACHINE
US6058307A (en) * 1995-11-30 2000-05-02 Amsc Subsidiary Corporation Priority and preemption service system for satellite related communication using central controller
DE19549305A1 (en) 1995-12-22 1997-07-03 Francotyp Postalia Gmbh Method and arrangement for entering data into a franking machine
JP3408916B2 (en) 1996-03-12 2003-05-19 株式会社日立製作所 Paper sorter
US5842577A (en) * 1996-07-26 1998-12-01 Opex Corporation Method and apparatus for sorting and acquiring image data for documents
DE19624977A1 (en) * 1996-06-22 1998-01-02 Siemens Ag Process for processing mail
US5726897A (en) 1996-07-17 1998-03-10 United States Computer Services Mail assembly system and method
US5974147A (en) 1996-11-07 1999-10-26 Pitney Bowes Inc. Method of verifying unreadable indicia for an information-based indicia program
US6041319A (en) * 1997-07-14 2000-03-21 Pitney Bowes Inc. Method and system for telephone updates of postal scales
US5930796A (en) * 1997-07-21 1999-07-27 Pitney Bowes Inc. Method for preventing stale addresses in an IBIP open metering system
JPH11238097A (en) * 1998-02-20 1999-08-31 Toshiba Corp Mail address prereader and address prereading method
US6003677A (en) 1998-04-17 1999-12-21 Agissar Corporation Method for the automated processing of ATM envelopes
US6539360B1 (en) * 1999-02-05 2003-03-25 United Parcel Service Of America, Inc. Special handling processing in a package transportation system
US6532452B1 (en) * 1999-06-24 2003-03-11 Pitney Bowes Inc. System and method for employing digital postage marks as part of value-added services in a mailing system
US7060925B1 (en) * 1999-08-31 2006-06-13 United States Of America Postal Service Apparatus and methods for processing mailpiece information by an identification code server
US6894243B1 (en) * 1999-08-31 2005-05-17 United States Postal Service Identification coder reader and method for reading an identification code from a mailpiece
DE10021250A1 (en) * 2000-04-22 2001-10-25 Francotyp Postalia Gmbh Arrangement for mail item detection
DE10021251A1 (en) * 2000-04-22 2001-10-25 Francotyp Postalia Gmbh Arrangement for an optical device interface
US6741908B2 (en) * 2000-08-23 2004-05-25 Lockheed Martin Corporation Mail bin sort sequence binary file generator
EP1877199B1 (en) * 2005-04-07 2013-02-13 Lockheed Martin Corporation Macro sorting system and method

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2709001A (en) * 1952-10-10 1955-05-24 Walter A Stahl Sorting stamp
US2895588A (en) * 1956-06-04 1959-07-21 Andriessen Tech Nv Mail facing machine
US3038607A (en) * 1958-06-20 1962-06-12 Pitney Bowes Inc Article marking and orienting
US3015389A (en) * 1959-12-18 1962-01-02 Maurice M Levy Feeding mechanism and method for flat articles
US3266626A (en) * 1963-11-21 1966-08-16 Universal Match Corp Document handling system
US3320593A (en) * 1964-03-06 1967-05-16 Cutler Hammer Inc Memory type control system for mail sorting machine
US3384755A (en) * 1965-08-04 1968-05-21 Molins Machine Co Ltd Optical inspection devices
US3750167A (en) * 1971-07-22 1973-07-31 Gen Dynamics Corp Postal tracking system
US3953730A (en) * 1973-07-03 1976-04-27 Thomson-Csf Visualisation Et Traitement Des Informations (T-Vt) Optical reading head
US3933094A (en) * 1973-11-19 1976-01-20 United States Envelope Company Substrate having colored indicia thereon for read-out by infrared scanning apparatus
US3981590A (en) * 1975-08-28 1976-09-21 Amf Incorporated Optical system to optimize field of view uniformity in a multi-color produce sorter
US4310754A (en) * 1976-07-14 1982-01-12 Pitney Bowes Inc. Communication means with transducer physically spaced from interior wall of secure housing
US4247008A (en) * 1978-12-28 1981-01-27 Stephens Industries, Inc. Method and system for sorting envelopes
US4317030A (en) * 1979-07-24 1982-02-23 Berghell Robin C Mailing package for facilitating automatic sorting of mail
US4388994A (en) * 1979-11-14 1983-06-21 Nippon Electric Co., Ltd. Flat-article sorting apparatus
US4520932A (en) * 1982-01-29 1985-06-04 Nippon Electric Co., Ltd. Stamp detection in a mail processing apparatus
US4516264A (en) * 1982-01-29 1985-05-07 United States Of America Postal Service Apparatus and process for scanning and analyzing mail information
US4660221A (en) * 1983-07-18 1987-04-21 Pitney Bowes Inc. System for printing encrypted messages with bar-code representation
US4743747A (en) * 1985-08-06 1988-05-10 Pitney Bowes Inc. Postage and mailing information applying system
US4731741A (en) * 1985-10-25 1988-03-15 Allen Paul M Bulk mail label printing
US4752675A (en) * 1985-12-23 1988-06-21 Zetmeir Karl D Method of collecting response data from direct mail advertising
US4741047A (en) * 1986-03-20 1988-04-26 Computer Entry Systems Corporation Information storage, retrieval and display system
US4801789A (en) * 1986-07-07 1989-01-31 Videx, Inc. Replaceable reader head for optical code reader
US4832204A (en) * 1986-07-11 1989-05-23 Roadway Package System, Inc. Package handling and sorting system
US5025475A (en) * 1987-02-24 1991-06-18 Kabushiki Kaisha Toshiba Processing machine
US4796196A (en) * 1987-03-13 1989-01-03 Pitney Bowes Inc. Letter processing apparatus
US4800505A (en) * 1987-03-13 1989-01-24 Pitney Bowes Inc. Mail preparation system
US4800504A (en) * 1987-03-13 1989-01-24 Pitney Bowes Inc. Interactive outgoing and incoming mailpiece processing system
US4843233A (en) * 1987-05-11 1989-06-27 Photonetics S.A. Device for detecting vibrations including a multimode optical fiber as sensitive element
US4838435A (en) * 1987-06-11 1989-06-13 Societe Inter-Color Installation for processing photograph envelopes
US5018072A (en) * 1987-08-18 1991-05-21 Hitachi, Ltd. Optically readable mail system with general and receiver specific information
US5098130A (en) * 1987-08-28 1992-03-24 Ameer Mikhail G Postal stamp, and metering device thereof
US4811325A (en) * 1987-10-15 1989-03-07 Personics Corporation High-speed reproduction facility for audio programs
US5292004A (en) * 1988-02-03 1994-03-08 Roger Cesarini Process for addressing to a recipient
US5005124A (en) * 1988-08-23 1991-04-02 Pitney Bowes Inc. Method and apparatus for categorizing and certifying mail
US5291002A (en) * 1989-06-28 1994-03-01 Z Mark International Inc. System for generating machine readable codes to facilitate routing of correspondence using automatic mail sorting apparatus
US5043908A (en) * 1989-10-03 1991-08-27 Pitney Bowes Inc. Mail delivery system with arrival monitoring
US5142482A (en) * 1989-10-03 1992-08-25 Pitney Bowes Inc. Mailing system with information feedback
US5313070A (en) * 1989-10-10 1994-05-17 Unisys Corporation Check imaging illumination with focus/defocus and fibre optic light guide means
US5031223A (en) * 1989-10-24 1991-07-09 International Business Machines Corporation System and method for deferred processing of OCR scanned mail
US5042667A (en) * 1989-11-13 1991-08-27 Pitney Bowes Inc. Sorting system for organizing in one pass randomly order route grouped mail in delivery order
US5009321A (en) * 1989-11-13 1991-04-23 Pitney Bowes Inc. Sorting system for organizing randomly ordered route grouped mail in delivery order sequence
US5198655A (en) * 1990-01-17 1993-03-30 Matsushita Electric Industrial Co., Ltd. Image reading device having a light waveguide means widened toward an end nearest to an image surface
US5341505A (en) * 1990-10-30 1994-08-23 Whitehouse Harry T System and method for accessing remotely located ZIP+4 zipcode database
US5186336A (en) * 1991-01-22 1993-02-16 Electrocom Automation L.P. Product sorting apparatus
US5306901A (en) * 1991-06-02 1994-04-26 Pinchas Schechner Production control by multiple branch bar-code readers
US5518122A (en) * 1991-08-09 1996-05-21 Westinghouse Electric Corp. Modular mail processing method and control system
US5287271A (en) * 1991-08-22 1994-02-15 International Business Machines Corporation Data processing system for optimized mail piece sorting and mapping to carrier walk sequence using real time statistical data
US5216620A (en) * 1991-09-23 1993-06-01 Pitney Bowes Inc. Requesting, reporting and verification system and method for mail carrier payment
US5607187A (en) * 1991-10-09 1997-03-04 Kiwisoft Programs Limited Method of identifying a plurality of labels having data fields within a machine readable border
US5445667A (en) * 1992-01-24 1995-08-29 A. Ahlstrom Corporation Method for reducing material containing metal oxide in solid phase
US5422821B1 (en) * 1992-04-06 1998-07-21 Electrocom Automation Lp Apparatus for intercepting and forwarding incorrectly addressed postal mail
US5313051A (en) * 1992-04-06 1994-05-17 International Business Machines Corp. Paperless parcel tracking system
US5422821A (en) * 1992-04-06 1995-06-06 Electrocom Automation, L.P. Apparatus for intercepting and forwarding incorrectly addressed postal mail
US5758574A (en) * 1992-04-15 1998-06-02 Bernardo; Joseph A. Manually written, machine readable code system
US5428305A (en) * 1992-04-29 1995-06-27 Hughes Aircraft Company Differential logic level translator circuit with dual output logic levels selectable by power connector options
US5420403A (en) * 1992-05-26 1995-05-30 Canada Post Corporation Mail encoding and processing system
US5734568A (en) * 1992-08-21 1998-03-31 International Business Machines Corporation Data processing system for merger of sorting information and redundancy information to provide contextual predictive keying for postal addresses
US5510608A (en) * 1993-01-08 1996-04-23 Board Of Regents-Univ. Of Nebraska Return mail piece and method of marking the same
US5324927A (en) * 1993-01-08 1994-06-28 Board Of Regents-Univ. Of Nebraska Return mail piece and method of marking the same
US5538138A (en) * 1993-07-20 1996-07-23 Licentia Patent-Verwaltungs Gmbh Method and device for sorting items provided with address information
US5388049A (en) * 1993-08-11 1995-02-07 Pitney Bowes Inc. Value mail monitoring system and method
US5593044A (en) * 1993-12-28 1997-01-14 Hitachi, Ltd. Apparatus for sorting sheets or the like
US5794790A (en) * 1994-05-24 1998-08-18 United Parcel Service Of America, Inc. Apparatus and method of sorting objects
US5630072A (en) * 1994-08-30 1997-05-13 Dobbins; Larry D. Relia process: integrated relational object unit identification and location addressing processes
US5541863A (en) * 1994-09-30 1996-07-30 Rockwell International Virtual integrated software testbed for avionics
US5612889A (en) * 1994-10-04 1997-03-18 Pitney Bowes Inc. Mail processing system with unique mailpiece authorization assigned in advance of mailpieces entering carrier service mail processing stream
US5602382A (en) * 1994-10-31 1997-02-11 Canada Post Corporation Mail piece bar code having a data content identifier
US5659163A (en) * 1995-02-01 1997-08-19 Publisher's Clearing House Method for processing mail
US6269171B1 (en) * 1995-04-12 2001-07-31 Lockheed Martin Corporation Method for exploiting correlated mail streams using optical character recognition
US5612888A (en) * 1995-04-13 1997-03-18 Pitney Bowes Inc. Method and apparatus for generating a mailpiece
US5712787A (en) * 1995-07-10 1998-01-27 Canada Post Corporation Electronic postal counter
US5712789A (en) * 1995-08-28 1998-01-27 K&T Ltd. Container monitoring system and method
US5635694A (en) * 1995-09-27 1997-06-03 Xerox Corporation System and method for embedding machine coded destination information into a postal mark
US5770841A (en) * 1995-09-29 1998-06-23 United Parcel Service Of America, Inc. System and method for reading package information
US5627517A (en) * 1995-11-01 1997-05-06 Xerox Corporation Decentralized tracking and routing system wherein packages are associated with active tags
US5633487A (en) * 1995-12-15 1997-05-27 Adaptive Optics Associates, Inc. Multi-focal vision system
US6178411B1 (en) * 1996-05-28 2001-01-23 Joshua J. Reiter Interactive process for applying or printing information on letters or parcels
US5745590A (en) * 1996-08-08 1998-04-28 U S West, Inc. Closed loop mail piece processing method
US6075873A (en) * 1996-10-11 2000-06-13 Nec Corporation Apparatus for entering sorting information
US6279750B1 (en) * 1996-11-20 2001-08-28 Siemens Aktiengesellschaft Method and device for distributing mail items
US6239397B1 (en) * 1996-12-07 2001-05-29 Siemens Aktiengesellschaft Process for sorting mailings
US5875050A (en) * 1997-03-14 1999-02-23 Lucent Technologies Inc. Burst mode digital optical receiver
US6039257A (en) * 1997-04-28 2000-03-21 Pitney Bowes Inc. Postage metering system that utilizes secure invisible bar codes for postal verification
US5925864A (en) * 1997-09-05 1999-07-20 Pitney Bowes Inc. Metering incoming deliverable mail to automatically enable address correction
US6421451B2 (en) * 1997-09-16 2002-07-16 Kabushiki Kaisha Toshiba Step difference detection apparatus and processing apparatus using the same
US6175826B1 (en) * 1997-12-18 2001-01-16 Pitney Bowes Inc. Postage metering system and method for a stand-alone meter having virtual meter functionality
US6266575B1 (en) * 1998-10-27 2001-07-24 Bell & Howell Mail And Messaging Technologies Company Client-server system, method and computer product for managing database driven insertion (DDI) and mail piece tracking (MPT) data
US6403906B1 (en) * 1998-11-10 2002-06-11 Elsag Spa Method for controlling an accumulating device
US6437272B2 (en) * 1999-03-17 2002-08-20 Hitachi, Ltd. Article delivery system
US6208910B1 (en) * 1999-04-23 2001-03-27 Pitney Bowes Inc. System and method for determining the location of a mail piece
US6549892B1 (en) * 1999-05-21 2003-04-15 Pitney Bowes Inc. System for delivering mail
US6224527B1 (en) * 1999-06-21 2001-05-01 Profold, Inc. Apparatus for blocking tabbing feature of mail handling system and associated methods
US6205373B1 (en) * 1999-08-30 2001-03-20 Pitney Bowes Inc. Method and system for tracking manually repaired mailpieces or the like
US6674038B1 (en) * 1999-09-24 2004-01-06 Siemens Dematic Postal Automation, L.P. Information based network process for mail sorting/distribution
US6236009B1 (en) * 1999-11-18 2001-05-22 Jonathan D. Emigh Apparatus and method for detecting and marking indicia on articles
US6557755B1 (en) * 2000-08-10 2003-05-06 Bell & Howell Mail And Messaging Technologies Company Methods and systems for tracking and controlling mailpiece processing using postal service mailpiece code
US20020069187A1 (en) * 2000-12-01 2002-06-06 Barnum Timothy B. System and method for directly connecting an advanced facer canceler system to a delivery bar code sorter
US6610955B2 (en) * 2002-01-31 2003-08-26 Steven W. Lopez Method and apparatus for multi-task processing and sorting of mixed and non-machinable mailpieces and related methods
US6697500B2 (en) * 2002-03-11 2004-02-24 Bowe Bell + Howell Postal Systems Company Method and system for mail detection and tracking of categorized mail pieces

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080275936A1 (en) * 1999-08-31 2008-11-06 United States Postal Service Apparatus and methods for processing mailpiece information by an identification code server
US7826922B2 (en) 1999-08-31 2010-11-02 United States Postal Service Apparatus and methods for processing mailpiece information in a mail processing device using sorter application software
US20070007328A1 (en) * 2005-06-03 2007-01-11 Cole John J Methods and apparatus for recognizing and processing barcodes associated with mail
US20090285486A1 (en) * 2005-08-26 2009-11-19 Siemens Aktiengesellschaft Method for identifying postal mailings
US9323998B2 (en) 2005-08-26 2016-04-26 Siemens Aktiengesellschaft Method for identifying postal mailings
WO2007053679A3 (en) * 2005-11-01 2008-05-08 Us Postal Service Method and system for load balancing remote image processing in a universal coding system
WO2007053679A2 (en) * 2005-11-01 2007-05-10 United States Postal Service Method and system for load balancing remote image processing in a universal coding system
US20110114543A1 (en) * 2006-11-01 2011-05-19 Raf Technology, Inc. Processing shiny mail pieces
US20090139914A1 (en) * 2006-11-01 2009-06-04 Raf Technology, Inc. Mailpiece reject processing of first pass dps rejects
US20090301947A1 (en) * 2006-11-01 2009-12-10 Raf Technology, Inc. Processing shiny mail pieces
US20080110810A1 (en) * 2006-11-01 2008-05-15 Raf Technology, Inc. Mailpiece reject processing and labeling
US9056336B2 (en) 2006-11-01 2015-06-16 Raf Technology, Inc. Processing shiny mail pieces
US8649898B2 (en) 2006-11-01 2014-02-11 Raf Technology, Inc. Processing shiny mail pieces
US20100111356A1 (en) * 2006-11-02 2010-05-06 Siemens Aktiengesellschaft Device and method for identifying mail items
US8442266B2 (en) * 2006-11-02 2013-05-14 Siemens Aktiengesellschaft Device and method for identifying mail items
US8533125B2 (en) * 2008-02-28 2013-09-10 Carrier Corporation System and method for analyzing transportation data
US20100223195A1 (en) * 2008-02-28 2010-09-02 Jonathan Cherneff System and method for analyzing transportation data
US20110215035A1 (en) * 2008-07-11 2011-09-08 Solystic Method of storing a plurality of articles with information being scrutinized
US8672140B2 (en) * 2008-07-11 2014-03-18 Solystic Method of storing a plurality of articles with information being scrutinized
US8245933B2 (en) * 2008-10-24 2012-08-21 Bell And Howell, Llc Method and system for applying a postal authority barcode on a document processing system
US20100106290A1 (en) * 2008-10-24 2010-04-29 Bowe Bell + Howell Company Method and system for applying a postal authority barcode on a document processing system
WO2010107501A1 (en) * 2009-03-20 2010-09-23 Goss International Americas, Inc. Automated product transporting and sorting apparatus and method
US8489231B2 (en) 2009-09-18 2013-07-16 Raf Technology, Inc. Loop mail processing
US9878825B1 (en) 2015-06-02 2018-01-30 Ecoenvelopes, Llc Reusable top flap envelope with dual opposing seal flaps

Also Published As

Publication number Publication date
US6894243B1 (en) 2005-05-17
US20090173672A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US7442897B2 (en) Apparatus and methods for identifying and processing mail using an identification code
US6894243B1 (en) Identification coder reader and method for reading an identification code from a mailpiece
US7826922B2 (en) Apparatus and methods for processing mailpiece information in a mail processing device using sorter application software
US7304261B2 (en) Apparatus and methods for processing mailpiece information by an identification code server
US20070239313A1 (en) Method and system for load balancing remote image processing in a universal coding system
US8121344B2 (en) System and method for routing imaged documents
US5703783A (en) Apparatus for intercepting and forwarding incorrectly addressed postal mail
EP0673686A1 (en) Apparatus for intercepting and forwarding incorrectly addressed postal mail
US7252228B2 (en) Apparatus and methods for identifying a delivery item using an identification code
EP0949014A2 (en) Method for intercepting and forwarding incorrectly addressed postal mail
EP0613731A1 (en) Mail routing system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION