US20040098119A1 - Stent with smooth ends - Google Patents

Stent with smooth ends Download PDF

Info

Publication number
US20040098119A1
US20040098119A1 US10/673,528 US67352803A US2004098119A1 US 20040098119 A1 US20040098119 A1 US 20040098119A1 US 67352803 A US67352803 A US 67352803A US 2004098119 A1 US2004098119 A1 US 2004098119A1
Authority
US
United States
Prior art keywords
stent
end portion
coating
layers
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/673,528
Inventor
Lixiao Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US10/673,528 priority Critical patent/US20040098119A1/en
Publication of US20040098119A1 publication Critical patent/US20040098119A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/92Stents in the form of a rolled-up sheet expanding after insertion into the vessel, e.g. with a spiral shape in cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/25Peptides having up to 20 amino acids in a defined sequence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • A61L2300/608Coatings having two or more layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/08Coatings comprising two or more layers

Definitions

  • This invention relates to a stent for use in body passages and more particularly, to a stent having at least one end which is coated or to a stent having at least one end which is treated to be smooth and flexible.
  • the invention also has particular relevance to a stent having at least one end coated where the coating consists at least in part of drugs for delivery.
  • Stents are used in human or animal body passages for maintaining the patency of the passages.
  • Stents are generally tubular in configuration, open ended and are expandable between a generally unexpanded insertion diameter and an expanded implantation diameter. Stents are commonly placed or implanted by a mechanical transluminal procedure.
  • Prior art patents refer to the construction and design of stents as well as apparatus for positioning stents within a vessel or other passage.
  • such patents disclose a technique for positioning an elongated cylindrical stent at a region of stenosis, an aneurysm, or the like. The stent expands as necessary to an implanted configuration after insertion with the aid of a catheter.
  • U.S. Pat. No. 4,733,665 to Palmaz discloses a number of stent configurations for implantation with the aid of a catheter.
  • U.S. Pat. No. 5,019,090 to Pinchuk discloses a generally cylindrical stent and technique for implanting it using a deflated balloon catheter to position the stent.
  • U.S. Pat. No. 4,503,569 to Dotter and U.S. Pat. No. 4,512,338 to Balko et al. disclose a spring stent and a shape memory alloy stent.
  • There are also self-expanding stents such as those described in U.S. Pat. Nos. 4,732,152 to Wallsten et al. and U.S. Pat. No. 4,848,343 to Wallsten et al. All of these patents are hereby incorporated by reference.
  • the placement of the stent not contribute to or cause additional blocking. It is known that when stents are expanded to their implantation diameter the ends of the stent may press into the vessel or cavity walls, especially the distal end of the stent. The sharp or pointed edges and ends of some stents may then damage the walls. Once damage has occurred, there is a likelihood that restenosis will occur at these points where the stents ends and edges have penetrated or pressed against the walls.
  • stents may tear a passage wall and contribute to restenosis. This is particularly important for use of stents in blood vessels.
  • a tear in the vessel wall may cause blockage of the vessel.
  • the torn wall or flap usually is the source of the blockage. The flap falls into the passage and blocks it. It is then necessary to perform another procedure to remove the blockage and generally, another stent is needed to open the vessel or other passage.
  • bioadhesives may be used to repair tissue walls which may have been torn.
  • current stents are not designed to avert a potential problem due to a tear.
  • stents are not utilizing a bioadhesive with a stent to repair tissue walls and prevent further medical procedures required because of the dissection of a body passage.
  • a need remains for a stent which reduces the chances of a tear or other damage of a body passage and which lessens the chances of further required procedures.
  • the present invention provides a stent which reduces the limitations of the prior stents with regard to possible tearing and the need for further treatment and therefore, performs in an improved fashion.
  • a stent is characterized in that it includes at least one end coated with a desired material or materials.
  • the coating may be of any desirable type which lessens the chance of a tear in the passage, generally a coating with a smooth finish is preferred.
  • any prior art stent may be improved by providing it with a coating layer or layers of polymeric composition on at least one end to provide a smooth finish.
  • a stent may be provided with a sleeve which may be connected to one or both ends of the stent.
  • the stent which has been coated or the stent which utilizes a sleeve may include bioadhesives and/or drugs to be delivered to the site where the stent is implanted.
  • bioadhesives can be used to repair tissue walls. It is therefore desirable to utilize a polymer coating to carry and deliver a bioadhesive to the stent implantation location. In this manner, a potential problem can be averted by the presence of the bioadhesive in the case of a tear or dissection.
  • a number of different drugs can be useful if delivered to the stent site. It is desirable to deliver the drug or drugs with the stent when implantation is occurring or has occurred.
  • a stent is characterized in that at least one end is constructed in a manner such that the end is treated to be smooth and flexible.
  • the stent material may be heat treated, for example, or the design of the stent may be such that it provides for flexibility on an end.
  • Another embodiment includes a stent designed such that a looser mesh or pattern is utilized on the end or ends of the stent and a tighter mesh or pattern is utilized in the middle portion of the stent. These stents may also be coated on one or both ends as well as materially treated.
  • a stent is constructed of varying materials having different degrees of flexibility. A more rigid material is used in the center portion of the stent and a more flexible material is used for one or both of the end portions of the stent. This embodiment may also be materially treated to increase smoothness or flexibility and may also be coated.
  • Stents according to the invention may be self-expanding or of the type which are expandable from a reduced diameter configuration by an exterior force (as opposed to self-expanding).
  • the expandable stents may be balloon expanding for example. Both types of stents are well known in the art and need not be described in additional detail herein.
  • Stents according to this invention may be metal stents or polymeric stents, the stent providing the basic framework for the device.
  • FIG. 1 is a perspective view of a stent according to the present invention
  • FIG. 2 is a view of another stent according to one embodiment of this invention.
  • FIG. 3 is a cross sectional view taken along the line 3 - 3 of FIG. 2;
  • FIG. 4 is fragmentary view of an exemplary representation of a stent configuration, shown in flat plan view, which may be used with this invention
  • FIG. 5 is an elevational view of one embodiment of a stent according to the present invention.
  • FIG. 6 is a perspective view of another embodiment of a stent in accordance with this invention.
  • FIG. 7 is a cross section taken along the line 7 - 7 of FIG. 6;
  • FIG. 8 is a perspective view of yet another embodiment of a stent according to this invention.
  • FIG. 9 is a perspective view of a further embodiment of a stent in accordance with this invention.
  • FIG. 10 is a cross sectional view taken along the line 10 - 10 of FIG. 9;
  • FIG. 11 is a perspective view of another embodiment of the invention utilizing a sleeve.
  • FIG. 12 is an elevational view of another embodiment of a stent according to the present invention.
  • One embodiment of the invention contemplates the use of a metal or polymer stent which can have any configuration and may be any stent taken from the prior art or any other stent.
  • This stent is coated on at least one end with an appropriate biocompatible coating to provide for a smooth end and edge.
  • a metal stent 10 is shown having a first end portion 12 , a middle portion 14 and a second end portion 16 .
  • the stent 10 may be stainless steel or any other metal or material as is known in the art.
  • the stent 10 includes a coating 18 .
  • the coating 18 is a biocompatible coating and has characteristics such as a smooth surface and flexibility for better performance.
  • the coating may be permanent or biodegradable. Most biodegradable coatings degrade in the body within a few hours to a few years thereby serving the purpose of preventing tears during angioplasty or deployment.
  • the coating 18 is polytetrafluoroethylene (PTFE or TEFLON) or polyethylene oxide. Many other suitable coatings may be used with the invention. The following is an exemplary list of coatings:
  • Hydrophilic polymer coatings including:
  • poly(hydroxyethyl methacrylate) and derivatives poly(vinyl alcohol);
  • polyethylene oxide polyethylene glycol
  • poly(propylene oxide) poly(propylene oxide)
  • polyacrylamides polyacrylic acid; polymethacrylic acid; poly(N-vinyl-2-pyrollidone); hydrophilic polyurethanes; poly(aminoacid); water soluble cellulosic polymers (sodium carboxymethyl cellulose, hydroxyethyl cellulose, for example); collagens; carrageenan; alginate;
  • starch starch; dextrin; gelatins;
  • polycaprolactone polyhydroxybutyrate(PHBT); poly(phospazene);
  • polytetrafluoroethylene PTFE
  • polyurethanes polyamides; polyesters; polyethers; polyketones; polyether ester elastomers; polyether amide elastomers; polyacrylate-based elastomers; polyethylene; polypropylene.
  • Placing the coating or layer(s) 18 on the stent 10 may be done by any appropriate method such as dipping, painting, or spraying as is known in the art.
  • the thickness of the coating can be varied as desired to achieve different affects and if the material is biodegradable to last for different desired periods of time.
  • An exemplary range of thicknesses is about 0.01-0.32 mm. The thickness chosen depends on the materials used and the desired results.
  • the thickness of the coating may vary. For example, the end of the stent may have a greater thickness than that on the outer surface of the stent. This may provide more of a buffer between the stent end and edge and the passage where may be needed the most.
  • one or more layers of coating may be applied by appropriate known methods.
  • the layers of coating may be the same or may be coatings of different materials. Any appropriate coating materials may be combined as desired.
  • the coating 18 is applied to at least the first end portion 12 of the stent 10 . If desired, the coating 18 may also be applied to the second end portion 16 .
  • the middle portion of the stent 10 remains uncoated in the present invention. Generally, it is more important to coat the distal end of the stent. This distal end is the end that first enters or engages the passage where the stent is needed. It is important that the stent not injure or tear the vessel wall as it is delivered to the problem area.
  • the coated stent provides for a smooth stent portion to reduce the chances of damage. It is sometimes desirable to coat the proximal portion of the stent instead of or in addition to the distal end.
  • the same or different biocompatible coating or coatings may be used to coat the distal and proximal ends.
  • the stent end portion or end portions may be coated on the outside surface 20 , the inside surface 22 , the side surface or surfaces 27 , the end or ends 24 or the edge or edges 25 .
  • the stent may have one or more end or side surfaces and one or more edges 25 .
  • a stent of such a configuration is shown in FIGS. 1 - 5 , for example.
  • the edges are created where two surface areas of the stent intersect such as the outer surface and the end surface; two end surfaces; or an end surface and a side surface, for example.
  • the edges that are coated may include any of the edges in an end portion of the stent.
  • any one or any combination of these surfaces 20 , 22 , 24 , 25 , and 27 may be coated. Generally, it is desirable to coat at least the end surface or surfaces 24 and the edge or edges 25 most proximate to the ends 24 . In order to ensure that the coating adheres to the edge 25 of the stent at least a minimal portion of the outside or inside surface may also be coated. The coatings may cover any single area or combination of areas desired. When coating the outside, inside, edge and/or side surfaces 20 , 22 , 25 and 27 , a varying portion of the length of the stent may be covered (length illustrated by 1 in FIG. 1).
  • one end portion of the stent such as the distal end portion for example, anywhere from about 1% to 40% of the total stent may be coated.
  • both the distal and proximal end portions of the stent anywhere from about 2% to 80% of the stent may be coated.
  • the length of the stent end portion(s) that is(are) coated will depend on a number of factors including the coatings used, results desired, stent application, etc.
  • the coating 18 may be applied such that a solid layer of coating covers the stent end portion (similar to FIG. 11) or the coating may have apertures or perforations which may or may not coincide with the pattern of the stent (similar to FIGS. 1 - 10 ).
  • the coating 18 may also be used as a drug delivery system to prevent restenosis or for other treatment.
  • the drugs may include radiochemicals to irradiate and prohibit tissue growth.
  • Angioplasty and stent deployment may cause injury of the endothelial cell layer of blood vessels, causing smooth muscle cell proliferation, leading to restenosis.
  • smooth muscle cell proliferation To control smooth muscle cell growth endothelialization of cells on the inner wall surface of vessels will prevent or prohibit the smooth muscle growth.
  • human growth factors may be included in the outer layer and delivered. Growth factors include VEGF, TGF-beta, IGF, PDGF, FGF, etc. These growth factors are dispersed in the matrix of the outer polymer coating 18 of the stent. All such materials are referred to herein generally as “drugs”.
  • a gel-like material may be used. It may be applied over the coating 18 or directly to the stent 10 and used as the coating 18 .
  • drugs there are two ways to apply drugs to such materials. The first way is to mix the drug with the materials, then coat the mixture onto the stent. They can be cast as film or sheet with drug together, then laminate to the core stent. A second way is to coat or laminate polymer with the core stent without the drug. The stent device is made, then sterilized. Due to their gel-like nature, the stent can then be inserted into a drug solution. The drug will be absorbed into/onto the gel. The stent can then be delivered into the body. The drug will then be released.
  • the polymeric layer or coating 18 may be polyethylene oxide containing Taxol.
  • Other coatings that may be used with a drug may be polymers such as PGA/PLA, PEO/PLA or the like containing a drug such as Taxol or hydrogen peroxide.
  • Preferred gel like materials for use as a coating for the stent when drug delivery is desired are polyethylene oxide, polyvinyl pyrrolidone, polyacrylates, and their blends or copolymers or lightly crosslinked forms.
  • Polyethylene glycol block copolymer with polylactides or other polyesters are examples.
  • Hydrophilic polyurethane, poly(maleic anhydride-alt-ethylene) and their derivatives are examples.
  • Other materials are polysaccharides and their derivatives.
  • the drugs can be an anticoagulant, e.g. D-Phe-ProArg chloromethyl ketone.
  • the drug can be an inhibitor of vascular cell growth, DNA, RNA, cholesterol-lowering agents, vasodilating agents.
  • the drug can be any drug such as Taxol, 5-Fluorouracil, Beta-Estradiol, Tranilast, Trapidil, Probucol, Angiopeptin or any combination of them.
  • the stent can have multiple layers of different polymers with the same or different drugs.
  • the stent can have two layers of the same polymer coating 18 with one layer with drug and another layer without drugs.
  • the stent may have two layers of the same polymer with two different drugs as another example.
  • various combinations of a cycling sinase inhibitor identified as p21 and the vascular endothelial growth factor identified as VEGF, an endothelial nitrogen, may preferably be included in and dispensed from the coating polymer layer of a stent.
  • Incorporation of drugs and growth factors into a polymer layer can also be performed by several other methods, including the solvent method, melting method, soaking method and spraying method. If both polymer and drug have a cosolvent, a solution case will be an easy way to provide the polymer matrix loaded with the drug or growth factor. If the polymer can be melted at low temperature and the drug or growth factor tolerates heating, a melting method can be used to mix the drug or growth factor into the polymer matrix. Also, a polymer-drug solution or suspension solution can be used for coating to provide a layer containing the drug or growth factor.
  • the coating may be a film of bioadhesive.
  • Bioadhesives glue body tissue together.
  • Using a bioadhesive for the coating serves two purposes.
  • the stent is smooth and if a tear has occurred the tissue can be repaired. In this manner, blood flow will be maintained in a vessel, for example.
  • the bioadhesive may or may not also have drugs loaded for delivery. Dissection, cutting or tearing occurs in some stent and PTA or PTCA cases.
  • Bioadhesives or surgical adhesives may be used to repair the passage wall. However, these tears or cuts are not necessarily discovered immediately. In those cases, a further medical procedure must be undertaken to repair the wall.
  • the present invention eliminates some of these further medical procedures as a bioadhesive is included in the coating 18 which is delivered when the stent is deployed in place.
  • the bioadhesive will repair damage to the vessel wall and it may not be necessary to undertake a further procedure to do the repair.
  • the bioadhesive is chosen as the coating for the stent or is used in addition to a coating on the stent and is applied in a known manner to one or both ends of the stent. The end or edge, side, outside and/or inside of the stent may utilize the bioadhesive.
  • bioadhesive Any appropriate bioadhesive may be used.
  • the following bioadhesives may be used singly or in combination:
  • cyanoacrylate ethyl cyanoacrylate, butyl cyanoacrylate, octyl cyanoacrylate, hexyl cyanoacrylate;
  • fibrin glue fibrinogen/thrombin/Factor XIII/calcium as catalyst gelatin-resorcinol-formol (GRF) glue: formed from gelatin, resorcinol and water in the presence of formaldehyde, glutaraldehyde and heat (45° C.);
  • TGF-B transforming growth factor beta
  • polyacrylic acid modified hypromellose, hydroxypropylmethyl cellulose, hydroxypropylcellulose, carboxymethyl cellulose, sodium alginate, gelatin, pectin, polyvinylpylindone, polyethylene glycol, aldehyde relative multifunctional chemicals, polyallylsaccharose, and polypeptides.
  • FIGS. 2 and 3 another metal stent is shown.
  • An end portion of stent 26 is coated with a coating 28 .
  • Another embodiment of the invention includes a metal stent configuration such as the type shown in part in FIG. 4. Both end portions of stent 30 are coated with a coating 32 .
  • These embodiments of FIGS. 2 - 4 include any appropriate coating utilized as described above and the coating may contain drugs for release and the coating may be a bioadhesive or include a bioadhesive.
  • the stent may be coated on the outer surface only or may be coated on the inner surface as well. The end or edge would also be coated, if desired. One or both ends of the stent may be coated.
  • a stent according to the invention may be of polymeric material.
  • the stents may be of any configuration and may be of a biodegradable or nonbiodegradable polymeric material.
  • a coating or coatings as described above are utilized on one or both ends of the polymeric stent to reduce injury to body passages and reduce restenosis and possible further medical procedures as described above.
  • the coating may be multiple or single layers and be chosen from a variety of suitable biocompatible coatings.
  • the coating may also include drugs for delivery and/or a bioadhesive may be utilized.
  • the stent is generally designated 34 .
  • the stent may be composed of a series of strands arranged in a crossing configuration which may be woven, braided or the like or alternatively it may be formed of a polymeric sheet.
  • the end portion of stent 34 includes a coating 36 .
  • the coating may be applied by any various standard methods such as dipping, spraying, painting, etc.
  • FIGS. 6 and 7 show yet another stent configuration utilizing a coating on one or both ends.
  • the coil stent 38 includes a coating 40 on both the distal and proximal end portions of the wire member which forms the stent in a preferred embodiment.
  • the appropriate coatings described herein may be utilized with this stent.
  • the coating may be applied to the wire member and then formed or the stent may be formed and lastly, the coating may be applied. Of course, the appearance of both types of stent will differ.
  • One or both end portions may be coated and the coating may be applied to the various areas of the end portions as described earlier.
  • FIG. 8 shows yet another stent form, a variation of which is shown in FIGS. 9 and 10, the variation comprising apertures in a sheet like body portion.
  • Both of these stents may be regarded as being formed from a rolled up flat sheet comprised of a metal or a polymeric material having a coating 42 on one or both end portions.
  • the coating 42 is of the type described in this application and may be applied to various areas of the stent as described herein.
  • Materials suitable for use in forming the polymeric stents to which the invention relates are such that when fabricated to a desired geometry they will afford the stent sufficient strength and support for the particular intended use. Suitable materials do not produce toxic reactions or act as carcinogens.
  • the preferred core polymeric stent materials are those such as are set forth below, which list is not exhaustive but exemplary only: Poly(L-lactide) (PLLA), Poly(D,L-lactide) (PLA), poly(glycolide) (PGA), poly(L-lactide-co-D,L-lactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/PGA), poly(D,L-lactide-co-glycolide) (PLA/PGA), poly(glycolide-co-trimethylene carbonate) (PGA/PTMC), polydioxanone (PDS), Polycaprolactone (PCL), polyhydroxybutyrate (PHBT), poly(phosphazene) poly(D,L-lactide-co-caprolactone) PLA/PCL), poly(glycolide-co-caprolactone) (PGA/PCL) and poly(phosphate ester).
  • PLLA Poly(L-lactide)
  • the stent 44 includes at least one sleeve 46 which is designed and configured to fit over the end of a stent.
  • the sleeve 46 is generally hollow like the stent, having a flow passage therethrough.
  • the sleeve is a hollow cylindrical configuration which is connected to overlay the end portion(s) of the stent.
  • the sleeve 46 shown in FIG. 11 overlays both the inside and outside of the stent end when it is attached.
  • the sleeve includes an inner wall 48 and an outer wall 50 having a space therebetween wherein the inner wall 48 is adjacent the inside of the stent and the outer wall 50 is adjacent the outside of the stent.
  • the sleeve 46 receives the end of the stent in the space provided between the inner and outer walls.
  • the sleeve could be of a design such that the inner surface of the stent is not covered.
  • the sleeve 46 may also be designed to be slightly longer in length than the stent body so that the sleeve extends beyond the end of the metal or polymeric body. It should also be understood that the sleeve 46 may be of any configuration which will receive the end of any configured stent. Of course, stents of any configuration, shape and materials may be utilized.
  • the sleeve may be utilized on any stent configuration including, but not limited to, those shown in the figures of this application.
  • the sleeve may be made of any appropriate material as described herein and may include drugs and/or a bioadhesive as discussed above. It should also be understood that it is also contemplated that the sleeve include one or more layers of material including drugs and/or bioadhesives. The materials used may be permanent or biodegradable. It is further contemplated that the sleeve may have a solid wall as shown in FIG. 11 or the wall may be perforated or may be of any design which may or may not coincide with the design of the stent body. The sleeve may be designed to cover various lengths of the stent and if a sleeve is utilized on both ends of the stent they would not necessarily be of the same length.
  • the sleeve may be bonded to the stent in a number of ways.
  • the sleeve may of a material that has elastic properties so that it will stay in place on the stent end portion.
  • the sleeve may also be bonded to the stent by use of an adhesive.
  • the adhesive would be an appropriate biocompatible adhesive such as those bioadhesives listed earlier in this description, for example, polyurethane and epoxy adhesive. It is also contemplated that the sleeve may be bonded to the stent by the use of heat and pressure. In this manner, the stent will be partially embedded in the sleeve.
  • Another embodiment of the invention contemplates the use of a metal stent where the stent end or ends have been formed and/or treated so as to be smooth and flexible.
  • Any metal stent may be utilized including but not limited to those shown in FIGS. 1 - 4 .
  • the stent would be manufactured so that the ends would be more flexible and the edges or ends are smoothed to eliminate any sharp edges, jagged areas, or bumps and the like.
  • the stent may be electropolished and/or tumbled. In this manner, the edges are rounded or smoothed out so that the possibility of damage to a passage is lessened.
  • the stent may also be heat treated to provide improved flexibility in the end portions.
  • the increase in flexibility also decreases the chances of injury to a passage.
  • the stent will bend more easily which will reduce damage which could be caused by a more rigid device.
  • Methods for smoothing articles are known in the art and other appropriate known methods may be used. It is known that heat treating will add flexibility to a metal. Any other method which will provide enhanced smoothness and flexibility to the stent may be utilized.
  • a stent with flexible ends may be provided by utilizing a tighter mesh in the center portion of the stent and a looser mesh on one or both end portions of the stent.
  • Any type of mesh, pattern or braid may be utilized with this embodiment.
  • Such a stent is shown in FIG. 12.
  • the end portions 54 and 56 are of a looser configuration which allows for more flexibility in the end portions.
  • Such a stent may also be treated by methods such as those described above to provide more flexibility and the stent may also be treated to provide for smooth edges or ends.
  • Any stent pattern may be reconfigured to provide for more numerous or tighter struts in the center and less numerous or looser struts on one or both ends.
  • a stent in accordance with the invention would include a metal stent which has been treated in accordance with the above methods to be smooth and flexible and then is coated as described earlier in this description.
  • Yet another embodiment of the invention is a metal stent where different materials of varying flexibility are utilized for portions of the stent body.
  • a stent may be configured as shown in FIGS. 1 - 4 although any stent configuration is appropriate.
  • such a stent would be of stainless steel in the center portion.
  • the end portions would be of Nitinol, a known nickel and titanium alloy.
  • Nitinol is known to be more flexible than stainless steel.
  • Other appropriate materials may be utilized to provide flexible ends and a more rigid center portion which provides the strength needed in a stent.
  • One or both ends may be of a more flexible material than the center portion.
  • Such a stent may also utilize the above mentioned material treating methods to provide more smooth and flexible ends. For example, if Nitinol ends are utilized, they may be heat treated to add flexibility.
  • Such a stent may also include coated potions as discussed above.

Abstract

A stent having at least one smooth end is disclosed. The stent may include a coating or coatings on one or both end portions to provide a smooth finish to reduce possible damage to body passages when the stent is deployed and delivered. The stent may also contain drugs or surgical adhesives or a combination thereof in or on the coated portion of the stent. The stent may also be of the type where the materials of the stent may be treated to have a smooth flexible end or ends. The stent may also be of a configuration such that at least one end is more flexible than the middle portion of the stent.

Description

    FIELD OF THE INVENTION
  • This invention relates to a stent for use in body passages and more particularly, to a stent having at least one end which is coated or to a stent having at least one end which is treated to be smooth and flexible. The invention also has particular relevance to a stent having at least one end coated where the coating consists at least in part of drugs for delivery. [0001]
  • BACKGROUND OF THE INVENTION
  • Stents are used in human or animal body passages for maintaining the patency of the passages. Stents are generally tubular in configuration, open ended and are expandable between a generally unexpanded insertion diameter and an expanded implantation diameter. Stents are commonly placed or implanted by a mechanical transluminal procedure. [0002]
  • Prior art patents refer to the construction and design of stents as well as apparatus for positioning stents within a vessel or other passage. In general, for example, such patents disclose a technique for positioning an elongated cylindrical stent at a region of stenosis, an aneurysm, or the like. The stent expands as necessary to an implanted configuration after insertion with the aid of a catheter. [0003]
  • Specifically, U.S. Pat. No. 4,733,665 to Palmaz discloses a number of stent configurations for implantation with the aid of a catheter. U.S. Pat. No. 5,019,090 to Pinchuk discloses a generally cylindrical stent and technique for implanting it using a deflated balloon catheter to position the stent. U.S. Pat. No. 4,503,569 to Dotter and U.S. Pat. No. 4,512,338 to Balko et al. disclose a spring stent and a shape memory alloy stent. There are also self-expanding stents such as those described in U.S. Pat. Nos. 4,732,152 to Wallsten et al. and U.S. Pat. No. 4,848,343 to Wallsten et al. All of these patents are hereby incorporated by reference. [0004]
  • It is important that the placement of the stent not contribute to or cause additional blocking. It is known that when stents are expanded to their implantation diameter the ends of the stent may press into the vessel or cavity walls, especially the distal end of the stent. The sharp or pointed edges and ends of some stents may then damage the walls. Once damage has occurred, there is a likelihood that restenosis will occur at these points where the stents ends and edges have penetrated or pressed against the walls. [0005]
  • It is also known that stents may tear a passage wall and contribute to restenosis. This is particularly important for use of stents in blood vessels. A tear in the vessel wall may cause blockage of the vessel. When the wall is torn a flap of tissue is created. The torn wall or flap usually is the source of the blockage. The flap falls into the passage and blocks it. It is then necessary to perform another procedure to remove the blockage and generally, another stent is needed to open the vessel or other passage. [0006]
  • Restenosis occurs in a number of cases where a stent has been used. Tearing of the wall of the passage or injury of the endothelial cell layer are possible causes of the restenosis. Therefore, it is desirable to utilize a stent which reduces the chances of a damaged vessel wall or body passage which leads to further problems and further necessary procedures. However, current stents are not designed to reduce the occurrence of cutting of vascular passages or the like. [0007]
  • In addition, it is known that a number of drugs may reduce the chance of restenosis. Therefore, the use of these drugs in combination with a stent designed to reduce damage to body passages would be advantageous. However, known stents are not utilizing drugs with a means for reducing damage to vessels and the like. [0008]
  • It is also known that bioadhesives may be used to repair tissue walls which may have been torn. However, current stents are not designed to avert a potential problem due to a tear. Currently, stents are not utilizing a bioadhesive with a stent to repair tissue walls and prevent further medical procedures required because of the dissection of a body passage. [0009]
  • Consequently, a need remains for a stent which reduces the chances of a tear or other damage of a body passage and which lessens the chances of further required procedures. The present invention provides a stent which reduces the limitations of the prior stents with regard to possible tearing and the need for further treatment and therefore, performs in an improved fashion. [0010]
  • SUMMARY OF THE INVENTION
  • In accordance with a preferred embodiment of this invention a stent is characterized in that it includes at least one end coated with a desired material or materials. The coating may be of any desirable type which lessens the chance of a tear in the passage, generally a coating with a smooth finish is preferred. Generally, any prior art stent may be improved by providing it with a coating layer or layers of polymeric composition on at least one end to provide a smooth finish. For another type, a stent may be provided with a sleeve which may be connected to one or both ends of the stent. [0011]
  • In another embodiment, the stent which has been coated or the stent which utilizes a sleeve may include bioadhesives and/or drugs to be delivered to the site where the stent is implanted. It is known that bioadhesives can be used to repair tissue walls. It is therefore desirable to utilize a polymer coating to carry and deliver a bioadhesive to the stent implantation location. In this manner, a potential problem can be averted by the presence of the bioadhesive in the case of a tear or dissection. It is further known that a number of different drugs can be useful if delivered to the stent site. It is desirable to deliver the drug or drugs with the stent when implantation is occurring or has occurred. [0012]
  • For yet another embodiment of the invention a stent is characterized in that at least one end is constructed in a manner such that the end is treated to be smooth and flexible. The stent material may be heat treated, for example, or the design of the stent may be such that it provides for flexibility on an end. Another embodiment includes a stent designed such that a looser mesh or pattern is utilized on the end or ends of the stent and a tighter mesh or pattern is utilized in the middle portion of the stent. These stents may also be coated on one or both ends as well as materially treated. [0013]
  • Yet another embodiment of the invention a stent is constructed of varying materials having different degrees of flexibility. A more rigid material is used in the center portion of the stent and a more flexible material is used for one or both of the end portions of the stent. This embodiment may also be materially treated to increase smoothness or flexibility and may also be coated. [0014]
  • Stents according to the invention may be self-expanding or of the type which are expandable from a reduced diameter configuration by an exterior force (as opposed to self-expanding). The expandable stents may be balloon expanding for example. Both types of stents are well known in the art and need not be described in additional detail herein. [0015]
  • Stents according to this invention may be metal stents or polymeric stents, the stent providing the basic framework for the device. [0016]
  • These and other advantages and features which characterize the invention are pointed out with particularity in the claims annexed hereto and which form a further part hereof. However, for a better understanding of the invention, its advantages and objects obtained by its use, reference should be made to the drawings which form a further part hereof, and the accompanying detailed description in which there is shown and described an illustrative embodiment of the invention.[0017]
  • BRIEF DESCRIPTION OF THE FIGURES
  • Referring to the drawings, wherein like numerals represent like parts throughout the several views: [0018]
  • FIG. 1 is a perspective view of a stent according to the present invention; [0019]
  • FIG. 2 is a view of another stent according to one embodiment of this invention; [0020]
  • FIG. 3 is a cross sectional view taken along the line [0021] 3-3 of FIG. 2;
  • FIG. 4 is fragmentary view of an exemplary representation of a stent configuration, shown in flat plan view, which may be used with this invention; [0022]
  • FIG. 5 is an elevational view of one embodiment of a stent according to the present invention; [0023]
  • FIG. 6 is a perspective view of another embodiment of a stent in accordance with this invention; [0024]
  • FIG. 7 is a cross section taken along the line [0025] 7-7 of FIG. 6;
  • FIG. 8 is a perspective view of yet another embodiment of a stent according to this invention; [0026]
  • FIG. 9 is a perspective view of a further embodiment of a stent in accordance with this invention; [0027]
  • FIG. 10 is a cross sectional view taken along the line [0028] 10-10 of FIG. 9;
  • FIG. 11 is a perspective view of another embodiment of the invention utilizing a sleeve; and [0029]
  • FIG. 12 is an elevational view of another embodiment of a stent according to the present invention.[0030]
  • DETAILED DESCRIPTION OF THE INVENTION
  • One embodiment of the invention contemplates the use of a metal or polymer stent which can have any configuration and may be any stent taken from the prior art or any other stent. This stent is coated on at least one end with an appropriate biocompatible coating to provide for a smooth end and edge. [0031]
  • Referring now to FIG. 1, a [0032] metal stent 10 is shown having a first end portion 12, a middle portion 14 and a second end portion 16. The stent 10 may be stainless steel or any other metal or material as is known in the art. In a preferred embodiment, the stent 10 includes a coating 18. The coating 18 is a biocompatible coating and has characteristics such as a smooth surface and flexibility for better performance. The coating may be permanent or biodegradable. Most biodegradable coatings degrade in the body within a few hours to a few years thereby serving the purpose of preventing tears during angioplasty or deployment. In a preferred embodiment the coating 18 is polytetrafluoroethylene (PTFE or TEFLON) or polyethylene oxide. Many other suitable coatings may be used with the invention. The following is an exemplary list of coatings:
  • Hydrophilic polymer coatings, copolymers (block or graft) or their crosslinked versions (e.g. hydrogels), the polymers including: [0033]
  • poly(hydroxyethyl methacrylate) and derivatives; poly(vinyl alcohol); [0034]
  • polyethylene oxide; polyethylene glycol; poly(propylene oxide); [0035]
  • polyacrylamides; polyacrylic acid; polymethacrylic acid; poly(N-vinyl-2-pyrollidone); hydrophilic polyurethanes; poly(aminoacid); water soluble cellulosic polymers (sodium carboxymethyl cellulose, hydroxyethyl cellulose, for example); collagens; carrageenan; alginate; [0036]
  • starch; dextrin; gelatins; [0037]
  • Biodegradable polymers; [0038]
  • poly(lactide); poly(glycolide); polydioxanone(PDS); [0039]
  • polycaprolactone; polyhydroxybutyrate(PHBT); poly(phospazene); [0040]
  • poly(phosphate ester); poly(lactide-co-glycolide); poly(glycolide-co-trimethylene carbonate); poly(glycolide-co-caprolactone); [0041]
  • polyanhydrides; [0042]
  • Permanent coatings: [0043]
  • polytetrafluoroethylene(PTFE); polyurethanes; polyamides; polyesters; polyethers; polyketones; polyether ester elastomers; polyether amide elastomers; polyacrylate-based elastomers; polyethylene; polypropylene. [0044]
  • This list is exemplary only. Any appropriate coating may be used. [0045]
  • Placing the coating or layer(s) [0046] 18 on the stent 10 may be done by any appropriate method such as dipping, painting, or spraying as is known in the art. The thickness of the coating can be varied as desired to achieve different affects and if the material is biodegradable to last for different desired periods of time. An exemplary range of thicknesses is about 0.01-0.32 mm. The thickness chosen depends on the materials used and the desired results. The thickness of the coating may vary. For example, the end of the stent may have a greater thickness than that on the outer surface of the stent. This may provide more of a buffer between the stent end and edge and the passage where may be needed the most. It is contemplated that one or more layers of coating may be applied by appropriate known methods. The layers of coating may be the same or may be coatings of different materials. Any appropriate coating materials may be combined as desired.
  • The [0047] coating 18 is applied to at least the first end portion 12 of the stent 10. If desired, the coating 18 may also be applied to the second end portion 16. The middle portion of the stent 10 remains uncoated in the present invention. Generally, it is more important to coat the distal end of the stent. This distal end is the end that first enters or engages the passage where the stent is needed. It is important that the stent not injure or tear the vessel wall as it is delivered to the problem area. The coated stent provides for a smooth stent portion to reduce the chances of damage. It is sometimes desirable to coat the proximal portion of the stent instead of or in addition to the distal end. The same or different biocompatible coating or coatings may be used to coat the distal and proximal ends.
  • The stent end portion or end portions may be coated on the [0048] outside surface 20, the inside surface 22, the side surface or surfaces 27, the end or ends 24 or the edge or edges 25. Depending on the configuration, the stent may have one or more end or side surfaces and one or more edges 25. A stent of such a configuration is shown in FIGS. 1-5, for example. The edges are created where two surface areas of the stent intersect such as the outer surface and the end surface; two end surfaces; or an end surface and a side surface, for example. The edges that are coated may include any of the edges in an end portion of the stent. It should be understood that any one or any combination of these surfaces 20, 22, 24, 25, and 27 may be coated. Generally, it is desirable to coat at least the end surface or surfaces 24 and the edge or edges 25 most proximate to the ends 24. In order to ensure that the coating adheres to the edge 25 of the stent at least a minimal portion of the outside or inside surface may also be coated. The coatings may cover any single area or combination of areas desired. When coating the outside, inside, edge and/or side surfaces 20, 22, 25 and 27, a varying portion of the length of the stent may be covered (length illustrated by 1 in FIG. 1). When coating one end portion of the stent, such as the distal end portion for example, anywhere from about 1% to 40% of the total stent may be coated. When coating both the distal and proximal end portions of the stent anywhere from about 2% to 80% of the stent may be coated. The length of the stent end portion(s) that is(are) coated will depend on a number of factors including the coatings used, results desired, stent application, etc.
  • The [0049] coating 18 may be applied such that a solid layer of coating covers the stent end portion (similar to FIG. 11) or the coating may have apertures or perforations which may or may not coincide with the pattern of the stent (similar to FIGS. 1-10).
  • The [0050] coating 18 may also be used as a drug delivery system to prevent restenosis or for other treatment. The drugs may include radiochemicals to irradiate and prohibit tissue growth. Angioplasty and stent deployment may cause injury of the endothelial cell layer of blood vessels, causing smooth muscle cell proliferation, leading to restenosis. To control smooth muscle cell growth endothelialization of cells on the inner wall surface of vessels will prevent or prohibit the smooth muscle growth. To stimulate endothelialization without provoking smooth muscle cell proliferation human growth factors may be included in the outer layer and delivered. Growth factors include VEGF, TGF-beta, IGF, PDGF, FGF, etc. These growth factors are dispersed in the matrix of the outer polymer coating 18 of the stent. All such materials are referred to herein generally as “drugs”.
  • For carrying drugs, a gel-like material may be used. It may be applied over the [0051] coating 18 or directly to the stent 10 and used as the coating 18. There are two ways to apply drugs to such materials. The first way is to mix the drug with the materials, then coat the mixture onto the stent. They can be cast as film or sheet with drug together, then laminate to the core stent. A second way is to coat or laminate polymer with the core stent without the drug. The stent device is made, then sterilized. Due to their gel-like nature, the stent can then be inserted into a drug solution. The drug will be absorbed into/onto the gel. The stent can then be delivered into the body. The drug will then be released.
  • In one embodiment of the invention, the polymeric layer or [0052] coating 18 may be polyethylene oxide containing Taxol. Other coatings that may be used with a drug may be polymers such as PGA/PLA, PEO/PLA or the like containing a drug such as Taxol or hydrogen peroxide.
  • Preferred gel like materials for use as a coating for the stent when drug delivery is desired are polyethylene oxide, polyvinyl pyrrolidone, polyacrylates, and their blends or copolymers or lightly crosslinked forms. Polyethylene glycol block copolymer with polylactides or other polyesters are examples. Hydrophilic polyurethane, poly(maleic anhydride-alt-ethylene) and their derivatives are examples. Other materials are polysaccharides and their derivatives. There are also sodium alginate, karaya gum, gelatin, guar gum, agar, algin carrageenans, pectin, locust bean gums, xanthan, starch-based gums, hydroxy alkyl and ethyl ethers of cellulose, sodium carboxymethyl cellulose. Some of the materials will be heated, then cooled, then a gel is formed. Some of the above are food gels. Some of them are bioadhesives. [0053]
  • Any drugs may be used, singly or in combination. For example, the drugs can be an anticoagulant, e.g. D-Phe-ProArg chloromethyl ketone. An RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, antibodies, aspirin, urokinase, protaglandin inhibitors, platelet inhibitors, or antiplatelet peptide. The drug can be an inhibitor of vascular cell growth, DNA, RNA, cholesterol-lowering agents, vasodilating agents. The drug can be any drug such as Taxol, 5-Fluorouracil, Beta-Estradiol, Tranilast, Trapidil, Probucol, Angiopeptin or any combination of them. [0054]
  • Since there are many drugs and many polymers, the stent can have multiple layers of different polymers with the same or different drugs. For example, the stent can have two layers of the [0055] same polymer coating 18 with one layer with drug and another layer without drugs. The stent may have two layers of the same polymer with two different drugs as another example.
  • In particular, various combinations of a cycling sinase inhibitor identified as p21 and the vascular endothelial growth factor identified as VEGF, an endothelial nitrogen, may preferably be included in and dispensed from the coating polymer layer of a stent. [0056]
  • Incorporation of drugs and growth factors into a polymer layer can also be performed by several other methods, including the solvent method, melting method, soaking method and spraying method. If both polymer and drug have a cosolvent, a solution case will be an easy way to provide the polymer matrix loaded with the drug or growth factor. If the polymer can be melted at low temperature and the drug or growth factor tolerates heating, a melting method can be used to mix the drug or growth factor into the polymer matrix. Also, a polymer-drug solution or suspension solution can be used for coating to provide a layer containing the drug or growth factor. [0057]
  • In another embodiment of the invention the coating may be a film of bioadhesive. Bioadhesives glue body tissue together. Using a bioadhesive for the coating serves two purposes. The stent is smooth and if a tear has occurred the tissue can be repaired. In this manner, blood flow will be maintained in a vessel, for example. The bioadhesive may or may not also have drugs loaded for delivery. Dissection, cutting or tearing occurs in some stent and PTA or PTCA cases. Bioadhesives or surgical adhesives may be used to repair the passage wall. However, these tears or cuts are not necessarily discovered immediately. In those cases, a further medical procedure must be undertaken to repair the wall. The present invention eliminates some of these further medical procedures as a bioadhesive is included in the [0058] coating 18 which is delivered when the stent is deployed in place. The bioadhesive will repair damage to the vessel wall and it may not be necessary to undertake a further procedure to do the repair. The bioadhesive is chosen as the coating for the stent or is used in addition to a coating on the stent and is applied in a known manner to one or both ends of the stent. The end or edge, side, outside and/or inside of the stent may utilize the bioadhesive.
  • Any appropriate bioadhesive may be used. For example, the following bioadhesives may be used singly or in combination: [0059]
  • cyanoacrylate: ethyl cyanoacrylate, butyl cyanoacrylate, octyl cyanoacrylate, hexyl cyanoacrylate; [0060]
  • fibrin glue: fibrinogen/thrombin/Factor XIII/calcium as catalyst gelatin-resorcinol-formol (GRF) glue: formed from gelatin, resorcinol and water in the presence of formaldehyde, glutaraldehyde and heat (45° C.); [0061]
  • mussel adhesive protein, prolamine gel and transforming growth factor beta(TGF-B); [0062]
  • polyacrylic acid, modified hypromellose, hydroxypropylmethyl cellulose, hydroxypropylcellulose, carboxymethyl cellulose, sodium alginate, gelatin, pectin, polyvinylpylindone, polyethylene glycol, aldehyde relative multifunctional chemicals, polyallylsaccharose, and polypeptides. [0063]
  • Referring now to FIGS. 2 and 3, another metal stent is shown. An end portion of [0064] stent 26 is coated with a coating 28. Another embodiment of the invention includes a metal stent configuration such as the type shown in part in FIG. 4. Both end portions of stent 30 are coated with a coating 32. These embodiments of FIGS. 2-4 include any appropriate coating utilized as described above and the coating may contain drugs for release and the coating may be a bioadhesive or include a bioadhesive. The stent may be coated on the outer surface only or may be coated on the inner surface as well. The end or edge would also be coated, if desired. One or both ends of the stent may be coated.
  • It is also contemplated that a stent according to the invention may be of polymeric material. The stents may be of any configuration and may be of a biodegradable or nonbiodegradable polymeric material. A coating or coatings as described above are utilized on one or both ends of the polymeric stent to reduce injury to body passages and reduce restenosis and possible further medical procedures as described above. The coating may be multiple or single layers and be chosen from a variety of suitable biocompatible coatings. The coating may also include drugs for delivery and/or a bioadhesive may be utilized. [0065]
  • Another stent is shown in FIG. 5. The stent is generally designated [0066] 34. The stent may be composed of a series of strands arranged in a crossing configuration which may be woven, braided or the like or alternatively it may be formed of a polymeric sheet. The end portion of stent 34 includes a coating 36. The coating may be applied by any various standard methods such as dipping, spraying, painting, etc.
  • FIGS. 6 and 7 show yet another stent configuration utilizing a coating on one or both ends. The [0067] coil stent 38 includes a coating 40 on both the distal and proximal end portions of the wire member which forms the stent in a preferred embodiment. The appropriate coatings described herein may be utilized with this stent. The coating may be applied to the wire member and then formed or the stent may be formed and lastly, the coating may be applied. Of course, the appearance of both types of stent will differ. One or both end portions may be coated and the coating may be applied to the various areas of the end portions as described earlier.
  • FIG. 8 shows yet another stent form, a variation of which is shown in FIGS. 9 and 10, the variation comprising apertures in a sheet like body portion. Both of these stents may be regarded as being formed from a rolled up flat sheet comprised of a metal or a polymeric material having a [0068] coating 42 on one or both end portions. The coating 42 is of the type described in this application and may be applied to various areas of the stent as described herein.
  • Materials suitable for use in forming the polymeric stents to which the invention relates are such that when fabricated to a desired geometry they will afford the stent sufficient strength and support for the particular intended use. Suitable materials do not produce toxic reactions or act as carcinogens. The preferred core polymeric stent materials are those such as are set forth below, which list is not exhaustive but exemplary only: Poly(L-lactide) (PLLA), Poly(D,L-lactide) (PLA), poly(glycolide) (PGA), poly(L-lactide-co-D,L-lactide) (PLLA/PLA), poly(L-lactide-co-glycolide) (PLLA/PGA), poly(D,L-lactide-co-glycolide) (PLA/PGA), poly(glycolide-co-trimethylene carbonate) (PGA/PTMC), polydioxanone (PDS), Polycaprolactone (PCL), polyhydroxybutyrate (PHBT), poly(phosphazene) poly(D,L-lactide-co-caprolactone) PLA/PCL), poly(glycolide-co-caprolactone) (PGA/PCL) and poly(phosphate ester). [0069]
  • Referring now to FIG. 11 another stent of the invention is shown. The [0070] stent 44 includes at least one sleeve 46 which is designed and configured to fit over the end of a stent. The sleeve 46 is generally hollow like the stent, having a flow passage therethrough. In the preferred embodiment shown, the sleeve is a hollow cylindrical configuration which is connected to overlay the end portion(s) of the stent. The sleeve 46 shown in FIG. 11 overlays both the inside and outside of the stent end when it is attached. The sleeve includes an inner wall 48 and an outer wall 50 having a space therebetween wherein the inner wall 48 is adjacent the inside of the stent and the outer wall 50 is adjacent the outside of the stent. In this manner, the sleeve 46 receives the end of the stent in the space provided between the inner and outer walls. However, it is contemplated that the sleeve could be of a design such that the inner surface of the stent is not covered. The sleeve 46 may also be designed to be slightly longer in length than the stent body so that the sleeve extends beyond the end of the metal or polymeric body. It should also be understood that the sleeve 46 may be of any configuration which will receive the end of any configured stent. Of course, stents of any configuration, shape and materials may be utilized.
  • The sleeve may be utilized on any stent configuration including, but not limited to, those shown in the figures of this application. The sleeve may be made of any appropriate material as described herein and may include drugs and/or a bioadhesive as discussed above. It should also be understood that it is also contemplated that the sleeve include one or more layers of material including drugs and/or bioadhesives. The materials used may be permanent or biodegradable. It is further contemplated that the sleeve may have a solid wall as shown in FIG. 11 or the wall may be perforated or may be of any design which may or may not coincide with the design of the stent body. The sleeve may be designed to cover various lengths of the stent and if a sleeve is utilized on both ends of the stent they would not necessarily be of the same length. [0071]
  • The sleeve may be bonded to the stent in a number of ways. The sleeve may of a material that has elastic properties so that it will stay in place on the stent end portion. The sleeve may also be bonded to the stent by use of an adhesive. The adhesive would be an appropriate biocompatible adhesive such as those bioadhesives listed earlier in this description, for example, polyurethane and epoxy adhesive. It is also contemplated that the sleeve may be bonded to the stent by the use of heat and pressure. In this manner, the stent will be partially embedded in the sleeve. [0072]
  • Another embodiment of the invention contemplates the use of a metal stent where the stent end or ends have been formed and/or treated so as to be smooth and flexible. Any metal stent may be utilized including but not limited to those shown in FIGS. [0073] 1-4. The stent would be manufactured so that the ends would be more flexible and the edges or ends are smoothed to eliminate any sharp edges, jagged areas, or bumps and the like. In order to achieve the additional smoothness the stent may be electropolished and/or tumbled. In this manner, the edges are rounded or smoothed out so that the possibility of damage to a passage is lessened. The stent may also be heat treated to provide improved flexibility in the end portions. The increase in flexibility also decreases the chances of injury to a passage. The stent will bend more easily which will reduce damage which could be caused by a more rigid device. Methods for smoothing articles are known in the art and other appropriate known methods may be used. It is known that heat treating will add flexibility to a metal. Any other method which will provide enhanced smoothness and flexibility to the stent may be utilized.
  • For example, it is also contemplated that a stent with flexible ends may be provided by utilizing a tighter mesh in the center portion of the stent and a looser mesh on one or both end portions of the stent. Any type of mesh, pattern or braid may be utilized with this embodiment. Such a stent is shown in FIG. 12. The [0074] end portions 54 and 56 are of a looser configuration which allows for more flexibility in the end portions. Such a stent may also be treated by methods such as those described above to provide more flexibility and the stent may also be treated to provide for smooth edges or ends. Any stent pattern may be reconfigured to provide for more numerous or tighter struts in the center and less numerous or looser struts on one or both ends.
  • Another embodiment of a stent in accordance with the invention would include a metal stent which has been treated in accordance with the above methods to be smooth and flexible and then is coated as described earlier in this description. [0075]
  • Yet another embodiment of the invention is a metal stent where different materials of varying flexibility are utilized for portions of the stent body. Such a stent may be configured as shown in FIGS. [0076] 1-4 although any stent configuration is appropriate. In a preferred embodiment, such a stent would be of stainless steel in the center portion. The end portions would be of Nitinol, a known nickel and titanium alloy. Nitinol is known to be more flexible than stainless steel. Other appropriate materials may be utilized to provide flexible ends and a more rigid center portion which provides the strength needed in a stent. One or both ends may be of a more flexible material than the center portion. Such a stent may also utilize the above mentioned material treating methods to provide more smooth and flexible ends. For example, if Nitinol ends are utilized, they may be heat treated to add flexibility. Such a stent may also include coated potions as discussed above.
  • Any of the above described embodiments may be utilized where appropriate in vascular or nonvascular, respiratory, gastro-intestinal, rectal, urethral, and vaginal routes. [0077]
  • The above Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto. [0078]

Claims (49)

What is claimed is:
1. An expandable intraluminal stent comprising a main body portion having a first end portion, a second end portion, a middle portion and a flow passage defined therethrough, at least a portion of the first end portion having a biocompatible coating.
2. The stent of claim 1 wherein the coating comprises a biocompatible polymer.
3. The stent of claim 1 wherein the coating comprises a biodegradable polymer.
4. The stent of claim 1 wherein the first end portion comprises an inner surface, an outer surface, an end and an edge, the coating covering the end and at least a portion of the edge of the first end portion.
5. The stent of claim 1 wherein at least a portion of the second end portion has a biocompatible coating.
6. The stent of claim 5 wherein the second end portion comprises an outer surface, an inner surface, an end, and an edge, the coating covering the end and at least a portion of the edge of the second end portion.
7. The stent of claim 5 wherein the coating comprises a biocompatible polymer.
8. The stent of claim 1 wherein the coating includes a drug.
9. The stent of claim 8 wherein the drug comprises TAXOL.
10. The stent of claim 1 wherein the coating includes a bioadhesive.
11. The stent of claim 1 wherein the coating comprises a plurality of layers.
12. The stent of claim 11 wherein the plurality of layers is comprised of the same coating material.
13. The stent of claim 11 wherein the plurality of layers is comprised of different coating materials.
14. The stent of claim 12 wherein at least one of the layers includes a drug.
15. The stent of claim 5 wherein the coating comprises a plurality of layers.
16. The stent of claim 15 wherein the plurality of layers is comprised of the same coating material.
17. The stent of claim 15 wherein the plurality of layers is comprised of different materials.
18. The stent of claim 15 wherein at least one of the layers includes a drug.
19. An expandable intraluminal stent comprising a main body portion having a first end portion, a second end portion, a middle portion and a flow passage defined therethrough, and a sleeve of biocompatible material connected to the first end portion.
20. The stent of claim 19 wherein the sleeve comprises a biocompatible polymer.
21. The stent of claim 19 wherein the coating comprises a biodegradable polymer.
22. The stent of claim 19 wherein the sleeve includes apertures.
23. The stent of claim 19 wherein the sleeve includes a drug.
24. The stent of claim 23 wherein the drug comprises TAXOL.
25. The stent of claim 19 wherein the sleeve comprises a plurality of layers.
26. The stent of claim 25 wherein the plurality of layers is comprised of the same coating material.
27. The stent of claim 25 wherein the plurality of layers is comprised of different materials.
28. The stent of claim 25 wherein at least one of the layers includes a drug.
29. The stent of claim 19 further comprising a second sleeve connected to the second end portion.
30. The stent of claim 29 wherein the sleeve comprises a biocompatible polymer.
31. The stent of claim 29 wherein the sleeve includes apertures.
32. The stent of claim 29 wherein the sleeve includes a drug.
33. The stent of claim 29 wherein the sleeve comprises a plurality of layers.
34. The stent of claim 33 wherein the plurality of layers is comprised of the same coating material.
35. The stent of claim 33 wherein the plurality of layers is comprised of different materials.
36. The stent of claim 33 wherein at least one of the layers includes a drug.
37. An expandable intraluminal stent comprising a main body portion having a first end portion, a second end portion, a middle portion and a flow passage defined therethrough, the first end portion being polished to provide a smooth first end portion.
38. The stent of claim 37 further comprising a polished second end portion to provide a smooth second end portion.
39. An expandable intraluminal stent comprising a main body portion having a first end portion, a second end portion, a middle portion and a flow passage defined therethrough, the first end portion being heat treated to provide flexibility.
40. The stent of claim 39 further comprising a heat treated second end portion to provide flexibility.
41. An expandable intraluminal stent comprising a main body portion having a first end portion, a second end portion, a middle portion and a flow passage defined therethrough, the first end portion constructed in a manner so as to be more flexible than the middle portion.
42. The stent of claim 41 wherein the stent comprises a looser mesh first end portion than the middle portion.
43. The stent of claim 41 further comprising the second end portion constructed in a manner so as to be more flexible than the middle portion.
44. The stent of claim 43 wherein the stent comprises a looser mesh second end portion than the middle portion.
45. The stent of claim 1 wherein the coating comprises an RGD peptide-containing compound.
46. The stent of claim 8 wherein the drug comprises 5-flroracil.
47. The stent of claim 8 wherein the drug comprises Tranilast.
48. The stent of claim 8 wherein the drug comprises Tropidil.
49. The stent of claim 8 wehrien the drug comprises Probucol.
US10/673,528 1998-05-05 2003-09-29 Stent with smooth ends Abandoned US20040098119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/673,528 US20040098119A1 (en) 1998-05-05 2003-09-29 Stent with smooth ends

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7294498A 1998-05-05 1998-05-05
US09/374,425 US6379379B1 (en) 1998-05-05 1999-08-13 Stent with smooth ends
US10/017,004 US6652575B2 (en) 1998-05-05 2001-12-14 Stent with smooth ends
US10/673,528 US20040098119A1 (en) 1998-05-05 2003-09-29 Stent with smooth ends

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/017,004 Continuation US6652575B2 (en) 1998-05-05 2001-12-14 Stent with smooth ends

Publications (1)

Publication Number Publication Date
US20040098119A1 true US20040098119A1 (en) 2004-05-20

Family

ID=22110723

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/374,425 Expired - Lifetime US6379379B1 (en) 1998-05-05 1999-08-13 Stent with smooth ends
US10/017,004 Expired - Lifetime US6652575B2 (en) 1998-05-05 2001-12-14 Stent with smooth ends
US10/673,528 Abandoned US20040098119A1 (en) 1998-05-05 2003-09-29 Stent with smooth ends

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/374,425 Expired - Lifetime US6379379B1 (en) 1998-05-05 1999-08-13 Stent with smooth ends
US10/017,004 Expired - Lifetime US6652575B2 (en) 1998-05-05 2001-12-14 Stent with smooth ends

Country Status (7)

Country Link
US (3) US6379379B1 (en)
EP (1) EP1076534B1 (en)
JP (1) JP4583597B2 (en)
AT (1) ATE358456T1 (en)
CA (1) CA2326828C (en)
DE (1) DE69935716T2 (en)
WO (1) WO1999056663A2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085035A1 (en) * 2004-10-18 2006-04-20 Viola Frank J Compression anastomosis device and method
US20070077271A1 (en) * 2005-07-21 2007-04-05 Michael Dornish Medical devices coated with a fast dissolving biocompatible coating
US20080132923A1 (en) * 2006-12-05 2008-06-05 Fowler David N Adhesive coated stent and insertion instrument
US20090082856A1 (en) * 2007-09-21 2009-03-26 Boston Scientific Scimed, Inc. Medical devices having nanofiber-textured surfaces
US20090104244A1 (en) * 2007-09-21 2009-04-23 Boston Scientific Scimed, Inc. Therapeutic agent-eluting medical devices having textured polymeric surfaces
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US20150073522A1 (en) * 2013-09-09 2015-03-12 Boston Scientific Scimed, Inc. Endoprosthesis devices including biostable and bioabsorable regions
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US11096774B2 (en) 2016-12-09 2021-08-24 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra

Families Citing this family (310)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US20050163818A1 (en) * 1996-11-05 2005-07-28 Hsing-Wen Sung Drug-eluting device chemically treated with genipin
US20030040790A1 (en) 1998-04-15 2003-02-27 Furst Joseph G. Stent coating
US20020099438A1 (en) 1998-04-15 2002-07-25 Furst Joseph G. Irradiated stent coating
US6436133B1 (en) 1998-04-15 2002-08-20 Joseph G. Furst Expandable graft
WO1999056663A2 (en) * 1998-05-05 1999-11-11 Scimed Life Systems, Inc. Stent with smooth ends
US8070796B2 (en) 1998-07-27 2011-12-06 Icon Interventional Systems, Inc. Thrombosis inhibiting graft
US7967855B2 (en) * 1998-07-27 2011-06-28 Icon Interventional Systems, Inc. Coated medical device
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6356782B1 (en) * 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US20050171594A1 (en) * 1998-12-31 2005-08-04 Angiotech International Ag Stent grafts with bioactive coatings
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6375668B1 (en) * 1999-06-02 2002-04-23 Hanson S. Gifford Devices and methods for treating vascular malformations
US6719805B1 (en) * 1999-06-09 2004-04-13 C. R. Bard, Inc. Devices and methods for treating tissue
US7807211B2 (en) * 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US6790228B2 (en) * 1999-12-23 2004-09-14 Advanced Cardiovascular Systems, Inc. Coating for implantable devices and a method of forming the same
US7278195B2 (en) * 1999-12-16 2007-10-09 Israel Aircraft Industries Ltd. Method for producing a coated medical support device
AU2609401A (en) * 1999-12-29 2001-07-09 Nicholas Kipshidze Apparatus and method for delivering compounds to a living organism
EP1132058A1 (en) * 2000-03-06 2001-09-12 Advanced Laser Applications Holding S.A. Intravascular prothesis
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
CA2408997C (en) * 2000-04-11 2008-08-05 Universitat Heidelberg Poly-tri-fluoro-ethoxypolyphosphazene coverings and films for medical devices
US6527801B1 (en) * 2000-04-13 2003-03-04 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US8109994B2 (en) 2003-01-10 2012-02-07 Abbott Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
US7875283B2 (en) * 2000-04-13 2011-01-25 Advanced Cardiovascular Systems, Inc. Biodegradable polymers for use with implantable medical devices
US7419678B2 (en) * 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US6629992B2 (en) * 2000-08-04 2003-10-07 Advanced Cardiovascular Systems, Inc. Sheath for self-expanding stent
EP1179353A1 (en) * 2000-08-11 2002-02-13 B. Braun Melsungen Ag Antithrombogenic implants with coating of polyphosphazenes and a pharmacologically active agent
US20090004240A1 (en) * 2000-08-11 2009-01-01 Celonova Biosciences, Inc. Implants with a phosphazene-containing coating
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
WO2002015824A2 (en) * 2000-08-25 2002-02-28 Kensey Nash Corporation Covered stents, systems for deploying covered stents
US6663664B1 (en) * 2000-10-26 2003-12-16 Advanced Cardiovascular Systems, Inc. Self-expanding stent with time variable radial force
US6517888B1 (en) * 2000-11-28 2003-02-11 Scimed Life Systems, Inc. Method for manufacturing a medical device having a coated portion by laser ablation
DE10060443A1 (en) * 2000-11-29 2002-06-06 Biotronik Mess & Therapieg Stent, in particular in the form of a coronary stent contains at least one wall section consisting of a human or animal tissue possessing sufficient elasticity
US6824559B2 (en) * 2000-12-22 2004-11-30 Advanced Cardiovascular Systems, Inc. Ethylene-carboxyl copolymers as drug delivery matrices
US20050125054A1 (en) * 2000-12-22 2005-06-09 Avantec Vascular Corporation Devices delivering therapeutic agents and methods regarding the same
US20030033007A1 (en) * 2000-12-22 2003-02-13 Avantec Vascular Corporation Methods and devices for delivery of therapeutic capable agents with variable release profile
US6468660B2 (en) * 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
DE10100961B4 (en) * 2001-01-11 2005-08-04 Polyzenix Gmbh Body-compatible material and substrate coated with this material for the cultivation of cells and artificial organic implants constructed or grown from cells
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
DE10107795B4 (en) * 2001-02-13 2014-05-15 Berlex Ag Vascular support with a basic body, method for producing the vascular support, apparatus for coating the vascular support
NL1017672C2 (en) * 2001-03-22 2002-09-24 Hendrik Glastra Implantable assembly with therapeutic effect.
WO2002080996A1 (en) * 2001-04-03 2002-10-17 Franz Herbst Medical implant and method for producing the same
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
US6660034B1 (en) * 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
US6656506B1 (en) * 2001-05-09 2003-12-02 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
US7862495B2 (en) * 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US6702744B2 (en) * 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
EP1273314A1 (en) * 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
CA2457018C (en) * 2001-08-17 2010-12-14 Polyzenix Gmbh Device based on nitinol, a process for its production and its use
JP2003062084A (en) * 2001-08-27 2003-03-04 Nipro Corp Stent with improved flexibility
US7033389B2 (en) * 2001-10-16 2006-04-25 Scimed Life Systems, Inc. Tubular prosthesis for external agent delivery
US20030077312A1 (en) * 2001-10-22 2003-04-24 Ascher Schmulewicz Coated intraluminal stents and reduction of restenosis using same
US8740973B2 (en) * 2001-10-26 2014-06-03 Icon Medical Corp. Polymer biodegradable medical device
US6712843B2 (en) * 2001-11-20 2004-03-30 Scimed Life Systems, Inc Stent with differential lengthening/shortening members
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US7070613B2 (en) * 2002-01-04 2006-07-04 Boston Scientific Scimed, Inc. Non-compliant balloon with compliant top-layer to protect coated stents during expansion
US6981985B2 (en) * 2002-01-22 2006-01-03 Boston Scientific Scimed, Inc. Stent bumper struts
US7326245B2 (en) * 2002-01-31 2008-02-05 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7445629B2 (en) * 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7291165B2 (en) 2002-01-31 2007-11-06 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US20030153971A1 (en) * 2002-02-14 2003-08-14 Chandru Chandrasekaran Metal reinforced biodegradable intraluminal stents
US20030187498A1 (en) * 2002-03-28 2003-10-02 Medtronic Ave, Inc. Chamfered stent strut and method of making same
US7083822B2 (en) * 2002-04-26 2006-08-01 Medtronic Vascular, Inc. Overlapping coated stents
EP1501566B1 (en) * 2002-05-09 2008-08-13 Hemoteq AG Medical products comprising a haemocompatible coating, production and use thereof
IL149829A (en) * 2002-05-23 2012-10-31 Ronnie Levi Medical device having an unravelable portion
US7396539B1 (en) * 2002-06-21 2008-07-08 Advanced Cardiovascular Systems, Inc. Stent coatings with engineered drug release rate
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US20080138377A1 (en) * 2002-07-05 2008-06-12 Celonova Biosciences, Inc. Vasodilator Eluting Luminal Stent Devices With A Specific Polyphosphazene Coating and Methods for Their Manufacture and Use
US20080138433A1 (en) * 2002-07-05 2008-06-12 Celonova Biosciences, Inc. Vasodilator eluting blood storage and administration devices with a specific polyphosphazene coating and methods for their manufacture and use
US8016881B2 (en) * 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
DE60333566D1 (en) * 2002-08-13 2010-09-09 Medtronic Inc MEDICAL DEVICE WITH IMPROVED LIABILITY BETWEEN A POLYMERIC TOUCH AND A SUBSTRATE
US20040127978A1 (en) * 2002-08-13 2004-07-01 Medtronic, Inc. Active agent delivery system including a hydrophilic polymer, medical device, and method
JP2006502135A (en) * 2002-08-13 2006-01-19 メドトロニック・インコーポレーテッド Active drug delivery system, medical device and method
EP1539265B1 (en) * 2002-08-13 2007-09-26 Medtronic, Inc. Active agent delivery system including a hydrophobic cellulose derivate
EP1536846A1 (en) * 2002-08-13 2005-06-08 Medtronic, Inc. Active agent delivery system including a polyurethane, medical device, and method
US7550004B2 (en) * 2002-08-20 2009-06-23 Cook Biotech Incorporated Endoluminal device with extracellular matrix material and methods
WO2004017866A1 (en) * 2002-08-20 2004-03-04 Cook Incorporated Stent graft with improved proximal end
US20040059409A1 (en) * 2002-09-24 2004-03-25 Stenzel Eric B. Method of applying coatings to a medical device
WO2004028615A1 (en) * 2002-09-25 2004-04-08 Kabushikikaisha Igaki Iryo Sekkei Thread for vascular stent and vascular stent using the thread
US20060100695A1 (en) * 2002-09-27 2006-05-11 Peacock James C Iii Implantable stent with modified ends
US7485139B1 (en) 2002-10-10 2009-02-03 Ciamacco Jr Sam Stent delivery and deployment system
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
AU2003275876A1 (en) * 2002-10-31 2004-05-25 Ecole De Technologie Superieure Balloon deployable stent and method of using the same
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US8524148B2 (en) * 2002-11-07 2013-09-03 Abbott Laboratories Method of integrating therapeutic agent into a bioerodible medical device
US8221495B2 (en) 2002-11-07 2012-07-17 Abbott Laboratories Integration of therapeutic agent into a bioerodible medical device
PL376752A1 (en) * 2002-11-07 2006-01-09 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
US7169178B1 (en) * 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US8282678B2 (en) * 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
CA2506655A1 (en) * 2002-11-15 2004-06-03 Synecor, Llc Polymeric endoprosthesis and method of manufacture
US6918869B2 (en) 2002-12-02 2005-07-19 Scimed Life Systems System for administering a combination of therapies to a body lumen
US6918929B2 (en) * 2003-01-24 2005-07-19 Medtronic Vascular, Inc. Drug-polymer coated stent with pegylated styrenic block copolymers
US7179286B2 (en) * 2003-02-21 2007-02-20 Boston Scientific Scimed, Inc. Stent with stepped connectors
US6920677B2 (en) * 2003-02-27 2005-07-26 Medtronic Vascular, Inc. Method for manufacturing an endovascular support device
EP1605983B1 (en) * 2003-03-26 2011-01-05 CeloNova BioSciences Germany GmbH Coated dental implants
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8383158B2 (en) 2003-04-15 2013-02-26 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
ES2364555T3 (en) * 2003-05-23 2011-09-06 Boston Scientific Limited CANNULAS WITH INCORPORATED LOOP TERMINATIONS.
DE10329260A1 (en) * 2003-06-23 2005-01-13 Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin Stent with a coating system
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US20050064005A1 (en) * 2003-08-13 2005-03-24 Dinh Thomas Q. Active agent delivery systems including a miscible polymer blend, medical devices, and methods
US20050060017A1 (en) * 2003-09-15 2005-03-17 Fischell Robert E. Means and method for the treatment of cerebral aneurysms
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US20050085889A1 (en) * 2003-10-17 2005-04-21 Rangarajan Sundar Stent with detachable ends
US7056337B2 (en) * 2003-10-21 2006-06-06 Cook Incorporated Natural tissue stent
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7824442B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7824443B2 (en) * 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050152943A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US20050137686A1 (en) * 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7211108B2 (en) * 2004-01-23 2007-05-01 Icon Medical Corp. Vascular grafts with amphiphilic block copolymer coatings
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US20050203606A1 (en) * 2004-03-09 2005-09-15 Vancamp Daniel H. Stent system for preventing restenosis
US20060062825A1 (en) * 2004-04-19 2006-03-23 Maria Maccecchini Method of implanting a sterile, active agent-coated material and composition made according to same
US20060240065A1 (en) * 2005-04-26 2006-10-26 Yung-Ming Chen Compositions for medical devices containing agent combinations in controlled volumes
US8999364B2 (en) 2004-06-15 2015-04-07 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
EP1789107B1 (en) 2004-08-30 2009-05-27 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
US8442623B2 (en) * 2004-10-13 2013-05-14 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US20060079805A1 (en) * 2004-10-13 2006-04-13 Miller Michael E Site marker visable under multiple modalities
US8280486B2 (en) 2004-10-13 2012-10-02 Suros Surgical Systems, Inc. Site marker visable under multiple modalities
US8433391B2 (en) * 2004-10-13 2013-04-30 Suros Surgical Systems, Inc. Site marker
US8060183B2 (en) * 2004-10-13 2011-11-15 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US7156871B2 (en) * 2004-10-28 2007-01-02 Cordis Neurovascular, Inc. Expandable stent having a stabilized portion
US20060095121A1 (en) * 2004-10-28 2006-05-04 Medtronic Vascular, Inc. Autologous platelet gel on a stent graft
US20080221660A1 (en) * 2004-10-28 2008-09-11 Medtronic Vascular, Inc. Platelet Gel for Treatment of Aneurysms
US7628807B2 (en) * 2004-11-04 2009-12-08 Boston Scientific Scimed, Inc. Stent for delivering a therapeutic agent having increased body tissue contact surface
US7632307B2 (en) * 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US8323333B2 (en) * 2005-03-03 2012-12-04 Icon Medical Corp. Fragile structure protective coating
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
US20060200048A1 (en) * 2005-03-03 2006-09-07 Icon Medical Corp. Removable sheath for device protection
WO2006110197A2 (en) * 2005-03-03 2006-10-19 Icon Medical Corp. Polymer biodegradable medical device
US7540995B2 (en) 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
US20060201601A1 (en) * 2005-03-03 2006-09-14 Icon Interventional Systems, Inc. Flexible markers
US20060264914A1 (en) * 2005-03-03 2006-11-23 Icon Medical Corp. Metal alloys for medical devices
AU2006221046B2 (en) * 2005-03-03 2012-02-02 Icon Medical Corp. Improved metal alloys for medical device
DE102005016103B4 (en) * 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8303972B2 (en) * 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20080125745A1 (en) 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
TWI289765B (en) 2005-07-20 2007-11-11 Quanta Comp Inc Devices a methods for signal switching and processing
US8394446B2 (en) * 2005-07-25 2013-03-12 Abbott Cardiovascular Systems Inc. Methods of providing antioxidants to implantable medical devices
US8439964B2 (en) * 2005-08-23 2013-05-14 Boston Scientific Scimed, Inc. Stent with web-inducing nodes for increased surface area
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9155646B2 (en) 2006-04-27 2015-10-13 Brs Holdings, Llc Composite stent with bioremovable ceramic flakes
US9101505B2 (en) * 2006-04-27 2015-08-11 Brs Holdings, Llc Composite stent
US20070260300A1 (en) * 2006-05-04 2007-11-08 Daniel Gregorich Intraluminal medical device having a curable coating
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US8323676B2 (en) * 2008-06-30 2012-12-04 Abbott Cardiovascular Systems Inc. Poly(ester-amide) and poly(amide) coatings for implantable medical devices for controlled release of a protein or peptide and a hydrophobic drug
US8703167B2 (en) * 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US20090258028A1 (en) * 2006-06-05 2009-10-15 Abbott Cardiovascular Systems Inc. Methods Of Forming Coatings For Implantable Medical Devices For Controlled Release Of A Peptide And A Hydrophobic Drug
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) * 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
WO2008008291A2 (en) * 2006-07-13 2008-01-17 Icon Medical Corp. Stent
US7846361B2 (en) * 2006-07-20 2010-12-07 Orbusneich Medical, Inc. Bioabsorbable polymeric composition for a medical device
CN103494661B (en) 2006-07-20 2016-03-30 奥巴斯尼茨医学公司 Can the polymeric medical device of bio-absorbable
US8460364B2 (en) * 2006-07-20 2013-06-11 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
US7732190B2 (en) * 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US20080091262A1 (en) * 2006-10-17 2008-04-17 Gale David C Drug delivery after biodegradation of the stent scaffolding
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US20080065200A1 (en) * 2006-09-07 2008-03-13 Trireme Medical, Inc. Bifurcated prostheses having differential drug coatings
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
CA2690539C (en) * 2006-10-10 2014-10-07 Celonova Biosciences, Inc. Bioprosthetic heart valve with polyphosphazene
BRPI0717739A2 (en) * 2006-10-10 2014-07-29 Celonova Biosciences Inc MEDICAL DEVICE, METHOD FOR MANUFACTURING THIS AND METHOD FOR INCREASING THE BIOCOMPATIBILITY OF A MEDICAL DEVICE
EP2073754A4 (en) * 2006-10-20 2012-09-26 Orbusneich Medical Inc Bioabsorbable polymeric composition and medical device background
US7959942B2 (en) * 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
CN103767810B (en) 2006-10-22 2016-06-15 Idev科技公司 From the manufacturing process of extendable bracket
US8741326B2 (en) * 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
US8192760B2 (en) * 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US20080167710A1 (en) * 2007-01-05 2008-07-10 Vipul Bhupendra Dave Medical Device Having Regions With Various Agents Dispersed Therein and a Method for Making the Same
US7695795B1 (en) * 2007-03-09 2010-04-13 Clemson University Research Foundation Fluorinated lactide-based copolymers
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8802184B2 (en) 2007-05-30 2014-08-12 Abbott Cardiovascular Systems Inc. Medical devices containing biobeneficial particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US20110130822A1 (en) * 2007-07-20 2011-06-02 Orbusneich Medical, Inc. Bioabsorbable Polymeric Compositions and Medical Devices
US20100093946A1 (en) * 2008-10-11 2010-04-15 Orbusneich Medical, Inc. Bioabsorbable Polymeric Compositions and Medical Devices
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US7998524B2 (en) * 2007-12-10 2011-08-16 Abbott Cardiovascular Systems Inc. Methods to improve adhesion of polymer coatings over stents
US8057876B2 (en) * 2008-02-25 2011-11-15 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with layers having different degradation rates
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8196279B2 (en) * 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8765162B2 (en) * 2008-06-30 2014-07-01 Abbott Cardiovascular Systems Inc. Poly(amide) and poly(ester-amide) polymers and drug delivery particles and coatings containing same
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
WO2010042854A1 (en) * 2008-10-10 2010-04-15 Orbusneich Medical, Inc. Bioabsorbable polymeric medical device
AU2010289856B2 (en) * 2009-09-02 2015-02-12 Lifecell Corporation Vascular grafts derived from acellular tissue matrices
JP2012235797A (en) * 2009-09-18 2012-12-06 Terumo Corp Stent
CN102188300B (en) * 2010-03-02 2014-05-28 上海微创医疗器械(集团)有限公司 Aneurismal surgical device
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
DE102010010821A1 (en) * 2010-03-10 2011-09-15 Siemens Aktiengesellschaft In a bloodstream fixable element that is provided with biomarkers
KR101166885B1 (en) * 2010-04-21 2012-07-18 주식회사 엠아이텍 Stent for blood vessel having dual coating structure
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
US10292808B2 (en) 2010-06-07 2019-05-21 Q3 Medical Devices Limited Device and method for management of aneurism, perforation and other vascular abnormalities
US8389041B2 (en) 2010-06-17 2013-03-05 Abbott Cardiovascular Systems, Inc. Systems and methods for rotating and coating an implantable device
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US20130231753A1 (en) * 2012-03-02 2013-09-05 Cook Medical Technologies Llc Endoluminal prosthesis having anti-migration coating
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
CA2870170C (en) * 2012-09-12 2018-06-12 Boston Scientific Scimed, Inc. Adhesive stent coating for anti-migration
JP6471143B2 (en) * 2013-03-13 2019-02-13 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Non-migrating tissue fixation system for fully covered stents
CA2882364C (en) * 2013-03-15 2017-01-03 Boston Scientific Scimed, Inc. Anti-migration micropatterned stent coating
WO2014182542A1 (en) 2013-05-06 2014-11-13 Abbott Cardiovascular Systems Inc. A hollow stent filled with a therapeutic agent formulation
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
WO2015020676A1 (en) 2013-08-08 2015-02-12 Boston Scientific Scimed, Inc. Dissolvable or degradable adhesive polymer to prevent stent migration
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US9433763B2 (en) 2013-09-27 2016-09-06 Acclarent, Inc. Sinus wall implant
PL3065675T3 (en) * 2013-11-08 2023-08-28 Boston Scientific Scimed, Inc. Endoluminal device
BR112016030273A2 (en) 2014-06-24 2017-08-22 Icon Medical Corp MEDICAL DEVICE AND METHOD FOR FORMING SAID DEVICE
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4728328A (en) * 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4848343A (en) * 1986-10-31 1989-07-18 Medinvent S.A. Device for transluminal implantation
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5061275A (en) * 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5318531A (en) * 1991-06-11 1994-06-07 Cordis Corporation Infusion balloon catheter
US5342300A (en) * 1992-03-13 1994-08-30 Stefanadis Christodoulos I Steerable stent catheter
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5385935A (en) * 1992-09-14 1995-01-31 Kissei Pharmaceutical Co., Ltd. Method for the inhibition of restenosis associated with coronary intervention
US5443497A (en) * 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5514154A (en) * 1991-10-28 1996-05-07 Advanced Cardiovascular Systems, Inc. Expandable stents
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5562922A (en) * 1993-03-18 1996-10-08 Cedars-Sinai Medical Center Drug incorporating and release polymeric coating for bioprosthesis
US5599352A (en) * 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5628785A (en) * 1992-03-19 1997-05-13 Medtronic, Inc. Bioelastomeric stent
US5658308A (en) * 1995-12-04 1997-08-19 Target Therapeutics, Inc. Bioactive occlusion coil
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US5725572A (en) * 1994-04-25 1998-03-10 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US5749919A (en) * 1994-01-10 1998-05-12 Microfil Industries S.A. Resilient prosthesis for widening a channel, particularly a blood vessel, and method for making same
US5755769A (en) * 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5800520A (en) * 1995-03-10 1998-09-01 Medtronic, Inc. Tubular endoluminar prosthesis having oblique ends
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824049A (en) * 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US6059822A (en) * 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
US6106548A (en) * 1997-02-07 2000-08-22 Endosystems Llc Non-foreshortening intraluminal prosthesis
US6168619B1 (en) * 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
US6312456B1 (en) * 1996-12-10 2001-11-06 Biotronik Mass-Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Biocompatible stent with radiopaque markers
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6379379B1 (en) * 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6391033B2 (en) * 1996-08-09 2002-05-21 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US20020086896A1 (en) * 1993-01-28 2002-07-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6485509B2 (en) * 1998-03-04 2002-11-26 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US6488701B1 (en) * 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6620194B2 (en) * 1995-04-19 2003-09-16 Boston Scientific Scimed, Inc. Drug coating with topcoat
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439446A (en) * 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5824048A (en) * 1993-04-26 1998-10-20 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
JPH07185012A (en) * 1993-12-27 1995-07-25 Olympus Optical Co Ltd Stent for extending tubular path in vivo
WO1995024929A2 (en) 1994-03-15 1995-09-21 Brown University Research Foundation Polymeric gene delivery system
EP0759730B1 (en) 1994-05-19 1999-02-10 Scimed Life Systems, Inc. Improved tissue supporting devices
JP3577353B2 (en) * 1995-01-27 2004-10-13 テルモ株式会社 In-vivo stent
US5637113A (en) 1994-12-13 1997-06-10 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
NL9500147A (en) 1995-01-26 1996-09-02 Industrial Res Bv A method of manufacturing a sheath-shaped stent from foil material and a stent obtained using this method.
EP0740928B1 (en) 1995-04-12 2004-07-07 Corvita Europe Self-expanding stent for introducing a medical device in a body cavity and manufacturing process
US6602281B1 (en) * 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
EP0853465A4 (en) * 1995-09-01 1999-10-27 Univ Emory Endovascular support device and method of use
US5868780A (en) 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
DE69714281T2 (en) * 1996-08-30 2003-02-27 Agricultural Res Org INTRACORONARY STENT CONTAINS THE QUINAZOLINONE DERIVATIVES
US6099561A (en) * 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US5824045A (en) * 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US6019104A (en) * 1996-12-30 2000-02-01 Kissei Pharmaceutical Co., Ltd. Method for the treatment or prevention of restenosis associated with coronary intervention
KR100526913B1 (en) * 1997-02-20 2005-11-09 쿡 인코포레이티드 Coated implantable medical device
US5746691A (en) * 1997-06-06 1998-05-05 Global Therapeutics, Inc. Method for polishing surgical stents
WO1998056312A1 (en) * 1997-06-13 1998-12-17 Scimed Life Systems, Inc. Stents having multiple layers of biodegradable polymeric composition
US5972027A (en) * 1997-09-30 1999-10-26 Scimed Life Systems, Inc Porous stent drug delivery system

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4728328A (en) * 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4732152A (en) * 1984-12-05 1988-03-22 Medinvent S.A. Device for implantation and a method of implantation in a vessel using such device
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5061275A (en) * 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
US4848343A (en) * 1986-10-31 1989-07-18 Medinvent S.A. Device for transluminal implantation
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5443500A (en) * 1989-01-26 1995-08-22 Advanced Cardiovascular Systems, Inc. Intravascular stent
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5318531A (en) * 1991-06-11 1994-06-07 Cordis Corporation Infusion balloon catheter
US5500013A (en) * 1991-10-04 1996-03-19 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5514154A (en) * 1991-10-28 1996-05-07 Advanced Cardiovascular Systems, Inc. Expandable stents
US5383892A (en) * 1991-11-08 1995-01-24 Meadox France Stent for transluminal implantation
US5755769A (en) * 1992-03-12 1998-05-26 Laboratoire Perouse Implant Expansible endoprosthesis for a human or animal tubular organ, and fitting tool for use thereof
US5342300A (en) * 1992-03-13 1994-08-30 Stefanadis Christodoulos I Steerable stent catheter
US5628785A (en) * 1992-03-19 1997-05-13 Medtronic, Inc. Bioelastomeric stent
US5599352A (en) * 1992-03-19 1997-02-04 Medtronic, Inc. Method of making a drug eluting stent
US5746765A (en) * 1992-05-01 1998-05-05 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5385935A (en) * 1992-09-14 1995-01-31 Kissei Pharmaceutical Co., Ltd. Method for the inhibition of restenosis associated with coronary intervention
US20020086896A1 (en) * 1993-01-28 2002-07-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5562922A (en) * 1993-03-18 1996-10-08 Cedars-Sinai Medical Center Drug incorporating and release polymeric coating for bioprosthesis
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5624411A (en) * 1993-04-26 1997-04-29 Medtronic, Inc. Intravascular stent and method
US5837008A (en) * 1993-04-26 1998-11-17 Medtronic, Inc. Intravascular stent and method
US5443497A (en) * 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5749919A (en) * 1994-01-10 1998-05-12 Microfil Industries S.A. Resilient prosthesis for widening a channel, particularly a blood vessel, and method for making same
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5725572A (en) * 1994-04-25 1998-03-10 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
US5716393A (en) * 1994-05-26 1998-02-10 Angiomed Gmbh & Co. Medizintechnik Kg Stent with an end of greater diameter than its main body
US6013854A (en) * 1994-06-17 2000-01-11 Terumo Kabushiki Kaisha Indwelling stent and the method for manufacturing the same
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US5800520A (en) * 1995-03-10 1998-09-01 Medtronic, Inc. Tubular endoluminar prosthesis having oblique ends
US6740115B2 (en) * 1995-03-10 2004-05-25 C. R. Bard, Inc. Covered stent with encapsulated ends
US7083640B2 (en) * 1995-03-10 2006-08-01 C. R. Bard, Inc. Covered stent with encapsulated ends
US5741333A (en) * 1995-04-12 1998-04-21 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body
US6620194B2 (en) * 1995-04-19 2003-09-16 Boston Scientific Scimed, Inc. Drug coating with topcoat
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5824049A (en) * 1995-06-07 1998-10-20 Med Institute, Inc. Coated implantable medical device
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5788626A (en) * 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US5658308A (en) * 1995-12-04 1997-08-19 Target Therapeutics, Inc. Bioactive occlusion coil
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
US6391033B2 (en) * 1996-08-09 2002-05-21 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US6312456B1 (en) * 1996-12-10 2001-11-06 Biotronik Mass-Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Biocompatible stent with radiopaque markers
US6106548A (en) * 1997-02-07 2000-08-22 Endosystems Llc Non-foreshortening intraluminal prosthesis
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US6059822A (en) * 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
US6315794B1 (en) * 1997-11-13 2001-11-13 Medinol Ltd. Multilayered metal stent
US6485509B2 (en) * 1998-03-04 2002-11-26 Scimed Life Systems, Inc. Stent having variable properties and method of its use
US6488701B1 (en) * 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6379379B1 (en) * 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6652575B2 (en) * 1998-05-05 2003-11-25 Scimed Life Systems, Inc. Stent with smooth ends
US6168619B1 (en) * 1998-10-16 2001-01-02 Quanam Medical Corporation Intravascular stent having a coaxial polymer member and end sleeves
US6254632B1 (en) * 2000-09-28 2001-07-03 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US20060085035A1 (en) * 2004-10-18 2006-04-20 Viola Frank J Compression anastomosis device and method
US7285125B2 (en) 2004-10-18 2007-10-23 Tyco Healthcare Group Lp Compression anastomosis device and method
US20080004641A1 (en) * 2004-10-18 2008-01-03 Tyco Healthcare Group Lp Compression anastomosis device and method
US8109948B2 (en) 2004-10-18 2012-02-07 Tyco Healthcare Group Lp Compression anastomosis device and method
US9023068B2 (en) 2004-10-18 2015-05-05 Covidien Lp Compression anastomosis device and method
US20070077271A1 (en) * 2005-07-21 2007-04-05 Michael Dornish Medical devices coated with a fast dissolving biocompatible coating
JP2009513182A (en) * 2005-07-21 2009-04-02 エフエムシー バイオポリマー エイエス Medical parts coated with a biocompatible coating that dissolves rapidly
US8257727B2 (en) * 2005-07-21 2012-09-04 Fmc Biopolymer As Medical devices coated with a fast dissolving biocompatible coating
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
EP2366335A3 (en) * 2006-12-05 2011-10-05 Tyco Healthcare Group LP Adhesive coated stent and insertion instrument
EP2366337A3 (en) * 2006-12-05 2011-10-05 Tyco Healthcare Group LP Adhesive coated stent and insertion instrument
EP2366334A3 (en) * 2006-12-05 2011-11-23 Tyco Healthcare Group LP Adhesive coated stent and insertion instrument
US8721703B2 (en) 2006-12-05 2014-05-13 Covidien Lp Adhesive coated stent and insertion instrument
US8177798B2 (en) 2006-12-05 2012-05-15 Tyco Healthcare Group Lp Adhesive coated stent and insertion instrument
US20080132923A1 (en) * 2006-12-05 2008-06-05 Fowler David N Adhesive coated stent and insertion instrument
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US20090104244A1 (en) * 2007-09-21 2009-04-23 Boston Scientific Scimed, Inc. Therapeutic agent-eluting medical devices having textured polymeric surfaces
WO2009039429A3 (en) * 2007-09-21 2010-03-04 Boston Scientific Scimed, Inc. Therapeutic agent-eluting medical devices having textured polymeric surfaces
US20090082856A1 (en) * 2007-09-21 2009-03-26 Boston Scientific Scimed, Inc. Medical devices having nanofiber-textured surfaces
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8920491B2 (en) 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US20150073522A1 (en) * 2013-09-09 2015-03-12 Boston Scientific Scimed, Inc. Endoprosthesis devices including biostable and bioabsorable regions
US9320628B2 (en) * 2013-09-09 2016-04-26 Boston Scientific Scimed, Inc. Endoprosthesis devices including biostable and bioabsorable regions
US11096774B2 (en) 2016-12-09 2021-08-24 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
US11903859B1 (en) 2016-12-09 2024-02-20 Zenflow, Inc. Methods for deployment of an implant
US11890213B2 (en) 2019-11-19 2024-02-06 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra

Also Published As

Publication number Publication date
US6652575B2 (en) 2003-11-25
CA2326828C (en) 2008-07-22
US6379379B1 (en) 2002-04-30
EP1076534A2 (en) 2001-02-21
JP4583597B2 (en) 2010-11-17
WO1999056663A2 (en) 1999-11-11
DE69935716D1 (en) 2007-05-16
US20020055769A1 (en) 2002-05-09
CA2326828A1 (en) 1999-11-11
EP1076534B1 (en) 2007-04-04
JP2002513627A (en) 2002-05-14
ATE358456T1 (en) 2007-04-15
WO1999056663A3 (en) 2000-01-06
DE69935716T2 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US6652575B2 (en) Stent with smooth ends
US20220202997A1 (en) Dissolvable or degradable adhesive polymer to prevent stent migration
EP1119379A1 (en) Drug delivery device for stent
US6613084B2 (en) Stent having cover with drug delivery capability
Peng et al. Role of polymers in improving the results of stenting in coronary arteries
EP2374433B1 (en) Stents with connectors and stabilizing biodegradable elements
US20070038292A1 (en) Bio-absorbable stent
US7022132B2 (en) Stents with temporary retaining bands
JP4806163B2 (en) Metal reinforced biodegradable endoluminal stent
US8343206B2 (en) Drug-eluting stent and delivery system with tapered stent in shoulder region
US6979347B1 (en) Implantable drug delivery prosthesis
US20040236415A1 (en) Medical devices having drug releasing polymer reservoirs
JP2005515021A (en) Struts with stent bumpers
Nguyen et al. Biomaterials and stent technology
JP4330970B2 (en) Stent and manufacturing method thereof
Timmons Kytai T. Nguyen, Shih-Horng Su, Meital Zilberman, Pedram Bohluli, Peter Frenkel, Liping Tang, and Robert Eberhart University of Texas Southwestern Medical Center at Dallas Dallas, Texas, USA

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION