US20040139382A1 - Interleaving/deinterleaving device and method for communication system - Google Patents

Interleaving/deinterleaving device and method for communication system Download PDF

Info

Publication number
US20040139382A1
US20040139382A1 US10/744,752 US74475203A US2004139382A1 US 20040139382 A1 US20040139382 A1 US 20040139382A1 US 74475203 A US74475203 A US 74475203A US 2004139382 A1 US2004139382 A1 US 2004139382A1
Authority
US
United States
Prior art keywords
variable
address
bit
binary value
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/744,752
Inventor
Min-goo Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US10/744,752 priority Critical patent/US20040139382A1/en
Publication of US20040139382A1 publication Critical patent/US20040139382A1/en
Priority to US10/975,661 priority patent/US7302620B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2789Interleaver providing variable interleaving, e.g. variable block sizes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/275Interleaver wherein the permutation pattern is obtained using a congruential operation of the type y=ax+b modulo c
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/276Interleaving address generation
    • H03M13/2764Circuits therefore

Definitions

  • the present invention relates generally to a communication system, and in particular, to an interleaving/deinterleaving device and method for a radio communication system.
  • Interleaving is typically used in mobile communications to increase the performance of an error correction code in a fading channel, and is intimately associated with decoding of a random error correction code.
  • an air interface for an IMT-2000 communication system requires a concrete method for implementing various interleaving techniques.
  • the methods for interleaving have resulted in an increase in the reliability of digital communication systems, and in particular, have resulted in a performance improvement for existing and future digital communication systems alike.
  • the IMT-2000 standard provisionally recommends using a bit reverse interleaver for a channel interleaver.
  • FIG. 1 shows a permutation method of the bit reversal interleaver.
  • the bit reversal interleaver rearranges frame bits by exchanging bit positions from the most significant bit (MSB) to the least significant bit (LSB), thereby to generate an interleaving address.
  • This interleaving method has the following advantage. Since the interleaver is implemented using an enumeration function, it is simple to use the memory and it is easy to implement interleavers of various sizes. In addition, the bit positions of the permuted sequence are distributed at random in major locations. However, an interleaver having a size which cannot be expressed in terms of a power of 2 has a reduced memory efficiency.
  • the conventional interleaving method has the following disadvantages.
  • the size of the interleaver cannot be expressed in terms of a power of 2, and the interleaver having the larger size is less memory efficient. That is, in most cases, the size of each logical channel is not expressed in terms of 2 m , therefore the interleaver has a large size when designing an interleaver for the IMT-2000 forward link. Therefore, it is ineffective to use the bit reversal interleaving method.
  • the interleaver/deinterleaver has a complex transmission scheme because invalid address should be removed when the interleaver size is set to 2 m to perform bit reversal interleaving. Further, the interleaver/deinterleaver has difficulty in synchronizing the symbols.
  • a device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 0 to N ⁇ 1 and reading the stored bit symbols from the memory.
  • the read address is determined by 2 m (K mod J)+BRO(K/J), where K (0 ⁇ K ⁇ (N ⁇ 1)) denotes a reading sequence and BRO is a function for converting a binary value to a decimal value by bit reversing.
  • FIG. 1 is a diagram for explaining a permutation method of a bit reversal interleaver according to the prior art
  • FIG. 2 is a block diagram of an interleaver according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a deinterleaver according to an embodiment of the present invention.
  • An interleaver/deinterleaver permutes the sequence of input symbols using an interleaving/deinterleaving algorithm and then stores them in an output buffer in a new sequence. Therefore, the interleaver/deinterleaver proposed by the invention comprises three parts: an interleaver memory (input data buffer and output data buffer), an address generator, and an existing counter.
  • FIG. 2 shows an interleaver according to an embodiment of the present invention.
  • an address generator 211 receives an interleaver size value N, a first variable m, a second variable J and a clock, to generate an interleaver memory address for reading bit symbols sequentially stored in an interleaver memory 212 .
  • the interleaver memory 212 sequentially stores input bit symbols during a write mode of operation, and outputs the bit symbols according to the address provided from the address generator 211 during a read mode of operation.
  • a counter 213 counts the input clock and provides the clock count value to the interleaver memory 212 as a write address value.
  • the interleaver sequentially writes the input data during the write mode of operation, and outputs the data stored in the interleaver memory 212 according to the read address generated from the address generator 211 .
  • the address generator 211 generates the read address (i.e., interleaving address value) according to a partial bit reversal interleaving algorithm defined by Equation (1) below.
  • ADDRESS_READ r ⁇ 2 m +s
  • K denotes the sequence of output data bits and is referred to as a sequence number
  • m denotes the number of consecutive zero (0) bits from the LSB to the MSB and is referred as a first variable
  • J denotes a value corresponding to a decimal value of the bits except the consecutive zero(0) bits (i.e. m) and is referred to as a second variable.
  • the interleaver size N is defined as 2 m ⁇ J.
  • Equation (1) A description will now be made regarding a method of generating the address for reading the input symbols sequentially written in the memory, with reference to Equation (1).
  • r, PUC, s indicate predetermined variables.
  • ‘mod’ and ‘/’ indicate each modulo operation and divider operation for calculating the remainder and quotient, respectively.
  • BRO(H) indicates a bit reversal function for converting ‘H’ to a binary value and then converting it to a decimal value by reverse ordering the binary value from the MSB to the LSB.
  • the interleaver may calculate the read sequence index ADDRESS_READ corresponding to ‘K’ of the input data sequence and read the contents of the memory according to the read sequence index ADDRESS_READ.
  • the first and second variables are determined by the interleaver size. Once the interleaver size N and the first and second variables are determined, the interleaver generates, depending on these values, a new addressing index ADDRESS_READ corresponding to each K according to the following algorithm, and reads the data from the interleaver memory 212 using the addressing index ADDRESS_READ.
  • a predetermined interleaver size N is expressed as a binary value. Further, the number of consecutive ‘0’ bits which continue from the LSB to the MSB is calculated and then defined as first variable m. Thereafter, the truncated bits other than the consecutive zero bits are assembled and converted to a decimal value. The converted decimal value is defined as the second variable J.
  • FIG. 3 shows a deinterleaver having a reverse operation of the above interleaver.
  • an address generator 311 generates a deinterleaver memory address for performing a write mode of operation by receiving an interleaver size value N, a first variable m, a second variable J and a clock.
  • Address generator 311 provides the generated deinterleaver memory address to a deinterleaver memory 312 .
  • the deinterleaver memory 312 stores input data according to the write address provided from the address generator 311 during a write mode of operation, and sequentially outputs the stored data during a read mode of operation.
  • a counter 313 counts the input clock and provides the clock count value to the deinterleaver memory 312 as a read address value.
  • the deinterleaver has the same structure as the interleaver and has the reverse operation of the interleaver. That is, the deinterleaver is different from the interleaver in that input data is stored in the deinterleaver memory 312 using the algorithm of Equation (1) during the write mode of operation, and the data is sequentially read during the read mode of operation. That is, the deinterleaver stores the data in the original sequence during the write mode in order to restore the original sequence of the data transmitted from the transmitter.
  • a forward fundamental channel F-FCH (for Rate Set 2) uses 144-bit, 576-bit and 1152-bit interleaver sizes, wherein a 5 ms frame is used for the 144-bit interleaver size.
  • TABLE 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 . . . . . . . . .
  • the input data bits are sequentially stored in the interleaver memory 212 from an address 000 to an address 574, as shown in Table 3.
  • the data bits are output from the interleaver memory 212 using the read address generated from the address generator 211 .
  • the invention has proposed an effective address generating method for various interleaver sizes which cannot be expressed in terms of a power of 2. This solves the low memory efficiency problem of the existing interleaver.
  • it is possible to generate an address for various interleaver sizes using a single algorithm. Therefore, it is not necessary for the host (or CPU) to store separate interleaving rules for the respective interleaver sizes, thereby saving memory capacity.
  • the interleaver memory uses only the capacity corresponding to the frame size N, thus increasing memory efficiency.

Abstract

A device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading the stored bit symbols from the memory. The device comprises a look-up table for providing a first variable m and a second variable J satisfying the equation N=2m×J; and an address generator for generating a read address depending on the first and second variables m and J provided from the look-up table. The read address is determined by 2m(K mod J)+BRO(K/J), where K (0≦K≦(N−1)) denotes a reading sequence and BRO is a function for converting a binary value to a decimal value by bit reversing.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates generally to a communication system, and in particular, to an interleaving/deinterleaving device and method for a radio communication system. [0002]
  • 2. Description of the Related Art [0003]
  • Interleaving is typically used in mobile communications to increase the performance of an error correction code in a fading channel, and is intimately associated with decoding of a random error correction code. Particularly, an air interface for an IMT-2000 communication system requires a concrete method for implementing various interleaving techniques. In addition, the methods for interleaving have resulted in an increase in the reliability of digital communication systems, and in particular, have resulted in a performance improvement for existing and future digital communication systems alike. [0004]
  • The IMT-2000 standard provisionally recommends using a bit reverse interleaver for a channel interleaver. However, the forward link and the reverse link defined by the IMT-2000 standard have various types of logical channels, and the interleaver has various sizes. Therefore, in order to solve this variety requirement, there is required the increased memory capacity. For example, in a N=3 forward link transmission mode, there is used an interleaver of various sizes from 144 bits/frame to 36864 bits/frame. A brief description of the bit reversal interleaver will be made below. [0005]
  • FIG. 1 shows a permutation method of the bit reversal interleaver. Referring to FIG. 1, the bit reversal interleaver rearranges frame bits by exchanging bit positions from the most significant bit (MSB) to the least significant bit (LSB), thereby to generate an interleaving address. This interleaving method has the following advantage. Since the interleaver is implemented using an enumeration function, it is simple to use the memory and it is easy to implement interleavers of various sizes. In addition, the bit positions of the permuted sequence are distributed at random in major locations. However, an interleaver having a size which cannot be expressed in terms of a power of 2 has a reduced memory efficiency. For example, to implement the 36864-bit interleaver, there is required a 64 Kbit (65536=2[0006] 16) memory. Since the value 36864 is higher than 32 Kbits (32768=215) an additional bit is needed to represent the number. Therefore, 28672 (=65536-36864) bits are unused in the memory, thereby causing a memory loss. In addition, even though the memory has a sufficient capacity, it is very difficult to implement a method for transmitting the symbols. Further, it is also difficult for the receiver to detect an accurate position of the received symbols. Finally, since various types of interleavers are used, it is necessary to store various interleaving rules in memory thereby requiring a controller (CPU) to have a high memory capacity as well.
  • The conventional interleaving method has the following disadvantages. First, in the existing interleaving method, the size of the interleaver cannot be expressed in terms of a power of 2, and the interleaver having the larger size is less memory efficient. That is, in most cases, the size of each logical channel is not expressed in terms of 2[0007] m, therefore the interleaver has a large size when designing an interleaver for the IMT-2000 forward link. Therefore, it is ineffective to use the bit reversal interleaving method.
  • Second, in the existing interleaving method, it is necessary to store various interleaving rules according to the interleaver sizes in the controller (CPU or host) of the transceiver. Therefore, the host memory requires a separate storage in addition to an interleaver buffer. [0008]
  • Third, the interleaver/deinterleaver has a complex transmission scheme because invalid address should be removed when the interleaver size is set to 2[0009] m to perform bit reversal interleaving. Further, the interleaver/deinterleaver has difficulty in synchronizing the symbols.
  • SUMMARY OF THE INVENTION
  • It is, therefore, an object of the present invention to provide an interleaving device and method for generating an address for various interleaver sizes using a single algorithm in a communication system. [0010]
  • It is another object of the present invention to provide an interleaving device and method for allowing an interleaver memory to use only a capacity corresponding to a frame size N in a communication system. [0011]
  • To achieve the above objects, there is provided a device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 0 to N−1 and reading the stored bit symbols from the memory. The device comprises a look-up table for providing a first variable m and a second variable J satisfying the equation N=2[0012] m×J; and an address generator for generating a read address depending on the first and second variables m and J provided from the look-up table. The read address is determined by 2m(K mod J)+BRO(K/J), where K (0≦K≦(N−1)) denotes a reading sequence and BRO is a function for converting a binary value to a decimal value by bit reversing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which: [0013]
  • FIG. 1 is a diagram for explaining a permutation method of a bit reversal interleaver according to the prior art; [0014]
  • FIG. 2 is a block diagram of an interleaver according to an embodiment of the present invention; and [0015]
  • FIG. 3 is a block diagram of a deinterleaver according to an embodiment of the present invention. [0016]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A preferred embodiment of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail. [0017]
  • An interleaver/deinterleaver according to an embodiment of the present invention permutes the sequence of input symbols using an interleaving/deinterleaving algorithm and then stores them in an output buffer in a new sequence. Therefore, the interleaver/deinterleaver proposed by the invention comprises three parts: an interleaver memory (input data buffer and output data buffer), an address generator, and an existing counter. [0018]
  • FIG. 2 shows an interleaver according to an embodiment of the present invention. Referring to FIG. 2, an [0019] address generator 211 receives an interleaver size value N, a first variable m, a second variable J and a clock, to generate an interleaver memory address for reading bit symbols sequentially stored in an interleaver memory 212. The interleaver memory 212 sequentially stores input bit symbols during a write mode of operation, and outputs the bit symbols according to the address provided from the address generator 211 during a read mode of operation. A counter 213 counts the input clock and provides the clock count value to the interleaver memory 212 as a write address value.
  • As described above, the interleaver sequentially writes the input data during the write mode of operation, and outputs the data stored in the [0020] interleaver memory 212 according to the read address generated from the address generator 211.
  • Here, the [0021] address generator 211 generates the read address (i.e., interleaving address value) according to a partial bit reversal interleaving algorithm defined by Equation (1) below.
  • [Equation 1][0022]
  • For a given K . . . (0≦K≦(N−1)) [0023]
  • r=K mod J; [0024]
  • PUC=K/J; [0025]
  • s=BRO (PUC); [0026]
  • ADDRESS_READ=r×2[0027] m+s
  • where ‘K’ denotes the sequence of output data bits and is referred to as a sequence number; ‘m’ denotes the number of consecutive zero (0) bits from the LSB to the MSB and is referred as a first variable; and J denotes a value corresponding to a decimal value of the bits except the consecutive zero(0) bits (i.e. m) and is referred to as a second variable. Here, the interleaver size N is defined as 2[0028] m×J.
  • A description will now be made regarding a method of generating the address for reading the input symbols sequentially written in the memory, with reference to Equation (1). Assume that the size of the interleaver is N. In Equation (1), K (=0, 1, 2, . . . , N−1) indicates a reading sequence of the input data, and r, PUC, s indicate predetermined variables. Further, ‘mod’ and ‘/’ indicate each modulo operation and divider operation for calculating the remainder and quotient, respectively. In addition, BRO(H) indicates a bit reversal function for converting ‘H’ to a binary value and then converting it to a decimal value by reverse ordering the binary value from the MSB to the LSB. Therefore, by using the function of Equation (1), the interleaver may calculate the read sequence index ADDRESS_READ corresponding to ‘K’ of the input data sequence and read the contents of the memory according to the read sequence index ADDRESS_READ. The first and second variables are determined by the interleaver size. Once the interleaver size N and the first and second variables are determined, the interleaver generates, depending on these values, a new addressing index ADDRESS_READ corresponding to each K according to the following algorithm, and reads the data from the [0029] interleaver memory 212 using the addressing index ADDRESS_READ.
  • A description will now be made regarding a method for determining the first and second variables from the frame size (or interleaver size) N. A predetermined interleaver size N is expressed as a binary value. Further, the number of consecutive ‘0’ bits which continue from the LSB to the MSB is calculated and then defined as first variable m. Thereafter, the truncated bits other than the consecutive zero bits are assembled and converted to a decimal value. The converted decimal value is defined as the second variable J. [0030]
  • For example, when N=576, it can be converted to a binary value of N=[10 0100 0000], so that m=6 and J=(1001)[0031] 2=9.
  • FIG. 3 shows a deinterleaver having a reverse operation of the above interleaver. [0032]
  • Referring to FIG. 3, an [0033] address generator 311 generates a deinterleaver memory address for performing a write mode of operation by receiving an interleaver size value N, a first variable m, a second variable J and a clock. Address generator 311 provides the generated deinterleaver memory address to a deinterleaver memory 312. The deinterleaver memory 312 stores input data according to the write address provided from the address generator 311 during a write mode of operation, and sequentially outputs the stored data during a read mode of operation. A counter 313 counts the input clock and provides the clock count value to the deinterleaver memory 312 as a read address value.
  • The deinterleaver has the same structure as the interleaver and has the reverse operation of the interleaver. That is, the deinterleaver is different from the interleaver in that input data is stored in the [0034] deinterleaver memory 312 using the algorithm of Equation (1) during the write mode of operation, and the data is sequentially read during the read mode of operation. That is, the deinterleaver stores the data in the original sequence during the write mode in order to restore the original sequence of the data transmitted from the transmitter.
  • For convenience, the description below will now be made with reference to the interleaver. The reference will be made to an embodiment which is applied to the IMT-2000 system being a further mobile communication system. [0035]
  • First, with reference to Table 1 below, a detailed description will be made regarding the interleaver size used in the forward link of the IMT-2000 system. [0036]
    TABLE 1
    F- F- F- F- F-
    FCH FCH SCH SCH F- SYNC F- F-
    (RS1) (RS2) (RS1) (RS2) CCCH CH PCH DCCH
    72
    (bit)
    144 o o o
    (5 (5 (5
    msec) msec) msec)
    192 o
    (26.6
    msec)
    288
    384
    576 o o o o o o o
    (20
    msec)
    1152 o o o
    2304 o o
    4608 o o
    9216 o o
    18432 o o
    36864 o o
  • It is noted from Table 1 that in the IMT-2000 system, there are proposed [0037] 12 interleaver size (N=12) each applied to the forward logical channels as indicated by ‘O’. For example, a forward fundamental channel F-FCH (for Rate Set 2) uses 144-bit, 576-bit and 1152-bit interleaver sizes, wherein a 5 ms frame is used for the 144-bit interleaver size.
  • Shown in Table 2 below are the first variable m and the second variable J calculated for the interleaver sizes of Table 1. [0038]
    TABLE 2
    Interleaver
    Size (N) Binary Value for N J m Logical Channel
    144 10010000 9(1001) 4 5 msec/frame
    F-DCCH (5 msec/frame)
    F-FCH/RS2 (5 msec/
    frame)
    192 1100000 3(0011) 5 F-SYNC CH
    (26.22 msec/frame)
    576 1001000000 9(1001) 6 F-PCH
    F-CCCH
    F-DCCH (20 msec/
    frame)
    F-FCH/RS2
    F-SCH/RS1
    1152 10010000000 9(1001) 7 F-FCH/RS2
    F-SCH
    2304 100100000000 9(1001) 8 F-SCH
    4608 1001000000000 9(1001) 9 F-SCH
    9216 10010000000000 9(1001) 10 F-SCH
    18432 100100000000000 9(1001) 11 F-SCH
    36864 1001000000000000 9(1001) 12 F-SCH
  • With reference to Table 2, a description will be made regarding a method for calculating the first and second variables for the interleaver size of N=9216. First, the interleaver size [0039] 9216 can be expressed as a binary value of N=[10 0100 0000 0000]. For this binary value, the maximum number of consecutive zero (0) bits from the LSB to the MSB is calculated, and then the calculated value is defined as the first variable m. Thereafter, the truncated bits other than the consecutive zero bits are assembled and converted to a decimal value (1001=9(10)). This decimal is called the second variable J.
  • Tables 3 and 4 below show the write and read modes for N=576 interleaver, respectively, by way of example. [0040]
    TABLE 3
    1 2 3 4 5 6 7 8 9 10
    11 12 13 14 15 16 17 18 19 20
    21 22 23 24 25 26 27 28 29 30
    31 32 33 34 35 36 37 38 39 40
    41 42 43 44 45 46 47 48 49 50
    51 52 53 54 55 56 57 58 59 60
    61 62 63 64 65 66 67 68 69 70
    71 72 73 74 75 76 77 78 79 80
    81 82 83 84 85 86 87 88 89 90
    91 92 93 94 95 96 97 98 99 100
    . . . . . . . . . .
    . . . . . . . . . .
    . . . . . . . . . .
    541 542 543 544 545 546 547 548 549 550
    551 552 553 554 555 556 557 558 559 560
    561 562 563 564 565 566 567 568 569 570
    571 572 573 574 575 576
  • [0041]
    TABLE 4
    1 65 129 193 257 321 385 449 513
    33 97 161 225 289 353 417 481 545
    17 81 145 209 273 337 401 465 529
    49 113 177 241 305 369 433 497 561
    9 73 137 201 265 329 393 457 521
    41 105 169 233 297 361 425 489 553
    25 89 153 217 281 345 409 473 537
    57 121 185 249 313 377 441 505 569
    5 69 133 197 261 325 389 453 517
    . . . . . . . . .
    . . . . . . . . .
    . . . . . . . . .
    16 80 144 208 272 336 400 464 528
    48 112 176 240 304 368 432 496 560
    32 96 160 224 288 352 416 480 544
    64 128 192 256 320 384 448 512 576
  • In the write mode of operation, the input data bits are sequentially stored in the [0042] interleaver memory 212 from an address 000 to an address 574, as shown in Table 3. Next, in the read mode of operation, the data bits are output from the interleaver memory 212 using the read address generated from the address generator 211.
  • For example, which data bit will be a third output data bit (k=2) will be described with reference to Equation (1). First, for N=576, m=6 and J=9. Therefore, r=2 mod 9=2, and PUC=2/9=0. In addition, s=BRO(0)=0. As a result, the finally calculated address ADDRESS_READ=2×2[0043] 6=128. In the write mode of the interleaver as shown in Table 4, the output address is expressed by 1 to N. That is, all output addresses are added by 1, respectively.
  • As described above, the invention has proposed an effective address generating method for various interleaver sizes which cannot be expressed in terms of a power of 2. This solves the low memory efficiency problem of the existing interleaver. In addition, it is possible to generate an address for various interleaver sizes using a single algorithm. Therefore, it is not necessary for the host (or CPU) to store separate interleaving rules for the respective interleaver sizes, thereby saving memory capacity. Furthermore, the interleaver memory uses only the capacity corresponding to the frame size N, thus increasing memory efficiency. [0044]
  • While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. [0045]

Claims (10)

1. A method for sequentially storing N input bit symbols in a memory at an address from 1 to N and for reading the stored bit symbols from the memory, comprising the steps of:
providing a first variable m and a second variable J satisfying the equation N=2m×J; and
reading a Kth (0≦K≦(N−1)) bit symbol at an address determined by
2m(K mod J)+BRO(K/J)
where BRO is a function for converting a binary value to a decimal value by bit reversing.
2. The method as claimed in claim 1, wherein the first variable m indicates the number of consecutive zero (0) bits from the least significant bit (LSB), when the size N is expressed as a binary value.
3. The method as claimed in claim 1, wherein the second variable J indicates a decimal value corresponding to the truncated bits other than consecutive zero bits from the LSB, when the size N is expressed as a binary value.
4. A method for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading the stored bit symbols from the memory, wherein a bit symbol is read at an address determined by the equation 2m×r+s, wherein when the interleaver size N is expressed as a binary value, an integer equal to or smaller than the number of consecutive zero bits from the LSB is defined as a first variable m, a decimal value determined by converting a binary value corresponding to the truncated bits other than the consecutive zero bits is defined as a second variable J, a decimal value determined by expressing a quotient obtained by dividing a reading sequence K (0≦K≦(N−1)) by the second variable J as a binary value, bit reversing said binary value and converting the bit-reversed binary value to said decimal value is defined as a fourth variable s, and a remainder determined by dividing the reading sequence K by the second variable J is defined as a third variable r.
5. A method for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading the stored bit symbols from the memory, comprising the steps of:
defining, when N is expressed as a binary value, the number of consecutive zero bits from the LSB as a first variable m, and converting a binary value corresponding to the truncated bits other than the consecutive zero bits to a decimal value to define a second variable J;
calculating a third variable r corresponding to a remainder obtained by dividing a reading sequence K by the second variable J;
expressing a quotient obtained by dividing the reading sequence K by the second variable J as a binary value, bit-reversing said binary value and converting the bit-reversed binary value to a decimal value, so as to defined said decimal value as a fourth variable s; and
reading a bit symbol at an address determined by 2m×r+s.
6. A device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading a bit symbol stored at an address R from the memory, comprising:
a look-up table for providing a first variable m and a second variable J satisfying the equation N=2m×J; and
an address generator for generating a read address depending on the first and second variables m and J provided from the look-up table, the read address being determined by
2m(K mod J)+BRO(K/J)
where K (0≦K≦(N−1)) denotes a reading sequence, and BRO is a function for converting a binary value to a decimal value by bit reversing.
7. The device as claimed in claim 6, wherein the first variable m indicates the number of consecutive zero bits from the LSB, when N is expressed as a binary value.
8. The device as claimed in claim 6, wherein the second variable J indicates a decimal value corresponding to the truncated bits other than consecutive zero bits from the LSB, when the size N is expressed as a binary value.
9. A device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading the bit symbols from the memory, comprising:
a look-up table for providing a first variable m and a second variable J, wherein when N is expressed as a binary value, the first variable m indicates the number of consecutive zero bits from the LSB and the second variable J indicates a decimal value corresponding to the truncated bits other than consecutive zero bits from the LSB; and
an address generator for generating a read address determined by 2m×r+s, where s is a decimal value determined by expressing a quotient obtained by dividing a reading sequence K (0≦K≦(N−1)) by the second variable J as a binary value, bit reversing said binary value and converting the bit-reversed binary value to said decimal value, and r is a remainder determined by dividing the reading sequence K by the second variable J.
10. A device for sequentially storing input bit symbols of a given interleaver size N in a memory at an address from 1 to N and reading the bit symbols from the memory, comprising:
a look-up table for providing a first variable m and a second variable J, wherein when N is expressed as a binary value, the first variable m indicates the number of consecutive zero bits from the LSB and the second variable J indicates a decimal value corresponding to the truncated bits other than consecutive zero bits from the LSB; and
an address generator for generating a read address depending on the first and second variables m and J provided from the look-up table, the read address being determined by
2m(K mod J)+BRO(K/J)
where K (0≦K≦(N−1)) denotes a reading sequence, and BRO is a function for converting a binary value to a decimal value by bit reversing.
US10/744,752 1998-12-10 2003-12-23 Interleaving/deinterleaving device and method for communication system Abandoned US20040139382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/744,752 US20040139382A1 (en) 1998-12-10 2003-12-23 Interleaving/deinterleaving device and method for communication system
US10/975,661 US7302620B2 (en) 1998-12-10 2004-10-28 Interleaving.deinterleaving device and method for communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1019980054131A KR100306282B1 (en) 1998-12-10 1998-12-10 Apparatus and for interleaving and deinterleaving frame date in communication system
KR1998-54131 1998-12-10
US09/459,051 US6668350B1 (en) 1998-12-10 1999-12-10 Interleaving/deinterleaving device and method for communication system
US10/744,752 US20040139382A1 (en) 1998-12-10 2003-12-23 Interleaving/deinterleaving device and method for communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/459,051 Continuation US6668350B1 (en) 1998-12-10 1999-12-10 Interleaving/deinterleaving device and method for communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/975,661 Continuation US7302620B2 (en) 1998-12-10 2004-10-28 Interleaving.deinterleaving device and method for communication system

Publications (1)

Publication Number Publication Date
US20040139382A1 true US20040139382A1 (en) 2004-07-15

Family

ID=36129280

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/459,051 Expired - Lifetime US6668350B1 (en) 1998-12-10 1999-12-10 Interleaving/deinterleaving device and method for communication system
US10/744,752 Abandoned US20040139382A1 (en) 1998-12-10 2003-12-23 Interleaving/deinterleaving device and method for communication system
US10/975,661 Expired - Lifetime US7302620B2 (en) 1998-12-10 2004-10-28 Interleaving.deinterleaving device and method for communication system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/459,051 Expired - Lifetime US6668350B1 (en) 1998-12-10 1999-12-10 Interleaving/deinterleaving device and method for communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/975,661 Expired - Lifetime US7302620B2 (en) 1998-12-10 2004-10-28 Interleaving.deinterleaving device and method for communication system

Country Status (11)

Country Link
US (3) US6668350B1 (en)
EP (3) EP1492240B1 (en)
JP (3) JP3612023B2 (en)
KR (1) KR100306282B1 (en)
CN (1) CN1122371C (en)
AU (1) AU736189B2 (en)
BR (2) BR9907083B1 (en)
CA (1) CA2315648A1 (en)
DE (4) DE69910989T2 (en)
RU (1) RU2216099C2 (en)
WO (1) WO2000035102A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287721A1 (en) * 2004-10-05 2006-12-21 David Myung Artificial cornea
CN100455001C (en) * 2005-09-23 2009-01-21 凌阳科技股份有限公司 Corvolutional interleaving and deinterleaving circuit and method
US20090083514A1 (en) * 2007-09-20 2009-03-26 Lee Bo-Rham Apparatus and method for block interleaving in mobile communication system
US8497023B2 (en) 2008-08-05 2013-07-30 Biomimedica, Inc. Polyurethane-grafted hydrogels
US8679190B2 (en) 2004-10-05 2014-03-25 The Board Of Trustees Of The Leland Stanford Junior University Hydrogel arthroplasty device
US8883915B2 (en) 2008-07-07 2014-11-11 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
US9114024B2 (en) 2011-11-21 2015-08-25 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
US10457803B2 (en) 2008-07-07 2019-10-29 Hyalex Orthopaedics, Inc. Orthopedic implants having gradient polymer alloys
US10792392B2 (en) 2018-07-17 2020-10-06 Hyalex Orthopedics, Inc. Ionic polymer compositions
US11015016B2 (en) 2011-10-03 2021-05-25 Hyalex Orthopaedics, Inc. Polymeric adhesive for anchoring compliant materials to another surface
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100306282B1 (en) * 1998-12-10 2001-11-02 윤종용 Apparatus and for interleaving and deinterleaving frame date in communication system
KR100350459B1 (en) 1998-12-26 2002-12-26 삼성전자 주식회사 Interleaving / deinterleaving apparatus and method of communication system
KR100510643B1 (en) * 2000-11-01 2005-08-30 엘지전자 주식회사 Method for interleaving in Mobile Communication System
KR100724921B1 (en) * 2001-02-16 2007-06-04 삼성전자주식회사 Code generating and decoding apparatus and method in communication system
CN1377142B (en) * 2001-03-22 2010-06-16 中兴通讯股份有限公司 Method and device for implementing fast deinterleave
US7890129B2 (en) 2001-05-15 2011-02-15 Eric Rosen Method and apparatus for delivering information to an idle mobile station in a group communication network
US7603126B2 (en) 2001-05-15 2009-10-13 Qualcomm Incorporated Method and apparatus for avoiding simultaneous service origination and paging in a group communication network
US6871270B2 (en) * 2001-12-03 2005-03-22 Samsung Electronics Co., Ltd. Device and method for minimizing puncturing-caused output delay
US7586993B2 (en) * 2001-12-06 2009-09-08 Texas Instruments Incorporated Interleaver memory selectably receiving PN or counter chain read address
KR100860660B1 (en) * 2002-01-09 2008-09-26 삼성전자주식회사 Interleaving apparatus and method in communication system
US7702970B2 (en) * 2002-10-29 2010-04-20 Samsung Electronics Co., Ltd. Method and apparatus for deinterleaving interleaved data stream in a communication system
US8196000B2 (en) 2003-04-02 2012-06-05 Qualcomm Incorporated Methods and apparatus for interleaving in a block-coherent communication system
US7231557B2 (en) * 2003-04-02 2007-06-12 Qualcomm Incorporated Methods and apparatus for interleaving in a block-coherent communication system
US8077743B2 (en) * 2003-11-18 2011-12-13 Qualcomm Incorporated Method and apparatus for offset interleaving of vocoder frames
US7392464B1 (en) * 2004-04-30 2008-06-24 Marvell International Ltd. Universal parity encoder
JP4408755B2 (en) * 2004-06-28 2010-02-03 Necエレクトロニクス株式会社 Deinterleaving device, mobile communication terminal, and deinterleaving method
US9246728B2 (en) 2004-07-29 2016-01-26 Qualcomm Incorporated System and method for frequency diversity
CN101032110B (en) 2004-07-29 2012-05-09 高通股份有限公司 System and method for interleaving
US8391410B2 (en) 2004-07-29 2013-03-05 Qualcomm Incorporated Methods and apparatus for configuring a pilot symbol in a wireless communication system
KR100762134B1 (en) * 2004-10-07 2007-10-02 엘지전자 주식회사 Method of generating read address for block interleaving
WO2006085251A2 (en) * 2005-02-14 2006-08-17 Koninklijke Philips Electronics N.V. Block interleaving with memory table of reduced size
KR100828243B1 (en) * 2005-02-17 2008-05-07 엘지전자 주식회사 Turbo decoder using single address generator and Method for assigning memory address using the same
JP4693648B2 (en) * 2005-03-23 2011-06-01 キヤノンファインテック株式会社 Inkjet printing apparatus and preliminary ejection control method thereof
US9042212B2 (en) 2005-07-29 2015-05-26 Qualcomm Incorporated Method and apparatus for communicating network identifiers in a communication system
US9391751B2 (en) 2005-07-29 2016-07-12 Qualcomm Incorporated System and method for frequency diversity
US8213548B2 (en) * 2006-04-04 2012-07-03 Qualcomm Incorporated Methods and apparatus for dynamic packet reordering
US8139612B2 (en) * 2006-04-04 2012-03-20 Qualcomm Incorporated Methods and apparatus for dynamic packet mapping
US20070277064A1 (en) * 2006-05-02 2007-11-29 Mediatek Inc. Reconfigurable convolutional interleaver/deinterleaver using minimum amount of memory and an address generator
US8555148B2 (en) * 2007-09-18 2013-10-08 Samsung Electronics Co., Ltd. Methods and apparatus to generate multiple CRCs
US8386903B2 (en) * 2007-10-31 2013-02-26 Futurewei Technologies, Inc. Bit reverse interleaving methods for QAM modulation in a wireless communication system
CN101610089B (en) * 2008-06-17 2013-06-05 中兴通讯股份有限公司 Methods and devices for secondly interlacing and deinterlacing
US8732435B1 (en) * 2008-07-30 2014-05-20 Altera Corporation Single buffer multi-channel de-interleaver/interleaver
US8219782B2 (en) * 2008-09-18 2012-07-10 Xilinx, Inc. Address generation
US8514955B2 (en) * 2009-03-24 2013-08-20 Megachips Corporation Communication system, data transmitter, and data receiver capable of detecting incorrect receipt of data
EP2688211A4 (en) * 2011-07-29 2014-08-06 Huawei Tech Co Ltd Interleaving and de-interleaving method, interleaver and de-interleaver
EP3376673B1 (en) * 2015-11-10 2022-06-29 Sony Group Corporation Data processing devices and data processing methods for frequency interleaving and deinterleaving

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572532A (en) * 1993-12-29 1996-11-05 Zenith Electronics Corp. Convolutional interleaver and deinterleaver
US5657331A (en) * 1995-03-13 1997-08-12 Samsung Electronics Co., Ltd. Method and apparatus for the generation of simple burst error correcting cyclic codes for use in burst error trapping decoders
US6198733B1 (en) * 1998-03-13 2001-03-06 Lucent Technologies Inc. Forward-link sync-channel interleaving/de-interleaving for communication systems based on closed-form expressions
US6314534B1 (en) * 1999-03-31 2001-11-06 Qualcomm Incorporated Generalized address generation for bit reversed random interleaving
US6334197B1 (en) * 1998-08-17 2001-12-25 Hughes Electronics Corporation Turbo code interleaver with near optimal performance
US6493815B1 (en) * 1998-12-26 2002-12-10 Samsung Electronics, Co., Ltd. Interleaving/deinterleaving device and method for communication system
US6507629B1 (en) * 1998-04-07 2003-01-14 Sony Corporation Address generator, interleave unit, deinterleave unit, and transmission unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394642A (en) * 1981-09-21 1983-07-19 Sperry Corporation Apparatus for interleaving and de-interleaving data
US5537420A (en) * 1994-05-04 1996-07-16 General Instrument Corporation Of Delaware Convolutional interleaver with reduced memory requirements and address generator therefor
JP3290074B2 (en) 1996-06-21 2002-06-10 株式会社ケンウッド Time interleave circuit
JPH10303854A (en) 1997-04-23 1998-11-13 Matsushita Electric Ind Co Ltd De-interleave device
GB2328765B (en) * 1997-08-29 2003-03-26 Motorola Gmbh Memory addressing method and system
JP3347335B2 (en) 1997-11-10 2002-11-20 株式会社エヌ・ティ・ティ・ドコモ Interleaving method, interleaving device, and recording medium recording interleave pattern creation program
JPH11205159A (en) 1998-01-08 1999-07-30 Hitachi Ltd Interleave method and device and de-interleave method and device
US6304991B1 (en) 1998-12-04 2001-10-16 Qualcomm Incorporated Turbo code interleaver using linear congruential sequence
KR100306282B1 (en) * 1998-12-10 2001-11-02 윤종용 Apparatus and for interleaving and deinterleaving frame date in communication system
US6625234B1 (en) 1998-12-10 2003-09-23 Nortel Networks Limited Efficient implementations of proposed turbo code interleavers for third generation code division multiple access
US6721908B1 (en) * 1999-04-02 2004-04-13 Samsung Electronics Co., Ltd. Interleaving/deinterleaving apparatus and method for a communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572532A (en) * 1993-12-29 1996-11-05 Zenith Electronics Corp. Convolutional interleaver and deinterleaver
US5657331A (en) * 1995-03-13 1997-08-12 Samsung Electronics Co., Ltd. Method and apparatus for the generation of simple burst error correcting cyclic codes for use in burst error trapping decoders
US6198733B1 (en) * 1998-03-13 2001-03-06 Lucent Technologies Inc. Forward-link sync-channel interleaving/de-interleaving for communication systems based on closed-form expressions
US6507629B1 (en) * 1998-04-07 2003-01-14 Sony Corporation Address generator, interleave unit, deinterleave unit, and transmission unit
US6334197B1 (en) * 1998-08-17 2001-12-25 Hughes Electronics Corporation Turbo code interleaver with near optimal performance
US6493815B1 (en) * 1998-12-26 2002-12-10 Samsung Electronics, Co., Ltd. Interleaving/deinterleaving device and method for communication system
US6314534B1 (en) * 1999-03-31 2001-11-06 Qualcomm Incorporated Generalized address generation for bit reversed random interleaving

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387082B2 (en) 2004-10-05 2016-07-12 The Board Of Trustees Of The Leland Stanford Junior University Hydrogel arthroplasty device
US8679190B2 (en) 2004-10-05 2014-03-25 The Board Of Trustees Of The Leland Stanford Junior University Hydrogel arthroplasty device
US20060287721A1 (en) * 2004-10-05 2006-12-21 David Myung Artificial cornea
CN100455001C (en) * 2005-09-23 2009-01-21 凌阳科技股份有限公司 Corvolutional interleaving and deinterleaving circuit and method
US20090083514A1 (en) * 2007-09-20 2009-03-26 Lee Bo-Rham Apparatus and method for block interleaving in mobile communication system
US10457803B2 (en) 2008-07-07 2019-10-29 Hyalex Orthopaedics, Inc. Orthopedic implants having gradient polymer alloys
US10752768B2 (en) 2008-07-07 2020-08-25 Hyalex Orthopaedics, Inc. Orthopedic implants having gradient polymer alloys
US8883915B2 (en) 2008-07-07 2014-11-11 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
US8853294B2 (en) 2008-08-05 2014-10-07 Biomimedica, Inc. Polyurethane-grafted hydrogels
US8497023B2 (en) 2008-08-05 2013-07-30 Biomimedica, Inc. Polyurethane-grafted hydrogels
US11760830B2 (en) 2011-10-03 2023-09-19 Hyalex Orthopaedics, Inc. Polymeric adhesive for anchoring compliant materials to another surface
US11015016B2 (en) 2011-10-03 2021-05-25 Hyalex Orthopaedics, Inc. Polymeric adhesive for anchoring compliant materials to another surface
US9114024B2 (en) 2011-11-21 2015-08-25 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
US10792392B2 (en) 2018-07-17 2020-10-06 Hyalex Orthopedics, Inc. Ionic polymer compositions
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
US11110200B2 (en) 2018-07-17 2021-09-07 Hyalex Orthopaedics, Inc. Ionic polymer compositions
US11364322B2 (en) 2018-07-17 2022-06-21 Hyalex Orthopaedics, Inc. Ionic polymer compositions

Also Published As

Publication number Publication date
US6668350B1 (en) 2003-12-23
BR9907083A (en) 2000-10-17
KR20000038953A (en) 2000-07-05
DE69923723T2 (en) 2005-07-14
DE69930021T2 (en) 2006-08-10
EP1376880A1 (en) 2004-01-02
EP1492240A1 (en) 2004-12-29
RU2216099C2 (en) 2003-11-10
JP2004088789A (en) 2004-03-18
AU1693100A (en) 2000-06-26
JP2002532940A (en) 2002-10-02
BR9907083B1 (en) 2013-09-17
DE69910989T2 (en) 2004-05-19
EP1062733A1 (en) 2000-12-27
EP1376880B1 (en) 2005-02-09
CN1122371C (en) 2003-09-24
BR9917623B1 (en) 2014-09-09
AU736189B2 (en) 2001-07-26
CA2315648A1 (en) 2000-06-15
US7302620B2 (en) 2007-11-27
DE69910989D1 (en) 2003-10-09
EP1062733B1 (en) 2003-09-03
DE29924366U1 (en) 2002-12-19
JP2004080802A (en) 2004-03-11
DE69923723D1 (en) 2005-03-17
US20050071729A1 (en) 2005-03-31
EP1492240B1 (en) 2006-03-01
CN1287718A (en) 2001-03-14
KR100306282B1 (en) 2001-11-02
JP3730241B2 (en) 2005-12-21
DE69930021D1 (en) 2006-04-27
JP3612023B2 (en) 2005-01-19
WO2000035102A1 (en) 2000-06-15

Similar Documents

Publication Publication Date Title
US6668350B1 (en) Interleaving/deinterleaving device and method for communication system
US6910110B2 (en) Interleaving apparatus and method for a communication system
US6493815B1 (en) Interleaving/deinterleaving device and method for communication system
EP1060564B1 (en) Interleaving/deinterleaving device and method for communication system
CA2445715C (en) Interleaving/deinterleaving device and method for communication system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION