US20040044391A1 - Device for closure of a vascular defect and method of treating the same - Google Patents

Device for closure of a vascular defect and method of treating the same Download PDF

Info

Publication number
US20040044391A1
US20040044391A1 US10/230,803 US23080302A US2004044391A1 US 20040044391 A1 US20040044391 A1 US 20040044391A1 US 23080302 A US23080302 A US 23080302A US 2004044391 A1 US2004044391 A1 US 2004044391A1
Authority
US
United States
Prior art keywords
occlusive
vaso
support structure
stent
securement member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/230,803
Inventor
Stephen Porter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stryker European Operations Holdings LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to SCIMED LIFE SYSTEMS INC. reassignment SCIMED LIFE SYSTEMS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PORTER, STEPHEN
Priority to US10/230,803 priority Critical patent/US20040044391A1/en
Application filed by Individual filed Critical Individual
Priority to AU2003256880A priority patent/AU2003256880A1/en
Priority to EP03791657A priority patent/EP1549229B1/en
Priority to CA002485206A priority patent/CA2485206A1/en
Priority to AT03791657T priority patent/ATE424149T1/en
Priority to PCT/US2003/024764 priority patent/WO2004019791A2/en
Priority to JP2004532875A priority patent/JP4472525B2/en
Priority to DE60326474T priority patent/DE60326474D1/en
Publication of US20040044391A1 publication Critical patent/US20040044391A1/en
Priority to US11/185,160 priority patent/US8444667B2/en
Priority to US11/433,280 priority patent/US8747430B2/en
Assigned to BOSTON SCIENTIFIC SCIMED, INC. reassignment BOSTON SCIENTIFIC SCIMED, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SCIMED LIFE SYSTEMS, INC.
Assigned to STRYKER MEDTECH LIMITED reassignment STRYKER MEDTECH LIMITED NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER NV OPERATIONS LIMITED
Assigned to STRYKER EUROPEAN HOLDINGS I, LLC reassignment STRYKER EUROPEAN HOLDINGS I, LLC NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER MEDTECH LIMITED
Assigned to STRYKER NV OPERATIONS LIMITED, STRYKER CORPORATION reassignment STRYKER NV OPERATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOSTON SCIENTIFIC LIMITED
Assigned to STRYKER MEDTECH LIMITED reassignment STRYKER MEDTECH LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL # 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0034. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT. Assignors: STRYKER NV OPERATIONS LIMITED
Assigned to STRYKER EUROPEAN HOLDINGS I, LLC reassignment STRYKER EUROPEAN HOLDINGS I, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED SERIAL NOS. 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0241. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE DATE 9/29/2014. Assignors: STRYKER MEDTECH LIMITED
Assigned to STRYKER EUROPEAN OPERATIONS HOLDINGS LLC reassignment STRYKER EUROPEAN OPERATIONS HOLDINGS LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER EUROPEAN HOLDINGS III, LLC
Assigned to STRYKER EUROPEAN HOLDINGS III, LLC reassignment STRYKER EUROPEAN HOLDINGS III, LLC NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: STRYKER EUROPEAN HOLDINGS I, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • A61B17/12118Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12181Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
    • A61B17/1219Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices expandable in contact with liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices

Definitions

  • the present invention relates generally to implantable devices and methods for the treatment of vascular defects.
  • aneurysm which is an area of a weakened vessel wall that causes a bulge or bubble to protrude out in a radial direction from the adjacent vessel. If untreated, an aneurysm may continue expanding until it bursts, causing hemorrhage. It is therefore often desirable to block fluid flow to the aneurysm.
  • vaso-occlusive devices used for the treatment of such defects may be referred to as vaso-occlusive devices and are commonly deployed to the aneurysm site through the use of a catheter device.
  • Vaso-occlusive devices can have a variety of configurations, and are generally formed of one or more elements that have a deployed configuration for blocking blood flow which is different from their configuration during delivery to the site.
  • the aneurysm neck bridge or retainer assemblies described in the patents above may be delivered to the aneurysm in a variety of different ways, but preferably are attached to an electrolytically severable joint for their deployment.
  • the aneurysm is at least partially filled with a vaso-occlusive device such as a helically wound coil.
  • the vaso-occlusive devices may also be delivered to the aneurysm using a number of different methods such as by a core wire which is linked to the coils by an electrolytically severable joint or a mechanically severable joint.
  • the vaso-occlusive devices may also be simply pushed into the aneurysm. The success of such devices as those described above, may depend on several factors, however, including whether or not the device can migrate out of the aneurysm through the neck of the aneurysm.
  • FIG. 1 Another example of a vaso-occlusive device applicable to the treatment of an aneurysm is a covered stent or a stent-graft.
  • Covered stents have a limited usefulness due to the stiffness of the device, and synthetic grafts themselves have a tendency to occlude when employed in small blood vessels.
  • Arteries where there is an aneurysm typically have a lot of branching, and when employing a covered stent, there is a further risk of occluding the small branch vessels airising from the parent artery rather than simply blocking the neck of the aneurysm as desired.
  • vaso-occlusive device that can be delivered to an aneurysm or other body vessel in a primary unexpanded configuration, wherein such device can be deployed and released to assume a secondary, expanded configuration which occludes the neck of the aneurysm, and which can be anchored at the site of the aneurysm so that it does not migrate from the site.
  • the present invention relates generally to a vaso-occlusive device which is adapted to be inserted into a portion of a vasculature for treatment of a body vessel such as an aneurysm, and to methods of using the device.
  • the vaso-occlusive device of the present invention is generally employed in combination with a support structure such as a stent, stent-graft, and the like.
  • the device is designed in such a way that it may be readily anchored at the site of the vascular defect to prevent migration of the device.
  • more than one support structure may be employed in a given procedure as well.
  • the vaso-occlusive device of the present invention includes at least one occlusive member having a first unexpanded configuration and a second expanded configuration, and at least one securement member for securing the device to a stent, stent-graft, or the like, in order to prevent migration of the fluid flow-occluding device from the site of the vascular defect.
  • the device is retained within or as a part of a microcatheter system in an unexpanded configuration to cross the neck of the aneurysm, and then once across the neck, the device may be allowed to expand by pulling back the microcatheter, pulling back a shaft about the microcatheter, or by employing a pusher device.
  • the device may be formed of a variety of materials including, but not limited to flexible polymeric materials and metallic materials including shape memory materials, superelastic materials, compressed foams, swellable materials, braided or woven materials and meshes formed from both polymeric materials and shape memory alloys, for example, and so forth.
  • the materials are biocompatible.
  • Bioactive materials or materials having incorporated bioactive agents may also be employed in the construction of the device according to the present invention.
  • the device may be employed in minimally invasive, interventional procedures for the treatment of a vascular defect where it is desirable to block the flow of fluid, if not completely then to a substantial degree, into the defective area of the vessel.
  • the method includes deploying a support structure to the site of the vascular defect, deploying the vaso-occlusive device to the site of the vascular defect, inserting the vaso-occlusive device into the vascular defect through an opening in the support structure, deploying at least one occlusive member, and deploying at least one securement member.
  • both the support structure and the vaso-occlusive device are deployed using a catheter.
  • FIG. 1 illustrates one embodiment of a vaso-occlusive device according to the present invention.
  • FIG. 2 is a depiction of a stent located in a blood vessel at the site of an aneurysm prior to deployment of a vaso-occlusive device according to the present invention.
  • FIG. 3 illustrates initial delivery of a catheter device with the vaso-occlusive device of the present invention retained therein.
  • FIG. 4 illustrates initial deployment of the vaso-occlusive device released from the catheter but in an unexpanded state.
  • FIG. 5 illustrates one embodiment of the occlusive member of the vaso-occlusive device of the present invention in an expanded state.
  • FIG. 6 illustrates one embodiment of the vaso-occlusive device of the present invention positioned at the neck of an aneurysm.
  • FIG. 7 illustrates one embodiment of the vaso-occlusive device of the present invention in an expanded state with the securement member released and in position.
  • FIG. 8 illustrates a vaso-occlusive device according to the present invention, in combination with a catheter delivery device.
  • FIG. 9 illustrates the device of FIG. 8 during deployment.
  • FIG. 10 illustrates the vaso-occlusive device of FIG. 8 after deployment.
  • FIG. 11 is an expanded view of one embodiment of the securement member prior to deployment.
  • FIG. 12 is an expanded view of the same securement member as in FIG. 11 but in a deployed configuration.
  • FIG. 13 illustrates an alternative embodiment of the securement member of the vaso-occlusive device of the present invention prior to release from the catheter.
  • FIG. 14 illustrates the same securement member as shown in FIG. 13, but after release from the catheter.
  • FIG. 15 illustrates another alternative embodiment wherein both the occlusive member and the securement member are formed of the same material.
  • FIG. 16 illustrates the same device as shown in FIG. 15 with both the occlusive member and the securement member deployed.
  • FIG. 17 illustrates a specialized opening which may be formed in a stent for accepting the vaso-occlusive device.
  • FIG. 1 illustrates generally at 100 , one embodiment of the vaso-occlusive device according to the present invention in which the occlusive member 20 is in a fully expanded form, but the securement member 30 has not yet been released from the catheter 50 .
  • the top of the securement member 30 is visible.
  • a pusher wire 22 is shown disposed within the catheter lumen.
  • junction 40 for severing the connection between a catheter delivery device 50 and the vaso-occlusive device 100 after deployment of vaso-occlusive device 100 .
  • Junction 40 may be severed using any of a variety of different methods including, but not limited to, electrolytic corrosion, mechanical actuation, hydraulic pressure, thermal processes, electromagnetic energy, and so forth as described above. Other methods of detachment known to those of skill in the art but not described herein may also be employed in releasing the device of the present invention. Severable junctions which may be employed in the present invention are described, for example, in U.S. Pat. No. 5,122,136, U.S. Pat. No. 5,354,295, U.S. Pat.
  • FIGS. 2 - 7 illustrate a series of steps involved in the deployment of the vaso-occlusive device 100 according to the present invention.
  • a support structure in this embodiment a stent 10
  • the stent 10 has a plurality of stent struts 15 having openings 17 therebetween.
  • Stent 10 is in its expanded configuration within blood vessel 12 .
  • An occlusive device according to the present invention may be formed and configured such that it may be deployed through the openings 17 between struts 15 .
  • FIG. 3 illustrates the initial delivery of one embodiment of the device of the present invention (not visible in FIG. 2) in an unexpanded state through the use of a microcatheter device 50 , such as a microcatheter.
  • the microcatheter 50 is guided through blood vessel 12 and through stent 10 and is then threaded through an opening 17 located between stent struts 15 and into the aneurysm 14 .
  • the vaso-occlusive device 10 (not shown) may be rolled, compressed or otherwise unexpanded into a form that can be pushed through and retained in microcatheter 50 .
  • FIG. 1 illustrates the initial delivery of one embodiment of the device of the present invention in an unexpanded state through the use of a microcatheter device 50 , such as a microcatheter.
  • the microcatheter 50 is guided through blood vessel 12 and through stent 10 and is then threaded through an opening 17 located between stent struts 15 and into the aneurys
  • the microcatheter 50 can be seen shown disposed within stent 10 in blood vessel 12 and projecting upward through opening 17 formed by struts 15 and into aneurysm 14 .
  • the securement member 30 can be seen at the distal tip 55 of microcatheter 50 .
  • vaso-occlusive device 100 is shown in the initial stage of being released from microcatheter 50 by use of a pusher wire 22 (not shown).
  • the occlusive member 20 is still in an unexpanded configuration.
  • the securement member 30 is also in its unexpanded configuration.
  • Reference numeral 40 represents a detachable or severable junction which can be severed using a number of different mechanisms including, but not limited to, electrolytic corrosion, mechanical actuation, hydraulic pressure, thermal processes, electromagnetic energy, and so forth as described above. It is at this junction 40 that the vaso-occlusive device 100 is eventually detached from pusher wire 22 (not shown) which is disposed inside microcatheter 50 .
  • Other methods of detachment not described herein, but known in the art, may also be employed in detaching the device of the present invention.
  • occlusive member 20 Upon release from microcatheter 50 , occlusive member 20 expands as shown in FIG. 5. Occlusive member 20 may be made expandable upon release using any number of methods known in the art. For example, shape memory materials including both polymeric and metallic materials may be employed, materials which are swellable in an aqueous environment may be employed, compressed foams, braided, woven, knit, felt-like materials, meshes, and so forth, may also be employed. In this particular embodiment, occlusive member 20 is shown in an umbrella-like form.
  • occlusive member 20 may be in the form of a disc, parabola, sphere, or the like providing that it is of a configuration to block or bridge the neck 19 of aneurysm 14 so that no fluid, or substantially no fluid, may flow between vessel 12 and aneurysm 14 .
  • Suitable materials for formation of such an occlusive member include flexible polymeric materials, for example.
  • Securement member 30 is also not yet in its deployed configuration.
  • Occlusive member 20 is then pulled back until it comes in contact with stent 10 and is now blocking the opening or neck 19 of aneurysm 14 as shown in FIG. 6.
  • securement member 30 is at least partially protruding through the opposite side of the stent struts 15 as the occlusive member 20 , and is still in an unexpanded configuration.
  • the securement member 30 is then released by pulling back on the catheter device 50 while maintaining the position of the pusher wire 22 as shown in FIG. 7.
  • the securement member 30 upon release from the catheter device 50 expands.
  • securement member 30 anchors the vaso-occlusive device 100 to the stent 10 .
  • the securement member 30 is located on the opposite side of the stent struts 15 as the occlusive member 20 .
  • Securement member 30 may operate in one of several different ways.
  • the securement member 30 operates by either expanding to the point at which it may no longer fit back through the opening 17 between stent struts 15 through which it initially came, or it may be constructed of a shape memory material, for example, that remains inside the microcatheter 50 until deployment of the occlusive member 20 . Thus, it does not deploy until the occlusive member 20 is deployed.
  • the microcatheter 50 is shown being drawn away from the vaso-occlusive device, releasing the securement member 30 which then lays open and flat against the stent struts 15 .
  • the securement member 30 extends through and is located on the opposite side of the occlusive member 20 and effectively anchors the vaso-occlusive device 100 into position.
  • FIG. 8 illustrates generally at 110 a catheter delivery device having a vaso-occlusive device 100 disposed inside a retractable sheath 116 at the distal end 112 of the catheter delivery device 110 .
  • the catheter device has a tubular support structure 114 .
  • a guidewire 75 is first positioned inside the vasculature.
  • the catheter delivery device 110 is then maneuvered through the vasculature over the guidewire 75 to the site of the vascular defect (not shown) wherein a support structure such as a stent, has already been positioned.
  • the catheter delivery device 110 is then maneuvered between struts 15 of the stent structure and is positioned in the vascular defect (not shown).
  • the catheter delivery device 110 is shown positioned between two struts 15 .
  • the vaso-occlusive device is not yet deployed.
  • FIG. 9 the retractable sheath 116 is shown in a partially pulled back position releasing the occlusive member 20 of the vaso-occlusive device 100 .
  • the vaso-occlusive device 100 as shown in FIGS. 8 - 10 illustrates an embodiment of the vaso-occlusive device in which the occlusive member 20 has a frame 118 which in its unexpanded state as shown in FIG. 8 and in an expanded state as shown in FIG. 10, is similar to an umbrella.
  • the frame 118 has individual spokes 120 which in the expanded state support the canopy 122 of the umbrella-like structure.
  • FIG. 11 illustrates one embodiment of the securement member 30 of the vaso-occlusive device of the present invention in which securement member 30 is formed from a swellable material such as a hydrogel which swells upon exposure to an aqueous environment, or one with memory such as a compressed foam wherein the material returns to its original shape upon release from the microcatheter 50 .
  • securement member 30 is shown just released from microcatheter 50 and is not yet in its expanded configuration.
  • Struts 15 are shown on either side of the securement member 30 .
  • FIG. 12 illustrates the same securement member 30 as in FIG. 11, but in a deployed configuration.
  • Struts 15 are now located between occlusive member 20 , which is now in an expanded configuration, and securement member 30 , which is also in a deployed configuration.
  • FIG. 12 shows the securement member 30 wherein it is anchored to the stent by “wrapping” itself around the stents struts 15 in its deployed state.
  • Occlusive member 20 may also be formed from the same swellable material, or the same material having memory as securement member 30 . It may also be formed of a different material.
  • FIG. 13 illustrates an alternative embodiment of the vaso-occlusive device of the present invention in which the securement member 30 is formed from strut-like elements 60 which are held inside microcatheter 50 .
  • the struts 15 may be leaf shaped (as shown) on a flattened helical form, or may be any shape which can be compressed to fit within a microcatheter and can expand to a shape which cannot fit through the openings in the strut 15 .
  • strut-like elements 60 of securement member 30 may be formed of a shape memory material such as NITINOL®, or may be formed from a superelastic material.
  • a severable junction 40 which is described above. Severable junction 40 , in this embodiment, is shown in contact with occlusive member 20 , as opposed to the embodiment shown in FIGS. 11 and 12, in which severable junction 40 , is shown in contact with securement member 30 .
  • FIG. 15 illustrates an embodiment of the vaso-occlusive device of the present invention in which both the occlusive member 20 and the securement member 30 are formed from a single material.
  • a material which swells upon exposure to an aqueous environment include, for example, hydrogels, compressed foams, or the like. Swellable materials are discussed in more detail below.
  • both the occlusive member 20 and the securement member 30 have been released using the pusher wire, and they begin to swell.
  • the vaso-occlusive device 100 is then brought down into the neck of the aneurysm such that the securement member 30 is on the opposite side of the stent struts 15 from the occlusive member 20 .
  • the swelling continues and the device blocks the aneurysm.
  • the device is in its fully expanded configuration in FIG. 16.
  • the securement member 30 is on one side of the struts 15 and the occlusive member 20 is on the opposite side and actually in the aneurysm (not shown). In this manner, the securement member 30 anchors the vaso-occlusive device 100 to the stent.
  • the stent may be made with a specialized opening 70 for accepting the vaso-occlusive device 100 of the present invention as shown in FIG. 17.
  • FIGS. 15 - 17 a severable junction 40 is shown for detaching vaso-occlusive device 100 from catheter delivery device 50 .
  • securement members While in the embodiments described above, only one securement member has been employed in each embodiment, one or more securement members may be employed in the present invention. Securement members of any shape may be employed.
  • support structures of any shape may be employed.
  • linear, Y-shaped, T-shaped stents, and so forth may be employed.
  • the occlusive portion of the device according to the present invention may be manufactured from any of a variety of materials including, but not limited to, polymeric materials.
  • useful polymeric materials include both synthetic and natural materials. Further, the materials may be biocompatible and/or biodegradable materials.
  • useful polymer materials include, but are not limited to, polyolefins including polyethylene and polypropylene, polyesters such as polyethyleneterephthalate(PET) and polybutylene terephthalate (PBT), polyurethanes, acrylics, polypeptides, polyethers, polyamides, fluoropolymers such as expanded polytetrafluoroethylene, and so on and so forth.
  • Swellable polymeric materials find utility herein. Such materials include those which are known to expand and become lubricious in aqueous fluids including, for example, a class of materials referred to generally as hydrogels may also be employed in the manufacture of the device according to the present invention. Such materials include hydrophilic, macroporous, polymeric, hydrogel foam material.
  • Such materials include, but are not limited, polyvinylpyrrolindone, polyethylene oxide and its copolymers with polypropylene oxide, polyacrylic acids, polyvinyl alcohols, hyaluronic acid, heparin, chondroitin sulfate, pectinic acid, carboxyl-derivatized polysaccharides, polyhydroxy ethyl methacrylate, polyacrylamide, hydrolyzed polyacrylonitriles, polymethacrylic acid, polyethylene amines, polysaccharides, and copolymers and combinations thereof, and so forth.
  • polyvinylpyrrolindone polyethylene oxide and its copolymers with polypropylene oxide
  • polyacrylic acids polyvinyl alcohols, hyaluronic acid, heparin, chondroitin sulfate, pectinic acid, carboxyl-derivatized polysaccharides, polyhydroxy ethyl methacrylate, polyacrylamide, hydrolyzed poly
  • a swellable material includes a swellable foam matrix formed as a macroporous solid is described in U.S. Pat. No. 5,750,585 which is incorporated by reference herein in its entirety.
  • This material includes a foam stabilizing agent and a polymer or copolymer of a free radical polymerizable hydrophilic olefm monomer cross-linked with up to about 10% by weight of a multiolefin-functional cross-linking agent.
  • Naturally based materials or those which are biologically derived which find utility herein include, but are not limited to, collagen foams, harvested vascular material, films constructed from processed tissues, and so forth.
  • Shape memory materials are suitable for use in formation of the vaso-occlusive device of the present invention.
  • Shape memory materials may be polymeric or metallic. Shape memory materials have the ability to remember their original shape, either after mechanical deformation, or by cooling and heating. Such materials are said to undergo a structural phase transformation.
  • shape memory polymers SMPs
  • SMPs shape memory polymers
  • SMPs shape memory polymers
  • the hard segment is crystalline, with a defined melting point
  • the soft segment is amorphous, with a defined glass transition temperature.
  • the hard segment may be amorphous and have a glass transition temperature rather than a melting point
  • the soft segment may be crystalline and have a melting point rather than a glass transition temperature.
  • the melting point or glass transition temperature of the soft segment is substantially less than the melting point or glass transition temperature of the hard segment.
  • shape memory polymers include, but are not limited to, those formed from polyethers, polyacrylates, polyamides, polysiloxanes, polyurethanes, polyether amides, polyurethane/ureas, polyether esters, urethane/butadiene copolymers, polynorbornenes, and mixtures thereof. See, for example, U.S. Pat. No. 5,506,300, U.S. Pat. No. 5,145,935, U.S. Pat. No. 5,665,822, and U.S. Pat. No. 6,388,043 each of which is incorporated by reference herein in its entirety.
  • Shape memory metals suitable for use herein include the alloys of TiNi (NITINOL®), CuZnAl, and FeNiAl, for example. These materials undergo a structure phase transformation referred to as a martensitic transformation.
  • Compressed foams may also be employed in the present invention because they have the ability to return to their original shape. Both open and closed cell foams may be employed. Materials satisfactory for use in compressed foams include, but are not limited to medical grade silicones and polyurethanes. As described above, natural materials such as collagens, may also be employed to make a compressed foam material.
  • Bioactive materials or materials having incorporated bioactive agents which facilitate aneurysm healing may also be employed in the construction of the device.
  • Bioactive materials include agents which illicit a biological response within a patient.
  • Such bioactive include therapeutic agents and drugs, for example. These agents may promote healing, tissue growth, cell growth, and so forth.
  • the vaso-occlusive device in particular, the occlusive member, may be formed with a braided, woven, or mesh configuration.
  • Copolymers, and crosslinkable versions of the above described materials may also be suitable for use herein. And, of course, mixtures of the various materials described above may also be employed in the manufacture of the device according to the present invention.
  • a single material may be employed in forming both the occlusive member and the securement member, or different materials may be employed as described in some of the embodiments above. Additionally, one or more materials may be employed in forming only the occlusive member and/or the securement member.
  • the occlusive member may be formed of a combination of at least one polymeric material and at least one metal.
  • a metallic material such as a shape memory alloy, is employed to form the strut parts of an umbrella like structure which has an occlusive member similar to the canopy of an umbrella, and further has a frame including a plurality of spokes for providing support to the canopy.
  • the canopy is formed of a polymeric material while the frame may be formed a metallic material or a polymeric material, for example.
  • the frame and canopy have an expanded configuration and an unexpanded configuration for delivery.
  • the material from which the vaso-occlusive device is formed, or the vaso-occlusive device itself may be modified, or provided with additives, to make the vaso-occlusive device visible by conventional imaging techniques.
  • the device may be rendered visible using fluoroscopic techniques, rendered MRI visible, or both. This can be accomplished through the use of markers such as wire windings, marker bands, rivets, plugs, and so forth, or the radiopaque or MRI visible materials may be incorporated into the material from which the vaso-occlusive device is formed. Any suitable radiopaque or MRI visible material may be employed.
  • Suitable materials for providing radiopacity to the device include, but are not limited to, platinum, rhodium, palladium, rhenium, iridium, tantalum, tungsten, gold, silver, alloys of these metals, as well as polymeric materials with barium, for example. Radiopacity is desirable for visualization of the device for purposes of positioning the device at the site of the defect and to position inside the defect and for proper anchoring of the device.
  • the invention is further directed to the combination of a vaso-occlusive device having at least one securement member and a stent, where the at least one securement member is secured to the stent. Also, the invention is directed to the combination of a delivery catheter and a vaso-occlusive device having at least one securement member.
  • the invention is further directed to a method of occluding a vascular defect having an opening.
  • the method comprises the steps of:
  • the invention is also directed to a method of closing and occluding an opening of an aneurysm from a parent blood vessel.
  • the method comprises the steps of:

Abstract

A device for the non-invasive treatment of a vascular defect. The device includes at least one occlusive member having a first unexpanded configuration and a second expanded configuration and at least one securement member for securing the vaso-occlusive device to a support structure at the location of the vascular defect.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to implantable devices and methods for the treatment of vascular defects. [0001]
  • BACKGROUND OF THE INVENTION
  • Many minimally invasive or noninvasive interventional medical devices and procedures have been used to treat defects in the vasculature which are not easily reached by surgical procedures. Such medical devices which are adapted for implantation in body lumens in order to support weakened or occluded vessel walls and allow fluid flow are well known and commercially available. One such device is a vascular stent, for example. Stents may be employed to prop up vessel walls and maintain openings in vessels in the coronary system, the brain, the urinary, biliary, esophageal, tracheal and bronchial tracts, and so forth. [0002]
  • However, in some situations, it is desirable to block fluid flow. For example, one serious defect in the vascular system is an aneurysm which is an area of a weakened vessel wall that causes a bulge or bubble to protrude out in a radial direction from the adjacent vessel. If untreated, an aneurysm may continue expanding until it bursts, causing hemorrhage. It is therefore often desirable to block fluid flow to the aneurysm. [0003]
  • Devices used for the treatment of such defects may be referred to as vaso-occlusive devices and are commonly deployed to the aneurysm site through the use of a catheter device. Vaso-occlusive devices can have a variety of configurations, and are generally formed of one or more elements that have a deployed configuration for blocking blood flow which is different from their configuration during delivery to the site. [0004]
  • Devices for bridging the necks of wide-necked or narrow-necked aneurysms are found, for example, in U.S. Pat. No. 5,935,148, U.S. Pat. No. 6,063,070, U.S. Pat. No. 6,036,720, U.S. Pat. No. 6,063,104 and U.S. Pat. No. 6,139,564. These devices may also be used to stabilize the placement of vaso-occlusive devices such as helically wound coils in the aneurysm or may be used to, at least partially, close the aneurysm neck. The aneurysm neck bridge or retainer assemblies described in the patents above may be delivered to the aneurysm in a variety of different ways, but preferably are attached to an electrolytically severable joint for their deployment. After deployment of the neck bridge or retainer, the aneurysm is at least partially filled with a vaso-occlusive device such as a helically wound coil. The vaso-occlusive devices may also be delivered to the aneurysm using a number of different methods such as by a core wire which is linked to the coils by an electrolytically severable joint or a mechanically severable joint. The vaso-occlusive devices may also be simply pushed into the aneurysm. The success of such devices as those described above, may depend on several factors, however, including whether or not the device can migrate out of the aneurysm through the neck of the aneurysm. [0005]
  • Another example of a vaso-occlusive device applicable to the treatment of an aneurysm is a covered stent or a stent-graft. Covered stents have a limited usefulness due to the stiffness of the device, and synthetic grafts themselves have a tendency to occlude when employed in small blood vessels. Arteries where there is an aneurysm typically have a lot of branching, and when employing a covered stent, there is a further risk of occluding the small branch vessels airising from the parent artery rather than simply blocking the neck of the aneurysm as desired. [0006]
  • Thus, it would be beneficial to have a vaso-occlusive device that can be delivered to an aneurysm or other body vessel in a primary unexpanded configuration, wherein such device can be deployed and released to assume a secondary, expanded configuration which occludes the neck of the aneurysm, and which can be anchored at the site of the aneurysm so that it does not migrate from the site. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention relates generally to a vaso-occlusive device which is adapted to be inserted into a portion of a vasculature for treatment of a body vessel such as an aneurysm, and to methods of using the device. The vaso-occlusive device of the present invention is generally employed in combination with a support structure such as a stent, stent-graft, and the like. The device is designed in such a way that it may be readily anchored at the site of the vascular defect to prevent migration of the device. Of course, more than one support structure may be employed in a given procedure as well. [0008]
  • The vaso-occlusive device of the present invention includes at least one occlusive member having a first unexpanded configuration and a second expanded configuration, and at least one securement member for securing the device to a stent, stent-graft, or the like, in order to prevent migration of the fluid flow-occluding device from the site of the vascular defect. [0009]
  • The device is retained within or as a part of a microcatheter system in an unexpanded configuration to cross the neck of the aneurysm, and then once across the neck, the device may be allowed to expand by pulling back the microcatheter, pulling back a shaft about the microcatheter, or by employing a pusher device. [0010]
  • The device may be formed of a variety of materials including, but not limited to flexible polymeric materials and metallic materials including shape memory materials, superelastic materials, compressed foams, swellable materials, braided or woven materials and meshes formed from both polymeric materials and shape memory alloys, for example, and so forth. Suitably, the materials are biocompatible. [0011]
  • Bioactive materials or materials having incorporated bioactive agents may also be employed in the construction of the device according to the present invention. [0012]
  • The device may be employed in minimally invasive, interventional procedures for the treatment of a vascular defect where it is desirable to block the flow of fluid, if not completely then to a substantial degree, into the defective area of the vessel. [0013]
  • In one embodiment, the method includes deploying a support structure to the site of the vascular defect, deploying the vaso-occlusive device to the site of the vascular defect, inserting the vaso-occlusive device into the vascular defect through an opening in the support structure, deploying at least one occlusive member, and deploying at least one securement member. [0014]
  • Suitably, both the support structure and the vaso-occlusive device are deployed using a catheter. [0015]
  • These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings, which illustrate by way of example the features of the invention. [0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates one embodiment of a vaso-occlusive device according to the present invention. [0017]
  • FIG. 2 is a depiction of a stent located in a blood vessel at the site of an aneurysm prior to deployment of a vaso-occlusive device according to the present invention. [0018]
  • FIG. 3 illustrates initial delivery of a catheter device with the vaso-occlusive device of the present invention retained therein. [0019]
  • FIG. 4 illustrates initial deployment of the vaso-occlusive device released from the catheter but in an unexpanded state. [0020]
  • FIG. 5 illustrates one embodiment of the occlusive member of the vaso-occlusive device of the present invention in an expanded state. [0021]
  • FIG. 6 illustrates one embodiment of the vaso-occlusive device of the present invention positioned at the neck of an aneurysm. [0022]
  • FIG. 7 illustrates one embodiment of the vaso-occlusive device of the present invention in an expanded state with the securement member released and in position. [0023]
  • FIG. 8 illustrates a vaso-occlusive device according to the present invention, in combination with a catheter delivery device. [0024]
  • FIG. 9 illustrates the device of FIG. 8 during deployment. [0025]
  • FIG. 10 illustrates the vaso-occlusive device of FIG. 8 after deployment. [0026]
  • FIG. 11 is an expanded view of one embodiment of the securement member prior to deployment. [0027]
  • FIG. 12 is an expanded view of the same securement member as in FIG. 11 but in a deployed configuration. [0028]
  • FIG. 13 illustrates an alternative embodiment of the securement member of the vaso-occlusive device of the present invention prior to release from the catheter. [0029]
  • FIG. 14 illustrates the same securement member as shown in FIG. 13, but after release from the catheter. [0030]
  • FIG. 15 illustrates another alternative embodiment wherein both the occlusive member and the securement member are formed of the same material. [0031]
  • FIG. 16 illustrates the same device as shown in FIG. 15 with both the occlusive member and the securement member deployed. [0032]
  • FIG. 17 illustrates a specialized opening which may be formed in a stent for accepting the vaso-occlusive device.[0033]
  • DETAILED DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
  • While this invention may be embodied in many different forms, there are described in detail herein specific embodiments of the invention. This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. [0034]
  • Turning now to the figures, FIG. 1 illustrates generally at [0035] 100, one embodiment of the vaso-occlusive device according to the present invention in which the occlusive member 20 is in a fully expanded form, but the securement member 30 has not yet been released from the catheter 50. The top of the securement member 30 is visible. A pusher wire 22 is shown disposed within the catheter lumen.
  • Also seen in FIG. 1 is a [0036] severable junction 40 for severing the connection between a catheter delivery device 50 and the vaso-occlusive device 100 after deployment of vaso-occlusive device 100. Junction 40 may be severed using any of a variety of different methods including, but not limited to, electrolytic corrosion, mechanical actuation, hydraulic pressure, thermal processes, electromagnetic energy, and so forth as described above. Other methods of detachment known to those of skill in the art but not described herein may also be employed in releasing the device of the present invention. Severable junctions which may be employed in the present invention are described, for example, in U.S. Pat. No. 5,122,136, U.S. Pat. No. 5,354,295, U.S. Pat. No. 5,540,680, U.S. Pat. No. 5,855,578, U.S. Pat. No. 5,895,385, U.S. Pat. No. 5,925,037, U.S. Pat. No. 5,944,714, U.S. Pat. No. 5,947,963, U.S. Pat. No. 5976126, U.S. Pat. No. 6,010,498, U.S. Pat. No. 6,066,133 and U.S. Pat. No. 6,083,220, each of which is incorporated by reference herein in its entirety.
  • FIGS. [0037] 2-7 illustrate a series of steps involved in the deployment of the vaso-occlusive device 100 according to the present invention. Beginning with FIG. 2, a support structure, in this embodiment a stent 10, is shown deployed within a blood vessel 12 at the site of a vessel defect or aneurysm 14 and located at the opening or neck 19 of the aneurysm 14. The stent 10 has a plurality of stent struts 15 having openings 17 therebetween. Stent 10 is in its expanded configuration within blood vessel 12. An occlusive device according to the present invention may be formed and configured such that it may be deployed through the openings 17 between struts 15.
  • While the above stent is shown for illustrative purposes only, it is important to note that any stent design may be employed herein. [0038]
  • FIG. 3 illustrates the initial delivery of one embodiment of the device of the present invention (not visible in FIG. 2) in an unexpanded state through the use of a [0039] microcatheter device 50, such as a microcatheter. The microcatheter 50 is guided through blood vessel 12 and through stent 10 and is then threaded through an opening 17 located between stent struts 15 and into the aneurysm 14. The vaso-occlusive device 10 (not shown) may be rolled, compressed or otherwise unexpanded into a form that can be pushed through and retained in microcatheter 50. In FIG. 4, the microcatheter 50 can be seen shown disposed within stent 10 in blood vessel 12 and projecting upward through opening 17 formed by struts 15 and into aneurysm 14. The securement member 30 can be seen at the distal tip 55 of microcatheter 50.
  • In FIG. 4, vaso-[0040] occlusive device 100 is shown in the initial stage of being released from microcatheter 50 by use of a pusher wire 22 (not shown). The occlusive member 20 is still in an unexpanded configuration. The securement member 30 is also in its unexpanded configuration. Reference numeral 40 represents a detachable or severable junction which can be severed using a number of different mechanisms including, but not limited to, electrolytic corrosion, mechanical actuation, hydraulic pressure, thermal processes, electromagnetic energy, and so forth as described above. It is at this junction 40 that the vaso-occlusive device 100 is eventually detached from pusher wire 22 (not shown) which is disposed inside microcatheter 50. Other methods of detachment not described herein, but known in the art, may also be employed in detaching the device of the present invention.
  • As noted above, severable junctions are described, for example, in U.S. Pat. No. 5,122,136, U.S. Pat. No. 5,354,295, U.S. Pat. No. 5,540,680, U.S. Pat. No. 5,855,578, U.S. Pat. No. 5,895,385, U.S. Pat. No. 5,925,037, U.S. Pat. No. 5,944,714, U.S. Pat. No. 5,947,963, U.S. Pat. No. 5,976,126, U.S. Pat. No. [0041] 6010498, U.S. Pat. No. 6,066,133 and U.S. Pat. No. 6,083,220, each of which is incorporated by reference herein in its entirety.
  • Upon release from [0042] microcatheter 50, occlusive member 20 expands as shown in FIG. 5. Occlusive member 20 may be made expandable upon release using any number of methods known in the art. For example, shape memory materials including both polymeric and metallic materials may be employed, materials which are swellable in an aqueous environment may be employed, compressed foams, braided, woven, knit, felt-like materials, meshes, and so forth, may also be employed. In this particular embodiment, occlusive member 20 is shown in an umbrella-like form. However, occlusive member 20 may be in the form of a disc, parabola, sphere, or the like providing that it is of a configuration to block or bridge the neck 19 of aneurysm 14 so that no fluid, or substantially no fluid, may flow between vessel 12 and aneurysm 14. Suitable materials for formation of such an occlusive member include flexible polymeric materials, for example. Securement member 30, is also not yet in its deployed configuration.
  • [0043] Occlusive member 20 is then pulled back until it comes in contact with stent 10 and is now blocking the opening or neck 19 of aneurysm 14 as shown in FIG. 6. At this point, securement member 30, is at least partially protruding through the opposite side of the stent struts 15 as the occlusive member 20, and is still in an unexpanded configuration.
  • The [0044] securement member 30 is then released by pulling back on the catheter device 50 while maintaining the position of the pusher wire 22 as shown in FIG. 7. The securement member 30 upon release from the catheter device 50 expands. In its expanded configuration, securement member 30 anchors the vaso-occlusive device 100 to the stent 10. The securement member 30 is located on the opposite side of the stent struts 15 as the occlusive member 20. Securement member 30 may operate in one of several different ways. Desirably, the securement member 30 operates by either expanding to the point at which it may no longer fit back through the opening 17 between stent struts 15 through which it initially came, or it may be constructed of a shape memory material, for example, that remains inside the microcatheter 50 until deployment of the occlusive member 20. Thus, it does not deploy until the occlusive member 20 is deployed.
  • In FIG. 7, the [0045] microcatheter 50 is shown being drawn away from the vaso-occlusive device, releasing the securement member 30 which then lays open and flat against the stent struts 15. The securement member 30 extends through and is located on the opposite side of the occlusive member 20 and effectively anchors the vaso-occlusive device 100 into position.
  • FIG. 8 illustrates generally at [0046] 110 a catheter delivery device having a vaso-occlusive device 100 disposed inside a retractable sheath 116 at the distal end 112 of the catheter delivery device 110. The catheter device has a tubular support structure 114. In this embodiment, a guidewire 75 is first positioned inside the vasculature. The catheter delivery device 110 is then maneuvered through the vasculature over the guidewire 75 to the site of the vascular defect (not shown) wherein a support structure such as a stent, has already been positioned. The catheter delivery device 110 is then maneuvered between struts 15 of the stent structure and is positioned in the vascular defect (not shown). In FIG. 8, the catheter delivery device 110 is shown positioned between two struts 15. The vaso-occlusive device is not yet deployed.
  • In FIG. 9, the [0047] retractable sheath 116 is shown in a partially pulled back position releasing the occlusive member 20 of the vaso-occlusive device 100.
  • In FIG. 10, the [0048] retractable sheath 116 has been pulled back all the way further releasing the securement member 30 of the vaso-occlusive device 100.
  • The vaso-[0049] occlusive device 100 as shown in FIGS. 8-10, illustrates an embodiment of the vaso-occlusive device in which the occlusive member 20 has a frame 118 which in its unexpanded state as shown in FIG. 8 and in an expanded state as shown in FIG. 10, is similar to an umbrella. The frame 118 has individual spokes 120 which in the expanded state support the canopy 122 of the umbrella-like structure.
  • FIG. 11 illustrates one embodiment of the [0050] securement member 30 of the vaso-occlusive device of the present invention in which securement member 30 is formed from a swellable material such as a hydrogel which swells upon exposure to an aqueous environment, or one with memory such as a compressed foam wherein the material returns to its original shape upon release from the microcatheter 50. In FIG. 11, securement member 30 is shown just released from microcatheter 50 and is not yet in its expanded configuration. Struts 15 are shown on either side of the securement member 30. FIG. 12 illustrates the same securement member 30 as in FIG. 11, but in a deployed configuration. Struts 15, are now located between occlusive member 20, which is now in an expanded configuration, and securement member 30, which is also in a deployed configuration. FIG. 12 shows the securement member 30 wherein it is anchored to the stent by “wrapping” itself around the stents struts 15 in its deployed state. Occlusive member 20, may also be formed from the same swellable material, or the same material having memory as securement member 30. It may also be formed of a different material.
  • FIG. 13 illustrates an alternative embodiment of the vaso-occlusive device of the present invention in which the [0051] securement member 30 is formed from strut-like elements 60 which are held inside microcatheter 50. The struts 15 may be leaf shaped (as shown) on a flattened helical form, or may be any shape which can be compressed to fit within a microcatheter and can expand to a shape which cannot fit through the openings in the strut 15. When microcatheter 50 is pulled back from stent 10, the strut-like elements 60, are released and open, laying flat against stent struts 15 as shown in FIG. 14. In this embodiment, strut-like elements 60 of securement member 30, may be formed of a shape memory material such as NITINOL®, or may be formed from a superelastic material.
  • Also visible in FIG. 14, is a [0052] severable junction 40 which is described above. Severable junction 40, in this embodiment, is shown in contact with occlusive member 20, as opposed to the embodiment shown in FIGS. 11 and 12, in which severable junction 40, is shown in contact with securement member 30.
  • FIG. 15 illustrates an embodiment of the vaso-occlusive device of the present invention in which both the [0053] occlusive member 20 and the securement member 30 are formed from a single material. In this embodiment, a material which swells upon exposure to an aqueous environment. Such materials include, for example, hydrogels, compressed foams, or the like. Swellable materials are discussed in more detail below. As shown in FIG. 15, both the occlusive member 20 and the securement member 30 have been released using the pusher wire, and they begin to swell. The vaso-occlusive device 100 is then brought down into the neck of the aneurysm such that the securement member 30 is on the opposite side of the stent struts 15 from the occlusive member 20. The swelling continues and the device blocks the aneurysm. The device is in its fully expanded configuration in FIG. 16. As can be seen from FIG. 16, the securement member 30 is on one side of the struts 15 and the occlusive member 20 is on the opposite side and actually in the aneurysm (not shown). In this manner, the securement member 30 anchors the vaso-occlusive device 100 to the stent.
  • In another embodiment, rather than deploying the vaso-occlusive device [0054] 100 (only shown in partial view) through openings formed between stent struts, the stent may be made with a specialized opening 70 for accepting the vaso-occlusive device 100 of the present invention as shown in FIG. 17.
  • Again, in FIGS. [0055] 15-17, a severable junction 40 is shown for detaching vaso-occlusive device 100 from catheter delivery device 50.
  • While in the embodiments described above, only one securement member has been employed in each embodiment, one or more securement members may be employed in the present invention. Securement members of any shape may be employed. [0056]
  • Further, support structures of any shape may be employed. For example, linear, Y-shaped, T-shaped stents, and so forth may be employed. [0057]
  • The occlusive portion of the device according to the present invention may be manufactured from any of a variety of materials including, but not limited to, polymeric materials. Examples of useful polymeric materials include both synthetic and natural materials. Further, the materials may be biocompatible and/or biodegradable materials. Examples of useful polymer materials include, but are not limited to, polyolefins including polyethylene and polypropylene, polyesters such as polyethyleneterephthalate(PET) and polybutylene terephthalate (PBT), polyurethanes, acrylics, polypeptides, polyethers, polyamides, fluoropolymers such as expanded polytetrafluoroethylene, and so on and so forth. [0058]
  • Swellable polymeric materials find utility herein. Such materials include those which are known to expand and become lubricious in aqueous fluids including, for example, a class of materials referred to generally as hydrogels may also be employed in the manufacture of the device according to the present invention. Such materials include hydrophilic, macroporous, polymeric, hydrogel foam material. Examples of such materials include, but are not limited, polyvinylpyrrolindone, polyethylene oxide and its copolymers with polypropylene oxide, polyacrylic acids, polyvinyl alcohols, hyaluronic acid, heparin, chondroitin sulfate, pectinic acid, carboxyl-derivatized polysaccharides, polyhydroxy ethyl methacrylate, polyacrylamide, hydrolyzed polyacrylonitriles, polymethacrylic acid, polyethylene amines, polysaccharides, and copolymers and combinations thereof, and so forth. [0059]
  • One particular example of a swellable material includes a swellable foam matrix formed as a macroporous solid is described in U.S. Pat. No. 5,750,585 which is incorporated by reference herein in its entirety. This material includes a foam stabilizing agent and a polymer or copolymer of a free radical polymerizable hydrophilic olefm monomer cross-linked with up to about 10% by weight of a multiolefin-functional cross-linking agent. [0060]
  • Naturally based materials or those which are biologically derived which find utility herein include, but are not limited to, collagen foams, harvested vascular material, films constructed from processed tissues, and so forth. [0061]
  • Shape memory materials are suitable for use in formation of the vaso-occlusive device of the present invention. Shape memory materials may be polymeric or metallic. Shape memory materials have the ability to remember their original shape, either after mechanical deformation, or by cooling and heating. Such materials are said to undergo a structural phase transformation. Typically, shape memory polymers (SMPs) are found to be segregated linear block co-polymers having a hard segment and a soft segment wherein the hard segment is crystalline, with a defined melting point, and the soft segment is amorphous, with a defined glass transition temperature. However, the hard segment may be amorphous and have a glass transition temperature rather than a melting point, and the soft segment may be crystalline and have a melting point rather than a glass transition temperature. The melting point or glass transition temperature of the soft segment is substantially less than the melting point or glass transition temperature of the hard segment. Some examples of shape memory polymers include, but are not limited to, those formed from polyethers, polyacrylates, polyamides, polysiloxanes, polyurethanes, polyether amides, polyurethane/ureas, polyether esters, urethane/butadiene copolymers, polynorbornenes, and mixtures thereof. See, for example, U.S. Pat. No. 5,506,300, U.S. Pat. No. 5,145,935, U.S. Pat. No. 5,665,822, and U.S. Pat. No. 6,388,043 each of which is incorporated by reference herein in its entirety. [0062]
  • Shape memory metals suitable for use herein include the alloys of TiNi (NITINOL®), CuZnAl, and FeNiAl, for example. These materials undergo a structure phase transformation referred to as a martensitic transformation. [0063]
  • Compressed foams may also be employed in the present invention because they have the ability to return to their original shape. Both open and closed cell foams may be employed. Materials satisfactory for use in compressed foams include, but are not limited to medical grade silicones and polyurethanes. As described above, natural materials such as collagens, may also be employed to make a compressed foam material. [0064]
  • Bioactive materials or materials having incorporated bioactive agents which facilitate aneurysm healing may also be employed in the construction of the device. Bioactive materials include agents which illicit a biological response within a patient. Such bioactive include therapeutic agents and drugs, for example. These agents may promote healing, tissue growth, cell growth, and so forth. [0065]
  • The vaso-occlusive device, in particular, the occlusive member, may be formed with a braided, woven, or mesh configuration. [0066]
  • Copolymers, and crosslinkable versions of the above described materials may also be suitable for use herein. And, of course, mixtures of the various materials described above may also be employed in the manufacture of the device according to the present invention. [0067]
  • A single material may be employed in forming both the occlusive member and the securement member, or different materials may be employed as described in some of the embodiments above. Additionally, one or more materials may be employed in forming only the occlusive member and/or the securement member. For example, in a further embodiment, the occlusive member may be formed of a combination of at least one polymeric material and at least one metal. In this embodiment, a metallic material such as a shape memory alloy, is employed to form the strut parts of an umbrella like structure which has an occlusive member similar to the canopy of an umbrella, and further has a frame including a plurality of spokes for providing support to the canopy. The canopy is formed of a polymeric material while the frame may be formed a metallic material or a polymeric material, for example. The frame and canopy have an expanded configuration and an unexpanded configuration for delivery. [0068]
  • The above lists of materials are intended for illustrative purposes only and are by no means exhaustive. One of ordinary skill in the art knows materials of the types described above. [0069]
  • The material from which the vaso-occlusive device is formed, or the vaso-occlusive device itself may be modified, or provided with additives, to make the vaso-occlusive device visible by conventional imaging techniques. For example, the device may be rendered visible using fluoroscopic techniques, rendered MRI visible, or both. This can be accomplished through the use of markers such as wire windings, marker bands, rivets, plugs, and so forth, or the radiopaque or MRI visible materials may be incorporated into the material from which the vaso-occlusive device is formed. Any suitable radiopaque or MRI visible material may be employed. [0070]
  • Suitable materials for providing radiopacity to the device include, but are not limited to, platinum, rhodium, palladium, rhenium, iridium, tantalum, tungsten, gold, silver, alloys of these metals, as well as polymeric materials with barium, for example. Radiopacity is desirable for visualization of the device for purposes of positioning the device at the site of the defect and to position inside the defect and for proper anchoring of the device. [0071]
  • The invention is further directed to the combination of a vaso-occlusive device having at least one securement member and a stent, where the at least one securement member is secured to the stent. Also, the invention is directed to the combination of a delivery catheter and a vaso-occlusive device having at least one securement member. [0072]
  • The invention is further directed to a method of occluding a vascular defect having an opening. The method comprises the steps of: [0073]
  • a) deploying a support structure, as discussed above, to the vascular defect, the support structure having an opening for accepting a vaso-occlusive device; [0074]
  • b) deploying a vaso-occlusive device having at least one occlusive member having an expanded configuration and an unexpanded configuration, as discussed above and at least one securement member, as discussed above, through the opening of the support structure and through the opening of the vascular defect into the vascular defect; [0075]
  • c) expanding the at least one occlusive member; and [0076]
  • d) anchoring the vaso-occlusive device to the support structure with the at least one securement member. [0077]
  • The invention is also directed to a method of closing and occluding an opening of an aneurysm from a parent blood vessel. The method comprises the steps of: [0078]
  • a) deploying a support structure, as discussed above, at the site of the aneurysm, the support structure having at least one opening for accepting a vaso-occlusive device as discussed above, the vaso-occlusive device having at least one occlusive member which has an unexpanded configuration and an expanded configuration and at least one securement member, the support structure positioned at the opening of the aneurysm such that the at least one opening of the support structure is aligned with the opening of the aneurysm; [0079]
  • b) deploying the vaso-occlusive device wherein the at least one occlusive member is in its unexpanded configuration, through the at least one opening of the support structure and the opening of the aneurysm and into the aneurysm; [0080]
  • c) expanding the at least one occlusive member of the vaso-occlusive device to its expanded state whereby the vaso-occlusive device blocks the opening of the aneurysm from the parent blood vessel in its expanded state; and [0081]
  • d) anchoring the vaso-occlusive device to the support structure with the at least one securement member. [0082]
  • The above disclosure is intended for illustrative purposes only and is not exhaustive. The embodiments described therein will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto. [0083]

Claims (44)

1. A device for the treatment of a vascular defect, said device comprising:
at least one occlusive member having a first unexpanded configuration and a second expanded configuration; and
at least one securement member for securing said device to a support structure at the location of the vascular defect.
2. The device of claim 1 wherein said support structure is a stent or stent/graft.
3. The device of claim 2 wherein said support structure is a stent of the self-expanding variety.
4. The device of claim 1 wherein said at least one securement member, said at least one occlusive member, or both, are comprised of a metal or metal alloy.
5. The device of claim 4 wherein said metal is a shape memory metal.
6. The device of claim 1 wherein said at least one occlusive member, said at least one securement member, or both, are formed from a polymeric material.
7. The device of claim 1 wherein said at least one occlusive member, at least one securement member, or both, are formed from a biologically derived material.
8. The device of claim 1 wherein said occlusive member is formed from a biologically derived material.
9. The device of claim 8 wherein said biologically derived material is selected from the group consisting of collagen foams, harvested vascular material, processed tissues and combinations thereof.
10. The device of claim 1 wherein said at least one occlusive member is formed from a combination of at least one polymeric material and at least one metal or metal alloy.
11. The device of claim 10 wherein said at least one occlusive member is in the form of an umbrella, parabola, sphere or disc.
12. The device of claim 6 wherein said polymeric material is selected from the group consisting of polyurethanes, polyolefins, polyesters, polyamides, fluoropolymers, silicones, acrylics, polypeptides, and mixtures thereof.
13. The device of claim 6 wherein said polymeric material is a swellable polymeric material.
14. The device of claim 13 wherein said swellable polymeric material is a hydrogel.
15. The device of claim 1 wherein said at least one securement member and at least one occlusive member are formed from a swellable polymeric material.
16. The device of claim 1 wherein said at least one securement member swells in an aqueous environment.
17. The device of claim 16 wherein said at least one securement member is formed from a hydrogel.
18. The device of claim 1 wherein said at least one occlusive member and said at least one securement member are formed from a swellable polymeric material or a compressed foam.
19. The device of claim 1 wherein at least a portion of said at least one occlusive member has a braided, woven, knit, felt-like or mesh configuration.
20. The device of claim 1 wherein said at least one occlusive member blocks the flow of fluid to a defect in the vasculature.
21. The device of claim 1 wherein said vascular defect is an arterial-venus fistula.
22. The device of claim 1 wherein said vascular defect is an aneurysm.
23. The device of claim 1 further in combination with a catheter.
24. The device of claim 1 further comprising at least one radiopaque material.
25. The device of claim 1 further comprising at least one bioactive material.
26. A vaso-occlusive device formed from a swellable material or a compressed foam, said vaso-occlusive device having at least one securement member.
27. The vaso-occlusive device of claim 26 wherein said at least one occlusive member of said vaso-occlusive device is in the shape of an umbrella, parabola, sphere or disc.
28. A method of occluding a vascular defect having an opening, the method comprising the steps of:
a) deploying a support structure to said vascular defect said support structure having an opening for accepting a vaso-occlusive device;
b) deploying a vaso-occlusive device having at least one occlusive member having an expanded configuration and an unexpanded configuration and at least one securement member through said opening of said support structure and through said opening of said vascular defect into said vascular defect; and
c) expanding said at least one occlusive member; and
d) anchoring said vaso-occlusive device to said support structure with said at least one securement member.
29. The method of claim 28 wherein said support structure is a stent or stent/graft having a plurality of struts.
30. The method of claim 28 wherein said support structure is a straight or a bifurcated stent.
31. The method of claim 30 wherein said support structure is a stent and said opening for accepting said vaso-occlusive device is formed between said struts.
32. The method of claim 30 wherein said support structure is a stent of the self-expanding variety.
33. The method of claim 28 wherein said at least one occlusive member is polymeric.
34. The method of claim 28 wherein said at least one securement member is metallic or polymeric.
35. The method of claim 34 wherein said at least one securement member is formed from more than one strut-like element.
36. The method of claim 34 wherein said at least one securement member is formed from a shape memory material or superelastic material.
37. The method of claim 34 wherein said at least one securement member is a swellable polymeric material.
38. The method of claim 37 wherein said at least one securement member is a hydrogel.
39. The method of claim 28 wherein said vaso-occlusive device is deployed with a microcatheter.
40. A method of closing and occluding an opening of an aneurysm from a parent blood vessel, the method comprising the steps of:
a) deploying a support structure at the site of the aneurysm said support structure having at least one opening for accepting a vaso-occlusive device, said vaso-occlusive device having at least one occlusive member which has an unexpanded configuration and an expanded configuration and at least one securement member, said support structure positioned at said opening of said aneurysm such that said at least one opening of said support structure is aligned with said opening of said aneurysm;
b) deploying said vaso-occlusive device wherein said at least one occlusive member is in its unexpanded configuration, through said at least one opening of said support structure and said opening of said aneurysm and into said aneurysm;
c) expanding said at least one occlusive member of said vaso-occlusive device to its expanded state whereby said vaso-occlusive device blocks said opening of said aneurysm from said parent blood vessel in its expanded state; and
d) anchoring said vaso-occlusive device to said support structure with said at least one securement member.
41. The method of claim 40 wherein said support structure is a stent having a plurality of struts and said at least one opening is formed between said struts.
42. The method of claim 40 wherein said stent is a self-expanding stent.
43. The method of claim 40 wherein said vaso-occlusive device is deployed with a microcatheter.
44. In combination, a vaso-occlusive device having at least one securement member and a stent, the at least one securement member secured to the stent.
US10/230,803 2002-08-29 2002-08-29 Device for closure of a vascular defect and method of treating the same Abandoned US20040044391A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/230,803 US20040044391A1 (en) 2002-08-29 2002-08-29 Device for closure of a vascular defect and method of treating the same
AU2003256880A AU2003256880A1 (en) 2002-08-29 2003-07-29 Device for closure of a vascular defect and method for treating the same
EP03791657A EP1549229B1 (en) 2002-08-29 2003-07-29 Device for closure of a vascular defect
CA002485206A CA2485206A1 (en) 2002-08-29 2003-07-29 Device for closure of a vascular defect and method for treating the same
AT03791657T ATE424149T1 (en) 2002-08-29 2003-07-29 DEVICE FOR CLOSING A VESSEL DEFECT
PCT/US2003/024764 WO2004019791A2 (en) 2002-08-29 2003-07-29 Device for closure of a vascular defect and method for treating the same
JP2004532875A JP4472525B2 (en) 2002-08-29 2003-07-29 Embolizer for vascular lesions
DE60326474T DE60326474D1 (en) 2002-08-29 2003-07-29 DEVICE FOR CLOSING A VASCULAR DEFECT
US11/185,160 US8444667B2 (en) 2002-08-29 2005-07-20 Device for closure of a vascular defect and method for treating the same
US11/433,280 US8747430B2 (en) 2002-08-29 2006-05-12 Device for closure of a vascular defect and method for treating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/230,803 US20040044391A1 (en) 2002-08-29 2002-08-29 Device for closure of a vascular defect and method of treating the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/185,160 Division US8444667B2 (en) 2002-08-29 2005-07-20 Device for closure of a vascular defect and method for treating the same
US11/433,280 Division US8747430B2 (en) 2002-08-29 2006-05-12 Device for closure of a vascular defect and method for treating the same

Publications (1)

Publication Number Publication Date
US20040044391A1 true US20040044391A1 (en) 2004-03-04

Family

ID=31976586

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/230,803 Abandoned US20040044391A1 (en) 2002-08-29 2002-08-29 Device for closure of a vascular defect and method of treating the same
US11/185,160 Active 2027-05-06 US8444667B2 (en) 2002-08-29 2005-07-20 Device for closure of a vascular defect and method for treating the same
US11/433,280 Active 2026-11-07 US8747430B2 (en) 2002-08-29 2006-05-12 Device for closure of a vascular defect and method for treating the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/185,160 Active 2027-05-06 US8444667B2 (en) 2002-08-29 2005-07-20 Device for closure of a vascular defect and method for treating the same
US11/433,280 Active 2026-11-07 US8747430B2 (en) 2002-08-29 2006-05-12 Device for closure of a vascular defect and method for treating the same

Country Status (8)

Country Link
US (3) US20040044391A1 (en)
EP (1) EP1549229B1 (en)
JP (1) JP4472525B2 (en)
AT (1) ATE424149T1 (en)
AU (1) AU2003256880A1 (en)
CA (1) CA2485206A1 (en)
DE (1) DE60326474D1 (en)
WO (1) WO2004019791A2 (en)

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030130742A1 (en) * 2001-07-30 2003-07-10 Connelly Patrick R. Apparatus for replacing musculo-skeletal parts
US20050033349A1 (en) * 2001-09-20 2005-02-10 Jones Donald K. Stent aneurysm embolization device
US20050131523A1 (en) * 2003-04-02 2005-06-16 Mehran Bashiri Detachable and retrievable stent assembly
WO2005035020A3 (en) * 2003-10-07 2005-06-16 Ford Henry Health System Platform catheter
US20060106421A1 (en) * 2004-11-16 2006-05-18 Clifford Teoh Expansible neck bridge
US20060206199A1 (en) * 2005-03-12 2006-09-14 Churchwell Stacey D Aneurysm treatment devices
WO2006096449A2 (en) * 2005-03-03 2006-09-14 Hines Richard A Endovascular aneurysm treatment device and delivery system
US20060206198A1 (en) * 2005-03-12 2006-09-14 Churchwell Stacey D Aneurysm treatment devices and methods
US20070288083A1 (en) * 2006-05-12 2007-12-13 Hines Richard A Exclusion Device and System For Delivery
US20080132932A1 (en) * 2006-08-16 2008-06-05 Biomet Sports Medicine, Inc. Chondral Defect Repair
US20080221600A1 (en) * 2006-08-17 2008-09-11 Dieck Martin S Isolation devices for the treatment of aneurysms
US20080255613A1 (en) * 2007-04-10 2008-10-16 Biomet Sports Medicine, Inc. Adjustable knotless loops
US20080262629A1 (en) * 2007-03-26 2008-10-23 Fonte Matthew V Proximally Self-Locking Long Bone Prosthesis
US20080312689A1 (en) * 2004-11-05 2008-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling sof tissue to a bone
US20090082800A1 (en) * 2007-09-21 2009-03-26 Insera Therapeutics Llc Distal Embolic Protection Devices With A Variable Thickness Microguidewire And Methods For Their Use
US20090287294A1 (en) * 2008-04-21 2009-11-19 Rosqueta Arturo S Braid-Ball Embolic Devices
US20100023105A1 (en) * 2008-07-22 2010-01-28 Micro Therapeutics, Inc. Vascular remodeling device
US20100076463A1 (en) * 2008-04-04 2010-03-25 Akshay Mavani Implantable fistula closure device
US20100106240A1 (en) * 2008-10-20 2010-04-29 IMDS, Inc. Systems and Methods for Aneurysm Treatment and Vessel Occlusion
US20100145384A1 (en) * 2006-09-29 2010-06-10 Biomet Sport Medicine, Llc Method for Implanting Soft Tissue
US20100152828A1 (en) * 2006-11-02 2010-06-17 Pakbaz R Sean Devices and methods for accessing and treating an aneurysm
US20100249828A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatement
US20110087284A1 (en) * 2006-02-03 2011-04-14 Biomet Sports Medicine, Llc Soft Tissue Repair and Conduit Device
US20110184452A1 (en) * 2010-01-28 2011-07-28 Micro Therapeutics, Inc. Vascular remodeling device
US20110184453A1 (en) * 2010-01-28 2011-07-28 Micro Therapeutics, Inc. Vascular remodeling device
US20110185560A1 (en) * 2008-08-18 2011-08-04 Qioptiq Photonics Gmbh & Co. Kg Method for producing an objective
US20110202085A1 (en) * 2009-11-09 2011-08-18 Siddharth Loganathan Braid Ball Embolic Device Features
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8221454B2 (en) 2004-02-20 2012-07-17 Biomet Sports Medicine, Llc Apparatus for performing meniscus repair
US8231654B2 (en) 2006-09-29 2012-07-31 Biomet Sports Medicine, Llc Adjustable knotless loops
US8292921B2 (en) 2006-02-03 2012-10-23 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8317825B2 (en) 2004-11-09 2012-11-27 Biomet Sports Medicine, Llc Soft tissue conduit device and method
US8337525B2 (en) 2006-02-03 2012-12-25 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
WO2013016984A1 (en) * 2011-08-03 2013-02-07 北京华医圣杰科技有限公司 Aortic aneurysm dissection stent system and preparation method thereof
US8409253B2 (en) 2006-02-03 2013-04-02 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US8636760B2 (en) 2009-04-20 2014-01-28 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8715317B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Flow diverting devices
US20140180377A1 (en) * 2012-12-20 2014-06-26 Penumbra, Inc. Aneurysm occlusion system and method
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US20140277425A1 (en) * 2013-03-12 2014-09-18 Aga Medical Corporation Paravalvular leak occlusion device for self-expanding heart valves
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
US9095343B2 (en) 2005-05-25 2015-08-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9131941B2 (en) 2011-06-17 2015-09-15 Curaseal Inc. Fistula treatment devices and methods
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US20150313605A1 (en) * 2014-04-30 2015-11-05 Cerus Endovascular Limited Occlusion Device
US9204983B2 (en) 2005-05-25 2015-12-08 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9211116B2 (en) 2011-06-16 2015-12-15 Curaseal Inc. Fistula treatment devices and related methods
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US9314324B2 (en) 2013-03-15 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
EP2326259A4 (en) * 2008-09-05 2016-06-15 Pulsar Vascular Inc Systems and methods for supporting or occluding a physiological opening or cavity
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9393022B2 (en) 2011-02-11 2016-07-19 Covidien Lp Two-stage deployment aneurysm embolization devices
CN105902291A (en) * 2016-04-08 2016-08-31 张小曦 Intracranial aneurysm interventional closure treatment device
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US20160310147A1 (en) * 2015-03-26 2016-10-27 Boston Scientific Scimed, Inc. Systems and methods for vascular occlusion
US9498604B2 (en) 1997-11-12 2016-11-22 Genesis Technologies Llc Medical device and method
US9510835B2 (en) 2005-10-19 2016-12-06 Pulsar Vascular, Inc. Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9561094B2 (en) 2010-07-23 2017-02-07 Nfinium Vascular Technologies, Llc Devices and methods for treating venous diseases
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9636117B2 (en) 2011-10-05 2017-05-02 Pulsar Vascular, Inc. Devices, systems and methods for enclosing an anatomical opening
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10004510B2 (en) 2011-06-03 2018-06-26 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening, including shock absorbing aneurysm devices
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
CN109069220A (en) * 2016-03-11 2018-12-21 Cerus血管内设备有限公司 plugging device
EP3473190A1 (en) * 2017-10-23 2019-04-24 Stsat AG System for occlusion of an aneurysm
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10327781B2 (en) 2012-11-13 2019-06-25 Covidien Lp Occlusive devices
US10335153B2 (en) 2009-09-04 2019-07-02 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening
US10390926B2 (en) 2013-07-29 2019-08-27 Insera Therapeutics, Inc. Aspiration devices and methods
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10524800B2 (en) 2016-05-17 2020-01-07 The Cleveland Clinic Foundation Method and apparatus for substantially blocking bloodflow through a dissected aorta
US10624647B2 (en) 2011-06-03 2020-04-21 Pulsar Vascular, Inc. Aneurysm devices with additional anchoring mechanisms and associated systems and methods
JP2020093100A (en) * 2018-12-12 2020-06-18 デピュイ・シンセス・プロダクツ・インコーポレイテッド Aneurysm occluding device for use with coagulating agents
US10736758B2 (en) 2013-03-15 2020-08-11 Covidien Occlusive device
US10856880B1 (en) 2019-05-25 2020-12-08 Galaxy Therapeutics, Inc. Systems and methods for treating aneurysms
US10856879B2 (en) 2015-02-25 2020-12-08 Galaxy Therapeutics Inc. System for and method of treating aneurysms
US10905430B2 (en) 2018-01-24 2021-02-02 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10939915B2 (en) 2018-05-31 2021-03-09 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11058430B2 (en) 2018-05-25 2021-07-13 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11076861B2 (en) 2018-10-12 2021-08-03 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
US11076860B2 (en) 2014-03-31 2021-08-03 DePuy Synthes Products, Inc. Aneurysm occlusion device
US11123077B2 (en) 2018-09-25 2021-09-21 DePuy Synthes Products, Inc. Intrasaccular device positioning and deployment system
US11134953B2 (en) 2019-02-06 2021-10-05 DePuy Synthes Products, Inc. Adhesive cover occluding device for aneurysm treatment
US11154302B2 (en) 2014-03-31 2021-10-26 DePuy Synthes Products, Inc. Aneurysm occlusion device
US11185335B2 (en) 2018-01-19 2021-11-30 Galaxy Therapeutics Inc. System for and method of treating aneurysms
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11266414B2 (en) 2014-06-04 2022-03-08 Vascular Development Corp, Llc Low radial force vascular device and method of occlusion
US11272939B2 (en) 2018-12-18 2022-03-15 DePuy Synthes Products, Inc. Intrasaccular flow diverter for treating cerebral aneurysms
US11278292B2 (en) 2019-05-21 2022-03-22 DePuy Synthes Products, Inc. Inverting braided aneurysm treatment system and method
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11337706B2 (en) 2019-03-27 2022-05-24 DePuy Synthes Products, Inc. Aneurysm treatment device
US11406404B2 (en) 2020-02-20 2022-08-09 Cerus Endovascular Limited Clot removal distal protection methods
US11413046B2 (en) 2019-05-21 2022-08-16 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US11457926B2 (en) 2019-12-18 2022-10-04 DePuy Synthes Products, Inc. Implant having an intrasaccular section and intravascular section
US11471162B2 (en) 2015-12-07 2022-10-18 Cerus Endovascular Limited Occlusion device
US11497504B2 (en) 2019-05-21 2022-11-15 DePuy Synthes Products, Inc. Aneurysm treatment with pushable implanted braid
US11583282B2 (en) 2019-05-21 2023-02-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US11583288B2 (en) 2018-08-08 2023-02-21 DePuy Synthes Products, Inc. Delivery of embolic braid
US11596412B2 (en) 2018-05-25 2023-03-07 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11602350B2 (en) 2019-12-05 2023-03-14 DePuy Synthes Products, Inc. Intrasaccular inverting braid with highly flexible fill material
US11607226B2 (en) 2019-05-21 2023-03-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device with corrugations
US11633818B2 (en) 2019-11-04 2023-04-25 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11672543B2 (en) 2017-02-23 2023-06-13 DePuy Synthes Products, Inc. Aneurysm method and system
US11672542B2 (en) 2019-05-21 2023-06-13 DePuy Synthes Products, Inc. Aneurysm treatment with pushable ball segment
US11812971B2 (en) 2017-08-21 2023-11-14 Cerus Endovascular Limited Occlusion device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998007375A1 (en) 1996-08-22 1998-02-26 The Trustees Of Columbia University Endovascular flexible stapling device
US20040044391A1 (en) 2002-08-29 2004-03-04 Stephen Porter Device for closure of a vascular defect and method of treating the same
US7972330B2 (en) 2003-03-27 2011-07-05 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7186251B2 (en) 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
WO2004087235A2 (en) 2003-03-27 2004-10-14 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US8021362B2 (en) 2003-03-27 2011-09-20 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7165552B2 (en) 2003-03-27 2007-01-23 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US7293562B2 (en) 2003-03-27 2007-11-13 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
CA2525792C (en) 2003-05-15 2015-10-13 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
US7763077B2 (en) 2003-12-24 2010-07-27 Biomerix Corporation Repair of spinal annular defects and annulo-nucleoplasty regeneration
US7367975B2 (en) 2004-06-21 2008-05-06 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
EP1789123A4 (en) * 2004-09-17 2010-03-03 Cordis Neurovascular Inc Thin film metallic devices for plugging aneurysms or vessels
JP5033787B2 (en) 2005-04-11 2012-09-26 テルモ株式会社 Method and apparatus for effecting closure of a lamellar tissue defect
WO2008063455A1 (en) * 2006-11-13 2008-05-29 Hines Richard A Over-the wire exclusion device and system for delivery
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US20100069948A1 (en) * 2008-09-12 2010-03-18 Micrus Endovascular Corporation Self-expandable aneurysm filling device, system and method of placement
WO2011003147A1 (en) * 2009-07-09 2011-01-13 Murray Vascular Pty Limited A support device for a tubular structure
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US8728067B2 (en) * 2010-03-08 2014-05-20 Covidien Lp Microwave antenna probe having a deployable ground plane
US8425548B2 (en) 2010-07-01 2013-04-23 Aneaclose LLC Occluding member expansion and then stent expansion for aneurysm treatment
US9597223B2 (en) * 2012-05-23 2017-03-21 Nandhika Wijay Reversible acute occlusion implant, delivery catheter and method
US9681876B2 (en) 2013-07-31 2017-06-20 EMBA Medical Limited Methods and devices for endovascular embolization
US10010328B2 (en) 2013-07-31 2018-07-03 NeuVT Limited Endovascular occlusion device with hemodynamically enhanced sealing and anchoring
US10595875B2 (en) 2014-12-31 2020-03-24 Endostream Medical Ltd. Device for restricting blood flow to aneurysms
EP3471660B1 (en) 2016-06-21 2021-07-28 Endostream Medical Ltd. Medical device for treating vascular malformations
CN110612072A (en) * 2017-12-21 2019-12-24 得克萨斯农业及机械体系综合大学 Vascular prosthesis for leak protection in endovascular aneurysm repair
US10716574B2 (en) * 2017-12-22 2020-07-21 DePuy Synthes Products, Inc. Aneurysm device and delivery method
US10751065B2 (en) 2017-12-22 2020-08-25 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US10258284B1 (en) * 2018-04-05 2019-04-16 Tufts Medical Center, Inc. Implant in middle meningial-artery
CN113260323A (en) 2019-01-17 2021-08-13 内流医疗有限公司 Vascular malformation implant system
CN113017746A (en) * 2019-12-24 2021-06-25 上海微创心脉医疗科技(集团)股份有限公司 Interlayer crevasse plugging system
CN113017745A (en) * 2019-12-24 2021-06-25 上海微创心脉医疗科技(集团)股份有限公司 Plugging device and system

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122136A (en) * 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5145935A (en) * 1988-09-30 1992-09-08 Mitsubishi Jukogyo Kabushiki Kaisha Shape memory polyurethane elastomer molded article
US5354295A (en) * 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US5665822A (en) * 1991-10-07 1997-09-09 Landec Corporation Thermoplastic Elastomers
US5750585A (en) * 1995-04-04 1998-05-12 Purdue Research Foundation Super absorbent hydrogel foams
US5855578A (en) * 1990-03-13 1999-01-05 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US5980514A (en) * 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6063070A (en) * 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6139564A (en) * 1998-06-16 2000-10-31 Target Therapeutics Inc. Minimally occlusive flow disruptor stent for bridging aneurysm necks
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US6168622B1 (en) * 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US6299619B1 (en) * 1999-10-04 2001-10-09 Microvention, Inc. Methods for embolizing a target vascular site
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
US20030055440A1 (en) * 2001-09-20 2003-03-20 Jones Donald K. Stent aneurysm embolization method using collapsible member and embolic coils
US6602261B2 (en) * 1999-10-04 2003-08-05 Microvention, Inc. Filamentous embolic device with expansile elements
US6790218B2 (en) * 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678508B1 (en) * 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
EP1723931B1 (en) * 1996-11-04 2012-01-04 Advanced Stent Technologies, Inc. Extendible stent apparatus and method for deploying the same
US6063111A (en) * 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US6652555B1 (en) * 1999-10-27 2003-11-25 Atritech, Inc. Barrier device for covering the ostium of left atrial appendage
AU2001279261A1 (en) 2000-06-23 2002-01-08 John J Frantzen Radially expandable aneurysm treatment stent
FR2822370B1 (en) * 2001-03-23 2004-03-05 Perouse Lab TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION
US6811560B2 (en) * 2001-09-20 2004-11-02 Cordis Neurovascular, Inc. Stent aneurysm embolization method and device
US20040044391A1 (en) 2002-08-29 2004-03-04 Stephen Porter Device for closure of a vascular defect and method of treating the same

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US5145935A (en) * 1988-09-30 1992-09-08 Mitsubishi Jukogyo Kabushiki Kaisha Shape memory polyurethane elastomer molded article
US5895385A (en) * 1990-03-13 1999-04-20 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5947963A (en) * 1990-03-13 1999-09-07 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5540680A (en) * 1990-03-13 1996-07-30 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6083220A (en) * 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6010498A (en) * 1990-03-13 2000-01-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5855578A (en) * 1990-03-13 1999-01-05 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6066133A (en) * 1990-03-13 2000-05-23 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5925037A (en) * 1990-03-13 1999-07-20 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5122136A (en) * 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5944714A (en) * 1990-03-13 1999-08-31 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5354295A (en) * 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5976126A (en) * 1990-03-13 1999-11-02 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5665822A (en) * 1991-10-07 1997-09-09 Landec Corporation Thermoplastic Elastomers
US5750585A (en) * 1995-04-04 1998-05-12 Purdue Research Foundation Super absorbent hydrogel foams
US6168622B1 (en) * 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US5980514A (en) * 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US6063070A (en) * 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6388043B1 (en) * 1998-02-23 2002-05-14 Mnemoscience Gmbh Shape memory polymers
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6139564A (en) * 1998-06-16 2000-10-31 Target Therapeutics Inc. Minimally occlusive flow disruptor stent for bridging aneurysm necks
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6063104A (en) * 1998-06-24 2000-05-16 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US6093199A (en) * 1998-08-05 2000-07-25 Endovascular Technologies, Inc. Intra-luminal device for treatment of body cavities and lumens and method of use
US6299619B1 (en) * 1999-10-04 2001-10-09 Microvention, Inc. Methods for embolizing a target vascular site
US6602261B2 (en) * 1999-10-04 2003-08-05 Microvention, Inc. Filamentous embolic device with expansile elements
US6790218B2 (en) * 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US20030055440A1 (en) * 2001-09-20 2003-03-20 Jones Donald K. Stent aneurysm embolization method using collapsible member and embolic coils

Cited By (393)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9498604B2 (en) 1997-11-12 2016-11-22 Genesis Technologies Llc Medical device and method
US20030130742A1 (en) * 2001-07-30 2003-07-10 Connelly Patrick R. Apparatus for replacing musculo-skeletal parts
US20050033349A1 (en) * 2001-09-20 2005-02-10 Jones Donald K. Stent aneurysm embolization device
US7608088B2 (en) * 2001-09-20 2009-10-27 Codman & Shurtleff, Inc. Stent aneurysm embolization device
US20050131523A1 (en) * 2003-04-02 2005-06-16 Mehran Bashiri Detachable and retrievable stent assembly
US20100234935A1 (en) * 2003-04-02 2010-09-16 Boston Scientific Scimed, Inc. Detachable And Retrievable Stent Assembly
WO2005035020A3 (en) * 2003-10-07 2005-06-16 Ford Henry Health System Platform catheter
US8221454B2 (en) 2004-02-20 2012-07-17 Biomet Sports Medicine, Llc Apparatus for performing meniscus repair
US11109857B2 (en) 2004-11-05 2021-09-07 Biomet Sports Medicine, Llc Soft tissue repair device and method
US9504460B2 (en) 2004-11-05 2016-11-29 Biomet Sports Medicine, LLC. Soft tissue repair device and method
US8551140B2 (en) 2004-11-05 2013-10-08 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10265064B2 (en) 2004-11-05 2019-04-23 Biomet Sports Medicine, Llc Soft tissue repair device and method
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US20080312689A1 (en) * 2004-11-05 2008-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling sof tissue to a bone
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9572655B2 (en) 2004-11-05 2017-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8317825B2 (en) 2004-11-09 2012-11-27 Biomet Sports Medicine, Llc Soft tissue conduit device and method
WO2006055182A1 (en) * 2004-11-16 2006-05-26 Boston Scientific Limited Expansible aneurism neck bridge
US20060106421A1 (en) * 2004-11-16 2006-05-18 Clifford Teoh Expansible neck bridge
WO2006096449A2 (en) * 2005-03-03 2006-09-14 Hines Richard A Endovascular aneurysm treatment device and delivery system
WO2006096449A3 (en) * 2005-03-03 2007-11-29 Richard A Hines Endovascular aneurysm treatment device and delivery system
WO2006099111A2 (en) * 2005-03-12 2006-09-21 Starfire Medical, Inc. Aneurysm treatment devices
WO2006099111A3 (en) * 2005-03-12 2009-04-16 Starfire Medical Inc Aneurysm treatment devices
US20060206198A1 (en) * 2005-03-12 2006-09-14 Churchwell Stacey D Aneurysm treatment devices and methods
US20060206199A1 (en) * 2005-03-12 2006-09-14 Churchwell Stacey D Aneurysm treatment devices
US10064747B2 (en) 2005-05-25 2018-09-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9381104B2 (en) 2005-05-25 2016-07-05 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10322018B2 (en) 2005-05-25 2019-06-18 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9204983B2 (en) 2005-05-25 2015-12-08 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9198666B2 (en) 2005-05-25 2015-12-01 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US9095343B2 (en) 2005-05-25 2015-08-04 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US10499927B2 (en) 2005-10-19 2019-12-10 Pulsar Vascular, Inc. Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US9510835B2 (en) 2005-10-19 2016-12-06 Pulsar Vascular, Inc. Methods and systems for endovascularly clipping and repairing lumen and tissue defects
US11896210B2 (en) 2006-02-03 2024-02-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11786236B2 (en) 2006-02-03 2023-10-17 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9510819B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9532777B2 (en) 2006-02-03 2017-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US9561025B2 (en) 2006-02-03 2017-02-07 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US20110087284A1 (en) * 2006-02-03 2011-04-14 Biomet Sports Medicine, Llc Soft Tissue Repair and Conduit Device
US9498204B2 (en) 2006-02-03 2016-11-22 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9492158B2 (en) 2006-02-03 2016-11-15 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10154837B2 (en) 2006-02-03 2018-12-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10098629B2 (en) 2006-02-03 2018-10-16 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10251637B2 (en) 2006-02-03 2019-04-09 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10716557B2 (en) 2006-02-03 2020-07-21 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8273106B2 (en) * 2006-02-03 2012-09-25 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US8292921B2 (en) 2006-02-03 2012-10-23 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US10729430B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10092288B2 (en) 2006-02-03 2018-10-09 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8337525B2 (en) 2006-02-03 2012-12-25 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9603591B2 (en) 2006-02-03 2017-03-28 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10729421B2 (en) 2006-02-03 2020-08-04 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9414833B2 (en) 2006-02-03 2016-08-16 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9402621B2 (en) 2006-02-03 2016-08-02 Biomet Sports Medicine, LLC. Method for tissue fixation
US8409253B2 (en) 2006-02-03 2013-04-02 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US9622736B2 (en) 2006-02-03 2017-04-18 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US10022118B2 (en) 2006-02-03 2018-07-17 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10321906B2 (en) 2006-02-03 2019-06-18 Biomet Sports Medicine, Llc Method for tissue fixation
US10398428B2 (en) 2006-02-03 2019-09-03 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9642661B2 (en) 2006-02-03 2017-05-09 Biomet Sports Medicine, Llc Method and Apparatus for Sternal Closure
US10441264B2 (en) 2006-02-03 2019-10-15 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10004588B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8608777B2 (en) 2006-02-03 2013-12-17 Biomet Sports Medicine Method and apparatus for coupling soft tissue to a bone
US8632569B2 (en) 2006-02-03 2014-01-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10004489B2 (en) 2006-02-03 2018-06-26 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11819205B2 (en) 2006-02-03 2023-11-21 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US9510821B2 (en) 2006-02-03 2016-12-06 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9763656B2 (en) 2006-02-03 2017-09-19 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US11730464B2 (en) 2006-02-03 2023-08-22 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11723648B2 (en) 2006-02-03 2023-08-15 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US10542967B2 (en) 2006-02-03 2020-01-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10595851B2 (en) 2006-02-03 2020-03-24 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10603029B2 (en) 2006-02-03 2020-03-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US11617572B2 (en) 2006-02-03 2023-04-04 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8721684B2 (en) 2006-02-03 2014-05-13 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9173651B2 (en) 2006-02-03 2015-11-03 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US11589859B2 (en) 2006-02-03 2023-02-28 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11471147B2 (en) 2006-02-03 2022-10-18 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10702259B2 (en) 2006-02-03 2020-07-07 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US11446019B2 (en) 2006-02-03 2022-09-20 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9801620B2 (en) 2006-02-03 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US11317907B2 (en) 2006-02-03 2022-05-03 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9993241B2 (en) 2006-02-03 2018-06-12 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8771316B2 (en) 2006-02-03 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US10695052B2 (en) 2006-02-03 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11284884B2 (en) 2006-02-03 2022-03-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10675073B2 (en) 2006-02-03 2020-06-09 Biomet Sports Medicine, Llc Method and apparatus for sternal closure
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US9005287B2 (en) 2006-02-03 2015-04-14 Biomet Sports Medicine, Llc Method for bone reattachment
US10932770B2 (en) 2006-02-03 2021-03-02 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10687803B2 (en) 2006-02-03 2020-06-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US11116495B2 (en) 2006-02-03 2021-09-14 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US10973507B2 (en) 2006-02-03 2021-04-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US10987099B2 (en) 2006-02-03 2021-04-27 Biomet Sports Medicine, Llc Method for tissue fixation
US8932331B2 (en) 2006-02-03 2015-01-13 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US11065103B2 (en) 2006-02-03 2021-07-20 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US11039826B2 (en) 2006-02-03 2021-06-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US20070288083A1 (en) * 2006-05-12 2007-12-13 Hines Richard A Exclusion Device and System For Delivery
US10660646B2 (en) 2006-05-12 2020-05-26 Electroformed Stents, Inc. Exclusion device and system for delivery
US9585670B2 (en) 2006-05-12 2017-03-07 Electroformed Stents, Inc. Exclusion device and system for delivery
US20080132932A1 (en) * 2006-08-16 2008-06-05 Biomet Sports Medicine, Inc. Chondral Defect Repair
US8777956B2 (en) 2006-08-16 2014-07-15 Biomet Sports Medicine, Llc Chondral defect repair
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US20080221600A1 (en) * 2006-08-17 2008-09-11 Dieck Martin S Isolation devices for the treatment of aneurysms
US10349931B2 (en) 2006-09-29 2019-07-16 Biomet Sports Medicine, Llc Fracture fixation device
US10517714B2 (en) 2006-09-29 2019-12-31 Biomet Sports Medicine, Llc Ligament system for knee joint
US9539003B2 (en) 2006-09-29 2017-01-10 Biomet Sports Medicine, LLC. Method and apparatus for forming a self-locking adjustable loop
US10743925B2 (en) 2006-09-29 2020-08-18 Biomet Sports Medicine, Llc Fracture fixation device
US10835232B2 (en) 2006-09-29 2020-11-17 Biomet Sports Medicine, Llc Fracture fixation device
US9486211B2 (en) 2006-09-29 2016-11-08 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11096684B2 (en) 2006-09-29 2021-08-24 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10695045B2 (en) 2006-09-29 2020-06-30 Biomet Sports Medicine, Llc Method and apparatus for attaching soft tissue to bone
US9833230B2 (en) 2006-09-29 2017-12-05 Biomet Sports Medicine, Llc Fracture fixation device
US20100145384A1 (en) * 2006-09-29 2010-06-10 Biomet Sport Medicine, Llc Method for Implanting Soft Tissue
US8231654B2 (en) 2006-09-29 2012-07-31 Biomet Sports Medicine, Llc Adjustable knotless loops
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US9414925B2 (en) 2006-09-29 2016-08-16 Biomet Manufacturing, Llc Method of implanting a knee prosthesis assembly with a ligament link
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9681940B2 (en) 2006-09-29 2017-06-20 Biomet Sports Medicine, Llc Ligament system for knee joint
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9788876B2 (en) 2006-09-29 2017-10-17 Biomet Sports Medicine, Llc Fracture fixation device
US10398430B2 (en) 2006-09-29 2019-09-03 Biomet Sports Medicine, Llc Method for implanting soft tissue
US11376115B2 (en) 2006-09-29 2022-07-05 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US10004493B2 (en) 2006-09-29 2018-06-26 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9724090B2 (en) 2006-09-29 2017-08-08 Biomet Manufacturing, Llc Method and apparatus for attaching soft tissue to bone
US10610217B2 (en) 2006-09-29 2020-04-07 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US11672527B2 (en) 2006-09-29 2023-06-13 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8672968B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Method for implanting soft tissue
US20100152828A1 (en) * 2006-11-02 2010-06-17 Pakbaz R Sean Devices and methods for accessing and treating an aneurysm
US11612391B2 (en) 2007-01-16 2023-03-28 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US20090204226A1 (en) * 2007-03-26 2009-08-13 Mx Orthopedics Corp. Proximally Self-Locking Long Bone Prosthesis
US8062378B2 (en) 2007-03-26 2011-11-22 Mx Orthopedics Corp. Proximal self-locking long bone prosthesis
US8137486B2 (en) 2007-03-26 2012-03-20 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis
US20110192563A1 (en) * 2007-03-26 2011-08-11 Mx Orthopedics Corp. Proximally Self-Locking Long Bone Prosthesis
US8398790B2 (en) 2007-03-26 2013-03-19 Mx Orthopedics, Corp. Proximally self-locking long bone prosthesis
US20080262629A1 (en) * 2007-03-26 2008-10-23 Fonte Matthew V Proximally Self-Locking Long Bone Prosthesis
US7947135B2 (en) 2007-03-26 2011-05-24 Mx Orthopedics Corp. Proximally self-locking long bone prosthesis
US9861351B2 (en) 2007-04-10 2018-01-09 Biomet Sports Medicine, Llc Adjustable knotless loops
US20080255613A1 (en) * 2007-04-10 2008-10-16 Biomet Sports Medicine, Inc. Adjustable knotless loops
US11185320B2 (en) 2007-04-10 2021-11-30 Biomet Sports Medicine, Llc Adjustable knotless loops
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US10729423B2 (en) 2007-04-10 2020-08-04 Biomet Sports Medicine, Llc Adjustable knotless loops
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US20090082800A1 (en) * 2007-09-21 2009-03-26 Insera Therapeutics Llc Distal Embolic Protection Devices With A Variable Thickness Microguidewire And Methods For Their Use
US20100082056A1 (en) * 2008-04-04 2010-04-01 Akshay Mavani Implantable fistula closure device
US20100076463A1 (en) * 2008-04-04 2010-03-25 Akshay Mavani Implantable fistula closure device
US8747597B2 (en) 2008-04-21 2014-06-10 Covidien Lp Methods for making braid-ball occlusion devices
US9585669B2 (en) 2008-04-21 2017-03-07 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US20110208227A1 (en) * 2008-04-21 2011-08-25 Becking Frank P Filamentary Devices For Treatment Of Vascular Defects
US11844528B2 (en) 2008-04-21 2023-12-19 Covidien Lp Multiple layer filamentary devices for treatment of vascular defects
US20090287291A1 (en) * 2008-04-21 2009-11-19 Becking Frank P Embolic Device Delivery Systems
US9039726B2 (en) 2008-04-21 2015-05-26 Covidien Lp Filamentary devices for treatment of vascular defects
US8696701B2 (en) 2008-04-21 2014-04-15 Covidien Lp Braid-ball embolic devices
US8142456B2 (en) 2008-04-21 2012-03-27 Nfocus Neuromedical, Inc. Braid-ball embolic devices
US20090287294A1 (en) * 2008-04-21 2009-11-19 Rosqueta Arturo S Braid-Ball Embolic Devices
US10610389B2 (en) 2008-05-13 2020-04-07 Covidien Lp Braid implant delivery systems
US11707371B2 (en) 2008-05-13 2023-07-25 Covidien Lp Braid implant delivery systems
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US20100023105A1 (en) * 2008-07-22 2010-01-28 Micro Therapeutics, Inc. Vascular remodeling device
US9179918B2 (en) 2008-07-22 2015-11-10 Covidien Lp Vascular remodeling device
US20110185560A1 (en) * 2008-08-18 2011-08-04 Qioptiq Photonics Gmbh & Co. Kg Method for producing an objective
US11534159B2 (en) 2008-08-22 2022-12-27 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8377094B2 (en) 2008-09-04 2013-02-19 Curaseal Inc. Enteric fistula treatment devices
US9993235B2 (en) 2008-09-04 2018-06-12 Curaseal Inc. Enteric fistula treatment devices
US8177809B2 (en) 2008-09-04 2012-05-15 Curaseal Inc. Inflatable device for enteric fistula treatment
US20100249827A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatment
US20100249828A1 (en) * 2008-09-04 2010-09-30 Akshay Mavani Inflatable device for enteric fistula treatement
US8206416B2 (en) 2008-09-04 2012-06-26 Curaseal Inc. Inflatable device for enteric fistula treatment
US8221451B2 (en) 2008-09-04 2012-07-17 Curaseal Inc. Inflatable device for enteric fistula treatment
US9615831B2 (en) 2008-09-05 2017-04-11 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
EP2326259A4 (en) * 2008-09-05 2016-06-15 Pulsar Vascular Inc Systems and methods for supporting or occluding a physiological opening or cavity
EP3903696A1 (en) * 2008-09-05 2021-11-03 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
US10285709B2 (en) 2008-09-05 2019-05-14 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
US11185333B2 (en) 2008-09-05 2021-11-30 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
AU2015255277B2 (en) * 2008-09-05 2017-08-31 Pulsar Vascular, Inc. Systems and methods for supporting or occluding a physiological opening or cavity
US8470013B2 (en) * 2008-10-20 2013-06-25 Imds Corporation Systems and methods for aneurysm treatment and vessel occlusion
US20100106240A1 (en) * 2008-10-20 2010-04-29 IMDS, Inc. Systems and Methods for Aneurysm Treatment and Vessel Occlusion
US20130238083A1 (en) * 2008-10-20 2013-09-12 Imds Corporation Systems and methods for aneurysm treatment and vessel occlusion
US8636760B2 (en) 2009-04-20 2014-01-28 Covidien Lp System and method for delivering and deploying an occluding device within a vessel
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US10149767B2 (en) 2009-05-28 2018-12-11 Biomet Manufacturing, Llc Method of implanting knee prosthesis assembly with ligament link
US8900314B2 (en) 2009-05-28 2014-12-02 Biomet Manufacturing, Llc Method of implanting a prosthetic knee joint assembly
US11633189B2 (en) 2009-09-04 2023-04-25 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening
US10335153B2 (en) 2009-09-04 2019-07-02 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening
US9095342B2 (en) 2009-11-09 2015-08-04 Covidien Lp Braid ball embolic device features
US20110202085A1 (en) * 2009-11-09 2011-08-18 Siddharth Loganathan Braid Ball Embolic Device Features
US9468442B2 (en) 2010-01-28 2016-10-18 Covidien Lp Vascular remodeling device
US20110184452A1 (en) * 2010-01-28 2011-07-28 Micro Therapeutics, Inc. Vascular remodeling device
US8926681B2 (en) 2010-01-28 2015-01-06 Covidien Lp Vascular remodeling device
US20110184453A1 (en) * 2010-01-28 2011-07-28 Micro Therapeutics, Inc. Vascular remodeling device
US9561094B2 (en) 2010-07-23 2017-02-07 Nfinium Vascular Technologies, Llc Devices and methods for treating venous diseases
US9393022B2 (en) 2011-02-11 2016-07-19 Covidien Lp Two-stage deployment aneurysm embolization devices
US10004511B2 (en) 2011-03-25 2018-06-26 Covidien Lp Vascular remodeling device
US9089332B2 (en) 2011-03-25 2015-07-28 Covidien Lp Vascular remodeling device
US11147563B2 (en) 2011-03-25 2021-10-19 Covidien Lp Vascular remodeling device
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US9216078B2 (en) 2011-05-17 2015-12-22 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US11344311B2 (en) 2011-06-03 2022-05-31 Pulsar Vascular, Inc. Aneurysm devices with additional anchoring mechanisms and associated systems and methods
US10004510B2 (en) 2011-06-03 2018-06-26 Pulsar Vascular, Inc. Systems and methods for enclosing an anatomical opening, including shock absorbing aneurysm devices
US10624647B2 (en) 2011-06-03 2020-04-21 Pulsar Vascular, Inc. Aneurysm devices with additional anchoring mechanisms and associated systems and methods
US9211116B2 (en) 2011-06-16 2015-12-15 Curaseal Inc. Fistula treatment devices and related methods
US9131941B2 (en) 2011-06-17 2015-09-15 Curaseal Inc. Fistula treatment devices and methods
WO2013016984A1 (en) * 2011-08-03 2013-02-07 北京华医圣杰科技有限公司 Aortic aneurysm dissection stent system and preparation method thereof
US11654037B2 (en) 2011-09-29 2023-05-23 Covidien Lp Vascular remodeling device
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
US10828182B2 (en) 2011-09-29 2020-11-10 Covidien Lp Vascular remodeling device
US11457923B2 (en) 2011-10-05 2022-10-04 Pulsar Vascular, Inc. Devices, systems and methods for enclosing an anatomical opening
US10426487B2 (en) 2011-10-05 2019-10-01 Pulsar Vascular, Inc. Devices, systems and methods for enclosing an anatomical opening
US9636117B2 (en) 2011-10-05 2017-05-02 Pulsar Vascular, Inc. Devices, systems and methods for enclosing an anatomical opening
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US9445827B2 (en) 2011-10-25 2016-09-20 Biomet Sports Medicine, Llc Method and apparatus for intraosseous membrane reconstruction
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US11241305B2 (en) 2011-11-03 2022-02-08 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US10265159B2 (en) 2011-11-03 2019-04-23 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US11534157B2 (en) 2011-11-10 2022-12-27 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10363028B2 (en) 2011-11-10 2019-07-30 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US10368856B2 (en) 2011-11-10 2019-08-06 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9877856B2 (en) 2012-07-18 2018-01-30 Covidien Lp Methods and apparatus for luminal stenting
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
US11406405B2 (en) 2012-11-06 2022-08-09 Covidien Lp Multi-pivot thrombectomy device
US9924959B2 (en) 2012-11-06 2018-03-27 Covidien Lp Multi-pivot thrombectomy device
US11786253B2 (en) 2012-11-13 2023-10-17 Covidien Lp Occlusive devices
US10327781B2 (en) 2012-11-13 2019-06-25 Covidien Lp Occlusive devices
US11690628B2 (en) 2012-11-13 2023-07-04 Covidien Lp Occlusive devices
US20140180377A1 (en) * 2012-12-20 2014-06-26 Penumbra, Inc. Aneurysm occlusion system and method
US9901472B2 (en) 2013-01-17 2018-02-27 Covidien Lp Methods and apparatus for luminal stenting
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9339274B2 (en) * 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US11141273B2 (en) 2013-03-12 2021-10-12 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US20140277425A1 (en) * 2013-03-12 2014-09-18 Aga Medical Corporation Paravalvular leak occlusion device for self-expanding heart valves
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US10758221B2 (en) 2013-03-14 2020-09-01 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
US9314324B2 (en) 2013-03-15 2016-04-19 Insera Therapeutics, Inc. Vascular treatment devices and methods
US10463468B2 (en) 2013-03-15 2019-11-05 Insera Therapeutics, Inc. Thrombus aspiration with different intensity levels
US8747432B1 (en) 2013-03-15 2014-06-10 Insera Therapeutics, Inc. Woven vascular treatment devices
US11389309B2 (en) 2013-03-15 2022-07-19 Covidien Lp Occlusive device
US10342655B2 (en) 2013-03-15 2019-07-09 Insera Therapeutics, Inc. Methods of treating a thrombus in an artery using cyclical aspiration patterns
US10335260B2 (en) 2013-03-15 2019-07-02 Insera Therapeutics, Inc. Methods of treating a thrombus in a vein using cyclical aspiration patterns
US8733618B1 (en) 2013-03-15 2014-05-27 Insera Therapeutics, Inc. Methods of coupling parts of vascular treatment systems
US8753371B1 (en) 2013-03-15 2014-06-17 Insera Therapeutics, Inc. Woven vascular treatment systems
US9179931B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US9179995B2 (en) 2013-03-15 2015-11-10 Insera Therapeutics, Inc. Methods of manufacturing slotted vascular treatment devices
US8721677B1 (en) 2013-03-15 2014-05-13 Insera Therapeutics, Inc. Variably-shaped vascular devices
US10251739B2 (en) 2013-03-15 2019-04-09 Insera Therapeutics, Inc. Thrombus aspiration using an operator-selectable suction pattern
US8721676B1 (en) 2013-03-15 2014-05-13 Insera Therapeutics, Inc. Slotted vascular treatment devices
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
US9592068B2 (en) 2013-03-15 2017-03-14 Insera Therapeutics, Inc. Free end vascular treatment systems
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8783151B1 (en) 2013-03-15 2014-07-22 Insera Therapeutics, Inc. Methods of manufacturing vascular treatment devices
US11298144B2 (en) 2013-03-15 2022-04-12 Insera Therapeutics, Inc. Thrombus aspiration facilitation systems
US8789452B1 (en) 2013-03-15 2014-07-29 Insera Therapeutics, Inc. Methods of manufacturing woven vascular treatment devices
US8910555B2 (en) 2013-03-15 2014-12-16 Insera Therapeutics, Inc. Non-cylindrical mandrels
US8904914B2 (en) 2013-03-15 2014-12-09 Insera Therapeutics, Inc. Methods of using non-cylindrical mandrels
US8895891B2 (en) 2013-03-15 2014-11-25 Insera Therapeutics, Inc. Methods of cutting tubular devices
US8882797B2 (en) 2013-03-15 2014-11-11 Insera Therapeutics, Inc. Methods of embolic filtering
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
US9750524B2 (en) 2013-03-15 2017-09-05 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy systems
US10736758B2 (en) 2013-03-15 2020-08-11 Covidien Occlusive device
US9833251B2 (en) 2013-03-15 2017-12-05 Insera Therapeutics, Inc. Variably bulbous vascular treatment devices
US8852227B1 (en) 2013-03-15 2014-10-07 Insera Therapeutics, Inc. Woven radiopaque patterns
US9901435B2 (en) 2013-03-15 2018-02-27 Insera Therapeutics, Inc. Longitudinally variable vascular treatment devices
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US8859934B1 (en) 2013-07-29 2014-10-14 Insera Therapeutics, Inc. Methods for slag removal
US8932320B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Methods of aspirating thrombi
US8872068B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Devices for modifying hypotubes
US10390926B2 (en) 2013-07-29 2019-08-27 Insera Therapeutics, Inc. Aspiration devices and methods
US8735777B1 (en) 2013-07-29 2014-05-27 Insera Therapeutics, Inc. Heat treatment systems
US8932321B1 (en) 2013-07-29 2015-01-13 Insera Therapeutics, Inc. Aspiration systems
US8784446B1 (en) 2013-07-29 2014-07-22 Insera Therapeutics, Inc. Circumferentially offset variable porosity devices
US8728116B1 (en) 2013-07-29 2014-05-20 Insera Therapeutics, Inc. Slotted catheters
US8863631B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of manufacturing flow diverting devices
US8728117B1 (en) 2013-07-29 2014-05-20 Insera Therapeutics, Inc. Flow disrupting devices
US8866049B1 (en) 2013-07-29 2014-10-21 Insera Therapeutics, Inc. Methods of selectively heat treating tubular devices
US10751159B2 (en) 2013-07-29 2020-08-25 Insera Therapeutics, Inc. Systems for aspirating thrombus during neurosurgical procedures
US8790365B1 (en) 2013-07-29 2014-07-29 Insera Therapeutics, Inc. Fistula flow disruptor methods
US8869670B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of manufacturing variable porosity devices
US8870910B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Methods of decoupling joints
US8795330B1 (en) 2013-07-29 2014-08-05 Insera Therapeutics, Inc. Fistula flow disruptors
US8845678B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics Inc. Two-way shape memory vascular treatment methods
US8715317B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Flow diverting devices
US8803030B1 (en) 2013-07-29 2014-08-12 Insera Therapeutics, Inc. Devices for slag removal
US8845679B1 (en) 2013-07-29 2014-09-30 Insera Therapeutics, Inc. Variable porosity flow diverting devices
US8816247B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods for modifying hypotubes
US8828045B1 (en) 2013-07-29 2014-09-09 Insera Therapeutics, Inc. Balloon catheters
US8715316B1 (en) 2013-07-29 2014-05-06 Insera Therapeutics, Inc. Offset vascular treatment devices
US8813625B1 (en) 2013-07-29 2014-08-26 Insera Therapeutics, Inc. Methods of manufacturing variable porosity flow diverting devices
US8870901B1 (en) 2013-07-29 2014-10-28 Insera Therapeutics, Inc. Two-way shape memory vascular treatment systems
US10806443B2 (en) 2013-12-20 2020-10-20 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US11648004B2 (en) 2013-12-20 2023-05-16 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
US11076860B2 (en) 2014-03-31 2021-08-03 DePuy Synthes Products, Inc. Aneurysm occlusion device
US11154302B2 (en) 2014-03-31 2021-10-26 DePuy Synthes Products, Inc. Aneurysm occlusion device
US11389174B2 (en) 2014-04-30 2022-07-19 Cerus Endovascular Limited Occlusion device
CN106456183A (en) * 2014-04-30 2017-02-22 Cerus血管内设备有限公司 Occlusion device
JP2019205893A (en) * 2014-04-30 2019-12-05 シーラス エンドバスキュラー リミテッド Occlusion device
WO2015166013A1 (en) * 2014-04-30 2015-11-05 Cerus Endovascular Limited Occlusion device
EP3510945A1 (en) * 2014-04-30 2019-07-17 Cerus Endovascular Limited Occlusion device
US20150313605A1 (en) * 2014-04-30 2015-11-05 Cerus Endovascular Limited Occlusion Device
US10130372B2 (en) * 2014-04-30 2018-11-20 Cerus Endovascular Limited Occlusion Device
US11284901B2 (en) 2014-04-30 2022-03-29 Cerus Endovascular Limited Occlusion device
JP2017516605A (en) * 2014-04-30 2017-06-22 シーラス エンドバスキュラー リミテッド Occlusion device
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US11266414B2 (en) 2014-06-04 2022-03-08 Vascular Development Corp, Llc Low radial force vascular device and method of occlusion
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US11219443B2 (en) 2014-08-22 2022-01-11 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10743856B2 (en) 2014-08-22 2020-08-18 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US11883032B2 (en) 2015-02-25 2024-01-30 Galaxy Therapeutics, Inc. System for and method of treating aneurysms
US10856879B2 (en) 2015-02-25 2020-12-08 Galaxy Therapeutics Inc. System for and method of treating aneurysms
US11229440B2 (en) * 2015-03-26 2022-01-25 Boston Scientific Scimed, Inc. Systems and methods for vascular occlusion
US20160310147A1 (en) * 2015-03-26 2016-10-27 Boston Scientific Scimed, Inc. Systems and methods for vascular occlusion
US10912551B2 (en) 2015-03-31 2021-02-09 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US11357510B2 (en) 2015-09-23 2022-06-14 Covidien Lp Occlusive devices
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US11471162B2 (en) 2015-12-07 2022-10-18 Cerus Endovascular Limited Occlusion device
CN109069220A (en) * 2016-03-11 2018-12-21 Cerus血管内设备有限公司 plugging device
US10869672B2 (en) 2016-03-11 2020-12-22 Cents Endovascular Limited Occlusion device
US11648013B2 (en) 2016-03-11 2023-05-16 Cerus Endovascular Limited Occlusion device
CN105902291A (en) * 2016-04-08 2016-08-31 张小曦 Intracranial aneurysm interventional closure treatment device
US10524800B2 (en) 2016-05-17 2020-01-07 The Cleveland Clinic Foundation Method and apparatus for substantially blocking bloodflow through a dissected aorta
US11672543B2 (en) 2017-02-23 2023-06-13 DePuy Synthes Products, Inc. Aneurysm method and system
US11890020B2 (en) 2017-02-23 2024-02-06 DePuy Synthes Products, Inc. Intrasaccular aneurysm treatment device with varying coatings
US11812971B2 (en) 2017-08-21 2023-11-14 Cerus Endovascular Limited Occlusion device
FR3072558A1 (en) * 2017-10-23 2019-04-26 Stsat Ag SYSTEM FOR BURNING ANEVISM
EP3473190A1 (en) * 2017-10-23 2019-04-24 Stsat AG System for occlusion of an aneurysm
US11185335B2 (en) 2018-01-19 2021-11-30 Galaxy Therapeutics Inc. System for and method of treating aneurysms
US10905430B2 (en) 2018-01-24 2021-02-02 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11672540B2 (en) 2018-01-24 2023-06-13 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11058430B2 (en) 2018-05-25 2021-07-13 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11596412B2 (en) 2018-05-25 2023-03-07 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US10939915B2 (en) 2018-05-31 2021-03-09 DePuy Synthes Products, Inc. Aneurysm device and delivery system
US11583288B2 (en) 2018-08-08 2023-02-21 DePuy Synthes Products, Inc. Delivery of embolic braid
US11123077B2 (en) 2018-09-25 2021-09-21 DePuy Synthes Products, Inc. Intrasaccular device positioning and deployment system
US11633191B2 (en) 2018-10-12 2023-04-25 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
US11076861B2 (en) 2018-10-12 2021-08-03 DePuy Synthes Products, Inc. Folded aneurysm treatment device and delivery method
US11406392B2 (en) 2018-12-12 2022-08-09 DePuy Synthes Products, Inc. Aneurysm occluding device for use with coagulating agents
JP2020093100A (en) * 2018-12-12 2020-06-18 デピュイ・シンセス・プロダクツ・インコーポレイテッド Aneurysm occluding device for use with coagulating agents
US11272939B2 (en) 2018-12-18 2022-03-15 DePuy Synthes Products, Inc. Intrasaccular flow diverter for treating cerebral aneurysms
US11134953B2 (en) 2019-02-06 2021-10-05 DePuy Synthes Products, Inc. Adhesive cover occluding device for aneurysm treatment
US11337706B2 (en) 2019-03-27 2022-05-24 DePuy Synthes Products, Inc. Aneurysm treatment device
US11278292B2 (en) 2019-05-21 2022-03-22 DePuy Synthes Products, Inc. Inverting braided aneurysm treatment system and method
US11583282B2 (en) 2019-05-21 2023-02-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US11672542B2 (en) 2019-05-21 2023-06-13 DePuy Synthes Products, Inc. Aneurysm treatment with pushable ball segment
US11413046B2 (en) 2019-05-21 2022-08-16 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device
US11607226B2 (en) 2019-05-21 2023-03-21 DePuy Synthes Products, Inc. Layered braided aneurysm treatment device with corrugations
US11497504B2 (en) 2019-05-21 2022-11-15 DePuy Synthes Products, Inc. Aneurysm treatment with pushable implanted braid
US11033277B2 (en) 2019-05-25 2021-06-15 Galaxy Therapeutics, Inc. Systems and methods for treating aneurysms
US10856880B1 (en) 2019-05-25 2020-12-08 Galaxy Therapeutics, Inc. Systems and methods for treating aneurysms
US11166731B2 (en) 2019-05-25 2021-11-09 Galaxy Therapeutics Inc. Systems and methods for treating aneurysms
US11622771B2 (en) 2019-05-25 2023-04-11 Galaxy Therapeutics, Inc. Systems and methods for treating aneurysms
US11202636B2 (en) 2019-05-25 2021-12-21 Galaxy Therapeutics Inc. Systems and methods for treating aneurysms
US11058431B2 (en) 2019-05-25 2021-07-13 Galaxy Therapeutics, Inc. Systems and methods for treating aneurysms
US11685007B2 (en) 2019-11-04 2023-06-27 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11717924B2 (en) 2019-11-04 2023-08-08 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11633818B2 (en) 2019-11-04 2023-04-25 Covidien Lp Devices, systems, and methods for treatment of intracranial aneurysms
US11679458B2 (en) 2019-11-04 2023-06-20 Covidien Lp Devices, systems, and methods for treating aneurysms
US11602350B2 (en) 2019-12-05 2023-03-14 DePuy Synthes Products, Inc. Intrasaccular inverting braid with highly flexible fill material
US11457926B2 (en) 2019-12-18 2022-10-04 DePuy Synthes Products, Inc. Implant having an intrasaccular section and intravascular section
US11406404B2 (en) 2020-02-20 2022-08-09 Cerus Endovascular Limited Clot removal distal protection methods

Also Published As

Publication number Publication date
US8747430B2 (en) 2014-06-10
EP1549229A2 (en) 2005-07-06
EP1549229B1 (en) 2009-03-04
JP2005537092A (en) 2005-12-08
JP4472525B2 (en) 2010-06-02
ATE424149T1 (en) 2009-03-15
DE60326474D1 (en) 2009-04-16
CA2485206A1 (en) 2004-03-11
US20050251200A1 (en) 2005-11-10
WO2004019791A3 (en) 2004-06-24
US8444667B2 (en) 2013-05-21
AU2003256880A1 (en) 2004-03-19
US20060206196A1 (en) 2006-09-14
WO2004019791A2 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US8444667B2 (en) Device for closure of a vascular defect and method for treating the same
US11291453B2 (en) Filamentary devices having a flexible joint for treatment of vascular defects
US8075585B2 (en) Device and method for treatment of a vascular defect
US20230149022A1 (en) Filamentary devices for treatment of vascular defects
EP2314231B1 (en) Aneurysm treatment device
US9962164B2 (en) Wing bifurcation reconstruction device
US7901445B2 (en) Intracranial stent and method of use
US20150209133A1 (en) Vascular remodeling device
US20030204246A1 (en) Aneurysm treatment system and method
US20110054512A1 (en) Occlusion device
WO1999012484A1 (en) Vessel occlusion device
WO2021011033A1 (en) Filamentary devices for treatment of vascular defects
WO2021183793A2 (en) Devices for treatment of vascular defects
AU2013205292B2 (en) Reversible tubal contraceptive device
CN117414231A (en) Controllable self-expanding tectorial membrane support

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PORTER, STEPHEN;REEL/FRAME:013256/0655

Effective date: 20020820

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: STRYKER MEDTECH LIMITED, MALTA

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER NV OPERATIONS LIMITED;REEL/FRAME:037153/0034

Effective date: 20151013

Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER MEDTECH LIMITED;REEL/FRAME:037153/0241

Effective date: 20151013

AS Assignment

Owner name: STRYKER NV OPERATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC LIMITED;REEL/FRAME:037156/0336

Effective date: 20110103

Owner name: STRYKER CORPORATION, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC LIMITED;REEL/FRAME:037156/0336

Effective date: 20110103

AS Assignment

Owner name: STRYKER EUROPEAN HOLDINGS I, LLC, MICHIGAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT LISTED SERIAL NOS. 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0241. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT EFFECTIVE DATE 9/29/2014;ASSIGNOR:STRYKER MEDTECH LIMITED;REEL/FRAME:038043/0011

Effective date: 20151013

Owner name: STRYKER MEDTECH LIMITED, MALTA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT SERIAL # 09/905,670 AND 07/092,079 PREVIOUSLY RECORDED AT REEL: 037153 FRAME: 0034. ASSIGNOR(S) HEREBY CONFIRMS THE NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER NV OPERATIONS LIMITED;REEL/FRAME:038039/0001

Effective date: 20151013

AS Assignment

Owner name: STRYKER EUROPEAN OPERATIONS HOLDINGS LLC, MICHIGAN

Free format text: CHANGE OF NAME;ASSIGNOR:STRYKER EUROPEAN HOLDINGS III, LLC;REEL/FRAME:052860/0716

Effective date: 20190226

Owner name: STRYKER EUROPEAN HOLDINGS III, LLC, DELAWARE

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:STRYKER EUROPEAN HOLDINGS I, LLC;REEL/FRAME:052861/0001

Effective date: 20200519